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QUALITATIVE STUDY OF A CHARGED RESTRICTED
THREE-BODY PROBLEM

JAUME LLIBRE!, DANIEL PASCA2 AND CLAUDIA VALLS?

ABSTRACT. We characterize the global flow of the restricted three-
body problem in which we have two mass points of equal masses
m1 = mo > 0 and equal charge g1 = g2 moving on a straight line
under Newtonian and Coulombian forces with their centre of mass
being fixed at the origin of coordinates and the third mass point
with infinitesimal mass, is moving on the straight line perpendic-
ular to the line of motion of the first two mass points and passing
through their centre of mass.

1. INTRODUCTION

The classification of all the possible qualitative motions for the New-
tonian three-body problem is an open and difficult problem. This leads
to study several restricted subproblems, like the restricted three-body
problem where one of the masses is assumed to be infinitesimally small.
We consider the case when the two positive masses are equal, have the
same charge and are moving under the respective Newtonian gravi-
tational and Coulombian forces in an orbit on the z—axis while their
center of mass is fixed at the origin of coordinates and the infinitesimal
mass point is moving on the y—axis.

More precisely, let m; = ms be two mass points with the same
charge ¢; = ¢ moving under the influence of the respective Newtonian
gravitational and Coulombian forces in an orbit on the z—axis while
their center of mass is fixed at the origin of coordinates. We consider
a third mass point with infinitesimal mass and no charge moving on
the y—axis. As usual the two bodies with masses m; and my are called
the primaries. Since mz = 0 the motion of the two primaries is not
affected by the third body, and from the symmetry of the motion it
is clear that the third mass point will remain in the y—axis. Taking
the units of mass, charge, length and time conveniently we can assume
that my = my = 1, ¢ = ¢ = V2, and that the gravitational constant

2010 Mathematics Subject Classification. Primary 70F15, 7T0F07.
Key words and phrases. Charged restricted three-body problem, periodic orbits,
global dynamics.
1


10.1016/j.jde.2013.04.012

2 J. LLIBRE, D. PASCA AND C. VALLS

and the Coulombian’s constant are equal to one. The problem is to
study the motion of the infinitesimal mass, and consequently we have
a charged restricted three—body problem. This problem has no collisions
because the repulsion Coulombian force between the primaries is bigger
than the Newtonian attraction force when the primaries are close.

The charged three-body problem (but not restricted, i.e. with the
three masses positive) has been studied recently from other points of
view. Thus in the planar case the spectral stability of the equilateral
equilibrium points has been studied in [7], also in the planar case the
linear stability of its relative equilibria has been analyzed in [1], and in
the collinear case the motion near total collision has been considered
in [3].

A similar problem without charged masses was studied in [3, 4] where
the authors study the qualitative behavior of the collinear restricted
three-body problem with the two positive masses moving in a hyper-
bolic collision orbit and the infinitesimal mass point is moving on a
straight line orthogonal to the motion of the primaries and passing
through its center of mass. Since in our restricted three-body problem
collisions between masses are not possible its dynamics is less rich than
the dynamics of the restricted three-body problem studied in [3, 4].

The equations of motion of this problem in the phase space (y,,t)
are given in section 2. Every solution of this problem is defined for all
time, that is, from —oo to oco.

Initially the equations of motion of the charged three—body problem
are not defined in the singularities of collision and at infinity. Then
for studying the flow near and on these singularities in section 3 we
extend the flow of the system to the boundaries manifold of its phase
space, i.e. to its singularities of collision and infinity. For this, we use
a transformation introduced by Wang [10], see also Meyer and Wang
[9], based in the potential function instead of the moment of inertia
as a scale factor, as it was done by McGehee [8]. By using Wang’s
transformation we extend analytically the flow from the initial phase
space, without including the singularities of collision and infinity, to
two partially compact new phase spaces including such singularities,
one which corresponds to ¢ > 0 and the other to t < 0. We perform
two changes of variable to add these boundaries to the initial phase
space and we give a description of the flow on them.

In section 4 we will prove that the only possible final evolutions of
a solution y(t) of the infinitesimal mass when ¢ — +oo either comes
or escapes to infinity with the same non—zero velocity (H hyperbolic
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motion) or tends to a finite position with zero velocity (P parabolic
motion).
In section 5 we study the manifold formed by parabolic orbits.
From the analytic results of sections 2-5 together with the numerical
ones of section 6 we obtain the description of the global dynamics of
the charged restricted three-body problem which is summarized in the
conclusions section at the end of the paper.

2. EQUATIONS OF MOTION

In this section we deduce the equations of motion of the charged
restricted three-body problem.

Let x denote the distance between the primaries m; and ms, so
(x/2,0) denotes the position of m; and consequently (—z/2,0) that of
msy. If we denote by (0,y) the position of ms (see Figure 1), then the
equations of motion for x and y are

.2
r=—
2 Y
(1) T ey
vy= (xz +4y2)3/2’
where the dot denotes derivative with respect to the time ¢. For more
details on the obtention of the equations of motion (1) see for instance

[1] or [7].
We note that the equations of motion (1) are invariant under the
symmetry

(2) (.T,y,t) - (l’, Y, _t)
So if y(t) is a solution for the motion of the infinitesimal mass, then
—y(—t) is another solution.
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Two times the first integral due to the energy of the primaries is
4
3 i+ — =h.
g -

Note that h only can take positive values.

For obtaining the motion of the primaries we introduce a new time
variable 7 through dt = xdr. Then, the equation of the energy integral
(3) is transformed into

(4) (2')? + 4z = ha?,

where the prime indicates differentiation with respect to 7. The solu-
tion x(7) of (4) such that z(0) =4/h is

~ 2(1+4cosh(VhT))
x(T) = h .

Finally, using the new time s = v/h 7, we have that the motion of the
primaries is given by

2 (14 coshs)

z(s) = g,
(5) 2(s + sinh s)
t(s) = e

In short, we need to study the orbits of a vector field in the three—
dimensional space (y,y,t). More explicitly, the equation of motion of
the charged restricted three—body problem is

_— 16y
(6) Y= (z(1)2 + dy2)3/2

where z(t) is given by (5).

The phase space where the charged restricted three-body problem
is defined is open. In the next section we shall extend the flow of the
boundaries of this open phase space. In this way we can study better
the motion of charged restricted three-body problem near and on its
singularities, collision and infinity.

3. BOUNDARY MANIFOLDS

In order to extend the flow of the system to the boundary manifold
of its phase space we use a transformation introduced by Wang [10],
see also Meyer and Wang [9], based in the potential function instead
of the moment of inertia as a scale factor, as it was done by McGehee
8].
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We do the change of coordinates

(wvywz'.? 3)7 t) — (F17F27G17G27T/)7

given by
Fy =u'a, G, = u'/?#,
(7) Fy=uly, Gy = u''?y,
dt = u**dr’,

where u™' = h —4/z = i* > 0.
From ™' = h —4/x and (7) we get

d(l)_ 4 dx 4G4

dt\u) ~ 22dt  SFE

From (7) and the above relation we get:

du du d /1 4uG,

du _ au /2:_2_<_> 3/2 _ _

dr — dt" Car\u)" FZ

dG2 . dG2 3/2 1 1 du G2 d2y e/2

o= a = Gra et V)
26,6, 16F,

FE o (FE+HARD)YY
dF’ dF’ dx 1 d /1
1_ 40 s (_x_ < >>u3/2

. di atu Fail\y
G1 4UF1G1 3/2 _ 4G1
<u3/2 ud/2F} )u =Gt F’

atu  Var
GQ 4UG1F2 3/2
= (u3/2+ u5/2F12>U/ =Gy +

o e ()

4G Fy
F?

According to the energy equation (3) for the primaries, G3 = 1. We
note that G; = 1 corresponds to the case £ > 0 and G; = —1 to
# < 0. In what follows we denote G = G5 and when appears two signs
together as + or F, the upper corresponds to G; = 1 and the lower to
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G1 = —1. We get the following relations:

du  _ _du
dr’ :FF2’
G 2k 16F,
aw TR (R AR
¥ dh - _ i1+ii
9 : 4FF17
2 2
— G+ =2
dr’ F?

We introduce pseudo—polar coordinates through the change
(F17 F27 G7 7-/) = (907 G7 67 7-)7

defined by
1
Fy = rsin g, &= 1——h7
(9) P r Jr — 2d "
2—§COSQD, T = ET,

where 0 < p <, G=GyeRand 0 < ¢ < 1.

We want to obtain the equations of motion in the coordinates (¢, G, §)
for Gy = 1. In a similar way can be obtain the equations of motion for
G, =—1.

Now using (8) and (9) we can get the equations of motion in the

coordinates (¢, G, &):
dp dedr’" 2dyp

dr  dr'dr EW’

% _ %(Cot—l (%)) _ —%(Gsing@$%cosgo>,

and taking into account that

where

x  4(1=¢) 1 Esingp

F = - = — d —_ =

YT 1S e 41-¢)’
we get
do _ Singp(ﬂ:lcos — G'sin )
dr  1—e\ T "¢ 7)
dG deT’ 4 G 8F2 5 .. 92
& _ebdr A0 & S N & 1
dr ~ dr dr g(jF F? (F12+4F§)3/2) i1 gp s pcosp £ G),
¢ dédr’ 21 du 8 13
b drdr ihedr i - Tan—e
dr dr'dr  £hu?dr EhuF; 2(1-¢)
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So, finally we can write the system of equations of motion in the new
coordinates as follows

dp  sing o1
o= 1_£(Gsmg0 2cosgo>,
¢ & o

(10) = 74<1_§)2(G+4s1n oS ),
a ¢
dr 2(1=¢)’

when GG; = 1. In the same way we can obtain the equations of motion
in the variables (G, &, 7)

dp  singp ) 1
o= 1_§(Gsm<p+zcosgp),
dG 13 9

(11) = 4(1_5)2(6' 4 sin” p cos p),
e ¢
dr  2(1-¢)’

when G; = —1.
Now if we change dr = (1 — £)%do, we get

Z—f =—(1-¢) sincp(Gsingo — %cosgp),
(12) % = —%(G—Félsin%ocosgp),
& g1-¢)
do 2 7
when G; = 1 and
dp =—(1-¢) sin@(Gsinw + 1cos.<p>
do 2 ’
(13) % = %(G—leinz(pcoscp),
de_e1-9)
do 2
when G; = —1. Notice that equations (12) and (13) are naturally

extended to [0, 7] x R x [0, 1].

From (5)ift =0t
t < 0. So, when G,
have that ¢ < 0.

hen © = 0, if t > 0 then £ > 0, and if £ < 0 then
1 we have that ¢t > 0, and when G; = —1 we
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We start with a technical lemma about the asymptotical behavior of
an orbit in the charged two—body problem.

Lemma 1. If x(t) is a solution of the charged two—body problem with
energy h > 0, then

x(t) = Vht when t — +00.

sinh s when s —

2
Proof. From equation (5) we have that t(s) = 732

3/2
+o00, then sinh s = when t — +00. So, again from (5) we have
that
2 AN
t)=—11 1
x(t) o i + ( 5 )
Hence x(t) = V/ht when t — 4o0. O

Proposition 2. When the variable t tends to oo (i.e. the primaries
tend to infinity), then the new time o tends to +oo.

Proof. We know that
2 2 JT-¢

_ ,3/27. 1 _ ,3/2
dt—u/dT’—u/ng—h3/2 ¢

Integrating this equality we obtain that

h3/2/oo § p /&d
t= o=0— 0.
2 to \/1_5 oo 0

We evaluate the integral as follows. First, from (7) and (9) we get that

do.

4
& = " and from Lemma 1 we have that £ = when t — oc.

x h3/2t
So & — 0 when t — oco. Hence for ty sufficiently large we have the

following approximation to our integral:

dt ~ dt ~ —— —dt = 00.
/m JI—¢ . St =~ 357 Lt

So & — oo when ¢t — 0.

Similarly ¢ — —oo when t — —o0. O

The boundary manifolds created by equations (12) and (13) are:
¢ = 1 which corresponds to the flow when the distance between the
primaries is the smallest one; & = 0 which corresponds to the infinity
manifold associated with the primaries when ¢t — 400, see Proposition
2; and ¢ = 0 or ¢ = 7, which give us a fictitious flow because ¢ = 0 or
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¢ = 7 means that the triangle formed by m;, ms and mgs degenerates
to a line on the y—axis with mgs at infinity.

Now we study the phase portraits on the boundaries £ = 0, £ = 1,
¢ = 0 and ¢ = 7 when G; = 1. Using (12) we start by writing the
equations of motion on each of these boundaries:

1. On the boundary ¢ = 0 we have

dy ) <G ) 1 )
—— = —sin sin — — cos
do 2 P 5e89),

G = constant,

and the phase portrait of this differential system is topologically
equivalent to the one on the face & = 0 of Figure 2. The phase
portrait in the closed strip £ = 0 has two straight lines filled of
equilibria in the boundaries of the strip, and a curve filled of
equilibria in the interior of the strip. From every equilibrium
point living in one of the straight lines an orbit exists and ends
in one of the equilibria of the curve filled of equilibria.
2. On the boundary £ = 1 we have

(¢ = constant,

d 1
£ — _Z(G+4sin2<pcoss0)7

and the phase portrait of this differential system is topologically
equivalent to the one on the face £ = 1 of Figure 2. The phase
portrait in the closed strip £ = 1 has a curve filled of equilibria,
to each of such equilibria arrives two orbits, see Figure 2.

3. On the boundaries ¢ = 0 and ¢ = 7™ we have

dG G
Ao~ 4
A E1-¢)
do 2
from where we get
¢ G
¢ 2(1-¢)

This differential system has the first integral H = G+/1 — &.
Then, the phase portrait of this differential system on the faces
¢ =0 and ¢ = 7 is topologically equivalent to the correspond-
ing ones of Figure 2.

We conclude that the phase portrait of the differential system (12) on
the boundaries of its domain of definition {(¢, G,¢) € [0, 7] xR x [0, 1]}
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FIGURE 2. The phase portrait of system (12) on its boundaries.

is topologically equivalent to the phase portrait on the boundaries of
Figure 2. A similar phase portrait can be obtained for the differential
system (13).

4. FINAL EVOLUTIONS

Let Dy = {(¢,G,€) € [0,7] x R x [0,1] with G; = £1}. Given a
point p € D, we have an initial position for the primaries at time
t = ty, where to > 0if p e Dy and ¢ty < 0if p € D_. We denote by
O, (p) (respectively O_(p)) the solution of system (12) (respectively
(13)) which passes through p when ¢t = t;. We fix the new time o = 0
when t = ty. So, we can write

O+(p) = {(¢(p,0),G(p,0),&(p,0)) : for all o € R}.



A CHARGED RESTRICTED THREE-BODY PROBLEM 11

We denote by Of(p) (respectively OF(p)) the positive (respectively
negative) semi-orbit of p, and by w(p) the w-limit set of O, (p) and by
a(p) the a-limit set of O4(p). For definitions of positive or negative
semi—orbit, and a— or w-limit set, see for instance [5]. We also denote

It = {(go,G,O):G: %cotgp}

Pt = (g,o,o) e O,

L+ = I\ Pt

Note that [T is the curve formed by the equilibrium points in the bound-
ary £ = 0 of the differential system (12). The sets {7, P~ and £~ are
defined in a similar way. As usual we denote by Int(D.) the interior
points of D.

Let ¢; be a smooth flow on a manifold M and suppose C'is a subman-
ifold of M consisting entirely of equilibrium points for the flow. C' is
said to be normally hyperbolic if the tangent bundle to M over C' splits
into three subbundles T'C', E®; E* invariant under d¢; and satisfying

(i) d¢, contracts E* exponentially,
(i) d¢, expands E* exponentially,
(iii) TC' = tangent bundle of C.

For normally hyperbolic submanifolds one has the usual existence of
smooth stable and unstable manifolds together with the persistence of
these invariant manifolds under small perturbations. More precisely,
we have the following theorem.

Theorem 3. Let C be a normally hyperbolic submanifold of equilibrium
points for ¢,. Then there exist smooth stable and unstable manifolds
tangent along C to E° & TC and E* & TC, respectively. Furthermore,
both C and the stable and unstable manifolds are permanent under
small perturbations of the flow.

For a proof of Theorem 3 see [6].

Proposition 4. For any p € Int(D.), w(p) is one of the equilibrium
points of IT.

Proof. Since d¢/do < 0, from Figure 2, w(p) is an equilibrium point
either of {¢ = 0} N {{ = 0}, or of {p = 7} N{{ = 0}, or of IT. But
[ is normally hyperbolic with a stable manifold of dimension three,
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because the linear part of system (12) at [ is given by the matrix

—% —sin? 0
0 0 — £ cot (1 4 8sin’ )
0 0 -1

2

On the other hand, the lines ¢ = 0 or ¢ = 7 are also normally hy-
perbolic with one stable manifold of dimension two and one unstable
manifold of dimension two, because the linear part of system (12) at
¢ =0 or ¢ = 7 is given by the matrix

Hence, by Theorem 3 and due to the fact that the boundaries of
{(¢,G,€&) € [0,7] x R x [0,1]} are invariant by the flow of the dif-

ferential system (12) we have that w(p) is one of the equilibrium points
of I, O

Proposition 5. The following statements hold.

(a) The hyperbolic orbits when t — oo (respectively —oo) tend to
infinity in position with nonzero velocity; that is, |y| — oo and
ly| = constant # 0 when t — oo (respectively —o0).

(b) The parabolic orbits when t — oo (respectively —oo) tend to a
finite value in position with zero velocity; that is, |y| — constant
# 0 and |y| — 0 when t — oo (respectively —o0).

Proof. We do the proof when t — oo. The proof when ¢ — —oo is
similar.

From Lemma 1 and its proof, we know that z(t) = vht+O(t*) with

a < 1 when t — oo, and from the changes of variables (7) and (9) and
Proposition 4 we have that

y(t) _ 1

ot = —cot(t) > G

o(t) ~ 20t = Co.
when t — oo, where Gy is the G coordinate of the equilibrium point
of [T which is the w-limit of the solution y(t). Therefore, if Gy # 0 we
have that

y(t) = GoVht + O(t*),

when t — 0.
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Assume that Gy # 0. Going back to the initial equation (6) we have

. 16y(t) 16kt + O(t*)
I = ~Gar T @~ (P AR £ O[T
16kt +O(t*) (16kt + O(t*))(1 4+ O(t*™"))
_k:’t3(1 +O(te1))32 a L't3
_16kt;t30(t ) _ tE;JF O3,

when t — oo, where k = GovVh, k' = (h + 4k*)3?, B = —16k/k # 0
because Gy # 0.

Integrating the last equation between ¢; and ¢, and if ¢; — oo we get
. : B a—2
i(t) — i(o0) = =7 + 0t 2),

where 7(c0) = Govh = k # 0 because Gy # 0. Integrating again
between tg and ¢t we have

y(t) —y(to) = k(t —to) — B(Int — Into) + Ot ) — O(t5™).

If we take ty sufficiently large and think the last equation in function of
time we obtain y(t) = kt — Blnt+ C 4+ O(t*~ 1), where C is a constant.
So, statement (a) is proved.

If the orbit is parabolic, then Gy = 0, and so & = 0 and B = 0.
Hence we have that y(¢) = C'+O(t*!). Then the statement (b) is also
proved. O

Proposition 6. The solution of the system (12), (¢, G,§) = (5,0,€)
corresponds to a collinear motion of the three bodies, where the body
with infinitesimal mass is in rest at the center of masses of both pri-
maries.

Proof. This is an immediate consequence of the changes of variables
(7) and (9). O
5. THE MANIFOLD OF PARABOLIC ORBITS

Following the ideas of Meyer and Wang [9], in order to study the flow
near the equilibrium points of [ we introduce another transformation

cosp — b G — Gy
(14) n=——:, A= ,
§ £
where b = cos¢y and the relation between ¢y and Gq is given by
Gy = %cot wo. In a similar way we would study the flow near the

equilibrium points of [~.
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From Proposition 5 and its proof the parabolic orbits when t —
oo have w-limit the equilibrium point (¢g, Go,0) = (7/2,0,0) of the
differential system (12). Therefore, the equations of motion (12) in the
new variables 1 and A with (g, Go,0) = (7/2,0,0) become

W - (e -2 - )i + VT EF)

do

(15) D= L@-30A+ e 1),
d_ €09
do 2

This differential system is defined in the space (1, A, &) € R? x [0, 1].

We note that the transformation (14) is a blow—up of the equilibrium
point (7/2,0,0) of system (12) to the straight line {\ =0} N {¢ = 0}
filled of equilibrium points of system (15).

Proposition 7. The straight line {\ = 0} N {{ = 0} is a normally

hyperbolic straight line of equilibrium points for the differential system
(15), having a stable manifold of dimension 2.

Proof. 1t is easy to see that the linear part of system (15) at a point of
the straight line {\ =0} N {&{ =0} is

01 0

0 % —To

0 0 —%
So, it has eigenvalues %, —% and 0. Therefore, by Theorem 3 the
proposition follows. O

Corollary 8. The set of parabolic orbits when t — oo (respectively
—00) time is a two-dimensional manifold is the phase space.

Proof. The result for the parabolic orbits when ¢ — oo follows directly
from Proposition 7. Repeating the arguments for the differential system
(13), the result follows for the parabolic orbits when ¢t — —o0. O

6. THE GLOBAL FLOW

In this section we need the following definitions:
HtnH~ with n an odd positive integer denotes the hyperbolic orbits
such that y(—o0) = +00, y(—00) < 0 and y(+o00) = —o0, y(+00) < 0;
H - nH*t with n an odd positive integer denotes the hyperbolic orbits
such that y(—oc0) = —o0, y(—00) = o > 0 and y(+o0) = +o0,
y(+00) =41 > 0;
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HTnH* with n an even positive integer denotes the hyperbolic orbits
such that y(—o00) = 400, y(—00) = gy < 0 and y(+00) = 00, y(+00) =
v > 0;

H nH~ with n an even positive integer denotes the hyperbolic or-
bits such that y(—o0) = —o0, y(—00) = go > 0 and y(+00) = —o0,
y(+00) =11 < 0;

HTnP~ with n an odd positive integer denotes the orbits such that
y(—00) = +00, y(—o0) < 0 and y(+00) = yo < 0, y(+00) = 0;
H-nP* with n an odd positive integer denotes the hyperbolic orbits
such that y(—o0) = —o0, y(—00) = gy > 0 and y(+00) = yo > 0,
y(+00) = 0;

HTnP* with n an even positive integer denotes the hyperbolic orbits
such that y(—oo) = +o0, y(—0) = g9 < 0 and y(+00) = yo > 0,
§(+00) =05

H~nP~ with n an even positive integer denotes the hyperbolic orbits
such that y(—o0) = —o0, y(—o0) = gy > 0 and y(+00) = yo < 0,
§(+00) =05

PtnH~ with n an odd positive integer denotes the hyperbolic orbits
such that y(—o0) = yo > 0, y(—o0) = 0 and y(+00) = —o0, y(+0) <
0;

P nH" with n an odd positive integer denotes the hyperbolic orbits
such that y(—o0) = yo < 0, y(—o00) = 0 and y(+00) = +oo, Yy(+00) =
v > 0;

PTnHT with n an even positive integer denotes the hyperbolic orbits
such that y(—o0) = yo > 0, y(—o0) = 0 and y(+00) = o0, Y(+00) =
v > 0;

P~nH~ with n an even positive integer denotes the hyperbolic orbits
such that y(—o0) = yg < 0, y(—00) = 0 and y(+00) = —o0, y(+00) =
v < 0;

P*TnP~ with n an odd positive integer denotes the parabolic orbits such
that y(—o0) = yo > 0, y(—o00) =0 and y(+00) = y; < 0, y(+00) = 0;
P~nP* with n an odd positive integer denotes the parabolic orbits such
that y(—o0) = yo < 0, y(—o00) =0 and y(+00) = y; > 0, y(+0o0) = 0;
PTnP*t with n an even positive integer denotes the parabolic orbits
such that y(—o0) = yo > 0, y(—o0) = 0 and y(+o00) = y; > 0,
y(+00) = 0;

P~nP~ with n an even positive integer denotes the parabolic orbits
such that y(—o00) = yo < 0, y(—o0) = 0 and y(+o00) = y; < 0,
y(+00) = 0;
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P denotes the special parabolic orbit for which y(¢) = 0 for all ¢ € R,
i.e. the infinitesimal mass is in rest at the center of masses of both
primaries.

Let W*P(¢*) be the curve given by the p-th intersection of the local
stable manifold W*(¢*) with £ = 1 (i.e. with & = 0) following the
orbits of the local manifold W#(¢*) near ¢ in backward time. Of
course, these curves only can be approximated numerically for small
values of p, and the orbits of them have final evolution of type Pt when
t — +oo.

Let W*4(¢~) be the curve given by the g—th intersection of the local
unstable manifold W*(¢~) with £ = 1 following the orbits of the local
manifold W*(¢~) near ¢~ in forward time. Again, these curves only
can be approximated numerically for small values of ¢, and the orbits
through the points of these curves have final evolution of type P~ when
t — —o0.

The orbits through the points of W*4(¢=) NW*P(¢*) with p+ ¢ even
are of the type P nP* with n = p+ ¢ — 1. Applying the symmetry
(2) to these orbits we get orbits of type PTnP~.

The orbits through the points of WS?(¢+) NW*4({*) with p+ ¢ odd
are of the type PTnP* with n = p + ¢ — 1. Applying the symmetry
(2) to these orbits we get orbits of type P~nP~.

Let N be the set of all positive integers. The points belonging to the
open regions of & = 1 which are in the complement of the curves

(g

qeN pEN

correspond to the hyperbolic orbits of type one of the following four
types HEnH=.

The points belonging to the curves [J, o W*(¢7), which are not
in the curves (J,cy W*P(£), correspond to orbits of type one of the
following two types P~nH*. Applying the symmetry (2) to these orbits
we get orbits of type PTnHT.

The points belonging to the curves | J oy W*P(£F), which are not
gen W(£7), correspond to orbits of type one of the
following two types HEnPT. Applying the symmetry (2) to these orbits
we get orbits of type HTnP~.

in the curves J
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7. CONCLUSIONS

For the charged restricted three-body problem there is numerical
evidence that the following statements hold:

(1) There is a two-dimensional continuum of hyperbolic solutions y(t)
of the infinitesimal mass of the types HtnH ™=, H nH*, H nH" and
H nH"™.

(ii) There is a one-dimensional continuum of solutions y(¢) of the infini-
tesimal mass of the types PtnH =, PtnHY, P nHT, P nH~, H nPT,
HnP~, H nP~ and H nPT.

(iii) There are parabolic solutions y(t) of the infinitesimal mass of the
types PTnP~, P~ nP*, PTnP* P nP~.

(iv) There is a unique parabolic solution y(t) of the infinitesimal mass
of the type P.

(v) There are no other types of solutions than the ones of the statements

(i), (i), (iii) and (iv).
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