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A THEORETICAL BASIS FOR
THE HARMONIC BALANCE METHOD

JOHANNA D. GARCIA-SALDANA AND ARMENGOL GASULL

ABSTRACT. The Harmonic Balance method provides a heuristic approach for
finding truncated Fourier series as an approximation to the periodic solutions
of ordinary differential equations. Another natural way for obtaining these type
of approximations consists in applying numerical methods. In this paper we
recover the pioneering results of Stokes and Urabe that provide a theoretical
basis for proving that near these truncated series, whatever is the way they
have been obtained, there are actual periodic solutions of the equation. We will
restrict our attention to one-dimensional non-autonomous ordinary differential
equations and we apply the results obtained to a couple of concrete examples
coming from planar autonomous systems.

1. INTRODUCTION AND MAIN RESULTS

Consider the real non-autonomous differential equation
v = X(xz,t), (1)

where the prime denotes the derivative with respect to t, X : Q x [0,27] - R is a
C%-function, 2m-periodic in ¢, and  C R is a given open interval.

There are several methods for finding approximations to the periodic solutions
of (1). For instance, the Harmonic Balance method (HBM), recalled in subsec-
tion 2.1, or simply the numerical approximations of the solutions of the differential
equations. In any case, from all the methods we can get a truncated Fourier se-
ries, namely a trigonometric polynomial, that “approximates” an actual periodic
solution of the equation. The aim of this work is to recover some old results of
Stokes and Urabe that allow to use these approximations to prove that near them
there are actual periodic solutions and also provide explicit bounds, in the infinity
norm, of the distance between both functions. To the best of our knowledge these
results are rarely used in the papers dealing with HBM.

When the methods are applied to concrete examples one has to deal with the
coefficients of the truncated Fourier series that are rational numbers (once some
number of significative digits is fixed, see the examples of Section 4) that make
more difficult the subsequent computations. At this point we introduce in this
setting a classical tool, that as far as we know has never been used in this type
of problems: we approximate all the coefficients of the truncated Fourier series by
suitable convergents of their respective expansions in continuous fractions. This is
done in such a way that using these new coefficients we obtain a new approximate
solution that is essentially at the same distance to the actual solution that the

2000 Mathematics Subject Classification. Primary: 34C05; Secondary: 34C25, 37C27, 47H10.
Key words and phrases. Balance harmonic method, planar polynomial system, hyperbolic
limit cycle, Fourier series, fixed point theorem.
1


10.1016/j.jde.2012.09.011

2 J. D. GARCIA-SALDANA AND A. GASULL

starting approximation. With this method we obtain trigonometric polynomials
with nice rational coefficients that approximate the periodic solutions.

Before stating our main result, and following [5, 6], we introduce some concepts.
Let Z(t) be a 2m-periodic C'-function, we will say that Z(t) is noncritical with
respect to (1) if

/0 . %X(x(t), B dt £ 0. @)

Notice that if Z(t) is a periodic solution of (1) then the concept of noncritical is
equivalent to the one of being hyperbolic, see [3].

As we will see in Lemma 2.1, if Z(¢) is noncritical w.r.t. equation (1), the linear
periodic system

0 o, _
= oo X(alt), 05+ b{t),

has a unique periodic solution y,(¢) for each smooth 2m-periodic function b(t).
Moreover, once X and Z are fixed, there exists a constant M such that

[yl < M0, (3)

where as usual, for a continuous 27-periodic function f,

1 2T
Hf\lﬁ\/%/o F(t)dr, |17l = max|f@)] and 7]l <17l

Any constant satisfying (3) will be called a deformation constant associated to T
and X . Finally, consider

s(t) :==7'(t) — X (z(¢),1). (4)
We will say that z(t) is an approzimate solution of (1) with accuracy S = ||s||,.
For simplicity, if S > S we also will say that z(t) has accuracy S. Notice that
actual periodic solutions of (1) have accuracy 0, in this sense, the function s(¢)
measures how far is z(t) of being an actual periodic solution of (1).

Next theorem improves some of the results of Stokes [5] and Urabe [6] in the
one-dimensional setting. More concretely, in those papers they prove the existence
and uniqueness of the periodic orbit when 4M?K S < 1. We present a similar proof
with the small improvement 2M?2KS < 1. Moreover our result gives, under an
additional condition, the hyperbolicity of the periodic orbit.

Theorem 1.1. Let Z(t) be a 2m-periodic C*—function such that:

- it is noncritical w.r.t. equation (1) and has M as a deformation constant,
- it has accuracy S w.r.t. equation (1).

Given I := [mingery Z(t) — 2M S, maxgery T(t) + 2MS]) C Q, let K < oo be a

constant such that ,

T

max
(z,t)eIx[0,27]

Then, i
! 2M?KS < 1,

there exists a 2m-periodic solution x*(t) of (1) satisfying

o — 7| < 2MS$
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and it 1s the unique periodic solution of the equation entirely contained in this
strip. If in addition,
9 2

ZX(z(b), 1) dt| > ==,
[ XEw.n @ > 3
then the periodic orbit x*(t) is hyperbolic and its stability is given by the sign of
this integral.

Once some approximate solution is guessed, for applying Theorem 1.1 we need
to compute the three constants appearing in its statement. In general, K and S
can be easily obtained. Recall for instance that ||s||,, when s is a trigonometric
polynomial, can be computed from Parseval’s Theorem. On the other hand M
is much more difficult to be estimated. In Lemma 2.3 we give a result useful for
computing it in concrete cases, that is different from the approach used in [5, 6, 7].

Assuming that a non-autonomous differential equation has an hyperbolic peri-
odic orbit, the results of [6] also guarantee that, if take a suitable trigonometric
polynomial 7(t) of sufficiently high degree, we can apply the first part of The-
orem 1.1. Intuitively, while the value of the accuracy S goes to zero when we
increase the degree of the trigonometric polynomial, the values M and K remain
bounded. Thus at some moment it holds that 2M?KS < 1.

In Section 4 we apply Theorem 1.1 to localize the limit cycles and prove its
uniqueness, in a given region, and its hyperbolicity for two planar polynomial
autonomous systems. The first one is considered in Subsection 4.1 and is a simple
example for which the exact limit cycle is already known. We do our study step by
step to illustrate how the method suggested by Theorem 1.1 works in a concrete
example. In particular we obtain an approximation z(t) of the periodic orbit by
using a combination between the HBM until order 10 and a suitable choice of
the convergents obtained from the theory of continuous fractions applied to the
approach obtained by the HBM.

The second case corresponds to the rigid cubic system

i o= —y+2(l—x—101?),
y = z+45(1—x—1027),

that in polar coordinates writes as 7 = /10 — cos(8)r2/10 — cos?(A)r3, § = 1, or
equivalently,
d 1 1
r = d—: =" 10 cos(t) r* — cos®(t) r?, (5)
which has a unique positive periodic orbit, see also [2]. Notice that we have
renamed 0 as t. We prove:

Proposition 1.2. Consider the periodic function

4 1 1 1 1 1
T(t) = 9 693 cos(t) — Fl sin(t) — 653 cos(2t) — I sin(2t) — 720 cos(3t).

Then, the differential equation (5) has a periodic solution r*(t), such that
|7 —r*||.. <0.042,

which is hyperbolic and stable and it is the only periodic solution of (5) contained
i this strip.
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As we will see, in this case we will find computational difficulties to obtain the
order three approximation given by the HBM. So we will get it first approaching
numerically the periodic solution; then computing, also numerically, the first terms
of its Fourier series and finally using again the continuous fractions approach to
simplify the values appearing in our computations. We also will see that the same
approach works for other concrete rigid systems.

Similar examples for second order differential equations have also been studied
in [7].

2. PRELIMINARY RESULTS

This section contains some technical lemmas that are useful for proving The-
orem 1.1 and for obtaining in concrete examples the constants appearing in its
statement. We also include a very short overview of the HBM adapted to our
interests. See [4] for a more general point of view on the HBM.

As usual, given A C R, 14 : R — R denotes the characteristic function of A,
that is, the function takes the value 1 when z € A and the value 0 otherwise.

Lemma 2.1. Let a(t) and b(t) be continuous real 27-periodic functions. Consider
the non-autonomous linear ordinary differential equation

' = a(t)x + b(t). (6)

If A(2m) # 0, where A(t) == f; a(s)ds, then for each b(t) the equation (6) has a
unique 27-periodic solution xy(t) := OQW H(t,s)b(s)ds, where the kernel H(t,s) is
given by the piecewise function

PA()

H(t,s) = T oA

[e7 410 (s) 4+ A=A L, 50 (s)] (™)

Moreover ||zy||.. < 2m maxyejooq || H (¢, )], 1|0]],-

Proof. Since (6) is linear, its general solution is

z(t) = eA® (xo + /O t b(s)e‘A(s)ds> . (8)

If we impose that the solution is 27-periodic, i.e., x(0) = z(27), we get

o A2T) 2
Ty = m/ﬂ b(s)e ) ds. (9)
By replacing z, in (8) by the right hand side of (9) we obtain that
oA 2 t
() = T [QA(zﬂ /O b(s)e A ds 4 (1 — A /O b(s)e— g s}
= L(t) {GA(QW) /Qﬂ b(s)eiA(s)dS + /t b(S)eA(S)dS]
1 — eA@m) . o
2

= H(t,s)b(s)ds.
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Therefore the first assertion follows. On another hand, by the Cauchy-Schwarz

inequality,
2m 2m
lxp(t)| < / H?(t,s)ds / b2(s)ds
0 0
Therefore
<2 Ht, - bl|,.
ol < 2 e (12, )] 1],
This complete the proof. O

Corollary 2.2. A deformation constant M associated to & and X is

M:=2 H(t. -
”t?&f‘ii [[H(t,-)]],,

where H is given in (7) with A(t fot 9 X (z(t),t)dt.

Now we prove a technical result that will allow us to compute in practice defor-
mation constants. In fact we will find an upper bound of M that will avoid the
integration step needed in the computation of the norm || -||,. First, we introduce
some notation.

Given a function A : [0,27] — R, a partition ¢; = ih,i = 0,1,..., N, of the
interval [0, 27|, where h = 27 /N, and a positive number ¢, we consider the function
L : [0,27] — R given by the continuous linear piecewise function joining the points
(t;, A(t;) — £). Notice that L(t) = SN " Li(t)1y,, where I; = [t;,t;,] and
A=A 1) 4 f(1) = — (ot + )

We will say that L is an adequate lower bound of A if it holds that L(t) < A(t)
for all ¢ € [0, 27]. It is clear that smooth functions have always adequate functions,
that approach to them.

In next result we will use the following functions

ZJ+A2ZJ+ 1—/\2 (amt—eamfm), (10)

i=m—1

L; (t) =

where

tit1 tir1 eﬁi
Ji = / e 2B ds = / e il ge = —— (e“iti+1 — e“iti)
t; t; Q;
and \ = 42,

Lemma 2.3. Let L be an adequate lower bound of A, where A is the function
given in Lemma 2.1. Consider the functions V,,(t),m = 0,1,...,N — 1, given
n (10). Therefore, following also the notation introduced in that Lemma, it holds
that ||zp|| . < N ||b]],, where

N—-1
V 2 A(t)
]1 — Al te[o 271']

Uon(t)

m=0
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Proof. Recall that from Lemma 2.1, ||zp||.. < M |]b],, where
M =21 max ||H(t,")|l,.

te[0,27]
So we will find an upper bound of M. Since

eA(t) — S ) — S
H(t,5) = 5 [ 1pg(s) + "0 050(5)]

it holds that

H Ol = = T
¢, =
12l = Z=r =57 VG
where
t 2 t 2
G(t) ::/ 62A(s)ds+/\2/ e 241 s </ €2L(s)d8+/\2/ e 26 s,
0 ¢ 0 ¢

because L(t) < A(t), for all t € [0, 27].
Assume that ¢ € I,,,. Then

t m—1 t
/e_QL(s)ds:ZJi—&—/ e 2lm() ds
0 i=0 tm
e e ds = Z Ji — / “2m{#) s,

1=m—1

N-1

o
e LG ds = J; +/
| >

Therefore, for t € Im,

ZJ + A2 Z Ji4 (1= / eomsthn s = W, (t).

1=m—1

t7n+

As a consequence, for t € [0, 27],

< Z \Ijm ].]m

and the result follows. O

Remark 2.4. Notice that the above lemma provides a way for computing a defor-
mation constant where there is no need of computing integrals. This will be very
useful in concrete application, where the primitive of e=*A®) is not computable and
so Corollary 2.2 is difficult to apply for obtaining M.

In next result, which introduces the constant K appearing in Theorem 1.1, D°
denotes the topological interior of D.

Lemma 2.5. Consider X as in (1). Let D be a closed interval and let z(t) be a
2m-periodic C'-function, such that {Z(t) : t € R} C D°. Define
R(z. 1) == X((0) + 21) — X(2(0),1) — ~-X(2(1), 1), (1
x
for all z such that {z(t) + 2z : t e R} C D. Then

(i) [R(z. 1) < 21,
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(17) |R(z,t) — R(z,t)| < Kmax(|z],|z]) |z — z|,

where
9
K = —X(z,t
(, t)gjax [0,27] | Ox2 (=, )’
Proof. (i). By using the Taylor’s formula, for each ¢ it holds that
X(z(t) + 2,t) = X(z(t) t)+2X(_() t) +la—2X(§( t),t)2”
Zb) = A, T DY :
for some £(t) € (Z(t), z(t) + z). Therefore
1 P , K.
e < =
R0 = |5 X €00 < P

as we wanted to prove.

(7). From Rolle’s Theorem for each fixed ¢ it follows that there exists 7(t) € (z, z)
such that

0
—R(n(t),t
< R(1(t), )
Applying again this theorem, but now to %R, noticing that %R(z, t) }2:0 =0, we
obtain that

8 0?

~R 100 = | =5 X @0), )] )] < Klne)]

where w(t) € (0,7(t)). Note also that

|R(Zat) - R(E, t)| <

|z — Z|.

n(t)] < max(]z],[2]).

Hence, the result follows combining the three inequalities. O

2.1. The Harmonic Balance method. In this subsection we recall the HBM
adapted to the setting of one-dimensional 27-periodic non-autonomous differential
equations.

We are interested in finding periodic solutions of the 2m-periodic differential
equation (1), or equivalently, periodic functions which satisfy the following func-
tional equation

Flx(t)) :=2'(t) — X(z(t),t) = 0. (12)
Recall that any smooth 27-periodic function z(¢) can be written as its Fourier
series,

- 50 + mzjl m, cos(mt) + by, sin(mt)) ,

where

27 1 27
Ay = —/ x(t) cos(mt)dt, and by, = —/ x(t) sin(mt) dt,
0 T Jo

™

for all m > 0. Hence it is natural to try to approach the periodic solutions of
the functional equation (12) by using truncated Fourier series, i.e. trigonometric
polynomials.
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Let us describe the HBM of order N. Consider a trigonometric polynomial

%@:%+§]mmwm+%mmm,

m=1

with unknowns r,, = r,,(NV), s, = sp(N) for all m < N. Then compute the
27m-periodic function F(y, (£)). It has also an associated Fourier series

A [e.9]
f%@:f+2@wmw+mmmm
m=1
where A, = A,,(r,s) and B,, = B,,(r,s), m > 0, with r = (r9,71,...,7,) and
s = (s1,...,8,). The HBM consists in finding values r and s such that
Ay(r,s) =0 and B,(r,s)=0 for 0<m<N. (13)

The above set of equations is usually a very difficult non-linear system of equa-
tions and for this reason in many works, see for instance [4] and the references
therein, only small values of N are considered. We also remark that in general the
coefficients of y, (¢) and y, ., (t) do not coincide at all.

Notice that equations (13) are equivalent to

/Oﬂ]:(yN(t))cos(mt) dt =0 and /Oﬂf(yN(t))sin(mt) dt =0,

for 0 <m < N.

The hope of the method is that the trigonometric polynomials found using this
approach are “near” actual periodic solutions of the differential equation (1). In
any case, as far as we know, the BHM for N small is only a heuristic method that
sometimes works quite well.

To end this subsection, we want to comment a main difference between the non-
autonomous case treated here and the autonomous one. In this second situation
the periods of the searched periodic orbits, or equivalently their frequencies, are
also treated as unknowns. Then the methods works similarly, see again [4].

3. PROOF OF THE MAIN RESULT

Proof of Theorem 1.1. As a first step we prove the following result: consider the
nonlinear differential equation

2= X(z+z(t),t) — X(x(t),t) — s(t), (14)
where s(t) is given in (4). Then a 27-periodic function z(t) is a solution of (14) if
and only if z(t) + z(t) is a 2m-periodic solution of (1).

This is a consequence of the following equalities
(2(t) + 2(2))" =[X(2(t) + 2(t),£) = X (2(1), 1) — s(t)] + [X (2(1), 1) + 5(t)]
=X (2(t) + z(t),t).
By using the function

Rz 1) = X (2 + 2(t).1) - X(2(t).1) - 5-X (3(t). 1)z,
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introduced in Lemma 2.5, equation (14) can be written as

2 = (%X(f(t), t)z+ R(z,t) — s(t). (15)

Let P be the space of 2r-periodic C’-functions. To prove the first part of the
theorem it suffices to see that equation (15) has a unique C', 27-periodic solution
2*(t), which belongs to the set

N={zeP:|z|l. <2MS}.

To prove this last assertion we will construct a contractive map 7' : N' — N.
Because N is a complete space with the || - ||, norm, its fixed point will be a
continuous function in N that will satisfy an integral equation, equivalent to (15).
Finally we will see that this fixed point is in fact a C! function and that it satisfies
equation (15).

Let us define T'. If z € A then T'(2) is defined as the unique 27-periodic solution
of the linear differential equation

J = %X(i(t), Dy + R(=(),1) — s(1).

Notice that this map is well defined, by Lemma 2.1, because Z(¢) is noncritical
w.r.t. equation (1). Then z; satisfies

2 = %X(i‘(t),t)zl + R(z(t),t) — s(t).

Let us prove that 7" maps A into N and that it is a contraction. By Lemmas
2.1 and 2.5 and the hypotheses of the theorem

PG = il < MIRGEE), )~ sOll < M ARG, +5)
< MUIBGO), . +9) < MCSIZIE +5)
< MQ2KM?S? +S) < 2MS,

where we have used in the last inequality that 2M?K S < 1.
To show that T is a contraction on N, take z,z € N and denote by z; = T'(z),
zZy = T(z). Then

2] = (%X(x(t), t)z1 + R(z(t),t) — s(t),
Z = %X(w(t), t)z1 + R(Z(t),t) — s(t)

Therefore

(51— 5 = X (D), 01~ 5) + R(:(0),1) ~ BEW), 0

Again by Lemmas 2.1 and 2.5 and the hypotheses of the theorem,
1T (2) = T2l =ll2r — 21l < MI|R(2(:),-) = RB(z(), )]
<MK max(||z]|., lI2ll.)l1= = 2l < 2M*KS||z —Z]|.,

as we wanted to prove, because recall that 2M?KS < 1.
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Therefore the sequence of functions {z,(t)} defined as

Zi1 () = %X (Z(1), )21 (1) + Rz (1), 1) = 5(1),

with any 2(t) € N, and z,,:(t) chosen to be periodic, converges uniformly to
some function z*(t) € N. In fact we also have that

%Hw:awm»g[(%ﬁ@@»@aﬂmw+m%w»m—sw0dw

Therefore
z*(t) = 2*(0) + /0 ((%X(x(w), w)z*(w) + R(z"(w),w) — s(w)) dw.

We know that x*(¢) is a continuous function, but from the above expression we
obtain that it is indeed of class C'. Therefore x*(¢) is a periodic solution of (15)
and is the only one in NV, as we wanted to see.

To prove the hyperbolicity of 2*(¢) it suffices to show that

27r8

[ X @20
and study its sign, see [3]. We have that, fixed t,
O (1), 1) = LX(3(0), 1) + 2 X (e(0), )" (1) — (1))
ox T = ox s Ox2 A )

for some £(t) € (x*(t), Z(t)). Therefore, since we have already proved that |x*(t) —
z(t)] < 2MS,

0 0
— T - * < .
X (@(1).1) — 5-X(« (t),t)’ <2KMS
Then
2 a 2 8 27T
—_ X(7 _ _ * < -
O - X (@), t)dt : - X( (t),t)dt‘ <4nKMS < 37

and the results follows because by hypothesis the first integral is, in absolute value,
bigger that 27 /M. O

4. APPLICATIONS

In this section we apply our result to prove the existence and localize a hyper-
bolic limit cycle of some planar systems, which after some transformations can be
converted into differential equations of the form (1). In the first case, although
we know explicitly the limit cycle, we first use the HBM to approximate it and
then Theorem 1.1 to prove in an alternative way its existence. In the second case
we consider a planar rigid system. First, we found numerically an approximation
of the limit cycle and from this approximation we propose a truncated Fourier
series as a simpler approximation. Finally, Theorem 1.1 is used again to prove the
existence and localize the limit cycle.
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4.1. A simple integrable case. Consider the planar ordinary differential equa-
tion
i = —y+x(a+de?+ery+ fy?)
y = z+yla+de®+exy+ fy?)

In polar coordinates it writes as
i = ar + (d cos?(A) + esin(f) cos(#) + fsin®(0))r®, =1,

or equivalently,

d

r = d—: = ar + (dcos*(t) + esin(t) cos(t) + fsin?(t))r® := X (r, 1),
where we have renamed 6 as t. The above equation is a Bernoulli equation that
can be solved explicitly. For simplicity we fix a = —1,d =3, e =2 and f = 1.
Then we have the equation
= —r + (cos(2t) + sin(2t) + 2)r°. (17)

Its solutions are r(¢) = 0 and
1

r(t) ==+ .
Q V2 + cos(2t) + ke

Therefore its unique positive periodic solution, which corresponds to the only limit
cycle of (16) for the given values of the parameters, is given by the ellipse

) — (18)

/2 + cos(2t)

(16)

Moreover since
27

0 . B
i EX(T‘ (t),t)dt =4m >0

it is hyperbolic and unstable, see [3]. Its Fourier series is

r*(t) = % + Zagk cos(2t), (19)
k=1
where
a = 47; ~ 1.491498374, ag/2 ~ 0.745749187,
as = 125}% ~ —0.20168372109,
ay, = —?’QE#M ~ 0.04065713288,
ag = 47619[;;9% ~ —0.009092598292,

g = 4%24}—3;%%%0.002133790322,

g = WIBEZG0SK o~ _.0005148662408,

being K = K(1/6/3) and E = E(v/6/3) the complete elliptic integrals of the first
and second kind respectively, see [1].
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Let us forget that we know the exact solution and its full Fourier series to
illustrate how to use the HBM and Theorem 1.1 for equation (17) to obtain an
approach to the actual periodic solution (18).

Following the HBM, see subsection 2.1, consider the equation

F(r(t)) =7"(t) +r(t) — (cos(2t) + sin(2t) + 2)r3(t) = 0, (20)

which is clearly equivalent to (17).

Searching for a solution of the form r(¢) = ry and imposing that the first har-
monic of F(r(t)) vanishes we get that ro + 2r§ = 0. The only positive solution of
the equation is 79 = v/2/2 ~ 0.7071 and this is the first order solution given by
HBM.

Motivated by the symmetries of (17) for applying the second order HBM we
search for an approximation of the form

r(t) = ro + ro cos(2t).

The vanishing of the coefficients of 1 and cos(2t) in the Fourier series of F(r(t))
give the non-linear system:

3 3
g(ro,m9) 1= 19 — 215 — 57“27’3 — 3r3rg — grg’ =0,
3 2 9, 3 3
h(ro,ro) := 19 — 15 — 61915 — 12T T 5 = 0.
Doing the resultants Res(g, h, o), Res(g, h, r2) we obtain that the solutions of the
above system are also solutions of
21972075 — 18852 + 426973 — 32817 + 8 = 0,
4943775 — 7095675 + 3070875 — 428875 + 128 = 0.

One of its solutions is rg ~ 0.7440456581 =: 7, ro = —0.2013905597 =: 7.
To know the accuracy of the periodic function 7(t) = 7+ 7 cos(2t) as a solution
of (17) we compute

S = |[7(t) + F(t) — (2 + sin(2t) + cos(2))7(£)%]|, ~ 0.1361

Since it is enough for our purposes we can consider simpler rational approxima-
tions of 7y and 7y, but keeping a similar accuracy. For finding these rational
approximations, we search them doing the continuous fraction expansion of these
values. For instance
7o =1[0,1,2,1,9,1,21,17,3, 11]

giving the convergents 1, 2/3, 3/4, 29/39, 32/43,.... Similarly 75 gives 1/4, 1/5,
28/139, 29/144,. ... At this point we have the following new candidate to be an
approximation of the periodic solution

3 1
r(t) =—-—— 2t).
7(t) 17 E cos(2t)
Its accuracy w.r.t. equation (17) is
V50069
S = ||7(t) + 7(t) — (2 + sin(2t) + cos(2t))7(t)?||, = ~ 0.1398 < 0.14,

and so, quite similar to the one of 7(t).
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Therefore 7(t) and 7(t) are solutions of (17) with similar accuracy so we keep
7(t) as the second order approximation given by this modification of the HBM.
For this 7(t) we already know that its accuracy is S = 0.14.

We need to know the value of M given in Theorem 1.1. With this aim we
will apply Lemma 2.3. We consider in that lemma a function L(t) formed by 13
straight lines and ¢ = 1/9. Then we get that we can take M = 2.3. Therefore,
since 2M S = 0.644 and 0.55 = % <7(t) < % =0.95.

We have that [ = [-0.094, 1.594] in Theorem 1.1. Moreover

2

0
wX(Ta t)

Thus taking K = 41(1.594) &~ 32.68 we get that 2M/?KS ~ 48.4 > 1 and we can
not apply Theorem 1.1.

41
< 6|2 + sin(2t) + cos(2t)||7| < (124 6v/2)|r| < - Il

Doing similar computations with the successive approaches given by the HBM
we obtain

F(t) = 32— 1icos(2t)+ 5 cos(4t),
7(t) = 2—1lcos(2t)+ 5 cos(4t) — o5 cos(6t).

It is worth to comment that the above two functions are periodic functions that
approximate to solution of (17) with accuracies 0.045 and 0.018, respectively,
while the solutions obtained solving approximately the non-linear systems with ten
significative digits have similar accuracies, namely 0.043 and 0.013, respectively.
For none of both approaches Theorem 1.1 applies. Let us see that the next order
HBM works for this example.

If we do all the computations we obtain the candidate to be solution

4
T(t) = Z Tor cos(2kt),
k=0

with
ro = 0.7457489122, ro = —0.2016836610, 14 = 0.04065712547,
re = — 0.009092599917,  rg = 0.002133823488.

Computing the accuracy of 7(t) we obtain that it is 0.0039. If we take the approx-
imation, using some convergents of rqy,

~ 3 1 1 1 1

T(t) = 17 E cos(2t) + 9% cos(4t) — 110 cos(6t) + 168 cos(8t)
it has accuracy 0.0125. This means that we have lost significative digits and
we need to take convergents of r9, that have at least 3 significative digits. For

instance some convergents of rq are 1, 2/3, 3/4, 41/55, 44/59,. .. and we choose
44/59. Finally we consider

44 24 2 1 1
T(t) = 0 119 cos(2t) + m cos(4t) 70 cos(6t) + 163 cos(8t).  (21)
The accuracy of 7 is 0.00394 quite similar to the one of 7(¢). So we take S = 0.004.
Let us see that Theorem 1.1 applies if we take this approximate periodic solution.
In this case, by applying Lemma 2.3, using the piecewise linear function L

formed by 10 pieces and ¢ = 1/10, we obtain that we can take M = 2.4.
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Since it can be seen that 0.5 < 7(t) < 1 and 2M S = 0.0192 we can take in
Theorem 1.1 the interval I := [0.4808,1.0192].

Then
2

0]
— X (n,t
Ix(on] | Br? (r,¢)

Finally, 2M?K S ~ 0.96 < 1 and Theorem 1.1 applies.
Finally, it is easy to see that

41
< 5 (102) =2091 = K.

27
0
—X(7(t),t)dt > 12.5
| 5ex .o > 12
which is bigger than 27/M = 2.6. Therefore the hyperbolicity of the periodic
orbit given by Theorem 1.1 follows. In short we have proved,

Proposition 4.1. Consider the periodic function 7(t) given in (21). Then there
is a periodic solution v*(t) of (17), such that

|7 —r*|].. <0.0192,

which is hyperbolic and unstable and it is the only periodic solution of (17) in this
strip.

Remark 4.2. Using the known analytic expression of r*(t) it can be seen that
indeed
|7 — ||, < 0.0007.

Notice that by using a high enough HBM we have obtained a proof of the
existence of a hyperbolic periodic orbit and an effective approximation 7 () without
integrating the differential equation.

4.2. A rigid cubic system. In this section we study some concrete cases of the
family of rigid cubic systems

t = —y—ax(a+br+2?),

y = z—yla+br+2?),

already considered in [2]. In that paper it is proved that (22) has at most one

limit cycle and when it exists is hyperbolic. With our point of view we will find

an explicit approximation of the limit cycle, see Proposition 1.2. We consider the
case a = —b = 1/10, that in polar coordinates writes as (5),

dr 1 1

r = =10 10 cos(t) r? — cos®(t) 13,

and we start explaining how we have found the approximation of the periodic

solution of (5) given in Proposition 1.2.

(22)

First attempt: the HBM. First we try to apply this method to find an approx-

imation of the periodic solution of (5) that allows to use Theorem 1.1.
Searching for a solution of the form 7(¢) = o and imposing that the first har-
monic of . . ) )
57’8 — 170 + 0 cos(t)rg + 3 cos(2t)ry

vanishes we obtain that



HARMONIC BALANCE METHOD 15

Hence 1y = v/5/5 =~ 0.4472135954 is the first order solution given by the HBM.
We obtain that the positive approximate solution is r = v/5 /5. For applying the
second order HBM we search for an approximation of the form

r(t) = 1o + 11 cos(t) + s1sin(t).

The vanishing of the coefficients of 1, cos(t) and sin(¢) in F(r(t)) provides the
non-linear system

9 1 3 1 1

i - iR L A i
S TR A PO I D)

4 071 811 g1 2011 101 1=Y

1 9 1 3 1

57"(?)) + éror% - _107"0 + gTOS% + —107’07"1 =0.

By using the same tools than in the previous example we obtain that one of
the approximated solutions of the above system is ry =~ 0.4471066159, r; =~
—0.0009814101 and s; ~ —0.0196567414. We search simple rational approxima-
tions of g, r; and s;, doing again the respective continuous fraction expansions

and we obtain the candidate

- 1 1 1 .
7(t) = 3~ 018 cos(t) — %0 sin(t),

to be an approximate periodic solution of (5). It can be seen that it has accuracy
S a 0.046. Doing all the computations needed to apply Theorem 1.1 we obtain
that we are not under its hypotheses. Therefore we need to continue with the
HBM of second order.

Doing the second order approach we obtain five algebraic polynomial equations,
that we omit for the sake of simplicity. Unfortunately, neither using the resultant
method as in the previous cases, nor using the more sophisticated tool of Grobner
basis, our computers are able to obtain an approximate solution to start our
theoretical analysis.

A numerical approach. First, we search a numerical solution of (5) by using the
Taylor series method. From this approximation we compute, again numerically,
its first Fourier terms, obtaining

3
r(t) = Z i, cos(kt) + sy sin(kt),
k=0
where

ro = 0.4483561517, r1 = —0.0024133439, s; = —0.0193837572,
ro = — 0.0037463296, s9 = —0.0220176517,
rs = — 0.0012390886, s3 = 0.0003784656.

The accuracy of 7(t) is 0.00289. If we take a new nicer approximation, using again

some convergents of r, and s, we obtain

) = 2= L os(t) — - sin(t) — —— cos(2t) — — sin(2t) — ——cos(3t),  (23)
9 693 51 653 45 780 ’

with accuracy 0.00298, quite similar to the one of 71 (t). Note that (23) is precisely

the approximation of the periodic solution of (5) stated in Proposition 1.2.

=3
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Proof of Proposition 1.2. We already know that the accuracy of 7(¢) is S := 0.003.
To apply Theorem 1.1 we will compute M and K.
First we calculate A(t) = fot 2 X(F(t),1).

_ 2801685439 _ 347888350813299559 ; 561179 685338551
A(t) = 3733753000 — 1778004556350104400 0 — 36756720 COS(t) — so00sToTan SIn(E)

TSTOSSTIT (g (9t) — AQ221206418181 i) (94) _ 2923231 3)

"~ 48004276320 T 273447836421760 "~ 576974475
37724429 353400139 17671001708653999  ..:

+ 36003207210 S0 (3Y) — Geoosssasto <O5(4t) + meizcoss107086s600 SR (4E)
5358811 4708003 1537

+ 300026737000 <08(58) + F5001781500 SN (5E) + Z57810720 COS(6¢)
43551971479 1 1 :

+ msacisoatceaos SR (01) + 537600 CoS(78) — Frsama0 sin(7t)

— e sin(8t)

12979200 :

Now, by using again Lemma 2.3, we find a deformation constant M. In this
case we use as lower bound for A the piecewise function L formed by 7 straight
lines and ¢ = 1/18. We obtain that we can take M = 7. Therefore 2M S ~ 0.042.

Since it can be seen that 0.4 < 7(¢) < 0.47 in Theorem 1.1 we can consider the
interval I = [0.358,0.512].

Then
2

0 1 1
max | —X(r, t)' < E +6l||7||.. = R +6(0.512) =3.272 =: K

Ix[0,27)

or?

Finally, 2M?KS ~ 0.962 < 1 and the first part of Theorem 1.1 applies. Hence
equation (5) has a periodic solution 7*(t) satisfying

|7 —r*|]. <0.042, (24)

and is the only one in this strip.
It can also be seen that

2 a -
/0 S X(r (1), tydt] > 1.2

Since 27 /M = 0.9, the hyperbolicity of r*(¢) follows applying the second part of
the theorem. U

Notice that the example of system (22) that we have studied isa = A and b = —\
with A = 1/10. With the same techniques it can be seen that the same function

7(t) given in the statement of Proposition 1.2 is an approximation of the unique
periodic orbit of the system when |[A —1/10| < 1/500, which also satisfies (24).
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