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Abstract

Region Of Interest (ROI) coding is a prominent feature of some image

coding systems aimed to prioritize specific areas of the image through the

construction of a codestream that, decoded at increasing bit-rates, recovers

the ROI first and with higher quality than the rest of the image. JPEG2000 is

a wavelet-based coding system that is supported in the Digital Imaging and

Communications in Medicine (DICOM) standard. Among other features,

JPEG2000 provides lossy-to-lossless compression and ROI coding, which are

especially relevant to the medical community. But, due to JPEG2000 sup-

ported ROI coding methods that guarantee lossless coding are not designed

to achieve a high degree of accuracy to prioritize ROIs, they have not been

incorporated in the medical community.

This paper introduces a ROI coding method that is able to prioritize

multiple ROIs at different priorities, guaranteeing lossy-to-lossless coding.

The proposed ROI Coding Through Component Prioritization (ROITCOP)

method uses techniques of rate-distortion optimization combined with a sim-

ple yet effective strategy of ROI allocation that employs the multi-component
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support of JPEG2000 codestream. The main insight in ROITCOP is the al-

location of each ROI to an component. Experimental results indicate that

this ROI allocation strategy does not penalize coding performance whilst

achieving an unprecedented degree of accuracy to delimit ROIs.

The proposed ROITCOP method maintains JPEG2000 compliance, thus

easing its use in medical centers to share images. This paper analyzes in

detail the use of ROITCOP to mammographies, where the ROIs are identi-

fied by computer-aided diagnosis. Extensive experimental tests using various

ROI coding methods suggest that ROITCOP achieves enhanced coding per-

formance.

Keywords:

Digital mammogram compression, JPEG2000 standard, Region Of Interest
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1. Introduction

The American Cancer Society (ACS) [1] indicates that the probability of

developing invasive breast cancer for USA’s women younger than 39 is 1 in

210, and aged from 40 to 59 is 1 in 26. Mammography is the most effective

way of detecting breast cancer before the onset of clinical symptoms [2].

The latest digital devices used in medical scenarios capture Mammograms

and Angiograms images with a bit-depth resolution of 8-, 12- or 16-bits per

pixel. In some cases, this high bit-depth resolution may produce files that

grow to as much as 200 MB per mammography. Considering that current

ACS guidelines for breast cancer screening recommend one annual mammog-

raphy for women over 40 years of age, the increment in cost of both the
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transmission and storage capacity for mammographies is raising every year.

A medical center that produces 20 mammograms per day, for instance, re-

quires storage capabilities of more than 4 GB per day [3], and of more than

1.4 TB per year. To manage such amount of data, the medical community

uses Picture Archiving and Communication Systems (PACS) to store, re-

trieve, distribute, and display medical images. PACS systems are commonly

constituted of large computer networks, servers, and workstations [4]. The

Digital Imaging and Communications in Medicine (DICOM) standard [5] is

used to store and distribute images in PACS.

Compression of medical images is commonly used in medical centers to

reduce the amount of information needed to store images. Due to clinical

needs, lossless compression of medical images is often a sensible choice [6].

There exist two approaches to losslessly encode images: pure lossless, which

needs the decoding of the full codestream to recover the image, and progres-

sive lossy-to-lossless, which allows a progressive decoding of the image and a

better rate-distortion performance.

Among the currently available image compression standards, JPEG2000 [7]

excels for its excellent coding performance and provision of advanced features.

Since November 2001 it is included in DICOM, and it has been chosen in

several medical centers to share and transmit medical images. Two of the

most important features of JPEG2000 for the medical community are support

for lossy-to-lossless compression, and Region Of Interest (ROI) coding. As

stated previously, lossy-to-lossless is preferred over a pure lossless approach.

ROI coding stands for the ability of the coding system to emphasize the most

relevant areas of the image within the codestream so that when the image
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Figure 1: ROIs defined by a CAD are emphasized in yellow.

is progressively transmitted and decoded those relevant areas are recovered

first and with higher quality than the rest of the image.

On the other hand, due to recent advances in the field of image processing,

every day it becomes more common that computer-aided diagnosis (CAD)

assist radiologists in the detection of the most important features found in

medical images. There exist several CAD algorithms that aid radiologists

in the identification of pathologies on mammograms [8, 9, 10, 11], meniscal

tears on magnetic resonance images [12, 13], and lung nodules on Computer

Tomography [14, 15] or prostate cancer on Magnetic Resonance Imaging [16]

images, among others. In the case of mammograms, CAD algorithms often

delimit areas with sizes that vary from 0.002% to 4.5% of the mammogram

size [17, 18] (see Figure 1).

In this context, it is a natural association to link CAD algorithms with
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ROI coding. Radiologists are interested on the relevant areas needed to per-

form a correct diagnostic [19]. ROI coding provides enhanced quality for such

ROIs. The benefits obtained from ROI coding are enormous. For example,

Figure 2 depicts an area of a mammography determined by a CAD that

is encoded using classic lossy-to-lossless compression, and lossy-to-lossless

compression with ROI coding. This figure shows the decoded image in three

instants of time when the codestream is transmitted over a network with a

data rate of 100 Kbits/s. Only 8 seconds are required to recover the ROI at

perfect quality when ROI coding is employed, whereas the classic approach

requires 351 seconds (close to six minutes) to achieve the same quality. In

scenarios such as telemedicine, or remote medical diagnosis, ROI coding is

fundamental.

ROI coding methods have been widely studied in the literature. First

approaches were proposed in mid-90s [20] and, more recently, there have ap-

peared ROI coding methods for most state-of-the-art coding systems, such

as Set Partitioning in Hierarchical Trees (SPIHT) [21], Set-Partitioning Em-

bedded Block Coder SPECK [22], Three-dimensional Subband Block Hierar-

chical Partitioning (3D-SBHP) [23], or Progressive Resolution coding (PRO-

GRES) [24], among others. Another trend to code ROIs of an image is to use

techniques of shape adaptive coding based on SPIHT [25], or SPECK [26].

Though some of these methods achieve competitive coding performance, none

of them is included in DICOM, which is a conditio sine qua non in medical

centers.

The purpose of this research is to introduce a new JPEG2000 compliant

ROI coding method providing progressive lossy-to-lossless coding that is able
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Figure 2: Visual comparison of a classical coding and a ROI coding method transmitted

over the network at 100 kbits/s.

to exactly and losslessly recover the desired region, that allows to encode arbi-

trary shaped ROIs, that supports multiple ROI coding with different degrees

of ROI priority, and that may deal with any bit-depth resolution of medical

images. Our goal is to bring to the medical community the advantages of

ROI coding.

This paper is structured as follows: Section 2 serves as a short review of
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JPEG2000, and describes the mechanisms used in JPEG2000 for ROI coding;

Section 3 introduces the proposed ROI coding method; Section 4 provides nu-

merical and visual results assessing the performance of the proposed method

when single and multiple ROIs are coded; and Section 5 concludes this work

pointing out some remarks.

2. JPEG2000 Overview and ROI Coding

Most JPEG2000 [7] implementations require four main coding stages to

produce a compliant codestream [27]: sample data transformations, sample

data coding, rate-distortion optimization, and codestream re-organization.

The main operations related to ROI coding in JPEG2000 are the fractional

bitplane coding process carried out in sample data coding, and the rate-

distortion optimization stage.

The JPEG2000’s fractional bitplane coder is based on Embedded Block

Coding with Optimized Truncation (EBCOT) [28]. The main idea behind

this coding paradigm is to code small sets of wavelet coefficients (called code-

blocks) independently, and to optimally truncate the bitstreams generated

for these codeblocks to form the final codestream. If Ki denotes the num-

ber of bitplanes needed to represent all coefficients within codeblock Bi, the

fractional bitplane coder encodes each coefficient of Bi from the highest bit-

plane p = Ki − 1 to the lowest bitplane p = 0. Each bitplane is coded using

three coding passes that encode first that information supplying the greatest

reductions in distortion. The bitstream generated for each codeblock can be

truncated at the end of each coding pass, which produces several truncation

points that can be potentially employed by the rate-distortion optimization
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stage.

The aim of the rate-distortion optimization stage is to manage the bitrate

and/or the distortion of the final codestream. When the user specifies a de-

sired bitrate, the rate-distortion optimization stage maximizes the quality of

the final codestream; when the desired quality is specified, the bitrate of the

codestream is minimized. The Post Compression Rate-Distortion optimiza-

tion (PCRD) [28] is the most common method to conduct this optimization

process. PCRD uses the bitrate and the distortion of potential truncation

points of bitstreams to pose the optimization problem through a generalized

Lagrange multiplier for a discrete set of points. Let nj denote the potential

truncation points of the bitstream produced for codeblock Bi, and let R
nj

i

and D
nj

i denote, respectively, the bitrate and distortion of these points, with

R
nj

i ≤ R
nj+1

i . PCRD computes the rate-distortion slope S
nj

i = △D
nj

i /△R
nj

i ,

with △D
nj

i = D
nj−1

i −D
nj

i and △R
nj

i = R
nj

i −R
nj−1

i , identifying those trun-

cation points with strictly decreasing rate-distortion slope or, in other words,

those points lying on the convex hull. When Mean Squared Error (MSE) is

the considered distortion metric, the distortion of each coding pass is deter-

mined as

D
nj

i = Gbi

∑

k∈Bi

(y[k]− ŷnj [k])2 (1)

where y[k] denotes the coefficients of codeblock Bi, ŷ
nj [k] denotes quantized

coefficients at truncation point nj, and Gbi stands for the energy gain factor

of subband bi to which codeblock Bi belongs. Once the operational rate-

distortion function of codeblocks is identified, PCRD selects those coding
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passes with the highest rate-distortion slope values until the target bit-rate

is attained.

2.1. ROI Coding Mechanisms

To prioritize a specific area of an image, JPEG2000 ROI coding methods

identify first those samples belonging to the ROI in the wavelet domain, called

ROI coefficients. Then, ROI coefficients are prioritized in order to recover

them at higher quality than the rest of the image, the background. To carry

out this prioritization process, JPEG2000 provides two main mechanisms: ei-

ther modifying wavelet coefficients, or modifying distortion estimates carried

out in the rate-distortion optimization stage, more precisely, in Equation (1).

ROI coding methods based on modifying wavelet coefficients take advan-

tage of the fractional bitplane coder by means of the multiplication of ROI

coefficients by a desired priority, say U , in the wavelet domain. Through

this multiplication the magnitude of ROI coefficients is higher than that of

the background, thus the bitplane coder encodes first ROI coefficients. To

speed up the prioritization process, U is commonly chosen to be a power

of 2, thus the multiplication is implemented as a bit-shift operation and is

conceptually seen as a bitplane shift. The JPEG2000 standard supports two

methods based on this mechanism: the MaxShift [27] and the Scaling [29]

based method. The main difference between them is that the Scaling allows

the user to choose U , whereas in MaxShift U is chosen to shift up all ROI

coefficients above the background. For the Scaling method, the ROI shape

must be rectangular or elliptic, and it is explicitly transmitted to the decoder,

whereas MaxShift allows any ROI shape and it does not need to explicitly

transmit it since it is implicitly coded within the bitstream. Several modi-
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fications of these methods have been proposed in the literature, all of them

aimed to more precisely combine the ROI with the background: Bitplane-by-

Bitplane Shift [30] was the first method suggesting an interleaving of ROI and

background bitplanes; [31, 32, 33] introduce modifications to the interleav-

ing strategy to allow richer combinations of the ROI with the background.

Though some of these methods provide better performance than those ones

supported in JPEG2000, none of them kept JPEG2000 compliance. On the

other hand, some contributions can be found in the literature aimed to com-

press mammograms combining techniques of fractal-based segmentation with

JPEG2000 ROI coding [34, 35]. The only method based on the modification

of wavelet coefficients able to maintain JPEG2000 compliance is introduced

in [36], proposing a shift of ROI coefficients belonging to different subbands

aimed to prioritize multiple ROIs with different degrees of interest.

On the other hand, methods based on the modification of distortion es-

timates increase the distortion estimation D
nj

i depending on whether the

codeblock has ROI coefficients or not. If codeblock Bi contains ROI coeffi-

cients, D
nj

i is modified according to

D′nj

i = U ∗ D
nj

i
. (2)

In this case, U is not restricted to be a power of 2. Since D′ is the considered

measure by the Lagrange multiplier, codeblocks containing ROI coefficients

are effectively more prioritized than codeblocks containing background coef-

ficients. The drawback of this mechanism is that it is not able to discriminate

ROI and background coefficients accurately since it only distinguishes ROI
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and background codeblocks on a block by block basis. Thus, the perfor-

mance of such mechanism may be severely degraded in some cases. The first

ROI coding method based on this technique was the Implicit [7, Ch.16.2].

Sanchez, Basu, and Mandal [37] proposed a rearrangement of the codestream

to allocate the ROI before the background, and ROI coding with separated

codeblock was presented in [38]. [39] introduced the Subblock and Weighted

ROI coding methods, which are able to better estimate the rate-distortion

contributions of ROI codeblocks.

2.2. Features of JPEG2000 ROI coding mechanisms

Methods that modify wavelet coefficients provide excellent accuracy to de-

limit the ROI area (also referred herein to as fine-grain accuracy), however,

they can not be generally applied in medical environments since the dynamic

range supported by the decoder can be exceeded due to the high bit-depth

resolution of medical images. For example, although the MaxShift method

permits to encode ROIs with priority U ≤ 37 – which should be enough for

medical images – compliant decoders are only compelled to decodeKmin mag-

nitude bitplanes, with a Kmin value that depends on the decoder’s class [40,

App.1] and that it is generally much lower than 37 due to the common use of

data structures based on architectures of 32 bits. This may leave some back-

ground areas of the image with null coefficients, or with very poor quality,

preventing the use of MaxShift and similar methods in medical centers, since

loss of information may occur [27, H.3]. This shortcoming is referred herein

to as dynamic range problem. All popular implementations of JPEG2000,

such as Kakadu [41], Jasper [42], OpenJPEG [43] and JJ2000 [44], are not

able to encode images of 16 bits per sample or more using the MaxShift
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(a) original samples (b) Scaling (U = 3) (c) MaxShift

Figure 3: Bitplanes representation for original samples, and when Scaling and MaxShift

ROI coding methods are performed.

ROI coding method due to the dynamic range problem. Figure 3 illustrates

the dynamic range problem depicting the increase produced in the dynamic

range of ROI coefficients (depicted in gray) after the modification of wavelet

coefficients.

Even though methods based on the modification of distortion estimates

overcome the dynamic range problem, they are not able to achieve the in-

tended fine-grain accuracy to delimit ROIs. The motivation behind the ROI

coding method proposed in this paper is to avoid the drawbacks of cur-

rently available ROI coding methods for medical images, on the one hand,

the dynamic range problem raised by methods based on the modification of

wavelet coefficients and, on the other hand, the poor fine-grain accuracy of

rate-distortion based methods.
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Figure 4: Operations for the proposed ROI coding method. Two operations are added in

coder/decoder pipeline: Generate Components and Join Components.

3. ROI coding Through Component Priority

3.1. Main Insights

Two relevant features of JPEG2000 to our purposes are: support for

multi-component images, and component scalability. Component scalability

stands for the ability of the coding system to allow the access and manipu-

lation of components in the compressed domain without needing to decom-

press the image. These features are employed by the proposed ROI coding

Through Component Priority (ROITCOP) to allocate each ROI in an com-

ponent where the non-ROI area is set to zero. Then, through the use of

rate-distortion optimization techniques these components are prioritized at

desired priorities, generating a multi-component image with each ROI prior-

itized at will.

To apply ROITCOP, the JPEG2000 core coding system requires two ad-
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ditional operations in the coding pipeline, and a slight modification of the

PCRD method. We note that the ROITCOP requires a JPEG2000 encoder

that implements some rate distortion optimization method. Figure 4 de-

picts these two operations, called generate components, and join compo-

nents. Generate components is an operation carried out in the encoder that

defines as many components as ROIs have the image (referred to as ROI-

components), plus one component for the background (referred to as BG-

component). The operation Join Components sets the magnitude of each

ROI coefficient to that recovered at the ROI-component with highest prior-

ity containing that ROI coefficient 1. The magnitude of BG coefficients is set

to that recovered at the BG-component.

For these Multi-Component (MC) images, a MC-PCRD is applied to

combine the bitstreams from all components, minimizing the overall distor-

tion. To correctly prioritize the desired ROI-components, a modification

to MC-PCRD is introduced, updating the distortion estimates for specific

codeblocks and components according to

D′nj

c,i =











U ′
c ∗D

nj

c,i if c ∈ ROI

D
nj

c,i otherwise

, (3)

where D′nj

c,i denotes the distortion of component c for codeblock i at trun-

cation point nj, and U ′
c denotes the priority for ROI-component c. This

operation modifies the distortion estimation for all ROI-components. Note

1Note that a ROI coefficient may belong to more than one ROI in the wavelet domain

due to the extension of coefficients.
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that through Equation (3), rate-distortion estimates for coding passes are

modified at codeblock level. The main difference with previous methods [7,

Ch.16.2] [37, 39], is that in ROITCOP codeblocks contain only ROI or BG

coefficients, whereas in previous approaches codeblocks may contain both

types of coefficients. With the use of ROITCOP method, perfect fine-grain

accuracy is achieved. Only two methods compliant with JPEG2000 are able

to achieve comparable accuracy, MaxShift [27] and Scaling [29], though they

suffer from the dynamic range problem.

3.2. ROITCOP codestream

As most ROI coding methods presented in the literature [7, 31, 45, 33, 36],

the proposed ROITCOP method is able to prioritize several ROIs at once,

with each ROI at a different priority. The maximum number of ROIs is

16384−C, where C is number of the components of the original image. This

restriction is imposed by the maximum number of components allowed in

JPEG2000, but it is large enough for most applications.

Though ROITCOP forces the encoding of the background area in ROI-

components – which contain nothing –, the coding performance of the final

codestream is almost not penalized since these areas are efficiently signaled

within the codestream through headers. Headers within the codestream indi-

cate which data is included for each codeblock. Practical experience indicates

that the coding cost to signal headers for the components is negligible. For

example, we have defined multiple ROIs for all images of the corpus presented

in Section 4.1, and then each image has been encoded using ROITCOP to

evaluate the extra information needed to encode components. Table 1 reports

the size of the codestream when images are coded losslessly using ROITCOP,
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Block size Number of ROIs

0 1 2 3 4

32x32 5.65 +0.015 +0.027 +0.038 +0.049

64x64 5.63 +0.016 +0.028 +0.041 +0.052

Table 1: Average results for the image corpora used in the experiments when no ROIs

and multiple ROIs are defined. Results report size of the compressed files, given in bits

per sample.

compared to the classic compression without using ROI coding. Experiments

are carried out using codeblock sizes of 32×32, and 64×64. Results suggest

that the codestream size is penalized in no more than ∼0.05 bits per sample

(bps), which is negligible in practice.

3.3. Benefits of our proposal

To summarize, the key feature of our proposal is to allocate each ROI

in a component and set coefficients of the non-ROI area of that component

to zero. Then a modification of the distortion estimation is performed to

prioritize the specific ROI within each component. Main advantages of this

method are: 1) it avoids the dynamic range problem of the decoder; 2)

it achieves very high fine-grain accuracy, comparable to that achieved by

ROI coding methods based on modifying wavelet coefficients; 3) it is able to

decode the ROI and the background in a lossy-to-lossless mode; 4) it enables

the definition of multiple ROIs with different degrees of priority; 5) it is able

to exclusively recover the desired ROI –simulating the MaxShift method–,

through the component scalability, and; 6) it is compliant with JPEG2000

standard. Only a reassembly step is required to obtain an image from a Part
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1.

4. Experimental Results

4.1. Materials and Parameters

The performance of ROITCOP is compared only to compliant JPEG2000

ROI coding methods using a set of conventional mammograms. ROI coding

methods compliant with JPEG2000 based on coefficients modification are

MaxShift and Scaling, while all ROI coding methods based on rate-distortion

are compliant with JPEG2000.

Images are collected over a period of time from daily clinical activities

at the Digital Medical Imaging Center, Parc Tauĺı Health Corporation [46]

(Spain). Mammograms are acquired by the device TREX LORAD M-IV

(Medical Jaco Equipment [47]), with a size of 2560 × 3328, and a bit-depth of

12 bits per sample of signed data. Figure 5 depicts images and ROIs employed

in this section. Rectangular and arbitrarily shaped ROIs are emphasized in

green and red, respectively. ROI areas represent approximately 0.5% of the

image area. Since the Scaling based method only allows rectangular and

elliptical ROI shapes, comparisons for such method uses the ROI depicted in

green in Figure 5, instead of the red one.

All methods are implemented in our JPEG2000 Part 1 implementation

BOI [48]. Experiments are carried out using following coding parameters:

5 levels of 5/3 IWT (reversible), codeblock sizes of 32×32 or 64×64, and

restart coding variation 2. Codeblocks of size 32×32 are recommended in [7,

2 The restart coding variation [7, Chapter 12.4] is active, it maintains the coding passes
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image 1 image 2 image 3

image 4 image 5 image 6

Figure 5: Image Set. Image size is 2560 × 3328, bit-depth is 12 bits per sample.

Ch.16.2] to minimize the penalty of the Implicit method when distinguishing

ROI codeblocks from background codeblocks.

Images are encoded at different target bitrates, decoded, and the image

quality is assessed separately for the ROI and the background. The image

lengths in the codestream. It is devised to allow intra-codeblock parallelization for the

bitplane coding stage, and for error resilience. It is used by default in BOI.
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quality is reported in Signal-to-Noise Ratio (SNR), which is a measure that

accounts for the similarity between the original image I and the recovered

image I∗, considering the signed data. SNR is defined as 10 log10
σ2

MSE
,

where MSE is computed as
1

Nx

1

Ny

Nx
∑

i

Ny
∑

j

(Iij − I∗ij)
2, and σ2 denotes the

variance of the original image. Higher SNR represents better quality for the

recovered image I∗.

4.2. Numerical Results

Three scenarios are set up to compare ROITCOP with other compliant

JPEG2000 ROI coding methods: 1) a single arbitrary ROI is defined and the

priority is set to recover the ROI before the background (this test is intended

to evaluate the fine-grain accuracy achieved by the evaluated methods); 2)

arbitrary and rectangular ROIs are defined with priorities that combine ROIs

and background (this test is aimed to illustrate the performance of evaluated

methods when the ROI is interleaved with the background) and; 3) multiple

ROIs with different priorities are defined (this test evaluates the order in

which ROIs are recovered).

Test 1: Single arbitrary ROI

This test compares ROITCOP with MaxShift [27], Implicit [7, Ch.16.2],

Subblock [39] and Scaling [29] methods. Figure 6 depicts the bitrate needed

to recover the ROI area at a quality of 15 dB, 30 dB, 45 dB, or perfect recovery

(lossless), on average for all images. The ROI priority is set equivalently for

all methods.

ROITCOP and MaxShift recover the ROI at the same performance, sug-

gesting that both methods achieve the same fine-grain accuracy, which is
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Figure 6: Bits per sample (bps) needed to achieve a specific quality for the ROI and the

background area. Bps is in average for all six images presented in Figure 6. The ROI

priority is equivalent for all methods, and codeblock size is 32×32. Bars indicate the bps

needed to recover the ROIs and the background at specific qualities. Images have been

encoded from 0.001 to 6 bps with a bit-rate step of 0.001.

slightly superior to that of the Scaling method. Note that MaxShift and

Scaling may discard some of the least significant bitplanes of the background

due to the dynamic range problem, producing loss of information. ROI

coding methods that do not exceed the dynamic range (i.e., Implicit, and

Subblock) guarantee lossless compression, however, they do not achieve the

fine-grain accuracy achieved by MaxShift and ROITCOP. As an example, in

a telemedicine scenario employing a 3G communication network, the ROIT-

COP method would require 5.83 seconds to recover the ROI, whereas the

Implicit would need 21.66 seconds. The coding performance for the back-

ground is nearly equivalent for all methods and images.

Test 2: Fine-grain accuracy combining ROI and background

This test evaluates the ROI coding performance of ROITCOP compared

to Scaling, Implicit, and Subblock methods, with different priorities, and for

arbitrary and rectangular shaped ROIs. MaxShift is not included in these
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experiments because it does not allow the combination between ROI and

background coefficients.

Figure 7 (a), 7 (b), 7 (c) and 7 (d) provide the ROI coding performance,

plotting the SNR, achieved by the arbitrarily defined ROIs (red ones in Fig-

ure 5), evaluated on two mammographies. ROITCOP outperforms Scaling,

Subblock and Implicit methods in all cases. The background coding perfor-

mance is nearly the same for all methods.

Figure 7 (e) and 7 (f) depict results obtained when rectangular ROIs are

defined in one mammography. Results suggest that ROITCOP and Scaling

methods achieve the best results.

It is also worth noting that when the codeblock size is set to 64 × 64,

the performance of ROITCOP and Scaling methods is maintained, while the

performance of Subblock and Implicit methods degrades due to the rough

discrimination between blocks that belong to the ROI or to the background.

Test 3: Multiple ROIs

The evaluation of the ROI coding performance for multiple arbitrary ROIs

with different priorities is carried out comparing ROITCOP and Subblock.

Implicit method is discarded because it does not achieve the intended fine-

grain accuracy, MaxShift and Scaling methods are not considered since they

can not assure lossless recovery of the ROI areas, and MaxShift can not

prioritize multiple ROIs with different priorities. The ROI performance of

ROITCOP and Subblock is studied when a progressive lossy-to-lossless and

lossless compression is used. Figure 8 depicts image 1 and image 3 with the

ROIs identified for these experiments.

Figure 9 depicts the coding performance achieved by ROITCOP (solid
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Figure 7: ROI coding performance for the arbitrary ROI of image 1 and image 6, and

rectangular ROI of image 3, showing the SNR of the ROI area achieved by ROITCOP,

Scaling, Subblock and Implicit. Results are for a ROI priority U ′ = 10, for codeblock sizes

set to 32× 32 and 64× 64 for progressive lossy-to-lossless compression.
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(a) image 1 (b) image 3

Figure 8: Original images with multiple ROI definitions, (a) image 1, and (b) image 3.

line) and Subblock (dashed line) methods when three ROIs are defined and

encoded at different priorities using codeblock sizes of 64×64 in a progressive

lossy-to-lossless compression. The priorities for the different ROIs are set to:

ROI 1 = 10, ROI 2 = 8, and ROI 3 = 6. Results suggest that our proposal

works properly when multiple ROIs are defined, since ROI 1 has better qual-

ity than ROI 2 and ROI 3, and ROI 2 has better quality than ROI 3. In

addition, for most of the bit-rates and ROIs, ROITCOP outperforms the

coding performance of Subblock.

Figure 10 reports the bps needed for ROITCOP and Subblock methods

to recover the three defined ROI areas and the whole image losslessly. When

multiple ROIs are defined, ROITCOP needs, approximately, from 2 to 5

times less bitrate than Subblock to recover the ROIs.
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Figure 9: ROITCOP ROI coding performance for multiple ROIs prioritized with distinct

weights, (a) image 1, and (b) image 3.

(a)

(b)

Figure 10: ROITCOP and Subblock coding performance for multiple ROIs, indicating the

bps needed to recover the different ROIs and the whole image losslessly, (a) image 1, and

(b) image 3.
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4.3. Visual Comparison

To assess the performance of the ROI coding methods visually, MaxShift,

Subblock, and ROITCOP are used to code an arbitrary shaped ROI. MaxShift

is selected because it provides the best fine-grain accuracy of methods based

on the modification of wavelet coefficients; whereas Subblock is chosen be-

cause it provides the best fine-grain accuracy of methods based on the mod-

ification of distortion estimates.

Figure 11 depicts the recovered images when the ROI area covers 0.6%

of the image. ROITCOP recovers the ROI with the highest accuracy of all

methods, helping the specialist to pay attention only to the relevant area.

MaxShift does not delimit the edges of the ROI accurately, and Subblock

recovers too much surrounding area around the ROI.

5. Conclusions

ROI coding is a particularly suitable coding mechanism for medicine ac-

tivities, providing the possibility to adequately compress those regions of the

image that have the highest diagnostic relevance. ROI coding allows to trans-

mit these relevant areas earlier and at a higher quality than the rest of the

image. In a tele-diagnosis scenario, progressive lossy-to-lossless compression

is also desirable, therefore, JPEG2000 image coding standard is convenient

since it is included in DICOM, supports ROI coding, and provides progressive

lossy-to-lossless performance.

JPEG2000 standard supports ROI coding through two mechanisms: ei-

ther modifying wavelet coefficients, or employing rate-distortion optimization

techniques. Compliant JPEG2000 methods that modify wavelet coefficients
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(a) Original (b) MaxShift

(c) ROITCOP (d) Subblock

Figure 11: Visual comparison of a ROI in a digital mammogram. Figure shows (a) the

Original image with ROI emphasized in red, and different ROI coding methods: (b)

MaxShift, (c) ROITCOP, and (d) Subblock, at 0.01 bps, for a codeblock size of 64 × 64.

All images are scaled at 70% of its original size.
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are MaxShift and Scaling. Both methods achieve high fine-grain accuracy,

however, they suffer from the dynamic range problem, which may not guar-

antee a perfect lossless recovery for the ROI and the background. Methods

that employ rate-distortion optimization techniques are the Implicit and Sub-

block. They ensure the recovering of the ROI and the background losslessly,

but they recover too much information outside the ROI area.

This paper introduces ROITCOP ROI coding method. This method al-

locates each ROI to an component and uses the rate-distortion optimization

techniques to prioritize the desired ROI. ROITCOP allows progressive lossy-

to-lossless recovery for the ROI and the background, does not penalize the

coding efficiency, permits to recover exclusively a requested ROI through the

component scalability feature of JPEG2000, and achieves a fine-grain accu-

racy. ROITCOP needs a negligible extra bitrate to encode the additional

headers coded in each component. Experimental results suggest that the

ROI coding performance of ROITCOP outperforms Scaling, Implicit, and

Subblock ROI coding methods, recovering the ROI areas at higher quality

using equivalent parameters, while for MaxShift nearly the same ROI coding

performance is obtained.

Applications that can benefit from the proposed ROITCOP method are

those that need to: store the ROI and the background image losslessly due to

legal issues and clinical needs; determine several ROIs with different degrees

of importance, as defined by CAD or radiologists; and retrieve the diagnostic

area at high levels of quality at low bitrates, for instance for mobile devices.
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