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Pilar DELLUNDE

EQUALITY-FREE SATURATED MODELS

Saturated models are a powerful tool in model theory. The properties

of universality and homogeneity of the saturated models of a theory are

useful for proving facts about this theory. They are used in the proof of in-

terpolation and preservation theorems and also as work-spaces. Sometimes

we work with models which are saturated only for some sets of formulas, for

example, recursively saturated models, in the study of models of arithmetic

or atomic compact, in model theory of modules. In this article we intro-

duce the notion of equality-free saturated model, that is, roughly speaking,

a model which is saturated for the set of equality-free formulas. Our aim is

to understand better the role that identity plays in classical model theory,

in particular with regard to this process of saturation.

Given an infinite cardinal κ, we say that a model is equality-free κ-

saturated if it satisfies all the 1-types over sets of parameters of power

less than κ, with all the formulas in the type that are equality-free. We

compare this notion with the usual notion of κ-saturated model. We prove

the existence of infinite models A, which are L−-|A|+-saturated. From
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this last fact it follows that L−-saturated models have a different behavior

than usual saturated models. Several characterizations of models with this

property are given.

We pay special attention to reduced structures. It is said that a struc-

ture A is reduced if there are not different elements in A with the same

atomic equality-free type over A. Examples of this type of structures are

all linear orders and the random graph. The importance of reduced struc-

tures in equality-free logic comes from the fact that any structure is a strict

homomorphic image of a reduced structure. Therefore, they satisfy exactly

the same equality-free sentences. One interesting result obtained is that,

for reduced structures, L−-saturation implies strong homogeneity. The no-

tion of L−-ω-saturated model is considered independently by G. C. Nelson

in [19]. In his article this concept is studied in relation to the notion of

ω-categorical theory for languages without equality.

The following notation will be used in this work. From now on L will

be a similarity type with at least one relation symbol. We denote also by L

the set of first-order formulas of type L and by L0 the set of quantifier-free

formulas of L. L− and L−

0 will be the set of all formulas of L and L0,

respectively, that do not contain the equality symbol. Given L-structures

A and B, we write A ≡−
B and A ≡−

0 B to mean that A and B satisfy

exactly the same sentences of L− and L−

0 , respectively. For any L-structure

A and any set B ⊆ A, we denote by L(B) the similarity type obtained from

L by adding a new constant symbol for each element of B and we denote by

AB the natural expansion of A to L(B), where every new constant denotes

its corresponding element. For the sake of clarity we use the same symbol

for the constant and for the element that is denoted by the constant. |A|

denotes the power of the set A.

.1 Reduced structures

The present interest for the study of languages without equality has its

origin in the works of J. Czelakowski, W. Blok and D. Pigozzi, (see [1], [2],

[3], [7]and [8]). They use two main concepts that allow the development

of this study, the notion of Leibniz congruence and the notion of relative

relation. The notion of Leibniz congruence dates back to 1949 when it was

defined by  Loś in the context of Lindenbaum matrices. Leibniz congruences

were extensively used by Wójcicki in [23] and by other logicians under the

name of the largest matrix congruence (see [9]) . Motivated by their works
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a general classical model-theoretical study of this logic was carried on in [4],

[10], [13] and [14]. Independently, in [18], [20] and [21], G. C. Nelson and

O. Neswan introduced the notion of quasi-isomorphism, which is equivalent

to the notion of relative relation. Now we present these notions and some

basic facts about them without proof.

Definition 1.1. If A and B are L-structures, it is said that an homo-

morphism h : A → B is strict if for any n-adic relation symbol R ∈ L and

any a1, . . . , an ∈ A,

〈a1, . . . , an〉 ∈ R
A ⇐⇒ 〈h(a1), . . . , h(an)〉 ∈ RB.

It is a well-known fact that if h : A → B is a strict homomorphism onto

B, then A ≡−
B and the kernel of h is a strict congruence of A. Moreover,

for any strict congruence θ of A, the canonical homomorphism from A onto

A/θ is strict. Given a class K of L-structures, we denote by HS(K) the

class of all strict homomorphic images of members of K and by H−1

S
(K)

the class of all strict homomorphic counter-images of members of K.

Let A be an L-structure and B a subset of A. We expand the language

adding a new constant symbol for each element of B and also add new

variables. Given a cardinal κ, it is said that a set p of formulas of L−(B)

in the variables {xα : α ∈ κ} is an L−-κ-type over B in A if p is consistent

with Th−(AB). In addition, p is L−-complete iff for any formula φ ∈ L−(B)

in the variables {xα : α ∈ κ}, φ ∈ p or ¬φ ∈ p. Observe that for any set p

of formulas of L−(B), p is consistent with Th−(AB) iff p is consistent with

Th(AB). Therefore, a set p of formulas of L(B) is an L−-κ-type over B in

A iff p is a κ-type over B in A and all the formulas of p are equality-free.

Given a κ-tuple a = (aα : α ∈ κ) of elements of A, the equality-free type of

a over B in A, in symbols tp−

A
(a/B), is the set of all formulas of L−(B) in

the variables {xα : α ∈ κ} satisfied by a. By atp−

A
(a/B) we denote the set

of atomic formulas of tp−

A
(a/B) and call it the equality-free atomic type of

a over B in A.

Definition 1.2. Given an L-structure A, we define the relation Ω(A)

on A as follows: 〈a, b〉 ∈ Ω(A) iff atp−

A
(a/A) = atp−

A
(b/A), for any a, b ∈ A.

Ω(A) is the greatest strict congruence relation on A, that is, every strict

congruence relation refines it. It is called the Leibniz strict congruence of

A. We say that a structure is reduced if there are no different elements

with the same equality-free atomic type over the structure, that is, if its
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Leibniz strict congruence is the identity. The quotient structure A/Ω(A)

is reduced and is denoted by A
∗. This structure is called the reduction of

A. Observe that from the definition it follows that A
∗ ∼= (A∗)∗. Moreover,

it is easy to check that the canonical homomorphism from A onto A
∗ is

strict. It is easy to prove, by induction, that given a, b ∈ A, 〈a, b〉 ∈ Ω(A)

iff tp−

A
(a/A) = tp−

A
(b/A).

Examples of reduced structures are all linear orders and the random

graph. There are theories without reduced models, for example the theory

of an equivalence relation with infinitely many classes all of them infinite be-

cause in any model of this theory, any two elements in the same equivalence

class have the same equality-free atomic type over the model. Observe also

that any theory axiomatized by a set of equality-free sentences has reduced

models and non-reduced ones.

Remark 1.3. For any theory T of L, the reduced models of T are those

that omit the following set of formulas

pred = {x 6 ≈y} ∪
{

∀z̄[φ(x, z̄) ↔ φ(y, z̄)] : φ ∈ L− atomic
}

.

It is easy to check that to isolate pred is a sufficient condition, for any

theory of L, for having non-reduced models. And in the case that L is

countable, by the classical Omitting Types Theorem, if T is a consistent

theory of L and pred is non-isolated in T , then some models of T are reduced.

Assume now that L is countable. It is a consequence of the Löwenheim-

Skolem-Tarski theorem that if a theory T has a non-reduced infinite model,

then it has such models in each infinite power. But the existence of a

reduced infinite model of T may not imply the existence of reduced models

in each infinite power. It might be interesting to find the Hanf number of

the notion of reduced structure, that is to determine the least cardinal κ

such that, for any theory T , the existence of a reduced model of T of power

κ implies the existence of such models in any infinite power. Some results

in this line will be obtained in next section.

Finally, as straightforward corollary of the following proposition, we ob-

tain an interesting result: for any closed theory T in a countable similarity

type, if T has reduced models and pred is non-isolated in T , then the theory

of the reduced models of T is precisely T.

Proposition 1.4. Let L be countable and T a consistent closed theory

of L. Then p is non-isolated in T iff T = Th({A |= T : A omits p}).

Proof. See [5], Proposition 1.3. 2
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To end this section we introduce the notion of relative correspondence,

which turns out to be the equivalent, for equality-free languages, to the

notion of isomorphism.

Definition 1.5. Let A and B be L-structures. A relation R ⊆ A × B

is a relative correspondence between A and B if dom(R) = A, rg(R) = B

and

(1) for any constant c ∈ L, cARcB,

(2) for any n-adic function symbol f ∈ L, any a1, . . . , an ∈ A and any

b1, . . . , bn ∈ B such that aiRbi for each i = 1, . . . , n,

fA(a1, . . . , an)RfB(b1, . . . , bn),

(3) for any n-adic relation symbol S ∈ L, any a1, . . . , an ∈ A and any

b1, . . . , bn ∈ B such that aiRbi for each i = 1, . . . , n,

〈a1, . . . , an〉 ∈ SA ⇐⇒ 〈b1, . . . , bn〉 ∈ S
B.

Two L-structures A and B are relatives, in symbols A ∼ B, if there is

a relative correspondence between them. The relation of being either a

strict homomorphic image or a strict homomorphic counter-image is not

in general transitive. Its transitivization is precisely the relative relation,

as the following proposition shows. The proof of next proposition can be

found in [4].

Proposition 1.6. Let A and B be L-structures. The following are

equivalent:

i) A ∼ B.

ii) There are n ∈ ω and L-structures C0, . . . ,Cn such that A = C0, B = Cn

and for any i < n, Ci+1 ∈ HS(Ci) or Ci+1 ∈ H−1

S
(Ci).

iii) A, B ∈ HS(C), for some C.

iv) A, B ∈ H−1

S
(C), for some C.

v) A
∗ ∼= B

∗.

vi) There are enumerations of A and B, a = (ai : i ∈ I) and b =

(bi : i ∈ I) respectively, such that the map h : A∗ → B∗ defined by:

h([ai]Ω(A)) = [bi]Ω(B), for any i ∈ I, is an isomorphism.
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vii) There are enumerations of A and B, a = (ai : i ∈ I) and b = (bi : i ∈

I) respectively, such that (A, a) ≡−

0 (B, b).

viii) There are enumerations of A and B, a = (ai : i ∈ I) and b = (bi : i ∈

I) respectively, such that (A, a) ≡− (B, b).

.2 Equality-free saturated models

Let A and B be L-structures and r ⊆ A × B a relation. For any formula

φ ∈ L(dom(r)), φ = φ(x̄, a1, . . . , an), let Σr
φ be the following set of formulas

of L(rg(r)):

{φ(x̄, b1, . . . , bn) ∈ L(rg(r)) : for every i ∈ {1, . . . , n} , 〈ai, bi〉 ∈ r} ,

where φ(x̄, b1, . . . , bn) is obtained from φ by substituting bi for ai, for every

i ∈ {1, . . . , n}. Given a set p of formulas of L(dom(r)), let pr =
⋃

φ∈p Σr
φ.

In particular, if A is an L-structure, D a subset of A and p a set of formulas

of L−(D), we denote by p∗ the set pr, where r ⊆ A × A∗ is the relation

defined by: r =
{

〈d, [d]Ω(A)〉 : d ∈ D
}

. And we denote by D∗ the set
{

[d]Ω(A) : d ∈ D
}

.

Remark 2.1. If a = (ai : i ∈ I) and b = (bi : i ∈ I) are sequences

of elements of A and B respectively, such that (A, a) ≡− (B, b), and r =

{〈ai, bi〉 : i ∈ I}, then for any set p of formulas of L−(dom(r)), p is an L−-

κ-type over dom(r) in A iff pr is an L−-κ-type over rg(r) in B. Moreover

pr is L−-complete if p is L−-complete.

The notion of elementary substructure can be generalized to equality-

free logic in a natural way. By means of elementary substructures we will

give a characterization of L−- complete types.

Definition 2.2. If A and B are L-structures, A is an L−-substructure

of B, in symbols A �−
B if A ⊆ B and for any φ(x1, . . . , xn) ∈ L− and any

a1, . . . , an ∈ A,

A |= φ [a1, . . . , an] ⇐⇒ B |= φ [a1, . . . , an] .

If A is an L−-substructure of B, it is said that B is an L−-extension of A.

A -− B means that A is isomorphic to an L−-substructure of B.



EQUALITY-FREE SATURATED MODELS 9

Proposition 2.3. Let A and B be L-structures. If A -− B, then the

map j : A
∗ → B

∗ defined by:

j([a]Ω(A)) = [a]Ω(B) ,

for any a ∈ A, is an embedding that preserves all the equality-free formulas.

Proof. See [11], Proposition 2.8. 2

Proposition 2.4. Let A and B be L-structures. Then the following are

equivalent:

i) There is an enumeration of A, a = (ai : i ∈ I), and a sequence of

elements of B, b = (bi : i ∈ I), such that

(A, a) ≡− (B, b).

ii) A
∗ -− B

∗.

Proof. See [11], Proposition 2.8. 2

Lemma 2.5. Let A be an L-structure, D a subset of A and κ a cardi-

nal. For any set p of formulas of L−(D) in the variables {xα : α ∈ κ}, the

following are equivalent:

i) p is an L−-complete L−-κ-type over D in A.

ii) There is A
′ such that D ⊆ A′ and A

′

D |= Th−(AD) and there is

a sequence m = (mα : α ∈ κ) of elements of A′ such that p =

tp−

A′(m/D).

iii) There is A
′ such that A �−

A
′ and there is a sequence m = (mα : α ∈

κ) of elements of A′ such that p = tp−

A′(m/D).

Proof. ii) ⇒ i) and iii) ⇒ i) are clear. i) ⇒ ii) is easy to prove using

the fact that p is consistent with Th(AD) and for i) ⇒ iii) we use the fact

that p is consistent with Th(AA). 2

Observe that in ii) of Lemma 2.5, we can take A
′ such that |A′| ≤

max(|D| , |L| ,ℵ0). And in iii) we can take A
′ such that |A′| ≤ max(|A| , |L| ,

ℵ0). If we consider reduced structures, we can obtain the following version

of Lemma 2.5:
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Corollary 2.6. Let A be a reduced L-structure, D a subset of A and κ a

cardinal. For any set p of formulas of L−(D) in the variables {xα : α ∈ κ},

the following are equivalent:

i) p is an L−-complete L−-κ-type over D in A.

ii) There is a reduced L-structure A
′ such that A �−

A
′ and there is

a sequence m = (mα : α ∈ κ) of elements of A′ such that p =

tp−

A′(m/D).

Proof. ii) ⇒ i) is clear. i) ⇒ ii) Since p is an L−-complete L−-κ-type

over D in A, by Lemma 2.5, there is B such that A �−
B and a sequence

l = (lα : α ∈ κ) of elements of B such that p = tp−

B
(l/D). Then, since A is

reduced, by Proposition 2.3, the map j : A → B
∗ defined by: j(a) = [a]Ω(B),

for any a ∈ A, is an embedding that preserves all the equality-free formulas,

thus A -− B
∗. If k = ([lα]Ω(B) : α ∈ κ), clearly p∗ = tp−

B∗(k/D∗). With

standard arguments we can find an L-structure A
′ such that A �−

A
′ and

an isomorphism h : (A′, a)a∈A → (B∗, [a]Ω(B))a∈A such that h ¯ A = j.

Let m = (h−1([lα]Ω(B)) : α ∈ κ). Clearly p = tp−

A′(m/D) and since B
∗ is

reduced, A
′ is also reduced. 2

Now we introduce the main concept of this article: equality-free satu-

rated models.

Definition 2.7. Given an L-structure A and a cardinal κ, we say that A

is L−-κ-saturated iff for any D ⊆ A with |D| < κ, A realizes every L−-1-type

over D in A. And we say that A is L−-saturated iff A is L−-|A|-saturated.

Since any L−-κ-type can be extended to an L−-complete L−-κ-type,

a model A is L−-κ-saturated if for any D ⊆ A with |D| < κ, A realizes

every L−-complete L−-1-type over D in A. Now we show that the relative

relation preserves the L−-saturation of models:

Proposition 2.8. Let A be an L-structure and κ a cardinal. Then, A

is L−-κ-saturated iff A
∗ is L−-κ-saturated.

Proof. ⇐) Assume that A
∗ is L−-κ-saturated. Let E be a subset of A

of power less than κ and p an L−-1-type over E in A. Then, by Remark 2.1,

p∗ is an L−-1-type over E∗ in A
∗. Since A

∗ is L−-κ-saturated and |E∗| < κ,

there is an element x ∈ A∗ that realizes p∗. Let a ∈ A be a member of the

equivalence class x. Clearly a is a realization of p in A.
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⇒) Assume that A is L−-κ-saturated. Let E be a subset of A∗ of power

less than κ and p an L−-1-type over E in A
∗. We choose for any equivalence

class e ∈ E a representative ae ∈ e. Let D = {ae : e ∈ E}. For any formula

φ ∈ p, φ = φ(x, e1, . . . , en), let φ′ be the formula of L(D) obtained from

φ by substituting aei
for ei, for i = 1, . . . , n. Let q = {φ′ : φ ∈ p}, clearly

q∗ = p and, by Remark 2.1, q is an L−-1-type over D in A. Since A is

L−-κ-saturated and |D| < κ, there is an element a ∈ A that realizes q.

Then [a]Ω(A) is clearly a realization of p in A
∗. 2

Corollary 2.9. Let κ be a cardinal and A and B L-structures such that

A ∼ B. Then, A is L−-κ-saturated iff B is L−-κ-saturated.

Proof. Assume that A is L−-κ-saturated. By Proposition 2.8, A
∗ is

L−-κ-saturated. Since A ∼ B, by Proposition 1.6, A
∗ ∼= B

∗. Therefore, B
∗

is L−-κ-saturated, and again by Proposition 2.8, B is L−-κ-saturated. The

other direction is analogous. 2

Let us see now that, for reduced structures and finite and relational

similarity types, the two concepts coincide:

Proposition 2.10. Let L be a finite and relational similarity type and

A a reduced L-structure. Then, A is L−-saturated iff A is saturated.

Proof. ⇐) is clear. ⇒) Suppose that A is L−-saturated. Let D be a

subset of A with |D| < |A| and p an 1-type over D in A. Since L is finite

and relational and A is reduced, there is a finite set Γ of formulas of the

form ∀z [φ(x, z) ↔ φ(y, z)], where φ ∈ L− is atomic, such that, if ψ(x, y) is

the conjunction of all the formulas in Γ, then A |= ∀x∀y [x ≈ y ↔ ψ(x, y)].

For any formula φ ∈ L(D), let φ′ ∈ L−(D) be the formula obtained from

φ by replacing each appearance of a formula of the form t1 ≈ t2 by an

appearance of ψ(t1, t2). Let p′ = {φ′ : φ ∈ p}. It is easy to check that p′ is

an L−-1-type over D in A. Since A is L−-saturated, there is a realization

of p′, a ∈ A. Clearly, a is also a realization of p. 2

Now, we present some results on the existence of L−-saturated models.

First, we introduce the notion of L−-complete theory. We say that a theory

T is L−-complete iff for any sentence σ ∈ L−, T |= σ or T |= ¬σ.

Proposition 2.11. If T is L−-complete and λ ≥ max( |L| ,ℵ0), then T

has a L−-λ-saturated model of power ≤ 2λ.

Proof. Extend T to a complete theory T ′and apply the analogous

result for logic with equality. 2
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We can obtain a better result in stable theories. We say that a theory

T is L−-λ-stable if for any model A of T , for any X ⊆ A with |X| ≤ λ,

there are ≤ λ L−-complete L−-1-types over X in A. It is said that T is

L−-stable if for some λ, T is L−-λ-stable.

Proposition 2.12. If T is L−-complete, λ is a regular cardinal λ ≥

max( |L| ,ℵ0) and T is L−-λ-stable, then T has a L−-λ-saturated model of

power λ.

Proof. We build an elementary chain (in the usual sense of logic with

equality) (Aα : α ∈ λ), of models of T of power λ. Let A0 be any model of

T . Assume that we have chosen Aα, by L−-λ-stability, there are at most

λ L−-complete L−-1-types over Aα. Let Aα+1 be an elementary extension

of Aα which realizes all these types. At limit ordinals, take unions. Let

A =
⋃

α∈λ Aα, since λ is regular, it is easy to check that A is a L−-λ-

saturated model of T of power λ. 2

In stability theory, several improvements can be obtained in reference

to singular cardinals. The notion of L−-stable is not studied in this work.

In view of Propositions 2.18 and 2.19, perhaps, it could be of some interest

to compare this notion with the usual one. The following existence theorem

for L−-ω-saturated models is stated by G. C. Nelson in [19].

Theorem 2.13. Let T be L−-complete. Then T has a L−-ω-saturated

model iff for each n ∈ ω, T has only countably many L−-types in n variables.

We have also the corresponding theorems with set-theoretically as-

sumptions, for example, for any λ strongly inaccessible, every theory with

λ ≥ max( |L| ,ℵ0) has a L−-λ-saturated model of power λ. Now we state

some facts without proof. The proof of these statements is analogous to

the proof in the case of logic with equality.

Fact 2.14. (1) Given a cardinal κ, if A is L−-κ-saturated, then for

any D ⊆ A with |D| < κ, A realizes every L−-κ-type over D in A.

(2) Given a cardinal κ, any model has an L−-extension that is L−-κ-

saturated.

(3) Any finite model is L−-κ-saturated, for any cardinal κ.

(4) Any two L−-equivalent L−-saturated models of the same power are

relatives.
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Observe that, from Fact (4), it follows that two reduced models of

the same power that are L−-equivalent and L−-saturated are isomorphic,

because any two reduced models which are relatives are isomorphic. This

is not true in general. Let us see now that the converse of Fact (3) is not

true, because there is a property of L−-saturation that usual saturation

does not share: there are L-structures A that are L−-|A|+-saturated. Let

us see an example:

Example 2.15. Let L = {Pn : n ∈ ω}, where for any n ∈ ω, Pn is

a unary relation symbol and T be the theory of the infinite independent

properties, that is, the set of consequences of the following set of sentences:

∃x(Pi0x ∧ . . . ∧ Pinx ∧ ¬Pj0x ∧ . . . ∧ ¬Pjk
x),

for any distinct i0, . . . , in, j0, . . . , jk ∈ ω. Let A = (P (ω), PA

n )n∈ω, where for

any X ∈ P (ω), X ∈ PA

n iff n ∈ X.

Clearly A is reduced. We show that A is L−-|A|+-saturated. Let D

be any subset of A and p an L−-complete L−-1-type over D in A. Since

A is reduced, by Corollary 2.6, there are a reduced L-structure A
′ and an

element a ∈ A′ such that A �−
A
′ and p = tp−

A′(a/D). Consider now

the set p0 = atp−

A′(a/A′). All the formulas of p0 are of the form Pnx,

for some n ∈ ω. Let Y = {n ∈ ω : Pnx ∈ p0}. Observe that Y ∈ A and

atp−

A′(Y/A′) = atp−

A′(a/A′). Therefore, since A
′ is reduced, Y = a. Hence,

p is realized in A. We conclude that A is L−-|A|+-saturated. However, A

is not saturated because the following 2-type is not realized in A

p = {x 6 ≈y} ∪ {Pnx↔ Pny : n ∈ ω} .

Now we give a characterization of L-structures A that are L−-|A|+-

saturated. We obtain the following result: A is L−-|A|+-saturated iff any

L−-extension of A is relative of A. Later we will see that, if A is L−-

|A|+-saturated, intuitively speaking, A
∗ is the greatest reduced model of

Th−(A).

Lemma 2.16. Let A and B be L-structures. Suppose that A �−
B ,

a ∈ A and b ∈ B. If tp−

B
(b/A) = tp−

B
(a/A), then atp−

B
(b/B) = atp−

B
(a/B).

Proof. Suppose that tp−

B
(b/A) = tp−

B
(a/A). Then, since for any

equality-free atomic formula φ(x, z̄) ∈ L, ∀z(φ(a, z̄) ↔ φ(y, z̄)) ∈ tp−

B
(a/A),

we have for any equality-free atomic formula φ(x, z̄) ∈ L,∀z(φ(a, z̄) ↔

φ(y, z̄)) ∈ tp−

B
(b/A), and thus, B |= ∀z(φ(x, z̄) ↔ φ(y, z̄)) [a, b] . Therefore,

atp−

B
(b/B) = atp−

B
(a/B). 2
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Lemma 2.17. Let A be an L-structure. If A is L−-|A|+-saturated, then

for any B such that A �−
B and any b, b′ ∈ B, the following are equivalent:

i) atp−

B
(b/A) = atp−

B
(b′/A).

ii) tp−

B
(b/A) = tp−

B
(b′/A).

iii) tp−

B
(b/B) = tp−

B
(b′/B).

Proof. iii)⇒ i) is clear. i)⇒ ii) Suppose that atp−

B
(b/A) = atp−

B
(b′/A).

Let p = tp−

B
(b/A) and p′ = tp−

B
(b′/A). Since A is L−-|A|+-saturated and

A �−
B, there are a, a′ ∈ A such that a is a realization of p and a′ is a

realization of p′. Therefore,

atp−

B
(a/A) = atp−

B
(b/A) = atp−

B
(b′/A) = atp−

B
(a′/A),

and since A �−
B, atp−

A
(a/A) = atp−

A
(a′/A). Thus, tp−

A
(a/A) = tp−

A
(a′/A)

and again since A �−
B, tp−

B
(a/A) = tp−

B
(a′/A). Consequently,

tp−

B
(b/A) = tp−

B
(a/A) = tp−

B
(a′/A) = tp−

B
(b′/A).

ii) ⇒ iii) Suppose that p = tp−

B
(b/A) = tp−

B
(b′/A). Since A is L−-|A|+-

saturated and A �−
B, there is a ∈ A such that a is a realization of p.

Therefore, tp−

B
(b/A) = tp−

B
(a/A) = tp−

B
(b′/A). Then, by Lemma 2.16,

atp−

B
(b/B) = atp−

B
(a/B) = atp−

B
(b′/B) and thus tp−

B
(b/B) = tp−

B
(b′/B).

2

Proposition 2.18. Let A be an L-structure. The following are equiva-

lent:

i) A is L−-|A|+-saturated.

ii) For any B such that A �−
B and any b ∈ B there is a ∈ A such that

atp−

B
(b/B) = atp−

B
(a/B).

iii) For any B such that A �−
B, B ∼ A.

iv) For any B such that A � B, B ∼ A.

Proof. iii) ⇒ iv) is clear. i) ⇒ ii) Let B be such that A �−
B and b ∈

B, consider p = tp−

B
(b/A). By i), since A �−

B there is an element a ∈ A

such that a is a realization of p. Therefore, by Lemma 2.16, atp−

B
(b/B) =
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atp−

B
(a/B). ii) ⇒ iii) Let B be such that A �−

B. By ii), for any b ∈ B−A,

we can choose ab ∈ A such that atp−

B
(b/B) = atp−

B
(ab/B). For any b ∈ A,

let ab = b. Then (ab : b ∈ B) and (b : b ∈ B) are enumerations of A and B

respectively, such that (A, ab)b∈B ≡−

0 (B, b)b∈B . By Proposition 1.6, B ∼ A.

iv) ⇒ i) Let B be an L-structure such that A � B and B is |A|+-saturated.

Then B is L−-|A|+-saturated. By iv), B ∼ A and by Proposition 2.8, A is

L−-|A|+-saturated. 2

Now we give another characterization of L−-|A|+-saturated models:

Proposition 2.19. Let A be an L-structure. The following are equiva-

lent:

i) A is L−-|A|+-saturated.

ii) A is L−-ω-saturated and for any B such that A �−
B and any b ∈ B

there is a finite E ⊆ A such that for any c ∈ B,

tp−

B
(b/E) = tp−

B
(c/E) iff atp−

B
(b/B) = atp−

B
(c/B).

iii) There is an infinite cardinal κ ≤ |A| such that A is L−-κ-saturated

and for any B such that A �−
B and any b ∈ B there is E ⊆ A with

|E| < κ such that for any c ∈ B,

tp−

B
(b/E) = tp−

B
(c/E) iff atp−

B
(b/B) = atp−

B
(c/B).

Proof. ii) ⇒ iii) is clear. i) ⇒ ii) If A is L−-|A|+-saturated, then A is

L−-ω-saturated. Let B be such that A �−
B and b ∈ B. Since A is L−-

|A|+-saturated, by Proposition 2.18, there is a ∈ A such that atp−

B
(b/B) =

atp−

B
(a/B) and therefore, tp−

B
(b/B) = tp−

B
(a/B). Let E = {a} and sup-

pose that c ∈ B. If tp−

B
(b/E) = tp−

B
(c/E), then for any equality-free

atomic formula φ(x, z̄) ∈ L, since ∀z(φ(a, z̄) ↔ φ(y, z̄)) ∈ tp−

B
(b/E) we

have that ∀z(φ(a, z̄) ↔ φ(y, z̄)) ∈ tp−

B
(c/E), and then, B |= ∀z(φ(x, z̄) ↔

φ(y, z̄)) [a, c] . Consequently,

atp−

B
(c/B) = atp−

B
(a/B) = atp−

B
(b/B).

Conversely, if atp−

B
(b/B) = atp−

B
(c/B), then tp−

B
(b/B) = tp−

B
(c/B) and

thus tp−

B
(b/E) = tp−

B
(c/E).

iii) ⇒ i) Let p be an L−-1-type over D ⊆ A in A. Assume that p is

L−-complete. By Lemma 2.5 there is B such that A �−
B and b ∈ B such
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that p = tp−

B
(b/D). By iii), there is E ⊆ A with |E| < κ ≤ |A| such that

for any c ∈ B,

tp−

B
(b/E) = tp−

B
(c/E) iff atp−

B
(b/B) = atp−

B
(c/B).

Let q = tp−

B
(b/E). Since A is L−-κ-saturated and A �−

B, there is an

element a ∈ A such that a is a realization of q. Therefore, tp−

B
(b/E) =

tp−

B
(a/E), and then, by assumption, atp−

B
(b/B) = atp−

B
(a/B), consequent-

ly, tp−

B
(b/D) = tp−

B
(a/D) and a is a realization of p. Then, we can conclude

that A is L−-|A|+-saturated. 2

Corollary 2.20. Let L be a similarity type such that the arity of all

the symbols in L is ≤ 1. Then, any L−-ω-saturated structure A is L−-|A|+-

saturated.

Proof. Observe that, in case that the arity of all the symbols in L is

≤ 1, for any L-structure B, the following holds: atp−

B
(b/∅) = atp−

B
(c/∅) iff

atp−

B
(b/B) = atp−

B
(c/B), for any b, c ∈ B. Consequently, by Proposition

2.19, for any L-structure A, if A is L−-ω-saturated, then A is L−-|A|+-

saturated. 2

We end this section with some examples. First we see another example

of an structure A that is L−-|A|+-saturated, using Proposition 2.19.

Example 2.21. Let L = {Rn : n ∈ ω}, where for any n ∈ ω, Rn is a

binary relation symbol. Consider the L-structure A = (ω2, RA

n )n∈ω, where

for any n ∈ ω, RA

n is the equivalence relation defined by: 〈f, g〉 ∈ RA

n iff

f ¯ n = g ¯ n, for any f, g ∈ω2.

We see that A is L−-|A|+-saturated. By Proposition 2.18, it is enough

to show that for any L-structure B such that A �−
B and any b ∈ B,

there is g ∈ω 2 such that atp−

B
(b/B) = atp−

B
(g/B). Suppose that A �−

B

and b ∈ B. Since for any n ∈ ω there are exactly 2n equivalence classes in

the partition by the relation RB

n , for any n ∈ ω there is fn ∈ω 2 such that

〈fn, b〉 ∈ RB

n . Then, consider the function g ∈ω 2 defined as follows: for any

n ∈ ω, g(n) = fn(n). Clearly, for any n ∈ ω, 〈g, b〉 ∈ RB

n and therefore,

atp−

B
(b/B) = atp−

B
(g/B).

Now we exhibit a theory without this kind of structures.

Example 2.22. Let L be as in Example 2.21 and B be the L-structure

(ωω,RB

n )n∈ω, where for any n ∈ ω, RB

n is the equivalence relation defined

by: 〈f, g〉 ∈ RB

n iff f ¯ n = g ¯ n, for any f, g ∈ωω.



EQUALITY-FREE SATURATED MODELS 17

There is no model A of the Th(B) which is L−-|A|+-saturated. Assume

that A is a model of Th(B) and let X be the set of all equivalence classes

of RA

1 . For any x ∈ X we choose a representative ax ∈ A. The following

L−-1-type over {ax : x ∈ X} in A, p = {¬R1yax : x ∈ X} , is not realized

in A.

¿From the universality properties of L−-saturated models we can deduce

that if A is a L−-|A|+-saturated model of T , then A
∗ is the greatest reduced

model of Th−(A).

Proposition 2.23. Let A and B be L-structures. Then the following

are equivalent:

i) There is an enumeration of A, a = (ai : i ∈ I), and a sequence of

elements of B, b = (bi : i ∈ I), such that

(A, a) ≡− (B, b).

ii) A
∗ -− B

∗.

Proof. See [11], Proposition 2.8. 2

Proposition 2.24. Let A be an L-structure and κ a cardinal. If A is

L−-κ-saturated, then for any B |= Th−(A) with |B| ≤ κ, B
∗ -− A

∗.

Proof. Assume that A is L−-κ-saturated and let B be an L-structure

such that B |= Th−(A) and |B| = λ ≤ κ. Let b = (bα : α ∈ λ) be

an enumeration of B without repetitions and p = tp−

B
(b/∅). Since B |=

Th−(A), p is an L−-λ-type over ∅ in A. Therefore, since λ ≤ κ and A is

L−-κ-saturated, p is realized in A. Let a = (aα : α ∈ λ) be a realization of

p in A. Then, (A, a) ≡− (B, b). Therefore, by Proposition 2.4, B
∗ -− A

∗. 2

Corollary 2.25. Let A be an L−-|A|+-saturated model, then for any

B |= Th−(A), B
∗ -− A

∗.

Proof. By Proposition 2.24. 2

In [17] Morley proved that the Hanf number for the class of countable

stable theories was iω1
. This bound allows us to obtain the following

existence result for models which have this phenomenon of supersaturation.

Proposition 2.26. Let T be a stable countable theory. If A is a reduced

L−-|A|+-saturated model of T , then |A| < iω1
.
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Proof. By Corollary 2.25, for any B |= T , B
∗ -− A. 2

Let us consider the class of stable countable theories axiomatized by

a set of equality-free sentences. From next proposition follows that the

Hanf number for the notion of reduced structure for this class it is the least

cardinal κ such that any supersaturated reduced model of a theory of the

class is of power less than κ.

Proposition 2.27. If T is a theory axiomatized by a set of equality-free

sentences, then, there is a reduced model A of T which is L−-|A|+-saturated

of power λ if and only if there is a reduced model of power λ and any model

of T of power bigger than λ is not reduced.

Proof. The direction ⇒) is clear by Corollary 2.25. ⇐) Let A be

model of T γ-saturated, for some γ > λ. Then A
∗ is a reduced model

of T , L−-γ-saturated and, by assumption, of power ≤ λ. Therefore A
∗ is

L−-|A|+-saturated and by Corollary 2.25, for any reduced model B of T ,

B -− A
∗. Since we have assumed that there is a reduced model B of power

λ, A
∗ must be of power λ. 2

In the previous propositions several improvements can be obtained us-

ing the results of Shelah and Hrushovski in [16], for superstable theories.

Finally we introduce the notion of strong L−-homogeneity and compare

this notion with the usual notion of strong homogeneity.

Definition 2.28. Given an L-structure A and a cardinal κ, we say

that A is L−-κ-homogeneous iff for any two sequences a = (ai : i ∈ I) and

a′ = (a′i : i ∈ I) of elements of A such that |I| < κ and (A, a) ≡− (A, a′), it

happens that for any d ∈ A there is d′ ∈ A such that (A, a, d) ≡− (A, a′, d′).

We say that A is L−-homogeneous if it is L−-|A|-homogeneous.

Definition 2.29. Given an L-structure A and a cardinal κ, we say that

A is strong-ly L−-κ-homogeneous iff for any two sequences a = (ai : i ∈ I)

and a′ = (a′i : i ∈ I) of elements of A such that |I| < κ and (A, a) ≡− (A, a′),

there are enumerations d = (dj : j ∈ J) and d
′

= (d′j : j ∈ J) of A such

that (A, d) ≡− (A, d
′

) and a ⊆ d and a′ ⊆ d
′

. We say that A is strongly

L−-homogeneous if it is strongly L−-|A|-homogeneous.

By usual arguments we obtain the following fact:

Remark 2.30. Let A be an L-structure. A is L−-homogeneous iff A is

strongly L−-homogeneous.
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Proposition 2.31. Let A be an L-structure. If A is L−-saturated, then

A is strongly L−-homogeneous.

Proof. Suppose that a = (ai : i ∈ I) and a′ = (a′i : i ∈ I) are

sequences of elements of A such that (A, a) ≡− (A, a′) and |I| < |A|. Let

r = {〈ai, a
′

i〉 : i ∈ I} . Given an element d ∈ A, consider the type p =

tp−

A
(d/dom(r)). Since (A, a) ≡− (A, a′), by Remark 2.1, pr is an L−-1-type

over rg(r) in A. Since A is L−-saturated, there is a realization d′ ∈ A of

pr. Then, (A, a, d) ≡− (A, a′, d′). Thus, A is L−-homogeneous and by the

previous remark, A is strongly L−-homogeneous. 2

Proposition 2.32. Let A be a reduced L-structure. If A is strongly L−-

homoge-neous, then A is strongly homogeneous.

Proof. Suppose that A is reduced and strongly L−-homogeneous and

a = (ai : i ∈ I) and a′ = (a′i : i ∈ I) are two sequences of elements of A

such that |I| < |A| and (A, a) ≡ (A, a′). Then, (A, a) ≡− (A, a′), and since

A is strongly L−-homogeneous, there are enumerations d = (dj : j ∈ J)

and d
′

= (d′j : j ∈ J) of A, such that (A, d) ≡− (A, d
′

) and a ⊆ d and a′ ⊆

d
′

. But since A is reduced, by Proposition 1.6, there is an automorphism

f : A → A such that, for any j ∈ J , f(dj) = d′j . Therefore, (A, d) ≡ (A, d
′

).

Consequently, A is strongly homogeneous. 2

Observe that, in Proposition 2.32 we can not delete the restriction that

A is reduced.

Example 2.33. Let L = {E} , where E is a binary relation symbol

and A = (ω1 + ω,EA), where EA is the equivalence relation defined by:

〈α, β〉 ∈ EA iff either (α ≤ ω1 and β ≤ ω1) or (α > ω1 and β > ω1), for

any α, β ∈ ω1 + ω.

It is easy to check that A is non-reduced and that A
∗ is finite. Then, A

∗

is L−-saturated and consequently, A is L−-saturated. But it is not strongly

homogeneous: take α ≤ ω1 and β > ω1 and I the set of all finite partial

isomorphisms p such that p(α) = β. It is easy to see that I : (A, α) ∼=p

(A, β). Therefore, (A, α) ≡ (A, β). But, since the equivalence classes of α

and β are of different power, there is no automorphism h : A → A such that

h(α) = β.

There are counterexamples that show that the converse of Proposition

2.32 is not true.
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Example 2.34. Take L = {P,E, f} , where P is a unary relation sym-

bol, E a binary relation symbol and f a unary function symbol. Let

A = (A,PA, EA, fA), where A = M ∪ M ′ ∪ {b} , M = {an : n ∈ ω},

M ′ = {a′n : n ∈ ω}, b /∈ M ∪M ′ and M ∩M ′ = ∅. Let PA = {a0, a
′

0} and

for any n ∈ ω, fA(an+1) = an, fA(a0) = a0, fA(a′n+1) = a′n, fA(a′0) = a′0
and fA(b) = b. Finally, let

EA =
[

(M ′ ∪ {b}) × (M ′ ∪ {b})
]

∪ [M ×M ] .

Clearly A is reduced. Observe that A is strongly homogeneous: suppose

that a = (ai : i ∈ I) and a′ = (a′i : i ∈ I) are sequences of elements of

A such that (A, a) ≡ (A, a′). It is easy to check that, in this case, for any

i ∈ I, ai = a′i, therefore the identity is the desired automorphism. But

using back-and forth systems for equality-free logic it can be shown that A

is not strongly L−-homogeneous, for the details see ([10]).
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