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FEn este trabajo se revisan algunas de las aplicaciones cldsicas del
bootstrap of andlisis de la supervivencia. Se consideran en primer lugar
el estimador bootstrap de ia varianza y ef estimador de la mediana corre-
gido para ¢l sesgo del estimador de Kaplan-Meier de la funcion de super-
vivencia, A continuacion se consideran algunos aspectos mds recientes, ta-
les como métodos para construir bandas de confianza para el estimador
de la funcion de supervivencia y contrastes aproximados para ia compara-
cion de funciones de supervivencia. En ambas situaciones ef bootstrap re-
sulta de gran utilidad para la aproximacion de los valores criticos necesarios.

Palabras clave: Andlisis de la supervivencia, daios censurados, esti-
mador de Kaplan-Meler, bootstrap, contrastes de hipdtesis bootstrap.

In this work some of the classical applications of booistrap methods
to survival analysis are reviewed, First the bootstrap estimate of the va-
riance and fhe the bias-corrected estimate of the median for the Kaplan-
Meier estimator of the survival function are considered, After this more
recent topics are considered such as methods for constructing confidence
bands for the estimate of the survival function and exact and approxima-
ted tests to compare two survival functions. In the lfast two situations the
bootstrap proves to be helpul in approximating the necessary critical values.

Key words: Survival Analysis, Censored Sarmple, Kaplan-Meier esti-
mator, Bootstrap, Bootsirap fest.

The Kaplan-Meier estimator (Kaplan and Meier, 1958) has a central role
in the non-parametric approach to survival. In 1967 Efron gave a new insight to
this estimator in an important paper {Efron, 1967}, and therefore, it is not sur-
prising that one of the first applications of the bootstrap was made in the con-
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text of survival analysis (Efron, 1981). Here, in what follows we study two well
known bootstrap estimators, both introduced by Efron (1981},

We begin with the booistrap estimate of the variance of the Kaplan-Meier
estimator at a point, which we compare with the classical asymptotic estimation
given by the Greenwood formula. After this we consider the bootstrap estimate
of the bigs of the median of the distribution (also obtained using the Kaplan-
Meier estimator).

Finally, a third application wili be presented which deals with the crucial
prablem in survival analysis of testing whether two survival curves are the same.
For example, suppose we have two (censored) samples recording the time of re-
mission of a certain illness after the administration of 2 different drugs and we
want to compare the efficiency of the two treatments. This is a version of the
classical two-sample problem for censored samples. Here, one can adopt a para-
metric, semi-parametric or non-parametric point of view according to the hy-
potheses which are plausible in the model.

The approach we use in this paper is the non-parametric one. Some diffe-
rent, well-known tests, are available for this approach, known in general as the
Mantel-Gehan-Efron-Cox tests. They are based on the weighted log-rank statis-
tics (Fleming and Harrington, 1991), and can be rewritten in a general formula-
tion (Gill, 1980} as a class of statistics based on the Kaplan-Meier estimator, which
Gill calls calls-K statistics.

Any of these tests can be bootstrapped, but here we adopt a different point
of view and we will study a Kolmogorov-Smirnov type test, which is intuitive in
this situation and easy to bootstrap. Essentially, what we are going to do is to
change the empirical distribution functions by the Kaplan-Meier estimations. If
we assume that the (common) survival function is continuous, the statistic we
will use is (almost) independent of the particular distribution, and we can cons-
truct an asymptotic test. This class of tests has been studied by Schumacher (1984).
When no assumption about continuity is made, we can resort to a bootstrap test.
The bootstrap works well in this situation, Efron (1981), Akritas (1986}, Gill (1989},
at least as well as the classical asymptotic theory, and it could work even better.

Notation. The Kaplan-Meier Estimator

Let X be a non-negative random variable. We are interested in the estima-
tion of the survival function:

St) = P(X > 1)

When we take a sample
X! gara ,X

it is not always possible to observe X; sometimes we observe another random va-
riable D. For example, say X is the time until remission of an illness under a cer-
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tain treatment, but patient number { changes doctor before he is cured and is lost
for our study, The general formulation is the following: let

(XIQ Dl),“"(xn’ Dn)
be 1.i.d. vectors, X and D independents. Assume we observe

U, = min (X;, D)

{D are called the censors), and suppose we also know whether or not the obser-
vation {J is censored, This is given by a random variable

X, (uncensored observation)
D, (censored observation)

Il

- {gitu

To estimate the survival function using all the information, ie.,
(U,, 6,),...,(U,, 6,)

we introduce the Kaplan-Meier estimator. Assume the observations are ordercd:

U,<U,<...<U,
then,
0 n—i T
Sk = ﬂujsx( n—j+1 )’, ift=U,
and

Skt = 0, ift>U,

When there is no censored observation the Kaplan-Meier estimator is just the em-
pirical survival function (which assigns mass 1/n to each observation).

EXAMPLE 1!

Most examples that will be presented here are based on the data {so many
times analyzed and reanalyzed) from Freireich et al. {1963) (see for example Law-
less, 1982) in which a drug was compared to a placebo in the capacity to main-
tain remission in acute leukaemia patients:

The data are the following: (*denotes a censored observation)

1. All the examnples have been calculated using OBJECSTAT and EMSS which are a set of object-oriented statistical ron-
tines and an integrated environment for its use developed by one of the authors {see Sdnchez, Ocafta and Ruiz de Villa, 1992).
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6-MP: 6, 6, 6, 6% 7, 9% 10, 10% 11* 13, 16, 17* 19% 20% 22, 23, 25* 32*%
32% 34* 35 . _

Placebo 1,1,2,2,3,4,4,5,5,8,8,8,8, 11, 11, 12, 12, 15, 17, 22, 23

The Kaplan-Meier estimators for these data are given in Tables 1 and 2 and its

graphical representation may be seen in Figure 1.

TABLE 1. SURVIVAL FUNCTION FOR GROUP TREATED WITH §-MP

4 6 7 10 13 16 2 pL
L () 0.86 0.81 0.75 0.69 0.63 0.54 0.45

TABLE 2. SURVIVAL FUNCTION FOR GROUFP TREATED WITH PLACEBO

L 1 2 3 4 $ 8 1
§,(1) 0.90 0.8 .76 0.67 0.57 0.38 0.29
1 12 15 17 22 2

8,(t) 0.19 0.14 0.09 0.05 0.00

Kaplan-Meier estimates of survival
{Source: Freirrich ef ai., 1963)
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Figura 1. Estimated Survival Functions for Freirrich's Data Set.

First applications of the bootstrap

a} Variance estimation

The Kaplan-Meier estimator of the survival function has very good pro-
perties: it is strongly consistent and it is asymptotically normal. This last fact
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allows us to compute an estimation of the asymptotic variance at point £ of this
estimator. Greenwood's formula for the standard deviation is:

36(t) = Sx(t) )\/zu Sy T

{n—1) (n i+1)

However we can use the bootstrap to perform another estimation of this
standard deviation. Efron (1981} suggests the following resampling plan: Given
the sample:

(U]’ di)’"-’(Um dn)

take a bootstrap sample (giving probability 1/n to each element of the previous
sample):

(U3 69,..(UF 6
Efron shows that this plane is equivalent to resampling XF,..., X*
from X,,...X,, and D}...,.D* from D,,...,.D, and defining:

U¥* = min (X% D3

and
6% — { 1, if Ur= X
' 0, if U¥= D¢

Reid (1981) suggests another resampling plan, which consists of drawing
samples following the Kaplan-Meicr distribution, which assigns mass (not uni-
formly} only to uncensored observations.

Turning back to Efron’s plan, we compute the Kaplan-Meier estimator for
the bootstrap sample, S¥(t) and define the bootstrap estimator of the variance
of 84(t), which we may indicate §; as the standard deviation of S#(t).

As usually {in a non-simple situation), this standard deviation may be ap-
proximated by the Monte Carlo method, taking B bootstrap samples, and com-
puting the sample standard deviation of the corresponding Kaplan-Mcier esti-
mators at the point t. To be specific, let

% ~%n

SX: SX
be the corresponding estimations at ¢ of the bootstrap samples. Then

2 Sy - 1 s? 8y
5 A ESIor - §EL80
B—l
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Greenwood's and Bootstrap estimate of the variance are shown in Table 3 for
Freirrich’s data set.

TABLE 3. GREENWOOD'S AND BOOTSTRAF (B=:250) ESTIMATES OF THE VARIANCE OF Sfu

4 6 7 10 13 16 22 23
VG[Sx(ti)I (058 0076 093 0114 013 0164 181
{GreenWoaod}

VL 554{t)] D056 0069 L0083 0107 0126 G134 D178
{Bootstrap)

b Estimating the bias of the Median

The Kaplan-Meier estimator does not work well when ¢ is near the highest
values observed, and in particular, if the censoring is heavy. For this reason, and
also because it is easily interpretable, the median is always an interesting parame-
ter to estimate. On the other hand, there is no classical result (like the Greenwood
formula) to estimate the bias and standard deviation of the estimation of the me-
dian (also computed by Kaplan-Meier). Once again, Efron (1981) suggests using
the bootstrap.

The median is estimated by

m = inf {t : §{{t) < 1/2]

Now we take B bootstrap samples, compute the B medians, and the bias is esti-
mated by

A 1 .a A% .

b = Ezi;,mi - m

and the standard deviation by the sample standard deviation as above.

ExAMPLE 2

The following data are part of a rescarch conducted at the Mayo Clinic
between 1974 and 1984, and the variable is the time (in days) passing between
registration and liver transplantation, or moment of death or end of study. For
the moment, we study only the patients taking a drug {D-penicillamine). We have
to remark that the data are numerous, and there are many covariates which would
allow fitting to a Cox model (see Fleming and Harrington, 1991).

The data are the following: (* denotes a censored cbservation)

19, 32, 57, 96, 143, 193, 194, 205, 275, 322, 341, 371, 383, 469, 512, 562*%, 605%
637* 638% 644% 651F
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The Kaplan-Meier estimator fot this data gives:

TABLE 4. SURVIVAL FUNCTION FOR FLEMING AND HARRINGTON'S DATA SET

L 18 k]! 57 96 142 144

&a) |98 o7 | 875 833 |92 | 750

1 192 194 204 275 322 328
3,4 | 708 667 625 583 542 500
1 340 342 371 468 512 582
S0 | .as8 A7 375 333 292 243

The Bootstrap estimate of the bias of the median of the survival curve: is, follo-
wing the previous formula:

320.14 — 328 = —7.86

Bias-Corrected estimate of the median
{Source: Fleming & Harrington 1991}
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Figura 2. Bias Corrected Estimate of the Median.

Substracting the bias from the sample median we may obtain a bias corrected
estimate of the median of the survival curve

Sample median — estimated bias = 328 + 7.86 = 335.86
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It is important to note that Efron gives a justification the usc of bootstrap
in these problems, However, a complete proof of the fact that the bootstrap works
in this situation can be found in Gill (1989), where he shows that if the delta met-
hod works, the bootstrap works {(at least in a weak sense).

Confidence bands for the survival function

a) Hall & Wellner’s classical bands

1et y be a confidence level. The problem of interest is now to find a region
of the planc which contains the survival function with probability greater than
or equal to y. In the situation we are dealing with, this band is expressed in termy
of the Kaplan-Meier estimator. We have to find a 4, such that

Sty — AD,(t) < St < Syt) + AD, (1), ¥V teR
with probability equal or greater that y.
Assuming that the survival functions of X and D are ¢continuous, Hall and

Wellner (1980) constructed a confidence band using the asymptotic behaviour of
the Kaplan-Meier estimator. Particularly they proved that

lim,sup,oq V1| Gx®) — Sx(t) —

SH(t) (1+C,(1) | = supicioq | BYK(®) |

where T is a point such that
S,(m) > 0,
B is a brownign bridge, and X is a function depending on the survival functions

of X and D, and which is continuocus with the hypotheses of this section. Then
we have

SUPpq | BAK() | = sup,.puey | B® ()
and we can construct conservative bands using the random variable
SUPcpy | B () |
which is tabulated. To be specific, we choose 4 such that
P(suppoy | B | <4 =y

In that case we have:
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Sk — AD,() < S«(t) < Sx1) - AD,1),Yie [0,7)
with probability greater than or equal to y, where

D, = vn 8it) 1+C.(1)
where
4.

Ct) = n Xy, =0 =it D

From this construction, we can deduce a test to determine whether the data are
from a continuous survival function:

H, : Sx(t) = S1).Yte[0,7]
against a bilateral hypotheses

H, : 3te[0,1] : St} # S%t)

using the test statistic:
' 1

Jn__- SUP iz o \/H | (Snx(t) - So(t)) S"x(t) (1+C_E|

and critical region
J.>t,

where t, is the (1—e)-percentile of the distribution of
SUPyeg0 | BOY) |
Asymptotically this test has level o,
lim, P(J, >t H)<a
and it is consistent:
lim,PJ,>t, | H) = 1
(This last fact is deduced from the strong consistency of the Kaplan-Meier es-
timator.)
b} Akrita’s bootstrap bands

When no assumption on the continuity of the survivals of X and D is made,
all the above steps are correct except



164 E Utzet y A. Sdnchez

SWPpoy | BAKM) | = supcpxe | Bot) |

In this general situation this means that the asymptotic distribution can depend
strongly of the survival functions of X and D. The solution, then, is to bootstrap
Hall & Wellner’s confidence bands., This was carried out by Akritas (1986}, who
made use of the fact that, given y, if we determine 4 such that

1
P (Vi sup.cas | G530~ S0 £ a7 0.0 | sl} =y

where P* denotes the bootstrap probability, then,
SUt) — AD,(t) < Sx(t) < Sx+ AD,(1),Viel0,1]
To determine the 4, we use the Monte Carlo method: We compute B times

Akrita’s Bootstrap confidence bands
{Source; Freirrich et al, 1963)
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Figura 3. Bootstrap Confidence Bands for 6-MP.

1
vn SUP;eo | Sx(t) — SX) S A+C (1) ]

and choose i to be the y percentile of those numbers.
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TABLE 5. BOOTSTRAP CONFIDENCE BANDS (B=250) FOR SURVIVAL I'UNCTION
FOR GROUP TREATED WITH &-MP

t 6 7 10 13 16 2 23
Sx(ti) 857 807 753 690 0.627 0.538 0.45

Lower band 649 .598 542 AT4 406 292

Upper band 1.00 100 963 06 .848 733

Test to contrast the equality of survival functions

Consider two independent samples:
X, Byeess (X,,D)
and
(Y,,.G),..., (Y. G,).

We would like to contrast

against an alternative, for example, the unilateral alternative

H, : 54=8,

a) Classical test

Assume the survival functions of X, Y, D and & are continous. We can
construct the following Kolmogorov-Smirnov type test: Let

S and Cm

be the Kaplan-Meier estimator and the corresponding C of the pooled observa-
tions (that means, of all the observations). Consider the test statistic

+ l\f THTL
Jnm = SuD:e(o.ﬂ

. n+m Snm(}+Cnm(t)) [Si(t) - S"}‘(t)]

then, assuming
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. m
Hm, ;e = r =(0,1)
" n+m

weg have, under the null hypothesis,
limn,m --‘nJ;m = SUp.. w,qBO (Kx(t))

in distribution. Using the continuity conditions we have imposed, we can com-
pute the distribution of the limit random variable. On the other hand, it is casy
to show that under the alternative hypothesis,

limn,m4er:m = +%

a.s., and it follows that we obtain a test which is asymptotically of leval &, and
is also consistent,

b Boorstrap test

Akritas’ results (1981), and the independence of the resamples, allows us
to justify the use of a bootstrap test theoretically wihtout assuming the conti-
nuity of the survival functions. To be specific,

given O<a<1, let
homa(@) = inf {5 P¥(J, >5)>a)

To test

against

H, : $;=8,

consider the test with critical region

+
nm

J. =k

n,m,e

which has asymptotically level e, and is consistent. As before, to determine the
critical point, we have to take B {n and m) bootstrap samples, compute B times

. 1 S 1] Sm* -
vV SR —— - [ - Sty — G — S

n+m SUD;10.4 Snn‘:(t) { +C“'*.'.(-t)j
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and compute the (1-a) percentile of these numbers.
Once again if we compare the survival function for patients using Placebo
and 6-MP we obtain the following results:

* Value of test statistic, I, + = 1.9216
s Critical value, A (B=250) 1 = .3739
* The decision criterion is: «Reject HOif J, + > A»

This results are clearly consistent with Figure 1 which shows that the 2 sur-
vival functions are quite different.
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