

1 **Assessing the energetic and environmental impacts of the operation  
2 and maintenance of Spanish sewer networks from a life-cycle  
3 perspective**

4 Anna Petit-Boix<sup>a,\*</sup>, David Sanjuan-Delmás<sup>a</sup>, Sergio Chenel<sup>b</sup>, Desirée Marín<sup>c</sup>, Carles M. Gasol<sup>a,d</sup>,  
5 Ramon Farreñy<sup>a,d</sup>, Gara Villalba<sup>a,e</sup>, María Eugenia Suárez-Ojeda<sup>e</sup>, Xavier Gabarrell<sup>a,e</sup>, Alejandro  
6 Josa<sup>f,g</sup>, Joan Rieradevall<sup>a,e</sup>

7 <sup>a</sup>Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA),  
8 Universitat Autònoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193  
9 Bellaterra, Barcelona, Spain.

10 <sup>b</sup>CETqua, Water Technology Centre, Edificio Emprendia. Campus Sur, s/n, Universidad de  
11 Santiago de Compostela, 15782 Santiago de Compostela, Spain.

13 <sup>c</sup>CETqua, Water Technology Centre, Carretera d'Esplugues 75, 08940 Cornellà de Llobregat,  
14 Barcelona, Spain.

16 <sup>d</sup>Inèdit Innovació SL, Research Park of the Universitat Autònoma de Barcelona, Carretera de  
17 Cabrils, km 2, 08348 Cabrils, Barcelona, Spain.

19 <sup>e</sup>Department of Chemical Engineering, School of Engineering (ETSE), Universitat Autònoma  
20 de Barcelona (UAB), Campus of the UAB, Bellaterra (Cerdanyola del Vallès), 08193  
21 Barcelona, Catalonia, Spain.

23 <sup>f</sup>Department of Geotechnical Engineering and Geosciences, School of Civil Engineering,  
24 Universitat Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain.

26 <sup>g</sup>Institute of Sustainability, Universitat Politècnica de Catalunya-Barcelona Tech (UPC),  
27 Barcelona, Spain.

29 \*Corresponding author: Anna Petit Boix ([anna.petit@uab.cat](mailto:anna.petit@uab.cat); [anna.petitboix@gmail.com](mailto:anna.petitboix@gmail.com)).  
30 Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA),  
31 Universitat Autònoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193  
32 Bellaterra, Barcelona, Spain. Telephone number: (+34) 935868644

39     **Abstract**

40     The environmental impacts resulting from sewer networks are best analysed from a life-cycle  
41     perspective to integrate the energy requirements of the entire lifetime in the infrastructure  
42     design. The energy requirements for pumping wastewater depend on the configuration of the  
43     city (e.g., climate, population, length of the sewer, topography, etc.). This study analyses and  
44     models the effect of such site-specific features on energy consumption and related effects in a  
45     sample of Spanish cities. The results show that the average annual energy used by sewers (6.4  
46     kWh/capita and 0.014 kWh/m<sup>3</sup> of water flow) must not be underestimated because they may  
47     require up to 50% of the electricity needs of a typical treatment plant in terms of consumption  
48     per capita. In terms of Global Warming Potential, pumping results in an average of 2.3 kg  
49     CO<sub>2</sub>/capita. A significant positive relationship was demonstrated between the kWh consumed  
50     and the length of the sewer and between other factors such as the population and wastewater  
51     production. In addition, Atlantic cities can consume 5 times as much energy as Mediterranean  
52     or Subtropical regions. A similar trend was shown in coastal cities. Finally, a simple predictive  
53     model of the electricity consumption was presented that considers the analysed parameters.

54

55     **Keywords:** Energy, sewer, LCA, operation, city

56

57 **Highlights**

58 The electricity consumption in sewers varies depending on the city.

59 Spanish sewers consume, in average, 6.4 kWh per capita.

60 Atlantic cities require more energy to pump wastewater than Mediterranean regions.

61 The electricity needs depend on the length of the sewer and the wastewater production

62

63 **Introduction**

64 **1.1 The urban water cycle**

65 Urban regions are high-populated areas in which more than 50% of the world's population lives  
66 (The World Bank 2012), and the urban exodus is expected to increase in the coming years  
67 (Pacione 2009). Cities can be envisioned as an urban ecosystem with certain metabolic  
68 requirements, namely "the materials and commodities needed to sustain the city's inhabitants at  
69 home, at work and at play" (Wolman 1965). One of these material flows is the supply and  
70 treatment of water. Considering that urban regions are expected to host a greater share of  
71 inhabitants in the future, coping with more efficient water infrastructure is essential to  
72 sustainably satisfy these demands. Hence, the different stages of the urban water cycle must be  
73 analysed (**Figure 1**).

74 <Figure 1>

75 In the current situation of climate change and urban growth, water and energy challenges are  
76 closely related. For instance, Drinking Water (DWTP) and Wastewater Treatment Plants  
77 (WWTP) are more energy intensive in large cities because of greater water and wastewater  
78 production (EUREAU 2009); moreover, water is pumped longer distances through a network of  
79 pipes. As a result, if urban sprawl increases because of the construction of new settlements, the  
80 structural configuration of the cities and pipe networks may vary, and the intensity of this effect  
81 depends on geography. In addition, urban expansion may cause certain networks to be obsolete  
82 and inefficient; hence, urban planning is essential to optimise these systems. As a consequence,  
83 the water-energy relationship should be thoroughly analysed to discover environmentally  
84 friendly solutions in the design of these networks (in this case the sewer system) to minimise the  
85 environmental burdens caused by urban areas.

86

87

88 **1.2 Energy impacts of the sanitation infrastructure**

89 Among the stages of the urban water cycle, the analysis of sanitation infrastructure is important  
90 because of the effects wastewater can potentially cause to the environment and human health.  
91 Sanitation infrastructure consists of (1) the sewer and stormwater network, which collect and  
92 transport wastewater and stormwater runoff, and (2) the WWTPs, in which wastewater is  
93 treated.

94 The energy consumed in the operation and maintenance (O&M) of sanitation infrastructure has  
95 been addressed in the past, notably for WWTPs, which are generally thought to be energy-  
96 intensive consumers. A study conducted on Japanese water networks revealed that the  
97 wastewater treatment process requires nearly 40% of the energy consumed in sanitation  
98 (Shimizu et al. 2012), whereas only 9% of the energy is consumed by the pumping of the  
99 wastewater. Similarly, Roberts et al. (2008) considered the O&M of PWTPs and WWTPs  
100 relevant because it accounted for 35% of the energy used by the municipality; as a result, energy  
101 optimisation strategies were presented (e.g., energy audits, monitoring and process  
102 optimisation) to reduce energy and economic costs (Biehl and Inman 2010).

103 The energy and environmental impacts can be analysed using Life Cycle Assessment (LCA)  
104 (ISO 2006) to determine the stage with the greatest impacts. From a life-cycle point of view, the  
105 contribution of sanitation infrastructure to the burden of the entire urban water cycle varies  
106 depending on the city. WWTPs in Oslo (Norway) require 82% of the electricity used in the  
107 entire water cycle (Venkatesh and Brattebø 2011). In Alexandria (Egypt), 18% of the impacts of  
108 the urban water cycle derived from WWTPs with high energy consumption (Mahgoub et al.  
109 2010). In the case study of Aveiro (Portugal), the electricity consumption exceeded 80% of the  
110 impact for most indicators for water extraction and treatment, but not in the case of the WWTP,  
111 where the role of wastewater discharge is much more relevant (Lemos et al. 2013). This  
112 variability could be because of the water consumption, the population density, the climate and  
113 the wastewater composition.

114 Additionally, the different components in sanitation infrastructure are not always accounted for  
115 in the most appropriate manner. Several studies aggregate the effects of the sewer and the  
116 WWTP (Cohen 2004; EA 2008; Griffiths-Sattenspiel and Wilson 2009). Further, a single entity  
117 is usually responsible for managing the sewer and WWTPs as a whole. As a result, the  
118 identification of their respective contributions becomes difficult. Several publications focus  
119 exclusively on WWTPs; the aim of this paper is to study the sewerage network separately.

120 **1.3 Environmental assessment of sewer networks**

121 Applying the LCA methodology to sewers, the impacts resulting from the raw material  
122 extraction, pipe and appurtenance production, transport, installation, O&M, demolition and end-  
123 of-life can be estimated (**Figure 2**) as reported in previous literature (Venkatesh et al. 2009;  
124 Roux et al. 2011; Petit-Boix et al. 2014). Among all life-cycle stages, the focus of the present  
125 analysis is on the O&M. Energy consumption patterns might vary depending on different  
126 variables such as the geography and sewer design. Therefore, a standard electricity value cannot  
127 be assumed in the entire LCA of sewers.

128 <Figure 2>

129 In particular, the O&M consists of different activities, namely the energy used to pump  
130 wastewater and clean the infrastructure by specialised maintenance vehicles, and the material  
131 and energy requirements for rehabilitating and repairing damaged sections of the network.

132 Barjoveanu et al. (2014) reported that pumping energy accounted for 77% of the environmental  
133 effects experienced during the O&M of a sewer network in Romania, whereas 23% derived  
134 from maintenance activities. Considering the entire life cycle of a sewerage network, Roux et al.  
135 (2011) reported low electricity consumption during the O&M in France. The effect was only  
136 notable in the radiation indicator due to nuclear power generation in this country. By contrast, a  
137 comparative analysis of the entire cycle with and without O&M showed that the pumping  
138 energy can account for 92% of the Greenhouse Gas emissions. However, if O&M is excluded

139 from the analysis, then 98% of the emissions originate from construction and installation (Strutt  
140 et al. 2008).

141 In addition, if the construction of new sewerage pipelines ceases, then the effects of the O&M  
142 stage are 3 times higher than the pipe production and installation stages on an annual basis as  
143 forecasted in the city of Oslo (Venkatesh et al. 2009). However, this increase might depend on  
144 the lifespan of the network and the structural design. With regard to other parameters such as  
145 density, the annual energy consumption per capita can be reduced by 10% if the population  
146 density is increased from 10 to 275 inhabitants/ha (i.e., the energy used to manufacture, repair  
147 and dispose of pipes and to pump water) (Filion 2008). In the case of water supply systems, it  
148 was also observed that cost-efficiency varied among scenarios considering different urban  
149 configurations (Farmani and Butler 2014).

150 Although most studies show the contribution of the O&M to the total impact of the sewer  
151 system, the environmental burdens of this stage are not homogeneous and vary by city.  
152 Following the hypothesis presented by Petit-Boix et al. (2014) in a previous study on sewer  
153 infrastructure, 3 parameters potentially affect the pumping requirements in a city: the length of  
154 the system, the topography and the location of the WWTP. In general, if a municipality is  
155 located at a high elevation and the WWTP is at the bottom of a valley or at sea level, then  
156 wastewater gravitationally flows; as a result, little energy is required, except in the occasional  
157 changes of slope, in which a certain amount of electricity is likely needed. No significant effects  
158 were found in cities in France by Roux et al. (2011); however, flat areas displayed radiation  
159 indicators 50% lower than uneven regions, which is because of lower nuclear-power  
160 consumption. Other aspects, such as decentralisation, water consumption or the population size,  
161 also affect the performance of the system (Sitzenfrei et al. 2013) and could explain the  
162 electricity requirements in different cities.

163 Therefore, the O&M stage of sewer networks should be addressed independently of WWTPs.  
164 Each life-cycle stage is conditioned by different factors, which may vary depending on the area

165 under study. The electricity consumed during wastewater pumping can be heterogeneous  
166 depending on the city whereas the effects of sewer construction are less diffuse (Petit-Boix et al.  
167 2014). Consequently, this paper aimed to describe the energy consumption patterns in sewers of  
168 different cities, the implications of local features on pumping requirements and the consequent  
169 environmental effects from a life-cycle perspective.

170 **1. Objectives**

171 The main goal of this study was to analyse and model the effect of regional and physical  
172 features on the energy consumption in and the environmental impacts of the O&M stage of  
173 urban wastewater- and stormwater-transport networks in Spanish cities from a life-cycle  
174 perspective. To achieve this goal, the specific objectives were as follows:

- 175 • To collect and analyse data on the electricity consumption in a representative sample of  
176 Spanish municipalities;
- 177 • To identify the physical (e.g., location of the WWTP, length of the sewer and wastewater  
178 flow) and regional features of the network (e.g., climate, seasonality, distance to the coast,  
179 population density and income) that affect the energy consumption and environmental impacts  
180 through a statistical analysis;
- 181 • To model the energy consumption of urban sewer systems depending on physical and  
182 regional parameters and analyse optimisation strategies;
- 183 • To compare the contribution of the electricity consumption to the construction phase of a  
184 specific case study.

185 **2. Material and Methods**

186 **2.1 Sample selection**

187 To analyse the effects of different physical and regional parameters, a representative sample of  
188 municipalities was selected. Spain was chosen to develop the study because the country displays  
189 important climatic variability and because data covering 2011 were easily obtained. The data

190 were supplied and retrieved by CETaqua (Water Technology Centre) from the CONTEC© and  
191 GISAgua© (2012) databases in the framework of the LIFE+ AQUAENVEC Project that  
192 supports this study.

193 To be included in the sample, the cities had to meet the following requirements:

194 1. Reside in Spain (including the islands);  
195 2. Be exclusively supplied by a sewer network not serving other cities to clearly define the  
196 burdens of one network in one city.  
197 3. Provide data for at least the following parameters: population, electricity consumption  
198 for pumping wastewater and length of the network.

199 As a result, 68 cities were selected for analysis. The total population and population density of  
200 these cities are in a medium range with respect to all cities (395) with records in the databases  
201 (**Table 1**). Other parameters needed to perform the analysis are also presented in  
202 **Supplementary Material 1**. The required parameters were occasionally reported as zero, but it  
203 could not be determined whether this was a true zero or an unavailable result. Therefore, cases  
204 containing this exception were maintained in the sample but zeros were not accounted for in the  
205 statistical analysis. As a result, 48 cities were studied in terms of electricity consumption (36  
206 depending on the data availability of other variables), whereas all 68 cities were considered in  
207 the analysis of other parameters such as population or wastewater production.

208 <Table 1>

209 **3.2 Modelling the electricity consumption**

210 **3.2.1 Statistical analysis**

211 The electricity consumption was studied under different physical and regional conditions that  
212 may potentially affect the pumping requirements in the sewer network of a municipality (**Table**  
213 **2**). Data for the year 2011 was considered.

214 First, energy issues were analysed considering the regional features of the sample to  
215 qualitatively identify trends. Therefore, cities were classified according to their population,  
216 population density, income per capita, climate, seasonality and location, and the results are  
217 presented using a box plot displaying the minimum, mean and maximum. Second, the electricity  
218 consumption was correlated to all quantitative parameters to identify the strongest Pearson's  
219 coefficient (R; a measure of the linear correlation between two variables). Finally, linear and  
220 multiple regression models were run for those factors that presented stronger correlations with  
221 the electricity consumption. A p-value  $<0.01$  or  $<0.05$  indicated a significant relationship. The  
222 entire statistical analysis was performed in PASW Statistics 18 (2009) from the Statistical  
223 Package for the Social Science (SPSS).

224 <Table 2>

### 225 **3.2.2 Assumptions**

226 Some variables were estimated considering different assumptions. The height difference was  
227 calculated considering the altitudes of the WWTP and the middle of the city because other  
228 topographic variations in the network could not be incorporated; thus, this assumption deviates  
229 from reality. Regarding wastewater, no flow metres were installed in the municipalities,  
230 therefore the wastewater production was assumed to be equal to the water supplied to the  
231 households. Further, the stormwater runoff was estimated considering the stormwater catchment  
232 area, a runoff coefficient equal to 0.9 (CEDEX 2009) and the annual mean rainfall in the region  
233 (retrieved from the Spanish National Meteorological Agency) (AEMET 2013). Economically,  
234 the income per capita was obtained from the Statistical Institutes of Catalonia (Idescat 2013),  
235 Extremadura (ieex 2011), Murcia (CREM 2011), Andalusia (IECA 2010) and Galicia (IGE  
236 2009).

237 The results of the analysis are presented in absolute (i.e., total electricity consumption) and  
238 relative terms, namely the consumption per capita and per  $m^3$  of water flow per year. To account  
239 for the tourist population, the consumption per capita was expressed in terms of total equivalent

240 population (TEP). TEP consists of the registered population plus the seasonal population linked  
241 to second residences. The latter was estimated considering the number of second residences in  
242 the city, an average occupancy of 2.6 people per household (INE 2013) and an average  
243 occupancy of these second residences of 30 and 120 days in inland and coastal cities,  
244 respectively, based on the assumptions made in a report by the Galician Water Agency (Augas  
245 de Galicia 2011).

246 **3.2.3 Environmental impacts**

247 To account for the environmental effects deriving from the electricity consumption, the impact  
248 category Global Warming Potential (GWP) was used to estimate the CO<sub>2</sub>eq emissions from a  
249 life-cycle perspective. Considering the CML IA method (Guinée et al. 2002) and the ecoinvent  
250 2.2 (ecoinvent 2009) database, the Spanish electricity mix adapted to 2011 (IEA 2014) had an  
251 emission factor of 366 g of CO<sub>2</sub>eq per kWh of electricity.

252 **3.3 Maintenance activities**

253 When studying the O&M stage of a sewer network, different elements must be accounted for in  
254 the overall impacts: (1) the electricity consumption, (2) the rehabilitation rate, i.e., the length of  
255 the system that must be replaced because of failures, and (3) the cleaning tasks.

256 Similar to the pumping requirements, the rehabilitation rate varies by site. Siltation problems,  
257 protruding connections, infiltration, fat deposition, encrustation, root infestation and the slope  
258 may affect the performance of small pipelines (Fenner 2000; Ugarelli et al. 2010), and thus, a  
259 consideration of these factors assists in determining the best time to rehabilitate the network. As  
260 a result, the pipe rehabilitation and cleaning of sediment-related blockages requirements of  
261 every city will be different and might vary over time (Rodríguez et al. 2012). Because of  
262 insufficient data, neither the rehabilitation nor the cleaning activities were analysed using a  
263 statistical approach, but these parameters should be monitored in the future.

264 A city with potentially large maintenance needs (i.e., coastal, seasonal, flat and with a WWTP  
265 located further inland) was selected to determine the relevance of the maintenance activities  
266 with respect to pumping (ID = 15, see **Supplementary Material 1**). Field work in the city  
267 showed that 400 L of diesel were required to clean the network every 3 months. Given that  
268 approximately 1,400,000 kWh of electricity were consumed in 2011 in the pumping of  
269 wastewater, the maintenance accounts for 1.2% of the total impacts of the O&M stage. The  
270 contribution of the diesel is also expected to be negligible in other cities, and this contribution  
271 was therefore not analysed through a statistical approach. However, further analyses should  
272 consider possible variations depending on the city.

273 **4. Results and Discussion**

274 **4.1 General descriptive analysis of the electricity consumption**

275 To establish a general view of the electricity consumption in the case study cities, a description  
276 of the annual energy use in the sewer systems is presented in **Table 3**. According to the results,  
277 50% of the sample municipalities consume between 0.5 and 8.1 kWh per TEP and between  
278  $1.7 \cdot 10^{-3}$  and  $2.6 \cdot 10^{-2}$  kWh per  $m^3$  of water flow. In terms of environmental impacts, the average  
279 electricity consumption per TEP and  $m^3$  of water flow are 2.3 kg and  $5.1 \cdot 10^{-3}$  kg of CO<sub>2</sub>eq.,  
280 respectively. The deviations suggest that not all cities have identical configurations or other  
281 aspects affect the pumping requirements; as a result, the sample must be analysed in small  
282 groups that share similar characteristics (Section 4.2) to determine the factors that may have a  
283 significant effect on the electricity consumption.

284 <Table 3>

285 However, these values also represent other findings for sanitation infrastructure. The selected  
286 Spanish sewers consume an average of 6.4 kWh/TEP and 0.014 kWh/ $m^3$  of water flow; these  
287 values could be compared to the consumption patterns of WWTPs. For instance, Hospido et al.  
288 (2008) found that Galician WWTPs that serve 72,000-125,000 inhabitants required 13.2-36.6

289 kWh per capita. This means that a sewer network might require between 18 and 50% of the  
290 electricity used by a treatment plant.

291 Additionally, a Catalan WWTP that serves a large city consumed an average of 0.382 kWh/m<sup>3</sup>  
292 (Abril and Argemí, 2009). According to data retrieved from CONTEC© (2012), Galician and  
293 Catalan WWTPs consume an average of 0.53 and 0.86 kWh/m<sup>3</sup>, respectively. By contrast, the  
294 average value calculated in terms of m<sup>3</sup> of water flow is much lower than that of WWTP  
295 because of the estimates of the water flow. Nevertheless, two case studies were thoroughly  
296 analysed in the framework of the LIFE project, and the real water flow entering the WWTP was  
297 obtained. A Catalan city (ID = 15) consumed 0.46 kWh/m<sup>3</sup> in the sewer and 0.35 kWh/m<sup>3</sup> in the  
298 WWTP in 2011, whereas a Galician city (ID = 12) consumed 0.11 kWh/m<sup>3</sup> in the sewer and  
299 0.46 kWh/m<sup>3</sup> in the WWTP in 2011. Therefore, energy issues in wastewater transport  
300 infrastructures should not be underestimated.

301 Even so, the relevance of the sewer with respect to the WWTP is variable and it might depend  
302 on the features of the system, such as the length of the sewer, and the type of treatment  
303 technologies required. Moreover, when cities are analysed individually, apparent differences  
304 can be detected, but there tend to be different management practices that influence the sewer  
305 performance. So far, authorities have generally given preference to ensuring the transport of  
306 wastewater instead of optimising the system. At the end, this decision can lead to increasing  
307 environmental and economic costs and the maintenance of inefficient networks. The  
308 identification of these aspects was not possible in the sample of cities; however, it is a matter to  
309 consider when assessing the electricity consumption in different scenarios.

310 In line with the LCA for sewer construction developed by Petit-Boix et al. (2014), the  
311 environmental impact of the operation of the sewer in a city was compared to its construction.  
312 The study considered a representative stretch of the network made of plastic (60%) and concrete  
313 (40%) and an estimated number of appurtenances (i.e., pumps, manholes and inspection  
314 chambers). When comparing the annual impacts of the system in this city, the pumping energy

315 represents 18-25% of the total environmental impact on an annual basis. This value deviates  
316 substantially from previous literature (Strutt et al. 2008). However, variations among cities and  
317 design parameters are responsible for these changes in the contributions of the use phase to the  
318 total impact of the system (Section 4.2 and 4.3).

319 **4.2 Electricity required by city clusters**

320 The cities were classified into clusters according to regional features shown in **Table 2**, and the  
321 electricity consumption was studied. No significant differences were found between clusters  
322 when the analysis was conducted in absolute terms (**Supplementary Material 2**) and electricity  
323 per m<sup>3</sup> of water flow (**Supplementary Material 3**). However, regional differences were noted  
324 in the electricity per capita. A correlation analysis might provide an explanation to this finding  
325 (Section 4.3). The extreme values were not excluded from the analysis because few cases would  
326 remain in the dataset and the outcome would worsen.

327 In terms of electricity per capita (**Figure 3**), differences were detected for climatic conditions  
328 and city locations. In the former, Atlantic cities displayed greater pumping requirements (19.8  
329 kWh/TEP) than Mediterranean and Subtropical regions (~4 kWh/TEP). This higher pumping  
330 requirement is because of intense precipitation in the North and North-West of the country with  
331 unitary sewer networks that cannot separate stormwater runoff from wastewater. In line with the  
332 results of Hospido et al. (2008), the consumption patterns in sewers and WWTPs are in the  
333 same order of magnitude (13.2-36.6 kWh/capita).

334 Similarly, coastal municipalities consume more electricity (9.4 kWh/TEP) than inland cities (2.8  
335 kWh/TEP). The lack of slope in sea level cities can cause sediment blockages. Therefore, water  
336 must be pumped more often to maintain the flow. In addition, coastal cities tend to pump  
337 wastewater upwards to WWTPs located further inland to preserve the landscape and prevent  
338 odour issues.

339 The remaining variables did not show significant differences and presented a p value greater  
340 than 0.2 in most cases. However, several trends could be identified. For instance, more pumping

341 takes place in high-income cities, likely because of higher water consumption patterns (Section  
342 4.3) and, as a result, more wastewater production. This could also be related to the population  
343 density, given that cities with high-income are usually organised in low-density  
344 neighbourhoods. However, differences were hardly seen in this case.

345 <Figure 3>

346

347 **4.3 Identifying the main variables**

348 A correlation analysis was performed to identify strong and weak relationships between the  
349 electricity consumption and the factors described in Section 3.2. All significant results are  
350 presented in **Table 4**.

351 <Table 4>

352 Three factors displayed a significant ( $p<0.05$ ) positive relationship with the electricity  
353 consumed in the pumping of wastewater: the total length of the sewer network, the number of  
354 inhabitants and the total wastewater production. As expected, the length of the sewer plays an  
355 important role in terms of energy. Longer networks may require more pumping stations along  
356 the pipeline to prevent stagnation in and blockages of the main water flow. Additionally, the  
357 length of the system shows a strong correlation with the wastewater production ( $R=0.92$ ) and  
358 the population ( $R=0.91$ ) (data not shown). This finding is not surprising because these 2  
359 parameters are key in the design of sewer networks (CEDEX 2009). Furthermore, wastewater  
360 production is highly correlated with the number of inhabitants ( $R=0.97$ ), whereas the  
361 wastewater production per capita is significantly ( $p<0.01$ ) affected by socioeconomic  
362 parameters such as the income per capita ( $R=0.51$ ) and the population density ( $R=0.29$ ). Higher-  
363 income inhabitants tend to consume more water for various activities such as filling swimming  
364 pools or watering gardens (Domene and Saurí 2003). The electricity use per unit of volume has  
365 a positive correlation with income. These findings are also consistent with the results shown in  
366 Section 4.2.

367 However, the water flow (i.e., wastewater plus stormwater runoff) is not correlated with total  
368 energy. The transport of stormwater was not significantly related; therefore, climatic differences  
369 in terms of rainfall could not be modelled. In this case, both the precipitation intensity and the  
370 catchment area are considered. Hence, an Atlantic city with a relatively small catchment area  
371 and a high annual mean rainfall could transport an amount of water similar to that collected in a  
372 drier Mediterranean city with a greater rainwater catchment area. In terms of energy per capita,  
373 the stormwater and total water flow transported per capita are correlated ( $R=0.35$  and  $R=0.44$ ,  
374 respectively) because population is a more site-specific feature.

375 As predicted, the slope did not display a significant relationship with the electricity used  
376 because this parameter only considered the height difference between the middle of the city and  
377 the WWTP. Internal slope variations along the network need to be considered; however, given  
378 the size of the sample and limited data availability, they could not be easily calculated.  
379 Therefore, the slope will most likely present a strong effect on the pumping requirements if it is  
380 analysed more thoroughly.

#### 381 **4.4 Approach to running energy use models**

382 After identifying the most relevant parameters using correlation analyses, simple and multiple  
383 regression models were run (**Table 5**). Models 1-4 represent the factors and equations  
384 potentially affecting the total electricity consumption of a sewer network, whereas models 5-7  
385 assess the electricity per capita and per  $m^3$  according to the findings presented in Section 4.3.

386 <Table 5>

387 In terms of total energy, the length of the network (model 1) is the variable with the highest  
388 effects on electricity consumption ( $R^2=0.62$ ). The total population (model 2) and the wastewater  
389 production (model 3) explain 38 and 35% of the electricity consumption of a city, respectively.  
390 Additionally, important data dispersion is noted.

391 However, given that all these factors interact, as presented in Section 4.3, a multiple regression  
392 model was considered. The effects of population, length of the sewer and wastewater production

393 were addressed together. The  $R^2$  increased to 0.66, higher than the other models. Additionally,  
394 the standard error of the estimate slightly reduced. Despite these improvements, the population  
395 coefficient was not significant ( $p=0.84$ ) and, therefore, not included in Model 4, which only  
396 contains the significant variables. Nevertheless, the effect of population is implicitly represented  
397 in wastewater production (Section 4.3).

398 Given that the models did not display stronger correlations between the factors and the  
399 consumption per TEP or per  $m^3$  of water flow, equation (1) represents the total electricity used  
400 in sewers with an  $R^2=0.67$ :

401 
$$TEC = 3,394 L - 0.07 WW - 113,395 \quad (1)$$

402 where TEC is the total electricity consumption in kWh, L is the total length of sewer in km and  
403 WW is the wastewater production in  $m^3$ .

404 **4.5 Model validation**

405 To estimate the error of Equation (1), the model was validated using data from 35 cities from  
406 the sample for the length of the network, the wastewater production and the real electricity  
407 consumption in 2011. Two different alternatives were compared to obtain the best approach  
408 (Equations 2 and 3).

409 Equation (2): if  $3,394 L > -0.07 WW - 113,395 \rightarrow TEC = 3,394 L - 0.07 WW - 113,395$

410 if  $3,394 L < -0.07 WW - 113,395 \rightarrow TEC = (-1) (3,394 L - 0.07 WW - 113,395)$

411 Equation (3): if Climate = Atlantic  $\rightarrow TEC = \text{Equation (2)} \cdot 5$

412 if Coastal = Yes  $\rightarrow TEC = \text{Equation (2)} \cdot 1.5$

413 if Coastal = No  $\rightarrow TEC = \text{Equation (2)} / 1.5$

414 The factors included in Equation (3) are related to the differences among clusters in terms of  
415 climate and coastal conditions (Section 4.2). When comparing the estimated electricity from

416 these equations to real values, the error of the prediction is reduced by 22% on average when  
417 Equation (3) is applied. However, only 34 and 29% of the cases presented less than 50%  
418 deviation from reality in the predictions of Equations (2) and (3), respectively. Hence, a degree  
419 of error remains in the models.

420 To determine the reliability of Equation (3), the confidence interval of the mean was calculated  
421 using Student's t-test with 70% confidence (i.e., a 70% chance that the mean is included in  
422  $8.5 \cdot 10^5 \pm 2.7 \cdot 10^5$  kWh). Further analyses are needed to improve this model and to include other  
423 key parameters such as the height difference between the WWTP and the cities that were not  
424 accounted for in the present study because of a lack of data. Nevertheless, additional effort  
425 should be invested to standardise and improve the data collection process and prevent the use of  
426 biased or unknown values.

427 **5. Conclusions**

428 The present paper focuses on the O&M of sewer networks in the framework of the urban water  
429 cycle. On average, Spanish sewers consume 6.4 kWh/TEP of electricity (2.3 kg CO<sub>2</sub>eq.) in the  
430 pumping of wastewater from households to the WWTP. In some cases, this system is not  
431 irrelevant when compared to the WWTPs in terms of energy consumption; sewer networks can  
432 require up to 50% of the electricity used in the wastewater treatment.

433 Given that the electricity consumption in sewers was thought to be dependent on different  
434 regional (population, population density, income per capita, climate, seasonality and distance to  
435 the coast) and physical length of the sewer, slope, stormwater runoff and water flow)  
436 parameters, a statistical analysis was performed on a sample of Spanish cities. The total  
437 electricity consumption was positively and significantly correlated with the length of the  
438 network (adjusted R<sup>2</sup>=0.62) and was weakly correlated with the population (R<sup>2</sup>=0.38) and  
439 wastewater production (R<sup>2</sup>=0.35). Regional features, such as the stormwater runoff, were  
440 identified considering the electricity per capita. The simple model that best predicted the total  
441 electricity consumption in a city (R<sup>2</sup>=0.67) includes the length of the sewer and the wastewater

442 production. The wastewater production depends on other parameters, such as the population and  
443 the income per capita, given that social factors also affect the water consumption among  
444 collectives.

445 Further, significant differences were noted in the electricity consumption per capita when the  
446 cities are compared according to their features. In general, Atlantic cities require almost 5 times  
447 more pumping energy than Mediterranean and Subtropical cities because of more rainfall  
448 throughout the year. Coastal cities also require more energy than those located further inland  
449 because of blockage problems and the location of the WWTP.

450 This study highlights the importance of separately analysing the O&M stage of sewers in the  
451 framework of LCA. Moreover, evidence suggested that sewer networks present a great  
452 variability because of their configuration in different areas; therefore, a sample of cities  
453 presenting different features is important to include in the analysis. The model presented in this  
454 paper should assist urban planners in determining the most suitable configuration of the network  
455 for a city to reduce the energy requirements and the environmental impacts by using only simple  
456 variables. The location of the WWTP and the pumping optimisation should also be considered  
457 in new designs. However, some improvements should be included in further analyses. The  
458 height difference between the WWTP and the city is apparently a critical parameter in the  
459 definition of the pumping requirements. However, the topographic complexity of cities limited  
460 the analysis of this parameter.

461 In addition, during the O&M stage other impacts can occur. Maintenance activities were  
462 excluded from this analysis. Even in theoretically extreme situations, maintenance accounted for  
463 only 1% of the CO<sub>2</sub> emissions of the O&M. Furthermore, direct greenhouse gas emissions can  
464 be generated in the system because of the degradation of wastewater (e.g., the formation of  
465 methane, hydrogen sulphide and nitrous oxide). Therefore, future studies must integrate these  
466 emissions into the LCA to determine their relative contribution to the impacts and the variability  
467 between sewer networks.

468 **6. Acknowledgements**

469 This study was performed in the framework of the AQUAENVEC Project  
470 (LIFE10/ENV/ES/520) “Assessment and improvement of the urban water cycle eco-efficiency  
471 using LCA and LCC”. The authors are grateful for the support of the Spanish Ministry of  
472 Education and Science through the projects BIA2010-20789-C04-01 and CTM2010-17365, and  
473 Generalitat de Catalunya for FI-DGR 2014.

474 **7. References**

475 Abril P, Argemí R (2008) Application of an energy saving and efficiency programme to  
476 wastewater treatment plants: methodology and first results (Aplicació del programa d'estalvi  
477 i eficiència energètica a les estacions de depuració d'aigües residuals: metodologia i primers  
478 resultats). IV Jornades tècniques de gestió de sistemes de sanejament d'aigües residuals,  
479 Volum de Ponències, Generalitat de Catalunya.

480 AEMET, Spanish National Meteorological Agency (2013) Standard Climate Values  
481 <http://www.aemet.es/en/serviciosclimaticos/datosclimatologicos/valoresclimatologicos>  
482 Accessed November 2013.

483 Augas de Galicia (2011) Annex III: Water use and demand. Galicia-Costa Hydrological  
484 Demarcation (Anejo III: Usos y demandas de agua. Demarcación Hidrográfica de Galicia-  
485 Costa). Xunta de Galicia. <http://augasdegalicia.xunta.es/PHGC/PHGC->  
486 ES/PHGC\_Anexo\_3\_Usos\_Demandas.pdf Accessed January 2014.

487 Barjoveanu G, Comandaru IM, Rodriguez-Garcia G, Hospido A, Teodosiu C (2014) Evaluation  
488 of water services system through LCA. A case study for Iasi City, Romania. Int J Life Cycle  
489 Assess 19:449-462.

490 Biehl WH, Inman JA (2010) Energy optimization for water systems. American Water Works  
491 Association Journal 102(6):50-55.

492 CEDEX, Centre for Hydrographic Studies (2009) Technical guide on sewer networks and urban  
493 drainage (Guía técnica sobre redes de saneamiento y drenaje urbano) (3a ed.). Madrid:  
494 Ministerio de Fomento. Secretaría General Técnica. Centro de Publicaciones.

495 Cohen R, Wolff G, Cousins E, Greenfield B (2004) Energy Down the Drain. The Hidden Costs  
496 of California's Water Supply. Natural Resources Defense Council, Pacific Institute,  
497 Oakland, California, US.

498 CONTEC, Control Técnico del Ciclo Integral del Agua (2012) ©Aqualogy Services Company.

499 CREM, Centro Regional de Estadística de Murcia (2011) Evolution of the total Gross Available  
500 Income per home and per capita (Evolución de la Renta Disponible Bruta total de los  
501 hogares y per cápita). [http://www.carm.es/econet/sicrem/PU\\_datosBasicos/sec167.html](http://www.carm.es/econet/sicrem/PU_datosBasicos/sec167.html)  
502 Accessed November 2013.

503 Domene E, Saurí D (2003) Urban Models and Water Consumption. Watering of private gardens  
504 in the Metropolitan Region of Barcelona (Modelos Urbanos y Consumo de Agua. El Riego  
505 de Jardines Privados en la Región Metropolitana de Barcelona). Investigaciones Geográficas  
506 32:5-17.

507 EA, The Environment Agency (2008) Greenhouse gas emissions of water supply and demand  
508 management options. Science Report – SC070010.

509 Ecoinvent (2009). Swiss Centre for Life Cycle Inventories. Ecoinvent database v3.0. Technical  
510 report. <http://www.ecoinvent.ch/> Accessed January 2014.

511 EUREAU, European Federation of National Associations of Water & Wastewater Services  
512 (2009) EUREAU Statistics Overview on Water and Wastewater in Europe (2008) Country  
513 Profiles and European Statistics. Brussels, Belgium.

514 Farmani R, Butler D (2014) Implications of Urban Form on Water Distribution Systems  
515 Performance. Water Resources Management 28:83-97.

516 Fenner RA (2000) Approaches to sewer maintenance: a review. Urban Water 2:343-356.

517 Filion YR (2008) Impact of Urban Form on Energy Use in Water Distribution Systems. J.  
518 Infrastruct. Syst. 14:337-346.

519 GISAgua (2012) ©Aqualogy Services Company.

520 Griffiths-Sattenspiel B, Wilson W (2009) The Carbon Footprint of Water. A River Network  
521 Report, Portland.

522 Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A De, Oers L van, Wegener  
523 Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002)  
524 Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in  
525 perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic  
526 Publishers, ISBN 1-4020-0228-9, Dordrecht, 692 pp.

527 Hospido A, Moreira MT, Feijoo G (2008) A Comparison of Municipal Wastewater Treatment  
528 Plants for Big Centres of Population in Galicia (Spain). *Int J LCA* 13(1):57-64.

529 Idescat, Statistical Institute of Catalonia (2013) <http://www.idescat.cat> Accessed November  
530 2013.

531 IEA, International Energy Agency (2014) Spain: Electricity and Heat for 2011.  
532 <http://www.iea.org/statistics/statisticssearch/report/?country=SPAIN&product=electricityandheat&year=2011>. Accessed April 2014.

534 ieex, Instituto Estadístico de Extremadura (2011) Socioeconomic atlas of Extremadura 2011 -  
535 Summary (Atlas Socioeconómico de Extremadura 2011- Resumen).  
536 <http://estadistica.gobex.es/> Accessed November 2013.

537 IGE, Instituto Galego de Estadística (2009) Primary and secondary distribution of the income  
538 per council (Contas de asignación primaria e de distribución secundaria da renda por  
539 concellos).  
540 <http://www.ige.eu/igebdt/esq.jsp?ruta=verEjes.jsp%3fCOD%3d4221%26M%3d%26S%3d%26RET%3d%26ORD%3d&paxina=001&c=0307007004> Accessed November 2013.

542 INE, Instituto Nacional de Estadística (2013) Population and household census, Press notice  
543 (Censos de Población y Viviendas 2011, Notas de prensa).  
544 <http://www.ine.es/prensa/np824.pdf> Accessed January 2014.

545 IECA, Instituto de Estadística y Cartografía de Andalucía (2010) Andalusian Municipalities.  
546 Basic Data 2010 (Municipios Andaluces. Datos Básicos 2010). Consejería de Economía y  
547 Hacienda.

548 ISO, International Organisation for Standardisation (2006) ISO 14040: Environmental  
549 Management - Life Cycle Assessment Principles and Framework. ISO, Geneva, Switzerland.

550 Lemos D, Dias AC, Gabarrell X, Arroja L (2013) Environmental assessment of an urban water  
551 system. *Journal of Cleaner Production* 54:157-165.

552 Mahgoub MESM, van der Steen NP, Abu-Zeid K, Vairavamoorthy K (2010) Towards  
553 sustainability in urban water: a life cycle analysis of the urban water system of Alexandria  
554 City, Egypt. *Journal of Cleaner Production* 18:1100-1106.

555 Pacione M (2009). *Urban geography: a global perspective*. 3<sup>rd</sup> ed. London: Routledge.

556 Petit-Boix A, Sanjuan-Delmás D, Gasol CM, Villalba G, Suárez-Ojeda ME, Gabarrell X, Josa  
557 A, Rieradevall J (2014) Environmental Assessment of Sewer Infrastructures in Small to  
558 Medium Sized Cities Using Life Cycle Assessment. *Water Resources Management*  
559 28(4):979-997.

560 Roberts DW, Kubel D, Carrie A, Schoeder D, Sorenson C (2008) *Cost and Benefits of  
561 Complete Water Treatment Plant Automation*. AwwaRF and IWA, London.

562 Rodríguez JP, McIntyre N, Díaz-Granados M, Maksimović Č (2012) A database and model to  
563 support proactive management of sediment-related sewer blockages. *Water Research*  
564 46:4571-4586.

565 Roux P, Mur I, Risch E, Boutin C (2011) Urban planning of sewer infrastructure: Impact of  
566 population density and land topography on environmental performances of wastewater  
567 treatment systems. In: Presented at the Life Cycle Conference 2011, “Policy: LCM in Public  
568 Policy” Session, Berlin.

569 Shimizu Y, Dejima S, Toyosada K (2012) The CO<sub>2</sub> Emission Factor of Water in Japan. *Water*  
570 4:759-769.

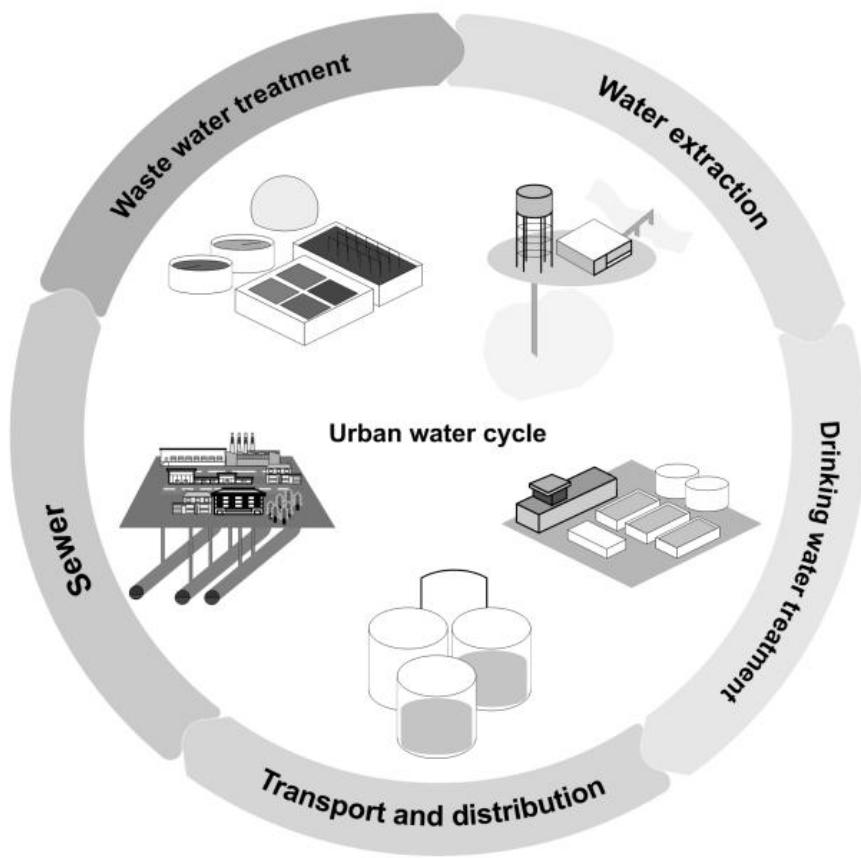
571 Sitzenfrei R, Möderl M, Rauch W (2013). Assessing the impact of transitions from centralised  
572 to decentralised water solutions on existing infrastructures – Integrated city-scale analysis  
573 with VIBe. *Water Research* 47:7251-7263.

574 SPSS Inc. (2009) *PASW Statistics for Windows, Version 18.0*. Chicago: SPSS Inc.

575 Strutt J, Wilson S, Shorney-Darby H, Shaw A, Byers A (2008) Assessing the carbon footprint of  
576 water production. *American Water Works Association Journal* 100(6):80–91.

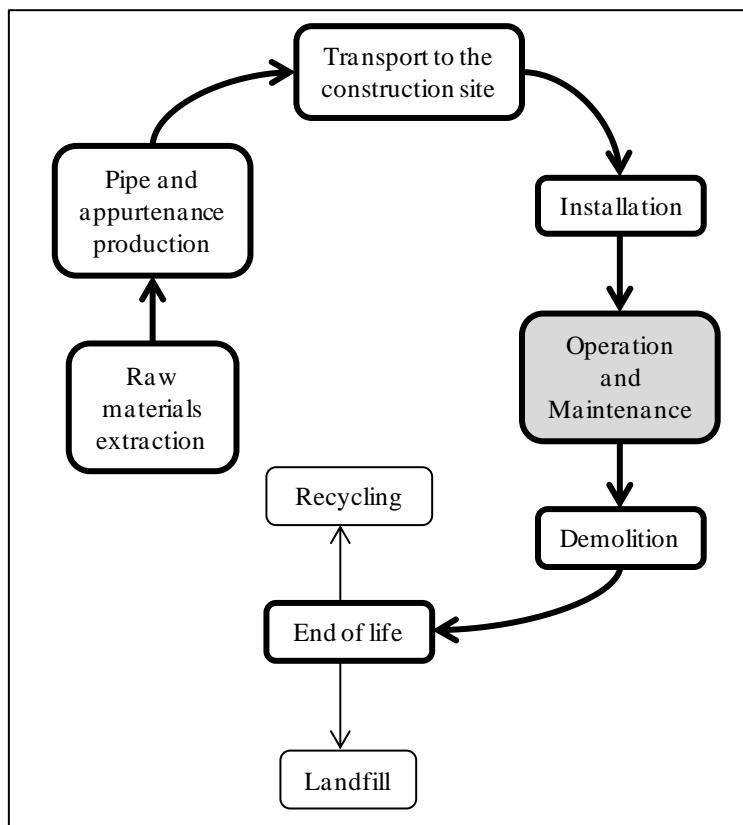
577 The World Bank (2012) Urban population (% of total).  
578 <http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS>. Accessed July 2013.

579 Ugarelli R, Venkatesh G, Brattebø H, Di Federico V, Sægrov S (2010) Historical analysis of  
580 blockages in wastewater pipelines in Oslo and diagnosis of causative pipeline characteristics.  
581 *Urban Water Journal* 7(6):335–343.


582 Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts for  
583 urban water cycle services: Case study of Oslo (Norway). *Energy* 36(2):792–800.

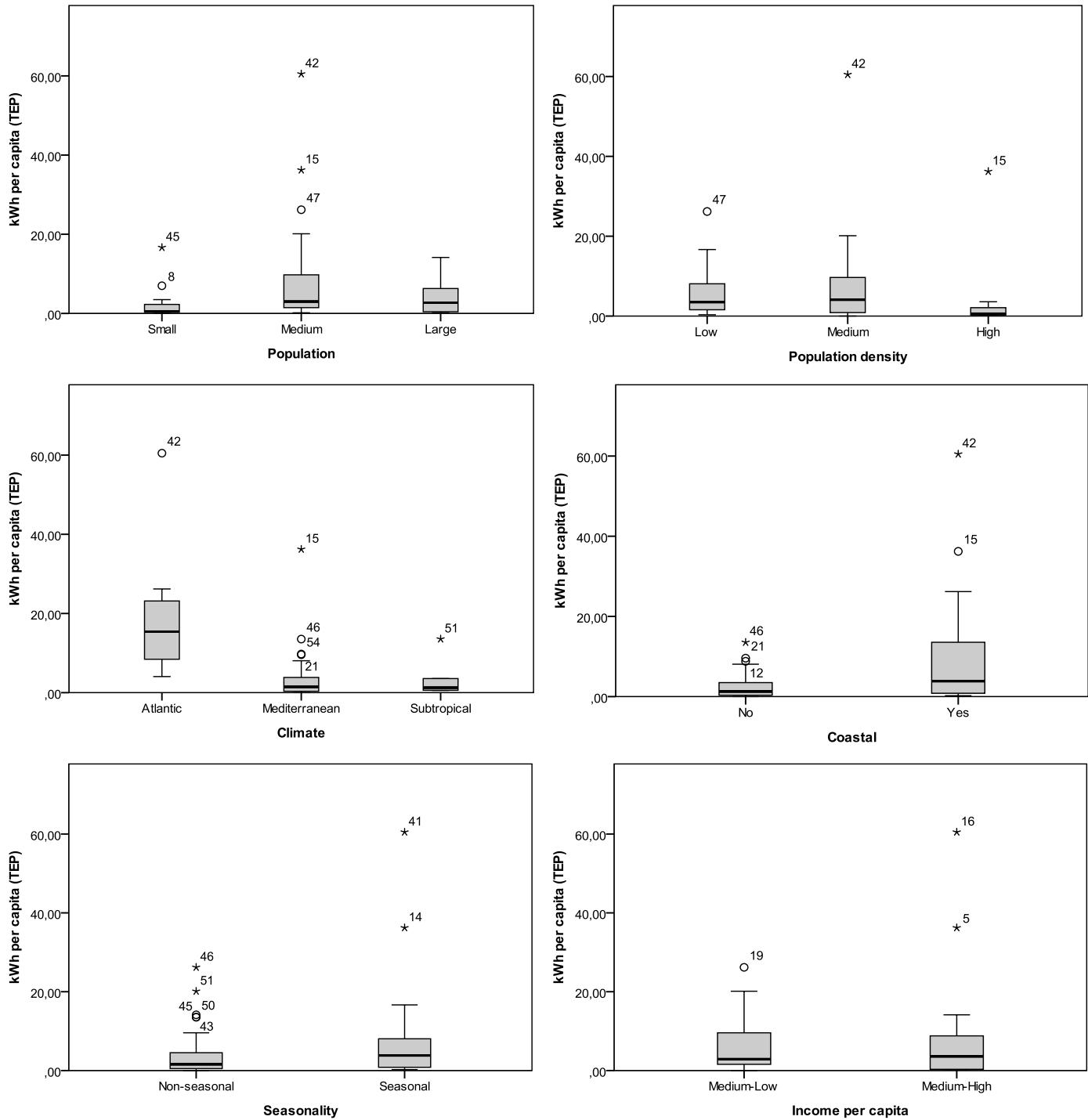
584 Venkatesh G, Hammervold J, Brattebø H (2009) Combined MFA-LCA for Analysis of  
585 Wastewater Pipeline Networks. *Journal of Industrial Ecology* 13(4):532–550.

586 Wolman A (1965) The metabolism of cities. *Scientific American* 213(3):179-190.


587

588 **Fig. 1** Stages of the urban water cycle and the system under study




589

590 **Fig. 2** Life-cycle stages of the sewer system and studied stage



591

592 **Fig. 3** Comparison of the electricity consumption per TEP in kWh under different regional  
 593 conditions. The numbers in the box plot refer to the ID number of the city (see **Online**  
 594 **Resource 2**).



595

596

597 **Table 1** Features of the complete set of cities and the sample selected for the analysis

| System     | Number of cities | Number of inhabitants |           |         | Population density (inhabitants/km <sup>2</sup> ) |         |         |
|------------|------------------|-----------------------|-----------|---------|---------------------------------------------------|---------|---------|
|            |                  | Mean                  | Maximum   | Minimum | Mean                                              | Maximum | Minimum |
| All cities | 395              | 23,235                | 1,615,448 | 99      | 601                                               | 16,449  | 1.9     |
| Sample     | 68               | 49,448                | 443,657   | 632     | 717                                               | 3,426   | 5.2     |

598

599

600 **Table 2** Factors potentially influencing the electricity consumed during the pumping of  
 601 wastewater and their classification criteria

|                   |                                       | Factors                                                         | Description                                                                                                                                                                                                                                                                         |
|-------------------|---------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quantitative data | Physical configuration of the network | Length of the sewer                                             | <ul style="list-style-type: none"> <li>• Total km of sewer</li> <li>• Metres of sewer per TEP</li> </ul>                                                                                                                                                                            |
|                   |                                       | Altitude difference between the middle of the city and the WWTP | <ul style="list-style-type: none"> <li>• Height (metres)</li> </ul>                                                                                                                                                                                                                 |
|                   |                                       | Wastewater flow                                                 | <ul style="list-style-type: none"> <li>• Total volume (<math>m^3</math>) of wastewater produced</li> <li>• Volume (<math>m^3</math>) of wastewater produced per TEP</li> </ul>                                                                                                      |
|                   |                                       | Stormwater runoff                                               | <ul style="list-style-type: none"> <li>• Total volume (<math>m^3</math>) of stormwater</li> <li>• Volume (<math>m^3</math>) of stormwater per TEP</li> </ul>                                                                                                                        |
|                   |                                       | Water flow (wastewater + stormwater)                            | <ul style="list-style-type: none"> <li>• Total volume of (<math>m^3</math>) of water transported</li> <li>• Volume (<math>m^3</math>) of water transported per TEP</li> </ul>                                                                                                       |
| Qualitative data  | Regional features                     | Population                                                      | <ul style="list-style-type: none"> <li>• Small city: <math>\leq 10,000</math> inhabitants</li> <li>• Medium city: <math>10,000 - 50,000</math> inhabitants</li> <li>• Large city: <math>&gt; 50,000</math> inhabitants</li> </ul>                                                   |
|                   |                                       | Population density                                              | <ul style="list-style-type: none"> <li>• Low density: <math>\leq 300</math> inhabitants/<math>km^2</math></li> <li>• Medium density: <math>300-1,000</math> inhabitants/<math>km^2</math></li> <li>• High density: <math>&gt; 1,000</math> inhabitants/<math>km^2</math></li> </ul> |
|                   |                                       | Income per capita                                               | <ul style="list-style-type: none"> <li>• Medium-Low: <math>&lt; 15,000</math> € per capita</li> <li>• Medium-High: <math>15,001 - 24,000</math> € per capita</li> </ul>                                                                                                             |
|                   |                                       | Climate                                                         | <ul style="list-style-type: none"> <li>• Atlantic</li> <li>• Mediterranean</li> <li>• Subtropical</li> </ul>                                                                                                                                                                        |
|                   |                                       | Seasonality                                                     | <ul style="list-style-type: none"> <li>• Seasonal (<math>\frac{\text{maximum population}}{\text{registered population}} \geq 1.25</math>)</li> <li>• Non-seasonal (<math>\frac{\text{maximum population}}{\text{registered population}} \leq 1.25</math>)</li> </ul>                |
|                   |                                       | Location                                                        | <ul style="list-style-type: none"> <li>• Coastal</li> <li>• Inland</li> </ul>                                                                                                                                                                                                       |

602

603

604 **Table 3** Descriptive statistics of the electricity consumption and environmental impacts in  
605 Spanish sewer networks in 2011

| Descriptive variable          | Total   |                       | Per capita (TEP) |                       | Per m <sup>3</sup> of water flow |                       | Per m <sup>3</sup> of wastewater |                       |
|-------------------------------|---------|-----------------------|------------------|-----------------------|----------------------------------|-----------------------|----------------------------------|-----------------------|
|                               | kWh     | kg CO <sub>2</sub> eq | kWh              | kg CO <sub>2</sub> eq | kWh                              | kg CO <sub>2</sub> eq | kWh                              | kg CO <sub>2</sub> eq |
| <b>N (size of the sample)</b> | 48      | 48                    | 48               | 48                    | 36                               | 36                    | 43                               | 43                    |
| <b>Mean</b>                   | 3.3E+05 | 1.2E+05               | 6.4E+00          | 2.3E+00               | 1.4E-02                          | 5.1E-03               | 1.1E-01                          | 3.9E-02               |
| <b>Standard Error of Mean</b> | 1.0E+05 | 3.7E+04               | 1.6E+00          | 5.8E-01               | 2.9E-03                          | 1.1E-03               | 3.0E-02                          | 1.1E-02               |
| <b>Standard Deviation</b>     | 7.0E+05 | 2.6E+05               | 1.1E+01          | 4.0E+00               | 1.8E-02                          | 6.4E-03               | 2.0E-01                          | 7.3E-02               |
| <b>Variance</b>               | 5.0E+11 | 6.6E+10               | 1.2E+02          | 1.6E+01               | 3.1E-04                          | 4.1E-05               | 3.9E-02                          | 5.3E-03               |
| <b>Range</b>                  | 4.3E+06 | 1.6E+06               | 6.0E+01          | 2.2E+01               | 7.7E-02                          | 2.8E-02               | 9.4E-01                          | 3.5E-01               |
| <b>Minimum</b>                | 4.8E+01 | 1.8E+01               | 1.0E-02          | 1.9E-03               | 2.5E-04                          | 1.0E-04               | 7.9E-05                          | 2.9E-05               |
| <b>Percentile 10</b>          | 1.7E+03 | 6.1E+02               | 2.6E-01          | 9.5E-02               | 8.8E-04                          | 3.0E-04               | 3.0E-03                          | 1.1E-03               |
| <b>Percentile 25</b>          | 2.2E+04 | 8.2E+03               | 5.0E-01          | 1.8E-01               | 1.7E-03                          | 1.0E-03               | 7.2E-03                          | 2.6E-03               |
| <b>Percentile 50</b>          | 6.4E+04 | 2.3E+04               | 2.0E+00          | 7.5E-01               | 4.7E-03                          | 1.5E-03               | 3.1E-02                          | 1.1E-02               |
| <b>Percentile 75</b>          | 3.6E+05 | 1.3E+05               | 8.1E+00          | 3.0E+00               | 2.6E-02                          | 9.5E-03               | 1.3E-01                          | 4.7E-02               |
| <b>Percentile 90</b>          | 9.0E+05 | 3.3E+05               | 1.7E+01          | 6.2E+00               | 4.0E-02                          | 1.5E-02               | 2.2E-01                          | 8.0E-02               |
| <b>Maximum</b>                | 4.3E+06 | 1.6E+06               | 6.0E+01          | 2.2E+01               | 7.7E-02                          | 2.8E-02               | 9.4E-01                          | 3.5E-01               |

606

607

608 **Table 4** Pearson's correlation coefficient between the electricity consumption and other  
 609 variables related to the energy requirements in sewers (only those variables with  $p < 0.05$  are  
 610 shown).

|                                                                              |                            | Total length<br>of sewer     | Population<br>(TEP)           | Total wastewater<br>production |
|------------------------------------------------------------------------------|----------------------------|------------------------------|-------------------------------|--------------------------------|
| <b>Total electricity<br/>consumption (kWh)</b>                               | Pearson<br>Correlation (R) | 0.79**                       | 0.62**                        | 0.61**                         |
|                                                                              | Sig. (2-tailed)            | 0                            | 0                             | 0                              |
|                                                                              | N                          | 47                           | 48                            | 43                             |
| <b>Electricity<br/>consumption per<br/>TEP (kWh)</b>                         |                            | <b>Rainwater per<br/>TEP</b> | <b>Water flow<br/>per TEP</b> |                                |
|                                                                              | Pearson<br>Correlation (R) | 0.35*                        | 0.44**                        |                                |
|                                                                              | Sig. (2-tailed)            | 0.031                        | 0.008                         |                                |
| <b>Electricity<br/>consumption per m<sup>3</sup><br/>of water flow (kWh)</b> | N                          | 39                           | 36                            |                                |
|                                                                              |                            | <b>Income per<br/>capita</b> |                               |                                |
|                                                                              | Pearson<br>Correlation (R) | 0.51*                        |                               |                                |
|                                                                              | Sig. (2-tailed)            | 0.037                        |                               |                                |
|                                                                              | N                          | 17                           |                               |                                |

611 \*\*Correlation is significant at the 0.01 level (2-tailed)

612 \*Correlation is significant at the 0.05 level (2-tailed)

613

614 **Table 5** Regression models between the electricity consumption (y) and causal variables (x)

615  $(y=ax+bx+c)$

|                                     | Variables      | Model                                   |                |         | Coefficients |                |         |       |
|-------------------------------------|----------------|-----------------------------------------|----------------|---------|--------------|----------------|---------|-------|
|                                     |                | Adjusted R square                       | Standard Error | Sig.*   | Value        | Standard Error | Sig.*   |       |
| Total electricity consumption (kWh) | <b>Model 1</b> | Length of the sewer (km)                | 0.62           | 439,515 | 0            | 1,983          | 230     | 0     |
|                                     |                |                                         |                |         |              | -113,841       | 82,701  | 0.18  |
| kWh per TEP                         | <b>Model 2</b> | Population (TEP)                        | 0.38           | 554,992 | 0            | 4.43           | 0.82    | 0     |
|                                     |                |                                         |                |         |              | 21,016         | 98,740  | 0.83  |
| kWh per m <sup>3</sup>              | <b>Model 3</b> | Wastewater production (m <sup>3</sup> ) | 0.35           | 592,997 | 0            | 0.07           | 0.01    | 0     |
|                                     |                |                                         |                |         |              | 20,725         | 114,768 | 0.86  |
| kWh per TEP                         | <b>Model 4</b> | Length of the sewer (km)                | 0.67           | 423,715 | 0            | 3,394          | 535     | 0     |
|                                     |                | Wastewater production (m <sup>3</sup> ) |                |         |              | -0.07          | 0.02    | 0.006 |
|                                     |                | Constant (c)                            |                |         |              | -113,395       | 84,686  | 0.19  |
| kWh per TEP                         | <b>Model 5</b> | Rainwater per TEP (m <sup>3</sup> )     | 0.096          | 10.4    | 0.03         | 0.004          | 0.002   | 0.03  |
|                                     |                |                                         |                |         |              | 3.49           | 2.10    | 0.11  |
| kWh per m <sup>3</sup>              | <b>Model 6</b> | Water flow per TEP (m <sup>3</sup> )    | 0.17           | 10.2    | 0.008        | 0.007          | 0.003   | 0.008 |
|                                     |                |                                         |                |         |              | 1.90           | 2.31    | 0.42  |
| kWh per m <sup>3</sup>              | <b>Model 7</b> | Income per capita (€)                   | 0.21           | 0.86    | 0.04         | 0              | 0       | 0.04  |
|                                     |                |                                         |                |         |              | -2.23          | 1.11    | 0.06  |

616

617 \*The model is significant at the 0.05 level (2-tailed). Constant: Intercept

618