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A THEORETICAL BASIS FOR
THE HARMONIC BALANCE METHOD

JOHANNA D. GARCÍA-SALDAÑA AND ARMENGOL GASULL

Abstract. The Harmonic Balance method provides a heuristic approach for
finding truncated Fourier series as an approximation to the periodic solutions
of ordinary differential equations. Another natural way for obtaining these type
of approximations consists in applying numerical methods. In this paper we
recover the pioneering results of Stokes and Urabe that provide a theoretical
basis for proving that near these truncated series, whatever is the way they
have been obtained, there are actual periodic solutions of the equation. We will
restrict our attention to one-dimensional non-autonomous ordinary differential
equations and we apply the results obtained to a couple of concrete examples
coming from planar autonomous systems.

1. Introduction and main results

Consider the real non-autonomous differential equation

x′ = X(x, t), (1)

where the prime denotes the derivative with respect to t, X : Ω× [0, 2π] → R is a
C2-function, 2π-periodic in t, and Ω ⊂ R is a given open interval.
There are several methods for finding approximations to the periodic solutions

of (1). For instance, the Harmonic Balance method (HBM), recalled in subsec-
tion 2.1, or simply the numerical approximations of the solutions of the differential
equations. In any case, from all the methods we can get a truncated Fourier se-
ries, namely a trigonometric polynomial, that “approximates” an actual periodic
solution of the equation. The aim of this work is to recover some old results of
Stokes and Urabe that allow to use these approximations to prove that near them
there are actual periodic solutions and also provide explicit bounds, in the infinity
norm, of the distance between both functions. To the best of our knowledge these
results are rarely used in the papers dealing with HBM.
When the methods are applied to concrete examples one has to deal with the

coefficients of the truncated Fourier series that are rational numbers (once some
number of significative digits is fixed, see the examples of Section 4) that make
more difficult the subsequent computations. At this point we introduce in this
setting a classical tool, that as far as we know has never been used in this type
of problems: we approximate all the coefficients of the truncated Fourier series by
suitable convergents of their respective expansions in continuous fractions. This is
done in such a way that using these new coefficients we obtain a new approximate
solution that is essentially at the same distance to the actual solution that the
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starting approximation. With this method we obtain trigonometric polynomials
with nice rational coefficients that approximate the periodic solutions.
Before stating our main result, and following [5, 6], we introduce some concepts.

Let x̄(t) be a 2π-periodic C1-function, we will say that x̄(t) is noncritical with
respect to (1) if ∫ 2π

0

∂

∂x
X(x̄(t), t) dt 6= 0. (2)

Notice that if x̄(t) is a periodic solution of (1) then the concept of noncritical is
equivalent to the one of being hyperbolic, see [3].
As we will see in Lemma 2.1, if x̄(t) is noncritical w.r.t. equation (1), the linear

periodic system

y′ =
∂

∂x
X(x̄(t), t) y + b(t),

has a unique periodic solution yb(t) for each smooth 2π-periodic function b(t).
Moreover, once X and x̄ are fixed, there exists a constant M such that

||yb||∞ ≤ M ||b||2, (3)

where as usual, for a continuous 2π-periodic function f ,

||f ||2 =
√

1

2π

∫ 2π

0

f 2(t)dt, ||f ||∞ = max
x∈R

|f(x)| and ||f ||2 ≤ ||f ||∞.

Any constant satisfying (3) will be called a deformation constant associated to x̄
and X. Finally, consider

s(t) := x̄′(t)−X(x̄(t), t). (4)

We will say that x̄(t) is an approximate solution of (1) with accuracy S = ||s||2.
For simplicity, if S̃ > S we also will say that x̄(t) has accuracy S̃. Notice that
actual periodic solutions of (1) have accuracy 0, in this sense, the function s(t)
measures how far is x̄(t) of being an actual periodic solution of (1).
Next theorem improves some of the results of Stokes [5] and Urabe [6] in the

one-dimensional setting. More concretely, in those papers they prove the existence
and uniqueness of the periodic orbit when 4M2KS < 1. We present a similar proof
with the small improvement 2M2KS < 1. Moreover our result gives, under an
additional condition, the hyperbolicity of the periodic orbit.

Theorem 1.1. Let x̄(t) be a 2π-periodic C1–function such that:

- it is noncritical w.r.t. equation (1) and has M as a deformation constant,
- it has accuracy S w.r.t. equation (1).

Given I := [min{t∈R} x̄(t) − 2MS,max{t∈R} x̄(t) + 2MS] ⊂ Ω, let K < ∞ be a
constant such that

max
(x,t)∈I×[0,2π]

∣∣∣∣
∂2

∂x2
X(x, t)

∣∣∣∣ ≤ K.

Then, if

2M2KS < 1,

there exists a 2π-periodic solution x∗(t) of (1) satisfying

||x∗ − x̄||∞ ≤ 2MS
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and it is the unique periodic solution of the equation entirely contained in this
strip. If in addition, ∣∣∣∣

∫ 2π

0

∂

∂x
X(x̄(t), t) dt

∣∣∣∣ >
2π

M
,

then the periodic orbit x∗(t) is hyperbolic and its stability is given by the sign of
this integral.

Once some approximate solution is guessed, for applying Theorem 1.1 we need
to compute the three constants appearing in its statement. In general, K and S
can be easily obtained. Recall for instance that ||s||2, when s is a trigonometric
polynomial, can be computed from Parseval’s Theorem. On the other hand M
is much more difficult to be estimated. In Lemma 2.3 we give a result useful for
computing it in concrete cases, that is different from the approach used in [5, 6, 7].
Assuming that a non-autonomous differential equation has an hyperbolic peri-

odic orbit, the results of [6] also guarantee that, if take a suitable trigonometric
polynomial r̄(t) of sufficiently high degree, we can apply the first part of The-
orem 1.1. Intuitively, while the value of the accuracy S goes to zero when we
increase the degree of the trigonometric polynomial, the values M and K remain
bounded. Thus at some moment it holds that 2M2KS < 1.
In Section 4 we apply Theorem 1.1 to localize the limit cycles and prove its

uniqueness, in a given region, and its hyperbolicity for two planar polynomial
autonomous systems. The first one is considered in Subsection 4.1 and is a simple
example for which the exact limit cycle is already known. We do our study step by
step to illustrate how the method suggested by Theorem 1.1 works in a concrete
example. In particular we obtain an approximation x̄(t) of the periodic orbit by
using a combination between the HBM until order 10 and a suitable choice of
the convergents obtained from the theory of continuous fractions applied to the
approach obtained by the HBM.
The second case corresponds to the rigid cubic system

ẋ = −y + x
10
(1− x− 10x2),

ẏ = x+ y
10
(1− x− 10x2),

that in polar coordinates writes as ṙ = r/10− cos(θ)r2/10− cos2(θ)r3, θ̇ = 1, or
equivalently,

r′ =
dr

dt
=

1

10
r − 1

10
cos(t) r2 − cos2(t) r3, (5)

which has a unique positive periodic orbit, see also [2]. Notice that we have
renamed θ as t. We prove:

Proposition 1.2. Consider the periodic function

r̄(t) =
4

9
− 1

693
cos(t)− 1

51
sin(t)− 1

653
cos(2t)− 1

45
sin(2t) − 1

780
cos(3t).

Then, the differential equation (5) has a periodic solution r∗(t), such that

||r̄ − r∗||∞ ≤ 0.042,

which is hyperbolic and stable and it is the only periodic solution of (5) contained
in this strip.
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As we will see, in this case we will find computational difficulties to obtain the
order three approximation given by the HBM. So we will get it first approaching
numerically the periodic solution; then computing, also numerically, the first terms
of its Fourier series and finally using again the continuous fractions approach to
simplify the values appearing in our computations. We also will see that the same
approach works for other concrete rigid systems.
Similar examples for second order differential equations have also been studied

in [7].

2. Preliminary results

This section contains some technical lemmas that are useful for proving The-
orem 1.1 and for obtaining in concrete examples the constants appearing in its
statement. We also include a very short overview of the HBM adapted to our
interests. See [4] for a more general point of view on the HBM.
As usual, given A ⊂ R, 1A : R → R denotes the characteristic function of A,

that is, the function takes the value 1 when x ∈ A and the value 0 otherwise.

Lemma 2.1. Let a(t) and b(t) be continuous real 2π-periodic functions. Consider
the non-autonomous linear ordinary differential equation

x′ = a(t)x+ b(t). (6)

If A(2π) 6= 0, where A(t) :=
∫ t

0
a(s)ds, then for each b(t) the equation (6) has a

unique 2π-periodic solution xb(t) :=
∫ 2π

0
H(t, s)b(s)ds, where the kernel H(t, s) is

given by the piecewise function

H(t, s) =
eA(t)

1− eA(2π)

[
e−A(s)1[0,t](s) + eA(2π)−A(s)1[t,2π](s)

]
. (7)

Moreover ||xb||∞ ≤ 2πmaxt∈[0,2π] ||H(t, ·)||2 ||b||2.
Proof. Since (6) is linear, its general solution is

x(t) = eA(t)

(
x0 +

∫ t

0

b(s)e−A(s)ds

)
. (8)

If we impose that the solution is 2π-periodic, i.e., x(0) = x(2π), we get

x0 =
eA(2π)

1− eA(2π)

∫ 2π

0

b(s)e−A(s)ds. (9)

By replacing x0 in (8) by the right hand side of (9) we obtain that

xb(t) =
eA(t)

1− eA(2π)

[
eA(2π)

∫ 2π

0

b(s)e−A(s)ds+ (1− eA(2π))

∫ t

0

b(s)e−A(s)ds

]

=
eA(t)

1− eA(2π)

[
eA(2π)

∫ 2π

t

b(s)e−A(s)ds+

∫ t

0

b(s)e−A(s)ds

]

=

∫ 2π

0

H(t, s)b(s)ds.
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Therefore the first assertion follows. On another hand, by the Cauchy-Schwarz
inequality,

|xb(t)| ≤
√∫ 2π

0

H2(t, s)ds

√∫ 2π

0

b2(s)ds.

Therefore

||xb||∞ ≤ 2π max
t∈[0,2π]

||H(t, ·)||2 ||b||2.

This complete the proof. �

Corollary 2.2. A deformation constant M associated to x̄ and X is

M := 2π max
t∈[0,2π]

||H(t, ·)||2,

where H is given in (7) with A(t) =
∫ t

0
∂
∂x
X(x̄(t), t) dt.

Now we prove a technical result that will allow us to compute in practice defor-
mation constants. In fact we will find an upper bound of M that will avoid the
integration step needed in the computation of the norm || · ||2. First, we introduce
some notation.
Given a function A : [0, 2π] → R, a partition ti = ih, i = 0, 1, . . . , N, of the

interval [0, 2π], where h = 2π/N , and a positive number ℓ, we consider the function
L : [0, 2π] → R given by the continuous linear piecewise function joining the points

(ti, A(ti)− ℓ). Notice that L(t) =
∑N−1

i=0 Li(t)1Ii, where Ii = [ti, ti+1] and

Li(t) =
A(ti+1)−A(ti)

h
(t− ti) + f(ti) := −1

2
(αit+ βi).

We will say that L is an adequate lower bound of A if it holds that L(t) < A(t)
for all t ∈ [0, 2π]. It is clear that smooth functions have always adequate functions,
that approach to them.
In next result we will use the following functions

Ψm(t) :=

m−1∑

i=0

Ji + λ2

N−1∑

i=m−1

Ji + (1− λ2)
eβm

αm

(
eαmt − eαmtm

)
, (10)

where

Ji :=

∫ ti+1

ti

e−2L(s)ds =

∫ ti+1

ti

e−2Li(s)ds =
eβi

αi

(
eαiti+1 − eαiti

)

and λ = eA(2π).

Lemma 2.3. Let L be an adequate lower bound of A, where A is the function
given in Lemma 2.1. Consider the functions Ψm(t), m = 0, 1, . . . , N − 1, given
in (10). Therefore, following also the notation introduced in that Lemma, it holds
that ||xb||∞ ≤ N ||b||2, where

N =

√
2π

|1− λ| max
t∈[0,2π]

eA(t)

√√√√
N−1∑

m=0

Ψm(t)1Im(t).
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Proof. Recall that from Lemma 2.1, ||xb||∞ ≤ M ||b||2, where
M := 2π max

t∈[0,2π]
||H(t, ·)||

2
.

So we will find an upper bound of M. Since

H(t, s) =
eA(t)

1− eA(2π)

[
e−A(s)1[0,t](s) + eA(2π)−A(s)1[t,2π](s)

]
,

it holds that

||H(t, ·)||2 =
1√
2π

eA(t)

|1− λ|
√

G(t)

where

G(t) :=

∫ t

0

e−2A(s)ds+ λ2

∫ 2π

t

e−2A(s)ds <

∫ t

0

e−2L(s)ds+ λ2

∫ 2π

t

e−2L(s)ds,

because L(t) < A(t), for all t ∈ [0, 2π].
Assume that t ∈ Im. Then

∫ t

0

e−2L(s)ds =

m−1∑

i=0

Ji +

∫ t

tm

e−2Lm(s)ds

∫ 2π

t

e−2L(s)ds =
N−1∑

i=m

Ji +

∫ tm+1

t

e−2Lm(s)ds =
N−1∑

i=m−1

Ji −
∫ t

tm

e−2Lm(s)ds.

Therefore, for t ∈ Im,

G(t) <
m−1∑

i=0

Ji + λ2
N−1∑

i=m−1

Ji + (1− λ2)

∫ t

tm

eαms+βmds = Ψm(t).

As a consequence, for t ∈ [0, 2π],

G(t) <

N−1∑

m=0

Ψm(t)1Im(t),

and the result follows. �
Remark 2.4. Notice that the above lemma provides a way for computing a defor-
mation constant where there is no need of computing integrals. This will be very
useful in concrete application, where the primitive of e−2A(t) is not computable and
so Corollary 2.2 is difficult to apply for obtaining M.

In next result, which introduces the constant K appearing in Theorem 1.1, D◦

denotes the topological interior of D.

Lemma 2.5. Consider X as in (1). Let D be a closed interval and let x̄(t) be a
2π-periodic C1-function, such that {x̄(t) : t ∈ R} ⊂ D◦. Define

R(z, t) := X(x̄(t) + z, t)−X(x̄(t), t)− ∂

∂x
X(x̄(t), t)z, (11)

for all z such that {x̄(t) + z : t ∈ R} ⊂ D. Then

(i) |R(z, t)| ≤ K
2
|z|2,
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(ii) |R(z, t)−R(z̄, t)| ≤ Kmax(|z|, |z̄|) |z − z̄|,
where

K := max
(x,t)∈D×[0,2π]

∣∣∣∣
∂2

∂x2
X(x, t)

∣∣∣∣ .

Proof. (i). By using the Taylor’s formula, for each t it holds that

X(x̄(t) + z, t) = X(x̄(t), t) +
∂

∂x
X(x̄(t), t)z +

1

2

∂2

∂x2
X(ξ(t), t)z2

for some ξ(t) ∈ 〈x̄(t), x̄(t) + z〉. Therefore

|R(z, t)| =
∣∣∣∣
1

2

∂2

∂x2
X(ξ(t), t)

∣∣∣∣ |z|2 ≤
K

2
|z|2,

as we wanted to prove.

(ii). From Rolle’s Theorem for each fixed t it follows that there exists η(t) ∈ 〈z, z̄〉
such that

|R(z, t)− R(z̄, t)| ≤
∣∣∣∣
∂

∂z
R(η(t), t)

∣∣∣∣ |z − z̄|.

Applying again this theorem, but now to ∂
∂z
R, noticing that ∂

∂z
R(z, t)

∣∣
z=0

= 0, we
obtain that∣∣∣∣

∂

∂z
R(η(t), t)

∣∣∣∣ ≤
∣∣∣∣
∂2

∂z2
R(ω(t), t)

∣∣∣∣ |η(t)| =
∣∣∣∣
∂2

∂x2
X(ω(t), t)

∣∣∣∣ |η(t)| ≤ K|η(t)|,

where ω(t) ∈ 〈0, η(t)〉. Note also that

|η(t)| ≤ max(|z|, |z̄|).
Hence, the result follows combining the three inequalities. �

2.1. The Harmonic Balance method. In this subsection we recall the HBM
adapted to the setting of one-dimensional 2π-periodic non-autonomous differential
equations.
We are interested in finding periodic solutions of the 2π-periodic differential

equation (1), or equivalently, periodic functions which satisfy the following func-
tional equation

F(x(t)) := x′(t)−X(x(t), t) = 0. (12)

Recall that any smooth 2π-periodic function x(t) can be written as its Fourier
series,

x(t) =
a0
2

+

∞∑

m=1

(am cos(mt) + bm sin(mt)) ,

where

am =
1

π

∫ 2π

0

x(t) cos(mt) dt, and bm =
1

π

∫ 2π

0

x(t) sin(mt) dt,

for all m ≥ 0. Hence it is natural to try to approach the periodic solutions of
the functional equation (12) by using truncated Fourier series, i.e. trigonometric
polynomials.
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Let us describe the HBM of order N . Consider a trigonometric polynomial

y
N
(t) =

r0
2
+

N∑

m=1

(rm cos(mt) + sm sin(mt)) ,

with unknowns rm = rm(N), sm = sm(N) for all m ≤ N . Then compute the
2π-periodic function F(y

N
(t)). It has also an associated Fourier series

F(y
N
(t)) =

A0

2
+

∞∑

m=1

(Am cos(mt) + Bm sin(mt)) ,

where Am = Am(r, s) and Bm = Bm(r, s), m ≥ 0, with r = (r0, r1, . . . , rN
) and

s = (s1, . . . , sN
). The HBM consists in finding values r and s such that

Am(r, s) = 0 and Bm(r, s) = 0 for 0 ≤ m ≤ N. (13)

The above set of equations is usually a very difficult non-linear system of equa-
tions and for this reason in many works, see for instance [4] and the references
therein, only small values of N are considered. We also remark that in general the
coefficients of y

N
(t) and y

N+1
(t) do not coincide at all.

Notice that equations (13) are equivalent to
∫ 2π

0

F(y
N
(t)) cos(mt) dt = 0 and

∫ 2π

0

F(y
N
(t)) sin(mt) dt = 0,

for 0 ≤ m ≤ N.
The hope of the method is that the trigonometric polynomials found using this

approach are “near” actual periodic solutions of the differential equation (1). In
any case, as far as we know, the BHM for N small is only a heuristic method that
sometimes works quite well.
To end this subsection, we want to comment a main difference between the non-

autonomous case treated here and the autonomous one. In this second situation
the periods of the searched periodic orbits, or equivalently their frequencies, are
also treated as unknowns. Then the methods works similarly, see again [4].

3. Proof of the main result

Proof of Theorem 1.1. As a first step we prove the following result: consider the
nonlinear differential equation

z′ = X(z + x̄(t), t)−X(x̄(t), t)− s(t), (14)

where s(t) is given in (4). Then a 2π-periodic function z(t) is a solution of (14) if
and only if z(t) + x̄(t) is a 2π-periodic solution of (1).
This is a consequence of the following equalities

(z(t) + x̄(t))′ =[X(z(t) + x̄(t), t)−X(x̄(t), t)− s(t)] + [X(x̄(t), t) + s(t)]

=X(z(t) + x̄(t), t).

By using the function

R(z, t) = X(z + x̄(t), t)−X(x̄(t), t)− ∂

∂x
X(x̄(t), t)z,
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introduced in Lemma 2.5, equation (14) can be written as

z′ =
∂

∂x
X(x̄(t), t)z +R(z, t)− s(t). (15)

Let P be the space of 2π-periodic C0-functions. To prove the first part of the
theorem it suffices to see that equation (15) has a unique C1, 2π-periodic solution
z∗(t), which belongs to the set

N = {z ∈ P : ||z||∞ ≤ 2MS}.
To prove this last assertion we will construct a contractive map T : N → N .

Because N is a complete space with the || · ||∞ norm, its fixed point will be a
continuous function in N that will satisfy an integral equation, equivalent to (15).
Finally we will see that this fixed point is in fact a C1 function and that it satisfies
equation (15).
Let us define T . If z ∈ N then T (z) is defined as the unique 2π-periodic solution

of the linear differential equation

y′ =
∂

∂x
X(x̄(t), t)y +R(z(t), t)− s(t).

Notice that this map is well defined, by Lemma 2.1, because x̄(t) is noncritical
w.r.t. equation (1). Then z1 satisfies

z′1 =
∂

∂x
X(x̄(t), t)z1 +R(z(t), t)− s(t).

Let us prove that T maps N into N and that it is a contraction. By Lemmas
2.1 and 2.5 and the hypotheses of the theorem

||T (z)||∞ = ||z1||∞ ≤ M ||R(z(·), ·)− s(·)||2 ≤ M (||R(z(·), ·)||2 + S)

≤ M(||R(z(·), ·)||∞ + S) ≤ M(
K

2
||z||2∞ + S)

≤ M(2KM2S2 + S) < 2MS,

where we have used in the last inequality that 2M2KS < 1.
To show that T is a contraction on N , take z, z̄ ∈ N and denote by z1 = T (z),

z̄1 = T (z̄). Then

z′1 =
∂

∂x
X(x̄(t), t)z1 +R(z(t), t)− s(t),

z̄′1 =
∂

∂x
X(x̄(t), t)z̄1 +R(z̄(t), t)− s(t).

Therefore

(z1 − z̄1)
′ =

∂

∂x
X(x̄(t), t)(z1 − z̄1) +R(z(t), t)−R(z̄(t), t).

Again by Lemmas 2.1 and 2.5 and the hypotheses of the theorem,

||T (z)− T (z̄)||∞ =||z1 − z̄1||∞ ≤ M ||R(z(·), ·)−R(z̄(·), ·)||∞
≤MKmax(||z||∞, ||z̄||∞)||z − z̄||∞ ≤ 2M2KS||z − z̄||∞,

as we wanted to prove, because recall that 2M2KS < 1.
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Therefore the sequence of functions {zn(t)} defined as

z′n+1(t) =
∂

∂x
X(x̄(t), t)zn+1(t) +R(zn(t), t)− s(t),

with any z0(t) ∈ N , and zn+1(t) chosen to be periodic, converges uniformly to
some function x∗(t) ∈ N . In fact we also have that

zn+1(t) = zn+1(0) +

∫ t

0

(
∂

∂x
X(x̄(w), w)zn+1(w) +R(zn(w), w)− s(w)

)
dw.

Therefore

x∗(t) = x∗(0) +

∫ t

0

(
∂

∂x
X(x̄(w), w)x∗(w) +R(x∗(w), w)− s(w)

)
dw.

We know that x∗(t) is a continuous function, but from the above expression we
obtain that it is indeed of class C1. Therefore x∗(t) is a periodic solution of (15)
and is the only one in N , as we wanted to see.
To prove the hyperbolicity of x∗(t) it suffices to show that

∫ 2π

0

∂

∂x
X(x∗(t), t)dt 6= 0,

and study its sign, see [3]. We have that, fixed t,

∂

∂x
X(x∗(t), t) =

∂

∂x
X(x̄(t), t) +

∂2

∂x2
X(ξ(t), t)(x∗(t)− x̄(t)),

for some ξ(t) ∈ 〈x∗(t), x̄(t)〉. Therefore, since we have already proved that |x∗(t)−
x̄(t)| < 2MS, ∣∣∣∣

∂

∂x
X(x̄(t), t)− ∂

∂x
X(x∗(t), t)

∣∣∣∣ ≤ 2KMS.

Then
∣∣∣∣
∫ 2π

0

∂

∂x
X(x̄(t), t)dt−

∫ 2π

0

∂

∂x
X(x∗(t), t)dt

∣∣∣∣ ≤ 4πKMS <
2π

M

and the results follows because by hypothesis the first integral is, in absolute value,
bigger that 2π/M. �

4. Applications

In this section we apply our result to prove the existence and localize a hyper-
bolic limit cycle of some planar systems, which after some transformations can be
converted into differential equations of the form (1). In the first case, although
we know explicitly the limit cycle, we first use the HBM to approximate it and
then Theorem 1.1 to prove in an alternative way its existence. In the second case
we consider a planar rigid system. First, we found numerically an approximation
of the limit cycle and from this approximation we propose a truncated Fourier
series as a simpler approximation. Finally, Theorem 1.1 is used again to prove the
existence and localize the limit cycle.
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4.1. A simple integrable case. Consider the planar ordinary differential equa-
tion

ẋ = −y + x(a+ dx2 + exy + fy2)
ẏ = x+ y(a+ dx2 + exy + fy2)

(16)

In polar coordinates it writes as

ṙ = ar + (d cos2(θ) + e sin(θ) cos(θ) + f sin2(θ))r3, θ̇ = 1,

or equivalently,

r′ =
dr

dt
= ar + (d cos2(t) + e sin(t) cos(t) + f sin2(t))r3 := X(r, t),

where we have renamed θ as t. The above equation is a Bernoulli equation that
can be solved explicitly. For simplicity we fix a = −1, d = 3, e = 2 and f = 1.
Then we have the equation

ṙ = −r + (cos(2t) + sin(2t) + 2)r3. (17)

Its solutions are r(t) ≡ 0 and

r(t) = ± 1√
2 + cos(2t) + ke2t

.

Therefore its unique positive periodic solution, which corresponds to the only limit
cycle of (16) for the given values of the parameters, is given by the ellipse

r∗(t) =
1√

2 + cos(2t)
. (18)

Moreover since ∫ 2π

0

∂

∂r
X(r∗(t), t) dt = 4π > 0

it is hyperbolic and unstable, see [3]. Its Fourier series is

r∗(t) =
a0
2

+
∞∑

k=1

a2k cos(2t), (19)

where
a0 = 4K√

3π
≈ 1.491498374, a0/2 ≈ 0.745749187,

a2 = 12E−8K√
3π

≈ −0.2016837219,

a4 = −32E+20K√
3π

≈ 0.04065713288,

a6 = 476E−296K√
3π

≈ −0.009092598292,

a8 = −10624E+6604K√
3π

≈ 0.002133790322,

a10 = 105548E−65608K√
3π

≈ −0.0005148662408,

being K = K(
√
6/3) and E = E(

√
6/3) the complete elliptic integrals of the first

and second kind respectively, see [1].
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Let us forget that we know the exact solution and its full Fourier series to
illustrate how to use the HBM and Theorem 1.1 for equation (17) to obtain an
approach to the actual periodic solution (18).
Following the HBM, see subsection 2.1, consider the equation

F(r(t)) = r′(t) + r(t)− (cos(2t) + sin(2t) + 2)r3(t) = 0, (20)

which is clearly equivalent to (17).
Searching for a solution of the form r(t) = r0 and imposing that the first har-

monic of F(r(t)) vanishes we get that r0 + 2r30 = 0. The only positive solution of
the equation is r0 =

√
2/2 ≈ 0.7071 and this is the first order solution given by

HBM.
Motivated by the symmetries of (17) for applying the second order HBM we

search for an approximation of the form

r(t) = r0 + r2 cos(2t).

The vanishing of the coefficients of 1 and cos(2t) in the Fourier series of F(r(t))
give the non-linear system:

g(r0, r2) := r0 − 2r30 −
3

2
r2r

2
0 − 3r22r0 −

3

8
r32 = 0,

h(r0, r2) := r2 − r30 − 6r2r
2
0 −

9

4
r22r0 −

3

2
r32 = 0.

Doing the resultants Res(g, h, r0), Res(g, h, r2) we obtain that the solutions of the
above system are also solutions of

219720r80 − 18852r60 + 4269r40 − 328r20 + 8 = 0,

49437r82 − 70956r62 + 30708r42 − 4288r22 + 128 = 0.

One of its solutions is r0 ≈ 0.7440456581 =: r̃0, r2 ≈ −0.2013905597 =: r̃2.
To know the accuracy of the periodic function r̃(t) = r̃0+ r̃2 cos(2t) as a solution

of (17) we compute

S̃ = ||r̃′(t) + r̃(t)− (2 + sin(2t) + cos(2t))r̃(t)3||2 ≈ 0.1361

Since it is enough for our purposes we can consider simpler rational approxima-
tions of r̃0 and r̃1, but keeping a similar accuracy. For finding these rational
approximations, we search them doing the continuous fraction expansion of these
values. For instance

r̃0 = [0, 1, 2, 1, 9, 1, 21, 17, 3, 11]

giving the convergents 1, 2/3, 3/4, 29/39, 32/43,. . .. Similarly r̃2 gives 1/4, 1/5,
28/139, 29/144,. . .. At this point we have the following new candidate to be an
approximation of the periodic solution

r̄(t) =
3

4
− 1

5
cos(2t).

Its accuracy w.r.t. equation (17) is

S = ||r̄′(t) + r̄(t)− (2 + sin(2t) + cos(2t))r̄(t)3||2 =
√
50069

1600
≈ 0.1398 < 0.14,

and so, quite similar to the one of r̃(t).
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Therefore r̃(t) and r̄(t) are solutions of (17) with similar accuracy so we keep
r̄(t) as the second order approximation given by this modification of the HBM.
For this r̄(t) we already know that its accuracy is S = 0.14.
We need to know the value of M given in Theorem 1.1. With this aim we

will apply Lemma 2.3. We consider in that lemma a function L(t) formed by 13
straight lines and ℓ = 1/9. Then we get that we can take M = 2.3. Therefore,
since 2MS = 0.644 and 0.55 = 11

20
≤ r̄(t) ≤ 19

20
= 0.95.

We have that I = [−0.094, 1.594] in Theorem 1.1. Moreover
∣∣∣∣
∂2

∂r2
X(r, t)

∣∣∣∣ ≤ 6|2 + sin(2t) + cos(2t)||r| ≤ (12 + 6
√
2)|r| ≤ 41

2
|r|

Thus taking K = 41
2
(1.594) ≈ 32.68 we get that 2M2KS ≈ 48.4 > 1 and we can

not apply Theorem 1.1.

Doing similar computations with the successive approaches given by the HBM
we obtain

r̄(t) = 3
4
− 1

5
cos(2t) + 1

25
cos(4t),

r̄(t) = 3
4
− 1

5
cos(2t) + 1

25
cos(4t)− 1

110
cos(6t).

It is worth to comment that the above two functions are periodic functions that
approximate to solution of (17) with accuracies 0.045 and 0.018, respectively,
while the solutions obtained solving approximately the non-linear systems with ten
significative digits have similar accuracies, namely 0.043 and 0.013, respectively.
For none of both approaches Theorem 1.1 applies. Let us see that the next order
HBM works for this example.
If we do all the computations we obtain the candidate to be solution

r̃(t) =

4∑

k=0

r2k cos(2kt),

with

r0 = 0.7457489122, r2 = −0.2016836610, r4 = 0.04065712547,

r6 =− 0.009092599917, r8 = 0.002133823488.

Computing the accuracy of r̃(t) we obtain that it is 0.0039. If we take the approx-
imation, using some convergents of r2k,

r̄(t) =
3

4
− 1

5
cos(2t) +

1

25
cos(4t)− 1

110
cos(6t) +

1

468
cos(8t)

it has accuracy 0.0125. This means that we have lost significative digits and
we need to take convergents of r2k that have at least 3 significative digits. For
instance some convergents of r0 are 1, 2/3, 3/4, 41/55, 44/59,. . . and we choose
44/59. Finally we consider

r̄(t) =
44

59
− 24

119
cos(2t) +

2

49
cos(4t)− 1

110
cos(6t) +

1

468
cos(8t). (21)

The accuracy of r̄ is 0.00394 quite similar to the one of r̃(t). So we take S = 0.004.
Let us see that Theorem 1.1 applies if we take this approximate periodic solution.
In this case, by applying Lemma 2.3, using the piecewise linear function L

formed by 10 pieces and ℓ = 1/10, we obtain that we can take M = 2.4.



14 J. D. GARCÍA-SALDAÑA AND A. GASULL

Since it can be seen that 0.5 ≤ r̄(t) ≤ 1 and 2MS = 0.0192 we can take in
Theorem 1.1 the interval I := [0.4808, 1.0192].
Then

max
I×[0,2π]

∣∣∣∣
∂2

∂r2
X(r, t)

∣∣∣∣ ≤
41

2
(1.02) = 20.91 =: K.

Finally, 2M2KS ≈ 0.96 < 1 and Theorem 1.1 applies.
Finally, it is easy to see that

∫ 2π

0

∂

∂r
X(r̄(t), t)dt > 12.5,

which is bigger than 2π/M ≈ 2.6. Therefore the hyperbolicity of the periodic
orbit given by Theorem 1.1 follows. In short we have proved,

Proposition 4.1. Consider the periodic function r̄(t) given in (21). Then there
is a periodic solution r∗(t) of (17), such that

||r̄ − r∗||∞ ≤ 0.0192,

which is hyperbolic and unstable and it is the only periodic solution of (17) in this
strip.

Remark 4.2. Using the known analytic expression of r∗(t) it can be seen that
indeed

||r̄ − r∗||∞ ≤ 0.0007.

Notice that by using a high enough HBM we have obtained a proof of the
existence of a hyperbolic periodic orbit and an effective approximation r̄(t) without
integrating the differential equation.

4.2. A rigid cubic system. In this section we study some concrete cases of the
family of rigid cubic systems

ẋ = −y − x(a + bx+ x2),
ẏ = x− y(a+ bx+ x2),

(22)

already considered in [2]. In that paper it is proved that (22) has at most one
limit cycle and when it exists is hyperbolic. With our point of view we will find
an explicit approximation of the limit cycle, see Proposition 1.2. We consider the
case a = −b = 1/10, that in polar coordinates writes as (5),

r′ =
dr

dt
=

1

10
r − 1

10
cos(t) r2 − cos2(t) r3,

and we start explaining how we have found the approximation of the periodic
solution of (5) given in Proposition 1.2.

First attempt: the HBM. First we try to apply this method to find an approx-
imation of the periodic solution of (5) that allows to use Theorem 1.1.
Searching for a solution of the form r(t) = r0 and imposing that the first har-

monic of
1

2
r30 −

1

10
r0 +

1

10
cos(t)r20 +

1

2
cos(2t)r30

vanishes we obtain that
1

2
r0

(
r20 −

1

5

)
= 0.
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Hence r0 =
√
5/5 ≈ 0.4472135954 is the first order solution given by the HBM.

We obtain that the positive approximate solution is r =
√
5/5. For applying the

second order HBM we search for an approximation of the form

r(t) = r0 + r1 cos(t) + s1 sin(t).

The vanishing of the coefficients of 1, cos(t) and sin(t) in F(r(t)) provides the
non-linear system

9

4
r20r1 −

5

8
r31 +

3

8
r1s

2
1 +

1

10
r20 +

3

40
r21 +

1

40
s21 −

1

10
r1 = 0,

3

4
r20s1 +

3

8
r21s1 +

1

8
s31 +

1

20
r1s1 −

1

10
s1 − r1 = 0,

1

2
r30 +

9

8
r0r

2
1 −

1

10
r0 +

3

8
r0s

2
1 +

1

10
r0r1 = 0.

By using the same tools than in the previous example we obtain that one of
the approximated solutions of the above system is r0 ≈ 0.4471066159, r1 ≈
−0.0009814101 and s1 ≈ −0.0196567414. We search simple rational approxima-
tions of r0, r1 and s1, doing again the respective continuous fraction expansions
and we obtain the candidate

r̃(t) =
1

2
− 1

1018
cos(t)− 1

50
sin(t),

to be an approximate periodic solution of (5). It can be seen that it has accuracy

S̃ ≈ 0.046. Doing all the computations needed to apply Theorem 1.1 we obtain
that we are not under its hypotheses. Therefore we need to continue with the
HBM of second order.
Doing the second order approach we obtain five algebraic polynomial equations,

that we omit for the sake of simplicity. Unfortunately, neither using the resultant
method as in the previous cases, nor using the more sophisticated tool of Gröbner
basis, our computers are able to obtain an approximate solution to start our
theoretical analysis.

A numerical approach. First, we search a numerical solution of (5) by using the
Taylor series method. From this approximation we compute, again numerically,
its first Fourier terms, obtaining

r̃(t) =
3∑

k=0

rk cos(kt) + sk sin(kt),

where

r0 = 0.4483561517, r1 = −0.0024133439, s1 = −0.0193837572,

r2 =− 0.0037463296, s2 = −0.0220176517,

r3 =− 0.0012390886, s3 = 0.0003784656.

The accuracy of r̃(t) is 0.00289. If we take a new nicer approximation, using again
some convergents of rk and sk, we obtain

r̄(t) =
4

9
− 1

693
cos(t)− 1

51
sin(t)− 1

653
cos(2t)− 1

45
sin(2t)− 1

780
cos(3t), (23)

with accuracy 0.00298, quite similar to the one of r̄1(t). Note that (23) is precisely
the approximation of the periodic solution of (5) stated in Proposition 1.2.
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Proof of Proposition 1.2. We already know that the accuracy of r̄(t) is S := 0.003.
To apply Theorem 1.1 we will compute M and K.
First we calculate A(t) =

∫ t

0
∂
∂r
X(r̄(t), t).

A(t) = 2891685439
72733752000

− 347888350813299559
1778094556332494400

t− 561179
36756720

cos(t)− 685338551
8000712720

sin(t)

− 757058717
48004276320

cos(2t)− 40221206418131
273447836421760

sin(2t)− 2923231
576974475

cos(3t)

+ 37724429
36003207240

sin(3t)− 353400139
96008552640

cos(4t) + 17671001708653999
42674269351979865600

sin(4t)

+ 5358811
300026727000

cos(5t) + 4708003
20001781800

sin(5t) + 1537
207810720

cos(6t)

+ 43551971479
1438264594166400

sin(6t) + 1
327600

cos(7t)− 1
4753840

sin(7t)

− 1
12979200

sin(8t).

Now, by using again Lemma 2.3, we find a deformation constant M . In this
case we use as lower bound for A the piecewise function L formed by 7 straight
lines and ℓ = 1/18. We obtain that we can take M = 7. Therefore 2MS ≈ 0.042.
Since it can be seen that 0.4 ≤ r̄(t) ≤ 0.47 in Theorem 1.1 we can consider the

interval I = [0.358, 0.512].
Then

max
I×[0,2π]

∣∣∣∣
∂2

∂r2
X(r, t)

∣∣∣∣ ≤
1

5
+ 6||r̄||∞ =

1

5
+ 6(0.512) = 3.272 =: K

Finally, 2M2KS ≈ 0.962 < 1 and the first part of Theorem 1.1 applies. Hence
equation (5) has a periodic solution r∗(t) satisfying

||r̄ − r∗||∞ ≤ 0.042, (24)

and is the only one in this strip.
It can also be seen that ∣∣∣∣

∫ 2π

0

∂

∂r
X(r̄(t), t)dt

∣∣∣∣ > 1.2.

Since 2π/M ≈ 0.9, the hyperbolicity of r∗(t) follows applying the second part of
the theorem. �
Notice that the example of system (22) that we have studied is a = λ and b = −λ

with λ = 1/10. With the same techniques it can be seen that the same function
r̄(t) given in the statement of Proposition 1.2 is an approximation of the unique
periodic orbit of the system when |λ− 1/10| < 1/500, which also satisfies (24).
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