

1 **ABSTRACT**

2 Two experiments were performed to assess the effect of different amounts of dietary
3 polyunsaturated fatty acids (PUFA) on fatty acid composition of chickens. The
4 contribution of endogenous fatty acid synthesis to fatty acid profile was also estimated.
5 In trial 1, different fat sources were blended in different ratios allowing a gradient of
6 dietary PUFA (from 15 to 61 g/kg), keeping added fat level constant (9%). In trial 2,
7 PUFA-rich oil was added in increasing inclusion levels (2, 4, 6 and 8 %), achieving a
8 dietary PUFA content ranging between 27 and 59 g/kg. Increasing dietary PUFA
9 inclusion resulted in an increase of PUFA deposition, with higher efficiency when
10 dietary fat also provided saturated (SFA) and monounsaturated (MUFA) fatty acids (trial
11 1). Increasing dietary PUFA in both trials resulted in a decrease of SFA and MUFA
12 concentration in the whole body. The estimated deposition of fatty acids from
13 endogenous synthesis is reduced when dietary fat increases from 0 to 10%, varying
14 between 35.34 % and 17.66 % for SFA; and between 52.70 % and 7.01 % for MUFA in
15 the whole body. The higher variation range for the MUFA supports the existence of a
16 mechanism maintaining the SFA: (MUFA+PUFA) ratio inside a specific range in
17 biological membranes.

18
19 **INTRODUCTION**

20 Due to the concerns of consumers about fat content and composition of the meat,
21 numerous studies have been carried out regarding fat deposition and dietary
22 modification of fatty acids in monogastric animals such as chickens (Lepezo-Ferrer et al.,
23 2001a, b) and pigs (Kouba et al., 2003). Moreover, it has been observed that dietary fatty
24 acid composition affects not only fat composition but also total body fat deposition in

25 rats and in chickens (Shimomura et al., 1990; Sanz et al., 2000). Given the close
26 relationship between dietary and tissue polyunsaturated fatty acids (PUFA) content, and
27 their reported health benefits compared to saturated fatty acids (SFA) (Kinsella et al.,
28 1990; Srinath & Katan, 2004), many of these works focus on the enrichment of animal
29 tissues with PUFA. However, the relationship between dietary and tissue concentration
30 of SFA and monounsaturated fatty acids (MUFA) is more complex because these fatty
31 acids in animals have a double origin: exogenous (dietary) and endogenous (fatty acid
32 synthesis). This synthesis in the case of chickens is carried out in the liver, and
33 lipoproteins carry these fatty acids to the rest of the tissues. That is, fatty acid
34 composition of the animal depends on the balance between dietary and endogenous fatty
35 acids. To our knowledge, there are no works in the literature quantifying the contribution
36 of endogenous fatty acid synthesis to tissue fatty acid composition in response to
37 different proportions between the three families of fatty acids (SFA, MUFA and PUFA)
38 included in the diet.

39
40 The aim of this study was to assess the lipid composition (SFA, MUFA and PUFA) and
41 the contribution of endogenous fatty acid synthesis to whole body fatty acid profile in
42 response to a dietary polyunsaturation gradient achieved through two different
43 nutritional strategies: by keeping added fat constant and by increasing added fat
44 inclusion level.

45

46 MATERIALS AND METHODS

47 *Animals and diets*

48 The two experimental trials received prior approval from the Animal Protocol Review
49 Committee of the Universitat Autònoma de Barcelona. All animal housing and
50 husbandry conformed to the European Union guidelines.

51 A total of 192 Ross 308 female broiler chickens of one day of age (Granja Solé,
52 Tarragona, Spain in trial 1 and Terra-Avant S.A., Girona, Spain in trial 2) were used in
53 each trial. The animals were housed in groups of four in 48 cages under controlled
54 conditions of temperature, humidity and ventilation. The diets were formulated
55 according to the requirements recommended by the NRC (1994) on the basis of cereals
56 (more than 50%) and soybean meal. The composition of the diets is shown in tables 1
57 and 2.

58 [table 1 and table 2]

59 In trial 1, the four experimental treatments were the result of blending a mixture of
60 linseed and fish oil (in a ratio of 4 to 1) with tallow in different proportions keeping
61 added fat constant (9%) achieving a dietary PUFA content of 15 (PU15), 34 (PU34), 45
62 (PU45) and 61 (PU61) g PUFA/kg. The PUFA to non-PUFA ratio ranged between 0.18
63 and 1.69.

64 In trial 2, the four experimental treatments resulted from different oil inclusion levels:
65 2% (O2), 4% (O4), 6% (O6) and 8% (O8). The concentration of PUFA in the
66 experimental diets was 27, 38, 48 and 59 g PUFA/kg of diet for the O2, O4, O6 and O8
67 diets respectively. The PUFA to non-PUFA ratio of the diets was relatively constant
68 (between 1.55 and 1.80). The added oil used was a mixture of linseed and fish oil in a

69 ratio of 4 to 1, similar to the one used in trial 1. Almond husk was added in different
70 amounts to the feeds in order to get isoenergetic diets (table 2).

71 Tallow and linseed oil were obtained from Cailà-Parés, S.A. (Barcelona, Spain), fish oil
72 was kindly supplied by Agrupación de Fabricantes de aceites marinos, S.A. (Vigo,
73 Spain).

74 In both trials feed and water were provided *ad libitum*. Body weight and food
75 consumption were measured during the experimental period for each cage. Individual
76 food intake was inferred from group measurements. Feed samples were taken during the
77 experiments for Weende analysis (AOAC, 1995) and fatty acid content.

78

79 *Sample collection*

80 In both trials at the end of the experimental period (44 days, 2318±16.1 g of final weight
81 for trial 1 and 40 days, 2240±14.6 g of final weight days for trial 2), two animals per
82 cage were killed by lethal injection (sodium pentobarbital, 200 mg/kg). The whole
83 animals were frozen, cut, and ground with a cutter (Tec-Maq model cut-20, INTEFISA).
84 After that, samples from each animal were taken, freeze-dried, ground and stored at -
85 20°C until further analyses. The other two animals per cage were killed in a commercial
86 slaughterhouse and quartered. Thighs with skin and breast muscle from these animals
87 were destined to a parallel experiment (Cortinas et al., 2004). Nevertheless, fatty acid
88 profile of the breast muscle of these animals is used in this paper to assess the potential
89 of endogenous fat synthesis in intramuscular fat.

90

91 *Fatty acid concentration*

92 Fatty acid content from feeds was determined by GC following the methodology
93 described by Sukhija & Palmquist (1988) Fatty acid content of the diets is presented in
94 table 3. Fatty acid profile of the whole body and breast muscle was determined as
95 described previously by Carrapiso et al. (2000). Nonodecanoic acid (C19, Sigma-
96 Aldrich) was used as internal standard in both cases.

97 [table 3]

98 *Statistics and calculations*

99 Regression analyses were performed for both trials using the REG procedure of SAS®
100 (SAS Institute, 2002) between PUFA intake (g/animal/day) and SFA, MUFA and PUFA
101 content in the tissues (% of total fatty acids). As established by Crespo & Esteve-Garcia
102 (2002a), the ratio between SFA, MUFA and PUFA of the whole chicken and SFA,
103 MUFA and PUFA of the feeds (% of total fatty acids) was calculated as an indicator of
104 endogenous synthesis. These ratios were analyzed by one-way ANOVA using the GLM
105 procedure of SAS, where the input factor was dietary polyunsaturation.

106 In order to quantify the potential of endogenous synthesis, linear regression analyses
107 were performed using the REG procedure of SAS between the SFA and MUFA intakes
108 (g/animal/day) and their respective concentration in the tissue (% of total fatty acids). In
109 all cases, p values lower than 0.05 were considered significant.

110 RESULTS

111 *Effect of dietary polyunsaturation on lipid composition*

113 In table 4, linear regression equations between PUFA intakes (g/animal/day) and SFA,
114 MUFA and PUFA deposition (% of total fatty acids) are presented. PUFA deposition
115 increases as their intake increases in both trials, but the slope of deposition is higher in

116 trial 1 (7.54) than in trial 2 (5.99). SFA and MUFA have lower concentrations with
117 higher PUFA intakes. In both trials, the slopes of SFA and MUFA equations are
118 negative (-2.19 and -1.91 for SFA, for trial 1 and 2 respectively; and -5.44 and -4.03 for
119 MUFA for trial 1 and 2 respectively).

120 [table 4]

121 *Effect of dietary polyunsaturation on potential endogenous synthesis*

122 In table 5, the ratios between SFA, MUFA and PUFA concentrations in whole animal
123 and their concentration in the diets are shown. As established by Crespo and Esteve-
124 Garcia, 2002a, ratio values above 1 indicate net fatty acid synthesis and values lower
125 than 1 show net fatty acid beta-oxidation. Regarding SFA, in the first trial the ratio was
126 lower than 1 in the PU15 and PU34 treatments, 1 in the PU45 and higher than 1 in the
127 PU61. This suggests that in the latter case dietary SFA had to be synthesized. In the
128 second trial the ratio decreased with increasing added oil but never reached values lower
129 than 1; this means that in trial 2 there was always a net synthesis of SFA, even in
130 animals fed the diets with a relatively high percentage of added fat. In the case of
131 MUFA, there was a net synthesis for all treatments in both trials. Whereas in the first
132 trial the ratio was relatively constant among treatments, in the second trial the ratio
133 decreased as dietary oil increased (from 1.91 to 1.29, p<0.001), similarly to SFA ratio.
134 Finally, PUFA ratio was in all cases lower than one, indicating that there was always a
135 net oxidation. In trial 1, the ratio was not different among treatments, but in trial 2 the
136 ratio increased from 0.5 to 0.8 (p<0.001) with added oil.

137 [table 5]

138 As it was previously mentioned, regression analyses were performed between SFA and
139 MUFA intakes (g/animal/day) and their respective content (% of total fatty acids) in the

140 whole body in order to estimate the endogenous synthesis potential (figure 1). The
141 intercept of the estimated equations from the first trial show the theoretical endogenous
142 synthesis of SFA or MUFA when dietary fat level is high (approximately 10%) but there
143 is no intake of SFA or MUFA. In the second trial, it represents the SFA or MUFA
144 synthesis when no fat is added to the diets. Based in this information, the endogenous
145 synthesis potential of SFA was 17.66% (confidence interval: from 16.86 to 18.45) for
146 the first trial and 35.34% (confidence interval: from 33.94 to 36.74) for the second one.
147 Concerning MUFA, the endogenous synthesis potential seen in the whole body in trial 1
148 was 7.01% (confidence interval: from 3.98 to 10.03) and 52.70% in trial 2 (confidence
149 interval: from 49.38 to 56.03).

150

151 DISCUSSION

152 Fatty acid composition in chicken tissues is a combination of endogenous synthesis of
153 fatty acids, from carbohydrate and protein precursors, and direct deposition from the
154 diet. SFA and MUFA have this double origin, whilst PUFA deposition depends almost
155 exclusively on dietary supplementation when no essential fatty acids deficiency exists.
156 The main fatty acids resulting from hepatic lipogenesis are 16:0, 18:0, 18:1n9 and
157 16:1n7 (Bartov, 1979; Crespo & Esteve-Garcia, 2002b).

158

159 In both trials, PUFA deposition increased with increasing dietary PUFA inclusion,
160 whilst both SFA and MUFA deposition decreased. The reduction in SFA and MUFA
161 concentration is due to the inverse relationship between PUFA and SFA and MUFA
162 deposition, already described in the literature (Ajuyah et al., 1991; Lopez-Ferrer et al.,
163 2001a, b). In trial 1 this reduction can be attributed to the lower intakes of SFA and

164 MUFA when dietary PUFA increase. In trial 2, when animals consumed a low fat diet
165 (O2, O4), endogenous synthesis of SFA and MUFA plays an important role, but when
166 fat consumption increases, the contribution of endogenous fatty acid synthesis to body
167 fat decreases (Donaldson, 1985), even if the added fat is rich in PUFA and low in SFA
168 and MUFA. The decrease in fatty acid synthesis was possibly due to a lower availability
169 of carbohydrate precursors as dietary fat increased and to an inhibition of lipogenic
170 enzymes by dietary fatty acids, as suggested by Mourot & Hermier (2001). For this
171 reason, SFA and MUFA concentrations in the body in trial 2 were lower when added fat
172 inclusion increased, in spite of higher SFA and MUFA intakes.

173

174 The slope of the MUFA equations is bigger than in the SFA ones. This suggests that, in
175 the case of high PUFA intakes, SFA are preferred to MUFA for deposition in order to
176 maintain a relatively constant unsaturated (MUFA + PUFA) to saturated fatty acids ratio
177 in cellular membranes (Asghar et al., 1990; Bou et al., 2004). The fact that MUFA and
178 PUFA slopes are lower in trial 2 ($p<0.05$), whereas the slopes of SFA equations between
179 the two trials do not statistically differ ($p>0.05$), further supports the idea that MUFA are
180 exchanged for PUFA when necessary and SFA deposition is more independent of the
181 effect of high PUFA intakes. Other authors have reported the lower manipulation of
182 SFA compared to MUFA and PUFA in broiler meat (Lopez-Ferrer et al., 1999) and in
183 eggs (Baucells et al., 2000).

184

185 Regarding the ratios between body-to-dietary SFA, MUFA and PUFA, it is interesting to
186 note that there is still a net synthesis of SFA and MUFA when the level of dietary fat is
187 high (10.2% for trial 1, table 1; and 9.9% for the O8 treatment in trial 2, table 2). This

188 could indicate that hepatic lipogenesis is not completely inhibited by dietary fat. In trial
189 1, this net synthesis of SFA and mainly MUFA is higher in the PU61 treatment than in
190 the rest ($p<0.05$) which could mean that high PUFA diets compared to SFA and MUFA
191 rich diets exhibit a lower inhibition effect upon hepatic lipogenesis, as it was suggested
192 by Crespo & Esteve-Garcia (2002a). Concerning body-to-dietary PUFA, the ratio values
193 are always under 1, because PUFA come mainly from the diet. In trial 1, this is not
194 different among treatments, but in trial 2 the ratio increases with added oil. This suggests
195 that in the low fat treatments, PUFA are oxidized in order to obtain energy, substrate or
196 both to synthesize SFA and MUFA. This idea is supported by the fact that the slope of
197 the regression equations described above (table 4) between PUFA intake and PUFA
198 deposition is higher in trial 1 than in trial 2 ($p<0.001$), suggesting that when added fat
199 level is high, increasing dietary PUFA are deposited more readily from the diet, whereas
200 in trial 2 the efficiency of deposition is lower, possibly due to their contribution to SFA
201 and MUFA synthesis in the low-fat treatments.

202 [figure 1]

203 Looking at the information provided by the regression equations between SFA and
204 MUFA intake and their deposition in the body, the intervals marked by the intercept
205 values from trial 1 (lower values, when no SFA/MUFA is consumed, 10% dietary fat)
206 and trial 2 (higher values, when no fat is consumed) show the variation of endogenous
207 synthesis when dietary fat is increased from 0% to 10%. In figure 1 we show not only
208 the contribution of endogenous synthesis to fatty acid profile in whole body but also in
209 breast (representing intramuscular fat). That is, increasing from 0 to 10% of dietary fat,
210 SFA from endogenous synthesis found in the whole body and in breast decreased from
211 35 to 17% and from 39 to 23% of total fatty acids respectively; and MUFA from

212 endogenous synthesis decreased from 53% to 7% and from 42 to 10 % respectively. It
213 can be observed that the variation range of SFA proportion is lower than the range of
214 variation of MUFA both in the whole body and in breast. This further supports the
215 hypothesis already mentioned that there is a homeostatic mechanism in the cellular
216 membranes to keep the SFA: unsaturated fatty acids ratio inside a relatively narrow
217 range to maintain membrane fluidity. Also, breast muscle has a lower range of variation
218 of SFA and MUFA than the whole body. This shows that fat composition of
219 intramuscular fat (main fat depot present in breast muscle) is less modifiable by the diet
220 than storage fat (main fat present in the whole body), which seems logical given that
221 intramuscular fat is comprised mainly of membrane phospholipids, and phospholipid
222 composition affects the execution of different metabolic activities (Merrill & Schroeder,
223 1993). Changes in this composition could seriously affect cell metabolism, hence
224 phospholipid fatty acids are less affected by diet composition than triglyceride fatty
225 acids, whose main role is to store energy.

226
227 In conclusion, increasing dietary PUFA inclusion results in a linear increase in PUFA
228 deposition in the whole body of chickens. The rate of deposition (represented by the
229 slope of the equations between dietary PUFA and tissue PUFA) is higher when added fat
230 provides higher amounts of SFA and MUFA (trial 1). Also, increasing dietary PUFA,
231 both modifying the added fat source or increasing added PUFA-rich oil level, results in a
232 linear decrease of SFA and MUFA concentration, more marked in the case of MUFA.
233 Regarding endogenous synthesis potential, the estimated deposition of fatty acids
234 coming from endogenous synthesis is reduced when dietary fat increases from 0 to 10%.
235 Despite a high inclusion level of fat, SFA and MUFA synthesis are not completely

236 inhibited. The lower variation range found in breast muscle suggests that intramuscular
237 fat is less modifiable by the diet than total body fat. The higher variation range for
238 MUFA supports the existence of a mechanism maintaining the SFA: (MUFA+PUFA)
239 ratio inside a specific range in biological membranes.

240

241 ACKNOWLEDGEMENTS

242 The authors are grateful to the Agrupación de Fabricantes de Aceites Marinos, S.A. for
243 the donation of the fish oil. This work was supported, in part, by a research grant from
244 the Generalitat de Catalunya, and the Comisión Interministerial de Ciencia y Tecnología
245 (CICYT).

246

247 REFERENCES

248 AJUYAH, A.O., LEE, K.H., HARDIN, R.T. & SIM, J.S. (1991) Changes in the yield
249 and in the fatty acid composition of whole carcass and selected meat portions of broiler
250 chickens fed full-fat oil seeds. *Poultry Science*, **70**: 2304-2314.

251 ASGHAR, A., LIN, C.F., GRAY, J.I., BUCKLEY, D.J., BOOREN, A.M. & FLEGAL,
252 C.J. (1990) Effects of Dietary Oils and Alpha-Tocopherol Supplementation on
253 Membranal Lipid Oxidation in Broiler Meat. *Journal of Food Science*, **55**: 46-50.

254 ASSOCIATION OF ANALYTICAL CHEMISTS (1995) Official methods of analysis of
255 AOAC International (16th Ed). Arlington, Association of Official Analytical chemists.

256 BARTOV, I. (1979) Nutritional factors affecting quantity and quality of carcass fat in
257 chickens. *Federation Proceedings*, **38**: 2627-2630.

258 BAUCELLS, M.D., CRESPO, N., BARROETA, A.C., LOPEZ-FERRER, S. &
259 GRASHORN, M.A. (2000) Incorporation of different polyunsaturated fatty acids into
260 eggs. *Poultry Science*, **79**: 51-59.

261 BOU, R., GUARDIOLA, F., TRES, A., BARROETA, A.C. & CODONY, R. (2004)
262 Effect of dietary fish oil, alpha-tocopheryl acetate, and zinc supplementation on the
263 composition and consumer acceptability of chicken meat. *Poultry Science*, **83**: 282-292.

264 CARRAPISO, A.I., TIMÓN, M.L., PETRÓN, M.J., TEJEDA, J.F. & GARCÍA, C.
265 (2000) In situ transesterification of fatty acids from Iberian pig subcutaneous adipose
266 tissue. *Meat Science*, **56**: 159-164.

267 CORTINAS, L., VILLAVERDE, C., GALOBART, J., BAUCELLS, M.D., CODONY,
268 R. & BARROETA, A.C. (2004) Fatty acid content in chicken thigh and breast as
269 affected by dietary polyunsaturation level. *Poultry Science*, **83**: 1155-1164.

270 CRESPO, N. & ESTEVE-GARCIA, E. (2002a) Dietary linseed oil produces lower
271 abdominal fat deposition but higher de novo fatty acid synthesis in broiler chickens.
272 *Poultry Science*, **81**: 1555-1562.

273 CRESPO, N. & ESTEVE-GARCIA, E. (2002b) Nutrient and fatty acid deposition in
274 broilers fed different dietary fatty acid profiles. *Poultry Science*, **81**: 1533-1542.

275 DONALDSON, W.E. (1985) Lipogenesis and body fat in chicks: effects of calorie-
276 protein ratio and dietary fat. *Poultry Science*, **64**: 1199-1204.

277 KINSELLA, J.E., LOKESH, B. & STONE, R.A. (1990) Dietary n-3 polyunsaturated
278 fatty acids and amelioration of cardiovascular disease: possible mechanisms. *American
279 Journal of Clinical Nutrition*, **52**: 1-28.

280 KOUBA, M., ENSER, M., WHITTINGTON, F.M., NUTE, G.R. & WOOD, J.D. (2003)
281 Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid
282 composition, and meat quality in the growing pig. *Journal of Animal Science*, **81**: 1967-
283 1979.

284 LOPEZ-FERRER, S., BAUCELLS, M.D., BARROETA, A.C. & GRASHORN, M.A.
285 (1999) n-3 enrichment of chicken meat using fish oil: alternative substitution with
286 rapeseed and linseed oils. *Poultry Science*, **78**: 356-365.

287 LOPEZ-FERRER, S., BAUCELLS, M.D., BARROETA, A.C. & GRASHORN, M.A.
288 (2001a) n-3 enrichment of chicken meat. 1. Use of very long-chain fatty acids in chicken
289 diets and their influence on meat quality: fish oil. *Poultry Science*, **80**: 741-752.

290 LOPEZ-FERRER, S., BAUCELLS, M.D., BARROETA, A.C., GALOBART, J. &
291 GRASHORN, M.A. (2001b) n-3 enrichment of chicken meat. 2. Use of precursors of
292 long-chain polyunsaturated fatty acids: linseed oil. *Poultry Science*, **80**: 753-761.

293 MERRILL, A.H. & SCHROEDER, J.J. (1993) Lipid modulation of cell function.
294 *Annual Review of Nutrition*, **13**: 539-559.

295 MOUROT, J. & HERMIER, D. (2001) Lipids in monogastric animal meat.
296 *Reproduction Nutrition Development*, **41**: 109-118.

297 SANZ, M., FLORES, A. & LOPEZ-BOTE, C.J. (2000) The metabolic use of energy
298 from dietary fat in broilers is affected by fatty acid saturation. *British Poultry Science*,
299 **41**: 61-68.

300 SHIMOMURA, Y., TAMURA, T. & SUZUKI, M. (1990) Less body fat accumulation
301 in rats fed a safflower oil diet than in rats fed a beef tallow diet. *Journal of Nutrition*,
302 **120**: 1291-1296.

303 SRINATH, R.K. & KATAN, M.B. (2004) Diet, nutrition and the prevention of
304 hypertension and cardiovascular diseases. *Public Health Nutrition*, **7**: 167-186.

305 SUKHIJA, P.S. & PALMQUIST, D.L. (1988) Rapid method for determination of total
306 fatty acid content and composition of feedstuffs and feces. *Journal of Agricultural and
307 Food Chemistry*, **36**: 1202-1206.

TABLE 1. Composition and chemical analysis of the diets. Trial 1.

Ingredients	g/kg diet
Wheat	393.0
Soya 48	340.9
Barley	133.9
Added fat ¹	90.0
Bicalcium phosphate	21.7
Calcium carbonate	9.8
Salt	4.5
Vitamin mineral mix ²	4.0
DL-Methionine	2.8
L-Lysine	0.4
Chemical analysis	
Dry matter	907.8
Crude protein	229.8
Crude fat	101.7
Crude fibre	34.7
Ash	60.8

¹PU15: 90 g/kg tallow; PU34: 55 g/kg tallow, 30 g/kg linseed oil, 5 g/kg fish oil; PU45: 35 g/kg tallow, 45 g/kg linseed oil, 10 g/kg fish oil; PU61: 70 g/kg linseed oil, 20 g/kg fish oil.

²Vitamin and mineral mix per kg of feed: Vitamin A: 12000 UI; Vitamin D₃: 2400 UI; Vitamin E: 176 IU; Vitamin K₃: 3 mg; Vitamin B₁: 2.2 mg; Vitamin B₂: 8 mg; Vitamin B₆: 5 mg; Vitamin B₁₂: 11 µg; Folic acid: 1.5 mg; Biotin: 150 µg; Calcium pantothenate: 25 mg; Nicotinic acid: 65 mg; Mn: 60 mg; Zn: 40 mg; I: 0.33 mg; Fe: 80 mg; Cu: 8 mg; Se: 0.15 mg.

TABLE 2. Composition and chemical analysis of the diets¹. Trial 2.

Ingredients (g/kg diet)	Dietary treatments*			
	O2	O4	O6	O8
Maize	584.9	526.8	468.6	410.2
Soya 48	354.9	364.2	373.4	382.4
Added oil ²	20.0	40.0	60.0	80.0
Almond husk	0.0	29.2	58.4	87.6
Bicalcium phosphate	17.5	17.6	17.6	17.7
Calcium carbonate	10.8	10.7	10.6	10.5
Salt	5.7	5.7	5.7	5.7
Vitamin mineral mix ³	4.0	4.0	4.0	4.0
DL-Methionine	1.8	1.9	1.9	2.0
L-Lysine	0.5	0.3	0.2	0.0
Chemical analysis				
Dry matter	882.6	890.8	894.2	902.8
Crude protein	213.1	218.2	214.8	218.5
Crude fat	44.5	63.0	84.0	99.1
Crude fibre	32.2	54.5	79.3	98.6
Ash	57.9	61.0	58.5	62.0

¹O2: 2% of added oil (27 g PUFA/kg); O4: 4% of added oil (38 g PUFA/kg); O6: 6% of added oil (48 g PUFA/kg); O8: 8% of added oil (59 g PUFA/kg).

²Linseed and fish oil mixture in a ratio 4:1.

³Vitamin and mineral mix per kg of feed: Vitamin A: 12000 IU; Vitamin D₃: 2400 IU; Vitamin E: 176 IU; Vitamin K₃: 3 mg; Vitamin B₁: 2.2 mg; Vitamin B₂: 8 mg; Vitamin B₆: 5 mg; Vitamin B₁₂: 11 µg; Folic acid: 1.5 mg; Biotin: 150 µg; Calcium pantothenate: 25 mg; Nicotinic acid: 65 mg; Mn: 60 mg; Zn: 40 mg; I: 0.33 mg; Fe: 80 mg; Cu: 8 mg; Se: 0.15 mg.

TABLE 3. Fatty acid composition of the experimental diets, expressed as g per kg.

Fatty Acid ³	Trial 1 ¹				Trial 2 ²			
	PU15	PU34	PU45	PU61	O2	O4	O6	O8
% Added oil	9	9	9	9	2	4	6	8
g PUFA/kg diet	15	34	45	61	28	38	48	59
Total FA	100.45	98.81	99.57	96.89	45.37	60.29	75.70	91.63
SFA	43.75	32.38	26.22	15.74	7.89	9.79	11.65	13.66
C 10:0	0.05	0.03	0.02	0.00	0.08	0.08	0.08	0.08
C 14:0	2.72	2.01	1.79	1.45	0.30	0.53	0.76	0.99
C 15:0	0.44	0.30	0.23	0.11	0.03	0.05	0.07	0.09
C 16:0	23.80	18.15	15.25	10.31	5.82	6.84	7.84	8.96
C 17:0	1.19	0.77	0.53	0.14	0.06	0.08	0.09	0.11
C 18:0	14.64	10.23	7.68	3.33	1.39	1.92	2.44	2.98
C 20:0	0.12	0.16	0.17	0.17	0.16	0.19	0.22	0.26
MUFA	41.30	32.55	28.32	20.31	9.91	12.83	15.90	19.07
C 16:1t	0.20	0.15	0.12	0.07	0.02	0.03	0.03	0.04
C 16:1	2.25	1.73	1.65	1.52	0.40	0.71	1.01	1.32
C 18:1 n9 ⁴	35.62	27.76	23.59	15.69	8.67	10.85	13.21	15.67
C 18:1 n7t	1.60	1.37	1.29	1.12	0.49	0.67	0.86	1.05
C 20:1	0.28	0.29	0.31	0.35	0.15	0.23	0.30	0.38
C 24:1	0.09	0.46	0.81	1.46	0.10	0.11	0.12	0.14
PUFA	15.40	33.77	45.03	60.84	27.60	37.66	48.08	58.79
C 18:2 n6	13.16	16.23	17.98	20.17	17.79	18.72	19.87	21.31
C 18:3 n3	1.55	16.45	24.62	36.27	8.57	16.65	24.63	32.69
C 18:4 n3	0.27	0.11	0.23	0.43	0.14	0.27	0.41	0.53
C 20:4 n6	ND	ND	0.13	0.19	ND	ND	0.12	0.14
C 20:5 n3	ND	0.81	1.77	3.35	0.72	1.38	2.07	2.75
C 22:6 n3	ND	0.07	0.18	0.33	0.28	0.53	0.76	1.01
PUFA:SFA	0.35	1.04	1.72	3.87	3.50	3.85	4.13	4.30

¹PU15: 15 g polyunsaturated fatty acids /kg of feed; PU34: 34 g/kg dietary polyunsaturated fatty acids; PU45: 45 g/kg dietary polyunsaturated fatty acids; PU61: 61 g/kg dietary polyunsaturated fatty acids.

²O2: 2% of added oil; O4: 4% of added oil; O6: 6% of added oil; O8: 8% of added oil.

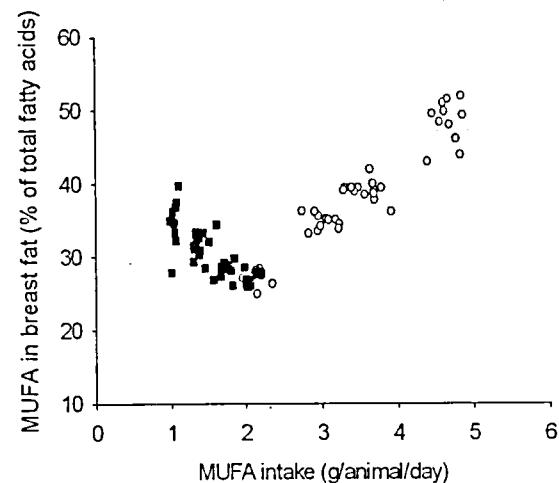
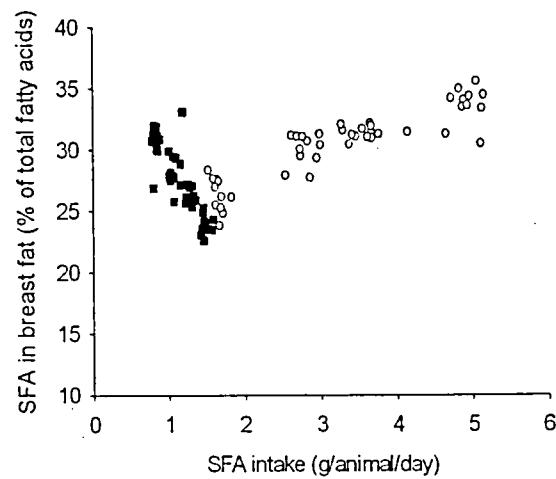
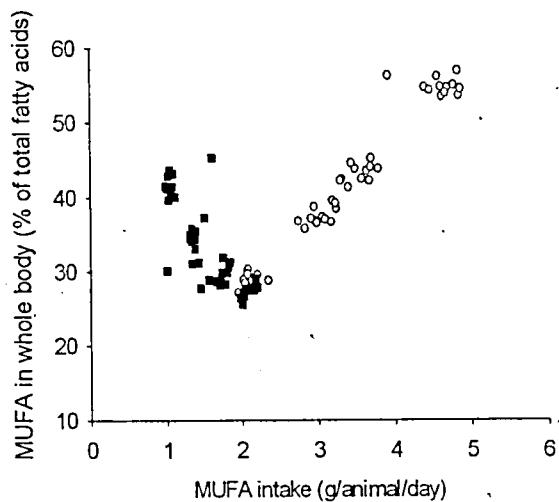
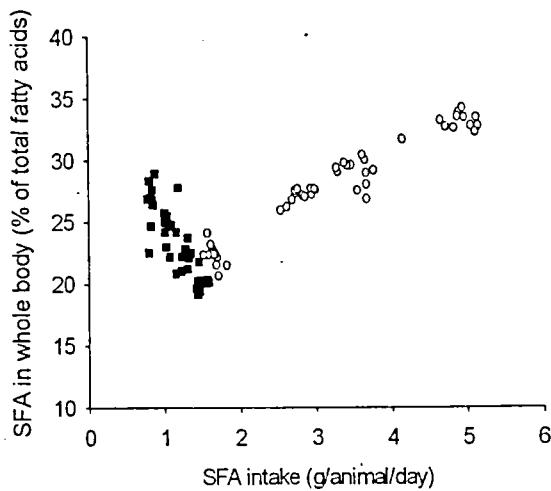
³Total FA: total fatty acids; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids.

⁴C 18:1 n9 includes sum of cis and trans forms.

ND: Not detected.

TABLE 4. Regression equations between polyunsaturated fatty acid intake (g/animal/day, X) and the content of saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids (g/100g of total fatty acids, Y) in the whole body.

		Dependent variable (Y)	Equation	p value	R ²	CV (%)
Trial 1	Whole body	% SFA	$Y = 36.95 - 2.19 \cdot X$	<0.001	0.94	3.51
		% MUFA	$Y = 63.68 - 5.44 \cdot X$	<0.001	0.96	4.81
		% PUFA	$Y = 7.54 \cdot X$	<0.001	0.96	8.02
Trial 2	Whole body	% SFA	$Y = 32.36 - 1.91 \cdot X$	<0.001	0.87	4.07
		% MUFA	$Y = 51.87 - 4.03 \cdot X$	<0.001	0.85	6.67
		% PUFA	$Y = 15.46 + 5.99 \cdot X$	<0.001	0.89	6.27





TABLE 5. Body-to-dietary fatty acid ratio¹ of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) in response to increasing levels of polyunsaturation.

% Added fat	Trial 1				p-value Dietary PUFA	RSD
	9	9	9	9		
PUFA (g/kg)	15	34	45	61		
SFA	0.76 ^d	0.89 ^c	1.03 ^b	1.39 ^a	<0.001	0.041
MUFA	1.33 ^b	1.32 ^b	1.32 ^b	1.37 ^a	<0.001	0.046
PUFA	0.79	0.80	0.78	0.78	0.093	0.040
Trial 2						
% Added fat	2	4	6	8	Added oil	
	27	38	48	59		
SFA	1.58 ^a	1.54 ^a	1.44 ^b	1.36 ^c	<0.001	0.068
MUFA	1.91 ^a	1.62 ^b	1.40 ^c	1.29 ^d	<0.001	0.086
PUFA	0.50 ^d	0.65 ^c	0.76 ^b	0.82 ^a	<0.001	0.035

¹Calculated as the ratio of SFA, MUFA and PUFA concentration in whole body (g/100 g of total fatty acids) between their respective concentrations in the diet (g/100 g of total fatty acids).

²Values given in this table correspondence to least-squares means obtained from ANOVA (n=24) and their RSD. Means in a row not sharing a superscript letter differ (p<0.05).

Figure 1: Regression equations between SFA and MUFA intake (g/animal/day) and their respective concentrations (g/100g of total fatty acids) in the whole body (upper graphs) and in breast muscle (lower graphs). Data represented by \circ are from trial 1 (gradient of polyunsaturation achieved keeping added fat constant) and data represented by \square are from trial 2 (gradient of polyunsaturation achieved increasing added fat inclusion level).

Trial	Independent variable	Tissue	Equation	R ²	VC (%) ¹
1	SFA intake	Body	$y = 17.66 + 3.20 \cdot x$	0.94	3.43
2	SFA intake	Body	$y = 35.34 - 10.18 \cdot x$	0.87	4.1
1	SFA intake	Breast	$y = 23.26 + 2.20 \cdot x$	0.83	3.94
2	SFA intake	Breast	$y = 39.22 - 10.32 \cdot x$	0.89	3.35
1	MUFA intake	Body	$y = 7.01 + 10.25 \cdot x$	0.98	3.54
2	MUFA intake	Body	$y = 52.70 - 12.62 \cdot x$	0.84	6.84
1	MUFA intake	Breast	$y = 9.81 + 8.30 \cdot x$	0.95	4.88
2	MUFA intake	Breast	$y = 42.56 - 7.72 \cdot x$	0.75	5.52

¹Variation coefficient