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Capitol 1

Presentacio

1.1 Objectiu del llibre

L’objectiu d’aquesta publicacié és fer arribar als alumnes de batxillerat, a punt d’accedir als
estudis universitaris, una pinzellada de les diverses cares de la matematica.

Tot i que un estudiant interessat pot recérrer els capitols pel seu compte, adrecem també
aquest material als departaments de professorat de matematiques dels centres de secundaria;
amb la seva orientacio la lectura sera molt més profitosa.

Amb aquest material pretenem, en primer lloc, canviar la percepcié social del matematic,
sovint identificat com a professor; avui en dia, el matematic és un professional també apreciat
en el mén empresarial i industrial, amb una tendéncia clarament creixent. També volem, en
segon lloc, encoratjar els estudiants a orientar-se cap a aquesta disciplina, fonamental en la
societat del nostre temps.

A continuacié descriurem 'organitzacié del llibre. El capitol 2 vol ser una mostra de les
multiples aplicacions de les matematiques; veureu que cobrim un ampli espectre que va de
la musica a les travesses, passant per aportacions als camps de la biologia o ’astronomia.
Pensem que els temes d’aquest capitol poden servir de motivacié per introduir certs conceptes
o tecniques matematiques, o per estimular la realitzacié de treballs de recerca en la materia.

El capitol 3, potser el més academic, conté problemes de deu especialitats matematiques
diferents, com per exemple la topologia, ’experimentacié numerica, o l'estadistica. Els han
preparat professors del Departament de Matematiques de la UAB, experts de les diverses
branques del coneixement matematic. Els problemes s’han catalogat segons el seu grau de
dificultat. Creiem que es poden usar com a material complementari als textos, o bé suggerir-
los als alumnes per a treballs individuals, etc. Les solucions dels problemes no figuren en el
llibre, pero els autors, via e-mail, telefon o personalment, s’ofereixen a respondre consultes i
rebre comentaris dels lectors interessats.

El capitol 4 és un recull d’entreteniments matematics, no per lidic menys interessant.
Pensem que una lectura activa pot estimular la percepcié matematica, i que se’ls pot donar
una utilitat didactica similar als problemes del capitol anterior. La majoria de les qliestions
plantejades s’acompanyen de la solucid, al final del capitol.

Finalment, en el capitol 5 fem un petit viatge per la historia de les matematiques, basant-
nos en la biografia d’alguns matematics importants, i en un recull de citacions sobre ciéncia
en general, i matematiques en particular.

Desitgem que la lectura d’aquest material incrementi 'interes del lector per les matematiques
i les seves aplicacions.



6 CAPITOL 1. PRESENTACIO

1.2 Collaboradors i agraiments

En la confeccié d’aquest llibre han collaborat moltes persones.

Son autors d’alguna part del text: Aureli Alabert, Joaquim Bruna, Rosa Camps, Angel
Calsina, Joan J. Carmona, Anna Cima, Ferran Cedd, Bartomeu Coll, Armengol Gasull, Gre-
gori Guasp, Antoni Guillamon, Maria Jolis, Francesc Manosas, Enric Nart, Pedro Puig, Agusti
Reventds, Laia Saumell, Antonio Teruel, Joan Torregrosa, Frederic Utzet i Josep Vives.

També han ajudat de moltes formes diferents: Joan Carles Artés, Rosa Camps, Rosario
Delgado, Joan del Castillo, Consuelo Garcia, Joan Gasull, Joan Girbau, Gregori Guasp, Antoni
Guillamon, Maria Jolis, Nati Jolis, Jaume Llibre, Rosa Rodriguez, Josep Vives i, de manera
especial, Joan Torregrosa.

Finalment Maria Carme Boada, Joaquim Bruna, Merce Farré, Gregori Guasp i Maria Jolis
han tingut la paciéncia de llegir tot el material. Moltes gracies pels seus suggeriments.

Cerdanyola, febrer de 2000,

Armengol Gasull i Embid
Coordinador de la Publicacié
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1.3 Matematiques i estadistica a la UAB

Com veureu en aquesta publicacid, les matematiques sén una cosa i a la vegada moltes coses.
En primer lloc, les matematiques constitueixen el llenguatge basic de la ciéncia i la tecnologia,
un llenguatge universalment valid i sempre vigent sense el qual no seria possible cap dels
avencos de la societat moderna. Aixo és particularment cert en el moment actual, quan
assistim a una veritable explosié en l'aplicacié de models matematics a nombrosos camps
de la ciéncia, la tecnologia, les humanitats, etc. El paper de les matematiques en la societat
de la comunicacio i la informacid, no cal dir-ho, és essencial. La importancia del tractament de
dades, l'estadistica, en practicament tots els camps cientifics és evident. Pero la matematica
també és recerca, recerca que pot ser interdisciplinaria i motivada per les aplicacions, o bé
motivada per la matematica mateixa, amb una dinamica propia que per si mateixa ja és un
repte intentar comprendre. Com a activitat intel'lectual, la recerca en matematiques és també
creacio, descobriment, exploracid, i pot esdevenir passio. L’exercici de I'activitat matematica
estimula i potencia, és un fet comprovat i ha esdevingut ja un estereotip, qualitats intel-
lectuals com ara la capacitat d’analisi, d’abstracci6, d’assimilaci6 i, en definitiva, de penetrar
en 'estructura profunda de les coses i els problemes.

Rellotge de sol dissenyat per Joan Girbau, professor de matematiques de la UAB

Al Departament de Matematiques de la UAB tots aquests aspectes de la matematica hi sén
presents. A més de ser el responsable de les titulacions de Matematiques i d’Estadistica, en
que s’imparteix la formacié basica i troncal indispensable i que us presentarem més endavant,
al Departament hi ha estructures que permeten canalitzar ’activitat en tots aquests fronts.

El nostre Departament consta actualment de 88 professors, dels quals 53 sén fixos (ca-
tedratics o titulars d’universitats) i la resta sén contractats (professors ajudants o associats),
dades que el fan un dels més grans de la UAB.

En I’ambit de la docencia, el Departament és el responsable d’impartir la docencia en
la practica totalitat d’assignatures de matematiques de les diverses titulacions que es poden
cursar a la UAB, fins a un total de quinze, a part de les dues que, com ja hem dit, 1i sén
propies, la Llicenciatura de Matematiques i la Diplomatura d’Estadistica. Aixo el fa que sigui
el departament amb més preséncia als diversos centres i facultats de la UAB.

En recerca, al Departament hi ha un total de dotze grups de recerca que desenvolupen
projectes d’investigacié dins les cinc arees de coneixement: Algebra i fonaments, Geometria
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i Topologia, Analisi matematica, Estadistica i Investigacié operativa, i Matematica aplicada.
Tots els grups gaudeixen de financament obtingut en convocatories publiques competitives.
El Departament és també node de quatre xarxes europees financades pel programa europeu
Training and Mobility. Aquest fet, i els programes de mobilitat que es coordinen amb el
Centre de Recerca Matematica (IEC) emplagat al mateix edifici, fa que pel Departament hi
passin continuament destacats investigadors. El nivell de la recerca al Departament és alt i
competitiu, els grups estan ben relacionats i generen un nivell d’activitat estable (seminaris,
congressos, etc.). El Departament publica un revista peridodica (dos nimeros 'any) especialit-
zada en recerca en matematiques, Publicacions Matematiques, amb un ampli comité editorial i
inclosa en els sistemes d’informacié internacionals. Com a dada significativa, del Departament
de Matematiques de la UAB han sortit un total de 228 publicacions en diverses especialitats
en els darrers cinc anys. Aquestes xifres fan que sigui considerat un dels capdavanters en el
conjunt de I’Estat espanyol.

Pel que fa als serveis, el Departament té en
funcionament un Gabinet d’Assessorament amb
dos ambits d’actuacio diferenciats: 'academic, que
déna suport als investigadors de grups de recer-
ca d’altres disciplines; i el servei a empreses i
industries, que ofereix assessorament en les qliesti-
ons que poden tractar-se amb models matematics.

Ermmrsue ==

Es important destacar que el caracter unitari del Departament i la cohesié interna sén
el que fa possible oferir aquest tipus de servei, que en aquests moments esta generant forca
activitat. En les feines del Gabinet hi participen sovint estudiants de les titulacions, que tenen
aixi 'oportunitat de treballar en problemes interdisciplinaris i d’interes practic.

Una de les qliestions que més ha preocupat el Departament els darrers anys és establir
ponts adequats entre les titulacions i el mercat laboral. Amb aquesta finalitat els estudis de
tercer cicle contemplen les possibilitats segiients:

1. Programa de Doctorat en Matematiques, adregat als interessats en la recerca i
I’elaboracié d’una tesi doctoral.

2. Mestratge de Matematiques per a Ensenyants, integrat dins els estudis corres-
ponents al Certificat de Qualificacié Pedagogica, normatius per als futurs professors
d’ensenyament secundari.

3. Mestratge de Matematiques per a ’Empresa i la Industria, destinat als llicen-
ciats que volen integrar-se en el mén empresarial i industrial. Aquest mestratge inclou
practiques remunerades en empreses collaboradores d’'un minim de tres mesos.

4. Mestratge de Matematiques per als Instruments Financers, que forma especia-
listes en els models matematics que s’utilitzen en diversos productes financers, com ara
les opcions de compra, la cobertura de risc, la gestié de carteres, etc. Els especialistes
que estem formant tenen avui en dia una gran acceptacié en el mercat laboral. Aquest
mestratge també inclou un periode de practiques remunerades en bancs i caixes d’estalvi
collaboradores, aixi com a la Borsa de Barcelona.

Presentarem per acabar les titulacions de Matematiques i Estadistica.
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Llicenciatura de Matematiques

Hi ha moments a la vida en que hom pot decidir iniciar una trajectoria o una altra amb
probabilitats molt semblants, mentre que 1’eleccié presa determinara fortament el seu futur.

Molts estudiants de secundaria us trobeu en aquesta situacié a I’hora de decidir quins
estudis escollir. Si les matematiques son una de les opcions que considereu, podeu assajar
amb aquest material que us ofereix la UAB i que us permetra “tastarlles delicies d’aquesta
ciéncia.

Potser també us interessara saber que aquests estudis van adrecats a gent curiosa, valenta,
a la qual li agradi entendre les coses en tota la seva profunditat i que valori el fet de no trobar
limitacions en el seu camp d’interes (les matematiques no te les acabes mail).

La Llicenciatura de Matematiques és una carrera de quatre anys que té com a objectiu
formar matematics generalistes. S’ofereix una formacié basica en analisi matematica, algebra,
topologia, estadistica, geometria i calcul numeric. Un 20% de les assignatures sén optatives,
la qual cosa permet a cada estudiant escollir les materies en les quals esta més interessat.
A més, un 10% dels credits sén dels anomenats de lliure eleccid, que vol dir que es poden
escollir d’entre totes les assignatures que s’imparteixen a la UAB, incloent-hi les anomenades
de campus.

A la Llicenciatura de Matematiques de la UAB s’imparteixen uns credits de tipus practic,
que corresponen a classes de problemes, practiques al laboratori informatic i practiques d’aula,
en que els estudiants treballen en grups reduits amb D’assisténcia d’un professor. A més,
I’alumne de primer curs disposa d’un professor tutor que l’ajuda a iniciar-se en el discurs
matematic, 'orienta i I’ajuda a I’hora d’adquirir un metode de treball.

A més, Vestructura de campus de la UAB contribueix
a fer molt agradable la vida dels estudiants durant aquest
periode de formacio.

El resultat final: el més rellevant és la “formacié” del ma-
tematic. Persona amb capacitat de pensar, de resoldre pro-
blemes, d’entendre i implementar nous models, i tot amb una
gran predisposicié a fer les coses ben fetes, heretada del rigor
que acompanya inexorablement el coneixement matematic.

Diplomatura d’Estadistica

L’estadistica és una disciplina cientifica que s’ocupa de I'analisi de dades i del tractament de
la informacié com a suport a la presa de decisions.

Avui dia, totes les disciplines cientifiques, tant les experimentals (fisica, biologia, etc.),
com les humanes (sociologia, psicologia, etc.) generen dades provinents de l'experimentacié i
I'observacié. L’analisi de dades és, doncs, imprescindible per avancar en aquestes disciplines.

D’altra banda, la presa de decisions en el mén de 'empresa requereix una analisi acurada
de la informacié disponible, generalment de tipus quantitatiu. Aixo fa també imprescindible
I’analisi de dades en el mén industrial i empresarial en general.

Tot aixo, en un mén en que cada cop és més facil 'accés a sofisticat software de tractament
de dades i, per tant, on ningt no podra prescindir de les tecniques estadistiques si vol mantenir
un cert nivell de competitivitat.

La Diplomatura d’Estadistica de la UAB és una carrera de tres anys que forma experts de
grau mitja en analisi de dades, en les especialitats d’Estadistica general, Estadistica aplicada
a la industria (Control de qualitat), Estadistica aplicada a ’analisi de la realitat economica,
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Estadistica aplicada a les ciéncies de la salut, etc.
Algunes de les possibles sortides professionals de la titulacié son les segiients:

e Control de qualitat en industries.
e Analisi de dades economiques i financeres en empreses o institucions publiques.
e Estudis de mercat (marqueting)

e Disseny d’experiments i analisi dels resultats en epidemiologia i farmacologia, en hospi-
tals o laboratoris farmaceutics.

e Sondejos preelectorals i postelectorals, enquestes d’opinid, seguiment d’audiéncies de
mitjans de comunicacio, etc., en empreses especialitzades.

La titulacié és eminentment practica i enfocada a les aplicacions. Un important per-
centatge d’hores de classe son practiques amb ordinador. Les assignatures obligatories son
d’Informatica, de Matematiques i en particular de Teoria de la probabilitat, i evidentment
d’Estadistica.

A més de 'accés al mercat laboral, la titulacié permet també accedir facilment a titulacions
de segon cicle.

D’altra banda, el campus de la Universitat Autonoma, a Bellaterra, és un entorn molt
agradable per a aquests estudis. Precisament, el fet que la Universitat estigui concentrada
en un campus fomenta la interdisciplinarietat. Les assignatures de lliure eleccié poden ser
escollides realment (facilitat d’horaris, abséncia de problemes de transport) entre totes les que
ofereix la Universitat.

En resum, si tens un cert gust per interpretar i analitzar dades, o una certa seducci6é per
I’atzar i les seves lleis, o si vols obrir-te cami en el mén empresarial més modern i dinamic, o
també, si vols collaborar en el progrés del coneixement cientific, la Diplomatura d’Estadistica
que ofereix la Universitat Autonoma de Barcelona pot ser la carrera adequada.

Si voleu més informacié d’ambdues titulacions, no dubteu a consultar les pagines web:

http://www.manwe.mat.uab.es/seccio i http://www.uab.es.

Anna Cima i Mollet, Joaquim Bruna i Floris, Josep Vives i Santa-Eulalia,
coordinadora de la Titula-  director del Departament  coordinador de la Titulacié
ci6 de Matematiques de la  de Matematiques de la  d’Estadistica de la UAB,
UAB, tel.: 93581 1453. UAB, tel.: 93581 1857. tel.: 9358129 41.

e-mail: cima@mat.uab.es e-mail: bruna@mat.uab.es. e-mail: vives@Qmat.uab.es.
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1.4 Beca Pere Menal

El Dr. Pere Menal i Brufal, nascut a Lleida ’any 1951, es va
llicenciar en Matematiques per la Universitat de Barcelona
Pany 1973 i des d’aleshores fou professor del Departament
de Matematiques de la Universitat Autonoma de Barcelona,
on va llegir la seva tesi doctoral el 1977. Va ser nomenat
catedratic d’Algebra Pany 1981. Gran autodidacte, va ser
iniciador i impulsor de la recerca en algebra no commutativa
entre nosaltres i també arreu de 'Estat.

La seva produccié cientifica inclou gairebé quaranta tre-
balls de recerca en revistes internacionals, alguns dels quals
fets en collaboracié amb els millors especialistes mundials.

La seva sobtada mort en accident de circulacié el dia
4 d’abril de 1991 va significar la perdua d’un gran ma-
tematic, d’'un entranyable company i d’'una excellent per-

sona.

Beca Pere Menal

La Universitat Autonoma de Barcelona, a instancia del Departament de Matematiques, con-
voca les beques anomenades “Pere Menal” per a tots els estudiants que, o bé, es matriculin al
primer curs de la Llicenciatura de Matematiques, o bé, havent obtingut la beca en periodes
anteriors, demostrin que compleixen els requisits per a renovar-la.

S’atorgaran quatre beques si els sollicitants compleixen els requisits. Una de les quals sera
per a un estudiant que es matriculi de primer curs de la Llicenciatura de Matematiques en el
periode 2000-2001.

Els sol-licitants de primer curs hauran de complir els requisits segiients:

e Haver-se examinat de les PAAU.

e Haver-se matriculat de primer curs a la Llicenciatura de Matematiques de la UAB en el
periode 2000-2001.

e Sollicitar la beca.

La beca de primer curs s’atorgara al sollicitant que tingui la nota més alta de I’examen de
les PAAU entre tots els que tinguin una nota superior o igual a 7 de ’examen de Matematiques
I de les dites PAAU. En cas d’empat entre dos o més sol-licitants, es tindra en compte la
mitjana de notes de BUP i de COU, i en cas de procedir d’estudis d’FP, REEM, es tindra
en compte la nota mitjana del curriculum academic. Les sollicituds s’hauran de presentar
a I’Area d’Alumnes (Beques) de la UAB de I'1 al 15 d’octubre del curs académic en qué se
sol'licita la beca.

La borsa de la beca inclou la matricula gratuita de totes les assignatures de la carrera, si
el sol-licitant en cada periode compleix els requisits, a més d’una quantitat anual de 30000
pessetes en concepte d’adquisicié de llibres. En cas que 'estudiant que es matricula al primer
curs hagi obtingut la qualificacié de matricula d’honor al curs d’orientacié universitaria, rebra
I'import que hauria d’haver abonat en concepte de taxes de matricula, més les 30 000 pessetes.

Podeu trobar més informacié a http://mat.uab.es/seccio/Pere.htm.
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1.5 Universitat Autonoma de Barcelona

La Universitat Autonoma de Barcelona (UAB) és una institucié publica, dedicada a la
recerca i la docencia.

La UAB es caracteritza per ser una universitat que aplega estudis i investigacions d’ambits
tan diversos com ’humanistic, social, el de la salut, les ciéncies experimentals i les tecnologies
o les enginyeries. Aix0 permet efectuar analisis multidisciplinaries de problemes complexos
com, per exemple, els de medi ambient, camp en el qual disposem d’estudis homologats de
nivell superior. L’emplacament en el nostre campus de centres de recerca d’altres institucions,
com el Centre Nacional de Microelectronica, I'Institut de Ciencia dels Materials o el d’Analisi
Economica, tots aquests del Consell Superior d’Investigacions Cientifiques, o del Centre de
Recerca Matematica, permet una forta interaccié amb els diferents centres i departaments,
que té com a conseqiiéncia una docencia sempre actualitzada. Al mateix temps, I’Autonoma
ofereix els serveis de suport a I'estudi fonamentals per desenvolupar la vida universitaria amb
plenes garanties, en camps tan diversos com ara la consulta bibliografica, els idiomes, la in-
formatica o la insercié professional.

Els plans d’estudis s’estructuren en cicles i es divideixen
en cursos. Els cursos sén semestrals i la carrega lectiva es
mesura en credits. Un credit equival a deu hores de classe
d’una assignatura.

La investigacié constitueix un pilar fonamental de la vi-
da universitaria i de la projeccié exterior de la Universitat
Autonoma de Barcelona. Gracies al reconegut prestigi asso-
lit per la tasca investigadora a la UAB, tant en I’ambit na-
cional com en l'internacional, juntament amb el importants
llagos que manté amb els sectors productius més significa- Les columnes de la UAB
tius, la recerca a la UAB defineix un paper prioritari pel que Obra d’Andreu Alfaro, 1999
fa al servei de la universitat vers la societat.

Situada geograficament en un dels pols de desenvolupament tecnologic més importants de
Catalunya, la voluntat innovadora de la UAB li permet participar en importants projectes
de recerca nacionals i internacionals, i mantenir d’aquesta manera una docéncia academica
sempre actualitzada i de qualitat.

La Universitat Autonoma de Barcelona, a més d’oferir tots els serveis propis d’un gran
centre universitari, també posa a disposicié d’estudiants i personal docent un ampli ventall de
facilitats per tal de viure el campus i cobrir totes les necessitats tant de la seva vida academica
com del lleure i de la vida quotidiana.

El campus de la Universitat Autonoma de Barcelona constitueix una ciutat de prop de
40000 persones, les quals, a més de desenvolupar plenament la seva vida universitaria, gau-
deixen d’uns equipaments que els permeten disposar de tots els serveis necessaris per viure en
un entorn idoni.

Algunes dades del curs 1998-99 sén les segiients:

e 38590 estudiants de 1r i 2n cicles, 11814 estudiants de 3r cicle i 1686 estudiants estran-

gers.

e 2795 membres del personal académic i investigador i 1232 membres del personal d’ad-
ministracié i serveis.
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e 35 llicenciatures, 15 diplomatures, 3 enginyeries superiors, 4 enginyeries tecniques, 4
graduats superiors (titulacié propia) i 1 diploma (titulacié propia).

e 76 programes de doctorat, 47 programes de mestratge, 83 programes i cursos de postgrau
i 65 cursos d’especialitzacio.

e 46 departaments, 12 facultats i ETS i 16 escoles universitaries (propies, adscrites o
vinculades).

e 12 instituts i centres de recerca i estudi propis.
e 19 instituts de recerca adscrits o vinculats.

e 7 serveis tecnics generals de suport a la docencia i a la recerca, 8 serveis cientificotecnics
de suport a la recerca i 19 laboratoris de prestacié de serveis.

e 9 biblioteques, 1 hemeroteca, 1 cartoteca i 2 centres de documentacio i arxius.

Trobareu més informacié a la pagina web de la UAB: http://www.uab.es/
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1.6 Sobre la portada

Moltes vegades, quan m’han presentat a una persona i hem comengat a parlar sobre les nostres
respectives ocupacions, ha sorgit la mateixa pregunta ...

Que més es pot fer en matematiques?

La matematica és un dels molts mitjans de comunicacié que crea 'home per a la seva relacié
amb el mén que l'envolta, i com a tal es desenvolupa amb cada nova interpretacié que fem
del comportament de la natura. El més extraordinari, i que és comu a tots els ambits del
saber, és que la nostra manera d’interpretar els futurs fenomens naturals depen al seu torn
dels elements dels quals ara disposem. Aquesta realimentacié (feedback) és un dels factors
que fa evolucionar la matematica, i aixo és el que hem pretes representar, tant pel que fa a la
forma com al contingut, amb la imatge de la portada.

A la Grecia classica, una part del coneixement que tractava del que ara coneixem amb
el nom de fisica, estava centrada en l'estudi de les lleis de l'estatica (Arquimedes, 287-212
a.C.): les relacions entre les llargades dels bragos d’una balanca i els pesos que se situen a
cadascun dels extrems per tal que es mantinguin en equilibri; les lleis de la palanca; etc.
Les representacions geometriques que aquests problemes involucraven eren circumferencies,
triangles i poligons en general, i les qiiestions plantejades giraven entorn de les relacions entre
el perimetre i el radi (en el cas de la circumferéncia), o entre dos o més costats (en el cas
dels poligons). Es per tots conegut el teorema de Pitagores (569-470 a.C.) que relaciona la
longitud de la hipotenusa d’un triangle rectangle amb la dels seus catets.

Des de la creacié de la dinamica moderna per Galileu (1564-1643), i la incorporacié del
temps en les equacions de la fisica, els objectes geometrics a que han donat lloc els problemes
plantejats han canviat. La geometria de la dinamica ha generat corbes com la branquisto-
crona, la cicloide, etc., i més recentment objectes que avui coneixem amb el nom de fractals
(Mandelbrot, 1975). Aquests objectes no admeten una definicié “estatica”, com succeeix en el
cas de la circumferencia (el lloc geometric dels punts que sén a la mateixa distancia d’un punt
donat), el triangle rectangle (poligon de tres costats que té un angle recte), etc. La comprensié
dels objectes fractals exigeix, en la seva versié més estesa, un procés iteratiu infinit. Es a dir,
unicament podem fer-nos una idea de 'objecte després d’un procés iteratiu, del qual només
coneixem els primers estadis i del qual mai no podem tenir una tmatge completa.

El floquet de neu de von Koch

Un exemple classic d’objecte fractal és la corba de von Koch (introduida ’any 1904), I'interior
de la qual es coneix com floquet de neu de von Koch. A la figura 1 representem els primers
passos en la construccié d’un dels costats de la corba de von Koch.

La construccié comenca amb un triangle equilater de costat [ igual a la unitat de mesura,
per exemple metres, i per tant de perimetre p igual a 3 metres. A continuacié, en el terg
central de cadascun dels costats es colloca un triangle equilater, amb els costats de longitud
I = 1/3m, vegeu la figura 1.(b). D’aquesta manera s’obté una estrella de sis puntes. Notem
que cadascun dels tres costats del triangle original s’ha substituit per quatre segments de
longitud 1/3 m, per la qual raé la figura actual consta de 12 = 3 x 4 costats i té un perimetre
de p=12x1/3 =3 x4/3m. En el pas segiient substituim novament cada ter¢ central dels
dotze costats per un triangle equilater de costat [ = 1/9 = 1/3% m, vegeu la figura 1.(c). Aixo
proporciona un poligon de 36 = 12x 3 = 3 x 42 costats i de perimetre p = 36 x 1/3%2 = 3x42/3?
m.
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Si repetim el procés n cops, és senzill concloure que la figura obtinguda és un poligon de
3 x 4™ costats i que la longitud de cada costat es [ = 1/3™ m, i dona com a resultat que el
perimetre és de p = 3 x (4/3)" m. Ni tan sols en aquest moment tenim una representacié
completa de la corba de von Koch. Per aconseguir aixd0 hem de fer el pas al limit quan
n tendeix a infinit. D’aqui es dedueix que el perimetre del floquet de neu de von Koch té
longitud infinita, lim 3 x (4/3)" = +oo.

n /400

Figura 1. Construccié d’un dels costats de la corba de von Koch. (a) 1 costat de longitud
1; (b) 4 costats de longitud 1/3; (c) 4% costats de longitud 1/32; (d) 43 costats de longitud
1/33; (e) 4* costats de longitud 1/3%; (f) 4™ costats de longitud 1/3".

Hauriem canviat poc la nostra percepcié del moén si continuéssim contestant les mateixes
preguntes que contestava Pitagores en els seus resultats, el perimetre de la figura. Es tanmateix
ara la matematica la que qiiestiona: quines propietats pot tenir una corba generada d’aquesta
manera? La resposta, deguda a Hausdorff (1919) i elaborada per Besicovitch (1934) és el que
s’anomena dimensié fractal o dimensié de Hausdorff-Besicovitch. El concepte de dimensié
de Hausdorff-Besicovitch és prou complex per exigir un espai i unes eines que s’allunyen dels
nostres proposits. Tanmateix podem introduir aqui un concepte equivalent (1itil en el cas de
figures autosemblants), la dimensié de semblanca.

Diem que una figura (en el nostre cas una corba) és autosemblant si es pot dividir en
trossos de manera que cadascun sigui semblant al total. Per exemple, un segment de recta
es pot dividir en N trossos, sent cadascun semblant a tot el segment amb radé de semblanca
r(N) = 1/N. En el cas d’'un rectangle succeeix una cosa analoga: podem dividir-lo en
N rectangles de manera que cadascun sigui semblant al total amb una raé de semblanca
r(N) = 1/N'/2. El mateix podem fer en el cas d’un parallelepipede rectangular i obtenim
una raé de semblanca r (N) = 1/N /3 Un examen detallat de I’anterior ens porta a pensar
que si la raé de semblanca d’un objecte s’expressa com 7 (N) = 1/NYP_ llavors D és la
dimensié euclidiana de 1'objecte. En el cas del segment, r (N) = 1/N /1. aixi dones; D = 1
i és cert que la dimensié euclidiana d’un segment és 1. El mateix succeeix en el cas d’un
rectangle, per al qual D = 2 coincideix amb la dimensié euclidiana del rectangle, i en el cas
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del parallelepipede D = 3. D’aquest raonament sorgeix el concepte de dimensié de semblanca.
Si la ra6 de semblanga r (N) d’una figura autosemblant s’expressa com

1
- N1D

diem que la dimensié de semblan¢a de la figura és D. Prenent logaritmes i aillant D s’obté

r(N)

_ log (1/N)
log (r (N))’
En el cas particular de la corba de von Koch s’observa que cadascun dels costats es pot

dividir en quatre parts (N = 4) semblants al costat sencer, amb una raé de semblanga r (N) =
1/3, (vegeu la figura 1.(f)). Aixi doncs, la corba de von Koch té dimensié de semblanca

_log(1/4) log(4)

= o (1/3) = fog 3) = 1.2618...

La dimensié fractal ha esdevingut en els darrers anys una eina molt util en 'estudi de la
natura i ha transformat la nostra manera d’entendre-la. Objectes com les costes marines, els
nuvols, els arbres, etc. exhibeixen un comportament facilment identificable amb un fractal,
encara que parlant amb propietat el terme fractal no seria aplicable a cap d’aquestes coses
(tampoc el concepte d’esfera és estrictament aplicable a la Terra i ningd no dubta respecte al
canvi de pensament que va produir el fet de considerar-la com a tal).

Aquest no és un exemple isolat de la capacitat creadora de les matematiques / matematics.
La matematica n’és plena, de fet, no conté res més que aixo.

Antonio Teruel Aguilar, professor
de Matematica aplicada del De-
partament de Matematiques de
la  Universitat Autonoma de Bar-
celona. tel.: 935811886, e-mail:
teruel@mat.uab.es.




Capitol 2

Alguns temes matematics

L’any 2000 fou proclamat Any Mundial de les Matematiques en la Declaracié de Rio de Janeiro
del 1992. Aquesta iniciativa va rebre el suport de la UNESCO en reunié plenaria 'any 1997.
Moltes associacions i institucions internacionals han expressat llur suport a aquesta celebracié
i hi collaboren. També el Govern espanyol i el Parlament de Catalunya han mostrat el seu
suport a la iniciativa.

En aquestes declaracions s’han fet les consideracions segiients sobre les matematiques:

e Les matematiques sén una de les maximes expressions de la intelligencia humana i un
magnific exemple de bellesa de les creacions intellectuals.

e Constitueixen un eix central de la historia de la cultura i de les idees.

e Gracies a la seva universalitat, s’apliquen en les altres ciencies, de la natura i socials,
en les enginyeries, en les noves tecnologies, i en diferents branques del coneixement i
en els diferents tipus d’activitat humana, de manera que resulten fonamentals en el
desenvolupament dels pobles.

e Constitueixen una eina basica per a que la majoria de les persones puguin comprendre
la societat de la informacié en que vivim.

e Han tingut, i hauran de seguir tenint, un paper destacat en els sistemes educatius i en
I’aprenentatge dels escolars.

e Es converteixen en un dels ambits més adients per a la cooperacié entre tots els pobles
pel seu llenguatge i valor universals.

L’objectiu d’aquest capitol és donar exemples concrets en que pretenem illustrar alguns
dels punts anteriors. Els autors d’aquestes seccions sén:

— Secci6 2.1 sobre la relacié entre vots i escons, Aureli Alabert.

— Secci6 2.4 sobre la prova x?, Maria Jolis.

— Seccié 2.5 sobre perspectives, Gregori Guasp.

— Secci6 2.8 sobre geometria integral, Agusti Reventos.

— Seccié 2.10 sobre tractament d’imatges, Bartomeu Coll, professor de la Universitat de

les Illes Balears.
— Seccié 2.22 sobre finances, Frederic Utzet.
— La resta dels temes han estat preparats per Armengol Gasull.

17
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2.1 Democracia: dels vots als escons

La democracia parlamentaria esta basada en l’eleccid justa d’un nombre petit d’individus
(diputats) per representar un nombre molt més gran de ciutadans. Es una idea ben clara,
llevat que...que vol dir justa?

Al nostre pals, els candidats a diputat es presenten a les eleccions agrupats en les anome-
nades candidatures o llistes, que poden ser presentades per partits politics o per coalicions de
partits. Cada elector vota una de les llistes. A partir del nombre de vots obtinguts, cada llista
rep una certa quantitat d’escons.

La pregunta és, doncs, com determinar, a partir del nombre de vots que rep cada llista, la
quantitat d’escons que li correspon. El sistema que s’utilitza a les eleccions al Parlament de
Catalunya es coneix amb el nom de llei de d’Hondt, i els calculs que requereix sén molt facils
de fer. Prenguem com a exemple els resultats de les eleccions del 17 d’octubre de 1999 a la
circumscripcié de Lleida, on calia escollir 15 diputats.

Fem una taula amb una fila per a cada candidatura, i posem a la primera columna el
nombre de vots v que ha obtingut cadascuna. La llista amb més vots (CiU) rep el primer escé.
Hi fem una marca, i posem a la segona columna el nombre de vots dividit per 2.

v v/2
CiUu °91199 | 45600
PSC-CC-IC-V | 55963
ERC 22011
PP 15121

Entre tots els nimeros de la taula que no estan marcats, escollim el més gran. La candida-
tura corresponent rep el segon escod. En aquest cas, és la coalicié PSC-CC-IC-V. Marquem el
ntmero i posem també a la columna segiient aquest ntimero dividit per 2. El segiient niimero
més alt sense marcar és un altre cop el de CiU, que rep el tercer escd. Ara posem a la tercera
columna el nombre de vots dividit per 3.

El procediment continua fins que s’han esgotat els 15 escons. A cada columna cal dividir
els vots per 1, 2, 3, 4,... La taula resultant, amb els escons e assignats finalment a cada
candidatura és:

v v/2 v/3 v/4 v/5 v/6 v/7 v/8 v/9 e
CiUu °91199 | 45600 | *30400 | *22800 | *18240 | *15200 | *13028 | ®*11400 | 10133 | 8
PSC-CC-IC-V | *55963 | *27982 | *18654 | *13991 | *11193 5
ERC °22011 | 11006 1
PP *15121 7561 1

La llei de d’Hondt és un algorisme, és a dir, un procediment que mena a la resolucié d’un
cert problema matematic. Per tant, és logic demanar-se:

e Quin problema matematic resol la llei de d’Hondt?
e Es aquest problema matematic un bon model per al repartiment just dels escons?

En principi, el que voldriem d’un sistema electoral proporcional és que la proporcié d’escons
de cada llista fos igual a la proporcié de vots que ha obtingut. Veiem a la taula que ERC, per
exemple, ha rebut 22011 vots sobre un total de 184 294. Per conservar aquesta proporcié, la
quota d’escons g que li correspon es calcularia fent

22011 ¢
184294 15’

= q=1.79.
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El mateix calcul per a les altres llistes ens déna quotes de 7.42, 4.55 i 1.23. Ateés que no
podem assignar fraccions d’esco, hem de trobar una manera d’aproximar aquests valors de g
per nombres enters. Examinarem tres possibilitats, entre les moltes que hi ha.

Suposem que hi ha n candidatures. Denotem per v;, ¢ = 1,...,n la quantitat de vots
aconseguits per la candidatura . Si li assignem una quantitat e; (entera) d’escons, aleshores
el quocient v;/e; és el preu, en vots, de cada escé obtingut per i. La llista més afavorida és la
que obté el preu min;—; __,v;/e;. Aquest minim sempre esta acotat superiorment (per V/E,
on V és el nombre total de vots emesos i E és el nombre total d’escons per repartir). Per tant,
si escollim els e; de manera que el preu minim sigui el maxim possible, estem uniformitzant
el preu per esco de totes les candidatures.

En definitiva, obtenim el problema matematic de trobar les n quantitats eq,...,e,, enteres
positives i de suma FE, per a les quals s’obté el

.U
max min — .
i=1,...,n €;
Aquest problema pertany a una classe de problemes d’optimitzacié, anomenats de progra-
macid entera, que sén en general molt dificils. Afortunadament, pero, en aquest cas hi ha
un algorisme molt eficient per resoldre’l. Es tracta precisament de la llei de d’'Hondt. Aixo

respon a la primera pregunta que formulavem.

Com acabem de veure, el model matematic de “justicia electoral” que hi ha darrere de la
llei de d’Hondt pretén uniformitzar els preus per escé “a I'alca”. També podem uniformitzar
“a la baixa”: la llista menys afavorida és la que paga el preu max;—i__,v;/e;. Escollirem
aleshores els e; de forma que aquest preu sigui el minim possible. S’obté el problema

. Vi
min max — .
i=1,...n €;
Aquest problema també té un algorisme de resolucié eficient, similar al de la llei de d’Hondt.
Només cal canviar els divisors de cada columna, que eren 1,2, 3, 4,... per la seqiiéncia
0, 1,2, 3,... L’algorisme s’anomena llei d’Adams o dels divisors més petits. FEn el nostre
exemple de Lleida obtindriem la taula segiient, on el resultat de la divisié per 0 el representem
amb el simbol oo, que cal interpretar en el sentit que totes les llistes reben un primer escé
abans que cap d’elles en rebi el segon.

v/0 v/l v/2 v/3 v/4 v/5 v/6 v/7 e
CiU *oo | *91199 | *45600 | *30400 | *22800 | ®*18240 | ®*15200 | 13028 | 7
PSC-CC-IC-V | ®co | *55963 | *27982 | *18654 | 13991 4
ERC ®oco | *22011 | 11006 2
PP *oco | *15121 2

Considerarem finalment el model segiient: si £ és el nombre total d’escons i V' el nombre
total de vots, és logic demanar que cada elector tingui un “poder d’influéncia” sobre aproxi-
madament E/V escons. Si vota la llista 4, el seu poder d’influéncia ha estat realment de e; /v;,
puix que ¢; és el nombre d’escons assignats a la llista i. Les diferencies % — % es poden inter-
pretar com una desviacié de ’assignacié ideal deguda a circumstancies aleatories. Una mesura
habitual d’aquestes desviacions és I’error quadratic. Si volem que aquest error quadratic sigui
minim, haurem de trobar I’assignacié eq,...,e,, que fa
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Aquest model esta en certa manera a mig cami entre el corresponent a la llei de d’Hondt i
el que déna lloc a la llei d’Adams, com es pot veure del fet que també és resoluble mitjancant

una seqiiencia de divisors, que en aquest cas és 0.5, 1, 1.5, 2, 2.5,... (equivalentment, es pot
usar la seqiiéncia 1, 3, 5, 7,..., que déna el mateix resultat). L’algorisme es coneix amb el
nom de llei de Sainte-Lagué. L’assignacié d’escons resultant a Lleida és la segiient:
v v/3 v/5 v/7 v/9 v/11 v/13 v/15 e
CiU °91199 | *30400 | 18240 | *13028 | *10133 | °*8291 | °7015 6080 | 7
PSC-CC-IC-V | *55963 | ®*18654 | ®*11193 | °7995 | °6218 5
ERC ®22011 | °*7337 4402 2
PP *15121 7561 1

Observem que els resultats dels tres models matematics de “justicia electoral” que hem
presentat sén diferents. No obstant aixo, tots tres estan ben motivats en termes d’una funcié
objectiu que cal minimitzar o maximitzar i que representa una mesura de desproporcionalitat
respecte a la quota. La conclusio és que no es pot parlar d’'una tinica manera justa d’assignar
escons. L’eleccié del criteri a emprar és arbitraria i s’ha de fer a partir de consideracions
politiques. Un cop escollit el criteri, correspon a les matematiques trobar la manera adequada
de representar-lo sense ambigiiitats i proporcionar algun metode eficient per obtenir els resul-
tats. A la vegada, la simulacié de resultats d’eleccions sota diferents criteris pot aportar idees
per a ’adopcié d’un sistema electoral, o per a la invencié de nous sistemes.

El lector pot dissenyar facilment altres metodes a partir dels anteriors; de fet, se’'n poden
assajar infinits com a variants de les regles de divisors que hem vist aqui. Sén possibles també
altres criteris molt raonables de repartiment proporcional, i que no sén resolubles mitjancant
seqiiencies de divisors. La llei de d’Hondt deu el seu nom al jurista belga Victor d’Hondt, que
el proposa el 1878, tot i que ja havia estat inventat anteriorment pel nord-america Thomas
Jefferson. S’utilitza, a més de Catalunya, a Espanya, Portugal i Finlandia, entre d’altres. A.
Sainte-Lagué publica el seu metode el 1910, i és conegut a America del Nord amb el nom de llei
de Webster. S’utilitza actualment, en forma pura, a Nova Zelanda i, amb certes modificacions,
a molts altres llocs. La llei d’Adams esta en desus.

Si bé els tres models vistos donen resultats diferents, que podrien certament conduir a molt
diversos escenaris a I’hora de la cerca de I'estabilitat parlamentaria i la formacié de govern, és
clar que les diferencies sén petites. Hi ha dos factors més del disseny d’un sistema electoral
que solen tenir una influéncia més gran en la desproporcié entre vots i escons que de vegades
s’observa. El primer d’aquest factors és la divisid en circumscripcions; el segon és el llindar
inferior.

La divisié en circumscripcions pretén que els futurs diputats representin també un territori,
a més de representar a electors concrets. Si comparem la proporcié d’electors a cadascuna de
les quatre circumscripcions catalanes amb el nombre de diputats que escullen, veiem que la
circumscripcié de Barcelona esta infrarepresentada en benefici de les altres tres.

Circumscripcié  Electors Quota Escons

Barcelona 2376050 | 102.35 85
Tarragona 284221 | 12.24 18
Girona 283346 | 12.21 17
Lleida 190309 8.20 15
Totals 3133926 | 135 135
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El terme quota vol dir aqui els escons teorics que correspondrien a cada circumscripcié si man-
tinguéssim la proporcionalitat estricta amb la poblacié d’electors que contenen. Determinar
aquesta assignacié és un problema completament analeg al de repartir escons entre candida-
tures. Per exemple, a les eleccions al Congrés dels Diputats espanyol, cada circumscripcié
(provincia) rep dos escons inicials i la resta es reparteix arrodonint cap amunt les quotes que
tenen una part decimal més gran, i arrodonint cap avall la resta.

El segon factor que hem esmentat, el llindar inferior, estableix que una candidatura que
no obtingui almenys el 3% dels vots en una circumscripcié és automaticament eliminada, i
els seus vots es perden. La justificacié politica d’aquesta norma és evitar que hi hagi una
excessiva dispersié de partits en el Parlament.

En el nostre exemple de Lleida, hem descartat ja d’entrada les set llistes que no van arribar
al llindar. De fet, en aquest cas concret, tampoc no haurien obtingut representacié (amb la
llei de d’Hondt) encara que no s’hagués establert el llindar. En efecte, la cinquena llista en
nombre de vots, EV-CEC, n’obtingué 1232, que, com es comprova facilment a la taula, és
insuficient per obtenir 'iltim escé.

Examinarem la influeéncia de la divisié en circumscripcions i del llindar inferior aplicant la
llei de d’Hondt amb una sola circumscripcid i sense imposar cap llindar minim. En la taula
segiient, comparem els resultats que s’obtindrien amb aquest sistema (S3) amb els resultats
oficials del sistema actualment en vigor (S1).

Llista Vots % Quota S7 S
CiU 1178420 | 37.70 | 51.37 | 56 | 53
PSC-CIPC 948202 | 30.33 | 41.33 | 36 | 42
PSC-CC-IC-V | 235097 | 7.52|10.25 |16 | 10
PP 297265 | 9.51 1296 |12 |13
ERC 271173 | 8.67 | 11.82 | 12|12
1C-V 78441 2.51 3.42 3 3
EUiA 44454 | 1.42 1.94 0 1
EV-CEC 22797 | 0.73 | 0.99 0 1
EV-AV 8254 | 0.26 | 0.36 0 0
POSI 2784 |1 0.09 | 0.12 0 0
EC 1774 | 0.06 | 0.08 0 0
PHC 1327 | 0.04| 0.06 0 0
FE-JONS 1281 | 0.04| 0.06 0 0
UC-CDS 1161 | 0.04| 0.05 0 0
PLN 1029 | 0.03 | 0.04 0 0
UNIC-FIC 881 0.03 | 0.04 0 0
TPR 833 | 0.03 | 0.04 0| O
PE 799 | 0.03 | 0.03 0 0
LI(LIT-CI) 485 0.02] 002 | o] o
UFD 447 | 0.01 0.02 0 0
CAM 110 | 0.00 | 0.00 0| O
PDEP 108 | 0.00 | 0.00 0 0

Dues curiositats de 'assignacié Ss: s’observa que els escons estan sempre a distancia més
petita que 1 de la quota, excepte en el cas de CiU, que sembla anormalment suprarepresentada.
En canvi, EUiA sembla injustament infrarepresentada. De fet, aquests dos partits es disputen
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I'iltim esco en joc. Si 15 votants de CiU (curts de vista) confonguessin la seva papereta amb
la de EUiA, 'escé canviaria de mans. D’altra banda, si les dues coalicions formades al voltant
del PSC presentessin una unica candidatura, obtindrien un escé més (53), en perjudici de CiU
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(52) 1 sense afectar la resta de llistes.

Les sigles que hem utilitzat corresponen a les candidatures segiients:

CiU
PSC-CIPC
PSC-CC-IC-V
PP

ERC

IC-V
EUiA
EV-CEC
EV-AV
POSI

EC

PHC
FE-JONS
UC-CDS
PLN
UNIC-FIC
TPR

PE
LI(LIT-CI)
UFD

CAM

PDEP

La llei que regula les eleccions a tot el territori espanyol és essencialment la Llei organica
5/1985, de 19 de juny, del regim electoral general (BOE nim. 147, de 20 de juny), amb algunes

Convergéncia i Unié

PSC-Ciutadans pel Canvi

PSC-Ciutadans pel Canvi-IC-Verds

Partit Popular

Esquerra Republicana de Catalunya
Iniciativa per Catalunya-Verds

Esquerra Unida i Alternativa

Els Verds (Confederacié Ecologista de Catalunya)
Els Verds-Alternativa Verda

Partit Obrer Socialista Internacionalista
Estat Catala

Partit Humanista de Catalunya

Falange Espafiola de las J.0.N.S.

Unién Centrista-Centro Democratico y Social
Partit de la Llei Natural

UNIC-FIC

Trabajadores Publicos Rebotados

Partit Espinaltia

Lluita Internacionalista

Unién Federal Democréatica

Catalans al Mén

Partido Democratico del Pueblo

modificacions posteriors.

Els resultats complets, per circumscripcions, comarques, municipis i candidatura, de les
eleccions al Parlament de Catalunya del 17 d’octubre de 1999 es poden trobar a les pagines

d’'Internet de la Generalitat de Catalunya (http://www.gencat.es).
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2.2 El nimero 7. Diferents algorismes de calcul

L’objectiu d’aquesta seccié és donar diversos algorismes per a calcular m, comparant la seva
velocitat de convergencia.

El niimero 7 es defineix com el quocient entre la longitud d’una circumferencia i el seu
diametre. La notacié 7 va ser usada per primer cop per William Oughtred (1574-1660) i pot
provenir de la paraula grega mepiuetpof (perimetre) usada per Arquimedes per a designar la
longitud de la circumferencia. La notacid es va consolidar a partir dels treballs de Leonhard
Fuler de 1737.

Al llarg de la historia hi ha hagut molts intents de calcular-lo. A continuacié resumim
alguns resultats d’aproximacid; en cadascun subratllem els decimals correctes.

e Babilonis (2000 a.C.): 3 +

3.125.

w

e Egipcis (2000 a.C.): (%)2 =3.16....

e Xinesos (1200 a.C.) i a la Biblia (550 a.C.): 3

223
B g2

e Arquimedes (250 a.C.): 3.14185. També va provar que
: ~ . 355 _
e Tsu Txung Txih (~ 480): 7335 = 3.1415929.. ..

e Vidte (1593): 3.1415926536.

e Euler (1707-1783): 1% — 3.1415926530.

e De Lagny (1719): 112 decimals exactes calculats.

e Rutherford (1824): 152 decimals exactes calculats.

e W. Shanks (1874): 527 decimals exactes calculats.

e Ramanujan': 2+ /2 =3.1416..., (102 — 2222)1/4 = 3.14159265 ... ..

e Kanada i Takahashi (1997): 51539600000 decimals exactes calculats.

4
» A 33 1,096"
>’ °"516 89 > 2307.97@%'

V 95
S 40
69\,1—6\' ‘:38 6‘1' 3

!Srivasa Ramanujan (1887-1920). Matematic hindii, autodidacte amb una gran intuicié per a trobar noves
férmules encara no ben entesa.
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Donarem tres algorismes que permeten calcular 7 amb molts decimals. Observeu que
cada algorisme és millor que 'anterior, en el sentit que amb menys operacions s’obtenen més
decimals correctes. Vegeu també el problema 3.5.10 per a altres algorismes. Cal fer notar
que 7 no és un nombre racional® i que no s’ha trobat cap regularitat a les xifres decimals
de 7. La bibliografia consultada és: Dictionnaire de Mathématiques, fondements, probabilités,
applications, d’Albin Michel, Encyclopaedia Universalis, Paris, 1998 i Le fascinant nombre w
de Jean-Paul Delahaye, Bibliotheque pour la Science, Diffusion Belin, Paris 1997.

Algorisme 1: ’aproximacio d’Arquimedes

El meétode ideat per Arquimedes consisteix a aproximar 7 pel perimetre dels poligons inscrits
a una circumferéncia de diametre 1, i cada cop més costats. Vegeu la figura segiient:

Per a explicar els calculs que farem, necessitem dues coses.
La primera és el calcul del perimetre de ’hexagon p;. Es facil
veure que p; = 3. En segon lloc, si anomenen x el costat d’un
poligon regular, volem saber quin sera el costat y del poligon
regular que té el doble de costats. Per a calcular y en funcié
de x usarem la figura.

N8

N[
[SliS]
(]|
|
I

L’aplicacié del teorema de Pitagores dos cops ens diu que

2
T 1 2 9
4+(2 z)* =y~

1

7 2 . .
Operant a la segona férmula, % + i + 22 — 2 = 32, i usant la primera, 5— 2= y?. Com que

2=/ 1_4’”2, concloem que y = \/%(1 —V1—1z2).

Per tant, si anomenem p,, el perimetre d’un poligon regular de 6 - 2"~! costats i [,, el seu
costat, tenim que

) p1:3

1
lny1 = \/5(1— V1-12), P+l = 6-2"1 41,

és una manera d’anar aproximant , ja que lim, o, pp, = 7.

I =

(NN

2 3 . . , . 3 . . . .
De fet, m no és ni tan sols algebraic: és a dir, no és arrel de cap polinomi amb coeficients racionals.
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El calcul efectiu de I, 11 a partir de I,, produeix errors de calcul, ja que en fer 'operaci6

\/%(1 — /1 —=12), amb [,, cada cop més petit, s’han de restar nombres molt propers. Per tant,
és convenient desracionalitzar 1'altima expressié usant la igualtat:

_ ]2 2
Q- T—lg)H‘/l B _ h__
1+1-2 1+/1-12

L’algorisme final és

ln—l—l = Pn+1 = 6 - 2nln—l—l-

21+ /1—12)

Tenim que p; = 3, pp = 3.105..., pg = 3.132..., py = 3.139..., p; = 3.14103...,
P15 = 3.14150265305, . .

Algorisme 2: La funcié arctangent

La segona via que descrivim per a calcular 7 es basa en la segiient formula per a la funcié

arctangent
tan () ’ + ’ ' + ’ + = (1) 2i+1
arctan(z) =2 ——+ — — — + — + - = T
3 ) 7 9 5 2i+1 ’

)

i en certes relacions trigonometriques. Un primer intent seria a partir de la igualtat:

4 1 1 1 1 >, (—1)
—=arctan(l) =1—--4+-—-+-+--- = ' )
4 L 3 5 7 9 ; 2i+1
Ara bé, si denotem per arctan, () := Y ", —(2;13; %% i considerem la successié de niimeros
1 1 1
x, = arctan, (1) =1 — 3 + s 4t (_1)n2n+ -

després d’uns quants calculs veiem que la successié x,, convergiria cap a m/4 més lentament
que la que ens déna el metode proposat per Arquimedes. Per sort hi ha d’altres relacions
entre 7 i la funci6 arctangent. Per exemple, tenim la férmula 7 = arctan% + arctan % Una
demostracié grafica d’aquesta darrera férmula es pot deduir observant la figura segiient, on
s’han marcat els angles rectes.
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Finalment, donarem un algorisme de calcul de 7 basat en una férmula similar

% = 4arctan(%) — arctan(%),
deduida (i usada per a calcular 7) per John Machin (1680-1752).
La demostracié d’aquesta darrera férmula es pot fer a partir de la férmula de la tangent
de la suma d’angles:
tan(a) 4 tan(b)
1 — tan(a) tan(b)’

tan(a + b) = (%)

ja que com a conseqiiencia tenim que

1 1 tan(4arctan 1) — i
tan(4 arctan — — arctan ——) = ( 3) 239
5 239 1 + tan(4 arctan g) 535

D’altra banda, usant ara dos cops (*) obtenim

4z(1 — 2?)

tan(4 arctan(:c)) = W
xr* — 0ox

Fent més operacions concloem que tan(4 arctan & — arctan i) = 1. Per tant, hem provat la

) 5 239
formula de Machin.
Si considerem la successio

1

1
Yn = 16 arctann(g) -4 arctann(239

s’obté yg = 3.183...,y1 = 3.1405...,yo = 3.14162...,y3 = 3.1415917 ..., yq4 = 3.141592682.. . .,
ys = 3.1415926526. .., yg = 3.14159265362 ... Observeu que lim,, oo Ypn = 7.

Algorisme 3: Un metode amb velocitat quadratica

E11973, i de manera independent, Eugene Salamin i Richard Brent van trobar un metode per a
aproximar m amb gran velocitat. Aquest metode és el que s’anomena un metode amb velocitat
quadratica. Aquest nom prové del fet que 'error en cada pas de ’algorisme és aproximadament
el quadrat de I’error comés en el pas anterior. Aixo fa que el nombre de xifres decimals exactes
es dobli iteracié per iteracié. Aixi, per exemple, el meétode que presentarem és tal que després
de vint-i-cinc passos ens déna uns 45 milions de xifres decimals exactes (suposant que tots els
calculs es fan amb aquest nombre de xifres decimals). Aquest metode es basa en la mitjana
aritmetico-geometrica, que ja apareix en els treballs de Gauss del segle X VIII i la demostracio
de la convergencia esta basada en la teoria de les integrals elliptiques i és massa complicada
per a ser inclosa aqui.
Es calcula la successid z,, per a n > 1, a partir dels nombres ag, a1,...a, 1 bg,b1,...,b, 1
aplicant la férmula:
4a?

n

S 1230, 2(a} - )]

Zn

on els valors a; i b; s'obtenen de la recurrencia:®

3De fet, es pot veure que lim;_, oo a; i lim_, o b; existeixen i coincideixen. A aquest valor se ’anomena mitjana
aritmetico-geometrica de ag i bo.
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Sl

ap =1, by =

a; + b;
Qiy1 = ——, biv1 =\ aib;.

2
Tenim que z; = 3.187..., zp = 3.14168..., z3 = 3.14159265389..., |24 — m| < 1072,
|25 — 7| < 10742, Actualment es coneixen algorismes de calcul encara molt més rapids.

9045
‘ A 1 5 %&6 2353 ’b% 32 7950 36 999 3937996@ 1A9445923° 781640520
g-) \9‘; 6 o> %) 255,
e N% 6 gwg %'L 79, 7 ,515 & 24 7 s g )
69399 930353
a2l 89793238 D ;!
782 32 N . »
v526%

7 1 el seu amic e.

Acabarem aquesta seccié amb un tema relacionat, les fraccions continues.

Fraccions continues

Un cop es coneixen tots els digits d’un cert nombre real x, ens podem preguntar quines sén
les fraccions que millor ’aproximen, en el sentit de buscar fraccions amb denominadors al més
petits possible. La resposta a aquest problema ens la déna la teoria de les fraccions continues.
Es construeix una successié de fraccions de la forma

1 1 1 1 1
ao,a0+a—1,a0+ +1,a0+ . 1 ,a0++71,a0+ . 1 s
a1+~ — ai ai ay + ——————
a 1 1 1
az + — az + — az +
as as 1
as + —
a4
amb ag € Z, a; € N de manera que tendeixi a .

Explicarem una forma de calcular ag, a1, as, ... per al cas x = m: ag és la part no decimal
de w és a dir ag = 3; aq és la part no decimal de ﬂ%ao = m =7.06...,¢és adir ag =7,
as és la part no decimal de m =15.99..., és a dir as = 15; a3 és la part no decimal de
m =1.00... és a dir ag = 1; i aixi successivament. Per tant, la successié de fraccions

continues que tendeixen a m és

1
3,3+, 3+ 34 34 .3+ .
7 1 1 1 1

T4+ — 7+ —

1
15+I 15 +
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Operant resulta
22 333 355 103993 104348

T 771067 1137 33102 7 33215 7
Observeu que aquesta successié conté les aproximacions racionals d’Arquimedes, Txu
Txung Txih, i Euler, donades a la introduccié d’aquesta seccié, a més d’altres aproximacions
racionals de 7 bastant bones.
Sembla que ja Arquimedes coneixia les fraccions continues, perqué va provar que

1
<\/§<§ 5+

5+ — 9
+10 +10 1
T3

15—1—
3

Per a acabar, us proposem que trobeu alguna regularitat en I'aproximacié per fraccions
continues del ntmero e.

Apeéendix: mil xifres decimals del niimero 7.

3.14159265358979323846264338327950288419716939937510582097494
4592307816406286208998628034825342117067982148086513282306647
0938446095505822317253594081284811174502841027019385211055596
44622948954930381964428810975665933446128475648233 78678316527
1201909145648566923460348610454326648213393607260249141273724
5870066063155881748815209209628292540917153643678925903600113
3053054882046652138414695194151160943305727036575959195309218
6117381932611793105118548074462379962749567351885752724891227
9381830119491298336733624406566430860213949463952247371907021
7986094370277053921717629317675238467481846766940513200056812
7145263560827785771342757789609173637178721468440901224953430
1465495853710507922796892589235420199561121290219608640344181
9981362977477130996051870721134999999837297804995105973173281
6096318595024459455346908302642522308253344685035261931188171
0100031378387528865875332083814206171776691473035982534904287
5546873115956286388235378759375195778185778053217122680661300
19278766111959092164201989 . ..
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2.3 La recta de minims quadrats. Marques d’atletisme

Donats dos punts qualssevol del pla (x1,y1) i (2, y2) sempre hi ha una recta az + by + c =0
que passa per ells. A més, si x1 # x99, 'equacid de la recta es pot escriure com y = mx + n.
Ara bé, és molt dificil, quan es pren una colleccié de k punts al pla

(301,?/1), (302,92), ey (:Ck‘ayk)a

que hi hagi una recta que passi per tots ells. En aquest context apareix la pregunta segiient:
quina és la recta y = mx + n que aproxima millor tots els punts? Aquesta pregunta no esta
ben formulada matematicament, ja que “millor”és un concepte no gaire clar.

Encara que no és I'inica possibilitat, direm que la recta y = mx + n és la que millor
aproxima el nivol de punts (z;,v;), i = 1,2,...,k, si m i n sén tals que la funcié de dues
variables

F(m,n) = (y1 — (ma1 +n))* + (y2 — (may +n))* + - -
k

o (yp — (may, 4+ n))? = Z(yi — (ma; +n))? (%)
i=1

pren el seu valor més petit quan m = m i n = n. A la figura segiient s’il'lustra graficament
quins sén els valors y; — (max; +n) que s’han d’elevar al quadrat i sumar per obtenir F'(m,n).

P

Una manera d’obtenir aquests valors m i n s’obté imposant condicions per tal que la
funcié F tingui un extrem. Ens limitarem aqui a donar el meétode per a calcular-los. El
resultat és el segiient:

Si prenem m i n com la solucid del segiient sistema lineal de dues equacions amb dues
incognites,

)

k k
k Z £y ~ Z Yi
i=1 (n) _ i=1
k k k
DY %2 > Ty
=1 =1 =1

aleshores la recta y = mx + N é€s la recta que millor aproxima el conjunt de punts (z;,y;),
i=1,2,...,k en el sentit que la funcié F(m,n) donada a (x) pren el valor més petit possible
quan m = m, n = n.

La recta y = mx+n s’anomena recta de minims quadrats o aproximacié minima quadratica
del conjunt de punts (z;,y;), i = 1,...,k o de la taula

xl‘xg‘xg‘...‘xk
yl‘yQ‘yfﬂ‘---‘yk
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La recta de minims quadrats té multiples utilitats a les ciencies experimentals: fisica,
quimica, biologia,. .. Nosaltres donarem aqui una aplicacié a ’estudi de les marques d’atletis-
me. A la taula segiient figuren els records mundials de la prova de 1500 m des del 1912 fins al
1995.

Any | min s Any | min s Any | min s
1912 | 3 558 || 1943 | 3 45 1967 | 3 33.1
1917 | 3 54.7 || 1944 | 3 43 1974 | 3 322
1924 | 3 52.6 || 1947 | 3 43 1979 | 3 32.11
1926 | 3 51 1952 | 3 43 1980 | 3 31.36
1930 | 3 49.2 || 1954 | 3 41.8 || 1983 | 3 30.77
1933 | 3 49 1955 | 3 40.8 || 1985 | 3 29.46
1934 | 3 488 || 1956 | 3 40.5 || 1992 | 3 28.86
1936 | 3 478 || 1957 | 3 38.1 || 1995 | 3 27.37
1941 | 3 476 || 1958 | 3 36

1942 | 3 458 || 1960 | 3 35.6

Ens preguntem si, a partir d’aquestes dades, podem tenir una idea de quin podria ser el
record mundial de la prova 'any 1999. Per a aix0 fem els calculs segiients. Busquem quina és
la recta y = ma + N que millor aproxima els punts de la taula. Per tal de fer menys calculs
pendrem com a variables x; els anys 12,17,24,...,95, i com a marques només els segons
55.8,54.7,52.6,...,27.37. Aleshores, els valors m i n seran la solucié del sistema d’equacions:
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28 1476 n\ ([ 1153.53 \

<1476 91768> (ﬁz) - <55701.07> ’
és a dir, m = —0.3657, n = 60.4775. Per tant, podem considerar com un possible récord del
moén de 1999 la marca: 3 minuts més —0.3657(99) + 60.4775 segons, és a dir 3 min 24.27 s.
Ara bé, si busquem quin és 'actual record del mén, trobem que es va fer el juliol del 1998 i és
de 3 min 26s. Per tant, hem obtingut una previsié que és bastant bona (tenint en compte, a
més, que el record és de 1998 i, si haguéssim avaluat a x = 98, hauriem obtingut 3 min 24.64

s). Quina previsi6 de record del mén podeu fer per a 'any 20107
Per a acabar aquesta seccié aplicarem la mateixa tecnica en una situacié lleugerament
diferent. A partir dels records del mén actuals de 100 m, 200 m, 400 m, 800 m, 1500 m,
3000 m i 5000 m, intentarem deduir el de 10000 m. Fent els mateixos calculs que a 'exemple
anterior, a partir de les set primeres dades de la taula segiient, obtenim que una aproximaci
del record del mén de 10000 m féra 25 min 22.44 s. Com podeu observar, el record real és de
26 min 22.75 s, és a dir que fem un error d’aproximadament 1 minut (de prop d’un 4%.) Cal
comentar que no sembla gaire bon model el fet de pensar que el récord depen linealment de
la longitud de la prova, i és clar que no seria gens bona idea usar aquestes dades per a predir

el record del mon de la maratd, per exemple.

Prova | min S
100 m 0 9.79
200 m 0 19.32
400 m 0 43.18
800 m 1 41.11
1500 m 3 26.00
3000 m 7 20.67
5000 m | 12 39.36
10000 m | 26  22.75

Representeu graficament els resultats de la taula anterior. A partir de la seva grafica potser
s’us acudira intentar aproximar-los per una corba diferent a la linia recta.
Si esteu interessats a tenir dades d’altres proves, podeu visitar ’adreca d’Internet

http://www.algonet.se/~pela2/mtrack.htm,

on trobareu les millors marques mundials de moltes proves d’atletisme.
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2.4 Dependeéncia entre dos fets. Prova y?

Suposem que disposem de les histories cliniques de 5000 persones (ja mortes). Per a cada
persona se sap si la mort va ser causada o no per cancer de pulmo i si I'individu era fumador
o no. Es pot formar la taula seglient amb aquests historials.

Morts per Morts per
cancer de pulmé | altres causes | Total
Fumadors 348 3152 3500
No fumadors 82 1418 1500
Total 430 4570 5000

(Encara que aquestes dades sén hipotetiques, els registres reals dels hospitals presenten per-
centatges molt semblants.)

Es tracta de veure si hi ha relaci6 entre el fet de ser fumador o no i el de morir per cancer
de pulmé o altres causes. Per determinar si hi ha relacié o no, s’efectua el que s’anomena “un
test d’hipotesis”. Concretament, en aquest cas, la prova x? (khi quadrat) d’independencia.

Aquesta prova es basa en una idea bastant simple. Es comenca suposant que no hi ha cap
relacié entre els dos factors que estem considerant, és a dir, sén factors independents I'un de
I’altre. Si aquest fos el cas, com que els fumadors representen la fraccié % = % sobre la
poblacié de morts i els no fumadors el % = 1%, esperariem que del total de 430 morts per
cancer de pulmé els 1—70 fossin fumadors, és a dir % - 430 = 301.

Fixem-nos que a partir d’aquesta dada esperada a la primera casella, 301, podem construir
una nova taula amb tots els valors esperats si realment no hi hagués cap relacié, ja que tenim

fixats els totals.

Morts per Morts per
cancer de pulmoé | altres causes | Total
Fumadors 301 3199 3500
No fumadors 129 1371 1500
Total 430 4570 5000

Observem que hi ha unes diferéncies entre el que s’ha observat a la mostra (la qual suposem
representativa d’alguna poblacid) i les que s’esperarien si fos independent el fet de fumar o no
amb morir de cancer de pulmé. El que s’ha de decidir és si aquestes diferéncies sén degudes
a l'atzar (quan hom recull dades mai no s’ajusten exactament als models teorics) o bé al fet
que realment hi ha relacié entre els dos factors.

El pas segiient consisteix a calcular 'anomenat estadistic x2. Si anomenem O; la freqiiéncia
observada a la mostra la casella i-esima i E; la freqliéncia esperada (sota la hipotesi d’inde-
pendéncia) a la mateixa casella, calculem Pexpressié segiient:

E; — 0;)?
V:Z( E; =

El resultat matematic important (i dificil de demostrar!) en que esta basada la prova, és
que la distribucié de la variable aleatoria V', si no hi ha realment relacié entre les variables,
és aproximadament (si la mostra és gran) una llei coneguda anomenada y? amb un grau de
llibertat. Aixo vol dir que es poden calcular les probabilitats que aquesta variable prengui
determinats valors.
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. . . , ., . . , E:—0;)? .
Fixem-nos que si no hi hagués relacié entre les variables, tindriem que els % haurien

k2
de donar numeros petits, i per tant V donara un valor més aviat petit. En canvi, si hi ha
relacié entre les dues variables, V' hauria de prendre valors més aviat grans.
Calculem el valor de V en el nostre cas particular

(301 — 348)?2 N (129 — 82)% (3199 — 3152)? N (1371 — 1418)?
301 129 3199 1371

Si realment no hi hagués relacid, podriem calcular la probabilitat d’haver obtingut un resultat
tan gran com aquest, és a dir P{V > 26.765}, ja que la distribucié x? amb un grau de llibertat
és perfectament coneguda (de fet, quan el nimero de graus de llibertat és 1, es tracta d’una
variable normal estandard elevada al quadrat). Aquesta probabilitat és menor que 0.0001.

Observem que, suposant que no hi havia relacié, hem obtingut uns resultats a la nostra
mostra amb una probabilitat practicament nulla. Quan passa aixo, és perque és “gairebé”segur
que la hipotesi d’independeéncia és falsa. Per tant, afirmariem que aquestes dues variables estan
relacionades.

Cal fer atencié al fet que només hem inferit una possible relacié entre fumar i tenir cancer
i no pas que el fet de fumar causi cancer. Podria ser que ambdues caracteristiques estiguessin
relacionades a causa d’una tercera variable no controlada que les influis alhora.

Si la taula té més de dues files o dues columnes aleshores s’han d’usar altres distribucions

X2

V= = 26.765.

Distribucié x? amb un grau de llibertat

A la taula segiient es donen les probabilitats que el valor de V' obtingut seguint el procediment
descrit anteriorment sigui més gran que uns certs nimeros.

ValordeV> 1| 1 | 2 | 3 | 4 | 5 | 10 |
Probabilitat < | 0.318 | 0.159 | 0.084 | 0.046 | 0.025 | 0.002 |

La seva construccio es basa en el fet que per a una mostra prou gran es pot veure que

2 o0
P{V > v} ~ Nz e e 12 dg.

Aquesta ultima integral és dificil de calcular ja que es pot demostrar que la funcié e*/2 no

té cap primitiva (funcié g(z) tal que ¢/(z) = e~°/2) expressable com una combinacié finita
d’operacions elementals, funcions trigonometriques, logaritmes i exponencials, i per tant la
regla de Barrow no és aplicable a la practica. En aquestes situacions el calcul de l'area es
fa per metodes aproximats com el dels trapezis, basat en la idea seglient: aproximar ’area
real, f; f(x)dx, per la suma d’arees de trapezis, ), area(7;), amb els quals s’ha aproximat la
figura real. Vegeu la figura:

y y
y=f(z)

T | Ty | T3 | Ty
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2.5 La geometria de les perspectives. La raé doble

Quan fem una fotografia podem pensar que el que queda en el negatiu no és altra cosa que la
projecci6 sobre el pla de la pellicula, a través de 'objectiu de la camera, del que hi ha sobre
el terreny.

El que queda en el negatiu

L’objectiu

El que retratem

En aquest procés de projeccié no només es perd la informacié tridimensional dels objectes
retratats (es passa de cossos a l’espai a figures sobre un pla), si no que fins i tot la informacié
bidimensional (les distancies entre els punts sobre un pla fix) queden distorsionades. Per
exemple, considerant els punts X = (0,2,0), Y = (0,3,0) i Z = (0,4,0) del pla horitzontal
z = 0 projectats sobre el pla vertical y = 0 a través del punt P = (0, 1,1), s’obtindran aquestes
projeccions determinant els punts d’interseccié de les rectes PX, PY i PZ amb el pla y =0
tal i com es veu en el dibuix.

Centre de la perspectiva, P

Aleshores aquests punts seran

X"=(0,0,2), Y =(0,0,3/2) i Z' = (0,0,4/3).
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Es pot observar que, mentre la distancia entre X’ i Y’ és la meitat de la distancia entre X i Y,
la distancia entre Y’ 1 Z’' és 1/6 de la distancia entre Y i Z i la distancia entre X' 1 Z" és 1/3
de la distancia entre X i Z. No es pot pensar, doncs, que la representacié que s’obté sobre la
fotografia és una representacié a escala de la realitat. Tot i aix0, hi ha situacions en que les
mesures realitzades sobre una fotografia poden donar prou informacié per a poder calcular les
distancies reals. Un exemple d’aixo és el problema segiient:

Tenim una fotografia en que s’observa ’encreuament de dues carreteres rectes sobre un
lloc essencialment pla, dos senyals que marquen les distancies sobre una de les carreteres fins
a 'encreuament, i un cotxe circulant entre aquests dos senyals més o menys com en el dibuix
seglient (on s’han marcat els punts sobre la vora de la carretera que corresponen a cada un
dels llocs mencionats)

1
|
/ | \ * 1 km fins a ’encreuament
|
|

Un cotxe

4 km fins a ’encreuament

A quina distancia de ’encreuament es troba realment el cotxe?

Per a resoldre el problema notem primerament que l'alineament és una propietat que es
conserva en les transformacions perspectives. En efecte, la imatge d’una recta que passi per
dos punts donats és la interseccié del pla que conté aquests dos punts i el punt respecte al qual
es fa la perspectiva amb el pla sobre el qual es realitza la projeccié (la pellicula fotografica) i,
com tothom sap, les interseccions de plans amb plans (dins 'espai tridimensional) normalment
sén rectes?. Tenint en compte aixo, el problema en realitat fa referéncia a punts que estan
sobre una recta i les seves projeccions, des d’un punt desconegut, sobre una altra recta.

4Deixem a part els cas en qué els plans resulten parallels. Correspon aquest cas als punts d’una recta
invisible per a la projeccié que estem realitzant, i podriem fer tota una altra exposicié sobre aquest tema.
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pla de la fotografia

encreuament

4 km

La rad doble de quatre punts d’una recta déna una manera simple d’obtenir una solucié.
Donats quatre punts sobre una recta, es defineix la seva radé doble p com el quocient

(A, B,C, D) = AOBD)
(BC)(AD)

on (PQ) representa la distancia del punt P al punt ). La particularitat d’aquest nombre és
que, si projectem els punts A, B, C'i D sobre uns punts d’una altra recta A’, B’, C' i D’
respectivament, el valor de p(A’, B',C’, D’) coincideix amb p(A, B,C, D). Aquesta propietat
és certament remarcable; ja hem dit abans que les proporcions entre les distancies no es
conservaven després de fer una projeccié, i la radé doble no deixa de ser una mena de proporcio
entre distancies. Un exemple concret® en el qual es pot observar aquesta invariancia i el tipus
de calcul que intervé per a arribar a aquest resultat és el segiient:

Considerem la projeccié de la recta y = 0 del pla sobre la recta x = 0 des del punt
P = (1,1). Es pot comprovar que la projeccié del punt (z,0) és el punt (0,y) amb

Si es tenen quatre punts de la forma A = (x1,0), B = (x2,0), C = (x3,0) i
D = (z4,0), la seva ra6 doble sera

(z3 — 71) (74 — 72)
(z3 — m2) (74 — 71)

®De fet, la demostracié general de la invariancia de la raé doble consisteix essencialment a reduir el problema
a la situacié que analitzem.



2.5. LA GEOMETRIA DE LES PERSPECTIVES. LA RAO DOBLE 37

i les seves projeccions seran

X
A’ = (0, xlil)
X
B’ = (0, x2i1)
X
C'= (07 xgil)
X
Dr:(o,mjl);

de forma que la ra6 doble p(A’, B, C’, D') sera

(zgzil - xfil)(zfil - zgxil) _

(a::il - xgzil)(a:fil - a:fil) a

(z3(z1 — 1) =z (w3 — 1)) (wa(z2 — 1) — m2(w4 — 1))
(z3(z2 — 1) — x2(w3 — 1)) (za(z1 — 1) — 21 (204 — 1))

(x1 — w3) (22 — 74)
(z2 — x3)(v1 — 24)’

que coincideix amb p.

La raé doble « dels punts de la fotografia que representen el punt de 4 km (Q’), la posici6
del cotxe (C'), el punt d’1 km (U’) i Pencrenament (E’) es pot calcular prenent les mesures
corresponents directament sobre la fotografia i fent les operacions algebraiques necessaries.
D’altra banda, la raé doble p(Q, C,U, E) (que ha de coincidir amb «) no és calculable direc-
tament a partir de la informacié que tenim, ja que es desconeixen les distancies (CE) i (CU).
Ara bé, com que (CU) = (CFE) — 1, podem fer

(QU)(CE) 3(CE)  3(CE)

@ =nQ.CUE) = Gm@QE) ~ (Ci ~ W(CE) 1)

de forma que
4o

4o — 3’
i ja tenim la dada que voliem saber. Fent aquests calculs a partir del croquis sobre el qual
hem plantejat el problema, a mi em surt que el cotxe es troba a uns 1375 m.

(CE) =
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2.6 Deteccié de malalties. Formula de Bayes

Crec que el problema que estudiarem ens fa veure que per a prendre certes decisions no n’hi
ha prou de tenir bones intencions, siné que s’ha d’entendre una mica de nimeros.

Suposem que hi ha una certa malaltia greu que afecta al 2 per mil de la poblacié i que si
és detectada prou a temps és curable. Suposem, a més, que es disposa d’una certa prova per
a detectar la malaltia amb les caracteristiques seglients:

(i) Si una persona té la malaltia, en el 99% dels casos li detecta.
(ii) Si una persona no té la malaltia, en un 99% dels casos la prova diu que no la té.

Cal comentar que la situacid descrita abans és corrent, ja que normalment les proves sempre
tenen un cert error.

Un cop plantejat el problema, la qiiestié és: és ttil sotmetre tota la poblacié a aquesta
prova per tal de detectar els casos de malaltia? O en altres paraules: Si a una certa persona
la prova li surt positiva (és a dir, la prova diu que pot tenir la malaltia), en quin tant per cent
dels casos és cert que la persona en qiiestié té efectivament la malaltia? La solucié correcta
del problema passa per la traduccié d’aquest en termes de probabilitats i en 1'aplicacié de
I’anomenada férmula de Bayes. Aquesta solucié es donara en segon lloc. Primer donarem una
explicacié simplificada i potser més intuitiva:

Suposem que la nostra poblacié té moltes persones (per exemple 1000000), aleshores
podem construir la taula segiient, que reflecteix la situacié esperada de la poblacié. La sim-
plificacié del problema rau en la construccié d’aquesta taula, que no té per que ser correcta.
Quan es diu que la malaltia afecta a un 2 per mil de la poblacid, no vol dir que sigui quin
sigui el nombre de persones que agafem, exactament 2 de cada mil seran malaltes. I el mateix
pel que fa a la fiabilitat de la prova.

Poblacié malalta | Poblacié no malalta Total
Prova surt 1980 9980 11960
positiva
Prova surt 20 988020 988 040
negativa
Total | 2000 \ 998 000 | 1000000

Taula 1. Distribucié esperada de la poblacio

Usant les dades de la taula tenim que, del total de persones a les quals la prova surt positiva
(11960), només 1980 estaven malaltes, mentre que 9980 no ho estaven.

Aixi tenim que només en un 111998600 100 ~ 16.56% dels casos en que la prova surt positiva, la
persona en qliestio té la malaltia. Aquest fet desaconsella fortament I'is massiu de la prova de
deteccio. Només es aconsellable fer-la a persones que tinguin algun indici de tenir la malaltia.

En cas que la malaltia sigui molt comuna (per exemple que afecti un 10% dels individus),
aleshores una prova amb les mateixes caracteristiques si que seria fiable (en un 91.7% dels

casos en que la prova surt positiva la persona en qiiesti6 té la malaltia).

Fem, per acabar, el mateix calcul d’una manera rigorosa. La férmula de Bayes serveix per
a calcular la probabilitat d’un esdeveniment A sabent que se n’ha produit un altre B. Aix0
es fa a partir de la probabilitat que es produeixi aquest dltim esdeveniment B sabent que
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s’ha produit A. Es, doncs, una férmula d’inversié dels condicionaments. La versié més simple
d’aquesta férmula és

P(A)P(B/A)
P(A)P(BJA) + P(A°)P(B/A°)’

P(A/B) =

on la notaci6 P(A/B) vol dir la probabilitat que es produeixi ’esdeveniment A, sabent que
s’ha produit l'esdeveniment B. Naturalment P(A) vol dir la probabilitat que es produeixi
I'esdeveniment A i també estem denotant per A¢ el complementari o contrari de I’esdeveniment
A, que és aquell esdeveniment que ocorre sempre que no ocorre A.

Si apliquem la féormula al nostre exemple, tenim que, posant

A = tenir la malaltia,

A° = no tenir la malaltia,

B = donar la prova positiva,

B¢ = donar la prova negativa,
ens estan dient que:

P(A) =0.002, d’on es dedueix que P(A°) = 0.998,

P(B/A) = 0.99 (probabilitat que la prova doni
positiva si I'individu té la malaltia),

P(B€/A¢) = 0.99 d’on es dedueix que P(B/A°) =
0.01, i ens demanen P(A/B).

Thomas Bayes (1702-1761)
Aplicant la férmula tenim que

P(A)P(B/A) 0.002 x 0.99

PAIB) = BraP(B]A) + P(A°)P(BJA9) ~ 0.002 x 0.99 + 0.998 x 001

=~ 0.1656,

resultat que coincideix amb la forma més intuitiva de fer-ho.
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2.7 Programacio lineal i dietes

Segons I’OMS, una dieta equilibrada ha de contenir un 15% de proteines, un 30% de greixos
i un 55% de glicids. Si a més sabem que diariament hem de prendre com a minim 80 g de
proteines, tenim que una bona dieta ha de tenir almenys 80, 160, i 290 g de proteines, greixos
i glicids respectivament.

Amb les dades anteriors intentarem plantejar el problema de quina és la dieta més barata
i equilibrada que podem fer menjant només llegums, galetes, alvocats i olives.® Tenim la
segiient taula de preus i composicions:

100 g Proteines | Greixos | Glicids || Preu de 100 g
Llegums 25 1 60 20
Galetes 11 9 72 30
Alvocats 2 26 6 60

Olives 1 20 10 25

Taula 2. Preu i composicié de diversos aliments

A partir de la taula i anomenant z, y, z i t la quantitat (en unitats de 100 g) de llegums,
galetes, alvocats i olives que té la dieta, tenim que la solucié del problema segiient:

minimitzar 20x + 30y + 60z + 25t,
sabent que x>0,y >0,22>0,¢>0,
25z 4+ 11y + 2z +t > 80,
x + 9y + 262 + 20t > 160,
60z + 72y + 62 + 10t > 290,

ens donara la dieta més barata.
Si canviem la funcié que volem minimitzar per la funcié

60x + 72y + 62z 4 10¢,

ens donara la dieta amb menys glicids.

La solucié de qualsevol d’aquests dos problemes de manera sistematica passa pel que s’ano-
mena metode del simplex per a resoldre problemes de programacié lineal. Com a curiositat
direm que la dieta més barata consisteix a menjar 250’3, 90’4, 0 i 746’8 g de llegums, galetes,
alvocats i olives, respectivament, cada dia. Una exposicié detallada del metode del simplex
es pot trobar, per exemple, al llibre Programacion lineal, de L. Penafiel Millan, Biblioteca de
Ciencias de la Administracion, Ed. Trillas, 1976.

Seguidament explicarem un metode mes senzill (anomenat metode grafic) que ens permetra
resoldre problemes com el d’abans en el cas de només dues variables. Per al cas de tres variables
també es podria usar; pero, com es deduira de I'explicacié segiient, costaria més d’aplicar.

5De fet, el 1945, I'economista G. J Stiger ja va plantejar aquest tipus de problema. Va prendre 77 aliments
diferents i va considerar nou elements nutritius (proteines, glicids, vitamines, etc.). Finalment va deduir que
era possible mantenir una dieta adequada i amb cost minim, menjant només farina de blat, col de cabdell i
faves seques.
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Considerem el problema segiient:

maximitzar x + vy,

sabent que x>0,y >0,
8x 4 6y < 20,
2z + 4y < 10.

Per tal de trobar el punt (z,y) que faci maxima la funcié x + y d’entre tots els punts que
compleixen les quatre inequacions, el primer que es fa es dibuixar la regié del pla limitada per
aquestes.

A4 x+y:3 T
\ r+y=2 .-
T z+y=1

: 2 4y = 10
4 :E+ y "E—f—y:

E T | | |
8x+6y:2(x \

Un cop dibuixada la regié de punts (z,y) que compleix les inequacions (vegeu la figura de
Pesquerra), observem com sén les grafiques de = + y = k variant el valor de k. Com podeu
veure a la figura de la dreta, aquestes sén rectes paralleles que van pujant al mateix temps
que k augmenta. Aleshores, si les anem movent augmentant k, 1"iltim punt on toquin la regié
puntejada sera el punt (x,y) en el qual k (i, per tant, la funcié x + y) pren el valor més gran.
En el nostre cas aquest punt és (1,2) i el valor maxim de x + y sera 3.

La programacié lineal també és 1til per a resoldre el conegut com problema del transport.
Explicarem aquest problema amb un exemple. Suposem que una empresa té tres factories
I, F5 i F3 que produeixen ¢q, gs i g3 unitats d’'un mateix producte, respectivament. Suposem,
a més, que ha de repartir tot el que produeix entre quatre consumidors D1, Do, D3 i Dy, que
necessiten x1,xo,r3 i x4 unitats de producte, respectivament. Suposem que el cost d’enviar
una unitat del producte, de la factoria i-esima al consumidor j-esim, és p; ;. Com ho ha
d’organitzar per tal de gastar el minim possible?
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2.8 Probabilitats geometriques. Geometria integral

Mesura de punts. El problema de I’agulla de Buffon

L’origen de les probabilitats geometriques es troba en I'ano-
menat problema de l’agulla de Buffon.

El comte de Buffon era un frances que es deia Georges
Louis Leclerc, que va viure de 1707 a 1788 i va ser nome-
nat comte per Lluis XV. Va ser un gran naturalista i va
escriure una Historia natural de 36 volums. Va ingressar a
I’Academia de Ciencies de Paris el 1734, com a cultivador
de la mecanica racional.

L’any 1777, en el volum IV del Suplement a la historia natural va incloure un treball
titulat Essai d’arithmétique morale. En aquest article Buffon tracta d’adaptar la matematica
a l’estudi de la realitat de 'home, procurant quantificar en la mesura del que sigui possible, les
seves emocions, temors i esperances. Per a fer aix0 necessita escollir una unitat de mesura de
les emocions, a la qual poder referir quantitativament tota altra emocié. Agafa com a unitat
el temor a la mort, que la pot considerar a la vegada mesura de temor i d’esperanca sense més
que canviar-la de signe.

En considerar les passions de 'home, Buffon assenyala la del joc com la més estesa i
perniciosa. Es refereix als jocs d’atzar amb diners. Com coneix resultats de la teoria de
probabilitats, que havia estat introduida per J. Bernouilli el 1713, relaciona I'atzar amb els
nimeros i veu com aquests influeixen aixi en el comportament de les persones. Per aixo parla
d’aritmetica moral.

Posteriorment reivindica la geometria com una eina eficag en el calcul de probabilitats.
Diu:

L’analisi ha estat ["unic instrument que fins avui s’ha utilitzat en la ciencia de les
probabilitats, com si la geometria no fos adient per a aquests fins, quan en realitat
n’hi ha prou amb una mica d’atencid per observar que l’avantatge de l’analisi sobre
la geometria és tan sols accidental, i que l’atzar és tan propi de la geometria com
de l’analisi.

També afegeix:

Per a posar la geometria en possessié dels seus drets sobre la ciencia de latzar,
n’hi haura prou d’inventar jocs que es basin en l’extensio i en les seves relacions.

A continuacié introdueix el seu famés problema de I'agulla, que nosaltres presentarem d’una
manera lleugerament diferent.

Suposem que dos amics, per exemple en Sergi i la Silvia, fan I'aposta segiient: tiraran
el llapis a terra, sense mirar. Un cop el llapis estigui ben quiet miraran si talla les linies
horitzontals que formen les rajoles en el terra d’una habitacié.

Si talla, guanya el Sergi, i si no talla, guanya la Silvia. Les rajoles sén grans i quadrades,
de 40 cm per 40 cm, i el llapis, gairebé nou, fa uns 15 cm Les preguntes sén:

Q1. Qui juga amb avantatge?

Q2. Quant hauria de mesurar el llapis per a qué el joc fos equilibrat?
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Ara resoldrem matematicament aquest problema i demostrarem que, en funcié de la longi-
tud del llapis i 'amplada de les rajoles, la probabilitat que el llapis talli les linies horitzontals

determinades per les rajoles és
21
p=—
Ta
on [ és la longitud del llapis i a ’amplada de les rajoles.

Per tant, en el nostre cas

que vol dir que, aproximadament, de cada 100 tirades 23 tallaran i 77 no tallaran. Per tant,
la Silvia té tots els trumfos! Aixo respon Q1.
La pregunta Q2 és ara facil ja que el joc és equilibrat quan tots dos jugadors tenen la
mateixa probabilitat de guanyar. Es a dir
2-1 1

r-40 2

p =
per tant, per a que el joc fos equilibrat el llapis hauria de mesurar
[ =107 ~ 31.4cm,

un llapis certament molt llarg.
De manera general la relacié entre la longitud del llapis i la separacié de les linies horit-
zontals ha de ser de 7/4 per a que el joc sigui equitatiu.

Es considera que amb aquest problema neix la teoria de les probabilitats geometriques. Es
tracta d’un joc d’atzar en el qual no podem aplicar la tipica férmula de

casos favorables

casos possibles ’
ja que no podem comptar aquests casos (n’hi ha infinites possibilitats), siné que cal mesurar-
los. Passem de 'aritmetica a la geometria.
Calcul de la probabilitat en el problema de I’agulla de Buffon

La versié abstracta del problema de Buffon es pot pensar aixi:
Suposem el pla dividit per rectes horitzontals separades entre elles una distancia a, i
llancem una agulla, o un llapis, com vulgueu, de longitud [ que suposarem més petita que a.

La primera dificultat és poder descriure la posicié en que ha caigut 'agulla. Aixo ho podem
fer de diverses maneres pero elegirem la segiient, que ens anira bé per als calculs. Anomenarem
x la distancia entre el centre de ’agulla i la primera recta horitzontal que hi ha per sobre d’ell,
i 0, 'angle entre aquesta semirecta vertical i ’agulla, mesurat des de la vertical. Si anem cap
a la dreta, sera positiu, i si anem cap a l’esquerra, negatiu.
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Per a evitar que una mateixa posicié de 'agulla es pugui representar per dos angles (que

serien suplementaris) restringirem els valors de 6 a l'interval (=3, 5], és a dir =5 <6 < 7.

D’aquesta manera tenim tantes posicions possibles de 1'agulla com parells (z,0) amb 0 <
r<a i —5<0<3. Correspon al nombre de casos possibles; pero, com hem dit abans,
no els podem comptar i el que farem sera mesurar-los.

Representem els valors de x i 6 en un sistema d’eixos cartesians i diem que la mesura dels
casos possibles és 'area de la regié que determinen.

—m/2 /2

Aix{ doncs,

m(casos possibles) = 7 - a,

on posem m per “mesura’.
De manera semblant podem comptar, és a dir mesurar, els casos favorables.

Per a fer aixo fixem de moment un angle # i anem desplacant verticalment ’agulla sobre
una banda d’amplitud ¢ mantenint-la sempre formant un angle # amb la vertical.
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0 5 cos 0

AN
O\ X

Ens adonem que, si

l
0<zx< 3 cos 0,
I’agulla talla la recta horitzontal superior, mentre que si
l
a—50080<x<a,

I’agulla talla la recta horitzontal inferior de la banda.

Dibuixem els grafics de les funcions z = écos lix=a— %cos@

que sén simetriques respecte a la recta horitzontal x = 3.
Aix{ doncs, les posicions de I'agulla descrites per parells (x, #), pertanyents a una d’aquestes
regions ombrejades de la figura, corresponen a posicions de tall.
Per analogia amb el que hem fet abans, I’area d’aquesta figura ens déna una bona mesura

de la quantitat de posicions de tall, és a dir dels casos favorables.

l
m(casos favorables) = area entre la grafica de z = 5 cos fileixz=0

l
+ l'area entre la grafica de x = a — 3 cosf ileix x = a.
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Com que aquestes dues arees son iguals, tenim

Finalment, doncs, la probabilitat de tall buscada és

_ m(casos favorables) 2l

m(casos possibles)  wa’

com haviem dit.

Una caracteristica extraordinaria d’aquest resultat és que ens permet obtenir bones apro-
ximacions del nimero 7 simplement llancant llapis a terra durant una estona d’avorriment.
En efecte, la probabilitat és una bona aproximacié de la freqiiencia amb queé un esdeveniment
es déna, més bona com més gran sigui el nombre de tirades. Per exemple, si en Sergi tira
100 vegades el llapis i obté que el llapis talla 25 vegades, la freqiiencia de tall 25/100 és una
aproximacio de la probabilitat de tall p, de manera que tenim

25 2-15
100  m-40’

d’on ™ ~ 3.1.

El 1901, Lazaroni va llancar I’agulla 34 080 vegades i va obtenir 7 = 3.1415929 (hi ha gent
per a tot!).

Metodes de teoria de probabilitat que no explicarem aqui permeten dir que les millors
estimacions de 7 s’obtenen quan [ = a, i també ens permeten dir quants llangaments s’han de
fer per a obtenir, amb una probabilitat tan alta com vulguem, el valor de 7 amb un nombre
determinat de xifres decimals exactes.

Mesura de rectes. Formula de Crofton

Ara ja hem vist que l'area ens serveix per a comptar el nombre de punts d’un conjunt. La
pregunta ara és: podem comptar el nombre de rectes? Per exemple, quantes rectes tallen
un segment donat? O, quantes rectes tallen una circumferéncia donada? Per a respondre a
aquestes preguntes farem el segiient:

Per a cada recta del pla considerarem dues quantitats (p, #) definides de la manera segiient:

p = distancia de la recta a ’origen de coordenades
0 = angle entre 'eix de les x i la perpendicular a la recta per 'origen

Considerarem 6 mesurat sempre des de la part positiva de I’eix de les « fins a la perpendicular
per l'origen en sentit antihorari.
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D’aquesta manera tenim tantes rectes en el pla com parells (p,0) amb 0 < p < oo, 0 <
0 < 2m. Hi ha un petit problema amb p = 0, pero que no afecta el raonament posterior.

Podem representar-les, doncs, com els punts d’una banda en el pla (p,0) :

2T

Observem que la recta que correspon al punt (p, ) té equaci6 cartesiana
xcosh +ysinfh —p=0

ja que passa pel punt (z,y) = (pcos@,psin@) i té pendent —ctgb.

Aquesta interpretacié ens permet respondre ja les preguntes abans considerades; concre-
tament anem a calcular quantes rectes tallen un segment de longitud I.

Comencgarem estudiant el cas més senzill en que aquest segment esta situat sobre I'eix de
les = amb origen (0,0) i extrem (I,0). Es a dir,

segment = {(z,0);0 <z <I}.

Observem primerament que hi ha valors de 6 per als quals cap recta (p, ), sigui quin sigui
el valor de p, talla el segment donat.
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Concretament, si § = 7, la recta és paral-lela a I'eix de les x i, per tant, no talla el segment.
Si anem augmentant I'angle, és a dir pera § <60 < 37”, tampoc cap recta no tallara el segment.
Quan 37” < 0 < 27, ja hi ha valors de p per als quals la recta (p, ) talla el segment.

Observem a continuacié que per a un angle 6 fixat, amb 0 < 0 < 3 o 37” <60 < 2m, les

rectes (p,0) tallaran el segment si i només si

0<p<lcosb

Resumint aquestes dues observacions, veiem que una recta (p, ) talla el segment donat si

0<p<lcosb
0<o<Z 3T op<on
2 2

Si dibuixem aix0 a la banda del pla (p, §), tenim
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0 /2 T 3r/2  2n
L’area d’aquesta regio ens mesura la quantitat de rectes que tallen el segment.

z 2m
m(rectes que tallen) = /2 L cos 6do —|—/ L cos 6do
0

3T

2
s

- 2/2 I cos 0df = 21[sin )3 = 21.
0

Obtenim aixi un resultat realment remarcable: La mesura de rectes que tallen un segment de
longitud | és 21.

Si el segment no es troba sobre 1’eix de les x, sindé en una posicié arbitraria, el calcul és
una mica més complicat pero el resultat és el mateix. De fet estem fent les coses de manera
que els resultats obtinguts siguin invariants per moviments rigids, és a dir girs i translacions.
Aix0 és una caracteristica fonamental i molt natural, ja que les mesures que volem fer no han
de dependre del lloc o posicié en que les fem.

Aix{ doncs, acceptarem sense demostracié (per no perdre el fil) que independentment de
quina sigui la posicié del segment la mesura de les rectes que el tallen és igual a dues vegades
la seva longitud.

Si en lloc de tenir un segment tenim la figura formada per dos segments consecutius, la
mesura de rectes que tallen aquesta figura sera la mesura de les rectes que tallen el primer
segment més la mesura de les rectes que tallen el segon segment. Pero, atencid, perque
d’aquesta manera hi ha rectes que les estarem comptant dues vegades, les rectes que tallen els
dos segments a la vegada.

El mateix passa si la figura esta formada per la unié de diversos segments, és a dir per a
qualsevol poligonal. Cada recta pot tallar diverses vegades la poligonal.

Per tant, si sumem les mesures de les rectes que tallen cada segment de la poligonal, el
que obtindrem és que

la mesura de rectes que tallen una poligonal, comptades cadascuna d’elles tantes
vegades com la talli, €s igual a dues vegades la longitud d’aquesta poligonal.
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De manera general, per un procés de pas al limit, i a causa que tota corba (prou bona) es
pot aproximar per una poligonal, tenim el resultat conegut amb el nom de férmula de M.W.
Crofton (1818), que diu

/n(p, 0)dpdo = 21(C),

on la integral esta estesa a aquells (p,#) tals que la recta corresponent talla una corba donada
C, de longitud I(C), i n(p,0) és el nombre de talls de la recta (p,) amb la corba. Es llegeix
com abans dient que

la mesura de rectes que tallen una corba, comptades cadascuna d’elles tantes ve-
gades com la talli, és igual a dues vegades la longitud d’aquesta corba.

Aquesta formula s’aplica amb exit a calcular longituds de corbes complicades com ara la de
la figura a base de comptar el namero de talls d’aquesta corba amb moltes rectes de manera
que s’obtingui una bona aproximacié de la integral.

Per exemple, si agafem una familia de rectes horitzontals separades entre elles una distancia

r i a continuaci6 les fem girar angles de 7, %T”, :%r’ obtenim un enreixat de rectes que tallaran

la nostra corba en un nombre de punts que aproxima la integral de la férmula de Crofton.
Concretament es pot veure que

s
nTZ,

on n és el numero de talls de I'enreixat amb la corba és una bastant bona aproximacié de la
integral.

Aixi doncs, podeu construir-vos amb paper transparent aquest enreixat, posar-lo al damunt
de la figura anterior, comptar el nombre de talls d’aquestes rectes amb la corba, i tindreu una
aproximaci6 de la longitud de la corba per

1
[~ =nre.

2 4

La corba segiient ha estat dibuixada desenrotllant un cordill de 30 cm sobre el paper.
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Amb un enreixat com ’anterior, construit a partir de rectes horitzontals separades 0.4 cm
s’obtenen aproximadament 180 punts de tall, de manera que

1 14
I~ 5180 -4 - 3T = 282.6 mm,

resultat forca aproximat.

Posant aquests enreixats transparents en un microscopi electronic s’ha aconseguit calcular
longituds de molecules d’ADN.

Diguem finalment que aquests dos problemes explicats aqui formen part de la disciplina
anomenada geometria integral, que té moltes aplicacions a la biologia i la medicina i que,
potser per aixo, és avui un tema d’actualitat. De fet, hi ha tota una branca de la geometria
integral, anomenada estereologia, on conflueixen ’estadistica, la geometria i la medicina, que
es dedica aquests temes.

El referent mundial de la geometria integral és en Lluis Antoni Santald, matematic catala
nascut el 1911 a Girona, si bé establert a I’Argentina, on es va haver d’exiliar a causa de la
guerra civil. El seu manual Integral Geometry and Geometric Probability és llibre de capgalera
de tots els que es dediquen a la geometria integral o a la estereologia.
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2.9 Solucié d’equacions polinomials. Credits bancaris

La resolucié d’equacions ha estat un dels problemes que ha fet evolucionar les matematiques
al llarg de tota la seva historia. Les equacions més senzilles

ar+b=0, a#0

s’han pogut resoldre des de fa moltissims anys. L’ds de la notacié algebraica ens ha ajudat
moltissim. La solucié de l'equacié de dalt és = = —b/a.
La dificultat segiient ens ve donada per a I’equacié de segon grau

ar’ +br+c=0, a##0.

La seva solucié es coneix des de més de quinze segles abans de Crist, i va ser trobada pels
babilonis. Més tard, els grecs la van retrobar. Amb la notacié moderna, és molt senzill veure
com s’obté:

L’equacié de tercer grau
ar® +bx’+cx+d=0, a#0

va haver d’esperar fins al segle X VI per ser resolta. La paternitat de la seva solucié va ser

molt disputada. No entrarem aqui a explicar les baralles que hi va haver. Tres matematics

italians hi van estar involucrats: Scipione de Ferro, Niccold Tartaglia i Gerolamo Cardano.
Els passos per a la seva solucié son els seglients:

ard +ba? +cx+d=0,
b c d
2+ —2® + —x + - = 0;
a a a
prenem r =y — 3%. Aleshores 'equacié s’escriu com

Y +py+q=0,

on
c b2 2h3 be d
P=e732 ' T e ey
Resoldrem doncs I'equacié amb incognita y, i a partir de les y obtindrem directament les .
Per aixo busquem solucions de la forma y = u + v. Substituint tenim

(u+0) +plu+v)+q=0
u? + 3 + g+ (3uv + p)(u+v) = 0.
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Per a resoldre aquesta ultima equacié busquem u i v que satisfacin

ud +v3 4+ q=0,
Juv +p=0.

Clarament podem intentar resoldre el sistema

u3+v3:—q,
3
ugvgz—p—.
27
Com que v3z—q—u3,tenim que
3
3 3 p
u(—q —u°) = —=—,
(—q ) 57
312 3 p3
——=0
(u”)” + qu o7

. . ., 3
Observem, a més, que v ha de complir la mateixa equacié de segon grau z% + qz — =0
Usant les férmules per a resoldre aquesta ltima equacié arribem a

2 3 2 3
3__ 4 a P 3__49_ /¢ P
WEy Tt Y 5 Va1 Taor

Per tant, les solucions de
v +py+q=0

es poden trobar a partir de la férmula

2 3 2 3
9 T AR B S O
y_\/2+\/4+27+\/2 Vot

Aquesta darrera férmula necessita una mica més d’explicacié. Observeu que s’han de fer arrels

ctibiques de nombres que poden ser reals o complexos (ho seran si % + 12’—:; < 0). Recordeu
que un nudmero distint de zero té sempre tres arrels cubiques. Per tant, la férmula anterior
dona en general nou solucions. D’aquestes es pot veure que només tres poden ser solucions de
lequacié original de grau 3. De fet s’han de prendre u i v tals que uv = —p/3.

La férmula deduida permet arribar a resultats curiosos. Per exemple, si prenem 1’equacié

v — 6y — 40 = 0,

podem trobar per simple inspeccié que y = 4 és una arrel. D’altra banda, tenim que les arrels
sén donades per la formula involucrant arrels quadrades i cubiques. Aixi, es compleix que

{’/20+14\/§+ §/20—14\/§:4.

Per a altres equacions la férmula deduida és I'inica manera de trobar una solucié exacta. Per
exemple,

i‘/—3+\/1——{’/3+\/ﬁ

és una solucié de l'equaci6 y° + 3y + 6 = 0.
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L’equacié de quart grau
4 3 2 _
ar” +bx’+cx+dr+e=0, a#0

va ser resolta poc després de la de tercer grau per Ludovico Ferrari. Explicarem els passos per
resoldre-la.
Dividint ’equacié per a tenim

b d
e s SR
a a a a

Completant quadrats,

2a - \4a? a a a’

Tornem a intentar completar quadrats als dos costats afegint a les dues bandes (wz + %x) y+

¥

T Es a dir, busquem una y de manera que

v¥ooc\ o, d ¢ (24 b n y?

— =)= —x—— x*+ —x =

402 a a a 2" )Y T4
sigui un quadrat perfecte en . En altres paraules, busquem y tal que existeixin expressions
a i B que compleixin

b2 b d 2
<@—§+y)x2+<%y—a>x+<%—g)Z(ax-i—ﬂ)Q. (*)

Un cop trobades « i 3 tindriem que

2+i-2+ 2, b +£—( +3)*
T 2@.%' x % Yy 1 = (ax s

b Y 2
2, b vy 2
<x —|—2ax+2> = (ax + B)*,

i, per tant, les solucions inicials s’obtindrien resolent les dues equacions de segon grau
b Y b Y
2 2
= = *x
:c+2:c+2 azx + 3, x+2x+2 axr — 3, ()
on y s’ha de buscar de forma que la relacié () es satisfaci. Ara bé, com s’assegura que una

expressio

Az’ + Bz +C

és un quadrat perfecte? Doncs imposant que B2 — 4AC = 0. En el nostre cas, tenim que y

ha de ser tal que
b d\? b? c TR
—y—=] —4(-——- = ——]=0.
<2ay a> <4a2 a +y> (4 a) 0 (xx%)

Calculant arribem que y ha de satisfer una equacié de tercer grau, que ja sabem resoldre.
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Resumint, per a resoldre I’equacié de quart grau, hem de buscar una solucié y, de 'equacié
de tercer grau (x * x). A partir d’aquesta y podem buscar « i 5 que compleixin (x). Un cop
obtingudes «, (i y, podem resoldre les dues equacions de segon grau (**) i obtindrem les
solucions = de la primera equacié.

A partir d’aquests dos exits amb els graus 3 i 4, es va intentar resoldre les equacions de grau
més elevat. Es va necessitar més de dos segles per a aconseguir deduir que era impossible donar
férmules que permetessin resoldre les equacions generals de grau n, n > 5 usant només un
nombre finit de sumes, restes, multiplicacions, divisions i calculs amb radicals. Els matematics
que van demostrar aquest resultat van ser J.L. Lagrange (1736-1813), N. Abel (1802-1829) i
E. Galois (1811-1832).

Podeu consultar els tres llibres d’A.D. Aleksandrov et al. La matemdtica: su contenido,
métodos y significado, Alianza Universidad, 1973, en els quals trobareu desenvolupat aquest
tema i molts altres temes matematics.

Com veureu a I’exemple que segueix, la resolucié d’equacions polinomials de grau més gran
que 4 apareix en problemes practics. Els métodes que s’han desenvolupat permeten trobar
les solucions amb el nombre de xifres decimals correctes que es desitja. Un dels metodes més
tutils va ser el descobert per Isaac Newton.

Quota d’amortitzacié d’un credit a interes fix

Suposem que una entitat financera ens deixa D = 7000000 ptes. a un interés mensual fix”
del 0.5% (r = 0.005) i que podem pagar un maxim de ¢ = 90000 ptes. al mes. Quant temps
tardarem a cancellar el préstec?

En primer lloc recordem que un deute de ¢ ptes. queda convertit en
c(1 + r)™ ptes. després de m mesos. Tractem de relacionar totes les quantitats involucra-
des: el deute (D), 'interés mensual (r), la quota mensual (¢) i el nombre de mesos (m). Una
manera senzilla d’interpretar la situacié és la segiient.

Deute total: Si no paguéssim cap quota, la deuta inicial D es convertiria, després de m
mesos, en

D(1+r)™.

Cada cop que paguem una quota g podem pensar que aquesta queda dipositada a l’entitat i
també produeix un interés r per cada un dels mesos restants; aixi:

La quota nimero 1 produeix un capital ¢(1 4 7)™~ (hi és m — 1 mesos)
La quota nimero 2 produeix un capital ¢(1 4 7)™~2 (hi és m — 2 mesos)

La quota nimero m — 1 produeix un capital ¢(1 4 ) (hi és 1 mes)
La quota niimero m produeix un capital q.

S’ha de complir la igualtat:

DA +1)" = gL+ 1) 4+ gL+ 1) + -+ q(l+7) +q.

7 Aixd normalment s’abreuja dient que l'interes anual és del 6%. Aquest interes no és ni de bon tros el famés
T.A.E. El T.A.E. s’obté afegint a linterés anual acumulat 6 x (1.005)'2% = 6.37% les altres despeses per a
obtenir el credit (comissions, estudi, etc.).
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Esadir,
_ DA +r)"
S+ () + A2+ (L)

Per tal de trobar una férmula més senzilla per a aquesta ltima expressié observem que si

q

S=1+x+z>+. . +am™

aleshores
tS=z4+22+23 -+ 2™

Restant ambdues expressions tenim
l-z)S=1-2",

d’on resulta

1 — ™
S=l+4az+a2+ famt="""0
1—=z
En el nostre cas, = 1 4 r, el denominador és
1 m—_1
1+(1+r)+(1+r)2+---+(1+r)m1=%,
i la relaci6 final és
Dr(1+4r)™
4= ()
I+r)m—-1

Amb les dades concretes

7000000 x 0.005 x (1.005)™ 35000 x (1.005)™

90000 = -
(1.01)™ —1 (1.005)™ — 1

Operant
(1.005)™ = 90 000 18

"~ 90000 — 35000 11
Aquesta tltima equacié es pot resoldre facilment prenent logaritmes als dos costats:

18
log(1.005)™ = log —,
11
don log 18/11
og
=250 9874
"= 10g 1.005

Per tant, necessitarem quasi 8 anys i 3 mesos per a liquidar el prestec.

El problema invers, és més dificil. Suposem que llegim 'oferta segiient: Podem pagar un
objecte que costa 14000 ptes. amb 12 quotes de 1400 ptes. A quin interés mensual (1) ens
ofereixen el credit?

Aplicant la férmula (%) obtinguda a I'apartat anterior obtenim que l'interés mensual r ha
de complir
140007 (1 + 7)!2

1400 =
(14+r)2-1

Si anomenem x a 1 4 7, tenim

14000(x — 1)z'2

1400 = ——35—
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Operant obtenim que x ha de complir (a més, ha d’estar entre 1 i 2)
140002 — 154002'2 + 1400 = 0,

o equivalentment 10z'® — 112'2 + 1. Com ja hem comentat, la resolucié d’aquesta equacié
de grau 13 en x no és possible de manera exacta. De tota manera, trobarem una solucié de
I’equacié amb tants decimals correctes com vulguem utilitzant dos metodes aproximats.

El primer d’ells, anomenat metode de la biseccid, és el més senzill possible. Si anomenem

f(z) =102 — 11212 + 1,

observem que f(1) =0, f(1.01) és negatiu i f(1.05) és positiu. Per tant una solucié ha d’estar
entre 1.01 1 1.05. Avaluant f a 1.03 deduim que una solucié esta a U'interval [1.01,1.03]. Conti-
nuant aquest procés sis cops més arribem a que la nostra solucié ha d’estar a [1.02905, 1.02935].

El metode Newton (vegeu també la seccié 2.19) consisteix a considerar la successié recur-

rent
fx,) 1023 —11zk2 +1

Tkl = T ) T T 130012 — 132401

Zo-

Aquest metode té convergencia quadratica en molts casos i ens assegura que si la successié
X0, T1,T2, T3, ... s'acosta a un valor, aquest valor és una solucié de f(z) = 0. Amb les nostres
dades, si prenem zy com el punt intermedi de l'interval [1.01,1.05], obtenim que zy = 1.03,
x1 = 1.029251963 . .., zo = 1.029228563..., x5 = 1.029228540..., x4 = 1.029228540... i per
tant la solucid és aproximadament 1.029228540. Es a dir linteres mensual és d’un 2.92%.

Figura obtinguda aplicant el métode de Newton per a resoldre 22 — 1 =0, amb 29 € C, i
assignant a cada punt de C un color diferent en funcié de la solucié que trobem.
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2.10 Les matematiques i les imatges

Dins el camp de la visié per ordinador, el tractament o l'analisi de les imatges és una de
les tasques fonamentals. Moltes sén les aplicacions on es té una base d’imatges, sobre les
quals es necessita fer una analisi per a una posterior interpretacié o per a poder extreure
una informacié que després podrem processar. En algunes aplicacions, com és el cas de les
aplicacions industrials i mediques, s’obtenen seqiiencies d’imatges tridimensionals 3D. Pensem
en el cas de la tomografia computaritzada (TAC), la qual ens déna informacié 3D de les
estructures internes del cos huma. Poder entendre aquestes imatges requereix la identificacié
i modelitzacié de les superficies dels objectes que sén presents en les estructures 3D. En
el cas de les imatges satellit, un dels problemes esta donat pel soroll present en la imatge
mateixa, a causa potser de problemes de captacié o transmissié. En aquest cas s’intenta
fer un filtratge o preprocessament, intentant eliminar aquest soroll i conservar la informacio
inherent a la mateixa imatge. Un problema semblant seria el de la restauracié de pellicules
antigues que estiguin deteriorades pel pas del temps. El reconeixement automatic de les formes
és també un dels camps de la visié on I'analisi de les imatges és una part fonamental. Pensem
en el reconeixement de la signatura o la lectura automatica de caracters. En el cas de la
videovigilancia potser es tracta d’identificar els trets principals en la fisonomia d’una persona
o bé d’analitzar algun objecte que hi apareix. I no oblidem el camp de la robotica, on 1’analisi
de les imatges en temps real que s’obtenen de 'entorn 3D en que es mou el robot, és d’una gran
importancia en la reconstruccié del seu entorn fisic. En aquest cas, 'analisi o processament de
les imatges seria un exemple del que anomenam visid de bair nivell, mentre que el problema
de la robotica aniria lligat a la visio d’alt nivell.

Una imatge natural o una fotografia presa del moén exterior, no és més que una projeccié
del mén tridimensional 3D sobre el pla de la imatge. Aquest moén exterior és complex a causa
de la mateixa estructura dels objectes i la posicié que ocupen dins I'escena, a més dels canvis
d’il'luminacié que hi pot haver dins la mateixa escena. Com a conseqiiéncia, les imatges de la
vida real o quotidiana que es projecten sobre la nostra retina esdevenen un puzle a causa de
les oclusions i ombres a que donen lloc.

La diferencia entre una fotografia o imatge natural i una imatge digital, esta donada pel
tipus de codificacié. Per posar una fotografia dins la memoria d’un ordinador, es divideix
la imatge en petits trossos quadrats, que anomenarem picsels, i dins de cada un d’aquests
quadrats o picsels, li associarem un numero que representa la luminancia, com si fos una
matriu amb nombres.

Matematicament, una imatge o senyal, ho podem interpretar com a una funcié g(z,y), on
(x,y) és un punt de coordenades qualsevol de la imatge i el valor g(x,y) representa el nivell de
gris associat al punt (z,y). Per a la codificaci6, de manera semblant, cada nombre representa
el nivell de gris associat al picsel (z,y). Generalment, el negre esta codificat pel zero, el 1
representa un color un poc menys negre, el 2 és encara un poc menys negre que 'l i aixi.
Dins la convencié que s’utilitza en el mén de la informatica, el 255 representa la codificacié
del color blanc.

Les matematiques dins el mon de les imatges: modelitzacio

Pensem per un moment en ’exemple del robot. El robot porta una camera, la qual li déna
la informacié del seu entorn, pero aquesta informacié no és més que diferents projeccions de
I’entorn 3D sobre el pla de la camera. Dins ’analisi d’aquesta seqiiéncia d’imatges, hom inten-
ta a partir d’aquestes projeccions trobar els objectes 3D que componen l’escena, com també
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coneixer la seva profunditat o distancia respecte al pla de la camera, per a saber en quin ordre
el robot els anira trobant.

Dins un altre tipus d’aplicacio, ja esmentada abans en la intro-
duccié, podem pensar en una fotografia que ens envia un satellit
(vegeu la imatge 1). Aquesta imatge pot tenir problemes en la ma-
teixa captacio, a causa potser del mateix moviment del satellit, o
bé en la transmissi6 (condicions atmosferiques, etc.), incorporant
una informacié a la mateixa imatge, anomenada soroll, la qual és
vol eliminar. Aquest soroll sera diferent (gaussia, blanc, etc.) de-
penent de com s’ha produit. En aquest cas, el que s’intenta, abans
de fer una analisi de la mateixa imatge, és un preprocessament o
filtratge per a intentar separar el soroll del que es considera la
informacié rellevant de la imatge.

Imatge 1.

Pero, quina és la informacid rellevant de la imatge? Classicament, la deteccié dels con-
torns, o de manera equivalent, la segmentacié en regions més o menys homogenies, ha estat
un dels problemes que apareixen dins la investigacié de la visié per ordinador. Genericament,
les diferents regions homegenies que es poden trobar en una imatge es corresponen amb les
projeccions de diferents objectes de ’escena 3D, encara que hem de tenir en compte els pro-
blemes afegits dels canvis d’il'luminacid, oclusions, ombres, etc. D’aquesta forma, les regions
homogenies se suposa que corresponen a parts senceres d’objectes del mén real, i les fronteres
als seus contorns aparents. Per regions homogenies d’una imatge, entenem regions que sén
uniformes respecte a alguna caracteristica, per exemple el nivell de gris o les textures. Pensem,
per exemple, en el cas de la imatge satellit i posem el problema de distingir a partir d’aquesta
imatge, de manera automatica, les diferents classes de terreny que hi pugui haver: boscos, de
conreu, etc. Fins i tot, ens podriem plantejar el problema de distingir entre els diferents tipus
de plantacions o si dins una mateixa plantacié hi ha una zona atacada per una plaga (diferent
textura de les fulles).

Davant una imatge digital, un dels problemes que pretén resoldre el processament d’imatges
és l'extraccié automatica de la informacié de la imatge a partir dels algorismes o models
existents. L’objectiu, esmentat anteriorment, seria la construccié de robots automatics que
poguessin interpretar aquesta informacié, a més de millor comprendre la visié humana i animal,
des d’un punt de vista biologic. Ara bé, quan volem tractar una imatge digital i per tal de
definir un algorisme, com podem obtenir la informacié dels contorns o fronteres de les regions
homogenies? En general, els contorns que nosaltres veiem en una imatge es corresponen amb
els canvis substancials en el nivell de gris (per exemple, una fotografia d’un objecte negre amb
un fons blanc), és a dir, en els punts en que el valor absolut de la “derivada”sigui gran.

Imatge 2. Imatge 3.
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Des del punt de vista formal, la majoria dels algorismes de segmentacié intenten minimit-
zar, per diferents camins, l'energia associada a la imatge, donada per una funcié que té en
compte la imatge que se segmenta i les fronteres de les regions. En ’ambit algorismic, la idea
és ajuntar dues regions veines si difereixen poc respecte a la caracteristica, nivell de gris o
textura, i tenir en compte que ’energia associada a aquesta nova segmentacié ha disminuit.
En aquest cas la segmentaci6 inicial seria considerar que tots els picsels sén diferents (cada
picsel és una regi6 diferent), i a partir d’aquest estat comencar el procés d’ajuntar les regions.
Com a exemple, la imatge 2 ens dona la imatge final segmentada, amb les diferents regions
homogenies, i la imatge 3 és la imatge de les fronteres d’aquestes regions, o contorns. Notem la
diferencia entre la imatge 1, la original, i la imatge 2, en que, per 'algorisme anterior, obtenim
les regions que s6n semblants respecte al nivell de gris.

Tornem una altra vegada al problema de la imatge satellit. En general, les zones de soroll
estan associades a regions on el senyal o la imatge té freqiiencies altes, i en conseqiiéncia el pro-
blema que es planteja és la seva eliminacié sense destruir I'altra informacié de la imatge. Dins
la teoria classica, la imatge ha de ser filtrada (o “netejada”) abans d’aplicar-li qualsevol algo-

risme de deteccié de contorns o segmentacid. En aquest cas, el que s’anomena filtratge lineal
consisteix a fer una mitjana local ponderada per la funcié gaussiana G, (z) = 12 exp(—%)
o en termes més matematics, fer la convolucié de la imatge amb la funcié gaussiana. El re-
sultat és una imatge una mica “difuminada’o filtrada, a causa de l'efecte d’aquesta mitjana
ponderada. L’efecte és el mateix que el que es déna en I’aplicacié segiient, coneguda com I’e-
quacio de la calor: Si injectam una font de calor en un punt d’una barra de ferro, en un instant
donat, llavors al cap del temps aquesta font de calor es difon al llarg de tota la barra, suposant
que el coeficient lligat a la difusié és constant, fins que en un temps ”gran”, la temperatura
en qualsevol punt de la barra serd més o menys la mateixa (efecte de difusié). L’equacié de
la calor és un tipus d’equacié anomenada en derivades parcials, %(m,t) = %(w,t), amb la
condicié inicial donada per la imatge inicial u(z,0) = ug(x) al temps ¢t = 0. Si pensam en
I’efecte que tendria aquest model si ho aplicam a una imatge, llavors la imatge resultant sera
més o menys difosa depenent del temps que evoluciona l'equacié de la calor.

Imatge 4. Imatge 5.

L’inconvenient d’aquest filtratge donat per I'equacié de la calor, o de manera semblant per
la mitjana ponderada, és el fet que quan filtram la imatge, en filtrar d’igual manera els punts
de contorn i els punts que es troben dins una regié més o menys homogenia, no conservam
la bona localitzacié espacial dels punts frontera. Per a tenir en compte aquest fet, existeixen
unes altres equacions en derivades parcials, del mateix tipus que ’equacioé de la calor, les quals
sobre un punt de contorn “esmorteeixen”la difusid, provocant que les fronteres de les regions
conservin la seva posicié espacial. En canvi, a I'interior de les regions més o menys homogenies,
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actuen fent la mitjana ponderada explicada anteriorment. La imatge 4 és un exemple d’aquest
tipus de filtratge, en que es pot notar l'efecte de “neteja”de la imatge original.

Des d’un altre punt de vista, podriem pensar que si a cada punt de la imatge, li associam
una algada donada pel nivell de gris d’aquest punt, llavors ens podriem mirar la imatge
com si fos una superficie i, per tant, la seva grafica com un conjunt dins R3, on graf(u) =
{(z,y,u(z,y)); (z,y) € R?} C R3. Si tallam la superficie de la imatge u pels plans de la
forma u = k, k € R, llavors tendrem la informacié sobre el relleu de la imatge: els cims, les
valls, els barrancs o canvis sobtats del terreny, etc. En aquest cas podem pensar les regions
homogenies com els altiplans on l'algada en mitjana no canvia gaire, i les fronteres d’aquestes
regions o contorns serien els barrancs donats pels canvis bruscs del relleu. Es a dir, podem
descompondre una imatge u(x) amb els seus conjunts de nivell k, {z|u(z) > k}, k € R, o
bé també amb les fronteres d’aquests conjunts de nivell. En I’exemple de la imatge 5, podem
veure les linies de nivell del mapa topografic de la imatge satellit, que sén multiples de 10.
Notem que, a partir d’aquesta informacié, podem reconstruir la imatge. Intuitivament, la
interpretacié d’un mapa que ens mostra la topografia d’'una zona més o menys muntanyosa,
amb les corbes de nivell a diferents algades, ens permet anar d’excursid, sabent a quins indrets
trobarem una vall, a quins un cim, etc.

Aquesta interpretacié de la imatge en termes de l'estructura del mapa topografic, té una
bona propietat en el mén de la visio: la invariancia per canvi de contrast. Es a dir, si u és la
imatge i g és una funcié no decreixent, llavors u i la composicié de u amb g, g o u, tenen els
mateixos conjunts de nivell. En I'ambit de la interpretacié sobre la imatge, aquesta propietat
ens diu que si tenim dues fotografies d’una mateixa escena, tan sols canviant una mica les
condicions de lluminositat, llavors la informacié que podem obtenir de les dues fotografies és
la mateixa (hi trobarem els mateixos objectes).

Altres models

Pensem, per exemple, que per un problema de transmissié d’una imatge, la imatge, o el fitxer,
no ens arriba sencer. Llavors el problema que se’ns planteja és a partir de quina informacié
podem recuperar tota la imatge. El mateix podem pensar amb el problema del zoom. Esa dir,
a partir d’una imatge de 64 x 64 picsels, per exemple, com podem aconseguir una de 512 x 512
picsels, sense perdua de “qualitat”. Aquests dos problemes aplicats, que fins i tot interessen
en gran manera a la industria tecnologica, estan relacionats amb el problema matematic de la
interpolacio.

Un altre tipus de problema matematic relacionat amb el tema de les comunicacions i visié
és el de la compressié. En aquest cas els algorismes de compressio transformen les dades de
la imatge en una altra representacio, de tal manera que aquesta nova representacié requereix
menys espai d’emmagatzematge de dades. Aixi, el JPEG és un algorisme de compressié basat
en I'anomenada transformacié discreta del cosinus. Una altra eina matematica que ha provocat
una petita revolucié dins el tractament del senyal i que té una especial aplicacié al camp de la
representacié de funcions i en particular, en el de la compressié de senyals, sén les anomenades
ondetes.

Aquesta secci6 esta basada en el treball Un model matematic per a l’analisi d’imatges de
V. Caselles, B. Coll i J.M. Morel publicat al Butlleti de la Societat Catalana de Matematiques,
vol. 14, num. 1, 1999. pag. 63-83, i en el llibre Digital Image Processing de R. Gonzalez i R.
Woods, Addison-Wesley, 1992.
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2.11 Jocs i estrategies guanyadores

En els exemples segiients veurem que el coneixement de les matematiques ens pot servir per
a entendre millor els jocs en general, i els jocs d’atzar, en particular.

Un joc de fira

Suposem que en una fira ens proposen el joc segiient (conegut a les fires del Mig Oest dels
EUA i Anglaterra amb el nom de chuck-a-luck):

Apostem 1000 ptes. a un cert niimero entre 1 i 6 i tirem tres daus. Aleshores:

(I) Si surt en un dels daus, guanyem 1000 ptes.
(IT) Si surt a dos dels daus, guanyem 2000 ptes.
(ITI) Si surt als tres daus, guanyem 3000 ptes.

(IV) Si no surt a cap dau, perdem les 1000 ptes.

La qiiestio és saber si és un joc en el qual tenim més possibilitats de guanyar o de perdre.

Per sentit comt, tenim més probabilitats de perdre; ja que, si el senyor que ens proposa
el joc perd sistematicament diners, no s’entén que esta fent a la fira. Intentarem justificar-ho,
doncs, amb arguments matematics.

Suposem que hem triat el nimero al qual apostem (per exemple, 'l per a fixar idees).
Aleshores observem que quan tirem tres daus podem obtenir 6 x 6 x 6 = 216 resultats. A més,
d’aquests resultats:

(I) Només 1 = ( 5

3 ) vegada surten tres uns.

(IT) 15 = ( g > -5 vegades surten dos uns.
(IT1) 75 = < :1)) ) - 52 vegades surt un u.
(IV) Els 125 = < g > - 53 vegades restants no surt cap u.

A partir d’aquests resultats, raonant (per simplicitat) com en el problema de la secci6 2.6, si
suposem que juguem molts cops (per exemple 216 000 cops), tenim:

(i) Traient 3 uns, guanyem 1000 copsx3000 ptes.= 3000000 ptes.
(ii) Traient 2 uns, guanyem 15000 copsx 2000 ptes.= 30000000 ptes.
(iii) Traient 1 u, guanyem 75000 copsx 1000 ptes.= 75000 000 ptes.
(iv) Traient cap u, perdem 125000 copsx (1000 ptes.)=—125000000 ptes.

—17000000 ptes.

Per tant, en resum, perdem 17000000 ptes. quan apostem 216000 x 1000 ptes., és a

dir, perdem el %100 ~ 7.9% de tot el que apostem. La matematitzacié de si un joc



2.11. JOCS I ESTRATEGIES GUANYADORES 63

d’apostes és just o no es basa en la idea d’esperanca matematica i es pot trobar a qualsevol
llibre de probabilitats, per exemple el llibre de K.L. Chung, Teoria elemental de la probabilidad
y de los procesos estocdsticos, Ed. Reverté, 1983.

Una manera de tenir una estimacié de quant guanya el senyor que ens proposa el joc durant
un dia (suposant que té la parada posada durant cinc hores i que cada hora hi juguen vint
persones) és

7.9
5 X 20 x 100 x 1000 ptes. = 7900 ptes.

El nim

Aquest conegut joc consisteix en el seglient: KEs posen unes quantes piles d’objectes, per
exemple escuradents. Dos jugadors van traient, per torns, un cert nombre d’objectes. L’inica
regla és que tots els objectes retirats han de ser de la mateixa pila i com a minim se n’ha de
retirar un. Guanya el joc el jugador que agafa I"iltim (o dltims) objectes.

Una partida tipica podria ser

PILA 1 |

PILA 2 | |

PILA 3 | | |
PILA 4 | | | |

Representem la situaci6 per (1,2,3,4). El jugador A retira un objecte de la PILA 4 i obtenim
(1,2,3,3). El jugador B retira 3 objectes de la PILA 3 i tenim (1,2,0,3) i continuant

(1,2,0,3) jugador B
(1,2,0,1) jugador A
(1,0,0,1) jugador B
(1,0,0,0) jugador A
(0,0,0,0) jugador B guanya.

Encara que sembla un joc en el qual és dificil saber com guanyar, usant eines matematiques
es pot obtenir una estrategia guanyadora.

L’estrategia és la segiient: s’escriuen els niimeros en base dos i se sumen per columnes (sense
emportar i com si estiguessin escrits en base 10). Un jugador pot assegurar que guanyara la
partida si aconsegueix que quan ell retira els objectes la suma de cada una de les columnes
sigui parell o zero. Al nostre exemple la posicié inicial és

0101
011]0
011
1700
1122

Si el jugador A retirés els quatre objectes de la quarta pila tindria una posicié guanyadora.
En canvi, el que ha fet és

OO O OO
Wl = = O
Wl = O =



64 CAPITOL 2. ALGUNS TEMES MATEMATICS

que no és una posicié guanyadora. El jugador B deixa

oo O O
N|—= = O
N|—= O =

que ja és posicié guanyadora. A partir d’aqui, A ja no podra fer res. La partida evoluciona

—_ =

oo O O
= o = O
N|—= O =

oo O

0
0
A 0

i el jugador B guanya. Penseu per que 'estrategia proposada és guanyadora.

|2 B 0]0|1 A 0]|0[0 B

Els dos jocs segiients admeten estrategies guanyadores. Penseu-les o consulteu el llibre La
mathémathique des jeuz, Bibliotheque pour la science, Paris 1977-1990.

La presa de xocolata

Aquest és un joc per a dos jugadors. Es comenga amb una rajola de xocolata amb una presa
d’una cantonada marcada, vegeu la figura segiient:

Els dos jugadors, per torns, agafen una o més preses de la rajola. L'inica regla és que han
de trencar la rajola seguint una linia sencera. Perd el jugador que es queda la presa marcada.
Una partida curtissima és:

No passis de 31

Aquest és també un joc per a dos jugadors. Les regles son les segiients:

El primer jugador posa sobre la taula un dau amb les cares marcades de I'1 al 6. La seva
puntuacié és el nombre que hi ha a la cara superior del dau.

L’altre jugador ha de fer girar el dau sobre la taula un quart de volta (la cara superior del
dau sera una de les quatre cares que abans estaven en posicié vertical). La seva puntuacié és
la suma de la puntuacié anterior i el nombre que ha posat a la cara superior.

A partir d’aqui els jugadors van fent, alternativament, el mateix que ha fet el segon jugador.
Perd el jugador que obtingui una puntuacié superior a 31 (o qualsevol altre nombre que es fixi
des del principi).
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2.12 El cub de Rubik i la teoria de grups

Fa uns quants anys es va posar molt de moda jugar a ’anomenat cub de Rubik. Aquest cub
esta format (vist des de fora) per 26 cubs més petits; vegeu la figura segiient:

Direm que el cub esta ben muntat quan els sis quadradets de cada una de les sis cares sén
del mateix color (cada cara té un color diferent). Els moviments que permet fer el mecanisme
interior del cub sén: Girar cada una de les sis cares rigidament 90, 180, 270 o 360 graus (en
aquests moviments el quadrat del mig de la cara sembla immobil). L’objectiu general del
joc és muntar el cub a partir d’una situacié qualsevol (obtinguda girant unes quantes cares
préviament). Aqui no tractarem d’aquest problema, si no que donarem una explicacié d’un
fet molt curids que s’observa a partir del cub muntat:

Prenem el cub muntat i fem una successié de moviments, per exemple:

“Movem la cara de dalt 180°, la de la dreta 180° i la de darrere 180°.”

Aleshores observem que després de repetir aquest moviment un cert nombre de cops (en
aquest cas dotze) el cub es torna a muntar.

La qtiestio és que quan es repeteix el mateix moviment inicial, comencant d’un cub muntat,
després d’un cert nombre de repeticions (de vegades aquest nombre ha de ser gran) el cub es
torna a muntar de manera sorprenent.

Donarem una explicacié d’aquest fet usant la teoria de grups. Necessitem saber en primer
lloc que és un grup. Per a més detalls podeu consultar, per exemple, el llibre de S. Lang,
Algebra, Ed. Aguilar, 1971.

Donat un conjunt G, denotem per f, g i h elements qualssevol de G. Suposem a més que
els elements de G es poden operar entre ells donant un altre element de G. Denotem per
f *g € G el resultat d’operar f amb g. Direm que el conjunt G amb 'operacié * és un grup
si es compleixen les tres propietats seglients:

e ASSOCIATIVA:
(f*g)xh=fx(gxh).

e EXISTENCIA D’ELEMENT NEUTRE: Existeix un element de G' que denotem u € G, i
anomenarem element neutre, tal que

fru=uxf=f
per a qualsevol element f de G.

e EXISTENCIA D’ELEMENT INVERS: Donat qualsevol element de G, f n’existeix un altre
a G, que es denota per f~!' € G de manera que

f*f’lszl*f:u.
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Hi ha molts exemples de conjunts amb una operacié que tenen estructura de grup. Per
exemple els nombres enters Z amb 'operacié +, els nombres reals R amb I'operacié +, els
nombres R\{0} amb l'operacié x, ...

Donarem també un exemple més geometric. Considerem un triangle equilater. Els elements
del nostre grup seran els moviments que deixen invariant la posicié del triangle (vegeu també
la figura adjunta):

e gy = u, deixar el triangle immobil,

e g1, girar el triangle 120° cap a I’esquerra,

e go, girar el triangle 240° cap a ’esquerra,

e 51, fer simetria respecte a I'altura vertical,

e 5o, fer simetria respecte a I'altura inclinada cap a la dreta,

e s3, fer simetria respecte a ’altura inclinada cap a l’esquerra.
C B A
A 90 B C g1 4 B 92
C B A
S1 S9 53

L’operacio * consisteix a fer un moviment rere 'altre, aixi per exemple s1 * g1 vol dir agafar
el triangle, fer-li el moviment g; i al triangle resultant fer-li el moviment s;. Obtenim que
S1 % g1 = s9; vegeu la figura segiient:

C B
9

B
i j 51 % by = 89 i j
A B C A A C
Es pot veure que aquest conjunt de sis elements amb ’operacié * és un grup.

Veurem a continuacié que si (G, %) és un grup amb un nombre finit d’elements, s’agafa un
element qualsevol g i es va operant amb ell mateix

iy

m)
9,93, gxg*xg,...,g*x---x(g,...
. <k k) o 1
arriba un moment k£ en qué g°¥ = g% --- % g = u, on recordem que u és l’element neutre de
(G, ).
Demostrem, doncs, 'existéncia d’aquest k. Considerem els elements de G, ¢, ¢%,...,¢™, ...

Com que G és un conjunt finit i el conjunt anterior és infinit, i tots els seus elements sén de
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G, ha d’haver-hi almenys dos elements que coincideixin. Els anomenem ¢™ i ¢' i suposem que
m < . Tenim, doncs, que g™ = g'.

Ara bé g ha de tenir un invers g—! tal que g~
la igualtat ¢" = ¢! amb ¢g~! tenim:

1% g = u. Per tant si operem als dos costats

g rlrgm=g"xg,
—1 m) 1 )
g gk kg=g kg kg,
m—1) -1
Uk Gk -0 kG =UXx(g* * g,
gmfl glfl

com voliem veure.

De manera una mica més complicada que en el cas dels moviments que deixen invariant el
triangle equilater, també es pot veure que el conjunt de tots els moviments que es poden fer
al cub de Rubik té també estructura de grup G. Aquest grup té 227 x 3 x 53 x 72 x 11 =
43252003 274 489 856 000 elements, i I'operacié * és la composicié de moviments.

Per tant, en el nostre cas, si es pren un moviment qualsevol (g del grup G) i es repeteix k
cops ('operacié x), s’obté I’element neutre del grup de moviments u (que ha de ser el moviment
que no canvia cap de les cares del cub).

Aixi hem trobat una explicacié matematica d’un fet molt curids, que sense usar la teoria
de grups costaria molt més d’explicar.
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2.13 Travesses i transmissio d’informacio

D’entre els jocs d’apostes, les travesses és un dels que crida més 'atencié dels matematics.
La rad potser és que mentre que a la loteria classica o a la Loto 6-49 I'inic que intervé és
l’atzar, en les travesses també intervé la informacié prévia que es té sobre cada partit. Aixi
quan dos equips s’enfronten es poden fer moltes consideracions que permetin concloure que
potser els tres resultats possibles 1, x i 2 no sén igualment probables. A partir d’aquesta
informacié, tots els resultats que poden sortir en una travessa (314 sense tenir en compte
el partit complementari) han deixat de ser equiprobables, i és aqui on poden intervenir les
matematiques per racionalitzar les apostes que es fan.

S’han desenvolupat molts metodes que permeten aprofitar el maxim les apostes: reduc-
cions, teoria d’errors, nombre maxim i minim de x i 2, meétodes probabilistics, metodes mixtes,
etc. Aquests metodes poden donar bons resultats si es fan moltes apostes. En aquestes notes
explicarem un dels casos més senzills del metode anomenat de reduccions al 13.

Ens ocupem d’un grup de set partits pels quals els nostres experts en futbol han predit
que només sortira 1 o x. Aleshores, per a assegurar que sigui quin sigui el resultat dels set
partits 'encertem (recordem que suposem que només pot sortir 1 o x), necessitem fer 27 = 128
apostes. Decidim que aix0 és massa car. La questié és: podem aprofitar la informacié que
tenim sense gastar tant? La idea de la reduccié al 13 és la segiient: En lloc de fer les 128
apostes, farem un nombre molt menor d’apostes de manera que siguin quins siguin els resultats
dels set partits (sempre que surti 1 o z) en el nostre conjunt d’apostes sempre encertem com
a minim sis dels set resultats. Aquesta reduccié al 13 de set partits amb pronostic doble és
molt coneguda i esta donada en la taula 3. Observi’s que el nom de reduccié al 13 esta donat
pel fet que, si encertem els altres set partits, i en els set partits en els que hem predit 1 o z
aixo es compleix, en les nostres setze apostes hi haura un 13 (o un 14).

r r xr z x xz x x 1 1 1 1 1 1 1 1
zr z x x 1 1 1 1 z oz « o 1 1 1 1
z z 1 1 2 1 1 z 21 1 xz z 1 1
z 1 1 z 1 1 z 1 = 1 =z 1 x 1
z 1 1 1 1 2z 21 1 2 2 2 z 1 1
z 1 1 1 =2 1 1 =z 1 2 =z 1 x 1
z 1 1 z 1 1 x 1 222 1 1 z x 1

Taula 3. Reduccié al 13 de set dobles

Una prova de les afirmacions anteriors és la segiient: Notem que per a cada una de les
apostes hi ha vuit conjunts de resultats que tenen exactament cap error o un respecte de
I’aposta. Com que cada una de les 16 columnes de la taula 3 es diferencia com a minim en tres
resultats amb cada una de les 15 columnes restants, tenim que quan apostem les 16 columnes
de la taula cobrim 16 x 8 resultats (amb cap error o un), i 16 x 8 = 128, que és el conjunt de
totes les apostes possibles.

Observem quina és la filosofia general dels metodes aplicats a les travesses en el cas concret
de set partits. Si no en tenim cap informaci6, fem 37 = 2187 apostes i cobrim tots els
resultats (és molt car). Si uns experts en futbol ens eliminen un resultat de cada partit, el
nombre d’apostes que necessitem és només 27 = 128 per a cobrir els resultats predits. Si ens
conformem d’encertar només sis partits (suposant que els experts no s’hagin equivocat), en
tenim prou fent 16 apostes. En resum, els metodes permeten racionalitzar les apostes perque
gastant el minim possible “cobrim”el maxim nombre de resultats.
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Ara explicarem com la mateixa idea que permet fer les reduccions al 13 per set dobles és
utilitzada en un context totalment diferent. Aixo ens pot fer reflexionar sobre el fet que de
vegades es poden estar desenvolupant problemes que des d’un punt de vista sén lidics (com
a lexemple) o pertanyen a la matematica anomenada teorica i, finalment, els resultats que
s’obtenen son utilitzats a la teécnica, o en altres contexts totalment diferents.

Considerem la taula 3 pero substituint les x per 0. Fixem-nos que les quatre primeres
files corresponen a l’expressié en base dos de tots els nombres naturals entre 0 i 15. Aixi, per
exemple, la columna corresponent al 13 és 1101010, ja que 13 = 1x23+1x224+0x2+1 = 1101,.

Abans de continuar, recordem que qualsevol informacié es pot digitalitzar (és a dir, com en
el cas dels nombres se li pot associar una successié uinica de zeros i uns de manera que donada la
informacié obtinguem la successié de zeros i uns (codificacid), i donada la successié obtinguem
la informacié (descodificacié)). Veurem ara que la taula 3 (canviant x per 0 coneguda com
codi de Hamming de longitud 7) ens serveix per a minimitzar els errors en la transmisi6
d’informacié.

Suposem que hi ha un emissor i un receptor que es volen enviar una informacié codificada
(per a simplificar suposarem que es volen enviar un nombre natural entre 0 i 15). A més,
suposem que el mecanisme de transmisié digital comet molt pocs errors (per exemple, té un
error d'un 1%, és a dir, en mitjana canvia un de cada 100 digits enviats).

Opcid 1: transmissio sense usar cap Prevencio per errors.

13 — 1101 --» 100
almenys un error, 3.94% dels casos

descodificar 13, 96.06% dels casos
error, 3.94% dels casos

99 \*
codificar enviar ) 1101, <—> % = 96.06% dels casos

Suposem ara que, com a prevencié per a evitar errors, usem la idea segiient: en lloc d’enviar
els quatre digits en base 2, n’enviem set (els tres ultims sén els tres corresponents a la columna
del codi de Hamming). Aleshores, quan el receptor rebi els set digits, si no hi ha hagut cap
error sera una de les setze columnes, pero si hi ha hagut només un error se’n podra adonar i el
podra corregir (observi’s qué de la manera en que s’ha construit la taula 3 cada successi6 de
set digits té cap o un error només respecte a una de les columnes). Per tant, es pot considerar
que la informacié arribara malament si es produeixen almenys dos errors. Ilustrem-ho amb
I’exemple de la transmissi6 del 13.
Opcié 2 transmissio usant prevencié d’un error.

codificar afegir control

13 "—" 1101 — 1101010
enviar cap o un error®, 99.8% dels casos Codi Hamming 1101010
més d’un error, 0.2% dels casos error

1101  descodificacis | 13, 99.8% dels casos
—>
error error, 0.2% dels casos

Observem aixi que usant aquesta tltima idea podem assegurar que en un 99.8% dels casos
es rep el que s’envia, mentre que si no s’uses cap control de I'error, només es podia assegurar
en un 96.06% dels casos. Versions més complicades d’aquesta idea inicial de Hamming sén
utilitzades actualment. Podeu consultar, per exemple, la traduccié de la revista Unizirich
feta per la Societat Catalana de Matematiques, La matematizacid del mdn (1994).

8 « ) 99 \7 « B 99 \6 1 todf
Cap error’es calcula com 100 (ﬁ) %. “Un error,”com 100 (7 (ﬁ) ﬁ) %. Aix{ cap error o un es

, 7 6
déna en el %% = 99.8% dels casos.
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2.14 El teorema de Pitagores

Recordem el que diu el famods teorema de Pitagores: En un triangle rectangle la suma dels
quadrats dels catets €s igual al quadrat de la seva hipotenusa. Aquest resultat és conegut per
la humanitat —almenys per alguns triangles rectangles concrets— des de fa uns 1500 anys
abans de Crist a Babilonia. Pel que es coneix, la primera demostracié la va donar en Pitagores
uns 500 anys abans de Crist. Des d’aleshores han aparegut moltissimes altres demostracions
(hi ha un llibre que en recopila més de tres-centes). En aquest text, basat essencialment en els
llibres Meu Professor de Matemdtica, de E. Lages Lima, Cole¢ao Do Professor de Matematica,
Soc. Brasileira de Matematica, Rio de Janeiro, 1991 i Comunicacion Extraterrestre, de M.
Gadner, Coleccion Teorema, Catedra 1986, Madrid, en recordarem unes quantes.

La primera prova que donem també és atribuida als grecs i demostra el teorema només
per a triangles rectangles equilaters (és a dir, triangles rectangles amb els dos catets iguals).
Aquesta prova es basa en la figura segiient:

Observeu que el quadrat tort té area c?; pero per altra banda la seva area esta formada
2
per quatre triangles d’area % és a dir c? = 2a® = a? + a®. Una demostracié també de I’escola
grega, que és potser la més senzilla i popular, és la basada en les figures segiients:

a b
o/| ® @ Ja
b
@
area
X b’ b
ar¢a
a| ¥

De fet, no calen gaires explicacions. Potser només cal comentar que la figura de ’esquerra
amb els quatre costats de mida ¢ és un quadrat i no un rombe. Aix0 és a causa que a+5+y =

radiants i que o + v = § radiants per ser els dos angles no rectes d'un triangle rectangle; per
tant, 3 = 5 radiants.

A partir de només la figura de l'esquerra i amb calculs elementals, també s’obté una
demostracié usant que

AREA DE QUADRAT TOTAL = 4 - (AREA D’UN DELS 4 TRIANGLES)+
+ AREA QUADRAT INTERIOR
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és a dir
b
(a+b)*=4- (%) + e,
a? + % + 2ab = 2ab + 2,
a4+ b =2
Una variacié d’aquesta tltima prova, que s’atribueix a l’expresident dels EUA, J.A. Gard-

field, es basa en la figura segiient (que, com podem observar, és la meitat de la figura de
Pesquerra anterior).

‘@

Si usem que
AREA DEL TRAPECI = 2 - (AREA DEL TRIANGLE 1) + AREA DEL TRIANGLE 2,

és a dir,

a+b a-b 2
:2 B — e
5 (a+0b) ( 5 >+2

a® + b% + 2ab B 2ab + 2
2 2
a? + b2 =2,

on hem usat que 'area d’un trapeci és el producte de la semisuma de les seves bases per la
seva altura.

Una demostracié essencialment diferent es basa en la semblanga de triangles. La detallem
a continuacié. Prenem un triangle rectangle com el de la figura

Observem que aquest triangle determina dos altres triangles rectangles amb els mateixos
angles, i per tant semblants. Aquests sén

N

T C—X
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Recordem que, pel teorema de Tales (vegeu la secci6é d’historia 5.1), els costats de triangles
semblants han de mantenir les mateixes proporcions. Per tant, prenent el triangle gran i el
de l'esquerra tenim § = %. Prenent el triangle gran i el de la dreta arribem que ¢ = .

cC—T
Aquestes dues expressions s’escriuen com

V=cx i a®=c(c—uz).

Si les sumem, tenim de nou el teorema de Pitagores, és a dir
a? + b =2

No és dificil veure que el teorema de Pitagores és cert en una situacié molt més general. El
seu enunciat és degut al matematic hongares G. Polya i ens diu: Si sobre cada un dels costats
d’un triangle rectangle hi posem figures semblants (sequint la rad de semblanga donada pels
costats respectius), aleshores la suma de l'area de les figures que es recolzen sobre els catets

és igual a l’darea de la figura que es recolza sobre la hipotenusa. La figura segiient illustra el
teorema de Polya, S, + Sp = S,

Sp

Hi ha un teorema similar al de Pitagores, pero per a triangles qualssevol, anomenat teorema
de Pappus i que enunciarem tot seguit. La prova que presentem esta basada en la segiient
propietat dels parallelograms:

Tots els parallelograms amb la mateiza base B i altura h tenen la mateixa darea Bh. Aquesta
propietat es mostra a la figura segiient:
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B B

El teorema de Pappus es basa en la segiient construccié sobre un triangle qualsevol ABC
illustrada a la figura segiient. Es dibuixen dues linies paralleles a AC' i a BC. Suposem que
es tallen a D. Dibuixem la recta que passa per DC, tracem una parallela a AB de manera

que la distancia EF sigui igual a DC. Ara tracem linies paralleles a DC que passin per A i
B

D
C
G b a H
4 .
A c B
1 F

Aleshores, si es prenen parallelograms sobre AC' i CB, les seves arees seran iguals a les
dels parallelograms AGDC i CDH B respectivament. Ara bé, aquestes arees coincideixen

amb la del parallelogram basat en ¢, ABJI. Resumint, el teorema de Pappus ens diu que
Ay + Ay = As, on:

Al A2

As

Per a acabar, parlarem una mica dels triangles rectangles ~ —
amb costats de mida entera. El més senzill és el de costats 3,
4i5. Esclar que a partir d’aquest se’'n poden construir molts
més: els de mides 3k, 4k i bk, on k és un nombre natural
qualsevol. Un triangle rectangle es diu pitagoric primitiu
si els seus costats son nombres naturals sense cap divisor

comu als tres. Es pot veure que tots els triangles pitagorics LA~ ~ A7
primitius tenen costats a, b, ¢ que compleixen _— ==
a=m?—n% b=2mn, c=m?+n’
. . .. So6n les dues arees fosques
amb m i n naturals, primers entre si, i m > n.

iguals?
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2.15 Codis secrets

La transmissié de missatges entre dues persones, de manera que no puguin ser entesos per una
tercera persona, és una practica que ha estat usada per la humanitat des de fa més de dos mil
anys. Es tenen noticies de missatges encriptats de I’'época de la Grecia classica. Un esquema
del metode general que és el segiient

Missatge Encri . Missatge encriptat
. . — Encriptacio —
original amb una certa clau
|
Tramesa del missatge
encriptat
l
Intent de desencriptacié Es
per a obtenir el — Si— interceptat?
missatge original
|
No
|

El missatge original Desencriptacié usant
és rebut la clau acordada

Encara que durant la historia hi ha hagut nombrosos xifrats (metodes d’encriptacié de mis-
satges), hi ha dues families de xifrats clarament diferents: Els xifrats de substitucié i els de
transposicié. A continuacié parlarem una mica de cadascun d’aquests tipus.

Xifrats de substitucid

Un dels xifrats més antics és atribuit a Juli César i ens donara una primera idea del que sén
aquests tipus de xifrats. Consisteix en el segiient:

Donat un missatge substituim cadascuna de les seves lletres per la lletra situada quatre
llocs més endavant en l'ordre alfabetic (quan s’acaben les lletres tornem a comengar per la A).
Aixi, per exemple, la codificacié de CADA seria FDHD. En general, cada lletra es substituiria
per la de sota de la segiient llista.

ABCCDE ... VWXYZ
DEFGHI ... ZABCC

De seguida els desencriptadors (persones especialitzades a tractar de veure quin és el
missatge original a partir del missatge codificat) van ser capacos de desencriptar missatges
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encriptats per aquest metode. Observem que desencriptant una lletra, se’'n dedueixen totes
les altres.

Al segle XV, L.B. Alberti va comencar a perfeccionar el xifrat de J. César. La millora va
consistir a prendre a la segona fila una permutacié (reordenacié) qualsevol de totes les lletres
de lalfabet. Per exemple,

ABCCDE ... XYZ
HLAWTS ... T1TUB

D’aquesta manera s’havien de desencriptar totes les lletres una per una. Els desencripta-
dors ho tenien una mica més dificil, perd van ser capacos de nou de trobar un sistema per a
obtenir el missatge original. Aquest es basaba en estudis estadistics sobre quines eren les lle-
tres que sortien més sovint, els grups de dues lletres que sortien més sovint, els de tres lletres,
etc. A partir d’aqui, i si el missatge era una mica llarg, podien “traduir-lo”. Per exemple en
catala tenim:

e lletres més freqiients per ordre: E, A, S, R, I, N, T, O,..., K, W.

e grups de dues lletres més freqiients: ES, AR, EN, RE, RA, SS, RI, EM, ...
i en castella:

e lletres més freqiients per ordre: E, A, O, S, R, I, N,..., Z, K, W, X.

e grups de dues lletres més freqiients: ES, EN, EL, DE, LA,....

Per tant, en un text que prové del castella, per exemple, és molt possible que la lletra que
surti més sovint sigui la que correspon a la E. A partir d’aquesta, tenim lletres candidates a
ser la S, la N o la L i aixi successivament.

Al segle X VI va haver-hi una millora important deguda a B. Vigeneére. Aquesta consisteix

en la introduccié d’una paraula clau i de considerar tants codis de Cesar com lletres té I'alfabet.
Es a dir,

ABCCD ... XYZ
BCCDE ... YZA
CCDEF ... ZAB
ZABCC ... WXY

Si volem codificar una frase com
BADA A CADA CACADA

i la paraula clau és CAZ, fem el segiient:

BADA A CADA CACADA
CAZC A ZCAZ CAZCAZ

i la codificacié de cada lletra s’obté buscant la lletra que hi ha sota de la lletra del missatge
original que és a la fila que comenca per la lletra corresponent de la paraula clau. A 'exemple
I’encriptacié de la B segons la fila que comenga per C és C, i la de tot el missatge és:

CACC A BCDZ DACCDZ
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La descodificacié es fa usant la mateixa paraula clau i la taula en sentit contrari.

Aquest darrer metode és molt més dificil de forgar (desencriptar) i és tan més complicat
com més llarga és la paraula clau. L’encriptacio perfecta, segons va provar C. Shannon, durant
aquest segle s’aconsegueix quan la paraula clau té la mateixa longitud que el missatge que
volem codificar i, a més, aquesta paraula clau esta generada totalment a 'atzar. Aixo vol
dir que la paraula clau es forma, per exemple, tirant un dau amb tantes cares com lletres té
I’alfabet. Amb altres paraules, Shannon va provar que si s’utilitza una paraula clau aleatoria
i de la mateixa mida que la frase que es vol codificar, la frase codificada és totalment aleatoria
i per tant no ofereix cap informacié sobre el missatge inicial, llevat que es conegui la clau de
xifrat.

El problema d’aquest darrer sistema és evident: el receptor ha de coneixer una paraula clau
tan llarga com el missatge, i aquesta paraula és dificil de canviar. Aquest problema és resol
substituint la paraula clau totalment aleatoria pel que s’anomena una paraula pseudoaleatoria.
Hi ha molts metodes per a aconseguir paraules pseudoaleatories; només n’explicarem un de
molt senzill:

Considerem el ntimero 7:

3.141592653 5897932384 626433832795 . . .

En els decimals de 7 no s’ha trobat cap regularitat i es poden considerar pseudoaleatoris. Una
bona clau d’encriptacio seria la segiient: Prenem les deu primeres files de la taula d’encriptacio
deguda a Vigenere i les numerem del 0 al 9

0 ABC(CD v/
1 BCCDE A
2 CCDEF B
3 CDEFG C
9 IJKLM .. H

Una clau d’encriptacié de mida 100 pot ser els decimals de 7 des del 15 fins al 114.
Per tant, la frase i la clau d’encriptacié serien

BADA A CADA CACADA
3238 46264 338327

i s’encriptaria com DCGH. ..

Amb aquest tltim metode ja hem arribat als nostres dies. De fet, el sistema DES (Data
Encription Standard) de IBM es basa en aquestes idees. L’tnica diferéncia important és que
es treballa amb un altre alfabet més senzill: ’alfabet amb només dues “lletres”: 0 i 1.

Un primer pas consisteix a traduir I’alfabet usual a zeros i uns; aixo s’anomena ASCII
(American Standard Code of Information Interchange) i és l'usat pels ordinadors. En aquest
codi:
és 01000001
és 01000010
és 01000011
és 10000000
és 01000100

Cawe

Aleshores, la paraula BADA en ASCII és
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01000010 01000001 01000100 01000001.

Com a clau de codificacié seguirem prenent els decimals de 7 entre 15 i 114, pero convertits
en una seqiencia de cent zeros i uns amb la regla: una xifra parell déna lloc a un 0, i una
xifra senar déna lloc a un 1. La clau corresponent a 323846. .. seria, per tant, 101000. ..

La taula de conversié en aquest cas segueix les mateixes regles i és molt senzilla (’alfabet
nomsés té dues lletres). La podem escriure aixi:

El missatge té: | 0 | 1
Clau 0
Clau 1 1

o
[t

Per tant, la nostra paraula

01000010 01000001 O1...
amb clau

10100000 01101011 10...
es codifica com

11100010 00101010 11...

Existeixen altres xifrats de substitucié basats en idees diferents. A bastants d’aquests
xifrats el coneixement de nombres primers’ grans és molt important.

Xifrats de transposicié

Parlarem ara d’una familia de xifrats que no gaire cosa a veure amb 'anterior. En aquests
xifrats, els valors de les lletres no varia mai. Pel que es coneix, també provenen de la Grecia
classica. El metode que explicarem s’atribueix a G. Cardano (segle XVI), encara que s’ha
popularitzat per 'obra de Jules Verne Mathias Sandorf.

Els metodes estan basats en una plantilla (nosaltres considerarem plantilles de 4 x 4)
construides de la manera segiient:

112131
314142
214143
113121

91’estudi dels nombres primers ha estat una constant al llarg de la historia de les matematiques. Potser en
aquest llibre hi falta alguna seccié dedicada a ells. No podem evitar comentar un parell de curiositats:

e No es coneix cap férmula que ens doni sempre nombres primers. Euler va trobar el segiient resultat sor-
prenent: la funcié f(n) = n?+n+41 déna sempre un nombre primer quan Pavaluem an = 0,1,2,...,39.
Malauradament, f(40) = 412

e Dos nimeros primers p < ¢ es diuen bessons si ¢ — p = 2. Per exemple, 31 5,291 31, 149 i 151, 7949 i
7951, 104849 i 104851 ... s6n parells de nombres primers bessons. Avui en dia no se sap si hi ha o no
infinits parells de primers bessons.
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Observi’s que el que s’ha fet és omplir el quadrat 2 x 2 de dalt a ’esquerra amb els ntimeros
de 'l al 4. Els altres 3 quadrats 2 x 2 s’omplen girant el quadrat gran 90, 180 i 270 graus en el
sentit de les agulles del rellotge i posant als quadradets buits els nombres que van passant per
sobre. Un cop fet aix0, es foraden quatre (o menys) quadradets respectant la regla segiient:
no es poden foradar quadrats amb nombres repetits.

Triem la plantilla segiient

Aleshores el métode d’encriptacié funciona aixi: Donada una frase a encriptar com, per
exemple,

LES MATEMATIQUES

es comenca a escriure sobre un paper la frase usant només els forats de la plantilla. Un cop
acabats els forats, es gira 90 graus la plantilla (en el sentit de les agulles del rellotge) i es
continua escrivint i aixi dos cops més. El metode seguit per a fer la plantilla ens garanteix
que mai no haurem de sobreposar lletres. Obtenim

L|AE|A
U|T|T|E
E|S|S|M
B| I M| Q

on hem subratllat les quatre primeres lletres. Afegim una B o qualsevol altra lletra per a
completar el quadrat de lletres. Per a acabar, les podem escriure com una frase

LAEA UT TEESS MBIMQ

Per a veure si el metode és bo o no, el que hauria de passar és que encara que una persona
Iinterceptes no fos capag de desxifrar-lo tot i sabent que s’ha usat el metode de les plantilles.
Per tant, la seguretat del métode depen del nombre diferent de plantilles que es puguin cons-
truir. En el cas 4 x 4 observeu que se'n poden construir 4* (triem un niimero 1 d’entre 4 per
al primer forat, un 2 d’entre 4 per al segon, i aix{ successivament). Si prenguéssim plantilles
6 x 6 0 8 x 8, el nombre possible de plantilles seria 49 o 4'6, i per tant el métode seria molt
més segur.

Tota I'exposicié d’aquest tema esta basada en el llibre: Cédigos secretos, de Andrea Sgamo,
Ed. Piramide SA, Madrid 1990.
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2.16 La caracteristica d’Euler. La formula de Pick

Hi ha un resultat d’Euler, provat el 1758, que se sol incloure a tots els llibres elementals
de matematiques ja que és molt basic i senzill d’enunciar. Aquest resultat I’anomenarem
en aquestes notes teorema d’Euler i ens diu que si considerem un poliedre (amb unes certes
propietats que especificarem tot seguit) i denotem per

¢, el numero de cares que té,
a, el nimero d’arestes que té,
v, el nimero de vertexs que té,

aleshores ¢ —a + v = 2.
Per exemple, si prenem la piramide segiient

c=5,a=8, v=>5,ipertant c—a+v=5—8+4+5 =2, tal com diu la formula d’Euler.
En canvi, si prenem la figura

c=16,a=32,v=16ipertant c—a+v=16—-32+16 = 0.
Anem, doncs, en primer lloc, a fixar el tipus de poliedres que considerarem i, en segon lloc,
a veure per que per a aquests poliedres es compleix la férmula

c—a+v=2.

Normalment, donat un poliedre P, el nombre ¢ — a + v s’anomena la caracteristica d’Euler
de P ies denota per x(P). Aixi, en altres paraules, veurem per que x(P) = 2 sempre que P
sigui un poliedre amb les propietats segiients:

1. El poliedre és tal que si les cares fossin de goma i el poguéssim inflar es tornaria com
una pilota. Tecnicament es diu que és un poliedre homeomorf a una esfera. Observeu
que el segon poliedre un cop inflat es convertiria en un “donut”en lloc d’una pilota.

2. Cada una de les cares del poliedre sén poligons sense forats: és a dir, la vora del poligon
és una unica corba tancada.

3. Cada aresta és comuna a només dues cares.
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Seguirem les idees de la demostracié que va donar Cauchy a 1813, per a un poliedre concret.
Pendrem un prisma pentagonal

Pas 1

Traiem una cara, per exemple la tapa superior. La figura resultant hauria de complir que
¢—a+wv =1 (n’hem tret una cara). Representem el resultat aplanat com la figura segiient
(aix0 es pot fer pel fet que P compleix la propietat 1).

Pas 2

Triangulem totes les cares sense afegir-hi cap vertex nou. Observeu que si es triangula qualsevol
poligon, sense afegir-hi vertexs, un poligon de k costats queda dividit en k& — 2 triangles
(augmentant k — 3 cares), afegint 0 vertexs i k — 3 arestes (aqui s’usa la propietat 2). Per tant,
el nombre total ¢ — a + v no variara.




2.16. LA CARACTERISTICA D’EULER. LA FORMULA DE PICK 81

Pas 3

Ara anem eliminant triangles de la figura, prenent-los de la seva vora. Observem que podem
eliminar dos tipus de triangles.

e Eliminem una aresta, i un triangle desapareix. En aquest cas, cada eliminacié esborra
una cara i una aresta; per tant, c—a-+v no varia. A la figura veiem com queda el nostre
poligon aplanat i triangularitzat un cop hem eliminat cinc d’aquests triangles

e Eliminem dues arestes, i el triangle desapareix. En aquest cas cada triangle eliminat
esborra una cara, dues arestes i un vertex. De nou ¢ — a4 v no varia. La figura anterior,
després de cinc eliminacions, queda com la figura segiient:

Pas 4

Un cop fetes les eliminacions, queda un sol triangle (en aquest cas ens faltaria fer dues elimi-
nacions). Per a aquest triangle final, c =1, a = 3, v = 3 i per tant ¢ — a + v = 1 com voliem
veure. Per tant, hem vist per que el teorema d’Euler que ens assegura que x(P) = 2 és cert
per als prismes que considerem.

Aquesta exposicié esta basada en el llibre Meu Professor de Matemdtica, d’E. Lages Lima,
Colegao do Professor de Matematica, Soc. Brasileira de Matematica, Rio de Janeiro, 1991.

La férmula de Pick

Acabarem aquesta seccié amb un resultat curids. Aquest resultat, provat pel matematic txec
G. Pick el 1899, i conegut amb el nom de férmula de Pick, ens proporciona una manera 1til per
a calcular arees de poligons P amb vertexs en una quadricula i per als quals la seva vora és una
Unica corba tancada. El seu enunciat recorda en certa manera la férmula de la caracteristica
d’Euler.
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Sigui P un d’aquests poligons. Aleshores la formula de Pick ens diu que I’area que envolta,
A(P) es pot calcular com

+c¢(P)—1,

on a(P) és el numero de punts de la quadricula que sén a la vora de P, i ¢(P) és el nimero
de punts de la quadricula que sén a I'interior de P.

Vegeu dues figures per a les quals la formula es pot aplicar. Per exemple, a la figura
inferior, a(P) = 42, ¢(P) = 146, i per tant A(P) = 21 4 146 — 1 = 166.
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Intenteu fer una demostracié d’aquesta formula basada en una triangularitzacié de P i en
el fet que un triangle ple, tal que només té com a punts de la quadricula els vertexs, té sempre
area 1/2.
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2.17 La llei de Titius-Bode

L’objectiu d’aquesta seccid és presentar la llei coneguda com llei limit de Titius-Bode.

Hem consultat el llibre Els amants de ’astronomia de C.A. Ronan, Editorial Blume 1982
i Tarticle dels professors de la Universitat Autonoma Jaume Llibre i Conxita Pinyol, “A
gravitational approach to the Titius-Bode law”, The Astronomical Journal 93 (1987), 1272-
1279.

Introduim en primer lloc la llei de Titius-Bode.

El 1756, el cientific alemany Johann Daniel Titius va establir una relacié que ens déna la
distancia dels planetes del nostre sistema al Sol. Només ho va observar com una nota en un
peu de pagina d’un llibre que havia traduit. Va ser Johann Elert Bode qui el 1772 va difondre
més ampliament el que avui en dia es coneix com la llei de Titius-Bode.

Per aquella época només es coneixien Mercuri, Venus, la Terra, Mart, Japiter i Saturn. El
fenomen que Titius va observar és que si considerem els nimeros segilients (observeu, que tret
del 0, cadascun és el doble de P'anterior)

0, 03, 06, 1.2, 24, 4.8, 9.6
i els sumem 0.4, obtenim

04, 0.7, 1.0, 1.6, 28, 52, 10.0

que sén aproximadament les distancies mitjanes'?, en unitats astronomiques!!, dels planetes

al Sol, excepte pel que fa al 2.8 (vegeu la taula segiient).

Mercuri Venus La Terra Mart Jupiter Saturn
0.39 0.72 1.00 1.52 5.20 9.55

Distancies mitjanes al Sol observades.

Sistema Solar.
Els astronoms d’aquella época van trobar misteriosa la gran concordanca dels nimeros
obtinguts matematicament i les distancies reals dels planetes al Sol, excepte pel que fa al 2.8.

0Tes orbites dels planetes sén aproximadament ellipses, i la distincia mitjana d’un planeta al Sol pot
pensar-se com el semieix major d’aquestes ellipses.

"En unitats astronomiques (u.a.) la distancia mitjana de la Terra al Sol es 1. Una u.a. és aproximadament
150 milions de km.
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Quan William Herschel va descobrir Ura el 1781, la llei de Titius-Bode va semblar confirmar-
se, ja que la seva distancia mitjana al Sol és 19.18 u.a., valor proper al que es dedueix per la
regla (19.6). Per aixo el 1800 van organitzar una recerca del planeta perdut. Durant un any
van estar buscant algun planeta a una distancia mitjana aproximada de 2.8 u.a. pero sense
exit, fins que de manera independent i accidentalment, I’l de gener de 1801, un astronom
sicilia, Guisseppe Piazzi, va descobrir el primer planeta menor. Aquest cos es va batejar amb
el nom de Ceres i és situat a una distancia mitjana de 2.76 u.a. (!). El 1807 ja s’havien
localitzat quatre planetes petits. Avui en dia es coneix 1’orbita de milers d’aquests planetes, i
el conjunt que formen s’anomena cinturd d’asteroides.

Quan Le Verrier va emprendre la recerca d’un nou planeta per a explicar les anomalies
observades a l’orbita d’Ura, va utilitzar la llei de Titius-Bode per a calcular la seva distancia
aproximada, que havia de ser de 38.8 u.a. No obstant aix0, quan va apareixer Neptd,'? va
resultar estar molt més a prop, a 30.05 u.a., de manera que la llei sembla deixar d’aplicar-
se més enlla d’Ura. Més endavant comentarem una possible explicacié d’aquest fet. Pluto,
descobert el 1930, en canvi, es mou a una distancia mitjana de 39.52 u.a. del Sol, que si que
s’aproxima a 38.8.

Si expressem amb una férmula la successié de nimeros obtinguda per Titius, tenim

d = 0.4+ 0.3 x 2%,

Aquesta férmula s’ha d’entendre de la manera segiient: El ntmero di obtingut en substituir
k a 'expressio de la dreta representa la distancia mitjana d’un planeta al Sol, amb la relacié
segiient: k£ = —00,0,1,2,3,4,5,6,7 correspon, respectivament, a Mercuri, Venus, la Terra,
Mart, asteroides, Jupiter, Saturn, Ura i Plut6. La distancia al Sol del planeta Nepti no figura
a la successié de ntimeros donada per la llei de Titius-Bode.

k dr  Dist. mitjana observada

Mercuri —oo 0.4 0.39
Venus 0 0.7 0.72
La Terra 1 1.0 1.00
Mart 2 1.6 1.52

Asteroides 3 2.8 2.2a3.3
Jupiter 4 5.2 5.20
Saturn 5 10.0 9.55
Ura 6 19.6 19.18
Neptu 30.05
Pluté 7 388 39.52

Taula 1.

La llei limit de Titius-Bode és menys general que la llei de Titius-Bode. Aquesta afirma
que si prenem dos planetes consecutius del sistema solar, bastant allunyats del Sol, aleshores la
distancia mitjana al Sol del més allunyat és aproximadament el doble de la distancia mitjana
al Sol del més proper.

12E] descobriment de Nepti el 23 de setembre de 1846 va ser un dels grans &xits de la matematica, ja que
la seva posicié va ser predita teoricament per Urbain Jean Joseph Le Verrier i confirmada per Johan Gottfried
Galle, de I'observatori de Berlin, després de només una hora de recerca i només a un grau de distancia del punt
predit teoricament.
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Clarament, si la llei de Titius-Bode és certa, també ho sera la llei limit, ja que si prenem
dos planetes consecutius del sistema solar, prou allunyats del Sol, aleshores (i ja que k és gran)

dii _ 04403x 21 57 +03x2 03x2

dp ~ 04+03x2F 1403 =03

Per tant, si k és gran, dii1 &~ 2dj, (per exemple, si k = 5, tenim que dp11 ~ 1.96dy).
Si usem les distancies mitjanes observades donades a la taula 1, obtenim els resultats
seglients (no tenim en compte Nepti)
0.72 1.00 1.52 2.90 5.20 9.55 19.18 39.52
— 185, — ~ 139, — = — =191, — =~ 1.79, — =~ 1.84, — ~ 2.01, —— ~ 2.06.
0.39 70.72 " 1.00 "1.52 72.90 ’5.20 " 9.55 719.18
Per tant, tenim la successié 1.85,1.39,1.52,1.91, 1.79,1.84,2.01,2.06, que corrobora les afir-
macions de la llei limit de Titius-Bode (si la distancia mitjana d’un planeta al Sol fos exac-
tament el doble que la de Panterior, els elements d’aquesta successi6 foren tots el nimero 2).

1.52

Per donar una explicacié matematica de la llei, necessitem
tenir dues coses: un model teoric aproximat del sistema solar i
unes lleis de moviment que ens permetin decidir a partir de una
posicié dels planetes i el Sol en un instant quina sera la seva posicié
després d’un cert temps. La formulacié del model teoric depen
essencialment del problema concret a estudiar. Normalment és
una simplificacié de la realitat. Deixarem aquesta part per al final
d’aquesta seccié. Saturn.

La llei que ens permet predir el moviment dels cossos és la coneguda amb el nom de llei de
la gravitacid i va ser formulada pel fisic i matematic Isaac Newton (1642-1727). Aquesta llei
ens diu que dos punts materials qualssevol s’atreuen mutuament amb una forca directament
proporcional al producte de les seves masses i inversament proporcional al quadrat de la
distancia entre ells. Si ho expressem con una férmula, tenim que la forca F' entre dos cossos
de masses m i M, que estan a distancia d és

mM

F=0"g

on G es una constant (G = 6.67 x 1078 dines-cm? - g=2).

Aquesta féormula ens permet mesurar la for¢ca que exerceix la Terra sobre cossos tan variats
com els éssers humans o com la Lluna.

Aixi, com la massa de la Terra és M = 5.98 x 10°" g, la forca que exerceix la Terra sobre
una massa m = 100 Kg situada sobre la superficie terrestre (és a dir, a (40 x 10%)/(27) m del
centre d’aquesta) és de

027

(100 x 103)(5.98 x 1027)
((4000 x 106)/27))2

6.67 x 1078 = 98416241 dines,

que en unitats més usuals és d’'uns 100 kp, i és el que anomenem pes de ’objecte de massa m
a la Terra.'® Com la distancia de la Lluna al centre de la Terra és aproximadament seixanta

13 Aquest mateix objecte a la Lluna pesaria unes sis vegades menys (és a dir, la Lluna l’atrauria amb una
forca 6.064 vegades menor que la Terra), ja que la massa de la Lluna és de 7.35 x 10%° g i el seu radi mitja de
1.738 x 10° m.
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cops el radi de la Terra, i la massa de la Lluna és de 7.35 x 10%° g, tenim que la forca amb
que la Terra atreu el seu satellit és de 20.09 x 10%* dines.

De la llei de la gravitacié de Newton se’n poden deduir les segiients propietats sobre el
moviment dels planetes al voltant del Sol. Aquestes son les lleis de Kepler (1571-1630):

(1) Els planetes descriuen ellipses al voltant del Sol, estant aquest situat en un dels seus focus.

(2) Les arees escombrades pel vector posicié d’un planeta respecte del Sol s6n iguals en temps
iguals.

(3) El quadrat del periode de revolucié d’un planeta és proporcional al cub del semieix major
de 'ellipse que aquest descriu.

b 1R . =
N ~—- g =
f e I : = X s;'
o ohannes | 3 |
< Kepler | ¢ L x ,
= 1571-1630 | + R — |

Un segell hongares dedicat a Kepler.

En realitat, les lleis de Kepler sén anteriors a la formulacié de Newton de la llei de gravi-
taci6. Es més, Newton va deduir la llei de la gravitacié a partir de les lleis de Kepler. Aquestes
lleis van ser obtingudes per Kepler després del redescobriment'4 de Copernic (1473-1543) del
fet que la Terra girava al voltant del Sol i de les meticuloses mesures sobre la posicié d’uns
quants planetes realitzades por Tycho Brahe (1546-1601) (aquest va realitzar aquestes mesures
sense telescopi i amb una precisié de dos minuts d’arc).

Una cop es coneixen totes les forces que actuen sobre un cos en moviment, ja es pot
determinar mitjancant una relacié matematica quina sera la seva trajectoria futura. Aixi, a
partir de la llei de gravitacié ja podem predir, almenys teoricament, el moviment futur dels
cossos espacials.

Vegem ara el model simplificat del sistema solar que considerarem. Aquest estara format
pel Sol, dos planetes girant al voltant del Sol i el centre de masses (c.d.m.) de la Galaxia.
Suposarem, a més, que les orbites dels dos planetes sén en un mateix pla i que giren en el
mateix sentit.

Aquests tipus de problemes sén coneguts a mecdnica celest amb el nom de problemes de
quatre cossos (en aquest cas, el c.d.m. de la Galaxia, el Sol i els dos planetes). A partir de la
llei de la gravitacié es coneixen les equacions que regiran el moviment d’aquests quatre cossos,
pero no és coneguda la solucié d’aquestes equacions. Per tant, per a tenir una idea de com és
el moviment dels quatre cossos, necessitarem encara més simplificacions.

El cami usual és suposar que tres d’aquests cossos es mouen d’una manera preestablerta i
el quart (que es considera que no afecta el moviment dels altres tres), seguint la llei de Newton
de la gravitacié. Aquesta manera preestablerta de moure’s sera al més semblant possible al
moviment real observat.

En el nostre cas, suposarem que el c.d.m. del Sol-planeta interior es mou en una orbita
circular al voltant del c.d.m. de la Galaxia, i que el Sol i el planeta interior es mouen també

1 Ja alguns astronoms grecs, com Aristarc de Samos (310-230 a.C.), creien que era la Terra la que feia voltes
al Sol.
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en orbites circulars al voltant del seu centre de masses. El pla descrit pel c.d.m. del Sol-
planeta interior és aproximadament el pla galactic, i aquest esta inclinat un angle d’uns 60
graus respecte al pla que conté I’orbita del Sol i el planeta interior (aproximadament, el pla
de ’ecliptica).

Després d’un estudi detallat de les equacions diferencials corresponents a aquest ultim
model, s’obté una possible explicacié del per que es compleix la llei limit de Titius-Bode:
D’entre totes les trajectories tancades que podria sequir el planeta exterior, se’n troba una
familia d’aquestes entre les quals la 77126’5 estable'® correspon a una orbita aprozimadament
circular © amb un radi proper a uns 33 =~ 2.08 cops el radi de [’orbita circular del planeta
interior.

Observem que en aquest model s’ha considerat que el planeta exterior no influeix en el
moviment dels altres tres cossos. Aix0 mai no és cert, pero és raonable suposar-ho si la seva
massa és bastant més petita que la d’aquests. Si prenem com a referéncia la massa de la
Terra (és a dir, aquesta massa igual a 1) las masses de Juipiter, Saturn, Ura, Neptu i Pluté
sén respectivament 317.8,95.1,14.5,17.2,0.1. Per tant, és raonable que el model matematic
simplificat estudiat modeli la realitat en considerar Jupiter i Saturn, o Saturn i Ura, pero no
és raonable per a Ura i Neptu (la massa de Neptu és més gran que la d’Ura). Aquesta és,
doncs, una possible explicacié de per que la llei de Titius-Bode no s’aplica a Neptu.

Per a acabar, comentarem que la llei limit de Titius-Bode es formula de vegades en termes
dels periodes de translacié dels planetes al voltant del Sol (no s’inclouen en aquest cas els
asteroides). La llei limit pot enunciar-se dient que el periode de translacié d’un planeta al
voltant del Sol és aproximadament el triple que el del planeta anterior. Aixi, per exemple,
(si no tenim en compte Neptil) sabem que els periodes dels planetes Jupiter, Saturn, Ura i
Pluté sén respectivament (en anys terrestres) 11.86,29.46, 84.02 i 247.70. L’equivaléncia entre
aquesta formulacié i I’explicada anteriorment ens la dona la tercera llei de Kepler.

5Podem entendre el fet que una trajectoria és la més estable, com també el fet que aquesta trajectoria és la
que és més probable que segueixi existint encara que el model que tinguem sofreixi petits canvis. No oblidem
que hem estudiat un model aproximat del sistema solar real, i que creiem que el model real és proper a aquest.
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2.18 Les lleis de Mendel

El treball de Johann Gregor Mendel (1822-1884), publicat el 1866, en queé estudiava com
es transmetien diferents caracteristiques de les plantes de pesol a les generacions successives
després de diversos entrecreuaments, va ser molt valuds per a la ciéncia des de molts punts de
vista:

e En part, el seu exit va ser degut al bon disseny dels seus
experiments i a ’enfocament analitic dels resultats.

e Va fer proves durant vuit anys. Aixo ens demostra que
la pressa no és una bona aliada de la ciencia.

e Un dels biolegs més importants de 'época, Karl Néage-
li, li va dir que els seus resultats no tenien realment
valor cientific. Aixo ens mostra que, en qualsevol mo-
ment, una determinada persona pot fer una aportacié
important i aquesta pot no ser valorada.

No va ser fins el 1900 (setze anys després de la seva mort) que Hugo De Vries va retrobar
el seu escrit i el va fer coneixer. Els seus resultats es coneixen actualment com a “lleis de
I’herencia de Mendel”. Abans de comencar a explicar les seves lleis i donar alguns exemples
ben coneguts de les seves implicacions, volem comentar que quan es van formular no es coneixia
en absolut com es transmetien els caracters hereditaris d’una generacié a la seglient. Mendel
va deduir els seus resultats a partir de I’observacié i el recull de dades. En altres paraules,
avui dirfem que va obtenir els seus resultats fent analisis estadistiques de dades experimentals.
Actualment, hi ha una explicacié de les lleis de Mendel basada en la teoria cromosomica de
I’herencia.

Comencarem amb 'exemple més tipic, ja considerat per Mendel. Entre altres carac-
teristiques, la superficie dels pesols pot ser llisa o rugosa. Aquest fet esta controlat per un gen
que presenta dos allels'®. Aquests dos allels sén L, que porta la informacié per a la superficie
llisa, i [, que porta la informacié per a la superficie rugosa. Aixi, hi ha tres tipus de llavors de
pesol (tenint en compte només el caracter de ser llisos o rugosos), que sén els segiients:

e Pesols amb dos allels LL que sén llisos.

e Pesols amb dos allels Ll que son lisos.

e Pesols amb dos allels Il que sén rugosos.

Com s’observa de la classificacié anterior, un pesol que té un allel llis (L) sempre és llis.
Per aquest motiu es diu que ser llis és una caracteristica dominant i per conveni es denota
amb una lletra majuscula. Tanmateix, 'inica manera de ser rugods és tenir els dos allels de

tipus rugds ll. Es diu que ser rugds és una caracteristica recessiva.
Ara estem en condicions d’enunciar la primera llei de Mendel:

6Allel és cada una de les possibles variacions en la informacié que té un gen.
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la llei. Quan s’encreuen'” dues races pures diferents'® (és a dir, pésols que tenen dos allels
LL i pésols que tenen dos allels ll) tots els descendents son del mateix tipus Ll. Com que L
és un caracter dominant, tots els descendents es veuen llisos.

2a llei. Quan s’encreuen dos descendents de l'encreuament de dues races pures (és a dir,
pesols amb allels Ll), s’obtenen descendents de la forma LL, Ll i ll amb proporcions i, % 1
i respectivament. Aquests descendents son la segona generacio de 'entrecreuament de dues

races pures. A més, el seu aspecte és 4 de llisos i 7 de rugosos.

La tercera llei fa referencia a la primera i segona generacions quan s’entrecreuen races pures
amb dos caracters diferents. Per exemple, pésols grocs llisos LLGG, amb ambdés caracters
dominants, amb pesols verds rugosos llgg, amb ambdés caracters recessius.

3a llei. Quan s’encreuen races pures amb dos caracters dominants independents LLGG amb
races pures amb dos caracters recessius llgg independents, aleshores els dos caracters es com-
binen d’una manera independent. Més concretament:

(1) Tots els descendents de la primera generacié son del mateix tipus LIGg.

(2) Quan s’encreuen dos descendents de la primera generacié s’obtenen descendents de la
forma LLGG, LlGG LLGg, LIGg, LLgg, Llgg, lIGG, lIGg i llgg amb proporcions E’

2 2 4 1 1 2 ;1
16’ 16 167 167 16, 160 16 i 1 respectivament. L’aspecte d’aquests és groc llis, verd llis,

9 3 3 1
groc Tugos i verd rugds, amb proporcions g, 15, ig ! ig respectivament.

Noteu que a la segona generacié s’observen combinacions diferents a les paternes.
A continuacié veurem com es poden interpretar les lleis de Mendel a partir del producte
cartesia de conjunts, que recordem que es defineix com

A x B ={(a,b) tals que a € A, b € B}.

Considerem el conjunt {L, L} x{l,1} = {(L,1), (L,1),(L,1),(L,1)}, iel conjunt {L,1} x{L,l} =
{(L,L),(L,1),(l, L), (I,1)}. Observeu que els resultats dels productes coincideixen amb les pro-
porcions que diuen les dues primeres lleis de Mendel, si no tenim en compte l'ordre de les
lletres.

Pel que fa a la tercera llei de Mendel, si considerem cada caracter per separat, tenim que
tots els elements de

({L, 1} x {L,1}) x ({G,g} x{G,g}) =
={(L, L), (L), (I, L), (1, )} x {(G,G), (G, 9).(9,G). (9,9)} =
={(L,L,G,G),(L,L,G,9),(L, L,g,G), (L, L, g,9),
(L,1,G,G),(L,1,G,9),(L,1,9,G), (L, 1, g, 9),
(1, L,G,G), (I, L,G,g),(,L,g,G), (I, L,g,9),
(1,1,G,G),(1,1,G,9), (L, 1,9,G), (1,1, 9, 9)},

que s6n, si no tenim en compte de nou lordre, els resultats predits per la 3a llei de Mendel;
veugeu també la taula 1.

7Cada parell d’allels se separa durant la formacié dels ghmetes. Quan dos gametes (cellules sexuals) s’u-
neixen en la fecundacié, la descendéncia rep un allel de cada parell, un procedent del pare i laltre de la
mare.

8Un individu és raca pura o homozigot per a un determinat caracter si presenta els dos allels iguals.
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(9:9)
O grocs llisos

(9.G)
O grocs rugosos
(G, 9)

verds llisos
verds rugosos

(G, G)

(L,L) (L,0) (I,L) (1,1

Taula 1. Tercera llei de Mendel.

Aquesta manera conjuntista d’interpretar les lleis de Mendel ens permet de forma sis-
tematica veure que passaria, per exemple, si estudiem l’entrecreuament de races pures que
difereixen en tres caracters independents. Si anomenem, per exemple x, X els allels recessiu i
dominant, respectivament, d’un nou caracter, aleshores les proporcions de la segona generaci
es calcularien fent el producte

(L, 1} x {L,1}) x ({G, g} x {G,g}) x ({X, 2} x {X, z}).

Obtindriem els pesols amb aspectes LGX, LGz, LgX, IGX, lgX, Gz, Lgx i lgz, amb pro-
porcions g, 6%, %, %, %, %, % i 6—14 respectivament.

Voldriem comentar també dues coses: la primera és que no tots els caracters sén indepen-
dents i que, per tant, la tercera llei de Mendel no sempre es pot aplicar. La segona és que no
sempre hi ha només dos allels per a cada caracter, i a més, en cas d’haver-n’hi només dos, no
tenen per queé ser un dominant i l'altre recessiu. De vegades hi ha allels que es manifesten
els dos igual i s’anomenen codominants. Acabarem amb un exemple: la sang humana que té

aquests dos caracters independents:

(1) El grup sanguini, que presenta els allels segiients: A, B i 0. D’aquests A i B dominen
sobre 0, pero entre ells sén codominants (és a dir, es manifesten tots dos).

(2) El factor Rh, que té dos allels + i —, essent el + dominant.

A partir d’aquestes dades, podem aplicar les lleis de Mendel per a tenir informaci6é del
tipus de sang del fill a partir de la sang dels pares. Aixi, un pare del grup ABT i una mare
del grup 0™, que han de tenir allels AB++ o AB + — (el pare) i 00 — — la mare, tindran fills

({4, B} x{0,0}) x ({+,+} x {=—})
o bé
({A’B} X {0’0}) X ({+’ _} X {_’ _})’
és a dir que la seva sang sera d’un dels tipus segiients: AT, BT, A~ o B™.
Les lleis de Mendel han estat també usades per a fer proves de paternitat. Per exemple si
una parella té fills del grup AB i 0, forcosament els seus pares han de tenir sang dels tipus:
un A i laltre B.

Per a escriure aquesta seccié s’ha consultat el llibre Invitacion a la biologia, de H. Curtis
i N.S. Barnes, Ed. Panamericana, 1995.
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2.19 Iteraci6 d’aplicacions. Caos

Donada una aplicacié f: X — X i un punt xg € X, s’anomena iteracié de f amb inici a g a
la successié definida per la recurrencia

{anrl = f(xn),

xo € X.

(%)

La iteracié d’aplicacions té utilitat en diversos camps: resolucié d’equacions, fisica, economia,
dinamica de poblacions,...L’objectiu general sol ser calcular cap a on s’acosta la succes-
sié xg, 1,2, T3, ... en funcié del valor inicial xyp. En aquesta seccié estudiarem uns quants
exemples de (x), variant f, xo i I'espai X.

El métode de Newton

Una de les maneres més efectives de resoldre equacions g(z) = 0 ens la déna el metode de
Newton. La idea d’aquest metode és molt senzilla. Anomenem s una solucié de g(z) = 0.
Aleshores, donat xg € R, volem calcular un 1 més proper a s que zy. La figura segiient ens
il'lustra la idea geometrica.

recta tangent a (xg, (o))

Per a calcular x1, busquem la recta tangent a y = g(x) que passa per (xg, g(xg)). Aquesta
recta és

y — 9(x0) = ¢ (o) (z — o).
El valor de z1 es calcula buscant el valor de z que fa zero 'expressié anterior. Tenim que

g(o)
g'(z0)

Tr1 =Xy —

En general, el metode de Newton esta donat per

9(wy)
g/(xn)’

Lp+l = Tn —
g € R,
i és molt usat per a resoldre equacions. Es pot veure que per a xy molt proper a s i per a moltes
g la successié xg,x1,xo,... convergeix cap a s i ho fa de manera que d’un pas al segiient, el

nombre de xifres decimals correctes de s que anem trobant es dobla aproximadament.
Per exemple, si volem trobar una solucié de

cosx—x =0
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i considerem .
COS Ty — Tp COS Ty + Ty SIN T,

Tl = Fn —sinx, —1 1+ sinz,
o — 0.5
tenim que
x1 =0.7552..., xo = 0.739141.. .,
xs = 0.7390851339. .., Ty~ x5~ s =0.7390851332. ..

Una aplicacié caotica

Un dels exemples més senzills per als quals els iterats d’una aplicacié es comporten de manera
quasi aleatoria és el donat per I'aplicacié logistica!'®

Tp1 = Kzp(1 — )
xo € [0, 1].

Aquesta aplicacié6 depen d’un parametre K € R. Es pot veure que presenta un fenomen
anomenat “caos”’per a certs valors del parametre. Queda fora de I’abast d’aquest llibre donar
una definicié concreta del que és el caos i veure per que es déna per a l'aplicacié logistica.
Només comentarem que una caracteristica que presenten tots els sistemes caotics és el que
s’anomena dependéncia sensible respecte a les condicions inicials. Aquesta propietat ens diu
que petits canvis en la condicié inicial tenen una repercussié gran en els valors donats per la
iteracié. De fet, aquesta propietat s’ha popularitzat amb el nom d’efecte papallona. Aquest
nom prové del fet que en 'estudi dels sistemes meteorologics es presenta la dependeéncia sensible
respecte a les condicions inicials i es diu (exagerant) que una papallona que mou les ales a
I’Amazonia (i, per tant, canvia una mica lestat inicial de l'atmosfera) podria provocar un
huraca a l'altre cap del mon.

Per a acabar proposem un experiment musical que ens pot servir per a entendre el que és
el caos. Prepareu un programa d’ordinador que faci el segiient:

Donat un valor de K € [0,4] i un valor de g € [0,1], calculi la successié
L, L1, L2, L3, Ldy---,Tn

fins a un cert n prou gran (200 o 300 per exemple). Al mateix temps que es va
calculant cada z;, fem que se senti durant % segon una nota musical amb la regla
segiient:

Si x; € KL%), aleshores 1la nota és do

Si ;€ [ ), aleshores 1la nota és re

~Ino

)

~i—=

si = €2,

~|w

), aleshores 1la nota és mi

Si z; € [g,%] , aleshores 1la nota és si

19 Aquesta aplicacié ens déna també un model d’evolucié de la poblacié d’una espécie; vegeu, per exemple,
el llibre de J. D. Murray, Mathematical Biology, Springer, 1993.
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Si experimenteu amb aquest programa, observareu que per a valors de K petits (< 3) obtenim,
en augmentar n, una melodia monotona. En augmentar K, la melodia que es repeteix té un
periode més llarg. Per a 3.83 < K < 4, la melodia ja no segueix cap regla. Hem pogut
“escoltar”’el caos.

Un problema obert: la conjectura 3x + 1

Una conjectura és una afirmacié de la qual no se sap si és certa o falsa, encara que hi ha
indicis que pot ser certa. Presentarem una conjectura molt famosa. Aquesta conjectura té
molts noms: conjectura 3z 4+ 1, conjectura de Collatz, de Kakutani, de Ulam, etc. Diu el
segiient:

Considerem l'aplicacié segiient de N en N

3xr+1
fla)y=35,2 "~

€ . p
— si x és parell.
2 )

si x és senar,

Conjectura 3z + 1. Donat un x¢g € N positiu qualsevol si considerem la iteracié de f amb
mict xg, €s a dir,

()

Zo,

{xn-i-l - f(xn)v

existeiz un valor m prou gran (dependent de xo) de manera que x,, = 1.
En altres paraules, independentment de x, els iterats per a (x*) sén
o, L1,L2,y ... ,4,2,1,2,1,2,1,.. .

La figura seglient il'lustra els iterats per als valors de xg més petits que 25, entre d’altres.

[\)
D

i
|

5

—
w

I
64 21 315 114 219
312/ 513 £ 414
116 810 111<7 212 48
£ 410 117 214
| L
:
j

N

-—
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Hi ha matematics a tot el mén intentant saber si la conjectura 3x + 1 és certa o falsa.
Recentment, a I’agost del 1999 hi ha hagut un Congrés internacional a Alemanya per a discutir
els avencos que s’han fet. Per exemple, se sap que és certa per a xo menor que 3 x 293 ~
2.702 x 10'6. També se sap que si existis una solucié amb nombres naturals diferent de
(n,m) = (2,1) per a 'equacié

2" =3"+1,

aleshores la conjectura seria falsa. Una referéncia actual sobre el tema és el llibre de G. J. Wirs-
ching, The dynamical system generated by the 3n + 1 function, Lecture Notes in Mathematics
1681, Springer-Verlag, Berlin, 1998. També podem consultar 'adrega

http://mathworld.wolfram.com/CollatzProblem.html

Es facil veure que la conjectura 3x + 1 no és certa si es considera f : Z — Z. Busqueu
valors de xy negatius per als quals la successié d’iterats no acabi fent 2,1,2,1,2,1,...

Exemples bidimensionals

Considerem la funcié f de RT™ x RT en R™ x R™ coneguda com funcié de Lyness donada per

fa(x’y) = (y’ al—y> )

amb a un parametre positiu.

Agafeu un (zg,yp) € (RT,R") qualsevol i fixeu a = 1. Calculeu els seus iterats i trobareu
una propietat curiosa. Comproveu que aquesta propietat ja no es compleix per a altres valors
d'a € RT.

Com a tultim exemple, considerarem una aplicacié del tipus anomenat Twist pertorbat.
S’ha pogut demostrar que els iterats d’aquest tipus d’aplicacions presenten comportament

caotic. Considerarem
o — (¢ D) (s sine? ) ()
@ 0 —) \~sin(a®+ y2)2  cos(z? +y?) y)
A Vesquerra de la figura segiient representem els primers 4000 iterats prenent (xg,yo) = (0.3,0)
ia = 1.3; ala dreta prenem (xg,yp) = (0.8,0) i a = 1.273. Com podeu veure, el comportament

dels iterats en ambdos casos és bastant imprevisible. Aquest tipus d’aplicacions apareixen quan
s’estudia el moviment dels planetes.

wlw Njw
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2.20 Models de poblacions

La dinamica de poblacions intenta coneéixer com evoluciona la poblacié d’una o varies especies,
en passar el temps.

Considerarem, en primer lloc, el cas d’una sola especie. Si anomenem p(¢) a la poblacié
a 'instant ¢, la llei de Malthus formulada el 1798 ens diu que el canvi de poblacié (mesurat
per la derivada de p(t)) és proporcional a la poblacié que hi ha. Aquesta llei, escrita sota
formulacié matematica (que en aquest cas pren la forma d’una equacié diferencial), ens diu
que

dp(t)
— = =p(t) = ap(t), (%)
dt
on a és una constant positiva de proporcionalitat. Si suposem que la poblacié en un cert
instant de temps ty és pg, tenim la dada

p(to) = po. (%)
No és dificil comprovar que la funcié

p(t) = poe~1)
és soluci6 de () i compleix (**). Per tant, hem assolit el nostre objectiu de predir quina sera
la poblacié per a instants de temps futurs ¢ > #.

Anem a aplicar aquest model a un cas concret: 1’evolucié del nombre d’habitants de la
Terra. Segons els estudis fets als EUA durant 1960-70 es va estimar que la constant de
proporcionalitat per a la poblacié humana era ¢ = 0.02. Sabem que el 1965 la poblacié del
moén era d’'uns 3340 milions de persones. Quan podriem dir que aquesta poblacié es doblara?

Usant la férmula obtinguda per a p(t), obtenim que

p(t) = 3.34 x 10%0-02(171965),

Volem calcular ¢ per tal que p(t) = 6.68 x 10°. Aix0 ens porta a I’equaci6 per a t

(0-02(t-1965) _ o

és a dir,

In2
t = 1965 + —— ~ 1965 + 34.7 ~ 2000.
+ 0.02 +

Per tant, la llei de Malthus preveu (a partir de les dades del 1965) una poblacié d’uns 6680
milions de persones a la Terra per 'any 2000. Com haureu llegit als diaris, al final de 1999 la
Terra ha arribat al seu habitant 6000 milions. No gaire lluny de les previsions teoriques!
De totes maneres, el model estudiat preveu que la poblacié de la Terra creixera indefini-
dament. Encara que només sigui per problemes d’espai fisic, és clar que aixo no pot passar.
A 1836, Verhulst va proposar un model que ja tenia en compte la saturacié i la limitacié
dels recursos. L’expressié matematica del model també és una equacié diferencial:

— = p/(t) = ap(t) — bp*(1), (% % %)

amb a i b constants positives.
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Encara que amb una mica més de dificultat que per a la llei de Malthus, també en aquest
cas es pot resoldre I'equacié (x * %) amb la condicié (*x). La solucié és
_ apo

bpo + (a — bpg)e~a(t=to)’

p(t)

Un cop fixats els valors d’a, b, pg i to, la grafica de la funcié p(t) s’anomena corba logistica i
és un bon model per a estudiar ’evolucié de moltes poblacions. Per exemple, s’ha comprovat
que la corba logistica s’ajusta a la poblacié que han tingut els EUA del 1790 al 1950, amb un
error de menys d'un 3%.

Quan s’intenta modelar ’evolucié de dues poblacions que interactuen, la situacié és molt
més complexa. Només comentarem un exemple que ha esdevingut classic: el model de Volterra
per a sistemes depredador-presa.

El bioleg italia Umberto d’Ancona, va observar que la quantitat de selacis (taurons, raja-
des,etc.) capturats accidentalment en un port d’Italia del 1914 al 1923 seguia els percentatges
segiients:

| 1914 | 1915 | 1916 | 1917 | 1918 | 1919 | 1920 | 1921 | 1922 | 1923 |
| 11.9% | 21.4% | 22.1% | 21.2% | 36.4% | 27.3% | 16.0% | 15.9% | 14.8% | 10.7% |

Com que els selacis no sén peixos comestibles, volia trobar un motiu de per qué havia aug-
mentat la seva proporcié. Una diferencia entre els anys amb més tant per cent de selacis podia
ser el fet que s’havia produit durant aquells anys la Primera Guerra Mundial, pero no trobava
cap explicacié convincent.

Va ser el matematic Vito Volterra qui va pensar a fer un model matematic de la situacio:

e Va anomenar p(t) a la quantitat de peixos comestibles, que a més eren preses dels selacis.
e Va anomenar ¢(t) a la quantitat de selacis, que eren depredadors dels peixos comestibles.

e Va donar unes equacions diferencials semblants a les de Verhulst que donaven 1’evolucié
de p(t) i q(t):

dl;—(tt) =p'(t) = ap(t) — bp(t)q(t),
d(fi—(tt) = q/(t) = —cq(t) + dp(t)q(t),

on a, b, ¢, d sén constant positives.

No podem entrar aqui en un estudi del sis-
tema d’equacions diferencials de Volterra, pero
si que voldriem dir que aquest estudi li va per-
metre donar una explicacié del fenomen obser-
vat i que avui en dia es coneix com principi de
Volterra. Aquest ens diu que si en un sistema
depredador-presa des de fora del sistema aug-
mentem la quantitat d’ambdues espécies (per
exemple, amb menys pesca), aleshores la propor-
ci6 de depredadors creix i la de preses decreix.
També va donar el principi equivalent quan dis-
minueix la quantitat d’ambdues especies.
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Aquest principi té importants aplicacions ecologiques. Una illustracié és la segiient: Als
EUA hi havia un pugé dels citrics (molt dolent per a les collites) que era menjat per un tipus
de marieta. Quan es va descobrir el DDT, es va decidir fumigar les plantacions. Si els autors
de la fumigacié haguessin conegut el principi de Volterra no ho haurien fet, ja que podien
haver pensat el segiient:

e Les marietes son els depredadors.
e FEls pugons son les preses.

e El DDT mata marietes i pugons indiscriminadament; per tant, fa l’efecte d’augmentar
la “pesca”.

Per consequient, l'efecte sera el contrari del que passa en disminuir la pesca, €s a dir que els
depredadors decreizeran i les preses (que son la plaga dolenta) creizeran.

L’efecte del DDT va ser desastrds, ja que va augmentar la plaga de pugons!

Tots els exemples d’aquesta secci6 han estat trets del llibre de M. Braun Fcuaciones
diferenciales y sus aplicaciones, Grupo Ed. Iberoamérica, 1990.
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2.21 Matematiques i musica

Tothom ha sentit a dir que les matematiques i la musica estan molt relacionades. Per a
alguna gent aquesta relacié es queda en un nivell descriptiu. Per exemple, si diem 1 al temps
de durada d’una negra, aleshores tenim

Menuet
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Si considerem les notes amb punt, tenim que la durada d’una nota amb punt és igual a %
de la durada de la mateixa nota sense punt. Un altre exemple de relacié podria ser el segiient.
Posem les notes blanques del piano i la seva separacié en nombre de tons:

3 1 1 3 1 1 1 3 1 1
.SI <= DO <= RE <= MI <= FA <= SOL <= LA < SI <= DO <> RE < MI...

1
DX
nota X recordem que X# denota la nota que té un semitd més que X, i X° la nota que té un
semitd menys que X. Per exemple, SI# = DO, FA” = M1, RE# = M.

Si prenem només de DO a DO, tenim la successié de semitons: 1,1,5,1,1,1, % Donada una

Ara, si prenem qualsevol nota i busquem les set notes seglients seguint els increments de
tons 1,1, %, 1,1,1, %, obtindrem vuit notes (la primera igual a 1"iltima), que sonaran de manera
similar a les tecles blanques del piano, perdo amb una tonalitat diferent. Si prenem SOL per a
comencar, tenim

1 1 1 1 1
SOL ¢ LA ¢ SI «<» DO <> RE <> MI <> FA

=
Trot=

SOL.

Es a dir, que tenim les notes de I’anomenada tonalitat de Sol Major.

L’objectiu d’aquesta seccié és intentar aprofundir una mica més en aquesta relacié entre
musica i matematiques. Més concretament, donarem dues possibles explicacions de per que la
base de la musica que escoltem és la divisié d’una octava en dotze intervals, és a dir, considerar
les notes:

DO, DO™, RE, RE”, MI, FA, FA™, SOL, SOL”, LA, LA™, SI, DO.

Aquestes explicacions s’han tret del treball de Joan Girbau, professor del Departament de
Matematiques de la UAB, “Les matematiques i les escales musicals”, Butllet{ de la Societat
Catalana de Matematiques 18 (1985), 3-27.

Comencarem amb unes consideracions preliminars. Identificarem un so amb la seva freqiiencia,
és a dir, el seu nombre de vibracions per segon.

Si prenem una corda de guitarra de longitud [, aquesta emet un so de freqiiencia % on C
és una certa constant real que depeén del material de la corda.

Si ara prenem dos punts més a la corda, com a la figura
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A D C B

l//
l/

complint lL’ = IZT/, observarem que si anem fent sonar la corda a l'aire, la corda de longitud I
posant el dit a C' i la corda de longitud I” posant el dit a D, consecutivament sembla que la
distancia musical entre el primer so i el segon coincideix amb la distancia entre el segon i el
tercer. Es per aixo que quan vulguem comparar dos sons, el que farem sera dividir les seves
fregiiencies, en lloc de restar-les.2’

De fet, donats dos sons u i v tals que % 6 2 és un nombre natural de la forma 2% (és
a dir, la freqiiencia d’una d’elles és 2% cops la freqiiencia de I’altra), es diu que els dos sons
corresponen a la mateixa nota, perd que una és k octaves més alta que ’altra.

Donat un conjunt de sons S C R, per tal de fer musica, és raonable imposar que si u € S,
aleshores 2u i 5 també pertanyen a S. Una altra condicié que també seria raonable?! és
que 3u i 5 també fosin elements de S. Malauradament, no és dificil veure que si mirem
quants sons hi hauria entre u i 2u imposant les dues condicions esmentades, veuriem que
haurien de ser infinits sons (!). Es per aixo que, encara que musicalment serien desitjables,
a la practica és impossible compaginar les dues condicions. Les dues explicacions donades
al treball citat consideren dues maneres diferents d’imposar condicions semblants a la segona
condicié esmentada.

Primera explicacié: escales cromatiques temperades

Considerem una nota base wu. En quants intervals iguals?? hem de dividir [u,2u] per tal que

3u . . , . . o ez
5 sigui al més proper possible a un dels sons que apareixen a la particié?

En altres paraules: dividim [u,2u] en m intervals iguals:
1 2 3 m—1
U< 2my <2mu <2my < -0 < 20m oy < 2u.

Per a quins valors de m existeix un valor n tal que 2= sigui una bona aproximaci6é de %7
Una resposta a ’anterior qliestio és la segiient: Prenem z com la solucié de I'equacié 2% = %

In2

3
Obtenim que x = 15 = 0.584962500721 ... El que hem de buscar sén nombres racionals que
aproximin bé a x i considerar els seus denominadors. Ja hem abordat aquest problema a la
seccié 2.2. Si calculem la successio de fraccions continues que tendeixen a x, obtenim

1 3 7 24 31 179 389 9126
2757127 417 537 306" 665~ 15601°

20Des d’un punt de vista més teécnic, podriem definir la distancia entre dos sons de freqiiéncies u i v com
d(u,v) = {log (%) { Aquesta nocié es correspon amb una nocié més matematica de distancia. Per exemple, si
u = v aleshores d(u,v) = 0.

#1Per a fixar idees, suposem que v = 300 vibracions per segon (v/s). Aleshores, si es compleixen les dues
condicions imposades, els sons de ..., 100, 150, 200, 300, 400, 450, ...v/s (i molts més) serien de S i tots alhora
sonarien bé. Hi ha una explicacié més tecnica basada en el fet que tot so de freqiiéncia u, segons la teoria de
Fourier, descompon en sons sinusoidals de freqiiéncies u, 2u, 3u, 4u, 5u, . .. i si es complissin les dues condicions,
els quatre primers harmonics serien a S.

2Tguals en el sentit de distancia que hem donat. Aix{, per exemple, v divideix Pinterval [u, 2u] en dues parts

iguals si % = 27“, és a dir v = V2u.
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D’aquesta successié concloem que si hem de dividir 'interval de freqiiéncies u i 2u amb sons
equidistants (aquesta és la definicié d’escala cromatica temperada), que tingui un so proper a
35, i amb un nombre no gaire gran ni gaire petit de sons, potser triarfem m = 12. Aquest és
precisament el niimero d’intervals en que es divideix una octava per a fer musica.

La divisi6é en dos intervals o en cinc intervals donaria musica més senzilla (pero diferent).
La divisié en 41, 53, 306, ... donaria lloc a musica molt més complexa. Per a acabar, voldriem
comentar que al treball de J. Girbau en queé ens basem també es donen dues aproximacions de
x, que no surten en usar la tecnica de les fraccions continues: % =0.571...1 %—g = 0.5862. ..

que donarien lloc a altres solucions del problema.

Segona explicacio: escala pitagorica cromatica

Un segon intent d’aconseguir que donat un so v € S, també siguin a S, 3u,9u,..., 3, ...
per a tota u és el segiient: Fitxem un so u i imposem que siguin de S els sons seglients:
u,3u,9u, . .., 3%u i tots els seus dobles i meitats.

A la taula segiient posem quins sons estarien entre u i 2u en funcié del valor de k& que

considerem. També diem quina és la distancia maxima i minima entre els sons en funcié de

. N . . 2 2 5 8 7
k. Noteu que per a aquestes distancies es compleix % > % > 3—3 > 2—3 > g—a > 23—1

k 11213456 | 7|89 |10]11
1 ° ° ° ° ° ° ° ° ° ° °
37/211 ° ° ° ° °
32/23 ° ° ° ° o | o ° ° ° °
39/214 ° ° °
34/26 ° ° o | o ° ° ° °
311 /217 R
36/29 o | o ° ° ° °
3/2 ° ° ° ° ° o | o ° ° ° °
38/212 ° ° ° °
33/24 ° ° ° o | o ° ° ° °
310/215 ° °
35/27 ° o | o ° ° ° °
2 ° ° ° ° ° ° ° ° ° ° °
Distancia | 2 | 32 | 32 | 32 | 98 | 98 | 98 | 98 | 28 | % | o8
minima 3 23 23 23 35 35 35 35 35 35 35
Distancia | 5 | 22 | 22 | 98 | 95 | 52 | 8 | 82 | 82| 32 | 37
maxima 2 3 3 33 33 23 23 23 23 23 211

Sons entre u i 2u, ometent la u multiplicant.

Com podem observar, hi ha uns valors concrets de k < 11 per als quals els sons s’espesseixen
més (la distancia maxima disminueix) aquests sén k = 2, 4, 6 i k = 11. De nou la divisié
de [u,2u] en dotze intervals (correspon a k = 11) apareix com un cas especial. De fet, per
a k = 11 l'escala s’uniformitza, ja que la distancia maxima i la distancia minima sén quasi
iguals: 28/3% ~ 1.053 i 37 /2! ~ 1.068.
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Comparacié de les dues escales

Veurem que els sons corresponents a k = 11 de la seccié anterior sén (aproximadament) els
mateixos sons que s’obtenen en considerar 1’escala cromatica temperada de dotze intervals.
Per tal de comparar les dues escales fixarem u per a fer que la nota que s’anomena LA
(tercera) tingui 440 vibracions per segon.?> A l'escala temperada aixo es fa prenent u (v/s
del DO) per tal que g—iu = 440. A lescala cromatica s’ha de prendre u tal que compleixi

9154 = 440. Com es pot veure, les difereéncies de v/s en les dues escales sén molt petites.

E. temperada | E. cromatica

DO 261.6 260.7
DO 277.2 278.4
RE 293.7 293.3
RE? 311.1 313.2
MI 329.6 330

FA 349.2 347.6
FA7 370 371.2
SOL 392 391.1
soL# 415.3 417.7
LA 440 440

LAY 466.2 469.9
SI 493.9 495

DO 523.2 521.5

Vibracions per segon prenent u en cada cas
per a obtenir 440 v/s pel LA

ZE] primer diapasé que es va utilitzar a I’Opera de Paris el 1699 donava una nota de freqiiencia de 404
vibracions per segon. Durant el segle XVIII va haver-hi grans diferéncies i es va tendir a anar elevant la
freqiiencia del LA tercera. El 1879 es va fixar aquesta nota en 435 v/s. El 1939 es va tornar a pujar a 440
v/s. Durant alguns anys van anar convivint les 435 v/s amb les 440 v/s, encara que aquesta ultima xifra s’ha
imposat definitivament.
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2.22 Matematiques i finances: el descobriment d’un nou moén

Jocs justos

Abans de parlar de finances repassarem la nocié de joc just. Per a comencar, cal dir que tots
els jocs del casino (excepte el BlackJack si s’hi sap jugar bé) sén —lleugerament— favorables
al casino: en un sol dia passen molts jugadors; alguns guanyen, altres perden, pero el casino
aprofita el seu petit avantatge per a anar guanyant diners, de forma lenta pero segura (en
cas contrari, qui voldria installar un casino?). S’explica la segiient anecdota del propietari
d’un casino que es deia Blanc; com sabeu tots, a la ruleta la jugada més tipica és apostar que
sortira un nombre negre o un nombre vermell. Diuen que el Sr. Blanc es passejava entre les
taules de la ruleta i mentre feia una rialleta murmurava “Jugueu negre, jugueu vermell, que
Blanc sempre guanya”.

Des de l'altre punt de vista, un jugador al casino pot tenir
molt bona sort un dia, pero si insisteix i juga un dia i un altre
i un altre... segur que acaba arruinat. Un exemple extrem
d’aquesta situacié és la historia d’'un jugador japones, el Sr.
Akio Kashiwaki, que tenia fama d’anar a un casino, seure
en una ruleta i estar apostant cada vegada 200000 dolars al
mateix color fins que feia saltar la banca; sembla que mentre
durava el joc anava prenent notes dels resultats com si estigués fent un estudi experimental.
En ’'argot, aquesta mena de jugadors se’ls anomena balenes. La balena japonesa Kashiwaki va
anunciar al desembre del 1989 que aniria a jugar a un casino d’Atlantic City. Els encarregats
del casino, preocupats, van consultar el matematic Sr. Jess Marcum sobre que havien de fer.
De les informacions disponibles es desprén que el matematic els va aconsellar que la banca
mai no es retirés del joc; que a la llarga el jugador acabaria perdent i que les probabilitats de
perdre del jugador anaven augmentant com més durava el joc. Els del casino varen seguir el
consell; en acabar el tercer dia de joc el jugador japones anava guanyant 5 milions de dolars;
després les coses es varen comencar a anivellar i, finalment, després 5066 jugades en 70 hores
de joc, el jugador japones es va retirar perdent més de 9 milions de dolars. (Podeu llegir els
detalls dels calculs sobre aquesta partida a l'article de C. A. Coyle i C. Wang, Wanna Bet?
On gambling strategies that may or may not work in a casino, The American Statistician,
Maig del 1993, vol. 47, nim. 2, pp. 108-111).

Per a formalitzar la idea de 'avantatge del casino, analitzarem un joc ben senzill. Suposem
que participem en un joc a cara i creu i que apostem 10 ptes. de la manera segiient:

e Sisurt cara, guanyem 15 ptes. (és a dir, ens tornen les
10 ptes. i 15 ptes. més)

e Si surt creu, perdem les 10 ptes.

Si la moneda no esta trucada, la probabilitat de cara i de creu sén la mateixa i igual a 1/2;
és a dir, si tirem molts cops la moneda, aproximadament la meitat de les vegades guanyarem
i laltra meitat perdrem. En resum, si per exemple juguem 1000 cops

Guanys = 500 x 15 = 7500 ptes,
Perdues = 500 x 10 = 5000 ptes.
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De manera que el guany total sera, aproximadament,
Guany total =~ 500 x 15 — 500 x 10 = 2500 ptes.

i el guany mitja per jugada sera

2500 ptes.

D 9 5 ptes/jugada.
1000 jugades ptes/jugada

guany mitja per jugada =

Notem que

5000 x 15+ 500 x (—10) _15 1 +(=10) 1’
1000 2 2

és a dir, 15 per la probabilitat de guanyar sumat amb —10 per la probabilitat de perdre.
Aquesta expressié de la dreta s’anomena l’esperanca matematica del joc. Aquest joc que
estem analitzant ens és favorable: si juguem un cop o dos, podem tenir mala sort i perdre;
pero si hi juguem molt, a la llarga acabarem guanyant, en mitjana 2.5 ptes. per jugada.
Pero si ens és favorable a nosaltres, sera desfavorable a 'altre jugador. Un joc es diu just si
I’esperanca del joc és 0. Per exemple, el joc a cara o creu perdo amb guanys 10 i —10 és un joc
just: avui puc guanyar jo i dema també, pero si hi juguem molt sovint, en mitjana ni jo ni el
meu contrincant hi haurem guanyat ni perdut res (haurem passat I’estonal).

També és important observar que un joc injust es pot convertir en joc just fent pagar una
quantitat per a participar-hi. Aixi, al joc del principi amb la moneda on guanyava 15 o perdia
10 podria fer pagar 2.5 ptes. per a jugar una partida. Llavors el resultat seria

Guany mitja per jugada =~

15—2.5= 12.5 ptes. amb probabilitat 1/2,
—10 — 2.5 = —12.5 ptes. amb probabilitat 1/2.

que és un joc just.

Si es calcula 'esperanga matematica de les apostes de la ruleta, etc. donen totes favorables
al casino. El fet que als casinos facin pagar entrada per a participar en un joc injust és allo
que els classics en deien cornuts i pagar el beure.

Parlem de finances. Comencem amb uns exemples

Suposem que al mes de marg decideixes que al mes de juliol aniras dues setmanes als Estats
Units i t’han dit que l'estada et costara 500 dolars. Suposem també que tens els diners
estalviats per al viatge; un dolar a Barcelona costa al mes de marg 170 ptes. (arrodoneixo
les quantitats per a fer calculs més facils) i sembla que la tendeéncia del dolar és anar pujant;
per tant, seria prudent canviar avui les pessetes per dolars i guardar-los per a l’estiu. Pero
com que res no és segur, també podria océrrer que el dolar baixés d’aqui a I’estiu i que t’anés
millor esperar al juliol per a comprar els dolars. Que fer? Estas en una situacié dominada
per la incertesa: com en un joc d’atzar! Pots prendre una decisié —comprar ara els dolars o
esperar a l'estiu— i hi ha unes expectatives de guanys o perdues.

En la mateixa situacid, pero de manera molt més greu i seriosa, es troben totes les empreses
i negocis. Considerem, per exemple, una fabrica que produeix ordinadors i unes peces les
compra al Japd, de les quals en necessitara un nombre determinat d’aqui a tres mesos. Si creu
que les peces pujaran de preu, podria comprar-les ara i emmagatzemar-les; pero podria ser
que baixessin de preu o fins i tot que canviés la tecnologia i quedessin obsoletes. Que ha de
fer?
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PTA
170

160 -

150

1401

130

Gen. Feb. Marc Abril Maig Juny Jul. Agost Set. Oct. Nov. Des.

Canvi dolar/PTA durant I'any 1999

Introduim les probabilitats

Els exemples anteriors tenen en comu, entre altres coses, I’ambient d’incertesa i la manera
habitual de tractar-la és mitjancant les probabilitats. Retornem a l’exemple del viatge als
Estats Units. Per a simplificar ’exposicid, suposem que del marg al juliol el preu del dolar
només canviara pujant 30 ptes. o baixant-ne 20. Aixi, el preu que tindra el dolar al juliol sera
200 ptes. o 150 ptes. Ara podriem intentar quantificar la incertesa associada amb ’evolucié
futura del dolar mitjancant una probabilitat: posem que la probabilitat que el dolar pugi és p
i la probabilitat que baixi és 1 —p (0 < p < 1). Tenim, aixi,

Preu d’un dolar
Marg: 170 ptes.

Juliol 200 ptes. amb probabilitat p,
uliol:
150 ptes. amb probabilitat 1 — p.

Aquest plantejament, tot i la seva simplicitat, és molt important i s’anomena model de
Cox-Ross-Rubinstein.

En lloc de decidir ara si canviar o no les pessetes en dolars pots comprar una opcid de
compra (en angleés es diu un call), que consisteix a adquirir el dret, pero no l'obligacié, de
comprar dolars 1’1 de juliol a un preu que es fixa avui: posem 180 ptes. per dolar (s’anomenna
preu d’exercici).

e Si al juliol el dolar puja, tancaras el tracte (exercint el
dret) i compraras els dolars a 180 ptes.

e Si el dolar baixa, compraras directament els dolars a
un altre venedor.

Pero per a adquirir una opcié de compra de dolars cal pagar alguna cosa, ja que, en cas
contrari, ning no voldria participar venent 1’opcié: tu tindries tots els avantatges i el venedor
tots els inconvenients. La quantitat que cal pagar s’anomena la prima. El problema que ens
plantegem és com calcular aquesta quantitat.
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Una mica d’historia

A T'edat mitjana els agricultors i comerciants van comencar a utilitzar els contractes de
futurs, que consisteixen (encara s’utilitzen) en un acord de compra o venda d’un producte
a un preu determinat en una data; per aquests contractes no cal pagar res, pero 'acord és
ferm: el comprador i venedor han de fer 'operacié pactada sigui quin sigui el preu del mercat.
Per a continuar amb ’exemple, tu podries fer al marg un contracte de futurs amb un venedor
de dolars acordant la compra de 500 dolars a 190 ptes. 1’1 de juliol. Arribats a 1’1 de juliol,
l'operacié s’hauria de fer i comprar els dolars al preu estipulat, de manera que si el dolar
baixés a 150 ptes., hi perdries diners respecte al preu de mercat; si el dolar pugés a 200 ptes.,
compraries els dolars a un bon preu.

Al segle XVII a Holanda es varen comencar a fer opcions (de compra o venta) de bulbs de
tulipa, amb la diferéncia respecte als futurs que el comprador de 'opcié té un dret pero no
pas un deure. De seguida es van comencar a fer opcions sobre accions d’empreses i, a través
d’una historia no sempre facil, les opcions s’han anat consolidant com un producte financer
d’extrema importancia. Actualment hi ha opcions de moltes menes i sobre tota mena de
productes, i aquesta tendencia va a més. A les pagines economiques de qualsevol diari hi ha
informacié sobre els diferents mercats d’opcions.

Un salt qualitatiu absolutament fonamental en el mercat d’opcions va ser quan els econo-
mistes americans F. Black i M. Scholes van proposar el 1973 un metode racional per a calcular
la prima de les opcions (el preu a pagar). Scholes va rebre, juntament amb Merton, el 1997
el premi Nobel d’economia per aquest descobriment (Black va morir el 1995). La conclusié
d’aquest metode és 'anomenada férmula de Black-Scholes, d’is constant als mercats d’opci-
ons, als bancs, etc. Tot i que la férmula final és molt senzilla, la demostracié utilitza métodes
sofisticats de processos estocastics (que tracten de modelitzar fenomens que evolucionen en el
temps segons les lleis de 'atzar —és a dir, fenomens aleatoris o estocastics). A partir de 'any
1973, una branca de les matematiques que s’havia anat desenvolupant —1’Analisi Estocastica—
va trobar una nova i importantissima font d’aplicacions, i molts matematics purs varen ser
captivats per la possibilitat d’aplicar la teoria ja feta i de desenvolupar noves teories per als
problemes que la realitat suggeria: va ser el descobriment d’un nou mén per als matematics.

Pero, com es valora una opcié?

Per a valorar una opcid, primerament cal notar que el valor d’'una opcié es basa en el preu
del producte al que fa referéncia (en el nostre exemple, en el canvi dolar/pesseta) i en les
probabilitats d’aquest preu al moment d’executar 'opcié (la p d’abans). Pero, com calcular
aquesta probabilitat? En principi, cada persona pot considerar la probabilitat que cregui
convenient; aixi hom pot pensar que la probabilitat que el dolar pugi és 0.9, i un altre que és
0.3; es tracta de probabilitats subjectives. La idea —genial— és que cal buscar les probabilitats
que fan que comprar i vendre dolars sigui un joc just. El mercat sempre es comporta per
a la majoria de gent (després comentarem la minoria) com un joc just, ja que altrament no
hi hauria participants: a la borsa uns hi guanyen perquée altres hi perden, i els guanyadors i
perdedors no poden ser sempre els mateixos (aixo és, de fet, més complex, ja que cal tenir en
compte l'evolucié al llarg del temps, I'increment del preu del diner, i altres factors). Aplicat
al nostre problema, és tracta de la manera segiient: algi compra un dolar al més de marg. El
resultat del joc sera el valor del dolar 1’1 de juliol, que hem quedat que és
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200  ptes. amb probabilitat p,

150 ptes. amb probabilitat 1 — p.

L’esperanca matematica d’aquest joc és
Esperanca = 200 p + 150 (1 — p).

El preu al qual es compraria el dolar al marg, posem 170 ptes., és el preu per a participar en
el joc. Aixi, per a que el joc sigui just cal que

| 200p+150(1 —p) = 170.

La solucié és

p=0.4. I

Cal remarcar que aquest metode és una manera objectiva de calcular les probabilitats i
que, per tant, el comprador i el venedor de 'opcié poden estar d’acord; perd no representa
la probabilidad d’evolucié futura. Ara tornem a ’opcié. També el comprador i el venedor de
I’opcié han de participar en un joc just. Aixo vol dir que el preu per a participar en el joc ha
de ser igual a ’esperanca matematica del joc; concretament, la prima, P, ha de ser

| = (500 x (200 — 180)) x 0.4+0 x 0.6 = 4000 ptes.

D’aquesta manera, el resultat de 'opcié 1’1 de juliol sera:

e Si el dolar puja, 'opcié s’executa i en total hauras

pagat
500 x 180 + 4000 = 94 000 ptes.

e Si el dolar baixa, aleshores compres directament els
dolars, i en total hauras gastat

500 x 150 + 4000 = 79000 ptes.

Comparem en el quadre segiient la diferéncia entre comprar dolars al juliol amb opcié o
sense:

Sense Amb

opcié opcié Diferéncia
El dolar puja 100000 94000 6000
El dolar baixa 75000 79000 —4000

Variacio6 25000 15000
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Per tant, amb 1'opcié de compra aconseguim que la variacié entre els possibles diners que
haurem de pagar sigui menor; concretament, hem reduit la diferencia entre els preus quan
puja o baixa el dolar en un 40% (10000 ptes. sobre 25000). Aquest mateix raonament el
podem fer per a una empresa que sap que haura de pagar una factura d’un milié de dolars al
cap de tres mesos i amb les opcions aconsegueix reduir la incertesa de la factura que haura de
pagar.

D’altra banda, el venedor de I'opcié pot utilitzar habilment les 4 000 ptes. de la prima per
a no guanyar-hi ni perdre-hi res, vagin com vagin les coses; aix0 s’anomena una cobertura.

A més d’adquirir una opcié per necessitat, com seria el cas del teu viatge, o el d’'una
empresa d’ordinadors que ha comprar peces al Japé o pagar una factura en dolars al cap
d’uns quants mesos, també es pot adquirir una opcié per a especular: algi que intueix que
el dolar pujara a l'estiu pot adquirir una opcié de compra de dolars; si el dolar puja, llavors
executa ’opcid, compra els dolars a 180 ptes. i els torna a vendre immediatament a 200 ptes.
Si el dolar baixa, llavors naturalment no exerceix I'opcié ni compra dolars; en total, haura
perdut la prima: ha fet una aposta i ha perdut. També cal dir que si el dolar pugés, al mercat
d’opcions li farien tota 'operacié sense haver de comprar i vendre els dolars: directament li
abonarien la diferéncia.

Les opcions tenen molts avantatges. En la meva opinid, el més important és el segiient:
hem vist que al mercat d’opcions hi participen tres classes de persones, les unes per necessitat
(tu o la fabrica d’ordinadors), unes altres altres com a intermediaris —que hi guanyen unes
comissions— i finalment els especuladors. Les opcions permeten una transferencia de risc entre
qui té necessitat de prendre una decisié en un ambient d’incertesa i els que participen a la
borsa per tal de guanyar diners i que estan disposats a cérrer un risc.

La borsa és justa per a tothom?

Aquesta és la qiiestié més interessant de totes. La borsa és justa per a la majoria perque hi
ha una minoria que intenta aprofitar el moment en que és injusta. Per exemple, una persona
pot estar molt atenta al preu d’unes accions de, per exemple, I'empresa Bayer, a la borsa
de Madrid i a la de Frankfurt. De tant en tant, els preus es descompensen i pot haver-hi
a Frankfurt algd que vol comprar accions de Bayer a un preu més car del que es venen a
Madrid. Llavors, en qiiestié de minuts es podria (de fet, sempre hi ha algi que ho aprofita)
comprar a Madrid i vendre a Frankfurt. Sense cap risc —llevat que algi més rapid s’interposi
en l'operacié— s’haurien guanyat diners. D’aquesta operacié se’n diu fer un arbitratge o
guanyar-se un dinar de franc (free lunch).

Aquesta idea, que per a que la borsa funcioni bé cal que hi hagi
uns individus dedicats a localitzar i aprofitar oportunitats d’arbi-
tratge, és realment profunda i es déna en moltes situacions de la
vida. Als antipodes del mén de les finances, al signe del ying i del
yan, a la meitat blanca hi ha una taqueta negra i a la meitat negra
una taqueta blanca, per a indicar que una cosa no és tota blanca o
negra, bona o dolenta,... A la borsa, els arbitratgistes sén la petita
taca negra de la meitat blanca.



108 CAPITOL 2. ALGUNS TEMES MATEMATICS

2.23 Humor matematic

e Una persona és dalt d’'un globus i no sap a quin lloc ha anat a parar. De sobte veu algi
ili pregunta:“On s6¢?”

—A dalt d’un globus— contesta ’altre, després de pensar una estona.
—Moltes gracies. Voste és matematic, oi?
—Si, com ho ha sabut?

—Molt facil, per tres motius: el primer és que ha pensat molt la resposta, el segon és que
el que ha dit és rigorosament cert i 'tiltim és que no em serveix de res.

e Un metge, un advocat i un matematic discuteixen sobre qué és millor, tenir esposa o
amant.

El metge diu:“Es millor tenir una esposa, és molt més segur, des del punt de vista
sanitari.”

L’advocat diu:“Es millor tenir una amant. Signar contractes, encara que sigui un casa-
ment, sempre pot portar problemes.”

El matematic diu:“El millor és tenir esposa i amant. A lesposa li diem que estem
amb 'amant i a 'amant que estem amb l'esposa i aixi tenim més temps per a fer
matematiques.

e S’explica que una persona sempre viatjava en avié amb una bomba a la maleta. El motiu
és que havia llegit que la probabilitat que hi haguessin dues bombes al mateix avié era
molt més petita que la probabilitat que n’hi hagués només una.

e Tres alumnes de la Llicenciatura de matematiques, un de primer curs un de segon i un
de tercer, viatgen junts per un pais estranger en tren. Mirant per la finestra veuen una
ovella blanca.

L’alumne de primer curs comenta: “En aquest pais les ovelles sén blanques.”

L’alumne de segon diu:“T’equivoques, el que pots dir és que en aquest pais hi ha una
ovella blanca.”

L’alumne de tercer replica: “El que podem assegurar és que en aquest pais hi ha almenys
una ovella, i a més que aquesta ovella té un costat que és de color blanc.

e Anem de compres per un mercat una mica estrany (un mercat a un planeta canibal).
Veiem la segiient oferta: “cervell d’alumne de primer curs de matematiques a 10000
ptes el kg; cervell de Llicenciat en matematiques a 1000 ptes el kg; cervell de Doctor en
matematiques a 100 ptes el kg.” Aleshores preguntem estranyats sobre la gran diferéncia
de preus. El botiguer ens contesta: “el cervell d’alumne de primer curs és gairebé nou, el
de llicenciat esta una mica atrotinat, mentre que el de doctor ja no és pot aprofitar per
a res.”

e Aquest ultim acudit s’ha d’explicar en castella.
—iSabes cudl es el animal que tiene entre tres y cuatro ojos?

—El piojo.
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Problemes proposats

L’objectiu d’aquesta seccid és posar en contacte els alumnes de secundaria amb diversos temes
de matematiques i estadistica.

Per a intentar aconseguir-ho, es presenten problemes agrupats en deu temes diferents.
Aquests problemes han estat preparats per professors del Departament de Matematiques de
la Universitat Autonoma de Barcelona, especialistes en diversos vessants de les matematiques.
Presentem problemes de Geometria, Analisi, Optimitzacié, Probabilitats, Experimentacio
numerica, Algebra, Modelitzacié matematica, Topologia, Aritmetica i Estadistica.

La seva dificultat és variable. Al text s’han marcat amb un (*) els problemes que requerei-
xen un cert esforg per a ser resolts. Els problemes marcats amb (**) sén encara més dificils.
Finalment, els problemes sense cap senyal son el problemes que creiem que sén més a ’abast
dels alumnes d’ensenyament secundari interessats per les matematiques.

Animem als lectors d’aquests problemes a pensar-los, a dedicar-hi un cert temps. Tots els
autors han inclos la seva adreca d’Internet i el seu teleéfon i estaran encantats de contestar les
preguntes que puguin sorgir de I'estudi d’aquest material.

Creiem que aquesta colleccié de problemes ajudara a veure que les matematiques i 'es-
tadistica cobreixen un gran espectre de qiiestions. Entre aquests problemes hi ha moltes
diferéncies. De tota manera, tots tenen una cosa en comu, que és potser una de les carac-
teristiques que més apreciem la gent que estimem les matematiques: tots ens fan pensar.

109
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3.1 Geometria

Selecci6 de problemes preparada per Gregori Guasp i Bala-
guer, professor de Geometria i Topologia del Departament de
Matematiques de la Universitat Autonoma de Barcelona. tel.:
93581 1505, e-mail: gguasp@mat.uab.es.

3.1.1. Quina és la proporcié que hi ha entre els costats d’un rectangle tal, que el rectangle
que queda, quan es treu el quadrat determinat pel costat més petit (mireu el dibuix),
segueix tenint la mateixa proporcié entre els seus costats?

Nota: Aquesta proporcié s’anomena la rad d’or.

3.1.2. En la figura segiient, A i B representen punts diametralment oposats d’una circum-
feréncia de centre O, i C és un altre punt de la mateixa circumferéncia. Els angles dels
triangles OAC i OBC estan marcats amb les lletres o, 3, v, 0, A 1 p.

(a) Demostreu que la suma dels angles 31 A és un angle recte.
b) Quina relacié hi ha entre els angles o i §7
g
(Ind: Alguns dels triangles son isosceles.)

3.1.3. (*) Siguin A, B i C punts d’una circumferéncia de centre O representats en la figura
segiient:
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(a) Quants triangles isosceles es poden trobar en la figura?
(b) Quina relacié hi ha entre 'angle « i 'angle A7

(¢) Si considerem un altre punt qualsevol D de la mateixa circumferéncia, quina relacié
hi haura entre I’angle que determinen les cordes DC i DB i l’angle a?

3.1.4. (*) Abans de contestar cap pregunta, realitzeu I’experiment segiient:

Retalleu una tira de paper d’uns 10 cm de longitud i sobre un dels costats
feu un senyal. Sobre un full de paper dibuixeu un parell de rectes perpendi-
culars i, posant cada un dels extrem de la tira de paper en un d’aquests eixos,
marqueu el lloc on queda el senyal que heu fet com es mostra en el dibuix
segiient:

Aneu movent la tira de paper procurant mantenir els extrems sobre els
eixos i apareixera una certa corba.

(a) Quin tipus de corba és la corba que apareix? Que passara si el punt que marquem
és el punt mig de la tira de paper?

(b) Si la marca que heu fet divideix la tira de paper en dues parts de longituds a i b
i considerem que les dues rectes que hem dibuixat sén els eixos de coordenades,
quina és, en funcié de a i b, 'equacié de la corba que apareix?
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3.1.5.

3.1.6.

3.1.7.

CAPITOL 3. PROBLEMES PROPOSATS

(**) Considereu la circumferéncia de radi 1 centrada en el punt (0,1), que és la que té
per equaci6é z2 4+ (y — 1)? = 1, i determineu l'equacié dels punts P = (x,y) tals que la
distancia que hi ha de P a l'eix de les x és igual a la distancia que hi ha entre P i la
circumferencia.

Quin tipus de corba apareix si es consideren els punts equidistants d’una circum-
ferencia i una recta qualsevol?

Dibuixeu un rectangle de 9 cm per 4 cm. Marqueu els vertexs amb les lletres A, B, C' i
D de tal forma que AB i C'D siguin els costats de 9 cm i BC'i AD els de 4 cm. Allargueu
per B el costat AB i per C el costat BC. Amb el compas, dibuixeu la circumferéncia de
centre B iradi BC i marqueu com F el punt d’interseccid, que queda fora del rectangle,
d’aquesta circumferéncia amb la recta AB. Sigui O el punt mig del segment AE. Ara
dibuixeu la circumferéncia de centre O i radi OA. Marqueu com F' el punt d’interseccid
de la semirecta BC' amb aquesta nova circumferencia. Quina és la longitud de BF?
Quina relacié trobeu que hi ha entre aquesta longitud i 'area del rectangle?

/\ -

D C

A / E
O B

Si us fixeu, 'angle entre AF' i EF és un angle recte. Utilitzeu el teorema de Pitagores
per a veure que fent aquesta construccié sempre tindrem l'alcada BF' igual a D'arrel
quadrada de ’area del rectangle.

(**) Siguin A, B, C, D i E els vertexs d’'un pentagon regular tal com esta representat
en el dibuix segiient:
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Els segments AB, BC, CD, DE i EA sbn els costats del pentagon, mentre que els
segments AC, CE, EB, BD i DA so6n les diagonals.

(a) Quina és la mesura de 'angle que formen dos costats consecutius? (per exemple,
langle entre AB i AE).

(b) Quina és la mesura de l'angle que formen les diagonals amb els costats? (per
exemple, 'angle entre AB i AC).

(¢) Quina és la mesura de langle entre les dues diagonals que arriben a cada vertex?
(per exemple, 'angle entre AC' i AD).

(d) Comproveu que els triangles ADC' i DCE’ sén triangles semblants, és a dir, tenen
els mateixos angles.

(e) Comproveu que la raé que hi ha entre la longitud de la diagonal i la longitud del
costat és la ra¢ d’or.

(f) Quin és el valor de cos(m/5) i sin(w/5)7 (els angles en radiants!)

3.1.8. (*) En la figura segiient, el quadrat exterior té costat 1 i els dos rectangles grisos sén
iguals.

Quina és I'area d’aquests rectangles?
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3.2 Analisi

Seleccié de problemes preparada per Joan J. Carmona, Armen-
gol Gasull i Francesc Manosas, professors del Departament de
Matematiques de la Universitat Autonoma de Barcelona. Per
a comentaris sobre els problemes podeu contactar amb Francesc
Manosas, tel.: 93581 26 06, e-mail: manyosas@mat.uab.es.

3.2.1.

3.2.2.

3.2.3.

3.2.4.

3.2.5.

Considereu I'equacié reciproca de quart grau z* + 223 — 1322 4+ 22z + 1 = 0. Trobeu les
seves quatre solucions fent el canvi de variable y = x + % Compareu el metode proposat
amb el metode general explicat a la secci6 2.9.

Demostreu que

3 B5+7 749411 9+11+13+15

1 1+3 1+345  1+43+5+7 143454

Interpreteu aquest resultat geometricament.

(*) Demostreu que

R TN CRCR (x_l—f5+— W) (x_l_f;)_— W)

8

s 4

15 = sin 37 i la descomposicié anterior per a calcular sin 5.

Useu que cos 15

(**) Com ja sabeu, al Brasil hi ha molta inflacié. El 1985, el seu Govern va decidir
que la manera mensual d’ajustar els salaris i els interessos bancaris seria la segiient: Si
T1,T9 1 x3 son les inflacions mensuals dels tres mesos anteriors, aleshores els salaris i
els comptes corrents augmentarien aquell mes un interes

T = Jxr11073,
és a dir la mitjana geométrica de les tres inflacions.

Demostreu que per a x1,x9,z3 > 0 sempre es compleix

r1 + 22+ X3

Yrixor; < ————"=
3 = 3 ’

i aixi entendreu per que el Govern va pendre la mitjana geomeétrica en lloc de I'aritmetica.
(*) Siguin z,y, z,t nimeros reals arbitraris. Escriviu la funcié
flz,y,z,t) =zt + y* + 2* + t* — day2t

com a suma de quadrats d’expressions involucrant x,y, z,t. Per tant, haureu demostrat
que f(x,y,z,t) > 0 per a tot xz,y,z,t. Relacioneu aquest resultat amb el problema
anterior.
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3.2.6.

3.2.7.

3.2.8.

3.2.9.

Considereu un quadrat de costat a > 0. Amb centre a cada
un dels seus vertexs, dibuixem una circumferencia que passi
pels altres dos vertexs. El quadrat queda dividit en nou
zones com a la figura. Calculeu I'area de cadascuna d’elles.

En un desert, i situats a cada un dels vertexs d’un triangle equilater de 1000 km de
costat hi ha tres vehicles. Les seves velocitats maximes sén de 40 km/h, 60 km/h i 100
km/h. De sobte reben l'ordre per radio que s’han de trobar el més aviat possible. Quant
tardaran a trobar-se i quin cami hauran de seguir? Suposem que cada conductor sap
exactament on es troba cadascun dels altres dos vehicles, que els conductors son intel-
ligents i que el seus vehicles poden agafar la seva velocitat maxima instantaniament.
Fins a quin valor pot disminuir la velocitat maxima del vehicle més rapid de forma que
el punt de trobada no canvii.

(**) Un camié pot carregar combustible per a recérrer una distancia maxima de 900
km. També disposa i pot transportar bidons buits de totes les mides. Ha de travessar
un desert que fa d’ample 1500 km. Com podria fer-ho per a travessar-lo, suposant que
al punt de sortida té tant de combustible com necessiti?

Explicarem, com a pista, com ho podria fer per a travessar un desert d’una amplada
de 1200 km: ompliria el camié de combustible i s’endinsaria 300 km en el desert; deixaria
un diposit per a recérrer 300 km i tornaria enrere amb el combustible restant. Ompliria
de nou el camié. Quan arribés al lloc del diposit, podria tornar a omplir el camio i
podria fer 900 km més. En total, els 1200 km que mesura el desert.

Quina és 'amplada maxima de desert que podria travessar el camié sense preocupar-
se del temps que tardés? I suposant que anés sempre a 60 km/h, quina és 'amplada
maxima que podria travessar en una setmana?

Hi ha un incendi en el punt del pla (30,10). Hi ha un home amb una galleda situat
en el punt (0,20). L’eix de les  és un riu. L’home ha d’anar fins al riu, omplir la
galleda i apagar I'incendi. Quin és el cami{ més curt? Vegeu també el problema 3.3.3.
Indicacié: podeu plantejar el problema com un problema de maxims i minims, pero hi
ha un argument geometric que fa la solucié evident.

HOME

INCENDI




116

3.2.10.

3.2.11.

3.2.12.

3.2.13.

3.2.14.

3.2.15.
3.2.16.
3.2.17.
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(*) En un got cilindric d’algada 20 cm i radi 5 cm hi ha una aranya al seu interior a 5
cm de la boca del got. A 5 cm de la base, pero a la part exterior del got hi ha una mosca
que no es pot desplacar. A més, la mosca i 'aranya sén a generatrius oposades del got.
Quin és el cami més curt que ha de seguir 'aranya (i, de fet, segueix) per a arribar a la
mosca? Quina sera la longitud del cami recorregut?

20

T L
_

10

(*) Un excursionista amic nostre ens explicava entusiasmat que altre dia va pujar al
Puigmal. Ens deia que va sortir a les 8 del mati de Ripoll i que arribava a dalt exactament
a les 8 del vespre. Després de descansar 12 hores va fer el cami de baixada pel mateix
lloc, tardant també 12 hores. Avui encara esta rumiant el que li vaig dir: Segur que hi
ha d’haver un instant entre les 8 del mati ¢ les 8 de la tarda en el qual eres al mateix
lloc en pujar que en baizar. El pots ajudar a aclarir per que?

(*) Es vol construir una interconnexié viaria entre quatre
ciutats collocades als vertexs d’un quadrat de costat 100 km.
Quin és el disseny de carreteres que fa minima la longitud
total dissenyada? Ajuda’t de la figura adjunta.

(*) Diem que una recta d’equacié y = r(x) és una asimptota obliqua d’una funcié f(x)
quan z — 00 silimg_,o (r(x)— f(z)) = 0. Demostreu que el pendent de ’asimptota es pot
calcular fent lim,_, oo %ﬂ”) Suposeu que f és derivable a tot punt i que el lim,_ f’(z)

existeix, aleshores demostreu que el pendent també es pot calcular fent lim, . f/(x).

Doneu un exemple en el que lim, @ existeixi, 1 en canvi lim, . f'(x) no existeixi.

(*) Demostreu que el volum d’una esfera de radi R és §WR3.
D’entre tots els triangles rectangles de perimetre 8 + 4v/2, trobeu el d’area maxima.
(**) Demostreu que per a tot n € N, %—#_1 §1+2%+3%+4%+~--+#<2.

(**) Trobeu tots els polinomis amb coeficients reals P(z), que compleixin
P(2?) = P(z)P(x — 1),

per a tot x € C.
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3.2.18.

3.2.19.

3.2.20.

3.2.21.

3.2.22.

3.2.23.
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Dos ciclistes, separats 50 km, van en linia recta I'un cap a l’altre, a una velocitat constant
de 25 km/h cadascun. Una mosca, que vola a 35 km/h, decideix anar volant d’un
ciclista a laltre, des que comencen a moure’s fins que es troben. Quina distancia total
ha recorregut la mosca? Suposem que no perd gens de temps cada cop que canvia de
sentit.

(*) Demostreu que si 0 < z < 7/2, aleshores sinx < x < tanz (vegeu la figura adjunta).
Apliqueu aquestes acotacions per veure que limg_.q %

resultat i el fet de que cosz = 1 — 281n2(%) per a provar que lim, .o —5* = 3.
Demostreu també que (sinz)" = cos z. Finalment, sense fer cap calcul més, digueu quant

val lim,_.q 1_‘3%

= 1. Utilitzeu aquest darrer
l—cosz __ 1

. itanzx
sin xi \i

T
COS T

Demostreu que per a tot z > 0, x° < e®. Aqui e=expl =2.718...

(*) Sigui p(z) = (22 — 2 — 1)199 4 (22 — 2 — 1)1989. Considereu el polinomi derivat p’(z).
Calculeu la suma de tots els seus coeficients.

Una particula es mou al pla. La seva posicié en cada instant ¢ esta donada per (z(t), y(t)).
Suposeu que a I'instant ¢t = 0 esta situada a ’origen de coordenades, que té una velocitat
inicial vg = (ag, bo) 1 que la seva acceleracié depén proporcionalment del temps, és a dir
a(t) = (ait, brt). Trobeu explicitament (x(t),y(t)).

(*) A la secci6 2.2 s’explica el que sén les fraccions continues i com es calculen. Demostreu
que
1 5 1 1
+5 _ NG

1 1
2 + 1 9 +

1+

1+
1+
1+

14---

2+

2+
2+
2+

24 ...
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3.3 Optimitzacié

Seleccié de problemes preparada per Aureli Alabert i Romero,
professor d’Estadistica i Investigacié Operativa del Departament
de Matematiques de la Universitat Autonoma de Barcelona. tel.:
935812941, e-mail: alabert@mat.uab.es.

3.3.1.

3.3.2.

3.3.3.

3.3.4.

Els carrers de Barcelona que suporten un volum considerable de transit rodat solen tenir
els semafors sincronitzats en “ona verda”. Volem calcular I'interval de temps optim entre
la posada en verd d’un semafor i la del segiient per tal que el carrer pugui absorbir el
major volum possible de vehicles (nombre de vehicles per unitat de temps). Per aixo
suposarem:

e Distancia de seguretat: Per tal que el risc d’accidents sigui prou baix, s’admet que
la separaci6 entre vehicles ha de ser de v2/100 metres, si v és la velocitat expressada
en km/h. Suposarem que els automobilistes respecten aquesta norma.

e Longitud dels vehicles: en mitjana, podem suposar que és de 4 metres.

e Separacié entre semafors: 100 metres (la de 'Eixample de Barcelona).

(*) Es vol construir una escola nova que ha de donar servei a dos pobles units per una
carretera de 3 quilometres de longitud. Dos politics discuteixen sobre el millor lloc per
a situar-la. L’escola pot estar en un dels dos pobles, o a qualsevol lloc al llarg de la
carretera. El poble A té n nens, i el poble B té m nens. Un dels politics proposa situar
I’escola en el punt que faci minima la suma dels quadrats de les distancies que hauran
de recorrer tots els nens per arribar-hi. Busqueu aquest punt.

L’altre politic no veu per qué tanta complicacié amb elevar al quadrat les distancies i
proposa posar 1’escola en el punt que faci minima la suma de les distancies, simplement.
Busqueu el punt en aquest cas. Quina de les alternatives sembla més justa?

(*) Prop dels dos pobles del problema 3.3.2 es vol construir una estacié de tren. La via
és una recta que no passa per cap dels dos pobles, i que els deixa a la mateixa banda.
Es tracta de buscar el punt de la via on cal posar I'estacié de manera que cap dels dos
pobles es pugui queixar. Els dos pobles tenen un nombre similar d’habitants, de manera
que per a calcular aquest punt equitatiu només cal considerar les distancies dels pobles
al punt de la via on es construira l’estacié. Quin és el punt optim si el que es vol es fer
minima la suma dels quadrats de les distancies de cada poble a I'estacié?

Suposem ara que volem fer minima la suma de les distancies (sense quadrats). El punt
optim es pot obtenir de la manera segiient: Anomenem A i B els punts on es troben els
pobles. Dibuixem el punt B; simetric de B respecte la via. Tracem la recta AB;. El
punt D que busquem és el punt d’aquesta recta que cau sobre la via. Demostreu aixo
considerant un altre punt D’ sobre la via i veient que |AD’'| + |D'B| > |AD| + |DB|.

(*) Dues persones juguen al joc segiient: Hi ha sobre la taula dues piles de monedes. Se
sap la quantitat de monedes de cada pila. El jugadors, per torn, escullen una pila, i en
retiren la quantitat de monedes que desitgin (almenys una). Perd la partida el jugador
que retira I'dltima moneda de la taula.

Es clar que el joc s’acaba en algun moment o altre i que no hi ha mai empat (un
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3.3.7.
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jugador perd i l'altre guanya). Es tracta d’esbrinar l'estratégia optima per a guanyar,
i determinar si té importancia o no ser el primer jugador que agafa monedes. Per a fer
aixo seguiu els passos segiients:

0. (Notacions.) Escriurem (n,m) per a indicar que en un moment determinat hi ha n
monedes a la primera pila, i m a la segona. Aquests parells de nombres represen-
taran una posicié durant la partida. Si podem assegurar que en una determinada
posicié (n,m) el jugador que té el torn perdra la partida (suposant que el contrin-
cant no s’equivoqui), direm que (n,m) és una posicié perdedora; si, al contrari,
podem assegurar que el que té el torn guanyara (si juga sense equivocar-se) direm
que (n,m) és una posicié guanyadora.

—_

. Observeu que (1,0) i (0,1) s6n posicions perdedores.

[\

. Deduiu que (n,0), (0,n) per an > 2,1 (n,1), (1,n) per a n > 1, sén posicions
guanyadores.

w

. Deduiu que (2,2) és una posicié perdedora.

W

. Continueu aquesta analisi per a trobar totes les posicions guanyadores i perdedores
d’aquest joc. Deduiu quina estrategia cal seguir per a guanyar. Determineu si és
important o no ser el jugador que comenga, i, en cas afirmatiu, que preferirieu.

(*) Entre tots els poligons regulars amb una superficie fixada, trobeu el que té perimetre
maxim.

(*) Volem trobar dues quantitats positives z1 i zo de forma que el valor de x; + x5 sigui
al més gran possible, pero respectant les desigualtats 2x1 + 3xo < 121 7z1 4 429 < 28.
Aixo0 es pot fer graficament:

Traceu les rectes 2x1 + 3x9 = 121 Tx1 + 429 = 28 sobre uns eixos coordenats. Els valors
de (x1,22) que satisfan totes les condicions estan representats pels punts a 'interior del
quadrilater determinat per les rectes dibuixades i els eixos coordenats. Dibuixeu també
unes quantes rectes del tipus z1 + 22 =0, 1 + 29 = 1, 1 + 29 = 2, ... Totes elles s6n
paralleles, i es desplacen cap a la dreta i amunt quan augmentem el terme independent.
D’aqui deduim que el maxim valor de la suma x1 + xo dins del quadrilater s’obté en
el punt interseccié de les rectes 2x1 + 3x9 = 12 1 Tx; + 4dxg = 28, que és 1 = 36/13 i
x9 = 84/39. El valor de la suma és x1 + x9 = 192/39. Consulteu també la secci6 2.7.

Apliqueu aquest metode a la situacié seglient: una fusteria fabrica cadires i taules.
Per cada cadira obté un benefici de 100 euros; per cada taula, 200 euros. Cada cadira
ocupa 1 hora de maquina i 3 hores de personal; cada taula ocupa 3 hores de maquina i 2
hores de personal. Es disposa de 40 hores setmanals de maquina i de 80 hores setmanals
de personal. Quantes taules i cadires cal fabricar setmanalment per tal que el benefici
de la fusteria sigui maxim?

(Encara que el resultat sigui un nimero fraccionari de taules i cadires, es pot interpretar
com un “ritme de produccié setmanal”.)

(*) Apliqueu la técnica del problema 3.3.6 per a resoldre la qiiesti6 segiient:

Un granger vol que cadascuna de les seves vaques rebi diariament com a maxim 18
quilocalories (kcal), almenys 2 quilograms de proteines, i almenys 2.8 grams de vitami-
nes. Disposa de dos tipus de pinso que pot barrejar en qualsevol proporcié, amb les
caracteristiques que s’indiquen a continuacié (per quilogram).
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Pinso | Cost (eu) | kcal | Proteines (kg) | Vitamines (g)
1 0.8 3.6 0.25 0.7
2 0.6 2 0.40 0.4

El granger vol fer minim el cost d’alimentacio de les vaques tot mantenint les condicions
anteriors. Quina quantitat de pinso de cada tipus cal donar a les vaques cada dia?

(*) Observeu 'esquema segiient. Les fletxes representen camins a través d’un bosc, que
uneixen diverses cases, representades per cercles. Els niimeros sobre les fletxes indiquen
els minuts estimats per a fer cada cami. Volem anar de la casa 4 a la casa 0 en el minim
temps possible.

Per obtenir el recorregut optim, dividirem el problema en diverses etapes, que numerarem
1,2,3,4. A l'etapa n, calcularem el recorregut optim des de la casa n fins a la casa 0. A
I’etapa 4, doncs, trobarem el que busquem.

A Tetapa 1 no cal decidir res, perqué només hi ha un cami possible, i el temps que
emprarem és de 6 minuts. Escriurem que t; = 6.

A Tetapa 2, mirem si és millor anar de la casa 2 a la casa 1 i d’alla a la 0, o bé anar
directament a la casa (0. Veiem que és millor el recorregut 2 — 1 — 0, amb 14 minuts.
Escriurem ty = 14.

A Tetapa 3 no hi ha res a decidir: Obtenim t3 = 35, amb el recorregut 3 — 1 — 0.

A Tetapa 4, finalment, mirem si és millor anar de la casa 4 a la 3 (6 minuts + t3 =
41) o bé anar de la 4 a la 2 (25 minuts + t, = 39). Es millor aquesta tltima opcié. El
recorregut optim que buscavem és doncs 4 — 2 — 1 — 0.

Apliquem ara aquest metode a un problema més complicat: som a Vladivostok i hem
de retornar amb urgencia a casa, a Barcelona. A 'aeroport ens informen de les rutes
que podem seguir, amb el preu de cada trajecte. La nostra prioritat és que el preu total
sigui al més petit possible. Aquestes sén les dades, amb els preus en euros:

Vladivostok — Irkutsk: 100
Vladivostok — Anchorage: 180
Irkutsk — Moscou: 120
Anchorage — Montreal: 220
Anchorage — Nova York: 200
Moscou — Roma: 300
Moscou — Frankfurt: 250
Moscou — Estocolm: 250
Montreal — Estocolm: 200
Montreal — Londres: 300
Nova York — Londres: 250
Nova York — Paris: 270
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Nova York — Madrid: 290
Estocolm — Paris: 200
Roma — Barcelona: 150
Frankfurt — Barcelona: 180
Londres — Barcelona: 160
Paris — Barcelona: 140
Madrid — Barcelona: 100

Feu un esquema com abans i busqueu la ruta més economica.
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3.3.9. (**) Un professor planteja les tres preguntes seglients en un examen:

1. Entre tots els triangles rectangles amb la suma de les longituds dels catets fixada,
busca el que té area maxima.

2. Entre tots els rectangles inscrits en una circumferéncia, busca el que té area maxima.

3. La nota d’aquest examen sera la mitjana de les puntuacions a i b del problema 1 i el
problema 2. Escull quina mitjana vols que et faci: La mitjana aritmeética (a+ b)/2,

la mitjana geométrica v ab, o la mitjana quadratica /(a? 4+ b2)/2.

A partir del resultat de la pregunta 1, deduiu que la mitjana geometrica és sempre més
petita o igual que la mitjana aritmetica. A partir del resultat de la pregunta 2, deduiu
que la mitjana aritmetica és sempre més petita o igual que la mitjana quadratica. La
pregunta 3 queda, doncs, “contestada”. Comproveu també que si obteniu la mateixa
nota en els dos problemes, us és ben igual quina mitjana faci el professor.
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3.4 Probabilitats

Seleccié de problemes preparada per Maria Jolis i Giménez, pro-
fessora d’Estadistica i Investigacié Operativa del Departament de
Matematiques de la Universitat Autonoma de Barcelona. tel.:
93 581 3094, e-mail: mjolis@mat.uab.es.

3.4.1.

3.4.2.

3.4.3.

3.4.4.

3.4.5.

1.

Suposem que la probabilitat que, en el naixement d’un infant, aquest sigui un nen és
de 0.5. Quina és la probabilitat que en una familia de quatre germans, com a minim
n’hi hagi tres del mateix sexe? (Contrariament al que es podria pensar en un principi,
aquesta probabilitat és bastant més gran que la probabilitat que n’hi hagi dos de cada
sexe. )

(*) Un home que era molt despistat sovint portava els dos mitjons diferents. Suposeu
que aquest home cada mati, en vestir-se, obria un calaix on guardava n parells diferents
de mitjons desaparellats i n’agafava a 'atzar 4 mitjons. Quina és la probabilitat que no
n’hi hagués cap parell del mateix model?

Suposem que aquest home també triava de la mateixa manera els guants que es posa-
va, i que tenia un altre calaix amb m parells de guants. (Suposeu que en els seus models
de guants, el guant de la dreta és diferent del de l’esquerra.) Quina és la probabilitat
que es pugui posar un parell de guants (encara que siguin de diferent model)? Quina és
la probabilitat que es pugui posar dos guants del mateix model?

Quina és la probabilitat que en llangar un dard contra
una diana com la del dibuix, obtinguem cadascuna
de les tres possibles puntuacions? (Suposem que no
tenim gens de punteria perdo que mai no surt fora de
la diana, és a dir, que el llancament és totalment a ’

latzar dins la diana.)

Suposem que en una certa poblacié en que hi ha la mateixa quantitat d’homes que de
dones, es té que la proporcié de daltonians entre els homes és del 5%, mentre que la
proporcié de daltonianes entre les dones és del 0.25%. En un experiment medic s’ha
triat un individu d’aquesta poblacié i ha resultat que era daltonia, pero la persona que
va seleccionar aquest individu no va anotar quin era el seu sexe. Quina és la probabilitat
que es tractés d’un home? Vegeu la secci6 2.6.

S’installa un programa antivirus en un ordinador. La probabilitat que 'ordinador tingui
el virus detectable per I'antivirus és 0.2. Si I'ordinador té el virus, la probabilitat que
I’antivirus el detecti val 0.9. Si 'ordinador no té el virus, la probabilitat que 'antivirus
doni un missatge d’existencia de virus és 0.02. Es vol coneixer:

La probabilitat que, si ha aparegut un missatge d’existéncia de virus, I'ordinador no
tingui el virus.

2. La probabilitat que 'ordinador tingui el virus i I’antivirus no el detecti.
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3.

3.4.6.

3.4.7.

3.4.8.

3.4.9.

La probabilitat que, si no ha sortit cap missatge d’existencia de virus, I'ordinador tingui
el virus.

Quina és la probabilitat que entre n persones n’hi hagi dues (com a minim) amb el mateix
dia d’aniversari? Comproveu que aquesta probabilitat és d’aproximadament 0.12 per a
n =10, 0.51 per an = 23,1 0.99 per an =55 (!).

Calculeu també quina és la probabilitat que entre n persones n’hi hagi dues (com a
minim) amb el mateix signe del zodiac (suposeu per a simplificar que els dotze signes
comprenen el mateix nombre de dies). Quin ha de ser el nombre de persones per tal
que aquesta probabilitat superi el 0.757 Fixeu-vos que si volguéssim que la probabilitat
valgués 1, es necessitarien n = 13 persones.

(**) En molts esports (per exemple el basquet i el beisbol professionals dels EUA) el
campi6 de la lliga es decideix en una serie d’'un maxim de set partits que enfronta els dos
equips millor classificats al final de la lliga, essent el campio el primer equip que guanya
quatre partits. Suposeu que els dos equips que arriben a la final sén igual de bons (és a
dir, a cada partit cada equip té probabilitat 1/2 de guanyar). Quina és la probabilitat
que es necessitin jugar per a saber el campid:

e quatre partits?

e cinc partits?

sis partits?

set partits?

Vegeu també que si es juguessin moltes d’aquestes series, en mitjana aquestes series
serien de prop de sis partits.

Per a fer aquests dos darrers problemes, vegeu també la secci6 2.8.

(**) Suposem que sobre un terra enrajolat amb
rajoles quadrades de costat £ = 20 cm llancem a
I’atzar una moneda de 4 cm de diametre. Qui-
na és la probabilitat que la moneda no toqui la o
vora de cap rajola? Quina mida hauria de tenir
la moneda per tal que la probabilitat anterior
valgui 1/27

(**) Suposeu que trenquem un pal de longitud

£ per dos punts escollits a 'atzar. Quina és la

probabilitat que, amb els tres palets resultants,

es pugui construir un triangle que els tingui per

costats? 0y x ¢
Indicacio: Si diem x i y les distancies a un dels
extrems del pal dels punts de trencament, es pot
suposar que el punt (x,y) del pla és un punt triat ¢
totalment a l’atzar dins del quadrat [0, ¢] x [0, ¢].

Vegeu la figura.
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3.5 Experimentaciéo numerica

Seleccié de problemes preparada per Joan Torregrosa i Arus, pro-
fessor de Matematica Aplicada del Departament de Matematiques
de la Universitat Autonoma de Barcelona. tel.: 93 581 19 36,
e-mail: torre@mat.uab.es.

3.5.1. El professor ens demana les arrels de 'equacié 22 — 2000z + 1 = 0 amb totes les xifres
correctes que ens permeti la nostra calculadora. Comproveu que I'expressié

1000 + /1000% — 1

no és una manera efectiva de calcular 1’arrel corresponent al signe menys. Trobeu una
expressié equivalent, pero que doni menys error de calcul.

Resposta: 5.00000125F — 04, 1.9999995F + 03

3.5.2. Hi ha diversos metodes per a calcular ’arrel quadrada d’un nombre. Comproveu que, si
teniu una calculadora que només pot sumar, multiplicar i dividir, podeu usar la successié
definida per ’expressio recurrent

1 c
L0 =6 Tntl = 5 Tp + —
n

per a calcular /c, per a qualsevol nimero ¢ positiu. Useu aquest metode per a trobar
V2. Quants passos heu de fer per a qué z,,; i z, coincideixin, almenys per a tots els
digits que us déna la vostra calculadora?

3.5.3. (*) Un amic nostre s’acaba de comprar una calculadora nova, i ens diu que

V215283 — v/2.15263 = 0.00006815617645 = 6.815617645E — 05.

Ens ho podem creure?

Com podrieu calcular

V/2.15283 — v/2.15263
per a k = 3,47

3.5.4. Leonard Euler (1707-1783) va provar que els nombres primers que s’escriuen de la forma
4n + 1 s’escriuen com a suma de dos quadrats. Es a dir, que existeixen x,y € N tals que
4n + 1 = 22 4+ y2. Comprova-ho per als primers menors que 100, trobant el parell (z,y)
corresponent a cada primer.

3.5.5. (*) Fullejant un llibre antic de la biblioteca hem trobat la férmula seglient:
1
L4243+ +n=cn(n+1).
Es certa? Comproveu-la per a uns quants valors de n. Demostreu-la a partir de comptar

el nombre total de quadradets de mida unitat d’un quadrat de mida n xn de dues formes:
una com n? i l'altres comptant els quadradets que hi ha a cada diagonal.
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3.5.6.

Noteu que no deixa de ser curiés que, en aquesta féormula, hi hagi un polinomi de
segon grau en 1 :
1 1 5, 1 9
—n(n+1) = =n°+ —n = agn” + a1n + ayp.
2 2 2
Amb aquesta férmula podrem sumar els primers n nombres naturals, perd com ens
ho podriem fer obtenir una férmula per a calcular
12422432 4. 4 n??

En el mateix llibre ens diu que en aquest cas la féormula que hem de buscar ha de
ser un polinomi de grau 3. Pero, per més que ’hem buscat no I’hem trobada; sabrieu
trobar-la?

Podrieu fer el mateix per a sumar
PB4+23 4334+ 4032

(**) Per a obtenir el valor de

1
Ik:/ 2* sin(rx)dx
0

per a tots els valors parells de & € N proveu, fent servir la férmula d’integracié per parts,
que es pot usar la férmula recurrent segiient:
2 1 k(k-1)

Ih==, Iy=— - =—
7T 7T s

I _o.

Calculeu fent servir una calculadora el valor de I per k = 2,4, 6, 8,10. Quin valor s’obté
per a I»g?7 S’assembla al valor correcte, que és 6.68022456848F — 037 Quina explicacid
hi trobeu?

D’altra banda, considerem la mateixa recurréncia que abans, pero escrita al revés:

1

I_o = (m— WQIk)m.

Prenem ara un valor erroni de Iy, per exemple I = 0. A partir d’aquest valor, si
substituim a la férmula fins a obtenir Iy, arribem ara a un resultat correcte. Podries
dir que esta passant?
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3.5.7.

3.5.8.

3.5.9.

3.5.10.

3.5.11.
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(*) Per a quins n € N les solucions de 'equacié
nt> +(n+1)t—(n+2)=0
sén nombres racionals? Feu-ho per a alguns valors de n petits.

(*) Donada la funcié f(z) = 2% + z, hi ha algun parell (a,b) de nombres enters tal que
4f(a) = f(b)?

(*) Existeixen (a, b, c) nombres enters, de forma que siguin solucions del sistema d’equa-
cions segiient?

- - = 3abe
a> = 2(b+c)
(*) A partir de lexpressi6
x3 x5 x? x9 & (_1)1' o;
t -7 - — 4+ -+ 4. = i+1
arctan(z) =@ =+ 5 -+ 5+ ;224156 ’
es pot obtenir una expressié per a 7 usant la igualtat
m  3.1415926535897932385 . . . 1 1 1 1 2 (-1)
= —arctan(l) =1 — =+ - — -+ =Y L
1 1 arctan(1) 375 79" §2i+1

Quants termes us cal sumar per obtenir 7 amb 2 xifres decimals correctes?

Com es millora el calcul si, en lloc d’aquesta, usem que 7 = 2 arctan(%) + arctan(%).

Hi ha altres maneres d’obtenir 7. Proveu d’usar les expressions segiients, i discutiu
quina és la que creieu la millor:

m 224466881010

4 12
l+—=24—"——
s 3
2+ =
2
+2_|_...
4 . 12
T + 922 ’
3+ 2
5
+7+...
2 o0
T 1 1 1 1
€:1+2—2+?+4—2+---:Zﬁ.

n=1

(**) Una parella de conills joves tarden un mes a fer-se adults, és a dir, a estar en
condicions de poder-se reproduir. Si suposem que una parella de conills adults té una
parella de conillets cada mes, quants conills tindrem al cap d’un any, si inicialment només
tenim una parella de conills joves?

Per a poder respondre a aquesta pregunta, podem plantejar la taula segiient:
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3.5.12.

3.5.13.

O
® O
® & O O

® K ® O O O

on el simbol ) representa una parella de conills joves, i Q) una parella de conills adults.
Aixi, al cap d’'un més la parella jove s’ha convertit en adulta, i al cap de dos mesos la
parella adulta ha tingut descendencia, i amb aix0 tenim ja dues parelles, i aix{ successi-
vament. D’aquesta manera podem construir la successié de nimeros segiient:

RIXXIRIRXO

1,1,2, 3,5, 8,13, 21, -

Una manera de d’escriure el que esta passant, consisteix a considerar la successio
recurrent segiient:

uo =1, up =1, Up41 = Up +Up—1 Peran > 2.

Aquesta successio es coneix amb el nom de successié de Fibonacci.

Comproveu que es compleixen les propietats segiients:

(a) up + u72’L+1 = Ugp41 Sin > 1.

)

b) Upi1tn_1 —uZ = (=1)" sin > 2.

(c) Sim divideix a n, llavors u,, divideix a u,.
)

(**) Si definim la successié de polinomis segiient en la variable ¢,

up(t) =0, up(t) = 1, up(t) = tup—1(t) — up—2(t),
comproveu, per a alguns valors de n, que
(a) wi(t) +ua(t) + -+ uzp-1(t) = un(t)?,
(b) un(t)* = tn—1(t)uns+1(t) + 1.

(**) Siguin ng,n1,ne, tres nimeros enters tals que ng < n; < ng. Comproveu que

I'expressié
Mg —MNg Mo —MN1 N1 — Ny

2-0 2-1 1-0

també és un enter.

Si considerem ara que en tenim quatre, ng, ni, ne, ng, de manera que ng < ni; < ng < ng,
comproveu que, també en aquest cas, I’expressio
ng—mnog NM3—mM1 N3 —MN2 M2 —MNg N2 —N1 N1 —No
3—-0 3—1 3—2 2—-0 2—-1 1-0

és un enter.

En general, si considerem k + 1 enters tals que ng < n; < --- < ng, 'expressié
| — 1
0<i<j<k J

també és un enter.
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3 2

3.5.14. (**) Siguin a, b, ¢ arrels de l'equacié z° — x* — z — 1 = 0. Comproveu que sén diferents.

Comproveu donant valors a n € N que

b—c c—a a—>

és un nombre enter.

S’ha consultat el llibre Polynomials de E.J. Barbeau, Springer-Verlag, 1989.

Conjunt fractal de Mandelbrot.
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3.6 Algebra

K T —

Selecciéo de problemes preparada per Rosa Camps i Camprubi,
professora d’Algebra del Departament de Matematiques de la
Universitat Autonoma de Barcelona. tel.: 935812941, e-mail:
rcamps@mat.uab.es.

3.6.1. Amb quants zeros acaba el producte 1-2-3-----1007?

3.6.2. Usant cinc numeros x1,Ts, 23,4 1 x5 i agafant-los per parells podem fer deu sumes
ai,ao,...,a19. Demostra que si coneixem els resultats aq,as,...,a19 podem saber els
numeros inicials x1, x9, 3, T4, T5.

3.6.3. Troba deu nimeros naturals consecutius que no siguin primers.
3.6.4. Busca el nombre natural positiu més petit que compleix les condicions segiients:

si el dividim per 2, déna resta 1;
si el dividim per 3, déna resta 2;
si el dividim per 4, déna resta 3;
si el dividim per 5, déna resta 4;
i si el dividim per 6, déna resta 5.
3.6.5. Agafa un nombre qualsevol de tres xifres i permuta-les ciclicament de les dues maneres

possibles (és a dir, considera els nimeros zyz,yzx i zzy). Demostra que la suma dels
tres nombres és sempre divisible per 37.

Que passa si en comptes de realitzar dues permutacions cicliques en fas dues de
qualsevol? Demostra que si sumes el nimero de 3 xifres amb els cinc nimeros obtinguts
aplicant al ntimero totes les permutacions possibles obtens un nombre divisible per 37.

3.6.6. “Tenia n anys 'any n?”, va dir en Pere Casabona I'any 1971. Quan va néixer?
3.6.7. Dos amics es troben després de molt de temps i un li pregunta a 'altre,

— Quants fills tens i quina edat tenen?

— Tinc tres filles, el producte de les seves edats és 36 i la suma és el nimero d’aquesta
casa— li contesta altre.

— Em falta una dada — diu el primer.

— Ah! bé —contesta— la gran toca el piano.
Quines son les edats de les filles?

3.6.8. (*) Demostra que la suma dels quadrats de dos enters senars no és el quadrat de cap
enter.
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3.6.9.

3.6.10.

3.6.11.

3.6.12.

3.6.13.

3.6.14.

CAPITOL 3. PROBLEMES PROPOSATS

(*) Demana a una persona que multipliqui el dia del mes que va néixer per 12, el nombre
del mes per 31 i que us doni el resultat de sumar aquestes dues quantitats. Endevina-li
la data exacta del seu naixement.

Sabries donar un metode per a endevinar també I’any de naixement amb una sola

dada?

(*) Donada una matriu A de mida 2 x 2 no invertible, demostra que hi ha infinites
matrius X que compleixen AXA = A. I si la matriu és invertible?

(**) Sabent que els ltims tres digits a la representacié decimal de 74%° s6n 0,0, 1, troba
els dltims tres digits de la representacié decimal de 799%9.

(**) Considera una paraula P de n lletres. Tria una permutacié f de les n posicions.
Ara aplica la permutacié f a la paraula P. A la paraula resultant torna a aplicar-hi la
mateixa permutacié f i aixi successivament fins a aplicar en total n! cops la permutacio
f. Demostra que la paraula resultant és la paraula P.

(**) Si tenim la successié de matrius

6 7 8
(1)’<i§)’ 9 10 11 |,...
12 13 14

troba la féormula de la suma dels elements de la diagonal principal de la matriu n-éssima
en funcié de n.

(*) Els vertexs d’un poligon regular de 37 costats es numeren de 'l a 1'l1. Qualsevol
linia de simetria del poligon divideix els nombres que no estan en la linia de simetria en
dos subconjunts.

Diem que una numeracié dels vertexs és “bona’respecte una linia de simetria si cada
un dels nombres d’un dels dos subgrups és més gran que el seu simetric.

Hi ha alguna manera de numerar els vertexs que sigui “bona’respecte a qualsevol
linia de simetria?
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3.7 Modelitzacié matematica

Seleccié de problemes preparada per Angel Calsina i Ballesta, pro-
fessor de Matematica Aplicada del Departament de Matematiques
de la Universitat Autonoma de Barcelona i del Departament d’In-
formatica i Matematica Aplicada de la Universitat de Girona. tel.:
935812906 i 972418942, e-mail: calsina@mat.uab.es, i
acalsina@ima.udg.es.

3.7.1. En un cultiu cellular, el nombre de divisions per unitat de temps és proporcional al
nombre de cellules presents. Un cultiu que conté inicialment 10000 individus per ml
dobla la seva poblacié en sis hores. Quantes cel'lules hi haura al cap de dos dies?

3.7.2. Un model de dinamica de poblacions estableix que la densitat de poblacié d’una especie
d’insectes 'any n 4+ 1 depén de la densitat de poblacié 'any anterior en la forma
Pn+1 = (1 — pn)pn, on r és un coeficient positiu i menor que 4. Per a diferents va-
lors del parametre r i mitjancant experimentacié numerica, detecteu comportaments
de la successié de densitats any rere any de tendeéncia a ’extincid, de tendéncia a un
equilibri de la poblacié i de comportament asimptoticament periodic.

3.7.3. (*) El pes aproximat de 'atmosfera terrestre és de 5-10'8 kilos. Podrfeu arribar a aquest
resultat calculant mentalment?

3.7.4. S’ha observat que la densitat de poblacié d’una especie de peixos en un riu de 200 km
de longitud decreix al llarg del seu curs de manera lineal des dels 150 individus per km
prop del naixement fins a només 10 peixos per km prop de la desembocadura. Calculeu
quina és la poblacié total de peixos d’aquesta especie en el riu.

3.7.5. En una reacci6é quimica del tipus A+ B — C (una molecula de A i una de B es combinen
per a formar-ne una de C'), es disposa inicialment de a mols de les substancies A i B,
mentre que C' és absent. El temps que tarden a formar-se ¢ mols de C' esta donat per
t = % foc (af—z)% on k s’anomena la constant de la reaccié. Calculeu quant de temps és
necessari per a la formaci6é de a/2 mols de C' i quant tardaria la reaccié a acabar-se.

3.7.6. (*) Un diposit conté inicialment 50 kg de sal dissolts en 1000 | d’aigua. Entra al diposit
un cabal d’aigua pura de 2 1 per min i en surt un cabal igual de dissolucié. Calculeu la
concentracié de la dissolucié passades dues hores.

3.7.7. (*) Els extrems d’un abeurador horitzontal d’un metre de llarg i 40 cm d’algada sén
trapezis isosceles la base inferior dels quals mesura 30 cm i la superior 50. En un instant
determinat observem que el nivell de ’aigua és de 20 cm i esta pujant a raé d’un cm per
minut. Quant tardara I’abeurador a ser ple si sabem que el cabal d’entrada és constant?

w0
50
20
| I U
}
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3.7.8.

3.7.9.

3.7.10.

3.7.11.

3.7.12.

CAPITOL 3. PROBLEMES PROPOSATS

(*) El consum de combustible d’un cotxe per unitat de temps és, essencialment, la suma
de dos termes, un d’independent de la velocitat i que correspon al manteniment del
motor en marxa, i un altre que és proporcional a la poténcia que el motor entrega i que
es dedica (en un trajecte pla) basicament a veéncer el fregament amb 'aire. La forca de
fregament amb ’aire és aproximadament proporcional al quadrat de la velocitat. Aixo
fa que el consum per unitat de temps depengui de la velocitat en la forma g(v) = a+bv3.
Per que?

Quina és la velocitat més economica dun vehicle amb motor diesel que gasta 4 litres
per hora al ralent{ i 6 litres per hora circulant a 100 km/h? Quin és el consum optim?

Un extrem corre per la banda en un camp de futbol que fa 50
metres d’ample i té unes porteries de 7 metres d’ample. Veu
el porter avancat i decideix xutar a porta. A quina distancia
del banderi de cérner ha de fer-ho per a tenir 'angle més
gran possible?

(**) Se sap que una corda de 18 m té una caracteristica d’allargament tal que la tensi6
en kp és funcié de l'allargament en metres en la forma T'(z) = 100z + 10z/(6 — x) per a
un allargament menor que 5.8 metres i que es trenca quan s’arriba a aquest. Calculeu
el pes maxim d’una persona que vulgui fer “ponting” amb aquesta corda. (Adaptat
del llibre Calcul Infinitesimal, de C. Perell6, Biblioteca Universitaria 21, Enciclopedia
Catalana, 1994.)

(**) Es vol construir (I’any 2664) una torre de comunicacions
de 20 km d’altura amb una massa de 10 tones per metre
lineal al pol nord d’un asteroide esferic de 100 km de radi
on la gravetat a la superficie és la cinquantena part de la
terrestre. Quin sera el pes total d’aquesta torre? Quant
pesaria si fos infinitament alta? Serien iguals els resultats si
la construissin a I’equador de 'asteroide? Faltaria en aquest
cas alguna dada?

(**) Un diposit amb forma de con invertit de radi R i altura H conté aigua fins a un
nivell h. Calculeu el maxim valor de h que garanteixi que s’hi pot introduir una bola
més densa que 'aigua sense que se’n vessi gens.
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3.8 Topologia

Seleccié de problemes preparada per Laia Saumell i Arino, profes-
sora de Geometria i Topologia del Departament de Matematiques
de la Universitat Autonoma de Barcelona. tel.: 935812413,
e-mail: laia@mat.uab.es.

3.8.1. (*) Quatre cavalls estan situats en un tauler d’escacs 3 x 3 com en la figura de I’esquerra.
Es poden moure, utilitzant els moviments del cavall, a la posicié indicada en la figura
de la dreta?

2 |2 2 |1

1 1 1 A

3.8.2. (*) En aquest problema es tracta de veure que és impossible dibuixar una linia continua
i que no es talli a si mateixa, de manera que aquesta talli una vegada i només una vegada
a cada un dels 16 segments que formen la xarxa de la figura segiient. Evidentment, la
linia dibuixada a la figura no és una solucié del problema ja que deixa un dels segments
sense tallar.

T
J/&
—

3.8.3. (*) A Konigsberg hi ha una illa anomenada Kuiphof. El riu que envolta es divideix en
dos bracos i sobre ells, en el temps en que vivia Euler, hi havia set ponts com s’indica
a la figura. Per als habitants del lloc, era un tema de distraccié descobrir un itinerari
per a passejar que tornés al punt de partida després d’haver creuat tot els ponts, pero
passant solament una vegada per cada pont. Existeix aquest itinerari?
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3.8.4.

3.8.5.

3.8.6.

CAPITOL 3. PROBLEMES PROPOSATS

=
=

(**) Hi ha un vell trencaclosques en qué apareixen tres cases, cadascuna de les quals ha
de ser connectada al subministrament d’aigua, gas i electricitat.

A m B
[

\

N

i

Vi
]

Poden fer-se les connexions de manera que ni es tallin ni passin a traves de les cases
ni de les fonts de subministrament?

(*) I si les tres cases i les tres fonts de subministrament sén en un planeta en forma
de tor (“donut”)?

Se sap des de fa uns dos mil anys que sols existeixen cinc poliedres regulars (totes les
cares estan formades pel mateix poligon i a cada vertex concorren el mateix nombre
d’arestes), els cinc solids platonics: el tetraedre regular, el cub, 'octaedre, el dodecaedre
i licosaedre. Demostreu-ho utilitzant que en qualsevol poliedre la seva caracteristica
d’Euler x val 2. Vegeu la seccié 2.16.

x = el nombre de cares — el nombre d’arestes + el nombre de vertexs.

Demostreu que no és possible construir una pilota sols amb hexagons de tal forma que
dos hexagons diferents tinguin com a molt un costat en comi. (Indicacié: utilitzeu
també que la caracteristica d’Euler val 2.)
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3.8.7. Les pilotes de futbol estan formades per pentagons i

hexagons cosits de manera que a cada vertex hi concorren p Py
dos hexagons i un pentagon. Quants pentagons i quants ‘ @
hexagons hi ha en una pilota de futbol? (Indicacié: utilit-

zeu la caracteristica d’Euler.)

3.8.8. Calculeu la caracteristica d’Euler de la figura segiient:

(*) Com ho farieu per a construir figures amb caracteristica d’Euler un nombre parell
i negatiu arbitrari?

3.8.9. Es diu que dos espais sén topologicament equivalents si es pot passar de I'un a laltre de
manera continua, i es pot retornar al primer de manera continua. Com, per exemple,

©@E@"\’

Classifiqueu els espais segiients en tipus topologicament equivalents.
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3.9

Selecci6 de problemes preparada per Enric Nart i Vinals, pro-
fessor d’Algebra del Departament de Matematiques de la Uni-
versitat Autonoma de Barcelona. tel.: 935811453, e-mail:
nart@Qmat.uab.es.

3.9.1.

3.9.2.

3.9.3.

3.9.4.

3.9.5.

3.9.6.

3.9.7.

3.9.8.

3.9.9.

3.9.10.

3.9.11.

CAPITOL 3. PROBLEMES PROPOSATS

Aritmetica

Trobeu dos nombres naturals que sumen 5264 i el seu mcm és 200 340.
Trobeu I'inic nombre natural que té 8 divisors positius que sumen 320.
(*) Proveu que 18! + 1 és multiple de 437.

Proveu que el nombre de divisors positius d’'un nombre natural n és senar si i només si
n és un quadrat perfecte.

Considerem la successié de nombres naturals:
49, 4489, 444889, 44448889, ...,

obtinguda intercalant en cada nombre un 48 al centre del nombre anterior.

Proveu que tots aquests nombres sén quadrats perfectes i calculeu la seva arrel qua-
drada.

Proveu que un nombre natural és multiple de 9 si i només si la suma de les seves xifres
és multiple de 9.

(*) Sigui N la suma de les xifres del nimero 6666%9% i sigui M la suma de les xifres del
numero N. Calculeu el valor de la suma de les xifres de M.

En un institut de secundaria hi ha matriculats 486 alumnes. Un cert dia el conserge ob-
serva que el 36.3636 . . . % dels que assisteixen a classe duen ulleres i que el 67.567567 ... %
duen texans. Quants alumnes van faltar a classe aquell dia?

(*) Quines sén les dues dltimes xifres de 114716287

Una banda de 17 pirates s’apodera d’un boti de monedes d’or, totes d’igual valor. De-
cideixen repartir-les a parts iguals, donant les 3 peces que sobren al seu cuiner xines.
Després d’una baralla entre ells, moren 6 pirates i els sobrevivents decideixen tornar a
repartir-se les monedes (incloses les 3 del cuiner) a parts iguals, donant les 4 que sobren
al cuiner. En el viatge de tornada, el vaixell s’enfonsa i només se salven el boti, 6 pirates
i el cuiner. Tornen a repartir tot el boti i sobren 5 monedes per al cuiner. Quan el cuiner
mata tots els pirates i es queda el boti sencer, amb quina fortuna minima estimeu que
enceta una nova vida?

La Carme treballa quatre dies seguits i en descansa un. La Norma en treballa dos i en
descansa un. Només es veuen els dies de lluna plena (un de cada vint-i-vuit). La Norma
va tenir dia lliure ahir, la Carme el tindra dema passat i fa 10 dies que era lluna plena.
Quants dies falten per a que es vegin?
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3.9.12.

3.9.13.

3.9.14.

3.9.15.

3.9.16.

Proveu que si a, b, ¢ sén tres nombres enters senars, equacié az? + bx + ¢ = 0 no té
cap solucié racional.

Considerem un polinomi f(z) = ap,2™ + ap_12" 1 + --- + a1z + ag, amb els coeficients
aop, - ..,an enters. Proveu que si x és un nombre racional que és arrel del polinomi i
escrivim x com una fraccié irreductible: x = %, amb numerador i denominador enters

sense factors en comt, aleshores forgosament:

ag és multiple de p i a, és multiple de q.

Utilitzeu aquest fet per a dissenyar i programar un algoritme que trobi totes les arrels
racionals d’un polinomi amb coeficients enters.

Il1ustreu el metode calculant totes les arrels racionals del polinomi: 62%—1123—22—4.

En un triangle rectangle amb costats de longitud entera, el producte de les longituds
dels catets és multiple de 12, i la longitud d’algun dels costats és multiple de 5.

(*) Trobeu tots els parells n, m de nombres naturals diferents que satisfan: n™ = m™.

Indicacié: estudieu la grafica de la funcié f(x) = @.

La Lliga de futbol professional ha estimat en 260 700 milions de pessetes el valor total
en el mercat del conjunt de futbolistes professionals que juguen a primera divisié. L’es-
timaci6 s’ha fet classificant els jugadors en quatre categories: “cracs”, “figures”, “bons”i
“mediocres”, amb un valor de mercat de 3825, 1260, 700 i 300 milions de pessetes per
a cada jugador de la categoria corresponent.

Sabent que 359 jugadors han estat declarats com a mediocres i que Dani, del Barga,
ha estat classificat com a figura, trobeu quants cracs hi ha a la lliga.
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3.10 Estadistica

Seleccié6 de problemes preparada per Pedro Puig Casado, pro-
fessor d’Estadistica i Investigacié Operativa del Departament de
Matematiques de la Universitat Autonoma de Barcelona. tel.:
93581 1302, e-mail: ppuig@mat.uab.es.

3.10.1.

3.10.2.

Pollastres, mitjos pollastres i empreses igualitaries. Una de les critiques de I'es-
tadistica que més sovint es veu als mitjans de comunicacié esta relacionada amb I'ts
incorrecte de la mitjana aritmetica. Un d’aquests comentaris que podeu trobar és que
si un individu es menja cada dia dos pollastres i un altre no se’n menja cap, de mitjana
cadascun es menja un pollastre diari! Aixo el que ens diu és que la mitjana aritmeética
només ens déna una informacié parcial del conjunt de dades. Aquesta informacié pot
ampliar-se utilitzant altres mesures (estadistics descriptius), com per exemple la desvi-
acié tipus, els quartils, etc. Podeu veure alguna d’aquestes coses amb 1’exercici segiient,

Tenim dues petites empreses cadascuna de les quals esta formada pel director i nou
treballadors. Fixeu vosaltres mateixos els sous de tots, de manera que el sou mitja
sigui el mateix per a cada empresa, pero que en una d’elles el repartiment sigui menys
igualitari que en 'altre.

Calculeu ara les desviacions tipus i els quartils i compareu-los.

Criptografia, qué hi diu aqui? Edgard A. Poe en un conte titulat “L’enigma de
Pescarbat d’or”, descriu com el protagonista va desxifrar un text (escrit per un pirata)
aparentment incomprensible fent servir un metode estadistic. El pirata havia fet servir
un sistema molt simple per a xifrar el seu missatge, consistent a substituir cada lletra
de lalfabet per un signe arbitrari. Per exemple, la A podria ser canviada per un x*, la
B per un {, etc. El protagonista de la nostra historia tenia, doncs, un text ple de signes
estranys amb un significat totalment desconegut. El que va fer per a desxifrar-lo és el
mateix que us proposem en l’exercici segiient,

Digueu a un amic que us escrigui un missatge fent servir el metode de xifratge descrit
anteriorment, sense dir-vos quina és la clau pero si en quin idioma esta escrit. A con-
tinuacio feu una llista dels signes que surten en aquest text amb el nombre de vegades
que apareix cadascun (aix0 s’anomena distribucié de freqiiéncies). Tot seguit agafeu un
text qualsevol d’una novela, diari, etc. escrits en el mateix idioma que el missatge xifrat,
i feu també una distribucié de freqiiencies de les lletres del text. Podem pensar que les
proporcions d’aparicié de cada lletra de 'alfabet sén una caracteristica a cada idioma.
Per exemple, tant en catala com en castella la lletra més freqiient és la E, seguida de
la A, etc. Fent servir aquesta informacié i una mica d’enginy, tracteu de desxifrar el
missatge. Com més llarg sigui el missatge, més facil sera desxifrar-lo! Consulteu també
la seccié 2.15.

El protagonista del conte de Poe ja sabia que el seu missatge xifrat estava escrit en
angles perque coneixia la identitat del pirata. Si no sabem en quin idioma esta escrit el
missatge, podem deduir-lo a partir del mateix text en clau? En aquest proper exercici
us proposem com fer-ho.
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3.10.5.
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Agafeu un text llarg qualsevol escrit en catala, un altre en castella, un altre en angles,
etc. i per a cadascun calculeu la mitjana i la desviacio tipus del nombre de lletres que té
cada paraula. Podem pensar que també aquestes dues quantitats sén una caracteristica
de cada idioma. Si agafem el missatge en clau del nostre amic, que ara no ens ha
dit en quin idioma ho ha escrit, encara que d’entrada no sapiguem el seu significat, si
que podem comptar el nombre de lletres que té cada paraula i calcular la mitjana i la
desviacio tipus. Amb aquesta informacié podem deduir en quin idioma ha estat escrit.

Captura i recaptura, dels peixos als drogotes. Tenim una poblacié d’un cert tipus
de peix que viu dins d’un estany. Volem coneixer el nombre de peixos que té aquesta
poblacié. Com podem “estimar” aquesta quantitat? Una idea molt simple és capturar
uns quants peixos, marcar-los amb una tinta que no marxi amb l’aigua, deixar-los anar
dins de l'estany i, passat un quant temps, tornar-ne a capturar.

Mirant el nombre de peixos d’aquesta segona captura que ja han estat marcats a la
primera (individus recapturats), podem coneixer de manera aproximada el nombre total
de peixos de 'estany. El segiient exercici és un exemple de calcul.

A la primera captura hem agafat 24 peixos, els marquem i els tornem a l'estany. A
la segona captura hem agafat 32 peixos, dels quals trobem cinc marcats anteriorment
(aquests son els recapturats). Quin és el nombre aproximat de peixos que té l'estany?
(Nota: us ha de donar 154.)

Aquesta metodologia la podem aplicar a diversos problemes canviant la idea de
“marcatge”. Vegeu l'exemple segiient.

Estimacié del nombre d’individus que realment habiten en una ciutat o un
pais (Laplace, s. XVIII).

Si disposem del cens oficial, aix0 pot constituir la primera captura. Una enquesta adient
ens donara la segona. Els enquestats que també apareguin al cens seran els recapturats.

Estimacié del nombre de consumidors d’una certa droga en una ciutat o un
pais.

El conjunt d’individus que fan una determinada terapia de desintoxicacié pot constituir
la primera captura. Els detinguts posteriorment durant un cert periode de temps poden
ser la segona. Els repetits a les dues “llistes”seran els recapturats.

Cal no perdre amb les dades perdudes. Moltes vegades, revisant qliestionaris
procedents d’enquestes, podem constatar que ens falten algunes dades de certs individus.
Per exemple, d’'un d’ells ens pot faltar ’edat, d’un altre el nombre de germans, etc. Si
suposem que ’omissié es deguda a l’atzar i que no hi ha cap raé relacionada amb la
natura de les mateixes dades, com per exemple seria el cas d’un que amaga el seu sou
perque és molt elevat, com podem recuperar d’alguna manera aquesta dada perduda o
faltant? Una manera és substituint la dada faltant per la mitjana dels valors que tenim
dels altres individus. Aixi, per exemple, si ens falta I'edat d'un d’ells, calcularem la
mitjana de les edats dels altres i utilitzarem aquest valor en el seu lloc. A continuacié
veurem una propietat interessant d’aquesta manera de procedir en forma d’exercici.

Tenim n—1 dades i calculem la seva mitjana. Afegim aquest nou valor als n—1 anteriors
i aixi aconseguim un conjunt amb n dades. Quina sera la nova mitjana per a aquestes n
dades?
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Un dels exemples més antics de dades faltants apareix a I’Antic Testament, Nom. 1, on
es fa 'anomenat cens d’Aaron. Es tracta d’un cens militar en qué es compten el nombre
de mascles, més grans de vint anys per a cadascuna de les dotze tribus d’Israel excepte
per a la tribu de Levi (dada faltant). El motiu és que la tribu de Levi estava exclosa
d’utilitzar armes perque eren els encarregats dels serveis religiosos.

De l’avinguda Meridiana a Dunkerque (passant per Paris). El 1791, I’Assem-
blea Nacional francesa va decidir establir un sistema universal de mesures, anomenant
“metre” a la unitat de longitud. Es va decidir definir-lo com 1/10000 000 de la distancia
entre el pol nord i ’equador mesurat en el meridia que passa per Paris. Per a portar a
terme aquest projecte I’Assemblea va nomenar Delambre i Méchain com a responsables
de mesurar la distancia entre Dunquerque i Barcelona, amb el qual s’abastava uns 10°
del meridia. Méchain va ser ’encarregat de realitzar les mesures a Catalunya, on va ser
molt ben acollit pels intellectuals de I'época. A la placa de les Glories Catalanes hi ha
un monument commemoratiu d’aquest afer i, de fet, 'avinguda Meridiana de Barcelona
és el lloc per on passa el meridia Dunquerque-Paris-Barcelona.

Les dades procedents d’aquestes mesures van ser analitzades per Legendre fent servir
un metode que posteriorment ha tingut moltes aplicacions practiques; es tracta del
metode de minims quadrats. L’exercici seglient pot illustrar el procediment.

Les dades reportades per Delambre i Mechain al 1799, presentades per Laplace en el seu
Traité de Mécanique Céleste, es poden observar a la segiient taula,

Longituds dels arcs sobre el meridia de Paris.

‘ Lloc Latitud  Dist. des de Barcelona ‘
Barcelona  45.958281
Carcassonne 48.016790 52749.48
Evaux 51.309414 137174.03
Paris 54.274614 213319.77
Dunquerque 56.706944 275792.36

Les distancies estan expressades en moduls (1 modul=2 toeses, 1 toesa = 1.949 metres)
i les latituds en graus centesimals.

Anoteu en un paper els pesos i les algades dels companys de classe i representeu-los en
un grafic cartesia. Observeu la tendencia lineal del ntivol de punts. Consulteu la seccid
2.3. Calculeu la recta de millor ajustament al nivol de punts pel metode del minims
quadrats. Interpreteu-ne els resultats.

Una polémica cientifica que s’ha fet famosa és la paternitat del metode dels minims
quadrats. Sibé la primera publicacid respecte a aquesta questié va ser deguda a Legendre
en el context de la determinacié del metre, Gauss va afirmar que ell havia fet servir el
metode uns quants anys abans...



Capitol 4

Passatemps matematics i altres
divertiments

En aquest capitol s’han inclos diversos temes de matematiques que tenen una part liudica.
Creiem que la matematica recreativa és també una bona manera de consolidar els conceptes
matematics i d’entrenar la ment en el pensament logic.

Dels quatre primers temes, “Passatemps matematics”, “Demostracions erronies”, “Logica’i
“Magia matematica”, s’inclouen les solucions dels tres dltims. Aconsellem no mirar-les gaire
de pressa. El primer tema segueix el mateix esperit que els de la seccié anterior. Qualsevol
qiiestio sobre aquests temes la podeu consultar a I’autor per e-mail o telefon.

L iltima seccié barreja matematiques i llengua. Veureu que no sén temes tan llunyans.

Al final del capitol s’inclou la bibliografia consultada per a preparar-lo.

Icosaedre estrellat.
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4.1 Passatemps matematics

Aquesta seleccié de problemes i els tres temes segiients han es-
tat preparats per Armengol Gasull i Embid, professor de Ma-
tematica Aplicada del Departament de Matematiques de la Uni-
versitat Autonoma de Barcelona. tel.: 935812909, e-mail: ga-
sull@mat.uab.es.

4.1.1. Quadrat perdut. Considerem un quadrat 8 x 8 i el dividim en quatre trossos com a

la figura:
8
I~
3 I~~~ 3
5 ~
3
/
5! )
/
3 5

Aquests trossos es tornen a muntar fent un rectangle de 5 x 13

Ha aparegut un quadrat nou! D’on ha sortit?

Fes una construccié semblant partint d’un quadrat 13 x 13 fent les divisions de 5 i
8. Observeu que els nimeros 3, 5, 8,13 que surten en aquestes construccions sén els que
s’estudien al problema 3.5.11 i estan donats per la recurrencia X, 12 = X,4+1 + X,, amb
Xo = X1 = 1. Relacionem el quadrat aparegut amb la propietat X2 11— XpXpyo =
(_1)n+1.

4.1.2. Saltar un fossat. Hi ha un castell rectangular, envoltat per un fossat d’amplada L
com a la figura:

L

] CASTELL

FOSSAT
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Si disposeu de dos taulons d’una longitud de 10 metres cadascun, quina és la maxima L
de manera que pugueu passar el fossat usant els taulons? I si disposeu de cinc taulons
de la mateixa longitud?

Una altra manera de multiplicar. Per a molts de nosaltres multiplicar esta associat
a saber les taules de I'1 al 9 i a coneixer com ordenar els calculs d’una certa manera.
Es sorprenent adonar-se que es pot multiplicar dos nimeros qualssevol només sabent fer
dobles, meitats i sumes. Vegem com fer-ho amb un exemple.

Multiplicacié de 77 x 132 = 10164

T 132 132
38 264 | ——
19* 528 928
9* | 1056 1056

4 | 2112 -
2 | 4224 S
1* | 8448 | 48448

10164

Observeu que el metode consisteix a fer dues columnes: 'una de meitats sense decimals
(normalment la del nombre més petit), i 'altra de dobles. El resultat s’obté sumant
els dobles corresponents als nombres senars de la primera columna. Per que funciona el
metode? Per cert, aquest métode ha estat usat a diferents lloc del moén, en particular a
I’antic Egipte.

Hi ha una altra manera de multiplicar, encara avui usada a alguns llocs d’Africa, que
té un fonament similar a la que nosaltres usem i que illustrem a la figura segiient:

Problemes de pesos i mesures. Un problema classic (que ha sortit fa poc en una
pellicula d’accié nord-americana) és el seglient: tenim tres recipients de 8, 5 i 3 litres,
el primer, ple de liquid, i els altres dos, buits. Com omplir els dos recipients grans amb
4 litres cadascun sense utilitzar cap altre recipient? Una solucié és la segiient:

81 51 31

=R = NN Ot Ot 0o
B == O OtlWw w oo
SO WO R MFEHWOWOo
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Busqueu una solucié amb menys moviments.

Podeu fer el mateix amb els recipients segiients:

121, 711517
101, 611417

Alguns problemes relacionats soén els seglients:

e Us trobeu a la vora d’un riu amb dues galledes, una de 511 una altra de 3 1. Com
aconseguirfeu 11, 21,31, 41, 51,61, 711 81 exactament?

e Com mesurarieu 9 minuts amb dos rellotges de sorra, un de 7 minuts i un altre de
4 minuts?

e Una companyia d’autobusos té la norma segiient: els paquets que no sobrepassin
els 4 metres de longitud no paguen suplement. Com aconseguirfeu pujar a un
autobus d’aquesta companyia amb una canya de pescar (rigida i no desmuntable)
de 5 metres de llarg, sense pagar suplement?

e 3 botigues s’han de repartir 21 barrils de vi, dels quals 7 sén plens, 7 mig plens
i 7 buits. Com farfeu la reparticié de manera que cada botiga tingués el mateix
nombre de barrils i la mateixa quantitat de vi?

e Tenim deu piles amb deu monedes cada pila. Totes les monedes sén indistingibles
externament. Hi ha una pila on cada moneda pesa 9 grams, mentre que cada una
de les altres 90 monedes pesa 10 grams. Com identificarieu quina és la pila en que
les monedes pesen menys fent una sola pesada en una bascula?

e Com ho farfeu per a pesar exactament qualsevol quantitat entera entre 1 kg i 27
kg usant una balanca amb 2 plats i només 4 pesos, els d’1kg, 3 kg, 9 kg i 27 kg?
Es poden posar pesos als dos costats de la balanca.

Amb només 3 pesos, de 2 kg, 6 kg i 18 kg, també es pot determinar quant pesa un
objecte que té un pes enter entre 1 kg i 27 kg. Com ho farieu?

Estratégia sorprenent. Explicarem un joc que apareix en diferents llocs (al carrer, als
concursos de TV, etc.) amb diferents presentacions i que té una estratégia sorprenent.
Suposem que tenim tres gobelets de cap per avall en un dels quals hi ha amagat un
premi. Ens demanen que triem un d’ells. Un cop 'hem triat la persona que ha amagat
el premi ens diu el segiient: “Jo sé en quin dels tres gobelets hi ha el premi i per a
facilitar-te la tria et destaparé un dels dos gobelets que no has triat (i en destapa un dels
dos, evidentment un sense premi)”. Aleshores et pregunta si vols canviar la teva tria de
gobelet.

Explica per que et convé més canviar de gobelet que no mantenir-te amb el que havies
triat de bon comencament. De fet, raona per que amb aquesta estrategia jugant moltes
partides guanyaras el doble de premis que sense canviar de gobelet. Si no hi trobes cap
explicacié, fes primer unes quantes partides amb un company per a convence’t.

Quadrats magics. Un quadrat magic és una colleccié de n? nombres naturals diferents
posats en un quadrat de manera que la suma de totes les columnes, la de totes les files i
la suma de les dues diagonals és un valor constant K, anomenat la constant del quadrat.
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Un dels més antics que es coneix (construit segles abans de Crist a Xina i a l’fndia) és
el segiient d’ordre 3, amb constant K = 15

De fet, l’estructura general d’un quadrat magic de mida 3 amb constant K = 3x és

8134
11519
7|2

x4y x—(y+2) T+ z
z—(y—=2) x T+ (y—2)
Tr—z r+y+z T —y

on x, y i z sén nombres naturals tals que tots els resultats del quadrat siguin positius.
Intenteu construir un quadrat magic 3 x 3 de forma que tots els seus nombres siguin
primers. Com a pista direm que hi ha un quadrat magic d’aquest tipus amb constant

177, en el qual el primer més petit és 5 i el més gran 113.

Un quadrat famés, que apareix al gravat d’Albert Durer, La Melencolia I, és

16| 3 | 2 |13
5 | 10|11 | 8
916|712
4 11511411

Les dues caselles centrals de I'iltima fila indiquen I'any 1514, en el qual 'obra va ser

gravada. La constant d’aquest quadrat és K = 34.

Fragment de I'obra de Durer.
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Expliqueu com aconseguir un quadrat magic de mida 4 amb constant K qualsevol
nombre més gran que 34 fent modificacions al quadrat de Durer (si K — 34 no és multiple
de 4, els quadrats magics obtinguts poden tenir alguna xifra repetida).

Observeu que el quadrat magic de Durer té moltes altres propietats: 34 surt com a
suma de les 4 caselles centrals, com a suma dels quadrats 2 x 2 de les cantonades, etc.

Descobreix quina propietat fa especial el seglient quadrat magic de constant 264

96 | 11 | 89 | 68
88 169 |91 |16
61 | 86 | 18 | 99
19 | 98 | 66 | 81

No es coneix cap metode per a construir quadrats magics per a qualsevol n parell, pero
si que n’hi ha per a n senar. A la figura segiient s’illustra una construccié per a n = 5.

|
—_
]

11| |17] |23
16| |22
21
31169 |22]15
20 8 [21|14] 2
712513 1 |19
24 |12 | 5 | 18| 6
11| 4 [17 (10| 23

Construiu un quadrat magic 7 x 7.

Hi ha molts d’altres problemes similars als dels quadrats magics. Per exemple, a la figura
segiient hi ha una estrella magica amb els ntimeros 1,2,3,...,12.
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fe\/@g
AV

@/\@ @/ 3

Observa que la suma de tots els nombres alineats és 26. Sabries construir una estrella
magica amb els mateixos nombres pero de manera que la suma de les 6 puntes de l'estrella
també fos 267

4.1.7. Al voltant del tres en ratlla. Ens proposen el segiient joc: Tenim una llista dels
nimeros de 'l al 9. Hi ha dos jugadors, I'un amb fitxes blanques i l'altre amb fitxes
negres. Els jugadors van cobrint alternativament els nombres amb les seves fitxes. Quan
un nombre és cobert, ja no es pot tornar a cobrir. Guanya el primer jugador que obtingui
exactament 15 amb tres fitxes (no val obtenir 15 amb només dues fitxes).

Expliqueu com el quadrat magic 3 x 3 donat al problema anterior pot ser utilitzat
per a obtenir una bona estrategia de joc.

Un joc semblant és el segiient: de la llista de paraules
PALS, BATA, TRES, PRIOR, MUSIC, BIT, CAMARA, MELO, PEU

dos jugadors van triant alternativament una paraula cada un. Guanya el primer jugador
que tingui tres paraules amb la mateixa lletra.

Expliqueu com dissenyar una bona estrategia de joc a partir d’un joc de tres en ratlla
associat. Inventeu grups diferents de nou paraules amb propietats semblants.

4.1.8. Creuament d’un riu. Els tres problemes segiients sén coneguts des de fa molt temps.

e Un barquer vol passar a l'altra banda d’un riu a un llop, una cabra i un sac de
cols, pero la seva barca és tan petita que només ’admet a ell i una de les tres coses.
Com pot fer-ho sense deixar en cap moment soles les parelles: llop-cabra, cabra-sac
de cols?

e Un regiment vol passar un riu molt profund, pero no hi ha pont. De cop veuen dos
nens jugant amb una barca molt petita. Com ho faran per a passar el riu utilitzant
aquesta barca, si sabem que la barca només pot aguantar el pes dels dos nens o
d’un sol soldat?
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e Tres marits gelosos es troben amb les seves mullers a una banda d’un riu. Volen
passar a l'altra banda i disposen d’una barca en la qual només hi caben dues
persones. Com s’ho faran per a passar els sis a ’altra banda del riu amb la condicié
que cap dona es quedi mai en companyia d’un altre home sense la presencia del seu
marit.

Cavalls d’escacs. Tenim situats quatre cavalls d’escacs (dos de blancs i dos de negres)

en un taulell 3 x 3 com a la figura. Quin és el nombre minim de moviments, seguint les
regles dels escacs, per tal de que els blancs i els negres intercanviin les seves posicions?

A

A

2

2

1

1

2

2

I si el taulell és de mida 3 x 4 i hi ha tres cavalls blans i tres cavalls negres a les bandes
d’amplada 37

Heréncia conflictiva. Un pastor en morir posseia un ramat de 23 ovelles. El seu
testament especificava que deixava tots els seus bens als seus tres fills de la manera
segiient: la meitat de tots els seus bens per al fill gran, la tercera part per al fill mitja i
la vuitena part per al fill petit. Els germans no es posaven gens d’acord en com repartir-
se les ovelles, ja que no en volien matar i trossejar cap. La solucié els la va donar un
amic seu que passava per alla amb un ramat d’ovelles. Els va dir: “Jo us regalo una de
les meves ovelles. Aixi en teniu 24. Si us les repartiu d’acord amb els desitjos del vostre
pare, en tindreu 24/2 = 12, 24/3 = 81 24/8 = 3. Com veieu, heu agafat 12+ 8 + 3 = 23
ovelles; per tant, en sobra una que és la meva.”Se la va tornar a emportar i tots tan
contents. Que ha passat?
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4.2 Demostracions erronies

A tots el problemes seglients hi ha una errada. L’heu de trobar. Al final hi trobareu les

explicacions dels errors comesos.

4.2.1. Prenem dos nimeros iguals a i b.

a="b,
ab = b
a? —ab=a®-V?
ala —b) = (a+b)(a—b)
a=a+b
a=2a
1=21

4.2.2.

4-10=9— 15,

4.2.3. Es facil deduir que, si 2 =
q s

multiplicant per b),
canviant de signe i sumant a2),

traient factors comuns),

(
(
(
(eliminant a — b als dos costats),
(recordem que a = b),

(

eliminant a).

(clarissim),

25
(sumant = als dos costats),
(usant (a — b)? = a® — 2ab + b?),
(prenent arrels quadrades),

(eliminat el E)
2

amb ¢s # 0, aleshores, quan ¢ # s tenim

p—r _p
q

q—S

. N ’ . ’ N E _ t .o . 7 . _ .
Aixo és aixi perque g = 5 Siinoméssips =rqi

Prenem ara x i y tals que

p—r

—S

(=}

3r—5 3y—8

3r—1 3y—4’

aleshores, usant el resultat anterior tenim

3r—-5 3y—8 3x—-5-(3y—238) _3x—3y+3_1

3r—1 3y—4

Si substituim x = 1 tenim

3t —1—(3y—4) 3r-3y+3

=2 _ 1
2

= % siinoméssi (p—r)q = p(qg—s).
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4.2.4. Tenim que

wml}—‘

1
4
1 1
(§> (§> (equivalent a l’expressié anterior)
log ( > ( ) (el log és una funcié creixent)
1 a
3log 3 < 2log 3 (usant log z® = alog z)

3< 2! (cancel-lant als dos costats log < > #0).

4.2.5. Volem calcular la integral definida

1

! d
I(A) = L - arcsin(ax)
2,2
2 r=2cos A

cos A V1 —a*x

= arcsin a — arcsin(2a cos A).

a

V1—a222’

Observeu que hem usat que (arcsin(az))’ =
Si prenem a = sin A, aleshores tenim que
I(A) = I(arcsin A) =
= arcsin(sin A) — arcsin(2sin Acos A) = A — arcsin(sin24) =

= A-24=—A,

on hem usat que arcsin és la funcié inversa de sin, i que sin 24 = 2sin A cos A.

Ara fixem A = %, cos A =cos § = %, i per tant
I(”) | ads 0 (int interval de mida 0)
—) = —_— = integrem en un interval de mida 0),

3 V1 — a?z? &

pero, per altra banda, I (%) = —3% i, per tant,

T

0=--"!
3

4.2.6. Volem calcular una primitiva f(6) de sinf cos, és a dir una funcié f(0) tal que f'(0) =
sinf cos . Ja sabem que

f() = /sin@cos@d@.
Calcularem f(0) de dues maneres diferents i igualarem el resultat
Forma 1:

dsin 0 3 29
f(e):/sinﬂcosedez/sing 21;1 dQZSm2 .

Forma 2:

2
f(e)Z/SiDHCOSHdH:_/dCdO;HCOSHde:_COSQ 0.
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4.2.7.

4.2.8.

Observeu que les dues expressions de f(6) sén correctes ja que

d <sin20) d <—00820) — infcosd
o\ 2 ) do 2 - '

Igualant ambdues expressions,

i per tant
sin20  cos?6 B
2 2

Com que sin? § + cos? § = 1, obtenim
1
=01
2
Recordeu que i = v/—1 i per tant 2 = —1. Aleshores, tenim que
1=Vi=y/()(-1)=vV-1V-1=ii=i®=-11!l

Prenen les corbes formades per mitges circumferéncies, com a la figura seglient, de
manera que la linia puntejada tingui longitud 1. Anomenen I, per n = 1,2,3,... les
longituds de les corbes que anem obtenint. Com que les corbes s’aproximen al segment
vertical de mida 1, les seves longituds [,, s’hauran d’aproximar a 1. Per exemple I; =
2(2%%) = 5. Bs facil veure que Iy =l =1l3 =--- =1, =--- = 7. Per tant, § = 1!

C
C

l

Q
=
-

NN AN/

9 ls Iy 1

4.2.9. Volem sumar els infinits niimeros

11 11 11 1
) 2737 4757 6777 87"'
Anomenem S la seva suma. D’una banda, tenim que

1 1

SR +
273 4 6 7 8

1
=1 Z ..

5 5
U A NS U b WS S b WS S b W
- 2 3 4 5 6 7 8 ’
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ja que % — n%rl >0 pern=1,2,3,... D’altra banda,
1 1 1 1 1 1 1 1
S R A I U
Y S (R I (S R
_< 2) 4+(3 6) 8+<5 10> T
1 1 1 1 1 1
:———+——— _ = — =
2 4 6 8 10 12
E O R TR
2 2 3 4 5 6

Com que § = %S, hem obtingut que S = 0; pero, usant el primer metode, teniem que
S > 0. Aleshores,
0=5>0!

VAVAVAN

0
0
0

Dues figures impossibles.

4.2.1 Explicacions

1. A la igualtat a(a —b) = (a+b)(a — b), tenim que a —b = 0, i 0 no es pot cancel-lar mai
quan esta multiplicant els dos costats d’una igualtat.

2. Sino es posa cap signe davant d’una arrel quadrada, s’entén que déna un valor positiu.

Aixi,
Va? = |z|.

Per tant,

3. Aquil’error ve d’usar que Z%Z = % quan ¢ = s. Observeu que si x = 1 de 'equacié 32=2 =

3x
3y—8 3z—3y+3 _ 0
3y—47 3z—3y+3 ~ 0"

obtenim que y = 2, i per tant

4. Quan es té una desigualtat certa, si la multipliquem per un nombre negatiu, canvia, per
exemple: 3 > 2, si multipliquem per —2, (—2)3 < (—2)(2). Per tant, a la demostracid,
quan cancel-lem log (%) , que és negatiu, canviaria la desigualtat a 3 > 2.
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5. L’error ve del mal s de la funcié arcsin. Observeu que sin A = sin(r—A) = sin(2r+a) =

..., 1 per tant la funcié arcsin pot prendre molts valors. Aixi

. \/5 T 2 Iw
arcsSI —— € § =, 5y oy r- (s
2 3°3° 3

i per A= % la igualtat certa és

0 / L adx . ( . T > . < .27 >
= —————— —arcsin (sin— ) — arcsin | sin — | =
1 V1 —a2x? 3 3
— arcsin — — arcsin —.
2 2

Observeu que hauriem comeés un error usant que arcsin (sin %’r) = 27”

. Recordeu que totes les funcions tals que derivades donen una funcié concreta, com per
exemple sin # cos 0, s’obtenen sumant una constant K arbitraria a una primitiva donada.
Es a dir

.2
sin” 0
+ K.

/sin@cos@d@ =

. . o n26 - 2 . o
Per tant, si tenim dues primitives # i —# de la mateixa funcié sinf cos @, no

podem deduir que sén iguals, siné que restades donen una constant. Aquest és el cas, ja

que
sinZ 6 cos? 6 1
2 2 2

. Fer arrels quadrades de nombres complexos és delicat. Com sempre, tenen dues solucions
(una canviada de signe respecte a l’altra), pero no és clar com prendre els signes de
manera que

Vab = /av/b.

Amb d’altres paraules, podem dir que la igualtat anterior només és certa per a a i b reals
positius.

. L’error prové de suposar que el fet que unes corbes s’aproximin a una altra implica que
les seves longituds també hauran d’aproximar la longitud de la corba limit. Aixd només
és cert si s’aproximen a la corba limit tant les corbes com les seves rectes tangents.

. Aquest és un error molt més delicat. El problema prové de saber que vol dir sumar
infinits nombres. Per exemple, si volem sumar els infinits niimeros:

11 1 1
"87167 327 647

)

N | —
| =

podem imaginar que aquests es corresponen a prendre les parts segiients d’'un quadrat de
mida 1 x 1: la meitat, la meitat de la meitat, i aixi successivament, obtenint rectangles
d’area els nimeros donats. Vegeu la figura segiient:
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ool

[N

W=

Aleshores és clar
11 1 1 1 1 _1
2TITR T TR Ta T
Observeu que la suma total és 1 i que el resultat que obtenim no depen de l'ordre en
que sumem els nombres. En canvi, quan es tracta de sumar infinits nombres positius i
negatius el resultat pot dependre de 'ordre en que se sumen. Aix0 ens pot sorprendre
perque la suma d’un nombre finit de nombres si que és commutativa. Podeu veure
aquest tema amb més detall, per exemple en el llibre de M. Spivak Cdlculo infinitesimal,
Reverté, 1975.

Si en lloc dels ntimeros considerats prenem els segiients
+1,—-1,+1,—-1,+1,—-1,4+1,—-1,+1,...
es pot veure el problema més clar. Si els sumem de dos en dos tenim
S=+1-)+(1-1)+(1-1)+---=040+0+---=0.

D’altra banda, si separem el niimero 1

S=+1+(-14+)+(-1+1)+---=14+0+0+0+---=1.
e /7

Dues figures impossibles més.
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Reproduccié d’una famosa obra del pintor holandes Mauritus Cornelis Escher (1898-1972).
El moén de les matematiques ha inspirat Escher en moltes de les seves obres.

M.
r 1
| &
- -
v v
\ Iy
LY 7
A Fi
LY 7
A Y &
Y /

— -_—
r 4 k9
i— —
] LY rd [
— N F —
A Y ) .

A
LW
W

Hi ha realment un triangle blanc?
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4.3 Logica

4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

Hi ha tres persones molt intel-ligents i els volem fer una prova per a veure quina té el
raonament més rapid. Aquesta consisteix en el segiient: els diem que els posarem a
cadascuna d’elles un mocador a ’esquena i que pot ser o blanc o negre. Un cop tinguin
posat el mocador, tots podran veure el de les altres persones, pero no el seu. Si veuen
algun mocador blanc hauran d’aixecar la ma. El primer que descobreixi el color del seu
mocador haura guanyat la prova.

Col-loquem mocadors blancs a les tres persones i evidentment totes tres aixequen la
ma. Veient aix0, una de les tres persones diu: “Ja sé de quin color és el meu mocador,
és blanc”. Com ho ha deduit?

Som en una zona del mén on només hi ha dues tribus, els Francs i els Mentiders. Els
de la primera tribu sempre diuen la veritat i els de la segona sempre menteixen. Som
al costat d’'un membre d’una de les tribus i li preguntem a un membre de l'altra (que
és bastant lluny) de quina tribu és. Ell ens contesta pero no el sentim bé. Aleshores li
preguntem a la persona que tenim al costat: “Que ha contestat?” Aquest respon: “Diu
que és un Franc.” A quina tribu pertany la persona que és a prop nostre?, i a quina la
persona llunyana?

Suposem que seguim en la mateixa zona del mén que en el problema anterior i som en
una cruilla on hi ha un Franc i un Mentider. Nosaltres som incapagos de saber quin és
quin. Només un dels dos camins ens porta al bosc on volem anar. Com farieu una sola
pregunta a una de les dues persones per tal de saber quin és el cami correcte?

Encara som a la mateixa zona del mén que en els dos problemes anteriors, pero a més
suposem que als nadius de les dues tribus no els agrada parlar gaire i només contesten
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amb dos monosil-labs: “tut”i “pap”. Sabem també que un d’aquests mots significa “si”i
Ialtre “no,”pero no recordem quin és quin. Si ens trobem en una cruilla amb dos camins
a seguir i sabem que només un dels dos camins ens porta al mar, on volem anar, com
us ho farfeu amb una sola pregunta per a saber quin dels dos camins és el que hem de
prendre. Evidentment, som incapagos de distingir els nadius de les dues tribus.

Hi ha un problema extret de la famosa obra de Miguel de Cervantes Don Quijote de la
Mancha, i que li posen a Sancho Panza. Es el segiient, copiat literalment:

Con esta sofisteria padecia hambre Sancho, y tal, que en su secreto maldecia el go-
bierno y aun a quien se le habia dado; pero con su hambre y con su conseva se puso
a juzgar aquel dia, y lo primero que se le ofrecié fue una pregunta' que un forastero
le hizo, estando presentes a todo el mayordomo y los demas acolitos, que fue:

—Setlor, un caudaloso rio dividia dos términos de un mismo sefiorio (y esté vuestra
merced atento, porque el caso es de importancia y algo dificultoso). Digo, pues, que
sobre este rio estaba una puente, y al cabo della, una horca y una como casa de
audiencia, en la cual de ordinario habfa cuatro jueces que juzgaban? la ley que puso
el dueno del rio, de la puente y del senorio, que era en esta forma: “Si alguno pasare
por esta puente de una parte a otra, ha de jurar primero adénde y a qué va; y si
jurare verdad, déjenle pasar; y si dijere mentira, muera por ello ahorcado en la horca
que alli se muestra, sin remisién alguna.” Sabida esta ley y la rigurosa condicién della,

1Un problema, enigma.
2 Aplicaban.
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pasaban muchos, y luego en lo que juraban se echaba de ver que decian verdad, y
los jueces los dejaban pasar libremente. Sucedid, pues, que tomando juramento a un
hombre, juré y dijo que para® el juramento que hacia, que iba a morir en aquella horca
que alli estaba, y no a otra cosa. Repararon los jueces en el juramento, y dijeron:
“Si a este hombre le dejamos pasar libremente, mintié en su juramento, y, conforme
a la ley, debe morir; y si le ahorcamos, él juré que iba a morir en aquella horca,
y, habiendo jurado verdad, por la misma ley debe ser libre.” Pidese a vuesa merced,
senor gobernador, qué hardn los jueces de tal hombre; que aun hasta agora estdn
dudosos y suspensos. Y habiendo tenido noticia del agudo y elevado entendimiento
de vuestra merced, me enviaron a mi a que suplicase a vuestra merced de su parte
diese su parecer en tan intrincado y dudoso caso.

A lo que respondié Sancho:

—Por cierto que esos senores jueces que a mi os envian lo pudieran haber escusado,
porque yo soy un hombre que tengo mas de mostrenco que de agudo; pero, con todo
eso, repetidme otra vez el negocio de modo que yo le entienda: quiza podria ser que
diese en el hito.

Volvié otra vez y otra vez el preguntante a referir lo que primero habia dicho, y
Sancho dijo:

—A mi parecer, este negocio en dos paletas le declararé yo, y es asi: el tal hombre
jura que va a morir en la horca, y si muere en ell, juré verdad, y por la ley puesta
merece ser libre y que pase la puente; y si no le ahorcan, juré mentira, y por la misma
ley merece que le ahorquen.

—Asi es como el senor gobernador dice —dijo el mensajero—; y cuanto a la entereza
y entendimiento del caso, no hay mas que pedir ni que dudar.

Quina resposta creieu que Sancho Panza va donar. A les solucions trobareu la continuacio
d’aquest text.

Quan es fan enunciats sobre si certes frases sén certes o falses, s’arriba a situacions
sorprenents. Considerem els exemples seglients:

— Un catala diu: “Tots els catalans sén mentiders.” Que pots dir sobre els catalans?

— Frase A: La frase B és falsa.
Frase B: La frase A és certa.

— Plat6 diu: “La proxima frase de Socrates sera falsa.” Sécrates diu: “Platé ha dit la
veritat.”

Li fem un regal a un amic, i per fer-ho a una mica més divertit li diem que ’hem posat
dins d’una capsa d’entre cinc, que estan numerades de 1’1 al 5. A més, li assegurem que
si obre les capses per ordre numeric, I’hem posat en una capsa de manera que mai no es
pugui esperar quina és la que conté el regal.

Aleshores ell raona de la manera segiient: “El regal no pot estar a la cinquena capsa
ja que, un cop obertes les quatre primeres, ja no seria una sorpresa per a mi trobar-lo a
I'tltima. De la mateixa manera puc descartar la quarta, després la tercera, la segona i
la primera. Per tant, totes les capses seran buides i no tinc cap regal.”

La prediccié del futur també porta problemes logics. Suposem que algu ens diu que pot
predir el futur. Nosaltres li diem: “Hem escrit en un paper una cosa que pot passar o

3Por.
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no abans de dema; si creus que passara, escriu Sf en un paper, i si creus que no passara,
escriu NO”.

Nosaltres hem escrit al paper: “Abans de dema hauras escrit NO en un paper”.

Ha pogut endevinar si el que hem escrit passara?

Diu la llegenda que en un petit regne medieval dos savis estrangers varen ser agafats
i conduits a la torre més alta del regne. La torre tenia dues cel-les amb una finestra
cada una. Si es mirava per les dues finestres, es veien tots els pobles del regne, pero
no hi havia cap poble que es veiés des de les dues finestres. Es va tancar a un savi
a cada cel-la de la torre amb les instruccions segiients: “Heu d’endevinar, sense parlar
entre vosaltres, quants pobles hi ha al regne. Cada mati vindrem a preguntar-vos si ja
ho heu descobert. Si un de vosaltres encerta el nombre de pobles, us deixarem ambdos
lliures. Si s’equivoca, us conduirem immediatament al soterrani de la torre, on passareu
la resta dels vostres dies. Només us donarem una pista: al regne hi ha tres o quatre
pobles.” Segons diu la historia, un dels dos savis va parlar correctament el tercer mati.

Quants pobles hi havia i quants en veia el savi que va parlar?

4.3.1 Explicacions

1.

La persona ha raonat aixi: “Si jo hagués tingut un mocador negre a 1’esquena, qualsevol
de les altres dues persones (recordem que també sén molt intel-ligents) hauria raonat
de la manera segiient: “veig un mocador blanc i un mocador negre; si jo tingués un
mocador negre a l’esquena, la persona que té el mocador blanc veuria dos mocadors
negres i no hauria aixecat la ma; com que ha aixecat la ma, vol dir que el meu mocador
és blanc.” Com que cap de les dues persones no ha dit res, aixo vol dir que el meu mocador
és blanc.”

Un problema molt similar es té quan, en lloc de dir a les persones que han d’aixecar
la ma si veuen algun mocador blanc, se’ls diu que només hi ha tres mocadors blancs i
dos de negres.

. Observeu que, independentment de la tribu a que pertany la persona llunyana, la resposta

sempre sera: “Séc Franc”; si ho és, perque és cert, i si no ho és, perque és mentida. Per
tant, com la persona que és a prop nostre ha dit: “Diu que és Franc”, aixo vol dir que
la persona propera diu la veritat i és Franc, i que la persona llunyana és Mentider.

La pregunta que li podem fer a qualsevol dels dos és: “Si li preguntés a ’altra persona
si aquest —assenyalant un dels dos camins— és el cami del bosc, que em diria?”

Observem que si el cami és el correcte, les dues persones ens contestarien que NO;
el Franc perque ens diria el que realment contestaria el Mentider, i el Mentider perque
canviaria la resposta del Franc. De la mateixa manera podem raonar que si el cami no
fos el correcte, els dos ens contestarien que I'altre diria que Sf que ho és. Per tant, hem
de fer el contrari del que ens contestin.

. La pregunta que cal fer és molt enrevessada, i és la segiient: “Si jo et preguntés si aquest

és el cami del mar, em contestaries que <tut>?"
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Veiem les possibles respostes en funcié de si la persona és Franc o Mentider i del significat

de “tut”i “pap”:
Cami NADIU | SIGNIFICAT “TUT” /“PAP” | RESPOSTA
Correcte Franc Si/No Tut
Correcte Franc No/Si Tut
Correcte | Mentider Si/No Tut
Correcte | Mentider No/Si Tut
Incorrecte | Franc Si/No Pap
Incorrecte | Franc No/Si Pap
Incorrecte | Mentider Si/No Pap
Incorrecte | Mentider No/Si Pap

Per tant, independentment de si la persona és Franc o Mentider i del significat de “tut”i
“pap”, la resposta és “tut’si el cami és el correcte i “pap”si el cami és 'incorrecte.

5. La continuaci6 del text del Quizot és:

— Digo yo, pues, agora —replicé Sancho— que deste hombre aquella parte que
juré verdad la dejen pasar, y la que dijo mentira la ahorquen, y desta manera se
cumplird al pie de la letra la condicién del pasaje.

—Pues, senor gobernador —replicé el preguntador—, serd necesario que el tal
hombre se divida en dos partes, en mentirosa y verdadera; y si se divide, por fuerza
ha de morir, y asi no se consigue cosa alguna de lo que la ley pide, y es de necesidad
espresa que se cumpla con ella.

—Venid acd, senor buen hombre —respondié Sancho—; este pasajero que decis,
0 yo soy un porro, o él tiene la misma razén para morir que para vivir y pasar la
puente; porque si la verdad le salva, la mentira le condena igualmente; y siendo esto
asi, como lo es, soy de parecer que digdis a esos senores que a mi os enviaron que, pues
estdn en un fil* las razones de condenarle o asolverle, que le dejen pasar libremente,
pues siempre es alabado mads el hacer bien que mal, y esto lo diera firmado de mi
nombre si supiera firmar, y yo en este caso no he hablado de mio, sino que se me
vino a la memoria un precepto, entre otros muchos que me dio mi amo don Quijote la
noche antes que viniese a ser gobernador desta insula: que fue que cuando la justicia
estuviese en duda, me decantase y acogiese a la misericordia; y ha querido Dios que
agora se me acordase, por venir en este caso como de molde.

Hi ha molts altres problemes que presenten essenci-
alment la mateixa situacid, per exemple el segiient:
Un dinosaure pren el nen a una mare i li pregunta:
“Em menjaré el teu fill? Si respons correctament, te’l
tornaré sa i estalvi; si no, me’l menjaré”. La mare li
respon: “Et menjaras el meu fill”.

6. Ens limitarem a posar un altre exemple. Prepareu una targeta i en una cara escriviu-hi

LA FRASE ESCRITA A L’ALTRA CARA D’AQUESTA TARGETA ES CERTA

4En el fiel de la balanza.
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a Daltra cara escriviu:
LA FRASE ESCRITA A L’ALTRA CARA D’AQUESTA TARGETA ES FALSA

Quin embolic!

i

¥

Recurrencia grafica infinita.

7. El regal és en una qualsevol de les capses, i tal com haviem predit ell no esperava que
fos en aquella capsa.

En certa manera, el raonament del nostre amic ha fallat.

8. No; si ha escrit sf clarament, no ho ha endevinat; si ha escrit NO, vol dir que creia que
no passaria el que esta escrit, i realment ha passat.

9. Abans de mirar per la finestra, els dos savis es posen a pensar en totes les combinacions
possibles:

e Si un dels dos savis veu 4 pobles el primer mati, parlara i encertara segur.

e Sil'un en veu 3 i 'altre 0, el que en veu 0 pensara que ’altre en pot veure 3 o
4. Pero, si en veiés 4 ja hauria parlat el primer mati; per tant, si no ha parlat és
perque en veu 3. Aixi, el segon mati, el savi que veu 0 pobles encertara el nombre
de pobles.

e Sil'un en veu 3 i laltre 1, el savi que en veu 3 pensara que ’altre savi en veu 0 o
1. Si en veu 0, per al cas anterior, parlara el segon mati; si no ho fa és perque en
veu 1. Aixi, el tercer mati el savi que en veu 3 encertara el nombre de pobles.
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e Si un savi veu 2 pobles i 'altre 1, el savi que en veu 1 s’esperara al tercer mati. Si
el tercer mati l'altre savi no ha parlat és perque no sén pas al cas anterior i, per
tant, no en veu 3, siné 2. Aixi, el savi que veu 1 poble encerta el nombre de pobles
el quart mati.

e Si els dos savis veuen 2 pobles, s’esperaran que arribi el quart mati per a descartar
el cas anterior. Com que cap dels dos parla el quart mati, el cinque mati els dos
alhora encertaran el nombre de pobles.

Per tant, si se sap que el tercer mati un savi va encertar el nombre de pobles, és que
n’hi havia 4 i que el savi que va parlar és el que en veia 3.

Us salvarieu vosaltres si us plantegessin el mateix problema pero en comptes d’haver-
hi tres o quatre pobles, n’hi hagués vint-i-tres o vint-i-quatre?

16 dodecaedres truncats.
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4.4 Magia matematica

4.4.1. Endevinar un objecte. Construiu una carta amb quinze objectes com a la figura

Vo O ¥
O AL T = O
P @M

Demaneu a algi que trii un dels quinze objectes. Després li demaneu que digui si
I'objecte que ha triat és o no a cada una de les quatre cartes segiients:

0 X AV ooA
[ @& || O [ M &

K OA O e O
+ @MWME| |+ @ ME

L’objecte triat s’obté fent els comptes segiients: s’associa a cada una de les quatre
cartes amb vuit objectes un dels nimeros 1, 2, 4 i 8 amb la regla segiient: es mira
I’objecte de dalt a esquerra. Cada un d’ells indueix el nimero: un pal — 1, una V — 2,
un quadrat — 4, una estrella de 8 puntes — 8. La suma dels ntiimeros associats a les
cartes on hi ha I'objecte que busquem ens déna el nombre al qual correspon 1'objecte
buscat en la carta que conté tots els objectes. De fet, és millor no posar cap nombre a
la carta amb els quinze objectes i numerar-los mentalment per files (el pal 1’1, la V el 2,
el cercle el 3,...).

4.4.2. Endevinar una carta. D’una pila de 27 cartes demanem que algi en trii una. Després
li diem que les barregi totes. Agafem les 27 cartes remenades i anem repartint les cartes
en tres piles (una a cada pila cada cop seguint el mateix ordre) ensenyant totes les cartes.
Li preguntem a la persona que ha triat la carta que indiqui a quina pila és la seva carta.
Recollim les tres piles posant la pila amb la carta al mig de les altres dues.
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Repetim el mateix procediment dos cops més. Sempre la carta triada és al lloc 14¢ de
la baralla (de fet, al lloc 5¢ de I'iltima pila que ens indica qui ha triat la carta).

Per que funciona el truc? Dissenya’n modificacions, sia amb el mateix nombre de cartes
i piles pero recollint la pila amb la carta no sempre al segon lloc, sia amb diferent nombre
de cartes i piles.

Suma rapidissima. Es preparen cinc daus amb les puntuacions segiients:

Dau 1 | 394 | 592 | 196 | 493 | 691 | 295
Dau 2 | 564 | 366 | 465 | 168 | 861 | 663
Dau 3 | 675 | 576 | 972 | 378 | 279 | 873
Dau 4 | 636 | 735 | 438 | 933 | 537 | 834
Dau 5 | 454 | 355 | 652 | 553 | 256 | 751

Es diu a algt que tiri els daus i assegurem que en pocs segons direm la seva suma.
El truc consisteix en el segiient: suposem que obtenim

394, 366, 972, 933, 256

aleshores sumem mentalment 4+ 64 2+ 3+ 6 = 21, calculem 50 — 21 = 29, i el resultat
és 2921.

Per queé funciona el truc? Pots construir taules diferents on funcioni el mateix truc?

Més jocs de cartes. Demanem que algi remeni un joc de cartes i, un cop remenat,
ens l'entrega i el posem a la butxaca. Aleshores li diem que digui un nombre de 1’1 al
15. Nosaltres anem traient cartes de la butxaca i les anem ensenyant. En traiem unes
quantes de tal manera que sumin exactament el nombre que la persona ha triat.

Tot i que aquest truc és molt senzill, sol fer molt d’efecte. El truc consisteix a posar-
se primer quatre cartes ordenades a la butxaca, un 1, un 2, un 4 i un 8. Quan ens donen
la resta de les cartes les posem a continuacié de les 4 triades (normalment ningi no
s’adona si d’un joc complet de cartes n’hem tret quatre). Com segueix la resta del truc?

Truc del calendari. Portem un calendari de tot 'any i diem a algi que agafi un
quadrat 4 x 4 (format per 16 dies d’'un mes qualsevol). Un cop I'ha triat (nosaltres no
el veiem en cap moment), li diem que ens digui quin és el nombre més petit

Desembre 1999

4 )
6 11 12
13 18 19
20 25 26
27 28 29 3 31
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A continuacié li diem que tril un nombre qualsevol i que ratlli la seva fila i la seva
columna (vegeu la figura si tria al 16). D’entre els nombres restants li diem que en
tril un altre i elimini també la seva fila i la seva columna, i aixi un cop més. Vegeu la
figura segilient per a les tries 16, 8,21. Queda sense ratllar el 31.

Li diem que sumi els quatre nimeros no ratllats. El resultat el podem endevinar: sera
4(x +12), on z és el nombre que ens havien dit. En aquest cas, 8 +16 +21+31 = 76 =
4(7 4+ 12).

Endevinar un nimero. Davant de tothom escrivim un nombre en un paper i li donem
a algd per a que s’el guardi a la butxaca. Agafem una altra persona i li diem que faci
les operacions segiients:

Que agafi un nombre de tres xifres no capicua.

— Que construeixi un altre nombre a partir del primer intercanviant la primera i la
tercera xifres.

— Que resti el més petit dels dos al més gran dels dos.

— Que agafi el resultat de la resta i construeixi un nou nombre intercanviant la primera
ila tercera xifres.

— Que sumi el nou nombre obtingut amb el resultat de la resta.

En aquest moment diem a l’altra persona que llegeixi el nombre que té guardat. Aquest
nombre coincideix amb el resultat de totes les operacions. Per que?

Sense cap pregunta. Donem a una persona tres o quatre jocs de cartes. Li diem que
les remeni bé. Aleshores, que pensi un nombre qualsevol de 1’1 al 12. Un cop pensat,
que vagi tirant cartes cap per amunt comptant en silenci fins que arribi a la carta que
ocupa el lloc corresponent al nombre que havia pensat. Que miri el valor d’aquesta carta
i a partir d’aquesta carta que compti tantes cartes com el valor indiqui fins a arribar a
una altra carta, que miri el seu valor i continui comptant, i aix{ successivament. .. Per
exemple, si pensa un 3 mira la tercera carta, si és un 5 tornara a mirar la vuitena carta,
si aquesta és un 12 tornara a mirar la vintena carta i aixi successivament.

Nosaltres anem mirant passar les cartes, i sense preguntar res, quan estan a punt
d’acabar-se totes les cartes encertem quines sén les cartes en que s’esta fixant. Per
exemple, aturem i li diem:“Oi que ara et tocara comptar tantes cartes?” Com creus que
podem endevinar-ho?
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4.4.8. Endevinar de nou un nombre. Demanem a una persona que pensi un nombre amb
tantes xifres com vulgui (millor tres com a minim). Després li diem que sumi totes
les xifres del nombre i que calculi la diferéncia entre el nombre inicial i la suma de
les seves xifres. Un cop fet el calcul, li diem que ratlli una de les xifres del resultat
i que ens digui la suma de les que quedin. Per exemple si pensa 1295, hauria de fer
1295—(1+249+5) =1295—17 = 1278. Aleshores, ratlla el 7iens diu 1+248 = 11.
Nosaltres som capagos d’endevinar el nombre que ha ratllat. Com ho fem?

4.4.9. Endevinar més nombres. Un dels trucs matematics més freqiients i que es basa en el
domini de les equacions és el que consisteix a demanar a algi que pensi un nombre (o
més d’un), que faci unes determinades operacions amb aquest (o aquests) i que ens digui
el resultat. A partir d’aquest resultat, i sense més que resoldre una equacio, nosaltres li
podem endevinar el nombre (o nombres) que ha pensat. Posem un exemple per a fixar
idees: com endevinar I’edat d’una persona. Li diem:

Agafa el nimero del mes en que vas néixer.

Multiplica’l per 4.
— Suma 5 al resultat.
— Multiplica el resultat per 50.

— Suma 1738 al resultat (suposant que fem el truc any 2000; en general, el que s’ha
de sumar és el nombre de any en curs menys 262).

Resta-li 'any que vas néixer.

A partir del resultat podem deduir 'edat de la persona. L’explicacié és la segiient:

Sigui x el nimero del mes i suposem que la persona hagués nascut el 1980. Els resultats
serien

x—4dx —4dx +5 — (dx +5)50 =
= 200z + 250 — (200x + 250) + 1738 =
= 200z + 1988 — (200x + 1988) — 1980 =
— (22)100 + 8;

per tant, la meitat de les dues primeres xifres ens donara el mes (z) en que va néixer
la persona. Les dues segones xifres més 12, (8 + 12) ens donaran els anys que fara la
persona durant ’any 2000. Com que ja sabem el mes en que va neixer (x), si fem el truc
abans del mes x li podem dir que té dinou anys; si el fem després del mes z, li direm que
en té vint. Si fem el truc el mes z, encara podrem sorprendre més la persona, ja que li
direm “No sé si tens 19 o 20 anys, pero sé que aquest mes és el teu aniversari.”

Hi ha una versié d’aquests trucs de fer operacions amb uns certs ntimeros i a partir
del resultat endevinar-los que és una mica més original. Li diem a una persona que pensi
un ndimero i que ella mateixa vagi fent-hi operacions (sumes, restes i multiplicacions,
preferentment) i que ens les expliqui en veu alta. A partir del resultat li podem dir el
nombre pel qual havia comencat. Com ho podem fer?

4.4.10. Desaparicié. Considerem la cartolina segiient, on hi ha deu columnes iguals:
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Si la retallem per la linia puntejada i la tornem a muntar posant la part superior esquerra
a la part dreta i viceversa, obtenim la figura segiient:

Observeu que aquesta només té nou columnes, també iguals. On és la columna que falta?

4.4.11. Paper misteridés. Agafeu una tira llarga de paper, cargoleu-la mitja volta i enganxeu
les seves parts més estretes. Obtindreu una superficie que s’anomena cinta de Mobius;
vegeu la figura adjunta. Experimenteu el que passa quan retalleu la cinta per la meitat
llarga comparant-ho amb el que passaria si retalléssiu la cinta sense haver-la cargolat.
Torneu a retallar per la meitat la cinta obtinguda.

El truc de magia consisteix a donar a algi una
cinta de Mobius molt llarga i agafar nosaltres una cinta
igual de llarga (pero sense estar cargolada). Aleshores,
quan nosaltres la retallem pel mig, queda dividida en
dues cintes més estretes; en canvi a l'altra persona li
passen coses estranyes!

Reproduccié d’una famosa obra del pintor holandes Mauritus Cornelis Escher (1898-1972)
basada en la cinta de Mobius.
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4.4.1 Explicacions

1. El truc esta basat en I’expressié d’un nombre en base 2. Per exemple, 11 =1-8+0-4+
1-241-1=1-11, i per tant I'objecte associat a 1’11, és a les cartes associades a 1, 2 i
8, 1 no és a la carta associada al 4.

Com construirieu un truc similar per a endevinar un objecte entre 31 usant cinc cartes
amb setze niimeros? Penseu un truc basat en la base 3.

2. El truc esta basat essencialment en la base 3. De fet, el que passa és que amb la primera
pregunta, un cop recollides les cartes, assegureu que la carta buscada estara entre la 10a
i 18a; amb la informacié de la segona pregunta assegureu les posicions entre 13a i 15a.
L’dltima pregunta col-loca la carta exactament al lloc 5¢ de I'iltima pila escollida (és a
dir, el lloc 14& un cop recollides les cartes).

3. Les cares de tots els daus tenen nombres de tres xifres p, ¢ i 7 amb 0 < p,q,r < 9
naturals. De fet, el nombre és p- 100+ ¢ - 10 + r.

Donat el dau i-esim ¢ = 1,2,...,5 posem a cada una de les seves sis cares, nombres de
la forma

(K; —1r)100 + ¢;10 + 7
on r pot ser diferent a cada cara.

Es pren ¢1+q2+q3+qs+qg5s = 10nonnés1,2,3,64i K1+ Ko+ K3+ K4+ K5 = 50—n.
Aleshores, si tirem els cinc daus, obtindrem els cinc nimeros segiients

dau 1: (K7 —a)100 4 ¢110 + a per un cert a
dau 2: (K2 —5)100 4 ¢210 + b per un cert b

dau 5: (K5 —€)100 + ¢510 + e per un cert e.
Sumant els nombres i dient s =a+ b+ --- + e, tenim que la suma val

(K1 4+ Ko+ -+ K5 —5)100+ (1 + g2+ -+ ¢5)10 + s =
= (50 —n — $)100 4 (10n)10 + s = (50 — 5)100 + s

i per tant tenim una explicacié de per que funciona el truc. A la taula de valors s’ha
pres n = 3.

4. Com ja haureu deduit, el que s’ha de fer és expressar el nombre que ens han dit en base 2
i treure les cartes que corresponen als llocs on hem obtingut un 10. Per exemple, si ens
diuen 10,10 =1-84+0-4+41-2+40-1 = 1010). Per tant, hem de treure la segona i la
quarta cartes.

5. Recordem que z denotara la data més petita del calendari. Es facil observar que el
quadrat de 16 nimeros triat al calendari sera

T rz+1 T+ 2 z+3
z+7 x+8 x+9 2x+4+10
x+14 xz+4+15 z+4+16 x4+ 17
r+21 x4+22 423 x+24
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El procediment explicat per a triar els quatre nombres fa que s’hagi de triar un nimero
de cada fila i un de cada columna; per tant la suma dels triats sera 4z + (8 + 16 4 24) =
4(x +12).

En aquest cas, es pot entendre encara millor si es construeix una taula més general. Ho
farem amb un exemple. Observeu que si prenem dos blocs de cinc nimeros {1,0,3,2,4}
i{4,2,1,5,0} i construim les seves sumes, tenim

1101324
415141768
21312546
1121114135
5165|8719
01703 ]2]4

Ara, si triem, com abans, 5 dels 25 nimeros generats (per exemple, els marcats 5+ 5 +
1+ 7+4) és a dir un de cada fila i un de cada columna, la seva suma sera igual a la
suma dels deu nimeros que generen la taula

54+5+14+7+4=22=(14+0+3+2+4)+4+2+1+5+0).

En el primer cas que estudiavem, els generadors de la taula eren {x,z + 1,z + 2,z + 3}
i {0,7,14,21} per tant la suma era

+@+)+(@x+2)+(x+3)+(0+7+14+21) =4z +48 = 4(x + 12).

Veurem que el resultat de totes les operacions és 1089, independentment del nombre
inicial que triem. Sigui

p100 + q10 +r
amb 0 < p,q,7 < 9 el nombre triat. Com que no és capicua p # r. Construim 'altre
nombre r100 4 ¢10 4+ p. Suposem, per exemple, que p > r. Aleshores,

p100 + 10 + 7 — (100 + q10 + p) =
=(p-r)100+(r—p)=(p—-r—1)100+9-10+ (10+7r —p)

on1l<10+r—p<9. Per tant, les xifres de la restason p—r — 1,91 10+ 7 — p. Fem
I'dltima suma

(p—r—-1)1004+9-10+ (10+7r—p)) +((10+7r—p)100+9-10+p —7r —1) =
=9-100 + 18 -10 + 9 = 1089,

independentment de les xifres del primer nombre, p, g i 7.

Aquest truc és essencialment diferent de la resta. Només podriem assegurar que funci-
onaria sempre si disposéssim d’infinites cartes (cosa impossible). En aquest cas, també
és dificil donar una explicacié rigorosa.

Comengarem amb un cas més senzill: Suposem que tenim una moneda i 'anem tirant
molts cops fent els calculs seglients: Cada cop que surt una cara sumem 1, mentre que
cada cop que surt una creu restem 1. Es pot veure que com més gran és el nombre de
cops que tirem la moneda, més probable és que els nostres comptes passin pel valor 0.
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El nostre joc de magia es basa en una propietat similar. El que fem nosaltres (inde-
pendentment del que faci la persona a la qual fem el truc) és pensar un nombre i seguir
les mateixes regles que ell a 'hora de contar les cartes. Si en un cert moment els dos
arriben a la mateixa carta, per sempre més anirem seguint les mateixes cartes.

Si pensem una mica, veurem que una manera diferent de mirar-se aquesta situacié és
que a cada tria que fem els dos, la puntuacié difereix com a molt en 11 punts (I'un tria
1 i laltre 12 o viceversa). Aleshores, podem pensar que el que fem cada cop és sumar
un nombre d’1 a 11 si 'espectador arriba a una carta més alta que nosaltres; restar un
nombre de 1 a 11, si som nosaltres els que arribem a la carta més alta o no sumar res si
arribem a una carta amb el mateix valor. En altres paraules és com si tiréssim un dau
trucat de 23 cares (valors —11,—10,...,—1,0,1,2,...,10,11). El problema es fa més
dificil pel fet que no tots els valors surten en les mateixes proporcions. Es pot veure que
com més cops repetissim el procés, més facil seria que obtinguéssim un 0 a la suma total
(aix0 equivaldria a que els dos haurfem arribat a la mateixa carta).

8. Suposem que el nombre té 4 xifres, i és
1000a + 1006 + 10c¢ + d,

amb 0 < a,b,c,d <9. L’operacié que li demanem és

1000a + 1006 + 10c +d — (a+ b+ c+d) =
= 999a + 99b + 9¢ = 9(111a + 11b+¢)

i per tant el resultat sempre és multiple de 9. Ara recordem que les xifres d’un nombre
multiple de 9 sempre sumen un miltiple de 9; per tant, si ens ha eliminat una, la que
ha eliminat és el nombre que falta al nombre que ens diu per a arribar a ser un multiple
de 9. A l'exemple ens diu 11; per tant, la xifra eliminada ha de ser 18 — 11 = 7.

Aquest truc té un petit problema: si la persona ratlla un 0 o un 9, el nombre que ens
dira ja és un multiple de 9. En aquest cas ens hem de limitar a dir que ha ratllat un 0
oun 9 i que no podem precisar més.

9. Senzillament, nosaltres prenem com x el niimero que la persona pensa i fem mentalment
les operacions que ella va inventant, pero amb x. Al final de tots els calculs, arribem a
un valor ax +b. Quan ens digui el resultat, resolent ’equacié obtindrem z. Les divisions
també es poden permetre, pero compliquen el calcul mental. De totes maneres hi ha un
cas en que se’ns pot presentar un problema (el cas a = 0 en la notacié de dalt). Suposem
que la persona a la qual fem el truc fa les operacions segiients:

e Tria un numero: 5, (per a nosaltres, x).

e El dobla: 10, (per a nosaltres, 2z).

e Lisuma 3: 13, (per a nosaltres, 2z + 3).

e El multiplica per 3: 39, (per a nosaltres, 6z + 9).
e Lisuma 9: 48, (per a nosaltres, 6z + 18).

e El divideix per 6: 8, (per a nosaltres, = + 3).

e Li resta el nimero pensat: 3, (per a nosaltres, 3).
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Si en aquest moment decideix parar les operacions, estem perduts ja que no podrem
recuperar mai x. El que hem de fer en aquesta situacié és dir: “No cal que continuis
més, el resultat de les teves operacions és 3”7. Aix0 encara sorpendra més la persona, ja
que no ens haura dit cap nombre.

10. A la primera figura hi ha 10 columnes d’altura 9, mentre que a la segona figura hi ha
9 columnes d’altura 10. Es poden construir cartolines amb altres nombres de columnes
i amb altures diferents. Sempre n columnes d’altura n — 1 unitats. La idea de com
col-locar-les es veu més clara si es fa primer una taula només amb les seves llargades.
Aixi, la primera figura correspon a

Observeu que la columna 0,0 correspon al lloc on no hi ha columna.

11. Creiem que no cal donar cap explicacié.

Cub, dodecaedre i icosaedre estrellats.
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4.5 Paraules i nombres

Seleccié de problemes preparada per Antoni Guillamon i Grabo-
losa, professor de Matematica Aplicada del Departament de Ma-
tematica Aplicada I de la Universitat Politécnica de Catalunya.
tel.: 934011741, e-mail: toni@mal.upc.es.

4.5.1.

4.5.2.

Un palindrom és una frase que es llegeix igual del dret que del revés. Per exemple, la
paraula “Anna’o la frase “Catala a I’'atac”’en sén. En el text segiient hi ha ocults 13
palindroms, que poden ser frases senceres o paraules soltes.

El bar oloti té poc selaci (sic) a 'escé petit olorable. S’estimen més el peix menut i
afirmen que el bon seité pot i és noble. Per aixo s’han especialitat en productes de
Panxova.

Pero avui el dia no hi transcorre amb gaire calma...

D’un tallat n’ha sortit disparat un glop de llet al clatell del vei. Val més estar a re-
cer, penso, tot i que de vegades, si vas per la ruta natural reps avis. A la taula de la
dreta, una executiva parla pel mobil i diu en veu baixa “Iruca’m a casa, camacurt!”;
penja de seguida i es dirigeix lasciva al seu acompanyant tot dient-li “Tira’m anis a la
sina, marit!”. Al fons del bar, un aviador roda i va nu; de fet, d’entrada ja s’endevinava
que I’home tenia un aire de déria.

Mentrestant, a fora al carrer, un noi que duu una samarreta amb una gran U, li diu
a un home gran repenjat sobre una farola: “Avi, la nit negra i argentina li val”. Pero
I’home no escolta i fixant-se en la samarreta pensa que si la U gira, deu quedar igual, i
no va gens errat.

Tornant a dins, un senyor ha demanat l’especialitat a la cambrera. FElla s’hi atansa
i callada posa la sopera. Ja reposa la sopa d’all aci.

Amb les paraules ordenades alfabéticament que trobareu a continuacié, heu de formar
frases palindromiques en diversos idiomes (vegeu la definicié de palindrom al problema
4.5.1). No sempre en coneixereu el significat; pero ...podeu endevinar l'idioma com a
minim?

— a, ma, massa, massissa, massissa.

— a, a, ara, cavar, cert, la, la, rara, trec, vaca.

— gent, Islam, I’, la, mal, nega, si.

— 1, nens, nenes, Senén, set, sis, té.

— ivres, meritis, munis, servi, sinum, sitirem.

— amor, ibit, motibus, Roma, subito, tibi.

— a, abad, arroz, dabale, el, la, zorra.

— amo, la, pacifica, paloma.
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— arena, da, de, mala, mala, manera, me.

— a, a, a, canal, man, Panama, plan.

— a, a, a, dog, in, pagoda, panic.

— a, bird, imitators, rib, rot, timid.

— lavoro, oro, val.

— ama, ama, Ana Ana, e, Oto, Oto.

— a, écart, I’, mon, nom, tracé.

— ein, gazelle, mit, neger, nie, regen, zagtim.

— geen, kip, neeg, pik, toit.

— bude, dub, saze, zarastovat.

— ella, eka, Jarin, pakeni, pikk, rajalle, upukki.
Una modalitat més complicada de palindromia (recérrer a l'inrevés un text i trobar-hi
un significat) és la consistent a construir frases o locucions en una idioma A que llegides
en sentit contrari tinguin significat en un altre idioma B. A continuacié us en posem
uns quants exemples (no n’abunden gaire) en catala; esbrineu en quin idioma es pot
interpretar l’expressié inversa i separeu-ne les paraules que la componen:

1. Rera en Simo trist es troba.

2. Amor beneit a la base.
Per a acabar d’esgotar els jocs de mirall, us oferim unes quantes frases amb una doble
simetria. En que consisteix?
SI O NO, NOIS?
NO SI HI SON
ON SI NO SONI, NO SONIS, NO
NO XINO, NIXON
0 020 0 Z0O

AR

Un altre joc de paraules entretingut és el de formar quadrats en que es puguin llegir
un conjunt de paraules, tant en sentit horitzontal com en sentit vertical; s’acostumen a
anomenar quadrats magics. Per exemple, amb les paraules “soc”, “ona”i “cas”, es pot
formar el segiient quadrat:

QO w
> Z 0
» > QO

A continuacié us donem dues paraules d’un quadrat 4x4, dues d’'un quadrat 5x5, i tres
d’un quadrat 6x6. Es tracta trobar-ne 2, 3 i 3, respectivament de manera que formin
quadrats magics. No diem tampoc l'ordre que ocupen dins del quadrat. A l'apartat de
solucions us en facilitem una, tot i que no és Unica.

1. eren, pero.

2. amena, devem.
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4.5.6.

4.5.7.

4.5.8.

4.5.9.

3. torege, arameu, occita
Les frases segiients tenen en comu una passio per I'ordre. La descobriu?

Si no surts faré importunar-te.

S6n uns mals nens i poc humans.

T’estimo quan ets fi com un paper.

Un pages nip6 un arbre mig mort unta.

El vi bo, suc malefic!, ofusca el pilot mutant.

L’afegit6 cus al vestidor bru; cal fer-hi costura.

NS g W=

El dijous a les cinc o quarts de sis, com tu saps, set minyons bilgars, set, inocularen
sis nous al-lels.

Tant els mots del primer paragraf entre ells com els del segon tenen un tret peculiar
comu. Quan els hagiu trobat, feu una aposta aproximada sobre quants de cada classe
pot haver-hi a la nostra llengua.

L’accés a Iillot, a I’Agost, és bell. Des del bot nou, filmo els ceps del clos i el cim
de lest, dens de flors, bens i llops. El bou és a lert hort, i el jou és al clot. A dins,
I’Abel, en deju, del got beu most de I’any, i em diu: “ahir, 'amo de I'illot hi fou mort a
cops del giny d’acer de I'agil fill hippy. EI cos nu, al llot és, i el cor del gos bru adéu diu
a ’amo bo. No et fiis dels afins!”

No us amoineu ni em sancioneu si al-ludeixo a la numeracié evolutiva d’equacions i
l'equiparo a un dinosaure. Obrarieu constructivament si I'abordéssiu amb precaucio.
Assumeixo que no oblidareu ’educacié de qué gaudeixo i la boniquesa dels eucaliptols
ucrainesos.

De vegades, darrere un missatge aparentment innocent, trobem missatges xifrats amb
finalitats més “perverses”. Les tres frases que trobareu a continuacié contenen una gran
dosi d’“irracionalitat matematica”, tal com afirmarien, amb rad, I’Aurea i 'EPi. Sabrieu
dir per que?

1. I’Andreu m’esperara. Com dos magnifics companys correrem plegats vers horitzons
anhelats.

2. El transit a Sabadell és carregds; a Terrassa és embussat pero menys complicat.

3. Soc a casa i sento fugagment un soroll melés, com dotze rossinyols fabulosos cantant.

Que té aquest text d’especial? Podeu aplicar-li alguna mena de canvi de génere?

Aixi que vam arribar al port, vaig despullar-la de la vela; el moll cruixia després de
temps inactiu i el cel es tancava rere nostre. Com que tenia una fam de salvatge, amb
tot el dret vaig engrapar una pita sense alliberar tampoc la poma. El mos estava pre-
parat. Apassionat, m’hi vaig llancar. No vaig deixar ni una pela per llepar! Un cop
refet, vaig decidir agafar el tren i allunyar-me d’aquell lloc. Llavors, mirant avall, amb
el bitllet ben agafat, vaig observar ben clarament el que em temia: “titol esgotat”.
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4.5.10. Un company ens ha fet un encarrec, pero no volem desvetllar directament la seva iden-
titat. Si trobeu una relacié entre les frases segiients potser podreu arribar a aquesta
identificacio.

1. Du el gringo amb malles

2. Mag negre moll: buida’ls
3. Lliga’m nou grams de ble
4. Gun smell admirable, go!

4.5.11. En LluisiI’Helena, arquitectes, s’acaben de casar. Els amics els han preparat una facecia
per a fer-los esbrinar qui guarda el regal de noces.

Per arribar a la solucid, els passen el planol de la figura segiient, en el qual hi ha cinc
recintes dibuixats sobre una plantilla mil-limetrada. Han de calcular les seves arees (en
mm?), i multiplicar-les entre elles. El resultat i la paraula LISENUAPDR els han de
donar la clau de volta.

®

Com que el nostre paper no és mil-limetrat, us facilitem les coordenades dels cinc recintes
per tal que en pugueu calcular les arees:
— Recinte 1: {(—2,24),(9,27), (15, 15),(7,13),(12,6),(2,9)}

— Recinte 2: {(—2,1), (18,5), (18, 28), (40, 31), (40, 13), (52, 11), (52, —5), (20, —5),
(28,-1), (20, —1)}

— Recinte 3: {(18,30), (18,41), (32, 41), (48, 38), (50, 35)}

— Recinte 4: {(42,19), (52,21), (52, 35), (62,37), (59, 27), (64, 27), (65, 15), (62, 13),
(56, 19), (52, 14)}

— Recinte 5: {(55,11), (65,9), (56, —2)}

Si, tot i aixi, encara us fa mandra calcular les arees, llegiu la primera linia de les solucions.
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4.5.1 Explicacions

1. (a)

(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
i)
(k)
(1)
(m)

El bar oloti té poc selaci (sic) a 1’escé petit olorable.

el bon seitd pot i és noble

tallat

llet al clatell

recer

si vas per la ruta natural reps avis
Truca’m a casa, camacurt!
Tira’m anis a la sina, marit!

un aviador roda i va nu

aire de deria.

Avi, la nit negra i argentina li va!
la U gira, deu quedar igual

i callada posa la sopera. Ja reposa la sopa d’all aci.

2. Una vegada reconstruides, obtindreu les frases segiients:

CATALA

— A massissa massa, massisa ma.

— Cert: a la rara vaca, a cavar ara la trec.
— Mal si la gent nega I’Islam

— Senén té sis nens i set nenes.

LLAT{

— Meritis servi sinum munis ivres sitirem.

— Roma tibi subito motibus ibit amor.
CASTELLA

— D4ébale arroz a la zorra el abad.

— Amo la pacifica paloma.

— Arena mala me da de mala manera.

ANGLES
— A man a plan a canal, Panama
— A dog! A panic in a pagoda!
— Bird imitators rot a timid rib.
ITALIA

— Lavoro oro val.

— Oto ama Ana e Ana ama Oto.
FRANCES. Tracé mon nom a l’écart.

ALEMANY. Ein neger mit gazelle zagtim regen nie.

HOLANDES. Kip neeg toit geen pik.
TXEC. Bude zarastovat saze dub.

175
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e FINES. Ella, Jarin eka pikk upukki pakeni rajalle.

Moltes d’elles les hem extret de la llista de palindroms d’en Ramon Giné que apareix a
la pagina web www.fut.es/ mgine. Aquesta persona, tal com diu en aquesta pagina, és
I’“home darrere dels palindroms”, probablement la persona que més ha fet per la difusié
d’aquest genere a la nostra cultura.

(a) En angles, es pot llegir com Abort set. Sir Tom is nearer.

(b) En castella, es pot llegir com Esa bala tiene broma.

Es facil de veure que només hi intervenen sis lletres diferents: H, I, N, O, S, X. Aquestes,
a més de la Z, sén les iniques majuscules que es veuen igual si girem el full. Per tant,
les frases que hem presentat, a part de ser palindroms en sentit horitzontal (vegeu els
exercicis 4.5.1 1 4.5.2), també ho sén en sentit vertical. En altres idiomes, on la W és més
freqiient en el lexic habitual, la M i la W poden actuar de simetriques I'una de ’altra.

. Una possible solucié dels tres quadrats que us proposavem seria:

P E R O S E D A S O C C I T A
E R E N E N E M A C L A R O R
R E R E D E V E M C A DI R A
O N E S A°M E N A I R I S E M
S A M A L T O R E G E

A R A M E U

En el fons, el que fem sén mots encreuats simetrics sense quadres negres, i ja us podeu
imaginar que en augmentar el nombre de lletres per paraula el problema es complica en
gran manera. Els de vuit lletres en amunt es poden considerar excepcionals.

L’aparici6 de vocals en el text sempre segueix un ordre creixent (AEIOU) i és ciclica.

El tret que caracteritza tots els mots del primer paragraf és que les lletres sempre estan
en ordre creixent (paraules alfagramatiques). Observeu, a més, que una conseqiiéncia
immediata és que el nombre de lletres de cada paraula és més aviat curt. Aquesta propi-
etat es pot veure d’una altra manera: si demanéssim ordre estrictament creixent, en un
alfabet de L sfimbols hi hauria només 1 possible paraula alfagramatica de longitud L; L
de longitud L — 1, ;
p, amb p < L. En un alfabet de 26 simbols com el nostre, aixo déna 67 108 837 possibles
paraules alfagramatiques. Ara bé: un cop formades, cal demanar que tinguin sentit... I
si ho fem, ens quedem amb unes 300! Per veure-ho, hem fet un programa d’ordinador que
ha analitzat totes les paraules que hi havia en un fitxer corrector de catala. Ens n’han
sortit 290, pero no podem assegurar que el fitxer emprat contingui tots els mots catalans.

de L —2; i, en general, < ZI; ) possibles paraules de longitud

Al segon paragraf, la peculiaritat rau en el fet que totes les paraules de més d’una
sil-laba contenen una i només una vegada les cinc vocals (paraules pentavocaliques).
Aquesta mena de paraules tampoc no sén una raresa en el nostre idioma: a partir del
nostre fitxer, n’hem comptabilitzades unes 1 430. D’altra banda, si deixem que les vocals
es repeteixin, n’aconseguim unes 5 100. Segons explica en Marius Serra al seu Manual
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10.

11.

d’enigmistica (Columna, 1991), que us recomanem fortament, el lingiiista Lluis de Yza-
guirre en va trobar 14 006, fet que indica que el nostre fitxer de partida no és pas dels
més complets.

. Les paraules clau de l'enunciat sén irracionalitat matematica, rad...aurea i E-Pi. Si

compteu el nombre de lletres de cada paraula trobareu, respectivament, els primers
decimals (tallant a la darrera xifra) de tres dels nombres irracionals més coneguts: la
raé aurea = (14+/5)/2 ~ 1.6180339887498, el niimero e ~ 2.7182818284590, i el ntimero
m =~ 3.1415926535897. Els zeros han estat substituits per punts, pero no tots els punts
signifiquen zeros.

. Canvieu de genere tots els noms que hi apareixen; veureu que el text canvia completa-

ment de sentit:

Aixi que vam arribar a la porta, vaig despullar-la del vel; la molla. . .

Totes les frases tenen les mateixes lletres: AABDEEGGILLLMMNORSU. Continueu
buscant la identitat del company. Esta escrita al llibre pero en un altre lloc. Quan el
trobeu, podreu imaginar-vos també quin és ’encarrec.

Les arees de les diferents regions sén, respectivament, 251, 997, 201, 239 i 64. La
multiplicacié de totes 5 déna p = 769383400512. Si a cada lletra de la paraula clau
LISENUAPDR 1i associeu un nombre del 0 al 9 i substituiu els nombres de p per les
lletres adients, obtindreu PARE D’EN LLUIS.
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Notes historiques 1 citacions.

Qualsevol tema d’estudi s’entén molt millor si es considera la seva evolucié al llarg dels temps.
Per aixo hem decidit incloure una seccié amb ressenyes sobre alguns dels cientifics que han
contribuit a fer que la matematica i I’estadistica siguin com sén avui en dia.

També hi ha una seccié de citacions sobre matematiques i ciéncia, que creiem que ens
divertira, i ens fara pensar a tots una miqueta.
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Principia mathematica,
Isaac Newton, 1687.
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Analysis infinitorum,
Leonhard Euler, 1748.
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5.1 Historia
Text preparat per Ferran Cedd i Giné, professor d’Algebra del

Departament de Matematiques de la Universitat Autonoma de
Barcelona. tel.: 93581 18 67, e-mail: cedo@mat.uab.es.

Al llarg de la historia, hi ha hagut personatges famosos que han contribuit notablement a
I’evolucié de la matematica. Aqui, presentem una ressenya biografica d’alguns d’ells. Aix0 no
vol dir que aquests siguin els més importants. La historia de la matematica és llarga i complexa,
i és dificil decidir quins han estat els que han incidit més en el seu desenvolupament.

Tales de Milet (aproximadament del 624 al 548 a.C.)

Matematic, fisic, filosof i astronom grec, un dels Set Savis
de Grecia. Se’l considera el pare de les matematiques de-
mostratives, el primer a demostrar resultats geometrics. Es
famoés, per exemple, el teorema de Tales. Altres resultats
que la tradicié manté que va demostrar son els segiients:

e La suma dels angles d’un triangle equival a dos rectes.

e Un angle inscrit en un semicercle és un angle recte.

Teorema de Tales. Donades tres rectes paral-
leles r1,79, 13 1 dues rectes concurrents si, So que
tallen a les rectes r1,719,73 en els punts A, B,C
i A', B',C' respectivament, es té que

A'B"  B'C

AB

g
Q




5.1. HISTORIA

Pitagores de Samos (aproximadament del 580 al 500 a.C.)

Matematic i filosof grec. Després de viatjar a Egipte i Ba-
bilonia, i possiblement a l’fndia, es va establir a Crotona (al
sud-est d’Italia), a la Magna Grecia. Alli va fundar una so-
cietat secreta, coneguda per nosaltres com escola pitagorica.
El lema d’aquesta escola era “Tot és nombre”. El famoés
teorema de Pitagores era conegut, abans que ell visqués,
pels babilonis. Es possible que Pitagores fos el primer a
demostrar-lo, encara que no n’hi ha proves documentals.

Teorema de Pitagores. Si ABC és un trian-
gle rectangle en A, llavors

BC? = AB° + AC?

Euclides d’Alexandria (s. IIT a.C.)

181

Matematic grec autor dels Elements, obra que recull la geo-
metria classica grega exposada de forma deductiva. Se sap
poc de la seva vida, no es coneix ni on va néixer. Va ser pro-
fessor a Alexandria. Els Elements és potser el llibre de text
de matematiques més faméds de tota la historia. A part de la
geometria sintetica, els Elements també tracten I'aritmetica.
Per exemple, es demostra que hi ha infinits nombres primers.

Arquimedes de Siracusa (aproximadament del 287 al 212 a.C.)

Savi grec i el matematic més important de tota 'antiguitat.
Va donar un metode que permet obtenir una aproximacié
de 7w tant bona com es vulgui. Va demostrar la relacié que
hi ha entre ’area d’un cercle i la longitud de la seva circum-
ferencia:

radi x longitud de la circumferencia
2

area del cercle =

Una de les seves obres, el Meétode, que va estar perduda
durant segles, es va recuperar a l'any 1906. En aquesta
obra, hi ha les primeres idees d’infinitesims. Aquestes idees
no van tornar a sorgir fins al segle X VII, amb la invenci6 del
calcul diferencial.
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Es diu que Arquimedes va descobrir el seu famés principi de flotacié mentre s’estava
banyant i que, un cop descobert, va sortir al carrer nu i cridant “Eureka”, que vol dir: “Ho he
trobat.”

Arquimedes va morir durant la presa de Siracusa per 'exércit de Marcel el 212 a.C., tot i
que Marcel el volia capturar viu.

Gerolamo Cardano (Pavia, 1501 - Roma, 1576)

Metge, matematic i filosof italia. Al 1545, va publicar 'o-
bra Ars Magna, on es déna la solucié per a resoldre equaci-
ons ctibiques i quartiques. El mateix Cardano reconeix que
Niccolo Fontana (Tartaglia) li suggeri la forma de resoldre
I’equacié cibica, i que el seu secretari, Ludovico Ferrari, va
descobrir com resoldre I'equacié quartica. De fet, pero, el
primer a descobrir com es resolia I'equacié ctbica de la for-
ma 23 + pr = ¢ va ser Scipione del Ferro, encara que aquest
mai no va fer public el seu resultat. En aquell temps es fe-
ien desafiaments matematics. Tartaglia en va guanyar un
sobre resolucié d’equacions cubiques, fent aixi que Cardano
es fixés en ell.

René Descartes (L’Haia, 1596 - Estocolm, 1650)

Filosof i matematic frances. Va estudiar en un col-legi de
jesuites i es va llicenciar en Dret a Poitiers. Més tard, va
viatjar per diversos paisos en campanyes militars. La con-
tribucié més important de Descartes a la matematica fou
la creacié de la geometria analitica, que publica com un
apendix, La Géométrie, de la seva famosa obra Dicours
de la méthode pour bien conduire sa raison et chercher la
vérité dans les sciences (1637).

Pierre de Fermat (Beaumont-de-Lomagne, 1601 - Castres, 1665)

Va estudiar dret a Tolosa de Llenguadoc, on va ser després conseller al Parlament. Encara que
Fermat no fos matematic professional, a partir del 1629, va comengar a fer descobriments ma-
tematics de gran importancia. Va fundar la geometria analitica al mateix temps que Descartes.
Va ser precursor del calcul diferencial i integral.
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Es pot dir d’ell que és el pare de la teoria de nom-
bres moderna. Fermat va demostrar que no existeixen
nombres enters positius z, y, 2, tals que 23 + 1> = 23. Al
marge del seu exemplar de I’ Arithmetica de Diofant, va
escriure que per a n > 2 no hi ha enters positius x,y, z,
tals que z"+y™ = 2", i que havia trobat una demostracié
veritablement meravellosa d’aquest fet, pero que aquell
marge era massa estret per a contenir-la. Aquest resul-
tat es coneix com “dltim teorema de Fermat” o “gran
teorema de Fermat”. L’estudi d’aquesta conjectura de
Fermat ha fet avancar branques importants de la ma-
tematica. Finalment, a 'any 1995, Andrew Wiles va fer
I'altim pas en la demostracié d’aquest gran teorema.

Després d’una infancia sense gaire afecte (el seu pare ha-
via mort abans del seu naixement i la seva mare es va
tornar a casar quan ell tenia tres anys, deixant-lo amb la
seva avia), va estudiar a Cambridge i entra a formar part
del Trinity College al 1661.

Al final de 1664, sembla que ja coneixia tota la ma-
tematica de l’eépoca; havia tingut de mestre a Barrow.
Aquell any i el segiient, el Trinity College va estar tancat
a causa de la pesta. Aixi, Newton, a casa seva, en aquest
periode de temps, va fer quatre dels seus principals des-
cobriments:

1. El teorema binomial.
2. El calcul infinitesimal.
3. La llei de gravitacié universal.

4. La naturalesa dels colors.

La primera exposicié impresa del calcul de Newton va apareixer el 1687 al Philosophiae
naturalis principia mathematica. Leibniz havia descobert el calcul diferencial cap a I'any 1676
i ho va publicar 'any 1684. Aixo va fer que s’establis una disputa entre ells per 'autoria de la
creaci6 del calcul. Avui, se sap que Newton i Leibniz crearen el calcul independentment 'un
de laltre; aixo si, Newton ho va fer deu anys abans i Leibniz ho va fer amb una notacié més
entenedora, que és la que ha perdurat.
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Gottfried Wilhelm Leibniz (Leipzig, 1646 - Hannover, 1716)

Va ingressar a la Universitat de Leipzig als quinze anys.
Estudia teologia, dret, filosofia i matematiques. Als 20 anys,
ja estava preparat per a obtenir el doctorat en dret, perd, &
a Leipzig, no li van concedir per massa jove. Aixo va fer |
que Leibniz abandonés Leipzig i es doctorés en Dret a la §
Universitat d’Altdorf, a Nuremberg. Després, va comencar |
la seva carrera diplomatica, cosa que li permeté viatjar molt. F&
La contribucié més important de Leibniz a la matematica
fou el calcul diferencial, creat el 1676 independentment de 8%
Newton. Leibniz va ser precursor de la logica matematica i g
un gran creador de notacié. De fet, la notacié que s’usa avui §
de calcul diferencial és, practicament, la de Leibniz.

Leonhard Euler (Basilea, 1707 - Sant Petersburg, 1783)

Va estudiar amb els Bernoulli, una familia de matematics que havien fugit de Belgica a causa
de persecucions religioses i s’havien instal-lat a Suissa. Euler va rebre una formacié molt
completa, va estudiar matematiques, teologia, medicina, astronomia, fisica i llengiies orientals.
El 1730, Euler havia anat a Sant Petersburg per ocupar una plaga de medicina a I’Académia i
es va trobar que havia mort ’Emperadriu Caterina I, cosa que va fer perillar la continuitat de
I’Académia. Pero ’Académia va sobreviure i Euler va ocupar la catedra de filosofia natural.
El 1733, Daniel Bernoulli, que estava de professor a I’Académia de Sant Petersburg abans que
hi arribés Euler, se’'n va anar un altre cop a Basilea. Aixi, Euler es converti en el matematic
més important de ’Academia. Tret del periode entre 1741 i 1766, que va estar a I’Academia
de Berlin per invitacié de Frederic el Gran de Prussia, Euler va estar a Sant Petersburg la
resta de la seva vida. Alli, es va casar i va tenir 13 fills, als quals no va faltar la seva dedicacio,
tot i que ha estat el matematic que ha publicat més de tota la historia. El 1735, va perdre la
vista de I'ull dret i, el 1766, va comencar a perdre la visié6 de 1'ull esquerre fins a quedar-se
cec.

Euler ha estat el matematic més important del segle
XVIII. Va escriure un total de 886 treballs, cosa que suposa
una mitjana de 800 pagines anuals escrites al llarg de la seva
vida. No va deixar de fer matematiques ni quan es va quedar
cec. Euler va fer avangar practicament totes les branques de
la matematica del seu temps: analisi, series, equacions dife-
rencials, geometria, probabilitat, teoria de nombres, etc.

El 1783, va morir mentre prenia el te i jugava amb un
nét seu.

LEONHARD EULER 1707-1783

Carl Friedrich Gauss (Brunswick, 1777 - G6tingen, 1855)

Conegut com el Princep de les Matematiques, va ser un nen prodigi. Un dia, el mestre de
I’escola on estudiava, per tal de mantenir els seus alumnes ocupats, els va manar que sumessin
tots els nombres de 1’1l al 100. Gauss, que tenia llavors 10 anys, quasi immediatament, va
posar el resultat correcte sobre la taula del mestre. Havia fet mentalment el calcul
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1+ 2+ 3+ ... 450 3
+100+ 99+ 98+ ... +51 et
=101+ 1014+ 101+ ... 101 2

que és 101 x 50 = 5050.

Gauss era de familia humil, i no hauria pogut estudiar si no hagués rebut 1’ajuda del duc
de Brunswick. Gracies a ell, Gauss va estudiar a la Universitat de Gotingen. El 30 de marg
de 1796, va fer el seu primer descobriment important: va demostrar que es podia construir
amb regle i compas el poligon regular de 17 costats. Des del temps d’Euclides, feia uns dos
mil anys, que no es coneixia cap més poligon regular amb un nombre primer de costats, que es
pogués construir amb regle i compas, que no fos un triangle o un pentagon. Aquell mateix dia,
Gauss va comengar a escriure un diari, on va anant apuntant, durant els divuit anys segiients,
alguns dels seus descobriments més grans.

Gauss no publicava gaire, el seu segell portava escrit el lema: “pauca sed matura” (poc
perd madur). Alguns dels seus descobriments no es van fer publics fins després de la seva
mort. Al 1799, va publicar la seva tesi doctoral, on demostrava el teorema fonamental de
Palgebra. Al 1801, va publicar un treball de teoria de nombres en llati, les Disquisitiones
arithmeticae. Al 1827, va publicar Disquisitiones circa superficies curvas, iniciant aixi una
nova branca de la geometria: la geometria diferencial. Si Gauss hagués publicat tots els seus
descobriments immediatament, potser no hauria fet falta que altres matematics els redesco-
brissin. Per exemple: la geometria no euclidiana, inventada independentment per Lobatxevski
i Bolyai, va ser un dels treballs no publicats de Gauss.

Baré Augustin Louis Cauchy (Paris, 1789 - Sceaux, 1857)

Estudia a ’Escola d’Enginyers Militars. Fou professor de la
Sorbona, del Col-legi de Franga i de I’Escola Politecnica. El
1830, amb l’exili de Carles X, se’'n va a Italia, on sera pro-
fessor de la Universitat de Tori. El 1838, torna a Paris. Des-
prés d’Euler, és el matematic que ha publicat més treballs de
matematiques de tota la historia. Contribui a I’establiment
del rigor a la matematica. Va fer aportacions importants
a practicament tots els camps de la matematica, pero cal
destacar la creacié de la teoria de les funcions de variable
complexa.

El 1816, va ser nomenat membre de I’Académia de Ciéncies. Aquest carrec li va permetre
perdre, el 1826, un important treball que Abel li havia entregat, quan buscava feina de professor
a Parfs. Dos anys més tard, va perdre un altre treball que li havia entregat Galois. Potser
aquests dos joves matematics de vida intensa i curta, i obra important, no escrivien amb prou
rigor com perque Cauchy es dignés a llegir els seus treballs, o potser Cauchy va entendre que
li podien fer ombra.
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Evariste Galois (Bourg-la-Reine, 1811 - Paris, 1832)

Als 12 anys es va interessar per la Géométrie de Legendre. Més tard, va estudiar algunes
obres de Lagrange i Abel. Els seus professors el consideraven una mica estrany. Als 16 anys,
Galois, conscient que era un geni per a les matematiques, va presentar una sol-licitud per a
entrar a ’Escola Politécnica, pero va ser rebutjat per manca de preparacié sistematica. Als
17 anys, va entregar a Cauchy un escrit amb alguns dels seus descobriments fonamentals per
presentar-ho a I’Académia. Cauchy va perdre aquest escrit. Galois va tornar a intentar entrar
a I’Escola Politecnica i va tornar a fracassar.

Finalment va entrar a ’Escola Normal per preparar-se per a ’ensenyament. Continua les
seves investigacions matematiques i, el 1830, va presentar una memoria per a optar al premi
de I’Academia. Fourier es va endur aquesta memoria a casa per llegir-la. Poc després, Fourier
es va morir i el treball de Galois es va perdre. Per tercera vegada, Galois presenta un altre
treball a I’Académia. Aquest cop, Poisson va retornar el treball a Galois amb 'observacié de
que era incomprensible. Aquest treball contenia resultats importants del que avui es coneix
com teoria de Galois.

Galois va tenir problemes també per les seves ide-
es republicanes. El 1831, va ser empresonat durant
sis mesos. El 1832, per qiiestions d’honor, es va batre
en duel. La nit abans del duel, Galois va redactar,
en una carta als seus amics algunes notes sobre els
seus descobriments, expressant ’esperanga que Jaco-
bi o Gauss se’n poguessin assabentar. Durant el duel,
va quedar a terra ferit de mort. Un pages el va trobar
i el va portar a un hospital, on mori ’endema. L’obra
de Galois va caure en mans de Liouville, qui, el 1846,
després de completar alguns detalls de les demostra-
cions de Galois, la va publicar.

Bernhard Riemann (Breselenz, Hannover, 1826 - Selasca, Italia, 1866)

Va néixer en una familia modesta, pero tingué una bona educacié. Estudia a la Universitat
de Berlin, on tingué de professors a Jacobi i Steiner. Després fou alumne de Dirichlet a la
Universitat de Gotingen, on féu la tesi doctoral sobre funcions de variable complexa el 1851.
Gauss li proposa un treball sobre els fonaments de la geometria per la seva habilitacié. Aixi,
el 1854, per entrar de professor a Gotingen, presenta la tesi d’habilitacié Uber die Hypo-
thesen welche der Geometrie zu Grunde liegen (és a dir, Sobre les hipotesis en qué es basen els
fonaments de la geometria). Amb aquest treball, es crea una nova branca de la matematica,
la geometria riemanniana, i s’integraven, definitivament, les geometries no euclidianes a la
matematica. Riemann també féu grans aportacions a 'analisi (integral de Riemann) i a la
teoria de nombres, i fou precursor de la topologia. El 1859, ocupa la catedra que havia deixat
Dirichlet a Gotingen. Mor{ de tuberculosi als 39 anys.
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Ave Riemann

Mestre Princep tu tingueres,
Riemann de familia humil.
Per a tu son les esferes,
de geometria subtil.

Integrals i superficies,
ara, porten el teu nom,

i aixt, la fama acaricies,
ensenyant, per tot el mon,
la bellesa d’una ciéncia
que il-lumina ’experiencia.
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Georg Ferdinand Ludwig Philip Cantor (Sant Petersburg, 1845 - Halle, 1918)

Estudia a les Universitats de Zurich, Gotingen i Berlin, filosofia, fisica i matematiques. A
Berlin, fou alumne de Weierstrass i de Kronecker. Defensa la seva tesi doctoral sobre teoria
de nombres, a Berlin, 'any 1867. Després, fou professor a la Universitat de Halle, on estaria
la resta de la seva vida, encara que li hauria agradat ser professor a una universitat més

important.

S’interessa profundament per Daritmetitzacié de
P’analisi, seguint al seu mestre Weierstrass. Aixo el porta
a crear la teoria de conjunts. Tenia correspondencia amb
Dedekind i compartia amb ell aquestes idees revoluci-
onaries. El 1874, demostra que el conjunt dels nombres
reals és no numerable. Aquesta nova teoria tenia de-
tractors importants. Kronecker era un d’ells; s’oposava
radicalment a les idees de Cantor sobre l'infinit i inten-
tava destruir les seves teories. Al 1883, Cantor escrivi
una defensa energica de les seves teories. Potser a causa
de lestres i les critiques sobre el seu treball, 'any 1884,
pati una crisi nerviosa depressiva i el van haver d’inter-
nar al sanatori mental de Halle. La resta de la seva vida,
sortiria i entraria al sanatori diverses vegades, pero, tot
i aixi, continua les seves investigacions, produint impor-
tants resultats. Per exemple, 'any 1891, demostra que el
cardinal d’un conjunt A és més petit que el cardinal del
conjunt de les seves parts P(A). El 1918, mori mentre
estava internat al sanatori mental.

Hilbert es referia al seu treball sobre teoria de conjunts com “el més sorprenent producte del
pensament matematic i una de les realitzacions més belles de I'activitat humana en el domini

de la intel-ligencia pura.”

creat per a nosaltres.”

També deia: “Ningi no ens expulsara del paradis que Cantor ha



188 CAPITOL 5. NOTES HISTORIQUES I CITACIONS.

Henri Poincaré (Nancy 1854-Paris 1912)

Es va graduar a I’Escola Politecnica el 1875. El
1879, es va graduar en enginyeria de mines i es
va doctorar en ciéncies a la Universitat de Paris,
on va ocupar diverses places de professor de ma-
tematiques i fisica fins a la seva mort. Poincaré
va ser un matematic universal, i potser el que ha
publicat més després d’Euler i Cauchy. Els seus
treballs més importants van ser de mecanica ce-
leste i el primer desenvolupament sistematic de
la topologia. Alguns el consideren el pare de la
topologia. Junt amb Hilbert, és el matematic
més important de la transicié entre els segles
XIXi XX

David Hilbert (Koénigsberg, 1862 - Gotingen, 1943)

Estudia a la Universitat de Konigsberg, on es doctora
I’any 1884. Del 1886 al 1895, fou professor d’aquesta
universitat. Del 1895 al 1929, fou professor a la Uni-
versitat de Gotingen. Féu grans aportacions a mol-
tes branques de la matematica: teoria de nombres,
logica matematica, equacions diferencials, equacions
integrals, etc. També obtingué resultats matematics
que s’aplicaren a la fisica.

Es preocupa molt per la fonamentacié de les ma-
tematiques. El 1899, dona un sistema axiomatic ri-
gords de la geometria euclidiana. El 1900, quan era
considerat un dels matematics més importants del
moment, presenta, al Congrés Internacional de Ma-
tematiques de Paris, una llista amb 23 problemes, que
han estat molt importants en el desenvolupament de
la matematica del segle XX. Alguns d’aquests proble-
mes formaven part d’un pla per a la fonamentacié de
les matematiques.
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Emmy Noether (Erlangen, 1882 - Bryn Mawr, Pennsilvania, 1935)

Filla de matematic, al 1907, es converti en la primera
dona a obtenir el grau de doctor en una universitat ale-
manya. Va treballar amb Klein i Hilbert sobre la teoria
de la relativitat general a Gotingen. El 1922, va obtenir
una plaga de professora de universitat, malgrat ’oposicié
que hi havia d’atorgar una catedra a una dona. Albert
Einstein comentava d’ella: “Descobri metodes de gran
importancia en el camp de I’algebra del qual s’han ocu-
pat quasi tots els matematics més excel-lents.”

Amb la creaci6 del Partit Nacional Socialista, va haver
d’abandonar Alemanya al 1933. Se’n va anar als Estats
Units i, alli, va ser professora a la Universitat de Bryn
Mawr a Filadelfia. D’alli, viatjava sovint a la Universitat
de Princeton, on feia conferéncies a I'Institut d’Estudis
Avancats.

John von Neumann (Budapest, 1903 - Washington, 1957)

Molt aviat, demostra la seva capacitat per a les matematiques. Als 10 anys, estudiava sota la
direccié dels millors matematics hongaresos. Als 21 anys, va obtenir el grau d’enginyer quimic
a Zuric i el de doctor en Matematiques a la Universitat de Budapest. Va passar un quant
temps a la Universitat de Berlin. El 1930, va acceptar ser professor visitant a la Universitat de
Princeton. Ell i Albert Einstein van ser dels primers professors a temps complet de I'Institut
d’Estudis Avangats de la Universitat de Princeton.

Durant la Segona Guerra Mundial, va participar en
la construccié de la bomba atomica a Los Alamos. En-
tre 1944 i 1946, va col-laborar en l’elaboracié d’un in-
forme per a l’exercit sobre computadores, i, el 1949, va
comencar a funcionar el primer computador programable.
El 1954, el president Eisenhower el va designar membre
de la Comissié6 d’Energia Atomica. Les aportacions de
von Neumann tant en matematica aplicada com en ma-
tematica pura sén notables. Se’l considera el pare de la
teoria de jocs moderna. Es va interessar també per la
mecanica quantica.

Va morir d’un cancer als 53 anys.
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Andrei Nikolaievitx Kolmogorov (Tambov, 1903 - Moscou, 1987)

Va estudiar a la Universitat de Moscou. El 1931, Entra
de professor a la Universitat de Moscou. Aquest mateix
any, va fer progressos importants en la teoria dels pro-
cessos de Markov. El 1933, axiomatitza la teoria de la
probabilitat, relacionant-la amb la teoria de la mesura,
resolent, aixi, part d’un dels problemes de Hilbert. Al
llarg de la seva vida, va treballar en diverses branques de
la matematica. Aixi, a més dels seus resultats en teoria
de la probabilitat, féu aportacions importants a l'estudi
de l'estabilitat de les orbites planetaries, a la teoria de
conjunts, a la topologia, a les funcions de variable real
i a les series trigonometriques. Ultimament, treballa en
logica matematica i en teoria de la informacio.

El 1939, el van nomenar membre de I’Académia So-
vietica de Cieéncies.

Kurt Goédel (Brno, 1906 - Princeton, 1978)

Estudia a la Universitat de Viena, on va ser professor a par-
tir del 1930. Al 1931, resolgué el segon problema de Hilbert,
provant que és impossible demostrar la consistencia del sis-
tema formal de I'aritmetica dins del mateix sistema formal.
Aquest mateix any, demostra que el sistema formal de I’a-
ritmetica no és complet, és a dir, que hi ha proposicions,
dins del sistema, que no es poden provar i tampoc es po-
den demostrar les seves negacions dins del mateix sistema.
Aquests resultats tiraren per terra el pla de Hilbert per a la
fonamentacié de les matematiques.

A partir de 1938, s’establi als Estats Units i fou membre de I'Institut d’Estudis Avangats
de Princeton. Al 1940, demostra la consisténcia de la hipotesi del continu i de I'axioma de
I’eleccié amb els axiomes de teoria de conjunts de Zermelo-Fraenkel; és a dir, si suposem que
els axiomes de la teoria de conjunts de Zermelo-Fraenkel no porten a una contradiccid, llavors,
afegint la hipotesi del continu i I'axioma de ’eleccid, obtenim un sistema d’axiomes que no
porten a una contradiccié. Aixo resolia part del primer problema de Hilbert. El 1963, Paul
J. Cohen demostra la independeéncia de I'axioma de ’eleccié i de la hipotesi del continu dels
axiomes de la teoria de conjunts de Zermelo-Fraenkel; és a dir, si suposem que els axiomes de
Zermelo-Fraenkel no porten a una contradiccié i afegim la negacié de 'axioma de ’elecci6 o
la negaci6 de la hipotesi del continu com a nou axioma del sistema, llavors aquest nou sistema
d’axiomes no porta a una contradiccié. Aixo acaba la resolucié del primer problema de Hilbert,
que, de fet, era el recull de dos problemes que van portar de corcoll a Cantor durant part de
la seva vida.
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Els resultats de Godel sén de gran transcendeéncia per a les matematiques. Les ma-
tematiques actuals es basen en la teoria de conjunts de Zermelo-Fraenkel. I Godel ens diu
que en el sistema formal de la teoria de conjunts de Zermelo-Fraenkel, encara que hi afegim
I'axioma de l’eleccié o altres axiomes independents, és impossible demostrar la seva propia
consistencia.

NOTA: Les fotografies has estan obtingudes de I’adreca d’Internet:
http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay

de la School of Mathematics and Statistics de la Universitat de St. Andrews a St. Andrews,
Escocia.

Acabem aquesta seccié amb fotografies d’altres matematics celebres.

£UROPA
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P.S. Laplace (1749-1827) J. Fourier (1768-1830) S.V. Kovaleskaia (1850-1891)



192 CAPITOL 5. NOTES HISTORIQUES I CITACIONS.

5.2 Citacions de matematics i sobre matematiques

En aquesta seccié es recullen i es tradueixen al catala unes quantes citacions sobre ma-
tematiques i ciéncia, ja siguin de matematics o d’altres personatges famosos. Les fonts prin-
cipals han estat el “Mathematical Quotation Server”de la Furman University, amb adreca
electronica

http://math.furman.edu/~mwoodard /mqs/mquot.shtml

i la pagina de web “Science humor” preparada per Joachim Verhagen, amb adreca

http://www.xs4all.nl/~jcdverha/scijokes/

La seleccié ha estat feta per Armengol Gasull i Maria Jolis. Aquestes citacions es clas-
sifiquen en quatre grups: Citacions a favor de les matematiques, citacions en contra d’elles,
citacions sobre ciéncia i citacions sobre filosofia.

Citacions a favor de les matematiques

o Aristotil (384-332 a. C.):

Les ciéncies matematiques mostren entre altres coses, ordre simetria i restric-
cions, i aquestes coses son les grans formes de la bellesa.

Arthur Cayley (1825-1895):

A les matematiques els passa com a moltes altres coses: la bellesa es pot
percebre, pero no explicar.

Charles Darwin (1809-1882):

Les matematiques semblen dotar-nos amb una especie de nou sentit.

René Descartes (1596-1650):

Cada problema que resolc es transforma en una regla que més endavant pot
servir per a resoldre altres problemes.

Albert Einstein (1879-1955):

Com pot ser que les matematiques, essent després de tot un producte huma,
independent de ’experimentacié, s’adaptin admirablement als objectes de la
realitat?

Galileu Galilei (1564-1642):

[L’univers| no es pot llegir fins que no hem apres el llenguatge i ens hem fami-
liaritzat amb els caracters en els que esta escrit. Ell esta escrit en llenguatge
matematic, i les lletres son els triangles, els cercles i altres figures geometriques,
sense les quals és humanament impossible entendre una simple paraula.
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e Jacques Hadamard (1865-1963):
L’aplicacié practica no es troba buscant-la i es podia dir que tot el progrés de
la civilitzacio es basa en aquest principi.

e David Hilbert (1862-1943):
Les matematiques no coneixen races o fronteres geografiques; per a les ma-
tematiques el mén de la cultura és un pais.

e Emmanuel Kant (1724-1804):
La ciencia de les matematiques presenta ’exemple més brillant de com la raé
pura pot ampliar amb exit el seu domini sense ’ajut de ’experimentacié.

e Nikolai Ivanovitx Lobatxevski (1792-1856):
No hi ha cap branca de les matematiques, per abstracta que sigui, que un dia
no pugui ser aplicada a fenomens del mén real.

e Jules Henri Poincaré (1854-1912):
Els descobriments matematics, grans o petits mai no neixen per generaci es-
pontania. Sempre pressuposen un terra plantat amb el coneixement preliminar
i ben preparat amb el treball tant conscient com subconscient.

e Alexandr Sergueievitx Puixkin (1799-1837):

La inspiracié es necessita en la geometria tant com en la poesia.

Citacions en contra de les matematiques

e Sant Agusti (354-430):

Si em donen una férmula i no en sé el significat, no em pot ensenyar res; pero
si ja en conec el significat, que m’ensenya?

El bon cristia hauria de tenir compte dels matematics i de tots aquells que fan
profecies buides. Ja hi ha el perill que els matematics hagin fet un pacte amb
el diable per a enfosquir I'esperit i confinar-nos a les profunditats de 'infern.

e Daniel Bernouilli (1700-1782):
Seria millor per a la veritable fisica si no hi hagués matematics a la Terra.
o Albert Einstein (1879-1955):

Quan les lleis de la matematica es refereixen a la realitat, no sén certes; quan
sén certes no es refereixen a la realitat.

Des que els matematics han envait la teoria de la relativitat, ja no m’entenc a
mi mateix.
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e Marti Luter (1483-1546):

La medicina fa la gent malalta, les matematiques els fan tristos, i la teologia,
pecadors.

e Charles Darwin (1809-1882):

Un matematic és un home cec en una habitacié fosca buscant un gat negre
que no és a I’habitacié.

Citacions sobre la ciéncia

e René Descartes (1596-1659)

Els nombres perfectes! sén com els homes perfectes, molt rars.

Evariste Galois (1811-1832):

Malauradament, el que és poc reconegut és que els llibres cientifics valuosos
sén aquells en els que 'autor indica clarament el que no sap; encobrir les
dificultats és el pitjor que pot fer un autor per els seus lectors.

Karl Friedrich Gauss (1777-1855):

Sabeu que jo escric a poc a poc. Aix0 és, sobretot, per qué mai no estic satisfet
fins que no he dit tot el possible en poques paraules, i escriure amb brevetat
pren molt més temps que escriure amb extensio.

Niels H. Abel (1802-1829):

Es com una guineu?, que esborra les seves petjades a la sorra amb la cua.

Jacques Hadamard (1865-1963):

El cami més curt entre dues veritats al domini real passa per domini complex.

Oliver Heavisive (1850-1925):

Hauria de refusar un bon sopar senzillament perque no entenc el procés de la
digesti6??

Charles Hermite (1822-1901):

Som servents i no senyors de les matematiques.

1Un nombre es diu perfecte si és igual a la suma de tots els seus divisors més petits que ell. Aixi 6, 28, 496,
8128,... s6n nombres perfectes jaque 6 =34+2+1,28 =14+74+4+2+1,.... Es pot veure que els nombres de
la forma 2"'(2" — 1) i tals que 2" — 1 és primer sén nombres perfectes. Els quatre que hem donat corresponen
an=2,3,517. Altres nombres perfectes s’obtenen per n = 13,17,19,31,61. Com a curiositat, direm que tots
el nombres perfectes coneguts acaben amb 6 o 8.

2Citacié sobre Destil de Gauss.

3Resposta a les critiques sobre les manipulacions algebraiques formals.
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David Hilbert (1862-1943):

L’art de fer matematiques consisteix a trobar quin és el cas especial que conté
tots els germens de generalitat.

Es pot mesurar la importancia d’un treball cientific pel nombre de publicacions
prévies que es tornen superflues per aquest.

Lao Tze (604-531 a. C.):

Un bon calculador no necessita ajuts artificials.

Pierre-Simon de Laplace (1749-1827):

Tal és 'avantatge d’un llenguatge ben construit que la seva notacié simplifi-
cada es tradueix sovint en font de profundes teories.

Gottfried Wilhelm Leibniz (1646-1716):

El nombre imaginari és un subtil i meravellds recurs de ’esperit divi, quasi un
amfibi entre el ser i el no ser.

Qui estima la practica sense teoria és com el mariner que s’embarca en un
vaixell sense timo ni briixola i mai no sap on pot naufragar.

Jules Henri Poincaré (1854-1912):
Les matematiques son P’art de donar el mateix nom a coses diferents.*

La ciencia es construeix a partir de fets, com una casa a partir de totxos. Pero
una col-leccié de fets ja no és una cieéncia de la mateixa manera que una pila
de totxos no és una casa.

La ment usa les seves facultats per a la creativitat només quan l’experiéncia
la forga a fer-ho.

e Edgar Alan Poe (1809-1849):

To speak algebraically, Mr. M. is execrable, but Mr. G. is (z + 1)—ecrable.’

Citacions sobre filosofia

e René Descartes (1596-1650):

Si algti vol ser un veritable buscador de la veritat ha de dubtar, almenys un
cop i tant com sigui possible, de totes les coses.

o Albert Einstein (1879-1955):

Tot hauria de ser tan simple com fos possible, perdo no més simple.

4En contraposici6 a la citacié: La poesia és Part de donar diferents noms a la mateixa cosa.
SIntraduible.
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La cosa més maca amb la qual podem experimentar és el misteri. Aquest és
la font de tot I'art i ciéncia veritables.

e William Rowan Hamilton (1805-1865):

A la Terra no hi ha res tan gran com I’home; a ’home no hi ha res tan gran
com la ment.

e David Hilbert (1862-1943):
L’infinit! Cap altra qiiestié ha mogut tan profundament ’esperit de I’home.
e Immanuel Kant (1724-1804):

Tot el coneixement huma comenca amb intuicions, continua amb conceptes i
acaba amb idees.

e Joseph-Louis de Lagrange (1736-1813):
Quan demanem consell, el que busquem és complicitat.
e Pierre-Simon de Laplace (1749-1827):

En la seva major part, les questions més importants de la vida sén finalment
només problemes de calcul de probabilitats.

El que sabem no és gaire. El que no sabem és immens.

e Gottfried Wilhelm Leibniz (1646-1716):

Res no és més impotant que veure les fonts d’una invencié, que, en la meva
opinié sén més importants que les invencions per elles mateixes.

e Blaise Pascal (1623-1662):

Normalment ens convencem més facilment per raons trobades per nosaltres
mateixos que per les que s’han acudit a altri.

No puc jutjar el meu treball mentre 'estic fent. He de fer com fan els pintors,
allunyar-me’n i veure’l des d’una distancia, pero no una distancia gaire gran.
Com de gran? Qui sap.

La natura és com una esfera infinita, de la qual el centre és a tot arreu i la
circumferencia enlloc.

No és cert que tot sigui incert.

e Lev Nikolaievitx Tolstoi (1828-1910):

Un home és com una fraccié, amb numerador el que és i amb denominador
el que pensa d’ell mateix. Com més gran és el denominador més petita és la
fraccio.



