ON THE FOCUSING OF CRAMER - VON MISES
TEST.
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ABSTRACT. The statistical bibliography frequently refers to om-
nibus tests intended to be sensitive to all or at least a wide variety
of alternatives, and focused or directional tests directed to detect
efficiently some specific alternatives.

In fact, the apparent opposition between omnibus and focused
is artificial, and, for instance, K-S test is focused on changes in
position of Double Exponential distribution, as well as Cramér
- von Mises is focused on changes in position of the distribution
with density f(t) = 1/(2cosh(nt/2)).

We provide in this article a simple proof of this latter fact.

1. INTRODUCTION

In the statistical literature refering to a test as being omnibus or
directional often implies opposite categories.

Omnibus tests are able to detect a wide bunch of alternatives, and
no special ability to detect any particular one is intended.

When statistical practitioners wish to detect specific alternatives
they can use directional tests. These ones focus their power in the
direction of the interesting alternatives.

The former tests are not expected to be efficient in the detection
of particular alternatives. On the other hand, it is generally claimed
that the second ones have the drawback that they have a poor power
against alternatives other that the ones on which they were focused.

Research partially supported by TIN2008-06582-C03-02/TIN, Ministerio de
Ciencia y Tecnologia.
Partially supported by CSIC-Udelar,Uruguay, Centre de Recerca
Matemaatica, Barcelona, Spain and Carolina Foundation, Spain.
67



68 ALEJANDRA CABANA AND ENRIQUE M. CABANA

Notwhithstanding, it is well established that a test can be both
omnibus and focused: this is the case of the well known omnibus
Kolmogorov - Smirnov goodness-of-fit test, that is also focused to
detect changes in position of samples of the Double - Exponential
Distribution as shown by J. Capon ([3]) by computing lower bounds
for the asymptotic efficiency of the test for several alternatives.

In this short note, we show that the well known Cramér - von
Mises goodness-of-fit test, also reputed to be an omnibus test, is also
focused to detect changes in position of random samples of another
family of distributions obtained by changes in location and scale from
the distribution with probability density

(1) 9(t) = 200sh1(7rt/2)'

It is known (see [8]) that there is one direction with the highest
asymptotic power that is possible for Cramér - von Mises test. We
present here a straightforward computation of such direction.

The principal result is that the asymptotic power of the Cramér -
von Mises test for those alternatives is almost optimal. This state-
ment is made precise in §4, where the power of the test is compared
with the power of the two-sided test based on the likelihood ratio.

This kind of quasi-optimal behaviour characterises several tests of
goodness-of-fit developed by the authors in which a quadratic statistic
of Watson type is employed in such a way that the resulting tests are
consistent against any alternative, and also have a near optimum
efficiency for some alternative of focusing arbitrarily selected by the
user (see [1], [2] and references therein).

The tuning on the interesting alternatives is a part of the design of
our tests, but the quasi-optimum efficiency is inherent to the statistic
in use.

The efficiency of our tests is described in the already cited articles.
But the fact that the efficiency of the classical Cramér - von Mises
test share such kind of properties does not appear to us to be widely
discussed in the statistical literature, and motivates this article.

The power of Cramér - von Mises test has been analysed by sev-
eral authors, and is fully described by Durbin and Knott ([5]), for
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instance. We describe it from scratch in order to facilitate the read-
ing, before identifying in §3 the alternatives for optimum power.

2. THE CRAMER - VON MISES GOODNESS-OF-FIT TEST.

The Cramér - von Mises statistic w? = n [~ _(F,(t) — Fy(t))*dFo(t)
quantifies a quadratic distance between the probability distribution
function Fyy and the empirical distribution function F,,(t) = >~ | 1ix,<
of the sample of i.i.d. random variables X, X, ..., X,, with proba-
bility distribution F'.

By introducing the empirical process b, (t) = /n(E,(t) — Fy(t)), w?
is written as -

w2 = / b2 (t)dFy(t).

We shall assume that F{ is continuous, with density fy, finite
first- and second-order moments, and, with no loss of generality that
[tdFy(t) =0, [t*dFy(t) = 1.

Let the probability distribution of w? be denoted by P(t, F,n) =
P{w? < t}.

The Cramér - von Mises test of the null hypothesis Hy: “F = Fy”,
with confidence level a, rejects Ho when w? > ¢,(a), where ¢,(a)
solves the equation P(c,(a), Fp,n) = 1 — «a, and its power for the
alternative F'is 1 — P(c,(«), F,n).

2.1. The asymptotic law of w? under H,. Since b, converges
in law to a brownian bridge associated to Fp, that is, to a Gauss-
ian centred process b with covariances Eb™ ()b (t) = Fy(s A t) —
Fy(s)Fy(t), then w? has the asymptotic law of [(b'(¢))2dFy(t) ~
fol b?(u)du, where b denotes a standard Brownian bridge, because b
has the same law as b o Fj.

In order to obtain the distribution of @)y = fol b (u)du = ||b||%,
the L? squared norm of the standard Brownian bridge b in L*(([0, 1])
with the Lebesgue measure, let us follow Durbin ([4]) and compute
the Fourier expansion

®) o) =3 [ versan) w0

J=1
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of bin terms of the complete orthonormal system {t;(u) = v/2sin jmu :
j=1,2,...} of eigenfunctions of the covariance kernel which admits
the expansion

Eb(u)b(v) =uAv—uv = Z

j=1

1

j2ﬂ-2

Yj(u);(v).

The random coefficients in (2) are independent centred Gaussian
variables vith variances

E (/01 b(u)@b(u)du>2 = /Ol/ol(u A v —uv)p(u)(v) du dv = ! 5

JPm

and hence we may rewrite (2) as b(u) = > 2, %T/)j (u), by introduc-
ing the ii.d. standard Gaussian variables B; = jm fol b(u)j(u)du,

leading us to conclude

00 2

B
(3) QO = ||b||2 = Z jz,;g‘

=1

2.2. The limiting law of w, under sequences of contiguous
alternatives. Let us assume now that for each n, the sample has a
probability law F™ with density f,(t) satisfying

) k(D)
ORREEND

for a sequence of functions k,, such that

/Oo (kn(t) — k(t))?dFy(t) — 0, /Oo K (t)dFy(t) = 1.

oo —0o0

When this happens, we shall say that the alternative H(k, d) holds.
These alternatives are contiguous to the null hypothesis (see [9]) and
therefore the asymptotic law of b, under H(k,¢) is the same one

corresponding to Ho = H(k,0) plus a deterministic term, according
to Le Cam Third Lemma ([6], [7]).
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The limiting distribution of the empirical process under H(k,d), is
obtained by noticing that the first term in the decomposition

bu(t) = V(Fu(t) = FO () + Vn(F™(t) = Fo(t)).

tends to b (), and the second one is written as

f/ (Fuls)—fols ds—f/

so that, with the change of variables u = Fj(¢) and the new function
K defined by

(s) = 6/ k(s)dFoy(s)

—00

K(u) = /0 " )dv, k(Fo(t)) = k(D).

we get

(4)
by (t) = 0N ( +5/ s)dFy(s +5/ b(u)+6 K (u).

The assumptions on k£ imply that « satisfies fo u)du = 0, fo u)du =
1, and, in particular, K (0) = K (1) = 0. The functlon r shall be called
standardz’zed shape of the alternative H(k, ).

From (4), we obtain

2 4 / w) + 0K (u))*du.

Let us notice that this expression of the limit law of w, leads to
conclude that when the null hypothesis is replaced by H(k, ), then
the asymptotic expectation of w, increases in the amount

(5) A(d) = & /0 K2(u)du

It is reasonable to expect that larger values of A(J) be associated
with larger powers of the tests comparing Ho with H (9, k). Therefore,
we search in the next section the function K that maximises A(d) for
given .
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3. THE FOCUSED ALTERNATIVES.

3.1. The standardized shape  of the alternative that pro-
duces the largest increment in the asymptotic expectation
of w,. We shall obtain the function K(u) = [’ k(s)ds that max-

imises fol K?(u)du with the restrictions

/O1 K (uw)du = 1, /01 w(u)du = 0.

The associated Euler equations express that for each continuously
differentiable g such that

1
9(0) = g(1) =0, / K'(u)g/(u) = 0
0
the condition

/01 K (u)g(w)du = 0

must hold.
The condition fol K'(u)g'(u) = 0 holds for every ¢ such that g(0) =
g(1) = 0 provided

| K@@= a0 57l - [ K gt =o.

Since the integrated term in the right-hand side vanishes, we find
that when g is orthogonal to K” in L*([0,1]), it is also orthogonal to
K, and this means that K and K" are proportional, that is, for some
constant £\?, K solves the differential equation K” = £)\?K.

The solutions of K” = +A?K in [0,1] with border conditions
K(0) = K(1) = 0, satisfying fol(K’(u))2du =1 are

2
K(u) :,isinjﬂu,jzl,Q,....
g

The solution with maximum norm is the one with 7 = 1, hence

(6) k(1) = V2 cos Tu.
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This is the standardized shape of the altemative that mazimises (5)
for given 6. The corresponding function K (u fo s)ds is propor-
tional to the first function in the orthonormal system 1ntroduced in

2.1, that is, K(u) = ¢ (u)/m.

3.2. Alternatives of change in location. When the alternative
distributions specify a change in location

fu(t) = fo(t + dc/v/n)

we have
(1) dc_folt) |
=1+ +o(—=
PO oM
so that k(t) = ;‘)Et) The constant ¢ is introduced in order to be able

to impose ||k||*> = 1.

It follows that k(u) = C;SEFO—EU;) and Equation (6) shows that the
0

alternative shall be detected by the Cramér - von Mises statistic with
maximum asymptotic increment of the expectation when

IEw) s
“hoE Ty Y™

In order to solve this differential equation in F{y, we return to the
variable t = Fy; *(u), and get

cfs(t) = V2fo(t) cosTFy(t),
which, integrated in (—oo,t] gives
2
cfo(t) = £ sin 7 Fo(t).
7r

A further integration leads to

Vot o /t dFy(s) /Fo(t) du
0

cm sin 7w Fy(s) Fo(0) SINTU

1 (cos mFu(t) — 1)(cos mFu(0) + 1)

T on 8 (cosTFy(t) 4+ 1)(cos mFy(0) — 1)
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By imposing with no loss of generality that Fjy is centred in 0,
follows the simpler expression
1 — cosmEy(t)

t=1
T s TFy(t)’

in which the parameter v = %ﬁ determines the dispersion.
By solving in Fy and choosing v = 7 to get a distribution with
variance equal one, we conclude

1 1 —e™ 1
Fo(t) = = Tro 1= S miay
(7) o(t) - arccos 11+ ot fo(t) 2 cosh(vyt/2)

3.3. Asymptotic law of w,, under changes in location for sam-
ples with the law of Equation (7), and power of the test. The
statistic w, has the asymptotic law of

Q(5) = /0 (b(un) + K ()2l = /0 1 (b(u) + %¢1(u))2du.

Since b(u) + wl Z B + @Dl u), then

o0

(B +0)? Z

2

2

1
= |

Q) = Hb+ 2

Cramér - von Mises test of F(™(t) = Fy(t) against F™(t) = Fy(t+
2*[5) with significance level « is asymptotically equivalent to the test

22
of Hp:“6 = 0”7 with critical region Q(d) > c¢(«) where c(a) solves

P{Q(0) > ¢(o)} = a. The power, that we have computed by a
numerical convolution for the purposes discussed in next section, is

I1(6, ) = P{Q(0) > c(a)}.

4. COMPARISON WITH THE TWO-SIDED TEST BASED ON
NEYMANN AND PEARSON STATISTIC.

The Neyman and Pearson test of Hy against the alternatives H,
that the true density of the sample distribution is g, (t) = fo(t + c\%)
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has critical region

Zlog <f0 <X + cf> /fo(X )) > constant,

asymptotically equlvalent to

> constant.
Z : fo

When #H, holds, the variables fo( i)/ (cfo(X;)) are centred, with
varlance 1 and therefore the asymptotic law of the statistic T, =

f o fo ( X is standard normal.
If the sequence of alternatives H,, hold, then

ET, = VnEf)(X1)/(cfo(X1)) / folz fo wom)dz

has limit 8, E(f5(X;))/(cfo(X;)))? tends to 1, hence T, converges in
law to Z + §, Z standard Gaussian.

As a consequence, the test of 6 = 0 against 6 > 0 with optimal
asymptotic power is the one with critical region 7,, > constant.

While there is no optimal test for 6 = 0 against o # 0, the usual
practice if there are not significant differences between the cases § > 0
or 6 < 0 is to reject 6 = 0 when |7,,| > constant. In that case,
if & denotes as usual the standard normal cumulative distribution
function, the asymptotic power of the two - sided test with asymptotic
level «, is

I"(6,a) =P{Z+6 >0 (1 -2)} +P{Z+5 <2 (2)}

= ®(27(5) +0) + ®(27!(5) — 0).

The practically coincident plots of the functions I1(9,.05) and I1*(4,.05)
in Figure 1 show that Cramér - von Mises test against the alternative
of displacement of samples with distribution (7) is almost optimal, in
the sense that its performance is almost asymptotically equivalent to
the performance of the test with critical region 7T, >constant.

The relationship between the asymptotic powers (and the intended
meaning of “almost optimal”) is better shown in the second diagram
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FIGURE 1. Almost coincident asymptotic powers
I1*(6,.05) and I1(6,.05) of the two-sided test based on
the Neymann and Pearson statistic (solid line) and
of the Cramér - von Mises test (dotted line), respec-
tively, for alternatives of change in position of a sam-
ple with distribution (7) (upper diagram) and ratio
I1(6,.05) /11%(9,.05) (lower diagram).
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of Figure 1, where the ratio I1(4,.05) /II*(4,.05) obtained by numerical
computation is plotted.

1]
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