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ABSTRACT

Transformed empirical processes (TEPs) have been used by the authors in a
previous paper to construct consistent and selectively efficient goodness-of-fit
tests of the Kolmogorov - Smirnov type.
A straightforward application of the same ideas to the construction of tests of
the Cramér - von Mises type with the same properties leads to cumbersome
computations.
This short note exhibits some of the inconvenients encountered, and intro-
duces a new family of quadratic statistics of the Cramér - von Mises type, in
order to circumvent the difficulties.
AMS Classification numbers: 62G10, 62G20, 62G30, 60E20.

RESUMEN

Los procesos empricos transformados (TEPs) han sido utilizados por los au-
tores para la construccin de pruebas de ajuste coherentes y selectivamente
eficientes del tipo de Kolmogorov-Smirnov.
Para aplicar las mismas ideas, de manera directa, a la construccin de pruebas
de ajuste del tipo de Cramér - von Mises con las mismas propiedades de
coherencia y potencia selectiva, se requiere realizar clculos muy complicados.
En esta breve nota se describen algunas de las dificultades que se encuentran
al intentar tal generalizacin, y se introduce una nueva familia de estadsticos
del tipo de Cramér - von Mises que permite evitar esas dificultades.
Números de clasificación AMS: 62G10, 62G20, 62G30, 60E20.

1 Introduction

The design of tests suited to detect a specific kind of alternative is a com-
mon procedure in nonparametric statistics. Linear rank tests (see [7]) are
typical examples. In applying them, the statistician chooses the scores in such
a way that the power of the test is optimized for a specific family of alterna-
tives. As for other fixed alternatives, the resulting tests may be inefficient or
even unable to detect them.
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Other well known nonparametric tests have the property of rejecting any
fixed alternative for sufficiently large sample sizes. Kolmogorov - Smirnov and
Cramér - von Mises tests, for instance, have this consistency property.

In a previous paper (see [3]), the authors have proposed a way of obtain-
ing goodness-of-fit tests, having these two just mentioned desirable properties.
They are both consistent against every fixed alternative and specially efficient
against a given sequence of contiguous ones. The critical regions are of the
Kolmogorov-Smirnov type, and Transformed Empirical Processes (TEPs) play
there the role of the empirical process in the classical K-S tests. The families
of tests in [3] depend on a functional parameter, that has to be adequately
chosen in order to achieve the optimal efficiency against the given sequence of
alternatives, maintaining the consistency. The resulting tests can be applied
when the statistician requires consistency, and, in addition, is specially inter-
ested in avoiding an error of type II when the alternatives are of some specific
kind.

Tests of the Cramér - von Mises type, based on quadratic functionals of the
empirical process, can be modified as well, by replacing the empirical process
by a TEP, to produce consistent and selectively efficient tests. After describing
the TEPs and their asymptotic distributions (§2), we show in §3 and §4 that,
when the modified Cramér - von Mises statistics are defined in the apparently
simplest way, the optimum score functions and the asymptotic distributions
of the test statistics may be quite difficult to obtain.

In order to overcome these difficulties, we introduce in §5 a particular fam-
ily of statistics for which the optimum score functions are easily obtained.
In fact, they are the same that optimize the behaviour of the modified Kol-
mogorov - Smirnov tests for the same TEPs, and under the same family of
contiguous alternatives.

In addition, these test statistics are asymptotically distribution free both
under the null hypothesis and under the alternatives. The asymptotic distri-
bution of the test statistic under the null hypothesis, and under the privileged
alternatives, depends only on the weight function, and the size but not the
shape of the alternatives. Furthermore, we show elsewhere ([4]) that the shape
of the weight function has a little effect on the resulting power.

As a consequence, tables of critical levels and asymptotic powers of the
tests can be constructed by simulation. Such tables are provided in the last
section (§6).

Some theoretical comments on the distribution of the test statistic, partic-
ularly for the case of a constant weight function, are also contained in [4]. A
particular application to the derivation of normality tests is developed in [5];
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though the general form of the test statistics may look rather complicated, for
this latter case, the test statistic is simply a quadratic form evaluated on a
vector of sums of polynomials in the sample points.

2 The Transformed Empirical Processes and their asymptotic distributions.

Let {X1, X2, . . ., Xn} denote a sample of independent real random vari-
ables with distribution function F , and let us consider a sequence of proba-
bility distributions F (n) contiguous to a given probability distribution F0 (see
[8],[9]), and such that

i. F (n) has density fn with respect to F0,

ii. the functions kn defined by
√
fn= 1 + δkn

2
√
n

are absolutely and uniformly
bounded by K such that

∫
K2dF0 <<∞,

iii. there exists k such that
∫
k2dF0 = 1, and limn→∞

∫
(kn − k)2dF0 = 0.

Families of Transformed Empirical Processes depending on a functional
parameter (score function) have been introduced by one of the authors in [2],
with the purpose of designing goodness-of-fit tests of the Kolmogorov-Smirnov
type for the null hypothesisH0 : “F = F0”. Those tests share the following two
properties: (a) they are consistent against any fixed alternative “F 6= F0” and
(b) they are specially sensitive against the particular sequence of alternatives
Hn : “F = F (n)”.

In this article we focus our attention in introducing new tests that also
share properties (a) and (b), based on a quadratic statistic of the Anderson-
Darling type.

Following [3], we define the Transformed Empirical Process (TEP) of the
sample {X1, X2, . . ., Xn}, associated to the distribution function F0, the isom-
etry T on L2 = L2(R, dF0) with range equal to the orthogonal complement of
the constant function 1, and the score function a with ‖a‖2 =

∫
a2(x)dF0(x) =

1 as
w(a,T )
n (x) =

∫
T (a1x)dbn, (1)

where 1x is the indicator function of (−∞, x], bn(x) =
√
n(Fn(x) − F0(x)) is

the empirical process and Fn(x) = 1
n

∑n
i=1 1{Xi≤x} is the sample distribution

function.
Let J = {(−∞, x] : x ∈ R} and let w(V ) denote a Wiener process on R

with covariance function

V (x) = E
(
w(V )(x)

)2
=
∫ x

−∞
a2(t)dF0(t), Ew(V )(x)w(V )(y) = V (x ∧ y). (2)
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It is shown in [3] that, under suitable conditions, the TEP w
(a,T )
n (x), x ∈ R

converges in law to

w(V )(x) + δ

∫
kT (a1x)dF0, x ∈ R (3)

in the space of right continuous functions with left limits, as n tends to infinity.
In particular, w(a,T )

n converges in law to w(V ) under H0.
We refer to [3] for general conditions ensuring the convergence to (3).

3 The modified Cramér - von Mises statistics.

Classical tests of Cramér - von Mises type are based on the quadratic
statistics

Sn =
∫

(bn(x))2ψ(F0(x))dF0(x). (4)

In this expression, ψ is a weight function to be adequately chosen. The Cramér
- von Mises test corresponds to the selection ψ(x) = 1, and other selections
of the weight function lead to other tests with similar properties. In partic-
ular, the Anderson-Darling test is based on the quadratic statistic ADn =∫

(bn(x))2 dF0(x)
F0(x)(1−F0(x)) with ψ(F0(x)) = (E(bn(x))2)−1.

It is well known that bn is asymptotically distributed as a Brownian bridge
b(F0) associated to the probability F0 (that is, b(F0) is a centered Gaussian pro-
cess with covariances Eb(F0)(x)b(F0)(y) = F0(x∧y) −F0(x)F0(y)) and therefore
Sn is asymptotically distributed as

∫
(b(s))2ψ(s)ds where b denotes a standard

Brownian bridge.
When the empirical process bn is replaced by the TEP w

(a,T )
n , the analogue

of (4) is

S(a,T )
n =

∫
(w(a,T )

n (x))2ψ(V (x))dV (x). (5)

The variance V (x) = Varw(a,T )
n (x) plays in (5) the same role as F0 in (4)

with the same purpose of simplifying the description of the asymptotic distri-
butions. Now it is easily verified that S(a,T )

n is asymptotically distributed as∫
w2(s)ψ(s)ds, where w is a standard Wiener process, under H0.

When Hn applies instead, the asymptotic distribution of S(a,T )
n is that of∫ (

w(V )(x) + δ

∫
kT (a1(−∞,x])dF0

)2

ψ(V (x))dV (x)

=
∫ (

w(V (x)) + δ

∫ x

−∞
a−1(T −1k)dV

)2

ψ(V (x))dV (x)
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=
∫ (

w(s) + δ

∫ s

0
h(r)dr

)2

ψ(s)ds,

with
h(V (x)) = (T −1k)(x)/a(x). (6)

The function h must satisfy∫ 1

0
h2(s)ds =

∫ ∞
−∞

h2(V (x))dV (x) =
∫ ∞
−∞

(T −1k)2dF0 =
∫ ∞
−∞

k2dF0 = 1.

A reasonable heuristic criterion to improve the efficiency of tests with crit-
ical regions S(a,T )

n > c (where c is a suitable constant) is to maximize the
asymptotic bias

B = E(S(a,T )
n |Hn)−E(S(a,T )

n |H0) = δ2
∫ 1

0

(∫ s

0
h(r)dr

)2

ψ(s)ds.

4 The optimization problem.

4.1 The general setting.

The criterion sketched in the previous section poses the problem of finding h
in L2(0, 1) with ‖h‖ = 1, such that

∫ 1
0 (
∫ s

0 h(r)dr)2 ψ(s)ds is maximum, for the
given nonnegative weight function ψ. The quantity to be maximized can be
written as∫ 1

0
h(r1)dr1

∫ 1

0
h(r2)dr2

∫ 1

r1∨r2
ψ(s)ds =

∫ 1

0

∫ 1

0
K(r1, r2)h(r1)h(r2)dr1dr2,

with kernel K(r1, r2) =
∫ 1
r1∨r2 ψ(s)ds. The maximum is the largest eigenvalue

of the Fredholm operator

f 7→
∫ 1

0
K(·, r)f(r)dr, (7)

and it is attained al the corresponding normalized eigenfunction h.
In order to obtain the eigenfunctions h and eigenvalues λ of (7) we must

solve

λh(x) =
∫ 1

0

∫ 1

x∨r
ψ(s)dsh(r)dr =

∫ 1

x
ψ(s)ds

∫ s

0
h(r)dr.

The solutions satisfy the differential equation λh′(x) = −ψ(x)
∫ x

0 h(r)dr
with boundary condition h(1) = 0. Therefore, the primitive H(t) =

∫ t
0 h(s)ds

a primitive of h satisfies the conditions

λH ′′(t) = −ψ(t)H(t), H(0) = 0, H ′(1) = 0. (8)
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The equations (8) characterize the function H, together with the condition
‖h‖ = 1 that can be written as

1 =
∫ 1

0
(H ′(t))2dt = −

∫ 1

0
H(t)H ′′(t)dt = λ−1

∫ 1

0
H2(t)ψ(t)dt. (9)

Once solved (8), (9) in H, h = H ′ is known and the differential equation

V ′(x)h2(V (x)) = (T −1k(x))2

with the initial condition V (0) = 0 has to be solved in order to obtain the
score function a(x) =

√
V ′(x). Notice that this is equivalent to the integral

equation ∫ V (x)

0
h2(y)dy =

∫ x

0
(T −1k(t))2dt. (10)

The sign of a is determined from (6) as sgna = sgn(h ◦ V )sgn(T −1k).

4.2 The solutions in two particular cases.

The difficulties of the preceding approach are better evaluated by means of
some examples: let us first obtain the optimum score function for the case
ψ(x) = 1.

In this case, (8) implies that H(t) is proportional to sin
√
λ−1t,

√
λ−1

= νπ−π
2 . The eigenfunctions are h(t) =

√
2 cos(νπ−π

2 )t, so that the maximum
of the eigenvalues (νπ − π

2 )−2 is obtained for ν = 1 and the corresponding
eigenfunction is h(t) =

√
2 cos π2 t

Now (10) reads V (x) + 1
π sinπV (x) =

∫ x
0 (T −1k(y))2dy and can be solved

in V (x) because the function z 7→ z + 1
π sinπz is strictly increasing, but even

in this simple case, such procedure does not give us a closed formula for V
neither for the score function a =

√
V ′.

Our second example is the analogue of the Anderson - Darling test, ob-
tained with ψ(x) = 1/x. This particular selection of the weight function imi-
tates the criterion applied for the definition of the classical Anderson - Darling
statistic, that is, to choose the weight so as the expectation of the integrand

is constant. In the present case, ψ(V (x)) =
(

E
(
w

(a,T )
n (x)

)2
)−1

= 1/V (x) is

obtained. The corresponding statistic is AD(a,T )
n =

∫
(w(a,T )

n (x))2dV (x)/V (x).
The differential equation in (8) and the initial condition H(0) = 0 lead to

the series expansion h(t) = H ′(t) = c
∑∞
n=0(−1)n(λ−1t)n/(n!2) = cJ0(2

√
λ−1t),

where J0 denotes as usual the Bessel function of the first kind of order 0 and
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c is a constant to be determined. The additional condition H ′(1) = 0 implies
that ζ = 2

√
λ−1 must be one of the roots of J0.

The normalization ‖h‖ = 1 gives c = ζ(2
∫ ζ

0 zJ
2
0 (z)dz)−1/2. Up to this

point, h is determined up to the selection of the root ζ. In order to obtain the
maximum λ, we choose ζ equal to the minimum root ζ1 of J0.

After integrating in the left hand side of (10), we get

V (x)(J−1(
√
V (x)ζ)J1(

√
V (x)ζ)− J2

0 (
√
V (x)ζ))

J−1(ζ)J1(ζ)− J2
0 (ζ)

=
∫ x

0
(T −1k(y))2dy,

and it remains to replace ζ by ζ1, solve in V and compute a =
√
V ′.

We believe unnecessary to go further in order to show that the calcula-
tions involved in using these modified quadratic statistics make them rather
unmanageable.

5 A new family of quadratic statistics.

Consider first the family of statistics

T (a)
n,x =

∫ (∫
c(x,y)(z)dw

(a)
n (z)

)2 dV (y)∫
c(x,y)(z)dV (z)

(11)

with

c(x,y)(s) =

{
1 if x << s << y, y << x << s or s << y << x,
0 otherwise.

(12)

In particular, T (a)
n,−∞ equals (5).

Then we integrate T (a)
n,x with respect to dV (x) thus defining the new statistic

T (a)
n =

∫∫ (∫
c(x,y)(z)dw

(a)
n (z)

)2 dV (x)dV (y)∫
c(x,y)(z)dV (z)

. (13)

Although (13) looks intricate because of the multiple integration, we show
below that T (a)

n does not have the disadvantages sketched in regard with the
examples in §4.2. On the contrary, the optimum score function and the asymp-
totic distributions under H0 and Hn are extremely simple.

5.1 Asymptotic behaviour of T
(a)
n under fixed alternatives. Consistency of the

tests.

From w
(a)
n = 1√

n

∑n
i=1w

(a)
{Xi}, with w

(a)
{Xi} equal to the TEP corresponding to

the sample {Xi} of size one, the expectation and variance of
∫
c(x,y)(z)dw

(a)
n (z)
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are respectively

E
∫
c(x,y)(z)dw

(a)
n (z) =

√
n E

∫
c(x,y)(z)dw

(a)
{X1}(z) (14)

and
Var

∫
c(x,y)(z)dw

(a)
n (z) = Var

∫
c(x,y)(z)dw

(a)
{X1}(z).

It is easily shown by applying the same arguments used in [3] that when
F 6= F0, then there exist x0 and y0 such that

E
∫
c(x,y)(z)dw

(a)
{X1}(z) 6= 0 for X ∼ F (15)

for x = x0 and y = y0. Then, the continuity of the left-hand member of (15)
as a function of x, y implies that there are neighbourhoods I of x0 and J of
y0 such that |E

∫
c(x,y)(z)dw

(a)
{X1}(z)| is greater than a certain constant k > 0

for x ∈ I and y ∈ J .

Proposition 1 When the score function a is F0 − a.s. different from zero,
and X ∼ F 6= F0, then P{limT

(a)
n = +∞} = 1.

Proof. From the previous context and the assumption on a it follows that
V (I) and V (J) do not vanish. Hence (14) tends to infinity as n→∞ so that
the required conclusion is readily obtained. 2

As a corollary, the test with critical region T
(a)
n > constant is consistent

for any F 6= F0.

5.2 Asymptotic behaviour of T
(a)
n under the sequence of contiguous alternatives.

The process (3) that has the limit distribution of {w(a)
n (A) : A ∈ J } under

the sequence of alternatives Hn : “F = F (δ/
√
n)”, can also be written as

{w(V )(A) + δ
∫
A a(T −1k)dF0, since

∫
kT (1Aa)dF0 =

∫
A aT −1kdF0 because T

is an isometry.
Therefore T (a)

n is asymptotically distributed under Hn as∫∫ (∫
c(x,y)(z)(dw

(V )(z) + δa(T −1k)dF0)
)2 dV (x)dV (y)∫

c(x,y)(z)dV (z)

=
∫∫ (∫

c(x,y)(z)(dw(V (z)) + δh(V (z))dV (z))
)2 dV (x)dV (y)∫

c(x,y)(z)dV (z)
, (16)
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where h(V (z))a(z) = (T −1k)(z). Since c(x,y)(z) = c(V (x),V (y))(V (z)), then,
with new variables r = V (x), s = V (y), t = V (z), (16) reduces to∫∫ (∫

c(r,s)(t)(dw(t) + δh(t)dt)
)2 dr ds∫

c(r,s)(t)dt

=
∫ 1

0

∫ 1

0
C(t, u)(dw(t) + δh(t)dt)(dw(u) + δh(u)du), (17)

with

C(t, u) =
∫ 1

0

∫ 1

0
c(r,s)(t)c(r,s)(u)

dr ds

λ(r, s)
, λ(r, s) =

∫
c(r,s)(t)dt. (18)

The distribution of (17) depends only on the selected score function, through
the function h. In particular, the asymptotic bias under the alternatives is

∆(a) = δ2
∫ 1

0

∫ 1

0
C(t, u)h(t)h(u)dt du. (19)

The limit behaviour described by (17) suggests to reject the null hypothesis
H0 when T

(a)
n is greater than an adequate constant, and, in order to improve

the sensitivity of the test with respect to the given sequence of contiguous
alternatives, we propose to choose the score function a that maximizes the
asymptotic bias ∆(a).

Proposition 2 The asymptotic bias ∆(a) given by (19) is maximum when
the score function a is chosen equal to â = T −1k, and its maximum value is
δ2/2.

Remark. The optimum score â = T −1k is the same that optimizes the
power of tests of the Kolmogorov-Smirnov type (see [2, 3]).

Proof. Let us compute, for t << u,

C(t, u) =
∫ t

0
dr

∫ 1

u

ds

s− r
+
∫ t

0
dr

∫ r

0

ds

1 + s− r

+
∫ u

t
dr

∫ r

t

ds

1 + s− r
+
∫ 1

u
dr

∫ r

u

ds

1 + s− r
= γ(|u− t|), (20)

with γ(y) = 1 + |y| log(|y|) + (1 − |y|) log(1 − |y|). The expression (20) also
holds for u << t, since it depends symmetrically on t and u.

The function γ is symmetric with respect to 0 and 1/2, and this implies
that

∫ 1
0 C(t, u)du does not depend on t and equals

∫ 1
0 γ(y)dy = 1/2 so that,
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when h is the constant 1, and hence a = â, we have ∆(â) = 1/2. On the other
hand, by Cauchy-Schwartz Inequality,

∆(a) ≤
∫ 1

0

∫ 1

0
h2(t)C(t, u)dt du =

1
2

∫ 1

0
h2(t)dt =

1
2

since the restriction ‖k‖ = 1 implies that h must satisfy∫ 1

0
h2(s)ds =

∫
(h(V (x)))2dV (x) =

∫
(T −1k(x))2dF0 = ‖T −1k‖2 = 1.

This ends the proof of our proposition.

6 Performing the test.

6.1 Computing the test statistic.

Let us abbreviate Tn = T
(â)
n . The same changes of variables made in §3 lead

us to write our optimum test variable as

Tn =
∫ 1

0

∫ 1

0
C(t, u)dw(â)

n (V −1(t))dw(â)
n (V −1(u)),

=
1
n

n∑
i,j=1

∫ 1

0

∫ 1

0
C(t, u)dw(â)

Xi
(V −1(t))dw(â)

Xj
(V −1(u)).

It is easily verified that for any measurable g,
∫
g(x)dw(a)

X (x) = T (ag)(X),
and therefore, with the notations

Txg(x, y)|x=X = T (g(•, y))(X), Tyg(x, y)|y=Y = T (g(x, •))(Y ), (21)

we are lead to the expression Tn = 1
n

∑n
i,j=1 S(Xi, Xj) with

S(X,Y ) = TxTyâ(x)â(y)C(V (x), V (y))|x=X,y=Y (22)

that points out that Tn is a second-order U-statistic.

6.2 Critical regions and power.

The critical region Tn > κ(α) with κ defined by

P
{∫ 1

0

∫ 1

0
C(t, u)dw(t)dw(u) > κ(α)

}
= α
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provides a test for H0 consistent under any fixed alternative, with asymptotic
level equal to α. Its asymptotic power is

π(δ) = P
{∫ 1

0

∫ 1

0
C(t, u)(dw(t) + δdt)(dw(u) + δdu) > κ(α)

}
. (23)

The values of κ(α) and π(δ) indicated in tables 1 and 2, were obtained by
simulations based on 8000 replications. The table indicates two other series of
power values, with the purpose of comparison: the computed asymptotic power
π∗ of the modified Kolmogorov-Smirnov test introduced in [2] for optimum
score function, and the asymptotic power π̂(δ) = 1 − Φ(Φ−1(1 − α/2) − δ) +
Φ(Φ−1(α/2)−δ) of the two-sided test with critical region |Λ| >constant, where
Λ denotes the typified logarithm of the likelihood ratio. It will be noticed that
the performance of all three tests is very much the same.

α 1% 2.5% 5% 10%
κ(α) 3.78 2.97 2.40 1.84

Table 1: Numerical approximation of the critical values κ(α) for sizes α = 1,
2.5, 5 and 10%.

δ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
π(δ)(%) 5.0 5.3 6.6 8.9 12.3 16.8 22.3 28.7
π∗(δ)(%) 5.0 5.4 6.7 8.9 12.0 16.2 21.3 27.3
π̂(δ)(%) 5.0 5.5 6.9 9.2 12.6 17.0 22.4 28.8

δ 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
π(δ)(%) 35.7 43.2 52.0 59.9 67.2 74.3 80.2 85.0
π∗(δ)(%) 34.1 41.4 49.1 56.9 64.4 71.4 77.7 83.1
π̂(δ)(%) 36.0 43.6 51.6 59.5 67.0 73.9 80.0 85.1

Table 2: Asymptotic powers π(δ) of the proposed test, π∗(δ) of the Modified
K-S Test with optimum score function, and π̂(δ) of the two-sided test based
on the logarithm of the likelihood ratio, for a level of significance of 5%, as a
function of δ.
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6.3 Example: Goodness-of-fit to standard normal.

We finally indicate for completeness (see [3] for details) how to compute the
statistic S(X,Y ) defined in (22) for the particular isometry

T g = g −
∫ •
−∞

g(t)dΦ(t)
1− Φ(t)

, T −1h = h+
1

1− Φ(•)

∫ •
−∞

h(t)dΦ(t)

in two simple cases:

6.3.1 Case 1: test sensitive to changes in position.

We assume F0(x) = Φ(x) =
∫ x
−∞ ϕ(t)dt, ϕ(x) = 1√

2π
e−x

2/2, f (τ)(x) = ϕ(x−τ)
ϕ(x) =

e−
τ2−2xτ

2 , hence k(x) = lim
τ→0+

2
τ (e−

τ2−2xτ
4 − 1) = x, ‖k‖2 =

∫∞
−∞ x

2ϕ(x)dx = 1,

â(x) = T −1(x) = x+ 1
1−Φ(x)

∫ x
−∞ tϕ(t)dt = x− ϕ(x)

1−Φ(x) , and therefore V (x) =∫ x
−∞

(
t− ϕ(t)

1−Φ(t)

)2
ϕ(t)dt =

∫ x
−∞ t

2ϕ(t)dt+ ϕ2(x)
1−Φ(x) . Once we have the analytical

expressions of C, â and V , S can be computed by means of a simple algorithm,
involving numerical integration.

6.3.2 Case 2: test sensitive to changes in dispersion.

Let F (τ)(x) = Φ((1 − τ√
2
)x), so that f (τ)(x) = (1 − τ√

2
)ϕ((1 − τ√

2
)x)/ϕ(x)

= (1− τ√
2
)e

1
2
x2(1−(1− τ√

2
)2), k(x) = limτ→0+

2
τ

(√
1− τ√

2
e

1
4
x2(
√

2τ−τ2/2) − 1
)

=
1√
2
(x2 − 1), and ‖k‖2 = 1

2

∫∞
−∞(x2 − 1)2ϕ(x)dx = 1.

The score function is â(x) = T −1(x2−1)√
2

= x2−1√
2

+ 1
1−Φ(x)

∫ x
−∞

t2−1√
2
ϕ(t)dt

= 1√
2

[
x2 − 1− xϕ(x)

1−Φ(x)

]
, and consequently, V (x) = 1

2

∫ x
−∞

[
t2 − 1− tϕ(t)

1−Φ(t)

]2
dt

=
∫ x
−∞(t2 − 1)2ϕ(t)dt− x2ϕ2(x)

1−Φ(x) . As in the previous case, numeric integration
can be used to compute each evaluation of S.
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IVIC-Matematica, apartado 21827 Caracas 1020-A,
Venezuela.

Enrique M. Cabaña

ecabana@chaja.ccee.edu.uy
Facultades de Ciencias y de Ciencias Económicas y de Administración,

Universidad de la República.
CSIC - Juan D. Jackson 1303, 11200 Montevideo,

Uruguay.




