

1 **Title: Telomere length analysis in Cushing's syndrome**

2
3 **Authors and institutions:**
4 Anna Aulinas^{1*}, María-José Ramírez², María-José Barahona^{3,4}, Elena Valassi^{1,4}, Eugenia
5 Mato⁵, Alicia Santos^{1,4}, Iris Crespo^{1,4}, Olga Bell^{1,5}, Jordi Surrallés², Susan M Webb^{1,4}.
6

7 1. Sant Pau Biomedical Research Institute. Endocrinology/Medicine Departments. Hospital de Sant Pau.

8 Universitat Autònoma de Barcelona, Barcelona, Spain.

9 2. Universitat Autònoma de Barcelona. Department of Genetics and Microbiology and Center for Biomedical
10 Network Research on Rare Diseases (CIBERER Unit 745), Bellaterra, Barcelona, Spain.

11 3. Hospital Universitari Mutua Terrassa, Endocrinology Department Terrassa, Barcelona, Spain.

12 4. Center for Biomedical Network Research on Rare Diseases (CIBERER Unit 747), ISCIII. Hospital de
13 Sant Pau.

14 5. Center for Biomedical Network Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-
15 BBN). Hospital de Sant Pau. Endocrinology Department, Barcelona, Spain.

16

17 **Corresponding author's e-mail:** aaulinasm@gmail.com. **Mail address:** Hospital de Sant Pau. Servei
18 d'Endocrinologia. C/Sant Antoni Maria Claret, 167, 08025-Barcelona, Spain. Telephone number: 0034
19 935565661/Fax number: 0034 935565602.

20 **Short title:** Telomere length in Cushing's syndrome

21 **Keywords:** Cushing syndrome, telomere length, hypercortisolism, cortisol

22 **Word count:** 5200 words

23

24

This is not the definitive version of record of this article. This manuscript has been accepted for publication in *European journal of endocrinology*, but the version presented here has not yet been copy-edited, formatted or proofed. Consequently, Bioscientifica accepts no responsibility for any errors or omissions it may contain. The definitive version is now freely available at DOI: [10.1530/EJE-14-0098](https://doi.org/10.1530/EJE-14-0098). 2014."

25 **Abstract:**

26 **Introduction:** Hypercortisolism in Cushing's syndrome(CS) is associated with increased morbility and
27 mortality. Hypercortisolism also occurs in chronic depressive disorders and stress, where telomere
28 length(TL) is shorter than in controls. We hypothesized that telomere shortening might occur in CS and
29 contribute to premature aging and morbidity.

30

31 **Aim:** investigate TL in CS compared to controls.

32

33 **Methods:** Seventy-seven CS patients (14 males, 59 pituitary, 17 adrenal, 1 ectopic; 21 with active disease)
34 were compared to 77 gender-, age- and smoking- matched controls. 15 CS were evaluated longitudinally,
35 during active disease and after remission of hypercortisolism. Leukocyte TL was measured by TRF-Southern
36 technique. Clinical markers were included in a multiple linear regression analysis to investigate potential
37 predictors of TL.

38

39 **Results:** Mean TL in CS and controls was similar (7667 base pairs-bp- vs 7483,NS). After adjustment for
40 age, in the longitudinal evaluation, TL was shorter in active disease than after remission (7273 vs
41 7870,p<0.05). Age and dyslipidemia were negative predictors($p<0.05$), and total leukocyte count a positive
42 predictor for TL($p<0.05$). As expected, a negative correlation was found between TL and age (CS $r-0.4$ and
43 controls $r-0.292,p<0.05$). No correlation was found between circulating cortisol, duration of exposure to
44 hypercortisolism or biochemical cure and TL.

45

46 **Conclusion:** Even though in the cross-sectional comparison of CS and controls no difference in TL was
47 found, in the longitudinal evaluation, patients with active CS had shorter TL than after biochemical cure of
48 hypercortisolism. These preliminary results suggest that hypercortisolism might negatively impact on
49 telomere maintenance. Larger group of patients are needed to confirm these finding.

50

51 **Introduction**

52 Cushing's syndrome (CS), a rare disease due to excessive cortisol secretion, is associated with increased
53 mortality and severe morbidity (increased cardiovascular risk and fatigability, osteopenia,
54 neuropsychological alterations and impaired health-related quality of life- HRQoL), not completely
55 reversible after biochemical control (1). The mechanisms by which these abnormalities do not recover
56 completely appear to be complex and are not currently well understood. Hyperstimulation of the
57 hypothalamic-pituitary-adrenal axis also resulting in hypercortisolism may also occur in psychiatric diseases
58 like acute and chronic stress and post-traumatic stress disorder (2,3). These situations are associated with
59 poor health indexes and telomere length (TL) has been found to be shorter than in matched controls (4).

60 Telomeres are repetitive DNA sequences, located at the end of linear chromosomes, essential to maintain
61 genomic stability. Without telomeres, genetic material could be lost after every cell division; thus, when
62 telomeres are critically short, cell division stops and senescence and apoptosis are induced (5). To avoid
63 telomere attrition and to maintain TL, germ-line cells and a few somatic cells produce an enzymatic complex
64 called telomerase. Telomerase function can be regulated by genetic, epigenetic, environmental and hormonal
65 factors (5). These include mainly stress hormones such as cortisol, catecholamines, estrogens and growth
66 factors.

67 In this line, accelerated telomere shortening, higher levels of urinary catecholamines and free urinary cortisol
68 have been observed in situations with high perceived psychological stress (in sisters of patients with cancer,
69 in acute mental stress) (6). In vitro studies have shown a 50% reduction of telomerase activity in
70 lymphocytes after exposure to high levels of hydrocortisone (7) and a rapid and dynamic loss of telomeric
71 sequences after exposure of mice thymocytes to dexamethasone (8). Shorter leukocyte TL has been described
72 associated with elevated cortisol responses and dysregulated patterns of daily cortisol secretion in women
73 who are patient caregivers (9). Recently, a longitudinal study evaluating the association between coexisting
74 changes in cortisol and telomerase activity in peripheral blood mononuclear cells (PBMCs) has been
75 published (10). The authors examined whether participation in mindfulness-based interventions and
76 improvements in psychological distress and metabolic factors were associated with increases in telomerase
77 activity. They observed that serum cortisol levels were negatively correlated with changes in telomerase
78 activity, suggesting that changes in stress-related cortisol might be one of the signals regulating telomerase

79 levels in humans.
80 This evidence led us to hypothesize that telomere shortening may be behind the increased morbidity and
81 features of premature ageing in patients with CS. Hypercortisolemia could contribute to premature ageing by
82 inducing accelerated telomere shortening, which in turn could be implied in the persistent morbidity and
83 clinical consequences associated with CS, even years after biochemical remission. Since TL is an indicator
84 of chromosome stability, proliferative capacity and cellular ageing, measuring TL could contribute to the
85 understanding of its clinical and biological significance. To the best of our knowledge, telomere dysfunction
86 has not been evaluated in CS patients before.

87 The aim of this study was to investigate TL in patients diagnosed with CS compared to sex-, age- and
88 smoking- matched healthy controls and to evaluate whether normalization of the hypothalamic-pituitary-
89 adrenal axis after treatment reverses possible abnormalities.

90

91 **SUBJECTS AND METHODS**

92 **Subjects**

93 In this case-control study, patients with endogenous CS followed in our institution since 1982 were eligible.
94 Patients with adrenal carcinoma were excluded. Seventy-seven CS patients and 77 controls, matched for
95 gender, age and smoking participated in the study. Fourteen were men (18.2%) and 63 women (81.8%).
96 Mean age at the time of the study was 48.6 ± 12.8 years. Fifty-nine patients were of pituitary origin (76.6%),
97 17 of adrenal origin (adrenal adenoma or bilateral macronodular hyperplasia) and in one patient the origin
98 was unknown (ectopic ACTH secretion of unknown source). Twenty-one patients (27.3%) had active disease
99 at the time of the study and 56 (72.7%) were cured; mean time of remission of hypercortisolism was 6.4 ± 7.2
100 years. Eight active CS patients (38%) were treated with metyrapone, 6 (28.5%) with ketoconazole and 3
101 (14.2%) with both drugs. Mean duration of endogenous hypercortisolism was 72 months (range 11-264).
102 Duration of hypercortisolism was considered as the period between onset of symptoms (as referred by the
103 patients) and remission of hypercortisolism (in patients in remission) or the time of current analysis (in active
104 patients). The period between onset of symptoms and biochemical diagnosis of CS was 34 months (range 3-
105 120). Twenty-two patients (28.6%) had received pituitary radiotherapy and 71 (92.2%) had undergone
106 surgery. Fifty-three % (n=41) were cured after initial treatment and had no recurrence and 19.5% (n=15)

107 were cured after further therapies for recurrent disease. Fifteen cured patients (19.5%) were adrenal
108 insufficient at the time of telomere analysis and required substitution therapy with hydrocortisone (mean
109 dose 17.6 ± 3.7 mg, range 10-20). Nine (11.7%) patients were GH-deficient (4 of which were replaced with
110 recombinant human GH); 8 women (10.4%) were gonadotropin-deficient (all on estrogen/progesterone
111 hormone replacement therapy), and 15 patients (19.4%) were hypothyroid, 10 due to TSH deficiency and 5
112 due to primary hypothyroidism (all on L-thyroxine replacement). CS was considered in remission if either
113 adrenal insufficiency was demonstrated (basal morning cortisol < 100 nmol/l [$< 4\mu\text{g}/\text{dl}$] and/or undetectable
114 24-h free urinary cortisol) or morning cortisol suppression (< 50 nmol/l, $< 1.8 \mu\text{g}/\text{dl}$) after 1 mg
115 dexamethasone overnight was observed. Twenty-five patients (32%) were on antihypertensive medication,
116 17 (22%) on statin treatment for dyslipidemia, and 12 (16%) were treated with calcium and vitamin-D.

117 In a subgroup of 15 CS (all women) patients studied initially with active disease, a second analysis of TL
118 was performed once they were in remission. In this longitudinal study, 3 were of adrenal origin and 12 of
119 pituitary origin. Mean age at the time of active disease was 43.5 ± 12.1 years and at remission was 46.6 ± 11.3
120 years. The time elapsed between both analyses was 40.1 ± 15.6 months and mean time of remission was
121 28.5 ± 14.1 months. Three cured patients (20%) were adrenal insufficient at the time of telomere analysis and
122 required substitution therapy with hydrocortisone (mean dose 18.3 ± 2.2 mg, range 10-20); 4 patients (26.6%)
123 were hypothyroid, 2 due to TSH deficiency and 2 due to primary hypothyroidism (all on L-thyroxine
124 replacement). None of the cured patients were GH-deficient; 7 women (46.6%) were postmenopausal at
125 remission but no gonadotropin-deficiency was observed (n=8).

126

127 Seventy-seven controls selected from the blood bank donor's database or from healthy volunteers recruited
128 among hospital employees were matched for gender, age and smoking status, three features known to affect
129 TL. Namely, age is an important determinant of TL, typically decreasing with advancing age (11). Females
130 usually present longer TL than males, since estrogens stimulate telomerase activity and protect DNA from
131 reactive oxygen species (ROS)-induced damage (12). Cigarette smoke constituents increase cumulative and
132 systemic oxidative stress and inflammation, which induce increased white blood cell turnover, resulting in
133 accelerated TL shortening (13). Medical history and physical examination excluded any who reported
134 glucocorticoid exposure, severe and/or acute diseases and severe psychiatric alterations (however, anxiety

135 and mild depression were not exclusion criteria). Four controls (5.7%) were on antihypertensive therapy,
136 another 4 (5.7%) were receiving statin treatment for dyslipidemia, and 3 (4.3%) were treated with calcium
137 and vitamin-D.

138

139 Anthropometry (weight, height, body mass index and waist/hip ratio) was measured in patients and controls.
140 Hypertension was defined as systolic blood pressure > 140 mmHg or diastolic blood pressure > 90 mmHg or
141 the use of antihypertensive medications. Dyslipidemia was defined as total cholesterol (TC) >220 mg/dl,
142 low-density lipoprotein (LDL) >130 mg/dl, triglyceride levels \geq 150 mg/dl or treatment with lipid-lowering
143 medication. Diabetes mellitus was confirmed with fasting glucose levels >126 mg/dL in two consecutive
144 determinations or 2-hour glucose after OGTT >200 mg/dL. Adult patients were considered osteopenic when
145 T score was <-1 and >-2.5 or osteoporotic when T score was <-2.5 SD.

146 All participants provided a blood sample for DNA extraction and gave their informed consent. The study was
147 approved by the hospital ethics committee.

148

149 **Methods**

150 Genomic DNA extraction from total leukocytes was performed using an adapted Proteinase K and Phenol
151 protocol (14). Blood samples from the patients were collected in EDTA tubes to reduce DNA degradation.
152 Genomic DNA was isolated from blood buffy coats. The buffy coat and white blood cell pellets were stored
153 frozen at -80°C prior to processing. The white blood cell layers were harvested and digested with buffer
154 containing 0.1 M MgCl₂, 0.02 M EDTA, 0.5% SDS, 0.01 M Tris, pH 8.0, and 1 mg/mL of proteinase K at
155 37°C overnight. The lysates were homogenized by passes through a blunt 20-gauge needle (0.9 mm
156 diameter) at 4°C temperature and DNA was purified by phenol:chloroform:isoamyl alcohol (25:24:1)
157 extraction, and ethanol precipitation. Finally, genomic DNA was dissolved in Tris-EDTA buffer and was
158 quantified by spectrophotometric analysis. The quality of genomic DNA was checked for high molecular
159 weight by 1% agarose gel electrophoresis.

160

161 TL measurements were performed by the telomere restriction fragment assay (TRF) using the Telo TAGGG
162 Telomere Length Assay Kit (Roche 12209136001). Briefly, 1 µg of DNA was digested with 20 units of RsaI

163 and Hinfl for 2 h at 37°C. Samples were loaded on a 0.5% Seakem® Gold Agarose gel and were run for 21 h
164 at 35 V. Gels were treated with HCl, denaturalized and neutralized, and then transferred to a nylon membrane
165 by capillarity for 12-18 h. After fixation with UV, hybridization was carried out with a DIG-labelled
166 telomeric probe (3 h at 42°C). Finally, restriction washes, incubation with anti-DIG-AP antibody and
167 detection by chemiluminiscence was carried out. Images were analysed with the program Quantity One. TRF
168 mean was calculated using the formula: TRF mean = $\sum OD_i / \sum (OD_i / L_i)$, where OD_i is the chemiluminiscent
169 signal and L_i is the length of the TRF fragment at position i (15). The accuracy of Southern Blot technique is
170 up to ± 300 base pairs (16). A control sample, 2 μ g of digested DNA derived from a single batch of Hela
171 cells, was run on each gel to minimize interassay variation. The mean TL for Hela cells was 4113bp with a
172 standard deviation of ± 210 bp, which is in the range of the accuracy of Southern Blot technique.

173

174 **Biochemical, hormone and bone analyses**

175 Routine serum determinations were performed by standard automated laboratory methods: fasting glucose,
176 total cholesterol, high and low-density lipoprotein (HDL/LDL) cholesterol and triglyceride levels. Blood
177 counts were performed using automated cell counters. Twenty-four-hour urinary free cortisol was measured
178 with a commercial RIA with prior extraction with an organic solvent. Plasma ACTH, serum cortisol and IGF-
179 1 levels were measured using a commercial chemiluminiscent immunometric assay. Lumbar spine and whole
180 body bone mineral density and content (BMD and BMC) were measured by DXA scanning (Delphi QDR
181 4500; Hologic); the mean precision error (CV) was 1%.

182

183 **Statistical analysis**

184 Statistical analyses were performed using the SPSS 19.0 statistical package for Windows (SPSS Inc, Chicago
185 Illinois). Initially a descriptive analysis of all variables was performed in order to verify correct introduction
186 of data in the database. Quantitative data are expressed as mean and SD (Gaussian distribution) or as median
187 and range (non-Gaussian distribution), and categorical data are expressed as percentages. Data distribution
188 was analyzed by the Kolmogorov-Smirnov test. TL variable was normally distributed. Logarithmic
189 transformations were performed where necessary to normalize the distribution of a particular measure.
190 Comparison between 2 groups was performed using Student's t (Gaussian distribution) or Mann-Whitney's

191 U (non-Gaussian distribution) tests. A Chi-square test was performed for categorical variables. Fisher exact
192 test was performed when appropriate. Pearson's correlation coefficient was used to estimate linear
193 association between two quantitative variables. Analysis of covariance (ANCOVA) was performed to
194 evaluate TL after adjustment for age and for total leukocyte count (as covariates). Multiple linear regression
195 analysis including age, gender, body mass index, T2DM, dyslipidemia, hypertension, psychiatric history,
196 duration of hypercortisolism, current hypercortisolism, total leukocytes and 24 hour urinary free cortisol as
197 potential predictive factors for TL (as dependent variable) was performed.

198 P values < 0.05 were considered significant.

199

200 RESULTS

201 Comparison between CS and matched controls (Tables 1 and 2).

202 Main baseline characteristics of CS patients and controls are summarized in table 1. CS patients had more
203 hypertension, diabetes, dyslipidemia and osteoporosis than their matched controls ($p<0.05$). Mean TL values
204 in CS and controls are summarized in Figure 1. No differences were observed between males and females
205 (7732 ± 1242 vs. 7540 ± 1361 bp, respectively). TL did not differ between CS and controls (7667 ± 1260 vs.
206 7483 ± 1214 , respectively, ns). TL did not differ between active CS, cured CS (with or without secondary
207 adrenal insufficiency) and their matched controls (Figure 1).

208 As expected, a negative linear correlation between age and TL in the whole sample was observed ($R = -$
209 0.341 , $p <0.001$). When both groups were evaluated separately, this negative correlation was maintained in
210 CS patients ($R = -0.400$, $p < 0.001$) and in controls ($R = -0.292$, $p < 0.01$) (Figure 2). A positive correlation
211 was found between IGF-1 and TL in CS patients ($R = 0.331$, $p < 0.05$), but was not correlated with the
212 presence or absence of GH deficiency or rhGH replacement therapy. No differences in TL were observed
213 related to the presence of pituitary deficiencies and/or replacement therapies either. No correlation was
214 observed between duration of hypercortisolism and TL ($R = -0.025$, p NS), or between morning serum
215 cortisol ($R = 0.047$, p NS), 24 hour urinary free cortisol ($R=0.072$, p NS) or plasma ACTH ($R=0.192$, p NS)
216 and TL. In active CS patients, we did not observed differences in TL according to steroidogenesis inhibitors
217 we used (metyrapone 8258 ± 1178 vs ketoconazole 7896 ± 1432 , NS).

218 In the multiple linear regression analysis performed to identify potential predictive factors of TL, we

219 observed that age and dyslipidemia were negative predictive factors for TL shortening (p=0.006 and p 0.017,
220 respectively), while total leukocyte count was a positive predictor for TL (p=0.043) (R^2 0.23), indicating that
221 more leukocytes were associated with longer TL. The main leukocyte cell subtypes count (neutrophils and
222 lymphocytes) differed between active CS patients and controls (Table 2), but not between cured CS patients
223 and their healthy controls. After adjustment for total leukocyte count as covariate, no differences in TL
224 between the 21 active CS and their controls were observed either (7600 ± 1197 vs 7450 ± 1274 , p NS).

225

226 **Longitudinal analysis in CS patients evaluated both during active disease and in remission**

227 As expected, patients were older once remission was attained. Ten patients (66%) clearly showed an
228 increment of TL upon remission of CS. In 5 (33%) TL decreased after remission (Figure 3), but was minimal
229 in 2 and of doubtful relevance, since it was around the detection limit of 300 bp (around 4%) TL's variation
230 in our population (20). Moreover, after adjustment for age as covariate, TL was shorter in active disease than
231 after remission (7273 ± 1263 vs. 7870 ± 1039 , respectively, p<0.05) in the same patients (figure 3), in sharp
232 contrast with TL shortening usually observed as age increases. No significant differences in the presence of
233 hypertension, dyslipidemia, diabetes or use of medications were observed between the group of patients who
234 increased their TL during remission and those who did not increase TL. Patients who incremented TL, also
235 decreased their body mass index more after remission than those who did not increase TL (-2.3 kg/m^2 vs. -0.8 kg/m^2) although due to the small group size, it did not reach statistical significance (p = 0.19). A trend for
236 a positive correlation between TL at remission and duration of remission was also seen ($R = 0.494$, p=0.061).

238

239 **DISCUSSION**

240 To the best of our knowledge, this is the first study to evaluate TL in this rare disease and with a relatively
241 large series of CS patients. When investigated longitudinally, our preliminary data show that patients with
242 active CS have a shorter TL, which become longer after hypercortisolism disappeared with effective
243 treatment. However, in the cross-sectional case-control study comparing all patients with CS and matched
244 controls, no differences in TL were found. This was also the case when patients with active hypercortisolism,
245 and those considered in remission (with or without concomitant adrenal insufficiency) were compared with
246 their respective matched controls.

247 CS patients provide a unique opportunity to examine the effects of hypercortisolism on telomere
248 maintenance. CS determines increased morbidity and mortality, especially in the untreated state but also after
249 therapy when compared to background population (1, 17). Severe morbidities are also increased even in the
250 3 years prior to diagnosis when compared to normal population, and are not completely reversible after
251 endocrine cure (17). The mechanisms by which CS patients do not recover completely after biochemical
252 remission are still unknown. It is possible that telomere dysfunctions partially contribute to these
253 abnormalities. In other situations where hypercortisolism is often present such as chronic stress and some
254 psychiatric conditions, TL has been found to be shorter than in matched controls (6,9). These previous
255 evidences took us to hypothesize that TL shortening could contribute to the increased morbidity and features
256 of premature ageing observed in endogenous hypercortisolism of CS. Thus, we planned this study in order to
257 investigate the telomere system in these patients.

258 We have evaluated a significant number of CS patients (n=77), a rare disease with an incidence ranging from
259 0.7 to 2.4 cases per million inhabitants per year (18). They were carefully matched for age, gender and
260 smoking status with controls. These relatively small groups may contribute to explain why no differences in
261 TL were observed between CS and controls. Furthermore, many other factors apart from hypercortisolism
262 may affect TL, both individual and environmental (genetic, epigenetic, socio-economic status, lifestyle,
263 growth factors, etc) (5). Additionally, TL may be affected by what is known as a “pseudolengthening”
264 mechanism (19); specifically, TL of lymphocytes becomes increasingly shorter than those of granulocytes
265 over the years (20). And since a redistribution of leukocyte cell type is often seen in hypercortisolism
266 (lymphopenia and neutrophilia) this may also affect the measured TL obtained from the total leukocyte count
267 (21). In fact, we did find that in active disease total leukocyte and neutrophil counts were higher and
268 lymphocytes lower than in matched controls. We observed that total white blood cell counts in each
269 individual blood sample also affected TL, and CS patients had higher total leukocyte counts compared to
270 healthy controls, similar to other series (21). However, after adjustment for total leukocyte count (as a
271 covariate) no differences in TL between CS and their healthy controls were identified.

272 In the multiple regression analysis, leukocytes count together with age and the presence of dyslipidemia were
273 predictive factors for TL, explaining 23 percent of the TL present in our CS patients. Not surprisingly, age
274 was a negative predictive factor for TL, in the whole sample and in the different subgroups analysed. A

275 positive correlation was also seen between IGF1 levels and TL, as described in healthy population (11, 22).
276 Both findings support the reliability and validity of our results and the methodology used, since similar
277 correlations have been described in much larger populations (but not in CS patients)(14); namely TL was
278 positively correlated with serum IGF1 and negatively associated with age in a cohort of 476 healthy
279 Caucasians aged 16-104 years (22). We also observed a negative correlation between TL and dyslipidemia as
280 described in other paradigms, where cholesterol has been associated with faster biological aging (23).

281 As expected, some baseline characteristics differed between CS and controls, such as serum morning cortisol
282 and 24 hour urinary free cortisol, certain cardiovascular risk factors and psychiatric conditions (anxiety and
283 depression), which were more prevalent in CS patients. Most of these features have recently been related to
284 telomere dysfunctions (9, 24), although not all results published in the literature are concordant (25). Even
285 though in the case-control regression analysis they did not seem to have impacted on TL with the exception
286 of dyslipidemia which negatively affected TL, we can not rule out that in much larger studies some of these
287 clinical features could determine TL in some way or another. We did not find any influence of medical
288 treatment to reduce cortisol during active disease or glucocorticoid replacement in patients with adrenal
289 insufficiency after CS therapy on TL.

290 The longitudinal analysis of 15 patients evaluated both during hypercortisolism and in remission, adjusting
291 for age (as a covariate), confirmed our initial hypothesis, since patients with hypercortisolism during active
292 disease did have shorter telomeres than later in remission (average 596 bp). In spite of being 40.1 ± 15.6
293 months older at remission, TL was longer and positively associated with duration of remission. Although this
294 finding is very preliminary based on a small number of patients, which makes difficult to reach firm
295 conclusions, it would support our initial hypothesis of a negative effect of a hyperactive hypothalamic-
296 pituitary-adrenal axis on TL and cell senescence observed in other studies. Accelerated telomere shortening
297 was observed in a group of 647 women (who had a sister with breast cancer) with higher perceived stress and
298 higher levels of urinary free cortisol and catecholamines (6). Similarly, shorter buccal cell TL was observed
299 in children exposed to laboratory stressors with higher levels of salivary cortisol and higher autonomic
300 reactivity (26). Greater cortisol responses and dysregulated patterns of daily cortisol secretion were
301 associated with shorter leukocyte TL in 14 postmenopausal women caregivers of a partner with dementia
302 compared to matched noncaregiver controls (27). Consistent with this and with our longitudinal results, one

303 in vitro study observed how exposure to high hydrocortisone levels comparable to those that might be
304 reached in vivo during stress, reduced telomerase activity in lymphocytes (7). As the major pathway for
305 telomere lengthening seems to be through telomerase activation, this could explain why a patient could have
306 shorter TL during hypercortisolism. It is probably that when cortisol normalizes, a recovery of telomerase
307 activity takes place, increasing TL or lowering attrition rates.

308 Contrary to this evidence and to our results, a recent publication showed telomere shortening associated with
309 hypocortisolism was observed in patients with high levels of chronic stress exposure or high degrees of
310 inflammation which could lead to an exhaustion of the HPA axis. It is difficult to identify the mechanism
311 responsible for accelerated telomere shortening in hypocortisolism, often preceded by a hypercortisolaemic
312 phase in long-term chronic stress exposure, suggesting that TL could be a measure of cumulative stress (28).

313 We found no differences in TL in our hypocortisolaemic patients compared to cured patients without
314 secondary adrenal insufficiency; an explanation could be that all adrenal insufficient patients were correctly
315 replaced with hydrocortisone.

316 Lifestyle modifications like increased physical activity after remission may also increase TL, as reported in
317 some studies, by inducing changes in telomerase activity. The mean fall in BMI in patients who increased TL
318 was greater than in those who decreased TL after remission (-2.3 kg/m² vs. -0.8 kg/m²), but did not reach
319 statistical significance, probably due to the small sample size in the longitudinal evaluation. This change in
320 BMI may contribute to explain the increase in TL in cured patients, similarly that seen in a recent
321 longitudinal intervention study with Mediterranean diet, where BMI was inversely correlated with changes
322 TL (29).

323 A model of dynamic telomere balance under stress has been suggested, in which severe stress first would
324 lead to increased turnover and depletion of circulating cells followed by a compensatory re-population when
325 stress ends (in short stress conditions). This model could also be present in CS patients, but has to be
326 confirmed. It would appear to be important to distinguish between true reversal of telomere shortening and
327 replenishment by younger cells (“pseudo-lengthening”) that probably takes place in CS after remission (19).
328 The study has several limitations. The sample size, although respectable considering that CS is a rare disease,
329 precludes any analysis in different etiological subgroups of CS. This also did not allow to control for all
330 potential confounders especially medical treatment during active disease, physical activity, current stress, etc.

331 Especially in hypocortisolemic patients after surgery for CS a perfect cortisol replacement is an elusive goal.
332 Although the results of the longitudinal evaluation are the opposite to what is expected by increasing age and
333 it is an interesting result, this finding is certainly preliminary based on a small group of patients. We could
334 not include the remaining 6 active patients, because 4 of them still present active disease and we lost the
335 follow up in two patients. A larger group of patients, as well as a larger group of patients followed
336 longitudinally would clearly strengthen the conclusion of our preliminary findings. White blood cells, the
337 most characterized tissue source for telomere studies, easily obtainable from peripheral blood, may vary in
338 their cell type's distribution in blood as seen in CS patients. TL variability even in the same cell and for
339 individuals of similar age complicates any conclusions on telomere biology in CS patients (30). Most studies
340 on telomere biology and ageing are much larger and cross-sectional but large scale, longitudinal, prospective
341 and well-designed studies are lacking. It would be interesting to evaluate TL in other tissues such as the
342 pituitary or the adrenal in CS, since glucocorticoids induce changes in the immune system; however, this
343 would be even more difficult than obtaining peripheral leukocytes for TL evaluation. As well as, we could
344 not measure telomerase activity, which probably could provide a more direct approach on both telomere
345 system and its dynamics.

346 The main conclusion of this study is that in individual CS patients in whom hypercortisolism is controlled
347 after successful treatment, TL increases despite being on average 3 years older. It would appear, therefore,
348 that telomerase activity would be induced once hypercortisolism disappears, and this could be one of the
349 mechanisms by which increased morbidity, mortality and biological ageing improve when disease is
350 controlled. However, in the entire group of CS patients no difference in TL was observed when compared to
351 healthy controls, pointing to the fact that many other factors determine TL apart from age, including
352 dyslipidemia, healthier life-styles or differences in leukocyte subsets cell counts. Larger prospective studies
353 are required to confirm these changes in TL in CS and investigate implications of these abnormalities further.

354

355

356 **Declaration of interest:** The authors declare that there is no conflict of interest that could be perceived as
357 prejudicing the impartiality of the research reported.

358 **Funding:** This work was supported by grants from the Spanish Ministry of Health, ISCIII, PI 11/00001 and

359 PI 08/0302 and by a Young Investigator Award of Fundación de la Sociedad Española de Endocrinología y
360 Nutrición (FSEEN) to AA. JS's laboratory is funded by the Generalitat de Catalunya (SGR0489-2009) and
361 the ICREA-Academia award. CIBERER is an initiative of the ISCIII, Spain.

362 **Acknowledgments:** We thank Dr. Ignasi Gich for statistical advice and Dr. Eulalia Urgell for advice on
363 routine biochemical measurements.

364

365

1. Valassi E, Crespo I, Santos A & Webb SM. Clinical consequences of Cushing's syndrome. *Pituitary* 2012 **15** 319–329
2. Pariante CM & Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. *Biol Psychiatry* 2001 **49** 391–404
3. Aulinas A, Ramírez MJ, Barahona MJ, Mato E, Bell O, Surrallés J & Webb SM. Telomeres and endocrine dysfunction of the adrenal and GH/IGF-1 axes. *Clin Endocrinol (Oxf)* 2013 **79** 751-759.
4. Price LH, Kao H-T, Burgers DE, Carpenter LL & Tyrka AR. Telomeres and early-life stress: an overview. *Biol Psychiatry* 2013 **73**:15–23
5. Calado RT & Young NS. Telomere diseases. *N Engl J Med* 2009 **361** 2353–2365
6. Parks CG, Miller DB, McCanlies EC, Cawthon RM, Andrew ME, DeRoo LA & Sandler DP. Telomere length, current perceived stress, and urinary stress hormones in women. *Cancer Epidemiol Biomarkers Prev* 2009 **18** 551–560
7. Choi J, Fauce SR & Effros RB. Reduced telomerase activity in human T lymphocytes exposed to cortisol. *Brain Behav Immun* 2008 **22** 600–605
8. Ichiyoshi H, Kiyozuka Y, Kishimoto Y, Fukuhara S & Tsubura A. Massive telomere loss and telomerase RNA expression in dexamethasone-induced apoptosis in mouse thymocytes. *Exp Mol Pathol* 2003 **75** 178–186
9. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M & Wong KK. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. *Biol Psychiatry* 2006 **60** 432–435
10. Daubenmier J, Lin J, Blackburn E, Hecht FM, Kristeller J, Maninger N, Kuwata M, Bacchetti P, Habel PJ & Epel E. Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study. *Psychoneuroendocrinology* 2012 **37** 917–

11. Müezzinler A, Zaineddin AK & Brenner H. A systematic review of leukocyte telomere length and age in adults. *Ageing Res Rev* 2013 **12** 509-519.
12. Bayne S, Jones MEE, Li H & Liu J-P. Potential roles for estrogen regulation of telomerase activity in aging. *Ann N Y Acad Sci* 2007 **1114** 48–55
13. Babizhayev MA & Yegorov YE. Smoking and health: association between telomere length and factors impacting on human disease, quality of life and life span in a large population-based cohort under the effect of smoking duration. *Fundam Clin Pharmacol* 2011 **25** 425–442
14. Sambrook J, Fritschi EF & Maniatis T 1989 Molecular cloning: a laboratory manual. Vol 1 Cold Spring Harbor Laboratory Press, 2nd edition. New York, ISBN 0-87969-309-6.
15. Castella M, Puerto S, Creus A, Marcos R & Surralles J. Telomere length modulates human radiation sensitivity in vitro. *Toxicol Lett* 2007 **172** 29–36
16. Lin KW & Yan J. The telomere length dynamic and methods of its assessment. *J Cell Mol Med* 2005 **9** 977-989.
17. Dekkers OM, Horváth-Puho E, Jorgensen JO, Cannegieter SC, Ehrenstein V, Vandenbroucke JP, Pereira AM & Sorensen HT. Multisystem morbidity and mortality in Cushing's syndrome: a cohort study. *J Clin Endocrinol Metab* 2013 **98** 2277-2284.
18. Valassi E, Santos A, Yaneva M, Tóth M, Strasburger CJ, Chanson P, Wass JA, Chabre O, Pfeifer M, Feelders RA, Tsagarakis S, Trainer PJ, Franz H, Zopf K, Zacharieva S, Lamberts SW, Tabarin A & Webb SM; ERCUSYN Study Group. The European Registry on Cushing's syndrome: 2-year experience. Baseline demographic and clinical characteristics. *Eur J Endocrinol* 2011 **165** 383-392.
19. Epel E. How “reversible” is telomeric aging?. *Cancer Prev Res (Phila)* 2012 **5** 1163–1168
20. Aubert G & Lansdorp PM. Telomeres and aging. *Physiol Rev* 2008 **88** 557–579

21. Sauer J, Polack E, Wikinski S, Holsboer F, Stalla GK & Arzt E. The glucocorticoid sensitivity of lymphocytes changes according to the activity of the hypothalamic-pituitary-adrenocortical system. *Psychoneuroendocrinology* 1995 **20** 269–280

22. Barbieri M, Paolisso G, Kimura M, Gardner JP, Boccardi V, Papa M, Hjelmborg JV, Christensen K, Brimacombe M, Nawrot TS, Staessen JA, Pollak MN & Aviv A. Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. *Mech Ageing Dev* 2009 **130** 771–776

23. Harte AL, da Silva NF, Miller MA, Capuccio FP, Kelly A, O'Hare JP, Barnett AH, Al-Daghri NM, Al-Atlas O, Alokail M, Sabico S, Tripathi G, Bellary S, Kumar S & McTernan PG. Telomere length attrition, a marker of biological senescence, is inversely correlated with triglycerides and cholesterol in South Asian Males with type 2 diabetes mellitus. *Exp Diabetes Res.* 2012 895185. doi: 10.1155/2012/895185

24. Fuster JJ & Andrés V. Telomere biology and cardiovascular disease. *Circ Res* 2006 **99** 1167-1180.

25. Ye S, Shaffer JA, Kand MS, Harlapur M, Muntner P, Epel E, Guernsey D, Schwartz JE, Davidson KW, Kirkland S, Honig LS & Shimbo D. Relation between leukocyte telomere length and incident coronary heart disease events (from the 1995 Canadian Nova Scotia Health Survey). *Am J Cardiol* 2013 **111** 962-967.

26. Kroenke CH, Epel E, Adler N, Bush NR, Obradovic J, Lin J, Blackburn E, Stamperdahl JL & Boyce WT. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. *Psychosom Med* 2011 **73** 533–540

27. Tomiyama AJ, O'Donovan A, Lin J, Puterman E, Lazaro A, Chan J, Dhabhar FS, Wolkowitz O, Kirschbaum C, Blackburn E & Epel E. Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. *Physiol Behav* 2012 **106** 40–45

28. Wikgren M, Maripuu M, Karlsson R, Nordfjäll K, Bergdahl J, Hultdin J, Del-Favero J, Roos G, Nilsson LG, Adolfsson R & Norrback KF. Short telomeres in depression and the general population are associated with a hypocortisolemia state. *Biol Psychiatry* 2012 **71** 294-300.

29. García-Calzón S, Gea A, Rzquin C, Corella D, Lamuela-Raventós RM, Martínez JA, Martínez-González MA, Zalba G & Martí A. Longitudinal association of telomere length and obesity indices in an intervention study with a Mediterranean diet: the PREDIMED-NAVARRA trial. *International Journal of Obesity* 2013 1-6. doi: 10.1038/ijo.2013.68.

30. Surrallés J, Hande MP, Marcos R & Lansdorp PM. Accelerated telomere shortening in the human inactive X chromosome. *Am J Hum Genet* 1999 **65** 1617-1622.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383 **FIGURE LEGENDS:**

384 **Figure 1.** Telomere length (TL) in the whole group of Cushing's syndrome (CS) patients and controls
385 (7667±1260 vs 7483±1214 bp.), as well as in patients with active CS (7943±1309 vs 7230±1591 bp.), cured
386 CS without (7510±1219 vs 7639±1335 bp.) or with adrenal insufficiency (AI) (7727±1323 vs 7394±1411
387 bp.) compared with their respective matched controls. No differences were observed. * Abbreviations: CS,
388 Cushing's syndrome; AI, adrenal insufficiency; TL, telomere length.

389

390 **Figure 2.** Telomere length in relation to age in patients with Cushing's syndrome (•) and controls (◦).
391 Telomere length is shortened with advancing age in both CS ($R = -0.400$, $p <0.001$) and controls ($R = -0.292$,
392 $p <0.01$). *Abbreviations: bp. base pairs.

393

394 **Figure 3. 3A:** Changes in telomere length (TL) in 15 patients in whom samples were obtained both during
395 active hypercortisolism (7273±1263 bp.) and after remission (7870±1039 bp.). **3B:** TL increased in 10/15
396 patients, increasing age. The dotted line shows the detection limit of the Southern Blot technique.
397 *Abbreviations: bp. base pairs; CS. Cushing's syndrome

398

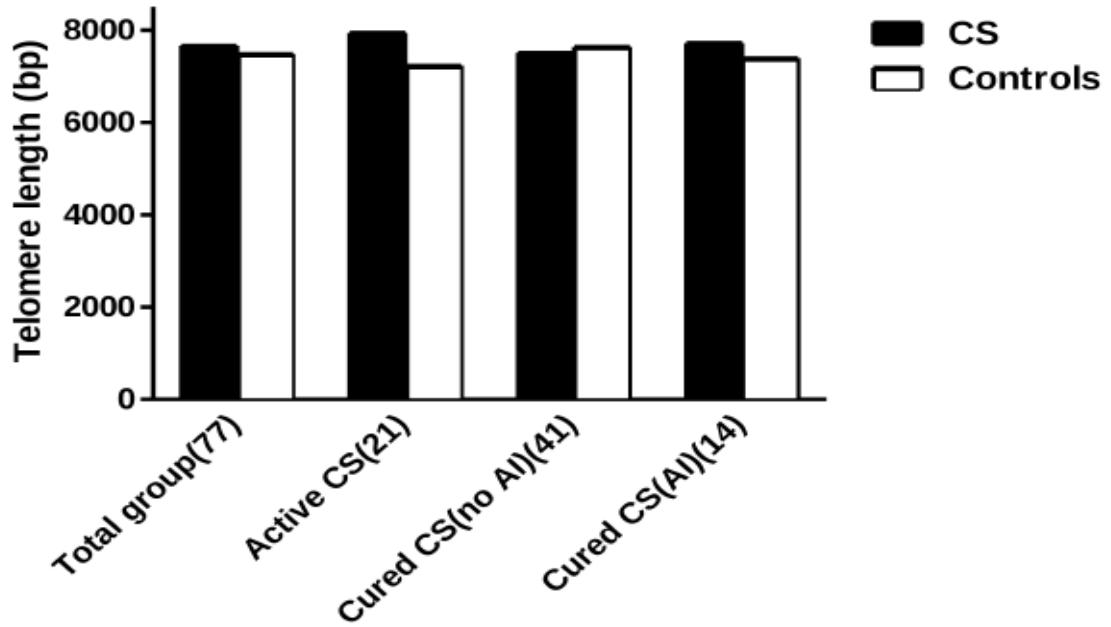
399

400

401

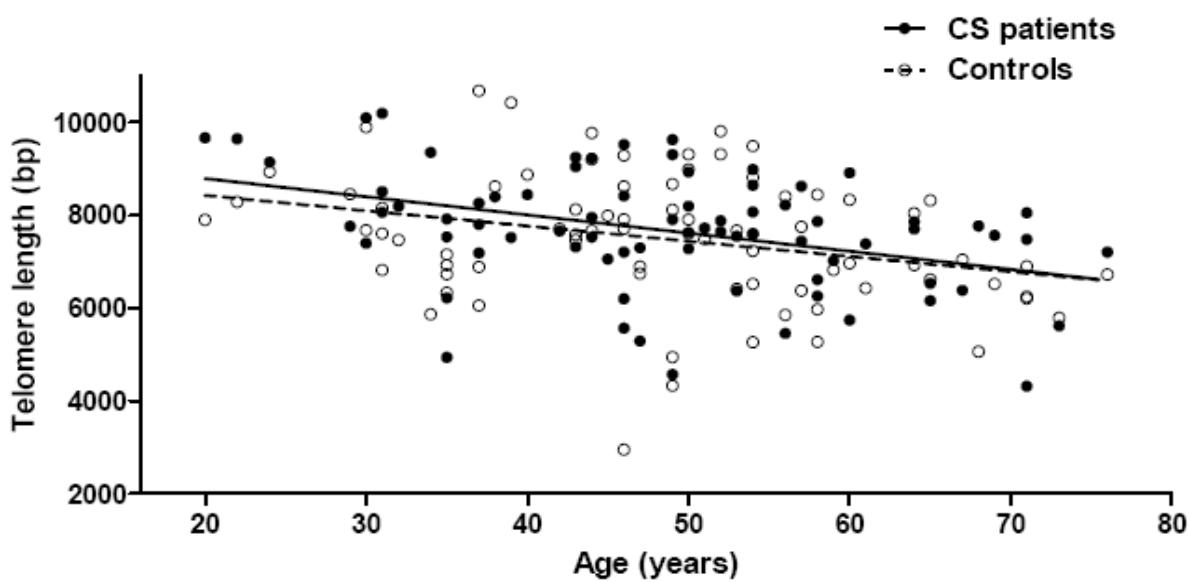
403 **TABLES:**

404 **Table 1.** Baseline characteristics of patients with Cushing's syndrome (CS) and controls. Data are presented
 405 as % and mean \pm SD.

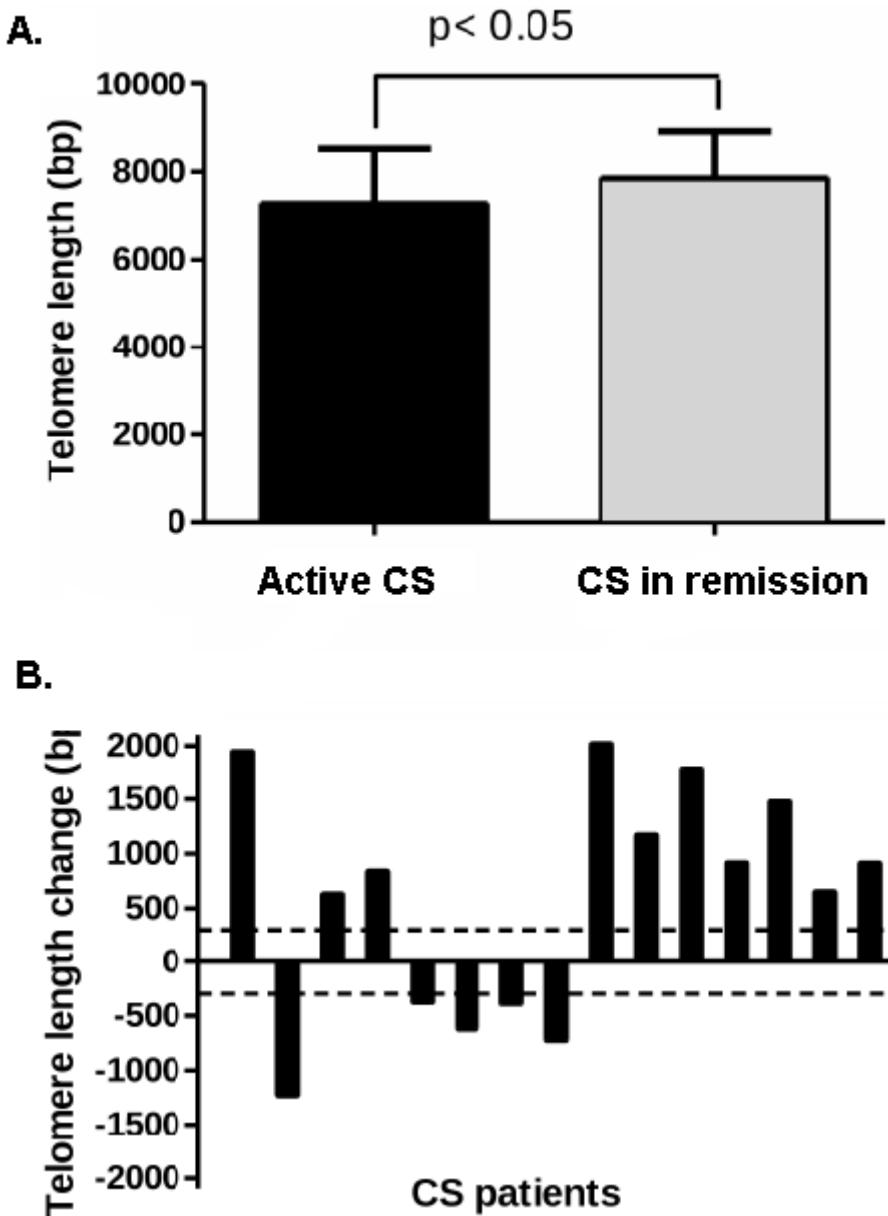

	CS (n=77)	Controls (n=77)	p
Age (years)	48.6 \pm 12.8	48.4 \pm 12.6	NS
Smokers	24.7%	19.4%	NS
Alcohol consumption	26%	27.3%	NS
Diabetes mellitus (type 2)	14.3%	1.4%	<0.05
Arterial hypertension	57.1%	12.9%	<0.001
Dyslipidemia	45.5%	20.0%	<0.05
Osteoporosis	29.9%	2.9%	<0.001
Psychiatric history	37.7%	11.4%	<0.001
Body mass index (kg/m ²)	28 \pm 5.6	26.4 \pm 4.9	<0.05
Waist to hip ratio	0.92 \pm 0.07	0.85 \pm 0.07	<0.05
24h urinary free cortisol (nmol/24 hours)	266 \pm 180	132 \pm 59	<0.001
Morning serum cortisol (nmol/l)	450 \pm 259	375 \pm 120	<0.05
Leukocytes (x10 ⁹ /l)	7.3 \pm 2.3	5.8 \pm 1.7	<0.05
Neutrophils (x10 ⁹ /l)	4.4 \pm 2.0	3.5 \pm 1.2	<0.05
Lymphocytes (x10 ⁹ /l)	2.1 \pm 0.8	1.9 \pm 0.4	NS

407 **Table 2.** Total leukocyte counts and leukocyte main subsets distribution (neutrophils and lymphocytes) of
 408 Cushing's syndrome (CS) patients during active disease and remission and their matched controls. Data are
 409 expressed as mean \pm SD.

	CS	Controls	p
-Leukocytes in active disease (x10⁹/l) (n=21):			
.neutrophils (%)	8.8 \pm 2.3	5.9 \pm 1.4	<0.01
.lymphocytes (%)	64.7 \pm 11.0	55.5 \pm 6.1	<0.05
	24.5 \pm 9.1	32.1 \pm 7.8	<0.05
-Leukocytes in cured patients without adrenal insufficiency (x10⁹/l) (n=41):			
.neutrophils (%)	6.7 \pm 2.1	5.8 \pm 1.8	<0.05
.lymphocytes (%)	57.1 \pm 8.2	54.9 \pm 13.8	NS
	31.1 \pm 6.6	30.9 \pm 7.1	NS
-Leukocytes in cured patients with adrenal insufficiency (x10⁹/l) (n=15):			
.neutrophils (%)	6.6 \pm 1.5	6.2 \pm 2.1	NS
.lymphocytes (%)	58.3 \pm 8.7	52.5 \pm 7.7	NS
	29.6 \pm 9.6	34.5 \pm 6.6	NS


410 *Abbreviations: bp. base pairs

412 **Figure 1.** Telomere length (TL) in the whole group of Cushing's syndrome (CS) patients and controls
413 (7667±1260 vs 7483±1214 bp.), as well as in patients with active CS (7943±1309 vs 7230±1591 bp.), cured
414 CS without (7510±1219 vs 7639±1335 bp.) or with adrenal insufficiency (AI) (7727±1323 vs 7394±1411
415 bp.) compared with their respective matched controls. No differences were observed.


416
417 * Abbreviations: CS, Cushing's syndrome; AI, adrenal insufficiency; TL, telomere length

418 Figure 2. Telomere length in relation to age in patients with Cushing's syndrome (●) and controls (○).
419 Telomere length is shortened with advancing age in both CS ($R = -0.400$, $p < 0.001$) and controls ($R = -0.292$,
420 $p < 0.01$).

421
422 *Abbreviations: bp. base pairs.

423 Figure 3. A: Changes in telomere length (TL) in 15 patients in whom samples were obtained both during
424 active hypercortisolism (7273 ± 1263 bp.) and after remission (7870 ± 1039 bp.). 3B: TL increased in 10/15
425 patients, increasing age. The dotted line shows the detection limit of the Southern Blot technique.
426

427
428
429
430 *Abbreviations: bp. base pairs; CS. Cushing's syndrome

