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1Voleu saber a qui hem dedicat aquest llibre? Consulteu la subsecció “Xifrats de transposició”, a les pàgines
77 i 78.
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Caṕıtol 1

Presentació

1.1 Objectiu del llibre

L’objectiu d’aquesta publicació és fer arribar als alumnes de batxillerat, a punt d’accedir als
estudis universitaris, una pinzellada de les diverses cares de la matemàtica.

Tot i que un estudiant interessat pot recórrer els caṕıtols pel seu compte, adrecem també
aquest material als departaments de professorat de matemàtiques dels centres de secundària;
amb la seva orientació la lectura serà molt més profitosa.

Amb aquest material pretenem, en primer lloc, canviar la percepció social del matemàtic,
sovint identificat com a professor; avui en dia, el matemàtic és un professional també apreciat
en el món empresarial i industrial, amb una tendència clarament creixent. També volem, en
segon lloc, encoratjar els estudiants a orientar-se cap a aquesta disciplina, fonamental en la
societat del nostre temps.

A continuació descriurem l’organització del llibre. El caṕıtol 2 vol ser una mostra de les
múltiples aplicacions de les matemàtiques; veureu que cobrim un ampli espectre que va de
la música a les travesses, passant per aportacions als camps de la biologia o l’astronomia.
Pensem que els temes d’aquest caṕıtol poden servir de motivació per introduir certs conceptes
o tècniques matemàtiques, o per estimular la realització de treballs de recerca en la matèria.

El caṕıtol 3, potser el més acadèmic, conté problemes de deu especialitats matemàtiques
diferents, com per exemple la topologia, l’experimentació numèrica, o l’estad́ıstica. Els han
preparat professors del Departament de Matemàtiques de la UAB, experts de les diverses
branques del coneixement matemàtic. Els problemes s’han catalogat segons el seu grau de
dificultat. Creiem que es poden usar com a material complementari als textos, o bé suggerir-
los als alumnes per a treballs individuals, etc. Les solucions dels problemes no figuren en el
llibre, però els autors, via e-mail, telèfon o personalment, s’ofereixen a respondre consultes i
rebre comentaris dels lectors interessats.

El caṕıtol 4 és un recull d’entreteniments matemàtics, no per lúdic menys interessant.
Pensem que una lectura activa pot estimular la percepció matemàtica, i que se’ls pot donar
una utilitat didàctica similar als problemes del caṕıtol anterior. La majoria de les qüestions
plantejades s’acompanyen de la solució, al final del caṕıtol.

Finalment, en el caṕıtol 5 fem un petit viatge per la història de les matemàtiques, basant-
nos en la biografia d’alguns matemàtics importants, i en un recull de citacions sobre ciència
en general, i matemàtiques en particular.

Desitgem que la lectura d’aquest material incrementi l’interès del lector per les matemàtiques
i les seves aplicacions.
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1.2 Col.laboradors i agräıments

En la confecció d’aquest llibre han col.laborat moltes persones.
Són autors d’alguna part del text: Aureli Alabert, Joaquim Bruna, Rosa Camps, Àngel

Calsina, Joan J. Carmona, Anna Cima, Ferran Cedó, Bartomeu Coll, Armengol Gasull, Gre-
gori Guasp, Antoni Guillamon, Maria Jolis, Francesc Mañosas, Enric Nart, Pedro Puig, Agust́ı
Reventós, Laia Saumell, Antonio Teruel, Joan Torregrosa, Frederic Utzet i Josep Vives.

També han ajudat de moltes formes diferents: Joan Carles Artés, Rosa Camps, Rosario
Delgado, Joan del Castillo, Consuelo Garćıa, Joan Gasull, Joan Girbau, Gregori Guasp, Antoni
Guillamon, Maria Jolis, Nati Jolis, Jaume Llibre, Rosa Rodŕıguez, Josep Vives i, de manera
especial, Joan Torregrosa.

Finalment Maria Carme Boada, Joaquim Bruna, Mercè Farré, Gregori Guasp i Maria Jolis
han tingut la paciència de llegir tot el material. Moltes gràcies pels seus suggeriments.

Cerdanyola, febrer de 2000,

Armengol Gasull i Embid
Coordinador de la Publicació
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1.3 Matemàtiques i estad́ıstica a la UAB

Com veureu en aquesta publicació, les matemàtiques són una cosa i a la vegada moltes coses.
En primer lloc, les matemàtiques constitueixen el llenguatge bàsic de la ciència i la tecnologia,
un llenguatge universalment vàlid i sempre vigent sense el qual no seria possible cap dels
avenços de la societat moderna. Això és particularment cert en el moment actual, quan
assistim a una veritable explosió en l’aplicació de models matemàtics a nombrosos camps
de la ciència, la tecnologia, les humanitats, etc. El paper de les matemàtiques en la societat
de la comunicació i la informació, no cal dir-ho, és essencial. La importància del tractament de
dades, l’estad́ıstica, en pràcticament tots els camps cient́ıfics és evident. Però la matemàtica
també és recerca, recerca que pot ser interdisciplinària i motivada per les aplicacions, o bé
motivada per la matemàtica mateixa, amb una dinàmica pròpia que per si mateixa ja és un
repte intentar comprendre. Com a activitat intel.lectual, la recerca en matemàtiques és també
creació, descobriment, exploració, i pot esdevenir passió. L’exercici de l’activitat matemàtica
estimula i potencia, és un fet comprovat i ha esdevingut ja un estereotip, qualitats intel-
lectuals com ara la capacitat d’anàlisi, d’abstracció, d’assimilació i, en definitiva, de penetrar
en l’estructura profunda de les coses i els problemes.

Rellotge de sol dissenyat per Joan Girbau, professor de matemàtiques de la UAB

Al Departament de Matemàtiques de la UAB tots aquests aspectes de la matemàtica hi són
presents. A més de ser el responsable de les titulacions de Matemàtiques i d’Estad́ıstica, en
què s’imparteix la formació bàsica i troncal indispensable i que us presentarem més endavant,
al Departament hi ha estructures que permeten canalitzar l’activitat en tots aquests fronts.

El nostre Departament consta actualment de 88 professors, dels quals 53 són fixos (ca-
tedràtics o titulars d’universitats) i la resta són contractats (professors ajudants o associats),
dades que el fan un dels més grans de la UAB.

En l’àmbit de la docència, el Departament és el responsable d’impartir la docència en
la pràctica totalitat d’assignatures de matemàtiques de les diverses titulacions que es poden
cursar a la UAB, fins a un total de quinze, a part de les dues que, com ja hem dit, li són
pròpies, la Llicenciatura de Matemàtiques i la Diplomatura d’Estad́ıstica. Això el fa que sigui
el departament amb més presència als diversos centres i facultats de la UAB.

En recerca, al Departament hi ha un total de dotze grups de recerca que desenvolupen
projectes d’investigació dins les cinc àrees de coneixement: Àlgebra i fonaments, Geometria
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i Topologia, Anàlisi matemàtica, Estad́ıstica i Investigació operativa, i Matemàtica aplicada.
Tots els grups gaudeixen de finançament obtingut en convocatòries públiques competitives.
El Departament és també node de quatre xarxes europees finançades pel programa europeu
Training and Mobility. Aquest fet, i els programes de mobilitat que es coordinen amb el
Centre de Recerca Matemàtica (IEC) emplaçat al mateix edifici, fa que pel Departament hi
passin cont́ınuament destacats investigadors. El nivell de la recerca al Departament és alt i
competitiu, els grups estan ben relacionats i generen un nivell d’activitat estable (seminaris,
congressos, etc.). El Departament publica un revista periòdica (dos números l’any) especialit-
zada en recerca en matemàtiques, Publicacions Matemàtiques, amb un ampli comité editorial i
inclosa en els sistemes d’informació internacionals. Com a dada significativa, del Departament
de Matemàtiques de la UAB han sortit un total de 228 publicacions en diverses especialitats
en els darrers cinc anys. Aquestes xifres fan que sigui considerat un dels capdavanters en el
conjunt de l’Estat espanyol.

Pel que fa als serveis, el Departament té en
funcionament un Gabinet d’Assessorament amb
dos àmbits d’actuació diferenciats: l’acadèmic, que
dóna suport als investigadors de grups de recer-
ca d’altres disciplines; i el servei a empreses i
indústries, que ofereix assessorament en les qüesti-
ons que poden tractar-se amb models matemàtics.

És important destacar que el caràcter unitari del Departament i la cohesió interna són
el que fa possible oferir aquest tipus de servei, que en aquests moments està generant força
activitat. En les feines del Gabinet hi participen sovint estudiants de les titulacions, que tenen
aix́ı l’oportunitat de treballar en problemes interdisciplinaris i d’interès pràctic.

Una de les qüestions que més ha preocupat el Departament els darrers anys és establir
ponts adequats entre les titulacions i el mercat laboral. Amb aquesta finalitat els estudis de
tercer cicle contemplen les possibilitats següents:

1. Programa de Doctorat en Matemàtiques, adreçat als interessats en la recerca i
l’elaboració d’una tesi doctoral.

2. Mestratge de Matemàtiques per a Ensenyants, integrat dins els estudis corres-
ponents al Certificat de Qualificació Pedagògica, normatius per als futurs professors
d’ensenyament secundari.

3. Mestratge de Matemàtiques per a l’Empresa i la Indústria, destinat als llicen-
ciats que volen integrar-se en el món empresarial i industrial. Aquest mestratge inclou
pràctiques remunerades en empreses col.laboradores d’un mı́nim de tres mesos.

4. Mestratge de Matemàtiques per als Instruments Financers, que forma especia-
listes en els models matemàtics que s’utilitzen en diversos productes financers, com ara
les opcions de compra, la cobertura de risc, la gestió de carteres, etc. Els especialistes
que estem formant tenen avui en dia una gran acceptació en el mercat laboral. Aquest
mestratge també inclou un peŕıode de pràctiques remunerades en bancs i caixes d’estalvi
col.laboradores, aix́ı com a la Borsa de Barcelona.

Presentarem per acabar les titulacions de Matemàtiques i Estad́ıstica.
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Llicenciatura de Matemàtiques

Hi ha moments a la vida en què hom pot decidir iniciar una trajectòria o una altra amb
probabilitats molt semblants, mentre que l’elecció presa determinarà fortament el seu futur.

Molts estudiants de secundària us trobeu en aquesta situació a l’hora de decidir quins
estudis escollir. Si les matemàtiques són una de les opcions que considereu, podeu assajar
amb aquest material que us ofereix la UAB i que us permetrà “tastarl.les deĺıcies d’aquesta
ciència.

Potser també us interessarà saber que aquests estudis van adreçats a gent curiosa, valenta,
a la qual li agradi entendre les coses en tota la seva profunditat i que valori el fet de no trobar
limitacions en el seu camp d’interès (les matemàtiques no te les acabes mai!).

La Llicenciatura de Matemàtiques és una carrera de quatre anys que té com a objectiu
formar matemàtics generalistes. S’ofereix una formació bàsica en anàlisi matemàtica, àlgebra,
topologia, estad́ıstica, geometria i càlcul numèric. Un 20% de les assignatures són optatives,
la qual cosa permet a cada estudiant escollir les matèries en les quals està més interessat.
A més, un 10% dels crèdits són dels anomenats de lliure elecció, que vol dir que es poden
escollir d’entre totes les assignatures que s’imparteixen a la UAB, incloent-hi les anomenades
de campus.

A la Llicenciatura de Matemàtiques de la UAB s’imparteixen uns crèdits de tipus pràctic,
que corresponen a classes de problemes, pràctiques al laboratori informàtic i pràctiques d’aula,
en què els estudiants treballen en grups redüıts amb l’assistència d’un professor. A més,
l’alumne de primer curs disposa d’un professor tutor que l’ajuda a iniciar-se en el discurs
matemàtic, l’orienta i l’ajuda a l’hora d’adquirir un mètode de treball.

A més, l’estructura de campus de la UAB contribueix
a fer molt agradable la vida dels estudiants durant aquest
peŕıode de formació.

El resultat final: el més rellevant és la “formació”del ma-
temàtic. Persona amb capacitat de pensar, de resoldre pro-
blemes, d’entendre i implementar nous models, i tot amb una
gran predisposició a fer les coses ben fetes, heretada del rigor
que acompanya inexorablement el coneixement matemàtic.

Diplomatura d’Estad́ıstica

L’estad́ıstica és una disciplina cient́ıfica que s’ocupa de l’anàlisi de dades i del tractament de
la informació com a suport a la presa de decisions.

Avui dia, totes les disciplines cient́ıfiques, tant les experimentals (f́ısica, biologia, etc.),
com les humanes (sociologia, psicologia, etc.) generen dades provinents de l’experimentació i
l’observació. L’anàlisi de dades és, doncs, imprescindible per avançar en aquestes disciplines.

D’altra banda, la presa de decisions en el món de l’empresa requereix una anàlisi acurada
de la informació disponible, generalment de tipus quantitatiu. Això fa també imprescindible
l’anàlisi de dades en el món industrial i empresarial en general.

Tot això, en un món en què cada cop és més fàcil l’accés a sofisticat software de tractament
de dades i, per tant, on ningú no podrà prescindir de les tècniques estad́ıstiques si vol mantenir
un cert nivell de competitivitat.

La Diplomatura d’Estad́ıstica de la UAB és una carrera de tres anys que forma experts de
grau mitjà en anàlisi de dades, en les especialitats d’Estad́ıstica general, Estad́ıstica aplicada
a la indústria (Control de qualitat), Estad́ıstica aplicada a l’anàlisi de la realitat econòmica,
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Estad́ıstica aplicada a les ciències de la salut, etc.
Algunes de les possibles sortides professionals de la titulació són les següents:

• Control de qualitat en indústries.

• Anàlisi de dades econòmiques i financeres en empreses o institucions públiques.

• Estudis de mercat (màrqueting)

• Disseny d’experiments i anàlisi dels resultats en epidemiologia i farmacologia, en hospi-
tals o laboratoris farmacèutics.

• Sondejos preelectorals i postelectorals, enquestes d’opinió, seguiment d’audiències de
mitjans de comunicació, etc., en empreses especialitzades.

La titulació és eminentment pràctica i enfocada a les aplicacions. Un important per-
centatge d’hores de classe són pràctiques amb ordinador. Les assignatures obligatòries són
d’Informàtica, de Matemàtiques i en particular de Teoria de la probabilitat, i evidentment
d’Estad́ıstica.

A més de l’accés al mercat laboral, la titulació permet també accedir fàcilment a titulacions
de segon cicle.

D’altra banda, el campus de la Universitat Autònoma, a Bellaterra, és un entorn molt
agradable per a aquests estudis. Precisament, el fet que la Universitat estigui concentrada
en un campus fomenta la interdisciplinarietat. Les assignatures de lliure elecció poden ser
escollides realment (facilitat d’horaris, absència de problemes de transport) entre totes les que
ofereix la Universitat.

En resum, si tens un cert gust per interpretar i analitzar dades, o una certa seducció per
l’atzar i les seves lleis, o si vols obrir-te camı́ en el món empresarial més modern i dinàmic, o
també, si vols col.laborar en el progrés del coneixement cient́ıfic, la Diplomatura d’Estad́ıstica
que ofereix la Universitat Autònoma de Barcelona pot ser la carrera adequada.

Si voleu més informació d’ambdues titulacions, no dubteu a consultar les pàgines web:
http://www.manwe.mat.uab.es/seccio i http://www.uab.es.

Anna Cima i Mollet,
coordinadora de la Titula-
ció de Matemàtiques de la
UAB, tel.: 93 581 14 53.
e-mail: cima@mat.uab.es

Joaquim Bruna i Floris,
director del Departament
de Matemàtiques de la
UAB, tel.: 93 581 18 57.
e-mail: bruna@mat.uab.es.

Josep Vives i Santa-Eulalia,
coordinador de la Titulació
d’Estad́ıstica de la UAB,
tel.: 93 581 29 41.
e-mail: vives@mat.uab.es.
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1.4 Beca Pere Menal

El Dr. Pere Menal i Brufal, nascut a Lleida l’any 1951, es va
llicenciar en Matemàtiques per la Universitat de Barcelona
l’any 1973 i des d’aleshores fou professor del Departament
de Matemàtiques de la Universitat Autònoma de Barcelona,
on va llegir la seva tesi doctoral el 1977. Va ser nomenat
catedràtic d’Àlgebra l’any 1981. Gran autodidacte, va ser
iniciador i impulsor de la recerca en àlgebra no commutativa
entre nosaltres i també arreu de l’Estat.

La seva producció cient́ıfica inclou gairebé quaranta tre-
balls de recerca en revistes internacionals, alguns dels quals
fets en col.laboració amb els millors especialistes mundials.

La seva sobtada mort en accident de circulació el dia
4 d’abril de 1991 va significar la pèrdua d’un gran ma-
temàtic, d’un entranyable company i d’una excel.lent per-
sona.

Beca Pere Menal

La Universitat Autònoma de Barcelona, a instància del Departament de Matemàtiques, con-
voca les beques anomenades “Pere Menal”per a tots els estudiants que, o bé, es matriculin al
primer curs de la Llicenciatura de Matemàtiques, o bé, havent obtingut la beca en peŕıodes
anteriors, demostrin que compleixen els requisits per a renovar-la.

S’atorgaran quatre beques si els sol.licitants compleixen els requisits. Una de les quals serà
per a un estudiant que es matriculi de primer curs de la Llicenciatura de Matemàtiques en el
peŕıode 2000-2001.

Els sol·licitants de primer curs hauran de complir els requisits següents:

• Haver-se examinat de les PAAU.

• Haver-se matriculat de primer curs a la Llicenciatura de Matemàtiques de la UAB en el
peŕıode 2000-2001.

• Sol.licitar la beca.

La beca de primer curs s’atorgarà al sol.licitant que tingui la nota més alta de l’examen de
les PAAU entre tots els que tinguin una nota superior o igual a 7 de l’examen de Matemàtiques
I de les dites PAAU. En cas d’empat entre dos o més sol·licitants, es tindrà en compte la
mitjana de notes de BUP i de COU, i en cas de procedir d’estudis d’FP, REEM, es tindrà
en compte la nota mitjana del curŕıculum acadèmic. Les sol.licituds s’hauran de presentar
a l’Àrea d’Alumnes (Beques) de la UAB de l’1 al 15 d’octubre del curs acadèmic en què se
sol.licita la beca.

La borsa de la beca inclou la matŕıcula gratüıta de totes les assignatures de la carrera, si
el sol·licitant en cada peŕıode compleix els requisits, a més d’una quantitat anual de 30 000
pessetes en concepte d’adquisició de llibres. En cas que l’estudiant que es matricula al primer
curs hagi obtingut la qualificació de matŕıcula d’honor al curs d’orientació universitària, rebrà
l’import que hauria d’haver abonat en concepte de taxes de matŕıcula, més les 30 000 pessetes.

Podeu trobar més informació a http://mat.uab.es/seccio/Pere.htm.
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1.5 Universitat Autònoma de Barcelona

La Universitat Autònoma de Barcelona (UAB) és una institució pública, dedicada a la
recerca i la docència.

La UAB es caracteritza per ser una universitat que aplega estudis i investigacions d’àmbits
tan diversos com l’humańıstic, social, el de la salut, les ciències experimentals i les tecnologies
o les enginyeries. Això permet efectuar anàlisis multidisciplinàries de problemes complexos
com, per exemple, els de medi ambient, camp en el qual disposem d’estudis homologats de
nivell superior. L’emplaçament en el nostre campus de centres de recerca d’altres institucions,
com el Centre Nacional de Microelectrònica, l’Institut de Ciència dels Materials o el d’Anàlisi
Econòmica, tots aquests del Consell Superior d’Investigacions Cient́ıfiques, o del Centre de
Recerca Matemàtica, permet una forta interacció amb els diferents centres i departaments,
que té com a conseqüència una docència sempre actualitzada. Al mateix temps, l’Autònoma
ofereix els serveis de suport a l’estudi fonamentals per desenvolupar la vida universitària amb
plenes garanties, en camps tan diversos com ara la consulta bibliogràfica, els idiomes, la in-
formàtica o la inserció professional.

Els plans d’estudis s’estructuren en cicles i es divideixen
en cursos. Els cursos són semestrals i la càrrega lectiva es
mesura en crèdits. Un crèdit equival a deu hores de classe
d’una assignatura.

La investigació constitueix un pilar fonamental de la vi-
da universitària i de la projecció exterior de la Universitat
Autònoma de Barcelona. Gràcies al reconegut prestigi asso-
lit per la tasca investigadora a la UAB, tant en l’àmbit na-
cional com en l’internacional, juntament amb el importants
llaços que manté amb els sectors productius més significa-
tius, la recerca a la UAB defineix un paper prioritari pel que
fa al servei de la universitat vers la societat.

Les columnes de la UAB
Obra d’Andreu Alfaro, 1999

Situada geogràficament en un dels pols de desenvolupament tecnològic més importants de
Catalunya, la voluntat innovadora de la UAB li permet participar en importants projectes
de recerca nacionals i internacionals, i mantenir d’aquesta manera una docència acadèmica
sempre actualitzada i de qualitat.

La Universitat Autònoma de Barcelona, a més d’oferir tots els serveis propis d’un gran
centre universitari, també posa a disposició d’estudiants i personal docent un ampli ventall de
facilitats per tal de viure el campus i cobrir totes les necessitats tant de la seva vida acadèmica
com del lleure i de la vida quotidiana.

El campus de la Universitat Autònoma de Barcelona constitueix una ciutat de prop de
40 000 persones, les quals, a més de desenvolupar plenament la seva vida universitària, gau-
deixen d’uns equipaments que els permeten disposar de tots els serveis necessaris per viure en
un entorn idoni.

Algunes dades del curs 1998-99 són les següents:
• 38 590 estudiants de 1r i 2n cicles, 11814 estudiants de 3r cicle i 1686 estudiants estran-

gers.

• 2 795 membres del personal acadèmic i investigador i 1 232 membres del personal d’ad-
ministració i serveis.
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• 35 llicenciatures, 15 diplomatures, 3 enginyeries superiors, 4 enginyeries tècniques, 4
graduats superiors (titulació pròpia) i 1 diploma (titulació pròpia).

• 76 programes de doctorat, 47 programes de mestratge, 83 programes i cursos de postgrau
i 65 cursos d’especialització.

• 46 departaments, 12 facultats i ETS i 16 escoles universitàries (pròpies, adscrites o
vinculades).

• 12 instituts i centres de recerca i estudi propis.

• 19 instituts de recerca adscrits o vinculats.

• 7 serveis tècnics generals de suport a la docència i a la recerca, 8 serveis cientificotècnics
de suport a la recerca i 19 laboratoris de prestació de serveis.

• 9 biblioteques, 1 hemeroteca, 1 cartoteca i 2 centres de documentació i arxius.

Trobareu més informació a la pàgina web de la UAB: http://www.uab.es/
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1.6 Sobre la portada

Moltes vegades, quan m’han presentat a una persona i hem començat a parlar sobre les nostres
respectives ocupacions, ha sorgit la mateixa pregunta ...

Què més es pot fer en matemàtiques?

La matemàtica és un dels molts mitjans de comunicació que crea l’home per a la seva relació
amb el món que l’envolta, i com a tal es desenvolupa amb cada nova interpretació que fem
del comportament de la natura. El més extraordinari, i que és comú a tots els àmbits del
saber, és que la nostra manera d’interpretar els futurs fenòmens naturals depèn al seu torn
dels elements dels quals ara disposem. Aquesta realimentació (feedback) és un dels factors
que fa evolucionar la matemàtica, i això és el que hem pretès representar, tant pel que fa a la
forma com al contingut, amb la imatge de la portada.

A la Grècia clàssica, una part del coneixement que tractava del que ara coneixem amb
el nom de f́ısica, estava centrada en l’estudi de les lleis de l’estàtica (Arqúımedes, 287-212
a.C.): les relacions entre les llargades dels braços d’una balança i els pesos que se situen a
cadascun dels extrems per tal que es mantinguin en equilibri; les lleis de la palanca; etc.
Les representacions geomètriques que aquests problemes involucraven eren circumferències,
triangles i poĺıgons en general, i les qüestions plantejades giraven entorn de les relacions entre
el peŕımetre i el radi (en el cas de la circumferència), o entre dos o més costats (en el cas
dels poĺıgons). És per tots conegut el teorema de Pitàgores (569-470 a.C.) que relaciona la
longitud de la hipotenusa d’un triangle rectangle amb la dels seus catets.

Des de la creació de la dinàmica moderna per Galileu (1564-1643), i la incorporació del
temps en les equacions de la f́ısica, els objectes geomètrics a què han donat lloc els problemes
plantejats han canviat. La geometria de la dinàmica ha generat corbes com la branquisto-
crona, la cicloide, etc., i més recentment objectes que avui coneixem amb el nom de fractals
(Mandelbrot, 1975). Aquests objectes no admeten una definició “estàtica”, com succeeix en el
cas de la circumferència (el lloc geomètric dels punts que són a la mateixa distància d’un punt
donat), el triangle rectangle (poĺıgon de tres costats que té un angle recte), etc. La comprensió
dels objectes fractals exigeix, en la seva versió més estesa, un procés iteratiu infinit. És a dir,
únicament podem fer-nos una idea de l’objecte després d’un procés iteratiu, del qual només
coneixem els primers estadis i del qual mai no podem tenir una imatge completa.

El floquet de neu de von Koch

Un exemple clàssic d’objecte fractal és la corba de von Koch (introdüıda l’any 1904), l’interior
de la qual es coneix com floquet de neu de von Koch. A la figura 1 representem els primers
passos en la construcció d’un dels costats de la corba de von Koch.

La construcció comença amb un triangle equilàter de costat l igual a la unitat de mesura,
per exemple metres, i per tant de peŕımetre p igual a 3 metres. A continuació, en el terç
central de cadascun dels costats es col.loca un triangle equilàter, amb els costats de longitud
l = 1/3m, vegeu la figura 1.(b). D’aquesta manera s’obté una estrella de sis puntes. Notem
que cadascun dels tres costats del triangle original s’ha substitüıt per quatre segments de
longitud 1/3 m, per la qual raó la figura actual consta de 12 = 3× 4 costats i té un peŕımetre
de p = 12 × 1/3 = 3 × 4/3m. En el pas següent substitüım novament cada terç central dels
dotze costats per un triangle equilàter de costat l = 1/9 = 1/32 m, vegeu la figura 1.(c). Això
proporciona un poĺıgon de 36 = 12×3 = 3×42 costats i de peŕımetre p = 36×1/32 = 3×42/32

m.



1.6. SOBRE LA PORTADA 15

Si repetim el procés n cops, és senzill concloure que la figura obtinguda és un poĺıgon de
3 × 4n costats i que la longitud de cada costat es l = 1/3n m, i dona com a resultat que el
peŕımetre és de p = 3 × (4/3)n m. Ni tan sols en aquest moment tenim una representació
completa de la corba de von Koch. Per aconseguir això hem de fer el pas al ĺımit quan
n tendeix a infinit. D’aqúı es dedueix que el peŕımetre del floquet de neu de von Koch té
longitud infinita, lim

n↗+∞
3 × (4/3)n = +∞.

l = 1 =l = 1 3

(a)

(c)

l = 1=9

(b)

(d)

l = 1=27

(e)

l = 1=81

(f)

l = 1=3n
N = 4

r (N) = 1=3

Figura 1. Construcció d’un dels costats de la corba de von Koch. (a) 1 costat de longitud
1; (b) 4 costats de longitud 1/3; (c) 42 costats de longitud 1/32; (d) 43 costats de longitud

1/33; (e) 44 costats de longitud 1/34; (f) 4n costats de longitud 1/3n.

Hauŕıem canviat poc la nostra percepció del món si continuéssim contestant les mateixes
preguntes que contestava Pitàgores en els seus resultats, el peŕımetre de la figura. És tanmateix
ara la matemàtica la que qüestiona: quines propietats pot tenir una corba generada d’aquesta
manera? La resposta, deguda a Hausdorff (1919) i elaborada per Besicovitch (1934) és el que
s’anomena dimensió fractal o dimensió de Hausdorff–Besicovitch. El concepte de dimensió
de Hausdorff-Besicovitch és prou complex per exigir un espai i unes eines que s’allunyen dels
nostres propòsits. Tanmateix podem introduir aqúı un concepte equivalent (útil en el cas de
figures autosemblants), la dimensió de semblança.

Diem que una figura (en el nostre cas una corba) és autosemblant si es pot dividir en
trossos de manera que cadascun sigui semblant al total. Per exemple, un segment de recta
es pot dividir en N trossos, sent cadascun semblant a tot el segment amb raó de semblança
r (N) = 1/N . En el cas d’un rectangle succeeix una cosa anàloga: podem dividir-lo en
N rectangles de manera que cadascun sigui semblant al total amb una raó de semblança
r (N) = 1/N1/2. El mateix podem fer en el cas d’un paral.leleṕıpede rectangular i obtenim
una raó de semblança r (N) = 1/N1/3. Un examen detallat de l’anterior ens porta a pensar
que si la raó de semblança d’un objecte s’expressa com r (N) = 1/N1/D, llavors D és la
dimensió euclidiana de l’objecte. En el cas del segment, r (N) = 1/N1/1; aix́ı doncs; D = 1
i és cert que la dimensió euclidiana d’un segment és 1. El mateix succeeix en el cas d’un
rectangle, per al qual D = 2 coincideix amb la dimensió euclidiana del rectangle, i en el cas
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del paral.leleṕıpede D = 3. D’aquest raonament sorgeix el concepte de dimensió de semblança.
Si la raó de semblança r (N) d’una figura autosemblant s’expressa com

r (N) =
1

N1/D
,

diem que la dimensió de semblança de la figura és D. Prenent logaritmes i äıllant D s’obté

D =
log (1/N)
log (r (N))

.

En el cas particular de la corba de von Koch s’observa que cadascun dels costats es pot
dividir en quatre parts (N = 4) semblants al costat sencer, amb una raó de semblança r (N) =
1/3, (vegeu la figura 1.(f)). Aix́ı doncs, la corba de von Koch té dimensió de semblança

D =
log (1/4)
log (1/3)

=
log (4)
log (3)

= 1.2618...

La dimensió fractal ha esdevingut en els darrers anys una eina molt útil en l’estudi de la
natura i ha transformat la nostra manera d’entendre-la. Objectes com les costes marines, els
núvols, els arbres, etc. exhibeixen un comportament fàcilment identificable amb un fractal,
encara que parlant amb propietat el terme fractal no seria aplicable a cap d’aquestes coses
(tampoc el concepte d’esfera és estrictament aplicable a la Terra i ningú no dubta respecte al
canvi de pensament que va produir el fet de considerar-la com a tal).

Aquest no és un exemple isolat de la capacitat creadora de les matemàtiques / matemàtics.
La matemàtica n’és plena, de fet, no conté res més que això.

Antonio Teruel Aguilar, professor
de Matemàtica aplicada del De-
partament de Matemàtiques de
la Universitat Autònoma de Bar-
celona. tel.: 93 581 18 86, e-mail:
teruel@mat.uab.es.



Caṕıtol 2

Alguns temes matemàtics

L’any 2000 fou proclamat Any Mundial de les Matemàtiques en la Declaració de Rio de Janeiro
del 1992. Aquesta iniciativa va rebre el suport de la UNESCO en reunió plenària l’any 1997.
Moltes associacions i institucions internacionals han expressat llur suport a aquesta celebració
i hi col.laboren. També el Govern espanyol i el Parlament de Catalunya han mostrat el seu
suport a la iniciativa.

En aquestes declaracions s’han fet les consideracions següents sobre les matemàtiques:

• Les matemàtiques són una de les màximes expressions de la intel.ligència humana i un
magńıfic exemple de bellesa de les creacions intel.lectuals.

• Constitueixen un eix central de la història de la cultura i de les idees.

• Gràcies a la seva universalitat, s’apliquen en les altres ciències, de la natura i socials,
en les enginyeries, en les noves tecnologies, i en diferents branques del coneixement i
en els diferents tipus d’activitat humana, de manera que resulten fonamentals en el
desenvolupament dels pobles.

• Constitueixen una eina bàsica per a què la majoria de les persones puguin comprendre
la societat de la informació en què vivim.

• Han tingut, i hauran de seguir tenint, un paper destacat en els sistemes educatius i en
l’aprenentatge dels escolars.

• Es converteixen en un dels àmbits més adients per a la cooperació entre tots els pobles
pel seu llenguatge i valor universals.

L’objectiu d’aquest caṕıtol és donar exemples concrets en què pretenem il.lustrar alguns
dels punts anteriors. Els autors d’aquestes seccions són:

– Secció 2.1 sobre la relació entre vots i escons, Aureli Alabert.
– Secció 2.4 sobre la prova χ2, Maria Jolis.
– Secció 2.5 sobre perspectives, Gregori Guasp.
– Secció 2.8 sobre geometria integral, Agust́ı Reventós.
– Secció 2.10 sobre tractament d’imatges, Bartomeu Coll, professor de la Universitat de

les Illes Balears.
– Secció 2.22 sobre finances, Frederic Utzet.
– La resta dels temes han estat preparats per Armengol Gasull.

17
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2.1 Democràcia: dels vots als escons

La democràcia parlamentària està basada en l’elecció justa d’un nombre petit d’individus
(diputats) per representar un nombre molt més gran de ciutadans. És una idea ben clara,
llevat que. . . què vol dir justa?

Al nostre páıs, els candidats a diputat es presenten a les eleccions agrupats en les anome-
nades candidatures o llistes, que poden ser presentades per partits poĺıtics o per coalicions de
partits. Cada elector vota una de les llistes. A partir del nombre de vots obtinguts, cada llista
rep una certa quantitat d’escons.

La pregunta és, doncs, com determinar, a partir del nombre de vots que rep cada llista, la
quantitat d’escons que li correspon. El sistema que s’utilitza a les eleccions al Parlament de
Catalunya es coneix amb el nom de llei de d’Hondt, i els càlculs que requereix són molt fàcils
de fer. Prenguem com a exemple els resultats de les eleccions del 17 d’octubre de 1999 a la
circumscripció de Lleida, on calia escollir 15 diputats.

Fem una taula amb una fila per a cada candidatura, i posem a la primera columna el
nombre de vots v que ha obtingut cadascuna. La llista amb més vots (CiU) rep el primer escó.
Hi fem una marca, i posem a la segona columna el nombre de vots dividit per 2.

v v/2
CiU •91199 45600
PSC-CC-IC-V 55963
ERC 22011
PP 15121

Entre tots els números de la taula que no estan marcats, escollim el més gran. La candida-
tura corresponent rep el segon escó. En aquest cas, és la coalició PSC-CC-IC-V. Marquem el
número i posem també a la columna següent aquest número dividit per 2. El següent número
més alt sense marcar és un altre cop el de CiU, que rep el tercer escó. Ara posem a la tercera
columna el nombre de vots dividit per 3.

El procediment continua fins que s’han esgotat els 15 escons. A cada columna cal dividir
els vots per 1, 2, 3, 4, . . . La taula resultant, amb els escons e assignats finalment a cada
candidatura és:

v v/2 v/3 v/4 v/5 v/6 v/7 v/8 v/9 e

CiU •91199 •45600 •30400 •22800 •18240 •15200 •13028 •11400 10133 8
PSC-CC-IC-V •55963 •27982 •18654 •13991 •11193 5
ERC •22011 11006 1
PP •15121 7561 1

La llei de d’Hondt és un algorisme, és a dir, un procediment que mena a la resolució d’un
cert problema matemàtic. Per tant, és lògic demanar-se:

• Quin problema matemàtic resol la llei de d’Hondt?
• És aquest problema matemàtic un bon model per al repartiment just dels escons?

En principi, el que voldŕıem d’un sistema electoral proporcional és que la proporció d’escons
de cada llista fos igual a la proporció de vots que ha obtingut. Veiem a la taula que ERC, per
exemple, ha rebut 22 011 vots sobre un total de 184 294. Per conservar aquesta proporció, la
quota d’escons q que li correspon es calcularia fent

22 011
184 294

=
q

15
, ⇒ q = 1.79 .
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El mateix càlcul per a les altres llistes ens dóna quotes de 7.42, 4.55 i 1.23. Atès que no
podem assignar fraccions d’escó, hem de trobar una manera d’aproximar aquests valors de q
per nombres enters. Examinarem tres possibilitats, entre les moltes que hi ha.

Suposem que hi ha n candidatures. Denotem per vi, i = 1, . . . , n la quantitat de vots
aconseguits per la candidatura i. Si li assignem una quantitat ei (entera) d’escons, aleshores
el quocient vi/ei és el preu, en vots, de cada escó obtingut per i. La llista més afavorida és la
que obté el preu mini=1,...,n vi/ei. Aquest mı́nim sempre està acotat superiorment (per V/E,
on V és el nombre total de vots emesos i E és el nombre total d’escons per repartir). Per tant,
si escollim els ei de manera que el preu mı́nim sigui el màxim possible, estem uniformitzant
el preu per escó de totes les candidatures.

En definitiva, obtenim el problema matemàtic de trobar les n quantitats e1, . . . , en, enteres
positives i de suma E, per a les quals s’obté el

max min
i=1,...,n

vi

ei
.

Aquest problema pertany a una classe de problemes d’optimització, anomenats de progra-
mació entera, que són en general molt dif́ıcils. Afortunadament, però, en aquest cas hi ha
un algorisme molt eficient per resoldre’l. Es tracta precisament de la llei de d’Hondt. Això
respon a la primera pregunta que formulàvem.

Com acabem de veure, el model matemàtic de “just́ıcia electoral” que hi ha darrere de la
llei de d’Hondt pretén uniformitzar els preus per escó “a l’alça”. També podem uniformitzar
“a la baixa”: la llista menys afavorida és la que paga el preu maxi=1,...,n vi/ei. Escollirem
aleshores els ei de forma que aquest preu sigui el mı́nim possible. S’obté el problema

min max
i=1,...,n

vi

ei
.

Aquest problema també té un algorisme de resolució eficient, similar al de la llei de d’Hondt.
Només cal canviar els divisors de cada columna, que eren 1, 2, 3, 4, . . . per la seqüència
0, 1, 2, 3, . . . L’algorisme s’anomena llei d’Adams o dels divisors més petits. En el nostre
exemple de Lleida obtindŕıem la taula següent, on el resultat de la divisió per 0 el representem
amb el śımbol ∞, que cal interpretar en el sentit que totes les llistes reben un primer escó
abans que cap d’elles en rebi el segon.

v/0 v/1 v/2 v/3 v/4 v/5 v/6 v/7 e

CiU •∞ •91199 •45600 •30400 •22800 •18240 •15200 13028 7
PSC-CC-IC-V •∞ •55963 •27982 •18654 13991 4
ERC •∞ •22011 11006 2
PP •∞ •15121 2

Considerarem finalment el model següent: si E és el nombre total d’escons i V el nombre
total de vots, és lògic demanar que cada elector tingui un “poder d’influència” sobre aproxi-
madament E/V escons. Si vota la llista i, el seu poder d’influència ha estat realment de ei/vi,
puix que ei és el nombre d’escons assignats a la llista i. Les diferències ei

vi
− E

V es poden inter-
pretar com una desviació de l’assignació ideal deguda a circumstàncies aleatòries. Una mesura
habitual d’aquestes desviacions és l’error quadràtic. Si volem que aquest error quadràtic sigui
mı́nim, haurem de trobar l’assignació e1, . . . , en, que fa

min
n∑

i=1

vi

(ei

vi
− E

V

)2
.
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Aquest model està en certa manera a mig camı́ entre el corresponent a la llei de d’Hondt i
el que dóna lloc a la llei d’Adams, com es pot veure del fet que també és resoluble mitjançant
una seqüència de divisors, que en aquest cas és 0.5, 1, 1.5, 2, 2.5, . . . (equivalentment, es pot
usar la seqüència 1, 3, 5, 7, . . . , que dóna el mateix resultat). L’algorisme es coneix amb el
nom de llei de Sainte-Laguë. L’assignació d’escons resultant a Lleida és la següent:

v v/3 v/5 v/7 v/9 v/11 v/13 v/15 e

CiU •91199 •30400 •18240 •13028 •10133 •8291 •7015 6080 7
PSC-CC-IC-V •55963 •18654 •11193 •7995 •6218 5
ERC •22011 •7337 4402 2
PP •15121 7561 1

Observem que els resultats dels tres models matemàtics de “just́ıcia electoral” que hem
presentat són diferents. No obstant això, tots tres estan ben motivats en termes d’una funció
objectiu que cal minimitzar o maximitzar i que representa una mesura de desproporcionalitat
respecte a la quota. La conclusió és que no es pot parlar d’una única manera justa d’assignar
escons. L’elecció del criteri a emprar és arbitrària i s’ha de fer a partir de consideracions
poĺıtiques. Un cop escollit el criteri, correspon a les matemàtiques trobar la manera adequada
de representar-lo sense ambigüitats i proporcionar algun mètode eficient per obtenir els resul-
tats. A la vegada, la simulació de resultats d’eleccions sota diferents criteris pot aportar idees
per a l’adopció d’un sistema electoral, o per a la invenció de nous sistemes.

El lector pot dissenyar fàcilment altres mètodes a partir dels anteriors; de fet, se’n poden
assajar infinits com a variants de les regles de divisors que hem vist aqúı. Són possibles també
altres criteris molt raonables de repartiment proporcional, i que no són resolubles mitjançant
seqüències de divisors. La llei de d’Hondt deu el seu nom al jurista belga Victor d’Hondt, que
el proposà el 1878, tot i que ja havia estat inventat anteriorment pel nord-americà Thomas
Jefferson. S’utilitza, a més de Catalunya, a Espanya, Portugal i Finlàndia, entre d’altres. A.
Sainte-Laguë publicà el seu mètode el 1910, i és conegut a Amèrica del Nord amb el nom de llei
de Webster. S’utilitza actualment, en forma pura, a Nova Zelanda i, amb certes modificacions,
a molts altres llocs. La llei d’Adams està en desús.

Si bé els tres models vistos donen resultats diferents, que podrien certament conduir a molt
diversos escenaris a l’hora de la cerca de l’estabilitat parlamentària i la formació de govern, és
clar que les diferències són petites. Hi ha dos factors més del disseny d’un sistema electoral
que solen tenir una influència més gran en la desproporció entre vots i escons que de vegades
s’observa. El primer d’aquest factors és la divisió en circumscripcions; el segon és el llindar
inferior.

La divisió en circumscripcions pretén que els futurs diputats representin també un territori,
a més de representar a electors concrets. Si comparem la proporció d’electors a cadascuna de
les quatre circumscripcions catalanes amb el nombre de diputats que escullen, veiem que la
circumscripció de Barcelona està infrarepresentada en benefici de les altres tres.

Circumscripció Electors Quota Escons
Barcelona 2376050 102.35 85
Tarragona 284221 12.24 18
Girona 283346 12.21 17
Lleida 190309 8.20 15
Totals 3133926 135 135
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El terme quota vol dir aqúı els escons teòrics que correspondrien a cada circumscripció si man-
tinguéssim la proporcionalitat estricta amb la població d’electors que contenen. Determinar
aquesta assignació és un problema completament anàleg al de repartir escons entre candida-
tures. Per exemple, a les eleccions al Congrés dels Diputats espanyol, cada circumscripció
(prov́ıncia) rep dos escons inicials i la resta es reparteix arrodonint cap amunt les quotes que
tenen una part decimal més gran, i arrodonint cap avall la resta.

El segon factor que hem esmentat, el llindar inferior, estableix que una candidatura que
no obtingui almenys el 3% dels vots en una circumscripció és automàticament eliminada, i
els seus vots es perden. La justificació poĺıtica d’aquesta norma és evitar que hi hagi una
excessiva dispersió de partits en el Parlament.

En el nostre exemple de Lleida, hem descartat ja d’entrada les set llistes que no van arribar
al llindar. De fet, en aquest cas concret, tampoc no haurien obtingut representació (amb la
llei de d’Hondt) encara que no s’hagués establert el llindar. En efecte, la cinquena llista en
nombre de vots, EV-CEC, n’obtingué 1232, que, com es comprova fàcilment a la taula, és
insuficient per obtenir l’últim escó.

Examinarem la influència de la divisió en circumscripcions i del llindar inferior aplicant la
llei de d’Hondt amb una sola circumscripció i sense imposar cap llindar mı́nim. En la taula
següent, comparem els resultats que s’obtindrien amb aquest sistema (S2) amb els resultats
oficials del sistema actualment en vigor (S1).

Llista Vots % Quota S1 S2

CiU 1178420 37.70 51.37 56 53
PSC-CIPC 948202 30.33 41.33 36 42
PSC-CC-IC-V 235097 7.52 10.25 16 10
PP 297265 9.51 12.96 12 13
ERC 271173 8.67 11.82 12 12
IC-V 78441 2.51 3.42 3 3
EUiA 44454 1.42 1.94 0 1
EV-CEC 22797 0.73 0.99 0 1
EV-AV 8254 0.26 0.36 0 0
POSI 2784 0.09 0.12 0 0
EC 1774 0.06 0.08 0 0
PHC 1327 0.04 0.06 0 0
FE-JONS 1281 0.04 0.06 0 0
UC-CDS 1161 0.04 0.05 0 0
PLN 1029 0.03 0.04 0 0
UNIC-FIC 881 0.03 0.04 0 0
TPR 833 0.03 0.04 0 0
PE 799 0.03 0.03 0 0
LI(LIT-CI) 485 0.02 0.02 0 0
UFD 447 0.01 0.02 0 0
CAM 110 0.00 0.00 0 0
PDEP 108 0.00 0.00 0 0

Dues curiositats de l’assignació S2: s’observa que els escons estan sempre a distància més
petita que 1 de la quota, excepte en el cas de CiU, que sembla anormalment suprarepresentada.
En canvi, EUiA sembla injustament infrarepresentada. De fet, aquests dos partits es disputen
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l’últim escó en joc. Si 15 votants de CiU (curts de vista) confonguessin la seva papereta amb
la de EUiA, l’escó canviaria de mans. D’altra banda, si les dues coalicions formades al voltant
del PSC presentessin una única candidatura, obtindrien un escó més (53), en perjudici de CiU
(52) i sense afectar la resta de llistes.

Les sigles que hem utilitzat corresponen a les candidatures següents:

CiU Convergència i Unió
PSC-CIPC PSC-Ciutadans pel Canvi
PSC-CC-IC-V PSC-Ciutadans pel Canvi-IC-Verds
PP Partit Popular
ERC Esquerra Republicana de Catalunya
IC-V Iniciativa per Catalunya-Verds
EUiA Esquerra Unida i Alternativa
EV-CEC Els Verds (Confederació Ecologista de Catalunya)
EV-AV Els Verds-Alternativa Verda
POSI Partit Obrer Socialista Internacionalista
EC Estat Català
PHC Partit Humanista de Catalunya
FE-JONS Falange Espa~nola de las J.O.N.S.
UC-CDS Unión Centrista-Centro Democrático y Social
PLN Partit de la Llei Natural
UNIC-FIC UNIC-FIC
TPR Trabajadores Públicos Rebotados
PE Partit Espinaltià
LI(LIT-CI) Lluita Internacionalista
UFD Unión Federal Democrática
CAM Catalans al Món
PDEP Partido Democrático del Pueblo

La llei que regula les eleccions a tot el territori espanyol és essencialment la Llei orgànica
5/1985, de 19 de juny, del règim electoral general (BOE núm. 147, de 20 de juny), amb algunes
modificacions posteriors.

Els resultats complets, per circumscripcions, comarques, municipis i candidatura, de les
eleccions al Parlament de Catalunya del 17 d’octubre de 1999 es poden trobar a les pàgines
d’Internet de la Generalitat de Catalunya (http://www.gencat.es).
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2.2 El número π. Diferents algorismes de càlcul

L’objectiu d’aquesta secció és donar diversos algorismes per a calcular π, comparant la seva
velocitat de convergència.

El número π es defineix com el quocient entre la longitud d’una circumferència i el seu
diàmetre. La notació π va ser usada per primer cop per William Oughtred (1574-1660) i pot
provenir de la paraula grega περιµετρoξ (peŕımetre) usada per Arquimedes per a designar la
longitud de la circumferència. La notació es va consolidar a partir dels treballs de Leonhard
Euler de 1737.

Al llarg de la història hi ha hagut molts intents de calcular-lo. A continuació resumim
alguns resultats d’aproximació; en cadascun subratllem els decimals correctes.

• Babilonis (2000 a.C.): 3 + 1
8 = 3.125.

• Egipcis (2000 a.C.): (16
9 )2 = 3.16 . . ..

• Xinesos (1200 a.C.) i a la B́ıblia (550 a.C.): 3.

• Arquimedes (250 a.C.): 3.14185. També va provar que 223
71 < π < 22

7 .

• Tsu Txung Txih (% 480): 355
113 = 3.1415929 . . ..

• Viète (1593): 3.1415926536.

• Euler (1707-1783): 103993
33102 = 3.1415926530 . . .

• De Lagny (1719): 112 decimals exactes calculats.

• Rutherford (1824): 152 decimals exactes calculats.

• W. Shanks (1874): 527 decimals exactes calculats.

• Ramanujan1: 9
5 +

√
9
5 = 3.1416 . . . , (102 − 2222

222 )1/4 = 3.14159265 . . . .

• Kanada i Takahashi (1997): 51 539 600 000 decimals exactes calculats.

1Srivasa Ramanujan (1887-1920). Matemàtic hindú, autodidacte amb una gran intüıció per a trobar noves
fórmules encara no ben entesa.
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Donarem tres algorismes que permeten calcular π amb molts decimals. Observeu que
cada algorisme és millor que l’anterior, en el sentit que amb menys operacions s’obtenen més
decimals correctes. Vegeu també el problema 3.5.10 per a altres algorismes. Cal fer notar
que π no és un nombre racional2 i que no s’ha trobat cap regularitat a les xifres decimals
de π. La bibliografia consultada és: Dictionnaire de Mathématiques, fondements, probabilités,
applications, d’Albin Michel, Encyclopaedia Universalis, Paŕıs, 1998 i Le fascinant nombre π
de Jean-Paul Delahaye, Bibliothèque pour la Science, Diffusion Belin, Paŕıs 1997.

Algorisme 1: l’aproximació d’Arquimedes

El mètode ideat per Arquimedes consisteix a aproximar π pel peŕımetre dels poĺıgons inscrits
a una circumferència de diàmetre 1, i cada cop més costats. Vegeu la figura següent:

· · ·

p1 p2 π

Per a explicar els càlculs que farem, necessitem dues coses.
La primera és el càlcul del peŕımetre de l’hexàgon p1. És fàcil
veure que p1 = 3. En segon lloc, si anomenen x el costat d’un
poĺıgon regular, volem saber quin serà el costat y del poĺıgon
regular que té el doble de costats. Per a calcular y en funció
de x usarem la figura.

1
2

1
2

z

x
2

x
2

y

1
2 − z
!

L’aplicació del teorema de Pitàgores dos cops ens diu que

x2

4
+ z2 =

1
4
,

x2

4
+ (

1
2
− z)2 = y2.

Operant a la segona fórmula, x2

4 + 1
4 + z2 − z = y2, i usant la primera, 1

2 − z = y2. Com que

z =
√

1−x2

4 , concloem que y =
√

1
2(1 −

√
1 − x2).

Per tant, si anomenem pn el peŕımetre d’un poĺıgon regular de 6 · 2n−1 costats i ln el seu
costat, tenim que

l1 =
1
2
, p1 = 3

ln+1 =
√

1
2
(1 −

√
1 − l2n), pn+1 = 6 · 2nln+1,

és una manera d’anar aproximant π, ja que limn→∞ pn = π.
2De fet, π no és ni tan sols algebraic: és a dir, no és arrel de cap polinomi amb coeficients racionals.
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El càlcul efectiu de ln+1 a partir de ln produeix errors de càlcul, ja que en fer l’operació√
1
2(1 −

√
1 − l2n), amb ln cada cop més petit, s’han de restar nombres molt propers. Per tant,

és convenient desracionalitzar l’última expressió usant la igualtat:

(1 −
√

1 − l2n)
1 +

√
1 − l2n

1 +
√

1 − l2n
=

l2n
1 +

√
1 − l2n

.

L’algorisme final és

l1 =
1
2
, p1 = 3

ln+1 =
ln√

2(1 +
√

1 − l2n)
, pn+1 = 6 · 2nln+1.

Tenim que p1 = 3, p2 = 3.105 . . ., p3 = 3.132 . . . , p4 = 3.139 . . . , p5 = 3.14103 . . . ,
p15 = 3.14159265305, . . .

Algorisme 2: La funció arctangent

La segona via que descrivim per a calcular π es basa en la següent fórmula per a la funció
arctangent

arctan(x) = x − x3

3
+

x5

5
− x7

7
+

x9

9
+ · · · =

∞∑

i=0

(−1)i

2i + 1
x2i+1,

i en certes relacions trigonomètriques. Un primer intent seria a partir de la igualtat:

π

4
= arctan(1) = 1 − 1

3
+

1
5
− 1

7
+

1
9

+ · · · =
∞∑

i=0

(−1)i

2i + 1
.

Ara bé, si denotem per arctann(x) :=
∑n

i=0
(−1)i

2i+1 x2i+1, i considerem la successió de números

xn = arctann(1) = 1 − 1
3

+
1
5

+ · · · + (−1)n
1

2n + 1
,

després d’uns quants càlculs veiem que la successió xn convergiria cap a π/4 més lentament
que la que ens dóna el mètode proposat per Arquimedes. Per sort hi ha d’altres relacions
entre π i la funció arctangent. Per exemple, tenim la fórmula π

4 = arctan 1
2 + arctan 1

3 . Una
demostració gràfica d’aquesta darrera fórmula es pot deduir observant la figura següent, on
s’han marcat els angles rectes.
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Finalment, donarem un algorisme de càlcul de π basat en una fórmula similar

π

4
= 4arctan(

1
5
) − arctan(

1
239

),

dedüıda (i usada per a calcular π) per John Machin (1680-1752).
La demostració d’aquesta darrera fórmula es pot fer a partir de la fórmula de la tangent

de la suma d’angles:

tan(a + b) =
tan(a) + tan(b)
1 − tan(a) tan(b)

, (∗)

ja que com a conseqüència tenim que

tan(4 arctan
1
5
− arctan

1
239

) =
tan(4 arctan 1

5) − 1
239

1 + tan(4 arctan 1
5) 1

239

.

D’altra banda, usant ara dos cops (∗) obtenim

tan(4 arctan(x)) =
4x(1 − x2)

x4 − 6x2 + 1
.

Fent més operacions concloem que tan(4 arctan 1
5 − arctan 1

239 ) = 1. Per tant, hem provat la
fórmula de Machin.

Si considerem la successió

yn = 16arctann(
1
5
) − 4 arctann(

1
239

),

s’obté y0 = 3.183 . . . , y1 = 3.1405 . . . , y2 = 3.14162 . . . , y3 = 3.1415917 . . . , y4 = 3.141592682 . . . ,
y5 = 3.1415926526 . . . , y6 = 3.14159265362 . . . Observeu que limn→∞ yn = π.

Algorisme 3: Un mètode amb velocitat quadràtica

El 1973, i de manera independent, Eugène Salamin i Richard Brent van trobar un mètode per a
aproximar π amb gran velocitat. Aquest mètode és el que s’anomena un mètode amb velocitat
quadràtica. Aquest nom prové del fet que l’error en cada pas de l’algorisme és aproximadament
el quadrat de l’error comés en el pas anterior. Això fa que el nombre de xifres decimals exactes
es dobli iteració per iteració. Aix́ı, per exemple, el mètode que presentarem és tal que després
de vint-i-cinc passos ens dóna uns 45 milions de xifres decimals exactes (suposant que tots els
càlculs es fan amb aquest nombre de xifres decimals). Aquest mètode es basa en la mitjana
aritmetico-geomètrica, que ja apareix en els treballs de Gauss del segle XVIII, i la demostració
de la convergència està basada en la teoria de les integrals el.ĺıptiques i és massa complicada
per a ser inclosa aqúı.

Es calcula la successió zn, per a n ≥ 1, a partir dels nombres a0, a1, . . . an i b0, b1, . . . , bn i
aplicant la fórmula:

zn =
4a2

n

1 − 2
∑n

i=1 2n(a2
n − b2

n)
,

on els valors ai i bi s’obtenen de la recurrència:3

3De fet, es pot veure que limi→∞ ai i lim→∞ bi existeixen i coincideixen. A aquest valor se l’anomena mitjana
aritmetico-geomètrica de a0 i b0.
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a0 = 1, b0 =
1√
2

ai+1 =
ai + bi

2
, bi+1 =

√
aibi.

Tenim que z1 = 3.187 . . . , z2 = 3.14168 . . . , z3 = 3.14159265389 . . . , |z4 − π| < 10−20,
|z5 − π| < 10−42. Actualment es coneixen algorismes de càlcul encara molt més ràpids.

π i el seu amic e.

Acabarem aquesta secció amb un tema relacionat, les fraccions cont́ınues.

Fraccions cont́ınues

Un cop es coneixen tots els d́ıgits d’un cert nombre real x, ens podem preguntar quines són
les fraccions que millor l’aproximen, en el sentit de buscar fraccions amb denominadors al més
petits possible. La resposta a aquest problema ens la dóna la teoria de les fraccions cont́ınues.
Es construeix una successió de fraccions de la forma

a0, a0 +
1
a1

, a0 +
1

a1 +
1
a2

, a0 +
1

a1 +
1

a2 +
1
a3

, a0 +
1

a1 +
1

a2 +
1
a3

, a0 +
1

a1 +
1

a2 +
1

a3 +
1
a4

, . . .

amb a0 ∈ Z, ai ∈ N de manera que tendeixi a x.
Explicarem una forma de calcular a0, a1, a2, . . . per al cas x = π: a0 és la part no decimal

de π és a dir a0 = 3; a1 és la part no decimal de 1
π−a0

= 1
0.3159... = 7.06 . . . , és a dir a1 = 7;

a2 és la part no decimal de 1
7.06···−7 = 15.99 . . . , és a dir a2 = 15; a3 és la part no decimal de

1
15.99···−15 = 1.00 . . . és a dir a3 = 1; i aix́ı successivament. Per tant, la successió de fraccions
cont́ınues que tendeixen a π és

3, 3 +
1
7
, 3 +

1

7 +
1
15

, 3 +
1

7 +
1

15 +
1
1

, 3 +
1

7 +
1

15 +
1

1 +
1

292

, 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1
1

, . . .
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Operant resulta

3,
22
7

,
333
106

,
355
113

,
103993
33102

,
104348
33215

, . . .

Observeu que aquesta successió conté les aproximacions racionals d’Arquimedes, Txu
Txung Txih, i Euler, donades a la introducció d’aquesta secció, a més d’altres aproximacions
racionals de π bastant bones.

Sembla que ja Arquimedes coneixia les fraccions cont́ınues, perquè va provar que

1
3



5 +
1

5 +
1
10



 <
√

3 <
1
3





5 +
1

5 +
1

10 +
1
5





.

Per a acabar, us proposem que trobeu alguna regularitat en l’aproximació per fraccions
cont́ınues del número e.

Apèndix: mil xifres decimals del número π.

3.14159265358979323846264338327950288419716939937510582097494

4592307816406286208998628034825342117067982148086513282306647

0938446095505822317253594081284811174502841027019385211055596

4462294895493038196442881097566593344612847564823378678316527

1201909145648566923460348610454326648213393607260249141273724

5870066063155881748815209209628292540917153643678925903600113

3053054882046652138414695194151160943305727036575959195309218

6117381932611793105118548074462379962749567351885752724891227

9381830119491298336733624406566430860213949463952247371907021

7986094370277053921717629317675238467481846766940513200056812

7145263560827785771342757789609173637178721468440901224953430

1465495853710507922796892589235420199561121290219608640344181

5981362977477130996051870721134999999837297804995105973173281

6096318595024459455346908302642522308253344685035261931188171

0100031378387528865875332083814206171776691473035982534904287

5546873115956286388235378759375195778185778053217122680661300

19278766111959092164201989 . . .
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2.3 La recta de mı́nims quadrats. Marques d’atletisme

Donats dos punts qualssevol del pla (x1, y1) i (x2, y2) sempre hi ha una recta ax + by + c = 0
que passa per ells. A més, si x1 *= x2, l’equació de la recta es pot escriure com y = mx + n.
Ara bé, és molt dif́ıcil, quan es pren una col.lecció de k punts al pla

(x1, y1), (x2, y2), . . . , (xk, yk),

que hi hagi una recta que passi per tots ells. En aquest context apareix la pregunta següent:
quina és la recta y = mx + n que aproxima millor tots els punts? Aquesta pregunta no està
ben formulada matemàticament, ja que “millor”és un concepte no gaire clar.

Encara que no és l’única possibilitat, direm que la recta y = m̂x + n̂ és la que millor
aproxima el núvol de punts (xi, yi), i = 1, 2, . . . , k, si m̂ i n̂ són tals que la funció de dues
variables

F (m,n) = (y1 − (mx1 + n))2 + (y2 − (mx2 + n))2 + · · ·

· · · + (yk − (mxk + n))2 =
k∑

i=1

(yi − (mxi + n))2 (∗)

pren el seu valor més petit quan m = m̂ i n = n̂. A la figura següent s’il.lustra gràficament
quins són els valors yi − (mxi + n) que s’han d’elevar al quadrat i sumar per obtenir F (m,n).

"

!
"#yi − (mxi + n)

x

y

Una manera d’obtenir aquests valors m̂ i n̂ s’obté imposant condicions per tal que la
funció F tingui un extrem. Ens limitarem aqúı a donar el mètode per a calcular-los. El
resultat és el següent:

Si prenem m̂ i n̂ com la solució del següent sistema lineal de dues equacions amb dues
incògnites, 


k

k∑
i=1

xi

k∑
i=1

xi

k∑
i=1

x2
i





(
n̂
m̂

)
=





k∑
i=1

yi

k∑
i=1

xiyi



 ,

aleshores la recta y = m̂x + n̂ és la recta que millor aproxima el conjunt de punts (xi, yi),
i = 1, 2, . . . , k en el sentit que la funció F (m,n) donada a (∗) pren el valor més petit possible
quan m = m̂, n = n̂.

La recta y = m̂x+n̂ s’anomena recta de mı́nims quadrats o aproximació mı́nima quadràtica
del conjunt de punts (xi, yi), i = 1, . . . , k o de la taula

x1 x2 x3 . . . xk

y1 y2 y3 . . . yk
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La recta de mı́nims quadrats té múltiples utilitats a les ciències experimentals: f́ısica,
qúımica, biologia,. . . Nosaltres donarem aqúı una aplicació a l’estudi de les marques d’atletis-
me. A la taula següent figuren els rècords mundials de la prova de 1500 m des del 1912 fins al
1995.

Any min s Any min s Any min s

1912 3 55.8 1943 3 45 1967 3 33.1

1917 3 54.7 1944 3 43 1974 3 32.2

1924 3 52.6 1947 3 43 1979 3 32.11

1926 3 51 1952 3 43 1980 3 31.36

1930 3 49.2 1954 3 41.8 1983 3 30.77

1933 3 49 1955 3 40.8 1985 3 29.46

1934 3 48.8 1956 3 40.5 1992 3 28.86

1936 3 47.8 1957 3 38.1 1995 3 27.37

1941 3 47.6 1958 3 36

1942 3 45.8 1960 3 35.6

Ens preguntem si, a partir d’aquestes dades, podem tenir una idea de quin podria ser el
rècord mundial de la prova l’any 1999. Per a això fem els càlculs següents. Busquem quina és
la recta y = m̂x + n̂ que millor aproxima els punts de la taula. Per tal de fer menys càlculs
pendrem com a variables xi els anys 12, 17, 24, . . . , 95, i com a marques només els segons
55.8, 54.7, 52.6, . . . , 27.37. Aleshores, els valors m̂ i n̂ seran la solució del sistema d’equacions:
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(
28 1476

1476 91768

)(
n̂
m̂

)
=
(

1153.53
55701.07

)
;

és a dir, m̂ = −0.3657, n̂ = 60.4775. Per tant, podem considerar com un possible rècord del
món de 1999 la marca: 3 minuts més −0.3657(99) + 60.4775 segons, és a dir 3 min 24.27 s.
Ara bé, si busquem quin és l’actual rècord del món, trobem que es va fer el juliol del 1998 i és
de 3 min 26s. Per tant, hem obtingut una previsió que és bastant bona (tenint en compte, a
més, que el rècord és de 1998 i, si haguéssim avaluat a x = 98, hauŕıem obtingut 3 min 24.64
s). Quina previsió de rècord del món podeu fer per a l’any 2010?

Per a acabar aquesta secció aplicarem la mateixa tècnica en una situació lleugerament
diferent. A partir dels rècords del món actuals de 100 m, 200 m, 400 m, 800 m, 1500 m,
3000 m i 5000 m, intentarem deduir el de 10000 m. Fent els mateixos càlculs que a l’exemple
anterior, a partir de les set primeres dades de la taula següent, obtenim que una aproximació
del rècord del món de 10000 m fóra 25 min 22.44 s. Com podeu observar, el rècord real és de
26 min 22.75 s, és a dir que fem un error d’aproximadament 1 minut (de prop d’un 4%.) Cal
comentar que no sembla gaire bon model el fet de pensar que el rècord depèn linealment de
la longitud de la prova, i és clar que no seria gens bona idea usar aquestes dades per a predir
el rècord del món de la marató, per exemple.

Prova min s
100 m 0 9.79
200 m 0 19.32
400 m 0 43.18
800 m 1 41.11

1500 m 3 26.00
3000 m 7 20.67
5000 m 12 39.36

10000 m 26 22.75

Representeu gràficament els resultats de la taula anterior. A partir de la seva gràfica potser
s’us acudirà intentar aproximar-los per una corba diferent a la ĺınia recta.

Si esteu interessats a tenir dades d’altres proves, podeu visitar l’adreça d’Internet

http://www.algonet.se/∼pela2/mtrack.htm,

on trobareu les millors marques mundials de moltes proves d’atletisme.
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2.4 Dependència entre dos fets. Prova χ2

Suposem que disposem de les històries cĺıniques de 5000 persones (ja mortes). Per a cada
persona se sap si la mort va ser causada o no per càncer de pulmó i si l’individu era fumador
o no. Es pot formar la taula següent amb aquests historials.

Morts per Morts per
càncer de pulmó altres causes Total

Fumadors 348 3152 3500
No fumadors 82 1418 1500

Total 430 4570 5000

(Encara que aquestes dades són hipotètiques, els registres reals dels hospitals presenten per-
centatges molt semblants.)

Es tracta de veure si hi ha relació entre el fet de ser fumador o no i el de morir per càncer
de pulmó o altres causes. Per determinar si hi ha relació o no, s’efectua el que s’anomena “un
test d’hipòtesis”. Concretament, en aquest cas, la prova χ2 (khi quadrat) d’independència.

Aquesta prova es basa en una idea bastant simple. Es comença suposant que no hi ha cap
relació entre els dos factors que estem considerant, és a dir, són factors independents l’un de
l’altre. Si aquest fos el cas, com que els fumadors representen la fracció 3500

5000 = 7
10 sobre la

població de morts i els no fumadors el 1500
5000 = 3

10 , esperaŕıem que del total de 430 morts per
càncer de pulmó els 7

10 fossin fumadors, és a dir 7
10 · 430 = 301.

Fixem-nos que a partir d’aquesta dada esperada a la primera casella, 301, podem construir
una nova taula amb tots els valors esperats si realment no hi hagués cap relació, ja que tenim
fixats els totals.

Morts per Morts per
càncer de pulmó altres causes Total

Fumadors 301 3199 3500
No fumadors 129 1371 1500

Total 430 4570 5000

Observem que hi ha unes diferències entre el que s’ha observat a la mostra (la qual suposem
representativa d’alguna població) i les que s’esperarien si fos independent el fet de fumar o no
amb morir de càncer de pulmó. El que s’ha de decidir és si aquestes diferències són degudes
a l’atzar (quan hom recull dades mai no s’ajusten exactament als models teòrics) o bé al fet
que realment hi ha relació entre els dos factors.

El pas següent consisteix a calcular l’anomenat estad́ıstic χ2. Si anomenem Oi la freqüència
observada a la mostra la casella i-èsima i Ei la freqüència esperada (sota la hipòtesi d’inde-
pendència) a la mateixa casella, calculem l’expressió següent:

V =
∑

i

(Ei − Oi)2

Ei
.

El resultat matemàtic important (i dif́ıcil de demostrar!) en què està basada la prova, és
que la distribució de la variable aleatòria V , si no hi ha realment relació entre les variables,
és aproximadament (si la mostra és gran) una llei coneguda anomenada χ2 amb un grau de
llibertat. Això vol dir que es poden calcular les probabilitats que aquesta variable prengui
determinats valors.
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Fixem-nos que si no hi hagués relació entre les variables, tindŕıem que els (Ei−Oi)2

Ei
haurien

de donar números petits, i per tant V donarà un valor més aviat petit. En canvi, si hi ha
relació entre les dues variables, V hauria de prendre valors més aviat grans.

Calculem el valor de V en el nostre cas particular

V =
(301 − 348)2

301
+

(129 − 82)2

129
+

(3199 − 3152)2

3199
+

(1371 − 1418)2

1371
= 26.765.

Si realment no hi hagués relació, podŕıem calcular la probabilitat d’haver obtingut un resultat
tan gran com aquest, és a dir P{V ≥ 26.765}, ja que la distribució χ2 amb un grau de llibertat
és perfectament coneguda (de fet, quan el número de graus de llibertat és 1, es tracta d’una
variable normal estàndard elevada al quadrat). Aquesta probabilitat és menor que 0.0001.

Observem que, suposant que no hi havia relació, hem obtingut uns resultats a la nostra
mostra amb una probabilitat pràcticament nul.la. Quan passa això, és perquè és “gairebé”segur
que la hipòtesi d’independència és falsa. Per tant, afirmaŕıem que aquestes dues variables estan
relacionades.

Cal fer atenció al fet que només hem inferit una possible relació entre fumar i tenir càncer
i no pas que el fet de fumar causi càncer. Podria ser que ambdues caracteŕıstiques estiguessin
relacionades a causa d’una tercera variable no controlada que les inflúıs alhora.

Si la taula té més de dues files o dues columnes aleshores s’han d’usar altres distribucions
χ2.

Distribució χ2 amb un grau de llibertat

A la taula següent es donen les probabilitats que el valor de V obtingut seguint el procediment
descrit anteriorment sigui més gran que uns certs números.

Valor de V ≥ 1 2 3 4 5 10
Probabilitat ≤ 0.318 0.159 0.084 0.046 0.025 0.002

La seva construcció es basa en el fet que per a una mostra prou gran es pot veure que

P{V ≥ v} % 2√
2π

∫ ∞

√
v

e−x2/2 dx.

Aquesta última integral és dif́ıcil de calcular ja que es pot demostrar que la funció e−x2/2 no
té cap primitiva (funció g(x) tal que g′(x) = e−x2/2) expressable com una combinació finita
d’operacions elementals, funcions trigonomètriques, logaritmes i exponencials, i per tant la
regla de Barrow no és aplicable a la pràctica. En aquestes situacions el càlcul de l’àrea es
fa per mètodes aproximats com el dels trapezis, basat en la idea següent: aproximar l’àrea
real,

∫ b
a f(x) dx, per la suma d’àrees de trapezis,

∑
i àrea(Ti), amb els quals s’ha aproximat la

figura real. Vegeu la figura:

"

!

∫ b
a f(x) dx

a b

y = f(x)
y

x
!

a b

y

x

T1 T2 T3 T4

"
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2.5 La geometria de les perspectives. La raó doble

Quan fem una fotografia podem pensar que el que queda en el negatiu no és altra cosa que la
projecció sobre el pla de la pel.ĺıcula, a través de l’objectiu de la càmera, del que hi ha sobre
el terreny.

$

El terra

%

L’objectiu

#

El que retratem
&

El que queda en el negatiu

En aquest procés de projecció no només es perd la informació tridimensional dels objectes
retratats (es passa de cossos a l’espai a figures sobre un pla), si no que fins i tot la informació
bidimensional (les distàncies entre els punts sobre un pla fix) queden distorsionades. Per
exemple, considerant els punts X = (0, 2, 0), Y = (0, 3, 0) i Z = (0, 4, 0) del pla horitzontal
z = 0 projectats sobre el pla vertical y = 0 a través del punt P = (0, 1, 1), s’obtindran aquestes
projeccions determinant els punts d’intersecció de les rectes PX, PY i PZ amb el pla y = 0
tal i com es veu en el dibuix.

'

Centre de la perspectiva, P

Aleshores aquests punts seran

X ′ = (0, 0, 2), Y ′ = (0, 0, 3/2) i Z ′ = (0, 0, 4/3).
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Es pot observar que, mentre la distància entre X ′ i Y ′ és la meitat de la distància entre X i Y ,
la distància entre Y ′ i Z ′ és 1/6 de la distància entre Y i Z i la distància entre X ′ i Z ′ és 1/3
de la distància entre X i Z. No es pot pensar, doncs, que la representació que s’obté sobre la
fotografia és una representació a escala de la realitat. Tot i això, hi ha situacions en què les
mesures realitzades sobre una fotografia poden donar prou informació per a poder calcular les
distàncies reals. Un exemple d’això és el problema següent:

Tenim una fotografia en què s’observa l’encreuament de dues carreteres rectes sobre un
lloc essencialment pla, dos senyals que marquen les distàncies sobre una de les carreteres fins
a l’encreuament, i un cotxe circulant entre aquests dos senyals més o menys com en el dibuix
següent (on s’han marcat els punts sobre la vora de la carretera que corresponen a cada un
dels llocs mencionats)

4 km fins a l’encreuament

(

1 km fins a l’encreuament

(

)
Un cotxe

A quina distància de l’encreuament es troba realment el cotxe?
Per a resoldre el problema notem primerament que l’alineament és una propietat que es

conserva en les transformacions perspectives. En efecte, la imatge d’una recta que passi per
dos punts donats és la intersecció del pla que conté aquests dos punts i el punt respecte al qual
es fa la perspectiva amb el pla sobre el qual es realitza la projecció (la pel.ĺıcula fotogràfica) i,
com tothom sap, les interseccions de plans amb plans (dins l’espai tridimensional) normalment
són rectes4. Tenint en compte això, el problema en realitat fa referència a punts que estan
sobre una recta i les seves projeccions, des d’un punt desconegut, sobre una altra recta.

4Deixem a part els cas en què els plans resulten paral.lels. Correspon aquest cas als punts d’una recta
invisible per a la projecció que estem realitzant, i podŕıem fer tota una altra exposició sobre aquest tema.
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#

pla de la fotografia

E U C Q

#

encreuament

1 km

#

cotxe

#

4 km

#

E′
U ′

C ′
Q′

*
+

,
#

La raó doble de quatre punts d’una recta dóna una manera simple d’obtenir una solució.
Donats quatre punts sobre una recta, es defineix la seva raó doble ρ com el quocient

ρ(A,B,C,D) =
(AC)(BD)
(BC)(AD)

,

on (PQ) representa la distància del punt P al punt Q. La particularitat d’aquest nombre és
que, si projectem els punts A, B, C i D sobre uns punts d’una altra recta A′, B′, C ′ i D′

respectivament, el valor de ρ(A′, B′, C ′,D′) coincideix amb ρ(A,B,C,D). Aquesta propietat
és certament remarcable; ja hem dit abans que les proporcions entre les distàncies no es
conservaven després de fer una projecció, i la raó doble no deixa de ser una mena de proporció
entre distàncies. Un exemple concret5 en el qual es pot observar aquesta invariància i el tipus
de càlcul que intervé per a arribar a aquest resultat és el següent:

Considerem la projecció de la recta y = 0 del pla sobre la recta x = 0 des del punt
P = (1, 1). Es pot comprovar que la projecció del punt (x, 0) és el punt (0, y) amb

y =
x

x − 1
.

Si es tenen quatre punts de la forma A = (x1, 0), B = (x2, 0), C = (x3, 0) i
D = (x4, 0), la seva raó doble serà

ρ =
(x3 − x1)(x4 − x2)
(x3 − x2)(x4 − x1)

5De fet, la demostració general de la invariància de la raó doble consisteix essencialment a reduir el problema
a la situació que analitzem.
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i les seves projeccions seran

A′ = (0,
x1

x1 − 1
)

B′ = (0,
x2

x2 − 1
)

C ′ = (0,
x3

x3 − 1
)

D′ = (0,
x4

x4 − 1
);

de forma que la raó doble ρ(A′, B′, C ′,D′) serà

( x3
x3−1 − x1

x1−1)( x4
x4−1 − x2

x2−1)
( x3

x3−1 − x2
x2−1)( x4

x4−1 − x1
x1−1)

=

(x3(x1 − 1) − x1(x3 − 1))(x4(x2 − 1) − x2(x4 − 1))
(x3(x2 − 1) − x2(x3 − 1))(x4(x1 − 1) − x1(x4 − 1))

=

(x1 − x3)(x2 − x4)
(x2 − x3)(x1 − x4)

,

que coincideix amb ρ.

La raó doble α dels punts de la fotografia que representen el punt de 4 km (Q′), la posició
del cotxe (C ′), el punt d’1 km (U ′) i l’encreuament (E′) es pot calcular prenent les mesures
corresponents directament sobre la fotografia i fent les operacions algebraiques necessàries.
D’altra banda, la raó doble ρ(Q,C,U,E) (que ha de coincidir amb α) no és calculable direc-
tament a partir de la informació que tenim, ja que es desconeixen les distàncies (CE) i (CU).
Ara bé, com que (CU) = (CE) − 1, podem fer

α = ρ(Q,C,U,E) =
(QU)(CE)
(CU)(QE)

=
3(CE)
(CU)4

=
3(CE)

4((CE) − 1)
,

de forma que

(CE) =
4α

4α− 3
,

i ja tenim la dada que voĺıem saber. Fent aquests càlculs a partir del croquis sobre el qual
hem plantejat el problema, a mi em surt que el cotxe es troba a uns 1375 m.
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2.6 Detecció de malalties. Fórmula de Bayes

Crec que el problema que estudiarem ens fa veure que per a prendre certes decisions no n’hi
ha prou de tenir bones intencions, sinó que s’ha d’entendre una mica de números.

Suposem que hi ha una certa malaltia greu que afecta al 2 per mil de la població i que si
és detectada prou a temps és curable. Suposem, a més, que es disposa d’una certa prova per
a detectar la malaltia amb les caracteŕıstiques següents:

(i) Si una persona té la malaltia, en el 99% dels casos li detecta.

(ii) Si una persona no té la malaltia, en un 99% dels casos la prova diu que no la té.

Cal comentar que la situació descrita abans és corrent, ja que normalment les proves sempre
tenen un cert error.

Un cop plantejat el problema, la qüestió és: és útil sotmetre tota la població a aquesta
prova per tal de detectar els casos de malaltia? O en altres paraules: Si a una certa persona
la prova li surt positiva (és a dir, la prova diu que pot tenir la malaltia), en quin tant per cent
dels casos és cert que la persona en qüestió té efectivament la malaltia? La solució correcta
del problema passa per la traducció d’aquest en termes de probabilitats i en l’aplicació de
l’anomenada fórmula de Bayes. Aquesta solució es donarà en segon lloc. Primer donarem una
explicació simplificada i potser més intüıtiva:

Suposem que la nostra població té moltes persones (per exemple 1 000 000), aleshores
podem construir la taula següent, que reflecteix la situació esperada de la població. La sim-
plificació del problema rau en la construcció d’aquesta taula, que no té per què ser correcta.
Quan es diu que la malaltia afecta a un 2 per mil de la població, no vol dir que sigui quin
sigui el nombre de persones que agafem, exactament 2 de cada mil seran malaltes. I el mateix
pel que fa a la fiabilitat de la prova.

Població malalta Població no malalta Total
Prova surt 1 980 9 980 11 960
positiva

Prova surt 20 988 020 988 040
negativa
Total 2 000 998 000 1 000 000

Taula 1. Distribució esperada de la població

Usant les dades de la taula tenim que, del total de persones a les quals la prova surt positiva
(11 960), només 1 980 estaven malaltes, mentre que 9 980 no ho estaven.

Aix́ı tenim que només en un 1 980
11 960100 % 16.56% dels casos en què la prova surt positiva, la

persona en qüestió té la malaltia. Aquest fet desaconsella fortament l’ús massiu de la prova de
detecció. Només es aconsellable fer-la a persones que tinguin algun indici de tenir la malaltia.

En cas que la malaltia sigui molt comuna (per exemple que afecti un 10% dels individus),
aleshores una prova amb les mateixes caracteŕıstiques śı que seria fiable (en un 91.7% dels
casos en què la prova surt positiva la persona en qüestió té la malaltia).

Fem, per acabar, el mateix càlcul d’una manera rigorosa. La fórmula de Bayes serveix per
a calcular la probabilitat d’un esdeveniment A sabent que se n’ha prodüıt un altre B. Això
es fa a partir de la probabilitat que es produeixi aquest últim esdeveniment B sabent que
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s’ha prodüıt A. És, doncs, una fórmula d’inversió dels condicionaments. La versió més simple
d’aquesta fórmula és

P (A/B) =
P (A)P (B/A)

P (A)P (B/A) + P (Ac)P (B/Ac)
,

on la notació P (A/B) vol dir la probabilitat que es produeixi l’esdeveniment A, sabent que
s’ha prodüıt l’esdeveniment B. Naturalment P (A) vol dir la probabilitat que es produeixi
l’esdeveniment A i també estem denotant per Ac el complementari o contrari de l’esdeveniment
A, que és aquell esdeveniment que ocorre sempre que no ocorre A.

Si apliquem la fórmula al nostre exemple, tenim que, posant

A = tenir la malaltia,
Ac = no tenir la malaltia,
B = donar la prova positiva,
Bc = donar la prova negativa,

ens estan dient que:
P (A) = 0.002, d’on es dedueix que P (Ac) = 0.998,
P (B/A) = 0.99 (probabilitat que la prova doni

positiva si l’individu té la malaltia),
P (Bc/Ac) = 0.99 d’on es dedueix que P (B/Ac) =

0.01, i ens demanen P (A/B).
Thomas Bayes (1702-1761)

Aplicant la fórmula tenim que

P (A/B) =
P (A)P (B/A)

P (A)P (B/A) + P (Ac)P (B/Ac)
=

0.002 × 0.99
0.002 × 0.99 + 0.998 × 0.01

% 0.1656,

resultat que coincideix amb la forma més intüıtiva de fer-ho.
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2.7 Programació lineal i dietes

Segons l’OMS, una dieta equilibrada ha de contenir un 15% de protëınes, un 30% de greixos
i un 55% de glúcids. Si a més sabem que diàriament hem de prendre com a mı́nim 80 g de
protëınes, tenim que una bona dieta ha de tenir almenys 80, 160, i 290 g de protëınes, greixos
i glúcids respectivament.

Amb les dades anteriors intentarem plantejar el problema de quina és la dieta més barata
i equilibrada que podem fer menjant només llegums, galetes, alvocats i olives.6 Tenim la
següent taula de preus i composicions:

100 g Protëınes Greixos Glúcids Preu de 100 g
Llegums 25 1 60 20
Galetes 11 9 72 30
Alvocats 2 26 6 60
Olives 1 20 10 25

Taula 2. Preu i composició de diversos aliments

A partir de la taula i anomenant x, y, z i t la quantitat (en unitats de 100 g) de llegums,
galetes, alvocats i olives que té la dieta, tenim que la solució del problema següent:






minimitzar 20x + 30y + 60z + 25t,
sabent que x ≥ 0, y ≥ 0, z ≥ 0, t ≥ 0,

25x + 11y + 2z + t ≥ 80,
x + 9y + 26z + 20t ≥ 160,
60x + 72y + 6z + 10t ≥ 290,

ens donarà la dieta més barata.
Si canviem la funció que volem minimitzar per la funció

60x + 72y + 6z + 10t,

ens donarà la dieta amb menys glúcids.

La solució de qualsevol d’aquests dos problemes de manera sistemàtica passa pel que s’ano-
mena mètode del śımplex per a resoldre problemes de programació lineal. Com a curiositat
direm que la dieta més barata consisteix a menjar 250′3, 90′4, 0 i 746′8 g de llegums, galetes,
alvocats i olives, respectivament, cada dia. Una exposició detallada del mètode del śımplex
es pot trobar, per exemple, al llibre Programación lineal, de L. Peñafiel Millán, Biblioteca de
Ciencias de la Administración, Ed. Trillas, 1976.

Seguidament explicarem un mètode mes senzill (anomenat mètode gràfic) que ens permetrà
resoldre problemes com el d’abans en el cas de només dues variables. Per al cas de tres variables
també es podria usar; però, com es deduirà de l’explicació següent, costaria més d’aplicar.

6De fet, el 1945, l’economista G. J Stiger ja va plantejar aquest tipus de problema. Va prendre 77 aliments
diferents i va considerar nou elements nutritius (protëınes, glúcids, vitamines, etc.). Finalment va deduir que
era possible mantenir una dieta adequada i amb cost mı́nim, menjant només farina de blat, col de cabdell i
faves seques.
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Considerem el problema següent:





maximitzar x + y,
sabent que x ≥ 0, y ≥ 0,

8x + 6y ≤ 20,
2x + 4y ≤ 10.

Per tal de trobar el punt (x, y) que faci màxima la funció x + y d’entre tots els punts que
compleixen les quatre inequacions, el primer que es fa es dibuixar la regió del pla limitada per
aquestes.

"

!
8x + 6y = 20

2x + 4y = 10

"

!
.........................

....................................

................................................

.........................................................

x + y = 0
x + y = 1
x + y = 2
x + y = 3

(1, 3)

Un cop dibuixada la regió de punts (x, y) que compleix les inequacions (vegeu la figura de
l’esquerra), observem com són les gràfiques de x + y = k variant el valor de k. Com podeu
veure a la figura de la dreta, aquestes són rectes paral.leles que van pujant al mateix temps
que k augmenta. Aleshores, si les anem movent augmentant k, l’últim punt on toquin la regió
puntejada serà el punt (x, y) en el qual k (i, per tant, la funció x + y) pren el valor més gran.
En el nostre cas aquest punt és (1, 2) i el valor màxim de x + y serà 3.

La programació lineal també és útil per a resoldre el conegut com problema del transport.
Explicarem aquest problema amb un exemple. Suposem que una empresa té tres factories
F1, F2 i F3 que produeixen q1, q2 i q3 unitats d’un mateix producte, respectivament. Suposem,
a més, que ha de repartir tot el que produeix entre quatre consumidors D1,D2,D3 i D4, que
necessiten x1, x2, x3 i x4 unitats de producte, respectivament. Suposem que el cost d’enviar
una unitat del producte, de la factoria i-èsima al consumidor j-èsim, és pi,j. Com ho ha
d’organitzar per tal de gastar el mı́nim possible?

F1 F2 F3

D1 D2 D3 D4

( % -. ( % - /(.. 0
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2.8 Probabilitats geomètriques. Geometria integral

Mesura de punts. El problema de l’agulla de Buffon

L’origen de les probabilitats geomètriques es troba en l’ano-
menat problema de l’agulla de Buffon.

El comte de Buffon era un francès que es deia Georges
Louis Leclerc, que va viure de 1707 a 1788 i va ser nome-
nat comte per Llúıs XV. Va ser un gran naturalista i va
escriure una Història natural de 36 volums. Va ingressar a
l’Acadèmia de Ciències de Paŕıs el 1734, com a cultivador
de la mecànica racional.

L’any 1777, en el volum IV del Suplement a la història natural va incloure un treball
titulat Essai d’arithmétique morale. En aquest article Buffon tracta d’adaptar la matemàtica
a l’estudi de la realitat de l’home, procurant quantificar en la mesura del que sigui possible, les
seves emocions, temors i esperances. Per a fer això necessita escollir una unitat de mesura de
les emocions, a la qual poder referir quantitativament tota altra emoció. Agafa com a unitat
el temor a la mort, que la pot considerar a la vegada mesura de temor i d’esperança sense més
que canviar-la de signe.

En considerar les passions de l’home, Buffon assenyala la del joc com la més estesa i
perniciosa. Es refereix als jocs d’atzar amb diners. Com coneix resultats de la teoria de
probabilitats, que havia estat introdüıda per J. Bernouilli el 1713, relaciona l’atzar amb els
números i veu com aquests influeixen aix́ı en el comportament de les persones. Per això parla
d’aritmètica moral.

Posteriorment reivindica la geometria com una eina eficaç en el càlcul de probabilitats.
Diu:

L’anàlisi ha estat l’únic instrument que fins avui s’ha utilitzat en la ciència de les
probabilitats, com si la geometria no fos adient per a aquests fins, quan en realitat
n’hi ha prou amb una mica d’atenció per observar que l’avantatge de l’anàlisi sobre
la geometria és tan sols accidental, i que l’atzar és tan propi de la geometria com
de l’anàlisi.

També afegeix:

Per a posar la geometria en possessió dels seus drets sobre la ciència de l’atzar,
n’hi haurà prou d’inventar jocs que es basin en l’extensió i en les seves relacions.

A continuació introdueix el seu famós problema de l’agulla, que nosaltres presentarem d’una
manera lleugerament diferent.

Suposem que dos amics, per exemple en Sergi i la Śılvia, fan l’aposta següent: tiraran
el llapis a terra, sense mirar. Un cop el llapis estigui ben quiet miraran si talla les ĺınies
horitzontals que formen les rajoles en el terra d’una habitació.

Si talla, guanya el Sergi, i si no talla, guanya la Śılvia. Les rajoles són grans i quadrades,
de 40 cm per 40 cm, i el llapis, gairebé nou, fa uns 15 cm Les preguntes són:

Q1. Qui juga amb avantatge?
Q2. Quant hauria de mesurar el llapis per a què el joc fos equilibrat?
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Ara resoldrem matemàticament aquest problema i demostrarem que, en funció de la longi-
tud del llapis i l’amplada de les rajoles, la probabilitat que el llapis talli les ĺınies horitzontals
determinades per les rajoles és

p =
2l
πa

,

on l és la longitud del llapis i a l’amplada de les rajoles.
Per tant, en el nostre cas

p % 2 · 15
3.14 · 40

= 0.23

que vol dir que, aproximadament, de cada 100 tirades 23 tallaran i 77 no tallaran. Per tant,
la Śılvia té tots els trumfos! Això respon Q1.

La pregunta Q2 és ara fàcil ja que el joc és equilibrat quan tots dos jugadors tenen la
mateixa probabilitat de guanyar. És a dir

p =
2 · l
π · 40

=
1
2
;

per tant, per a què el joc fos equilibrat el llapis hauria de mesurar

l = 10π % 31.4cm,

un llapis certament molt llarg.
De manera general la relació entre la longitud del llapis i la separació de les ĺınies horit-

zontals ha de ser de π/4 per a què el joc sigui equitatiu.

Es considera que amb aquest problema neix la teoria de les probabilitats geomètriques. Es
tracta d’un joc d’atzar en el qual no podem aplicar la t́ıpica fórmula de

p =
casos favorables
casos possibles

,

ja que no podem comptar aquests casos (n’hi ha infinites possibilitats), sinó que cal mesurar-
los. Passem de l’aritmètica a la geometria.

Càlcul de la probabilitat en el problema de l’agulla de Buffon

La versió abstracta del problema de Buffon es pot pensar aix́ı:
Suposem el pla dividit per rectes horitzontals separades entre elles una distància a, i

llancem una agulla, o un llapis, com vulgueu, de longitud l que suposarem més petita que a.

"

#

#

"

a

a l

La primera dificultat és poder descriure la posició en què ha caigut l’agulla. Això ho podem
fer de diverses maneres però elegirem la següent, que ens anirà bé per als càlculs. Anomenarem
x la distància entre el centre de l’agulla i la primera recta horitzontal que hi ha per sobre d’ell,
i θ, l’angle entre aquesta semirecta vertical i l’agulla, mesurat des de la vertical. Si anem cap
a la dreta, serà positiu, i si anem cap a l’esquerra, negatiu.
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"

#

−θ

x x

a

# #

θ

)1

Per a evitar que una mateixa posició de l’agulla es pugui representar per dos angles (que
serien suplementaris) restringirem els valors de θ a l’interval (−π

2 , π
2 ], és a dir −π

2 < θ ≤ π
2 .

-

+

θ

D’aquesta manera tenim tantes posicions possibles de l’agulla com parells (x, θ) amb 0 ≤
x < a i −π

2 < θ ≤ π
2 . Correspon al nombre de casos possibles; però, com hem dit abans,

no els podem comptar i el que farem serà mesurar-los.
Representem els valors de x i θ en un sistema d’eixos cartesians i diem que la mesura dels

casos possibles és l’àrea de la regió que determinen.

!

"
a

−π/2 π/2
θ

x

Aix́ı doncs,

m(casos possibles) = π · a,

on posem m per “mesura”.
De manera semblant podem comptar, és a dir mesurar, els casos favorables.
Per a fer això fixem de moment un angle θ i anem desplaçant verticalment l’agulla sobre

una banda d’amplitud a mantenint-la sempre formant un angle θ amb la vertical.
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.............................................

x l
2 cos θ

θ

θ

θ

Ens adonem que, si

0 ≤ x <
l

2
cos θ,

l’agulla talla la recta horitzontal superior, mentre que si

a − l

2
cos θ < x < a,

l’agulla talla la recta horitzontal inferior de la banda.
Dibuixem els gràfics de les funcions x = l

2 cos θ i x = a − l
2 cos θ

!

"
a

−π/2 π/2
θ

x

l/2

que són simètriques respecte a la recta horitzontal x = a
2 .

Aix́ı doncs, les posicions de l’agulla descrites per parells (x, θ), pertanyents a una d’aquestes
regions ombrejades de la figura, corresponen a posicions de tall.

Per analogia amb el que hem fet abans, l’àrea d’aquesta figura ens dóna una bona mesura
de la quantitat de posicions de tall, és a dir dels casos favorables.

m(casos favorables) = àrea entre la gràfica de x =
l

2
cos θ i l’eix x = 0

+ l’àrea entre la gràfica de x = a − l

2
cos θ i l’eix x = a.
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Com que aquestes dues àrees són iguals, tenim

m(casos favorables) = 2
∫ π

2

−π
2

l

2
cos θdθ =

= l[sin θ]
π
2
−π

2
= l[1 − (−1)] = 2l

Finalment, doncs, la probabilitat de tall buscada és

p =
m(casos favorables)
m(casos possibles)

=
2l
πa

,

com hav́ıem dit.
Una caracteŕıstica extraordinària d’aquest resultat és que ens permet obtenir bones apro-

ximacions del número π simplement llançant llapis a terra durant una estona d’avorriment.
En efecte, la probabilitat és una bona aproximació de la freqüència amb què un esdeveniment
es dóna, més bona com més gran sigui el nombre de tirades. Per exemple, si en Sergi tira
100 vegades el llapis i obté que el llapis talla 25 vegades, la freqüència de tall 25/100 és una
aproximació de la probabilitat de tall p, de manera que tenim

25
100

∼ 2 · 15
π · 40 ,

d’on π ∼ 3.1.
El 1901, Lazaroni va llançar l’agulla 34 080 vegades i va obtenir π = 3.1415929 (hi ha gent

per a tot!).
Mètodes de teoria de probabilitat que no explicarem aqúı permeten dir que les millors

estimacions de π s’obtenen quan l = a, i també ens permeten dir quants llançaments s’han de
fer per a obtenir, amb una probabilitat tan alta com vulguem, el valor de π amb un nombre
determinat de xifres decimals exactes.

Mesura de rectes. Fórmula de Crofton

Ara ja hem vist que l’àrea ens serveix per a comptar el nombre de punts d’un conjunt. La
pregunta ara és: podem comptar el nombre de rectes? Per exemple, quantes rectes tallen
un segment donat? O, quantes rectes tallen una circumferència donada? Per a respondre a
aquestes preguntes farem el següent:

Per a cada recta del pla considerarem dues quantitats (p, θ) definides de la manera següent:

p = distància de la recta a l’origen de coordenades
θ = angle entre l’eix de les x i la perpendicular a la recta per l’origen

Considerarem θ mesurat sempre des de la part positiva de l’eix de les x fins a la perpendicular
per l’origen en sentit antihorari.
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ρ

θ

D’aquesta manera tenim tantes rectes en el pla com parells (p, θ) amb 0 ≤ p < ∞, 0 ≤
θ < 2π. Hi ha un petit problema amb p = 0, però que no afecta el raonament posterior.

Podem representar-les, doncs, com els punts d’una banda en el pla (p, θ) :

!

"

θ

ρ

2π

Observem que la recta que correspon al punt (p, θ) té equació cartesiana

x cos θ + y sin θ − p = 0

ja que passa pel punt (x, y) = (p cos θ, p sin θ) i té pendent −ctg θ.
Aquesta interpretació ens permet respondre ja les preguntes abans considerades; concre-

tament anem a calcular quantes rectes tallen un segment de longitud l.
Començarem estudiant el cas més senzill en què aquest segment està situat sobre l’eix de

les x amb origen (0, 0) i extrem (l, 0). És a dir,

segment = {(x, 0); 0 ≤ x ≤ l}.

Observem primerament que hi ha valors de θ per als quals cap recta (p, θ), sigui quin sigui
el valor de p, talla el segment donat.
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l

Concretament, si θ = π
2 , la recta és paral·lela a l’eix de les x i, per tant, no talla el segment.

Si anem augmentant l’angle, és a dir per a π
2 ≤ θ ≤ 3π

2 , tampoc cap recta no tallarà el segment.
Quan 3π

2 ≤ θ ≤ 2π, ja hi ha valors de p per als quals la recta (p, θ) talla el segment.
Observem a continuació que per a un angle θ fixat, amb 0 ≤ θ ≤ π

2 o 3π
2 ≤ θ ≤ 2π, les

rectes (p, θ) tallaran el segment si i només si

0 ≤ p ≤ l cos θ

ρ

θ

l

Resumint aquestes dues observacions, veiem que una recta (p, θ) talla el segment donat si

0 ≤ p ≤ l cos θ

0 ≤ θ ≤ π
2
,

3π
2

≤ θ ≤ 2π.

Si dibuixem això a la banda del pla (p, θ), tenim
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l l

0 π/2 π 3π/2 2π

L’àrea d’aquesta regió ens mesura la quantitat de rectes que tallen el segment.

m(rectes que tallen) =
∫ π

2

0
l cos θdθ +

∫ 2π

3π
2

l cos θdθ

= 2
∫ π

2

0
l cos θdθ = 2l[sin θ]

π
2
0 = 2l.

Obtenim aix́ı un resultat realment remarcable: La mesura de rectes que tallen un segment de
longitud l és 2l.

Si el segment no es troba sobre l’eix de les x, sinó en una posició arbitrària, el càlcul és
una mica més complicat però el resultat és el mateix. De fet estem fent les coses de manera
que els resultats obtinguts siguin invariants per moviments ŕıgids, és a dir girs i translacions.
Això és una caracteŕıstica fonamental i molt natural, ja que les mesures que volem fer no han
de dependre del lloc o posició en què les fem.

Aix́ı doncs, acceptarem sense demostració (per no perdre el fil) que independentment de
quina sigui la posició del segment la mesura de les rectes que el tallen és igual a dues vegades
la seva longitud.

Si en lloc de tenir un segment tenim la figura formada per dos segments consecutius, la
mesura de rectes que tallen aquesta figura serà la mesura de les rectes que tallen el primer
segment més la mesura de les rectes que tallen el segon segment. Però, atenció, perquè
d’aquesta manera hi ha rectes que les estarem comptant dues vegades, les rectes que tallen els
dos segments a la vegada.

El mateix passa si la figura està formada per la unió de diversos segments, és a dir per a
qualsevol poligonal. Cada recta pot tallar diverses vegades la poligonal.

Per tant, si sumem les mesures de les rectes que tallen cada segment de la poligonal, el
que obtindrem és que

la mesura de rectes que tallen una poligonal, comptades cadascuna d’elles tantes
vegades com la talli, és igual a dues vegades la longitud d’aquesta poligonal.
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De manera general, per un procés de pas al ĺımit, i a causa que tota corba (prou bona) es
pot aproximar per una poligonal, tenim el resultat conegut amb el nom de fórmula de M.W.
Crofton (1818), que diu

∫
n(p, θ)dpdθ = 2l(C),

on la integral està estesa a aquells (p, θ) tals que la recta corresponent talla una corba donada
C, de longitud l(C), i n(p, θ) és el nombre de talls de la recta (p, θ) amb la corba. Es llegeix
com abans dient que

la mesura de rectes que tallen una corba, comptades cadascuna d’elles tantes ve-
gades com la talli, és igual a dues vegades la longitud d’aquesta corba.

Aquesta fórmula s’aplica amb èxit a calcular longituds de corbes complicades com ara la de
la figura a base de comptar el número de talls d’aquesta corba amb moltes rectes de manera
que s’obtingui una bona aproximació de la integral.

Per exemple, si agafem una famı́lia de rectes horitzontals separades entre elles una distància
r i a continuació les fem girar angles de π

4 , 2π
4 , 3π

4 , obtenim un enreixat de rectes que tallaran
la nostra corba en un nombre de punts que aproxima la integral de la fórmula de Crofton.

Concretament es pot veure que

nr
π

4
,

on n és el número de talls de l’enreixat amb la corba és una bastant bona aproximació de la
integral.

Aix́ı doncs, podeu construir-vos amb paper transparent aquest enreixat, posar-lo al damunt
de la figura anterior, comptar el nombre de talls d’aquestes rectes amb la corba, i tindreu una
aproximació de la longitud de la corba per

l ∼ 1
2
nr
π

4
.

La corba següent ha estat dibuixada desenrotllant un cordill de 30 cm sobre el paper.
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Amb un enreixat com l’anterior, constrüıt a partir de rectes horitzontals separades 0.4 cm
s’obtenen aproximadament 180 punts de tall, de manera que

l ∼ 1
2
180 · 4 · 3.14

4
= 282.6mm,

resultat força aproximat.
Posant aquests enreixats transparents en un microscopi electrònic s’ha aconseguit calcular

longituds de molècules d’ADN.
Diguem finalment que aquests dos problemes explicats aqúı formen part de la disciplina

anomenada geometria integral, que té moltes aplicacions a la biologia i la medicina i que,
potser per això, és avui un tema d’actualitat. De fet, hi ha tota una branca de la geometria
integral, anomenada estereologia, on conflueixen l’estad́ıstica, la geometria i la medicina, que
es dedica aquests temes.

El referent mundial de la geometria integral és en Llúıs Antoni Santaló, matemàtic català
nascut el 1911 a Girona, si bé establert a l’Argentina, on es va haver d’exiliar a causa de la
guerra civil. El seu manual Integral Geometry and Geometric Probability és llibre de capçalera
de tots els que es dediquen a la geometria integral o a la estereologia.
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2.9 Solució d’equacions polinomials. Crèdits bancaris

La resolució d’equacions ha estat un dels problemes que ha fet evolucionar les matemàtiques
al llarg de tota la seva història. Les equacions més senzilles

ax + b = 0, a *= 0

s’han pogut resoldre des de fa molt́ıssims anys. L’ús de la notació algebraica ens ha ajudat
molt́ıssim. La solució de l’equació de dalt és x = −b/a.

La dificultat següent ens ve donada per a l’equació de segon grau

ax2 + bx + c = 0, a *= 0.

La seva solució es coneix des de més de quinze segles abans de Crist, i va ser trobada pels
babilonis. Més tard, els grecs la van retrobar. Amb la notació moderna, és molt senzill veure
com s’obté:

ax2 + bx + c = 0

a

(
x +

b

2a

)2

− c − b2

4a
= 0

(
x +

b

2a

)2

=
b2 − 4ac

4a2

x =
−b ±

√
b2 − 4ac

2a
.

L’equació de tercer grau

ax3 + bx2 + cx + d = 0, a *= 0

va haver d’esperar fins al segle XVI per ser resolta. La paternitat de la seva solució va ser
molt disputada. No entrarem aqúı a explicar les baralles que hi va haver. Tres matemàtics
italians hi van estar involucrats: Scipione de Ferro, Niccolò Tartaglia i Gerolamo Cardano.

Els passos per a la seva solució són els següents:

ax3 + bx2 + cx + d = 0,

x3 +
b

a
x2 +

c

a
x +

d

a
= 0;

prenem x = y − b
3a . Aleshores l’equació s’escriu com

y3 + py + q = 0,

on

p =
c

a
− b2

3a2
i q =

2b3

27a2
− bc

3a2
+

d

a
.

Resoldrem doncs l’equació amb incògnita y, i a partir de les y obtindrem directament les x.
Per això busquem solucions de la forma y = u + v. Substituint tenim

(u + v)3 + p(u + v) + q = 0

u3 + v3 + q + (3uv + p)(u + v) = 0.
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Per a resoldre aquesta última equació busquem u i v que satisfacin
{

u3 + v3 + q = 0,
3uv + p = 0.

Clarament podem intentar resoldre el sistema




u3 + v3 = −q,

u3v3 = −p3

27
.

Com que v3 = −q − u3, tenim que

u3(−q − u3) = −p3

27
,

(u3)2 + qu3 − p3

27
= 0.

Observem, a més, que v3 ha de complir la mateixa equació de segon grau z2 + qz − p3

27 = 0.
Usant les fórmules per a resoldre aquesta última equació arribem a

u3 = −q

2
+

√
q2

4
+

p3

27
, v3 = −q

2
−
√

q2

4
+

p3

27
.

Per tant, les solucions de
y3 + py + q = 0

es poden trobar a partir de la fórmula

y =
3

√

−q

2
+

√
q2

4
+

p3

27
+

3

√

−q

2
−
√

q2

4
+

p3

27
.

Aquesta darrera fórmula necessita una mica més d’explicació. Observeu que s’han de fer arrels
cúbiques de nombres que poden ser reals o complexos (ho seran si q2

4 + p3

27 < 0). Recordeu
que un número distint de zero té sempre tres arrels cúbiques. Per tant, la fórmula anterior
dóna en general nou solucions. D’aquestes es pot veure que només tres poden ser solucions de
l’equació original de grau 3. De fet s’han de prendre u i v tals que uv = −p/3.

La fórmula dedüıda permet arribar a resultats curiosos. Per exemple, si prenem l’equació

y3 − 6y − 40 = 0,

podem trobar per simple inspecció que y = 4 és una arrel. D’altra banda, tenim que les arrels
són donades per la fórmula involucrant arrels quadrades i cúbiques. Aix́ı, es compleix que

3
√

20 + 14
√

2 +
3
√

20 − 14
√

2 = 4.

Per a altres equacions la fórmula dedüıda és l’única manera de trobar una solució exacta. Per
exemple,

3
√

−3 +
√

10 − 3
√

3 +
√

10

és una solució de l’equació y3 + 3y + 6 = 0.
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L’equació de quart grau

ax4 + bx3 + cx2 + dx + e = 0, a *= 0

va ser resolta poc després de la de tercer grau per Ludovico Ferrari. Explicarem els passos per
resoldre-la.

Dividint l’equació per a tenim

x4 +
b

a
x3 +

c

a
x2 +

d

a
x +

e

a
= 0.

Completant quadrats,

x4 +
b

a
x3 +

b2

4a2
x2 =

(
b2

4a2
− c

a

)
x2 − d

a
x − e

a
,

(
x2 +

b

2a
x

)2

=
(

b2

4a2
− c

a

)
x2 − d

a
x − e

a
.

Tornem a intentar completar quadrats als dos costats afegint a les dues bandes
(
x2 + b

2ax
)
y +

y2

4 . És a dir, busquem una y de manera que
(

b2

4a2
− c

a

)
x2 − d

a
x − e

a
+
(

x2 +
b

2a
x

)
y +

y2

4

sigui un quadrat perfecte en x. En altres paraules, busquem y tal que existeixin expressions
α i β que compleixin

(
b2

4a2
− c

a
+ y

)
x2 +

(
b

2a
y − d

a

)
x +

(
y2

4
− e

a

)
= (αx + β)2. (∗)

Un cop trobades α i β tindŕıem que
(

x2 +
b

2a
x

)2

+
(

x2 +
b

2a

)
y +

y2

4
= (αx + β)2,

(
x2 +

b

2a
x +

y

2

)2

= (αx + β)2,

i, per tant, les solucions inicials s’obtindrien resolent les dues equacions de segon grau

x2 +
b

2a
x +

y

2
= αx + β, x2 +

b

2a
x +

y

2
= −αx − β, (∗∗)

on y s’ha de buscar de forma que la relació (∗) es satisfaci. Ara bé, com s’assegura que una
expressió

Ax2 + Bx + C

és un quadrat perfecte? Doncs imposant que B2 − 4AC = 0. En el nostre cas, tenim que y
ha de ser tal que (

b

2a
y − d

a

)2

− 4
(

b2

4a2
− c

a
+ y

)(
y2

4
− e

a

)
= 0. (∗ ∗ ∗)

Calculant arribem que y ha de satisfer una equació de tercer grau, que ja sabem resoldre.
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Resumint, per a resoldre l’equació de quart grau, hem de buscar una solució y, de l’equació
de tercer grau (∗ ∗ ∗). A partir d’aquesta y podem buscar α i β que compleixin (∗). Un cop
obtingudes α, β i y, podem resoldre les dues equacions de segon grau (∗∗) i obtindrem les
solucions x de la primera equació.

A partir d’aquests dos èxits amb els graus 3 i 4, es va intentar resoldre les equacions de grau
més elevat. Es va necessitar més de dos segles per a aconseguir deduir que era impossible donar
fórmules que permetessin resoldre les equacions generals de grau n, n ≥ 5 usant només un
nombre finit de sumes, restes, multiplicacions, divisions i càlculs amb radicals. Els matemàtics
que van demostrar aquest resultat van ser J.L. Lagrange (1736-1813), N. Abel (1802-1829) i
E. Galois (1811-1832).

Podeu consultar els tres llibres d’A.D. Aleksandrov et al. La matemática: su contenido,
métodos y significado, Alianza Universidad, 1973, en els quals trobareu desenvolupat aquest
tema i molts altres temes matemàtics.

Com veureu a l’exemple que segueix, la resolució d’equacions polinomials de grau més gran
que 4 apareix en problemes pràctics. Els mètodes que s’han desenvolupat permeten trobar
les solucions amb el nombre de xifres decimals correctes que es desitja. Un dels mètodes més
útils va ser el descobert per Isaac Newton.

Quota d’amortització d’un crèdit a interès fix

Suposem que una entitat financera ens deixa D = 7000 000 ptes. a un interès mensual fix7

del 0.5% (r = 0.005) i que podem pagar un màxim de q = 90000 ptes. al mes. Quant temps
tardarem a cancel.lar el préstec?

En primer lloc recordem que un deute de c ptes. queda convertit en
c(1 + r)m ptes. després de m mesos. Tractem de relacionar totes les quantitats involucra-
des: el deute (D), l’interès mensual (r), la quota mensual (q) i el nombre de mesos (m). Una
manera senzilla d’interpretar la situació és la següent.

Deute total: Si no paguéssim cap quota, la deuta inicial D es convertiria, després de m
mesos, en

D(1 + r)m.

Cada cop que paguem una quota q podem pensar que aquesta queda dipositada a l’entitat i
també produeix un interés r per cada un dels mesos restants; aix́ı:

La quota número 1 produeix un capital q(1 + r)m−1 (hi és m − 1 mesos)
La quota número 2 produeix un capital q(1 + r)m−2 (hi és m − 2 mesos)
...
La quota número m − 1 produeix un capital q(1 + r) (hi és 1 mes)
La quota número m produeix un capital q.

S’ha de complir la igualtat:

D(1 + r)m = q(1 + r)m−1 + q(1 + r)m−2 + · · · + q(1 + r) + q.

7Això normalment s’abreuja dient que l’interès anual és del 6%. Aquest interès no és ni de bon tros el famós
T.A.E. El T.A.E. s’obté afegint a l’interès anual acumulat 6 × (1.005)12% = 6.37% les altres despeses per a
obtenir el crèdit (comissions, estudi, etc.).
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És a dir,

q =
D(1 + r)m

1 + (1 + r) + (1 + r)2 + · · · + (1 + r)m−1
.

Per tal de trobar una fórmula més senzilla per a aquesta última expressió observem que si

S = 1 + x + x2 + · · · + xm−1,

aleshores
xS = x + x2 + x3 + · · · + xm.

Restant ambdues expressions tenim

(1 − x)S = 1 − xm,

d’on resulta
S = 1 + x + x2 + · · · + xm−1 =

1 − xm

1 − x
.

En el nostre cas, x = 1 + r, el denominador és

1 + (1 + r) + (1 + r)2 + · · · + (1 + r)m−1 =
(1 + r)m − 1

r
,

i la relació final és
q =

Dr(1 + r)m

(1 + r)m − 1
. (∗)

Amb les dades concretes

90 000 =
7000 000 × 0.005 × (1.005)m

(1.01)m − 1
=

35 000 × (1.005)m

(1.005)m − 1
.

Operant

(1.005)m =
90000

90 000 − 35 000
=

18
11

.

Aquesta última equació es pot resoldre fàcilment prenent logaritmes als dos costats:

log(1.005)m = log
18
11

,

d’on
m =

log 18/11
log 1.005

= 98.74 . . .

Per tant, necessitarem quasi 8 anys i 3 mesos per a liquidar el prèstec.
El problema invers, és més dif́ıcil. Suposem que llegim l’oferta següent: Podem pagar un

objecte que costa 14 000 ptes. amb 12 quotes de 1 400 ptes. A quin interès mensual (r) ens
ofereixen el crèdit?

Aplicant la fórmula (∗) obtinguda a l’apartat anterior obtenim que l’interès mensual r ha
de complir

1400 =
14000r(1 + r)12

(1 + r)12 − 1
.

Si anomenem x a 1 + r, tenim

1400 =
14000(x − 1)x12

x12 − 1
.
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Operant obtenim que x ha de complir (a més, ha d’estar entre 1 i 2)

14000x13 − 15400x12 + 1400 = 0,

o equivalentment 10x13 − 11x12 + 1. Com ja hem comentat, la resolució d’aquesta equació
de grau 13 en x no és possible de manera exacta. De tota manera, trobarem una solució de
l’equació amb tants decimals correctes com vulguem utilitzant dos mètodes aproximats.

El primer d’ells, anomenat mètode de la bisecció, és el més senzill possible. Si anomenem

f(x) = 10x13 − 11x12 + 1,

observem que f(1) = 0, f(1.01) és negatiu i f(1.05) és positiu. Per tant una solució ha d’estar
entre 1.01 i 1.05. Avaluant f a 1.03 dedüım que una solució esta a l’interval [1.01, 1.03]. Conti-
nuant aquest procés sis cops més arribem a que la nostra solució ha d’estar a [1.02905, 1.02935].

El mètode Newton (vegeu també la secció 2.19) consisteix a considerar la successió recur-
rent 





xn+1 = xn − f(xn)
f ′(xn)

= xn − 10x13
n − 11x12

n + 1
130x12

n − 132x11
n

,

x0.

Aquest mètode té convergència quadràtica en molts casos i ens assegura que si la successió
x0, x1, x2, x3, . . . s’acosta a un valor, aquest valor és una solució de f(x) = 0. Amb les nostres
dades, si prenem x0 com el punt intermedi de l’interval [1.01, 1.05], obtenim que x0 = 1.03,
x1 = 1.029251963 . . ., x2 = 1.029228563 . . ., x3 = 1.029228540 . . ., x4 = 1.029228540 . . . i per
tant la solució és aproximadament 1.029228540. És a dir l’interès mensual és d’un 2.92%.

Figura obtinguda aplicant el mètode de Newton per a resoldre z3 − 1 = 0, amb z0 ∈ C, i
assignant a cada punt de C un color diferent en funció de la solució que trobem.
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2.10 Les matemàtiques i les imatges

Dins el camp de la visió per ordinador, el tractament o l’anàlisi de les imatges és una de
les tasques fonamentals. Moltes són les aplicacions on es té una base d’imatges, sobre les
quals es necessita fer una anàlisi per a una posterior interpretació o per a poder extreure
una informació que després podrem processar. En algunes aplicacions, com és el cas de les
aplicacions industrials i mèdiques, s’obtenen seqüències d’imatges tridimensionals 3D. Pensem
en el cas de la tomografia computaritzada (TAC), la qual ens dóna informació 3D de les
estructures internes del cos humà. Poder entendre aquestes imatges requereix la identificació
i modelització de les superf́ıcies dels objectes que són presents en les estructures 3D. En
el cas de les imatges satèl.lit, un dels problemes està donat pel soroll present en la imatge
mateixa, a causa potser de problemes de captació o transmissió. En aquest cas s’intenta
fer un filtratge o preprocessament, intentant eliminar aquest soroll i conservar la informació
inherent a la mateixa imatge. Un problema semblant seria el de la restauració de pel.ĺıcules
antigues que estiguin deteriorades pel pas del temps. El reconeixement automàtic de les formes
és també un dels camps de la visió on l’anàlisi de les imatges és una part fonamental. Pensem
en el reconeixement de la signatura o la lectura automàtica de caràcters. En el cas de la
videovigilància potser es tracta d’identificar els trets principals en la fisonomia d’una persona
o bé d’analitzar algun objecte que hi apareix. I no oblidem el camp de la robòtica, on l’anàlisi
de les imatges en temps real que s’obtenen de l’entorn 3D en què es mou el robot, és d’una gran
importància en la reconstrucció del seu entorn f́ısic. En aquest cas, l’anàlisi o processament de
les imatges seria un exemple del que anomenam visió de baix nivell, mentre que el problema
de la robòtica aniria lligat a la visió d’alt nivell.

Una imatge natural o una fotografia presa del món exterior, no és més que una projecció
del món tridimensional 3D sobre el pla de la imatge. Aquest món exterior és complex a causa
de la mateixa estructura dels objectes i la posició que ocupen dins l’escena, a més dels canvis
d’il.luminació que hi pot haver dins la mateixa escena. Com a conseqüència, les imatges de la
vida real o quotidiana que es projecten sobre la nostra retina esdevenen un puzle a causa de
les oclusions i ombres a què donen lloc.

La diferència entre una fotografia o imatge natural i una imatge digital, està donada pel
tipus de codificació. Per posar una fotografia dins la memòria d’un ordinador, es divideix
la imatge en petits trossos quadrats, que anomenarem ṕıcsels, i dins de cada un d’aquests
quadrats o ṕıcsels, li associarem un número que representa la luminància, com si fos una
matriu amb nombres.

Matemàticament, una imatge o senyal, ho podem interpretar com a una funció g(x, y), on
(x, y) és un punt de coordenades qualsevol de la imatge i el valor g(x, y) representa el nivell de
gris associat al punt (x, y). Per a la codificació, de manera semblant, cada nombre representa
el nivell de gris associat al ṕıcsel (x, y). Generalment, el negre està codificat pel zero, el 1
representa un color un poc menys negre, el 2 és encara un poc menys negre que l’1 i aix́ı.
Dins la convenció que s’utilitza en el món de la informàtica, el 255 representa la codificació
del color blanc.

Les matemàtiques dins el món de les imatges: modelització

Pensem per un moment en l’exemple del robot. El robot porta una càmera, la qual li dóna
la informació del seu entorn, però aquesta informació no és més que diferents projeccions de
l’entorn 3D sobre el pla de la càmera. Dins l’anàlisi d’aquesta seqüència d’imatges, hom inten-
ta a partir d’aquestes projeccions trobar els objectes 3D que componen l’escena, com també
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conèixer la seva profunditat o distància respecte al pla de la càmera, per a saber en quin ordre
el robot els anirà trobant.

Dins un altre tipus d’aplicació, ja esmentada abans en la intro-
ducció, podem pensar en una fotografia que ens envia un satèl.lit
(vegeu la imatge 1). Aquesta imatge pot tenir problemes en la ma-
teixa captació, a causa potser del mateix moviment del satèl.lit, o
bé en la transmissió (condicions atmosfèriques, etc.), incorporant
una informació a la mateixa imatge, anomenada soroll, la qual és
vol eliminar. Aquest soroll serà diferent (gaussià, blanc, etc.) de-
penent de com s’ha prodüıt. En aquest cas, el que s’intenta, abans
de fer una anàlisi de la mateixa imatge, és un preprocessament o
filtratge per a intentar separar el soroll del que es considera la
informació rellevant de la imatge. Imatge 1.

Però, quina és la informació rellevant de la imatge? Clàssicament, la detecció dels con-
torns, o de manera equivalent, la segmentació en regions més o menys homogènies, ha estat
un dels problemes que apareixen dins la investigació de la visió per ordinador. Genèricament,
les diferents regions homegènies que es poden trobar en una imatge es corresponen amb les
projeccions de diferents objectes de l’escena 3D, encara que hem de tenir en compte els pro-
blemes afegits dels canvis d’il.luminació, oclusions, ombres, etc. D’aquesta forma, les regions
homogènies se suposa que corresponen a parts senceres d’objectes del món real, i les fronteres
als seus contorns aparents. Per regions homogènies d’una imatge, entenem regions que són
uniformes respecte a alguna caracteŕıstica, per exemple el nivell de gris o les textures. Pensem,
per exemple, en el cas de la imatge satèl.lit i posem el problema de distingir a partir d’aquesta
imatge, de manera automàtica, les diferents classes de terreny que hi pugui haver: boscos, de
conreu, etc. Fins i tot, ens podŕıem plantejar el problema de distingir entre els diferents tipus
de plantacions o si dins una mateixa plantació hi ha una zona atacada per una plaga (diferent
textura de les fulles).

Davant una imatge digital, un dels problemes que pretén resoldre el processament d’imatges
és l’extracció automàtica de la informació de la imatge a partir dels algorismes o models
existents. L’objectiu, esmentat anteriorment, seria la construcció de robots automàtics que
poguessin interpretar aquesta informació, a més de millor comprendre la visió humana i animal,
des d’un punt de vista biològic. Ara bé, quan volem tractar una imatge digital i per tal de
definir un algorisme, com podem obtenir la informació dels contorns o fronteres de les regions
homogènies? En general, els contorns que nosaltres veiem en una imatge es corresponen amb
els canvis substancials en el nivell de gris (per exemple, una fotografia d’un objecte negre amb
un fons blanc), és a dir, en els punts en què el valor absolut de la “derivada”sigui gran.

Imatge 2. Imatge 3.
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Des del punt de vista formal, la majoria dels algorismes de segmentació intenten minimit-
zar, per diferents camins, l’energia associada a la imatge, donada per una funció que té en
compte la imatge que se segmenta i les fronteres de les regions. En l’àmbit algoŕısmic, la idea
és ajuntar dues regions vëınes si difereixen poc respecte a la caracteŕıstica, nivell de gris o
textura, i tenir en compte que l’energia associada a aquesta nova segmentació ha disminüıt.
En aquest cas la segmentació inicial seria considerar que tots els ṕıcsels són diferents (cada
ṕıcsel és una regió diferent), i a partir d’aquest estat començar el procés d’ajuntar les regions.
Com a exemple, la imatge 2 ens dóna la imatge final segmentada, amb les diferents regions
homogènies, i la imatge 3 és la imatge de les fronteres d’aquestes regions, o contorns. Notem la
diferència entre la imatge 1, la original, i la imatge 2, en què, per l’algorisme anterior, obtenim
les regions que són semblants respecte al nivell de gris.

Tornem una altra vegada al problema de la imatge satèl.lit. En general, les zones de soroll
estan associades a regions on el senyal o la imatge té freqüències altes, i en conseqüència el pro-
blema que es planteja és la seva eliminació sense destruir l’altra informació de la imatge. Dins
la teoria clàssica, la imatge ha de ser filtrada (o “netejada”) abans d’aplicar-li qualsevol algo-
risme de detecció de contorns o segmentació. En aquest cas, el que s’anomena filtratge lineal
consisteix a fer una mitjana local ponderada per la funció gaussiana Gσ(x) = 1

4πσ exp(−‖x‖2

4σ )
o en termes més matemàtics, fer la convolució de la imatge amb la funció gaussiana. El re-
sultat és una imatge una mica “difuminada”o filtrada, a causa de l’efecte d’aquesta mitjana
ponderada. L’efecte és el mateix que el que es dóna en l’aplicació següent, coneguda com l’e-
quació de la calor: Si injectam una font de calor en un punt d’una barra de ferro, en un instant
donat, llavors al cap del temps aquesta font de calor es difon al llarg de tota la barra, suposant
que el coeficient lligat a la difusió és constant, fins que en un temps ”gran”, la temperatura
en qualsevol punt de la barra serà més o menys la mateixa (efecte de difusió). L’equació de
la calor és un tipus d’equació anomenada en derivades parcials, ∂u

∂t (x, t) = ∂2u
∂x2 (x, t), amb la

condició inicial donada per la imatge inicial u(x, 0) = u0(x) al temps t = 0. Si pensam en
l’efecte que tendria aquest model si ho aplicam a una imatge, llavors la imatge resultant serà
més o menys difosa depenent del temps que evoluciona l’equació de la calor.

Imatge 4. Imatge 5.

L’inconvenient d’aquest filtratge donat per l’equació de la calor, o de manera semblant per
la mitjana ponderada, és el fet que quan filtram la imatge, en filtrar d’igual manera els punts
de contorn i els punts que es troben dins una regió més o menys homogènia, no conservam
la bona localització espacial dels punts frontera. Per a tenir en compte aquest fet, existeixen
unes altres equacions en derivades parcials, del mateix tipus que l’equació de la calor, les quals
sobre un punt de contorn “esmorteeixen”la difusió, provocant que les fronteres de les regions
conservin la seva posició espacial. En canvi, a l’interior de les regions més o menys homogènies,
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actuen fent la mitjana ponderada explicada anteriorment. La imatge 4 és un exemple d’aquest
tipus de filtratge, en què es pot notar l’efecte de “neteja”de la imatge original.

Des d’un altre punt de vista, podŕıem pensar que si a cada punt de la imatge, li associam
una alçada donada pel nivell de gris d’aquest punt, llavors ens podŕıem mirar la imatge
com si fos una superf́ıcie i, per tant, la seva gràfica com un conjunt dins R3, on graf(u) =
{(x, y, u(x, y)); (x, y) ∈ R2} ⊂ R3. Si tallam la superf́ıcie de la imatge u pels plans de la
forma u = k, k ∈ R, llavors tendrem la informació sobre el relleu de la imatge: els cims, les
valls, els barrancs o canvis sobtats del terreny, etc. En aquest cas podem pensar les regions
homogènies com els altiplans on l’alçada en mitjana no canvia gaire, i les fronteres d’aquestes
regions o contorns serien els barrancs donats pels canvis bruscs del relleu. És a dir, podem
descompondre una imatge u(x) amb els seus conjunts de nivell k, {x |u(x) ≥ k}, k ∈ R, o
bé també amb les fronteres d’aquests conjunts de nivell. En l’exemple de la imatge 5, podem
veure les ĺınies de nivell del mapa topogràfic de la imatge satèl.lit, que són múltiples de 10.
Notem que, a partir d’aquesta informació, podem reconstruir la imatge. Intüıtivament, la
interpretació d’un mapa que ens mostra la topografia d’una zona més o menys muntanyosa,
amb les corbes de nivell a diferents alçades, ens permet anar d’excursió, sabent a quins indrets
trobarem una vall, a quins un cim, etc.

Aquesta interpretació de la imatge en termes de l’estructura del mapa topogràfic, té una
bona propietat en el món de la visió: la invariància per canvi de contrast. És a dir, si u és la
imatge i g és una funció no decreixent, llavors u i la composició de u amb g, g ◦ u, tenen els
mateixos conjunts de nivell. En l’àmbit de la interpretació sobre la imatge, aquesta propietat
ens diu que si tenim dues fotografies d’una mateixa escena, tan sols canviant una mica les
condicions de lluminositat, llavors la informació que podem obtenir de les dues fotografies és
la mateixa (hi trobarem els mateixos objectes).

Altres models

Pensem, per exemple, que per un problema de transmissió d’una imatge, la imatge, o el fitxer,
no ens arriba sencer. Llavors el problema que se’ns planteja és a partir de quina informació
podem recuperar tota la imatge. El mateix podem pensar amb el problema del zoom. És a dir,
a partir d’una imatge de 64×64 ṕıcsels, per exemple, com podem aconseguir una de 512×512
ṕıcsels, sense pèrdua de “qualitat”. Aquests dos problemes aplicats, que fins i tot interessen
en gran manera a la indústria tecnològica, estan relacionats amb el problema matemàtic de la
interpolació.

Un altre tipus de problema matemàtic relacionat amb el tema de les comunicacions i visió
és el de la compressió. En aquest cas els algorismes de compressió transformen les dades de
la imatge en una altra representació, de tal manera que aquesta nova representació requereix
menys espai d’emmagatzematge de dades. Aix́ı, el JPEG és un algorisme de compressió basat
en l’anomenada transformació discreta del cosinus. Una altra eina matemàtica que ha provocat
una petita revolució dins el tractament del senyal i que té una especial aplicació al camp de la
representació de funcions i en particular, en el de la compressió de senyals, són les anomenades
ondetes.

Aquesta secció esta basada en el treball Un model matemàtic per a l’anàlisi d’imatges de
V. Caselles, B. Coll i J.M. Morel publicat al Butllet́ı de la Societat Catalana de Matemàtiques,
vol. 14, núm. 1, 1999. pàg. 63-83, i en el llibre Digital Image Processing de R. Gonzalez i R.
Woods, Addison-Wesley, 1992.
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2.11 Jocs i estratègies guanyadores

En els exemples següents veurem que el coneixement de les matemàtiques ens pot servir per
a entendre millor els jocs en general, i els jocs d’atzar, en particular.

Un joc de fira

Suposem que en una fira ens proposen el joc següent (conegut a les fires del Mig Oest dels
EUA i Anglaterra amb el nom de chuck-a-luck):

Apostem 1000 ptes. a un cert número entre 1 i 6 i tirem tres daus. Aleshores:

(I) Si surt en un dels daus, guanyem 1000 ptes.

(II) Si surt a dos dels daus, guanyem 2000 ptes.

(III) Si surt als tres daus, guanyem 3000 ptes.

(IV) Si no surt a cap dau, perdem les 1 000 ptes.

La qüestió és saber si és un joc en el qual tenim més possibilitats de guanyar o de perdre.
Per sentit comú, tenim més probabilitats de perdre; ja que, si el senyor que ens proposa

el joc perd sistemàticament diners, no s’entén que està fent a la fira. Intentarem justificar-ho,
doncs, amb arguments matemàtics.

Suposem que hem triat el número al qual apostem (per exemple, l’1 per a fixar idees).
Aleshores observem que quan tirem tres daus podem obtenir 6×6×6 = 216 resultats. A més,
d’aquests resultats:

(I) Només 1 =
(

3
3

)
vegada surten tres uns.

(II) 15 =
(

3
2

)
· 5 vegades surten dos uns.

(III) 75 =
(

3
1

)
· 52 vegades surt un u.

(IV) Els 125 =
(

3
0

)
· 53 vegades restants no surt cap u.

A partir d’aquests resultats, raonant (per simplicitat) com en el problema de la secció 2.6, si
suposem que juguem molts cops (per exemple 216 000 cops), tenim:

(i) Traient 3 uns, guanyem 1000 cops×3 000 ptes.= 3 000 000 ptes.
(ii) Traient 2 uns, guanyem 15 000 cops×2 000 ptes.= 30 000 000 ptes.
(iii) Traient 1 u, guanyem 75 000 cops×1 000 ptes.= 75 000 000 ptes.
(iv) Traient cap u, perdem 125 000 cops×(1 000 ptes.)=−125 000 000 ptes.

−17 000 000 ptes.
Per tant, en resum, perdem 17 000 000 ptes. quan apostem 216 000 × 1 000 ptes., és a

dir, perdem el 17 000 000
216 000 000100 % 7.9% de tot el que apostem. La matematització de si un joc
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d’apostes és just o no es basa en la idea d’esperança matemàtica i es pot trobar a qualsevol
llibre de probabilitats, per exemple el llibre de K.L. Chung, Teoŕıa elemental de la probabilidad
y de los procesos estocásticos, Ed. Reverté, 1983.

Una manera de tenir una estimació de quant guanya el senyor que ens proposa el joc durant
un dia (suposant que té la parada posada durant cinc hores i que cada hora hi juguen vint
persones) és

5 × 20 × 7.9
100

× 1 000 ptes. = 7 900 ptes.

El nim

Aquest conegut joc consisteix en el següent: Es posen unes quantes piles d’objectes, per
exemple escuradents. Dos jugadors van traient, per torns, un cert nombre d’objectes. L’única
regla és que tots els objectes retirats han de ser de la mateixa pila i com a mı́nim se n’ha de
retirar un. Guanya el joc el jugador que agafa l’últim (o últims) objectes.

Una partida t́ıpica podria ser

pila 1

pila 2

pila 3

pila 4

Representem la situació per (1, 2, 3, 4). El jugador A retira un objecte de la pila 4 i obtenim
(1, 2, 3, 3). El jugador B retira 3 objectes de la pila 3 i tenim (1, 2, 0, 3) i continuant

(1, 2, 0, 3) jugador B
(1, 2, 0, 1) jugador A
(1, 0, 0, 1) jugador B
(1, 0, 0, 0) jugador A
(0, 0, 0, 0) jugador B guanya.

Encara que sembla un joc en el qual és dif́ıcil saber com guanyar, usant eines matemàtiques
es pot obtenir una estratègia guanyadora.

L’estratègia és la següent: s’escriuen els números en base dos i se sumen per columnes (sense
emportar i com si estiguessin escrits en base 10). Un jugador pot assegurar que guanyarà la
partida si aconsegueix que quan ell retira els objectes la suma de cada una de les columnes
sigui parell o zero. Al nostre exemple la posició inicial és

0 0 1
0 1 0
0 1 1
1 0 0
1 2 2

Si el jugador A retirés els quatre objectes de la quarta pila tindria una posició guanyadora.
En canvi, el que ha fet és

0 0 1
0 1 0
0 1 1
0 1 1
0 3 3
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que no és una posició guanyadora. El jugador B deixa

0 0 1
0 1 0
0 1 1
0 2 2

que ja és posició guanyadora. A partir d’aqúı, A ja no podrà fer res. La partida evoluciona

0 0 1
0 1 0
0 0 1
0 1 2 A

0 0 1
0 0 1
0 0 2 B 0 0 1 A 0 0 0 B

i el jugador B guanya. Penseu per què l’estratègia proposada és guanyadora.

Els dos jocs següents admeten estratègies guanyadores. Penseu-les o consulteu el llibre La
mathémathique des jeux, Bibliothèque pour la science, Paŕıs 1977-1990.

La presa de xocolata

Aquest és un joc per a dos jugadors. Es comença amb una rajola de xocolata amb una presa
d’una cantonada marcada, vegeu la figura següent:

Els dos jugadors, per torns, agafen una o més preses de la rajola. L’única regla és que han
de trencar la rajola seguint una ĺınia sencera. Perd el jugador que es queda la presa marcada.

Una partida curt́ıssima és:

No passis de 31

Aquest és també un joc per a dos jugadors. Les regles són les següents:
El primer jugador posa sobre la taula un dau amb les cares marcades de l’1 al 6. La seva

puntuació és el nombre que hi ha a la cara superior del dau.
L’altre jugador ha de fer girar el dau sobre la taula un quart de volta (la cara superior del

dau serà una de les quatre cares que abans estaven en posició vertical). La seva puntuació és
la suma de la puntuació anterior i el nombre que ha posat a la cara superior.

A partir d’aqúı els jugadors van fent, alternativament, el mateix que ha fet el segon jugador.
Perd el jugador que obtingui una puntuació superior a 31 (o qualsevol altre nombre que es fixi
des del principi).
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2.12 El cub de Rubik i la teoria de grups

Fa uns quants anys es va posar molt de moda jugar a l’anomenat cub de Rubik. Aquest cub
està format (vist des de fora) per 26 cubs més petits; vegeu la figura següent:

Direm que el cub està ben muntat quan els sis quadradets de cada una de les sis cares són
del mateix color (cada cara té un color diferent). Els moviments que permet fer el mecanisme
interior del cub són: Girar cada una de les sis cares ŕıgidament 90, 180, 270 o 360 graus (en
aquests moviments el quadrat del mig de la cara sembla immòbil). L’objectiu general del
joc és muntar el cub a partir d’una situació qualsevol (obtinguda girant unes quantes cares
prèviament). Aqúı no tractarem d’aquest problema, si no que donarem una explicació d’un
fet molt curiós que s’observa a partir del cub muntat:

Prenem el cub muntat i fem una successió de moviments, per exemple:
“Movem la cara de dalt 180◦, la de la dreta 180◦ i la de darrere 180◦.”
Aleshores observem que després de repetir aquest moviment un cert nombre de cops (en

aquest cas dotze) el cub es torna a muntar.
La qüestió és que quan es repeteix el mateix moviment inicial, començant d’un cub muntat,

després d’un cert nombre de repeticions (de vegades aquest nombre ha de ser gran) el cub es
torna a muntar de manera sorprenent.

Donarem una explicació d’aquest fet usant la teoria de grups. Necessitem saber en primer
lloc que és un grup. Per a més detalls podeu consultar, per exemple, el llibre de S. Lang,
Álgebra, Ed. Aguilar, 1971.

Donat un conjunt G, denotem per f , g i h elements qualssevol de G. Suposem a més que
els elements de G es poden operar entre ells donant un altre element de G. Denotem per
f ∗ g ∈ G el resultat d’operar f amb g. Direm que el conjunt G amb l’operació ∗ és un grup
si es compleixen les tres propietats següents:

• Associativa:
(f ∗ g) ∗ h = f ∗ (g ∗ h).

• Existència d’element neutre: Existeix un element de G que denotem u ∈ G, i
anomenarem element neutre, tal que

f ∗ u = u ∗ f = f

per a qualsevol element f de G.

• Existència d’element invers: Donat qualsevol element de G, f n’existeix un altre
a G, que es denota per f−1 ∈ G de manera que

f ∗ f−1 = f−1 ∗ f = u.
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Hi ha molts exemples de conjunts amb una operació que tenen estructura de grup. Per
exemple els nombres enters Z amb l’operació +, els nombres reals R amb l’operació +, els
nombres R\{0} amb l’operació ×, . . .

Donarem també un exemple més geomètric. Considerem un triangle equilàter. Els elements
del nostre grup seran els moviments que deixen invariant la posició del triangle (vegeu també
la figura adjunta):

• g0 = u, deixar el triangle immòbil,

• g1, girar el triangle 120◦ cap a l’esquerra,

• g2, girar el triangle 240◦ cap a l’esquerra,

• s1, fer simetria respecte a l’altura vertical,

• s2, fer simetria respecte a l’altura inclinada cap a la dreta,

• s3, fer simetria respecte a l’altura inclinada cap a l’esquerra.

A A

A

A

B A

B

B

B

B A B

C

C C

C

C C

g0 g1 g2

s1 s2 s3

L’operació ∗ consisteix a fer un moviment rere l’altre, aix́ı per exemple s1∗g1 vol dir agafar
el triangle, fer-li el moviment g1 i al triangle resultant fer-li el moviment s1. Obtenim que
s1 ∗ g1 = s2; vegeu la figura següent:

! !

A A A

C

C CB

B B

g1 s1 ∗ b1 = s2

Es pot veure que aquest conjunt de sis elements amb l’operació ∗ és un grup.
Veurem a continuació que si (G, ∗) és un grup amb un nombre finit d’elements, s’agafa un

element qualsevol g i es va operant amb ell mateix

g, g ∗ g, g ∗ g ∗ g, . . . , g ∗
m)
· · · ∗ g, . . .

arriba un moment k en què gk = g ∗
k)
· · · ∗ g = u, on recordem que u és l’element neutre de

(G, ∗).
Demostrem, doncs, l’existència d’aquest k. Considerem els elements de G, g, g2, . . . , gm, . . .

Com que G és un conjunt finit i el conjunt anterior és infinit, i tots els seus elements són de
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G, ha d’haver-hi almenys dos elements que coincideixin. Els anomenem gm i gl i suposem que
m < l. Tenim, doncs, que gm = gl.

Ara bé g ha de tenir un invers g−1 tal que g−1 ∗ g = u. Per tant si operem als dos costats
la igualtat gm = gl amb g−1 tenim:

g−1 ∗ gm = g−1 ∗ gl,

g−1 ∗ g ∗
m)
· · · ∗ g = g−1 ∗ g ∗

l)
· · · ∗ g,

u ∗ g ∗
m−1)
· · · ∗ g = u ∗ g ∗

l−1)
· · · ∗ g,

gm−1 = gl−1.

Si repetim el procés m − 1 vegades, resulta

u = gl−m,

com voĺıem veure.
De manera una mica més complicada que en el cas dels moviments que deixen invariant el

triangle equilàter, també es pot veure que el conjunt de tots els moviments que es poden fer
al cub de Rubik té també estructura de grup G. Aquest grup té 227 × 314 × 53 × 72 × 11 =
43 252 003 274 489 856 000 elements, i l’operació ∗ és la composició de moviments.

Per tant, en el nostre cas, si es pren un moviment qualsevol (g del grup G) i es repeteix k
cops (l’operació ∗), s’obté l’element neutre del grup de moviments u (que ha de ser el moviment
que no canvia cap de les cares del cub).

Aix́ı hem trobat una explicació matemàtica d’un fet molt curiós, que sense usar la teoria
de grups costaria molt més d’explicar.
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2.13 Travesses i transmissió d’informació

D’entre els jocs d’apostes, les travesses és un dels que crida més l’atenció dels matemàtics.
La raó potser és que mentre que a la loteria clàssica o a la Loto 6-49 l’únic que intervé és
l’atzar, en les travesses també intervé la informació prèvia que es té sobre cada partit. Aix́ı
quan dos equips s’enfronten es poden fer moltes consideracions que permetin concloure que
potser els tres resultats possibles 1, x i 2 no són igualment probables. A partir d’aquesta
informació, tots els resultats que poden sortir en una travessa (314 sense tenir en compte
el partit complementari) han deixat de ser equiprobables, i és aqúı on poden intervenir les
matemàtiques per racionalitzar les apostes que es fan.

S’han desenvolupat molts mètodes que permeten aprofitar el màxim les apostes: reduc-
cions, teoria d’errors, nombre màxim i mı́nim de x i 2, mètodes probabiĺıstics, mètodes mixtes,
etc. Aquests mètodes poden donar bons resultats si es fan moltes apostes. En aquestes notes
explicarem un dels casos més senzills del mètode anomenat de reduccions al 13.

Ens ocupem d’un grup de set partits pels quals els nostres experts en futbol han predit
que només sortirà 1 o x. Aleshores, per a assegurar que sigui quin sigui el resultat dels set
partits l’encertem (recordem que suposem que només pot sortir 1 o x), necessitem fer 27 = 128
apostes. Decidim que això és massa car. La qüestió és: podem aprofitar la informació que
tenim sense gastar tant? La idea de la reducció al 13 és la següent: En lloc de fer les 128
apostes, farem un nombre molt menor d’apostes de manera que siguin quins siguin els resultats
dels set partits (sempre que surti 1 o x) en el nostre conjunt d’apostes sempre encertem com
a mı́nim sis dels set resultats. Aquesta reducció al 13 de set partits amb pronòstic doble és
molt coneguda i està donada en la taula 3. Observi’s que el nom de reducció al 13 està donat
pel fet que, si encertem els altres set partits, i en els set partits en els que hem predit 1 o x
això es compleix, en les nostres setze apostes hi haurà un 13 (o un 14).

x x x x x x x x 1 1 1 1 1 1 1 1
x x x x 1 1 1 1 x x x x 1 1 1 1
x x 1 1 x x 1 1 x x 1 1 x x 1 1
x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1
x x 1 1 1 1 x x 1 1 x x x x 1 1
x 1 x 1 1 x 1 x 1 x 1 x x 1 x 1
x 1 1 x x 1 1 x 1 x x 1 1 x x 1

Taula 3. Reducció al 13 de set dobles

Una prova de les afirmacions anteriors és la següent: Notem que per a cada una de les
apostes hi ha vuit conjunts de resultats que tenen exactament cap error o un respecte de
l’aposta. Com que cada una de les 16 columnes de la taula 3 es diferencia com a mı́nim en tres
resultats amb cada una de les 15 columnes restants, tenim que quan apostem les 16 columnes
de la taula cobrim 16 × 8 resultats (amb cap error o un), i 16 × 8 = 128, que és el conjunt de
totes les apostes possibles.

Observem quina és la filosofia general dels mètodes aplicats a les travesses en el cas concret
de set partits. Si no en tenim cap informació, fem 37 = 2187 apostes i cobrim tots els
resultats (és molt car). Si uns experts en futbol ens eliminen un resultat de cada partit, el
nombre d’apostes que necessitem és només 27 = 128 per a cobrir els resultats predits. Si ens
conformem d’encertar només sis partits (suposant que els experts no s’hagin equivocat), en
tenim prou fent 16 apostes. En resum, els mètodes permeten racionalitzar les apostes perquè
gastant el mı́nim possible “cobrim”el màxim nombre de resultats.
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Ara explicarem com la mateixa idea que permet fer les reduccions al 13 per set dobles és
utilitzada en un context totalment diferent. Això ens pot fer reflexionar sobre el fet que de
vegades es poden estar desenvolupant problemes que des d’un punt de vista són lúdics (com
a l’exemple) o pertanyen a la matemàtica anomenada teòrica i, finalment, els resultats que
s’obtenen són utilitzats a la tècnica, o en altres contexts totalment diferents.

Considerem la taula 3 però substituint les x per 0. Fixem-nos que les quatre primeres
files corresponen a l’expressió en base dos de tots els nombres naturals entre 0 i 15. Aix́ı, per
exemple, la columna corresponent al 13 és 1101010, ja que 13 = 1×23+1×22+0×2+1 = 11012.

Abans de continuar, recordem que qualsevol informació es pot digitalitzar (és a dir, com en
el cas dels nombres se li pot associar una successió única de zeros i uns de manera que donada la
informació obtinguem la successió de zeros i uns (codificació), i donada la successió obtinguem
la informació (descodificació)). Veurem ara que la taula 3 (canviant x per 0 coneguda com
codi de Hamming de longitud 7) ens serveix per a minimitzar els errors en la transmisió
d’informació.

Suposem que hi ha un emissor i un receptor que es volen enviar una informació codificada
(per a simplificar suposarem que es volen enviar un nombre natural entre 0 i 15). A més,
suposem que el mecanisme de transmisió digital comet molt pocs errors (per exemple, té un
error d’un 1%, és a dir, en mitjana canvia un de cada 100 d́ıgits enviats).

Opció 1: transmissió sense usar cap prevenció per errors.

13 codificar←→ 1101
enviar!!"





1101,

(
99
100

)4

% = 96.06% dels casos

almenys un error, 3.94% dels casos

descodificar←→
{

13, 96.06% dels casos
error, 3.94% dels casos

Suposem ara que, com a prevenció per a evitar errors, usem la idea següent: en lloc d’enviar
els quatre d́ıgits en base 2, n’enviem set (els tres últims són els tres corresponents a la columna
del codi de Hamming). Aleshores, quan el receptor rebi els set d́ıgits, si no hi ha hagut cap
error serà una de les setze columnes, però si hi ha hagut només un error se’n podrà adonar i el
podrà corregir (observi’s què de la manera en que s’ha constrüıt la taula 3 cada successió de
set d́ıgits té cap o un error només respecte a una de les columnes). Per tant, es pot considerar
que la informació arribarà malament si es produeixen almenys dos errors. Ilustrem-ho amb
l’exemple de la transmissió del 13.

Opció 2 transmissió usant prevenció d’un error.

13 codificar←→ 1101 afegir control−→ 1101010
enviar!!"

{
cap o un error8, 99.8% dels casos
més d’un error, 0.2% dels casos

Codi Hamming−→
{

1101010
error

←→
{

1101
error

descodificació←→
{

13, 99.8% dels casos
error, 0.2% dels casos

Observem aix́ı que usant aquesta última idea podem assegurar que en un 99.8% dels casos
es rep el que s’envia, mentre que si no s’uses cap control de l’error, només es podia assegurar
en un 96.06% dels casos. Versions més complicades d’aquesta idea inicial de Hamming són
utilitzades actualment. Podeu consultar, per exemple, la traducció de la revista Unizürich
feta per la Societat Catalana de Matemàtiques, La matematizació del món (1994).

8 “Cap error”es calcula com 100
`

99
100

´7
%. “Un error,”com 100

“
7

`
99
100

´6 1
100

”
%. Aix́ı cap error o un es

dóna en el 997+7×996

1006 % = 99.8% dels casos.
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2.14 El teorema de Pitàgores

Recordem el que diu el famós teorema de Pitàgores: En un triangle rectangle la suma dels
quadrats dels catets és igual al quadrat de la seva hipotenusa. Aquest resultat és conegut per
la humanitat —almenys per alguns triangles rectangles concrets— des de fa uns 1500 anys
abans de Crist a Babilònia. Pel que es coneix, la primera demostració la va donar en Pitàgores
uns 500 anys abans de Crist. Des d’aleshores han aparegut molt́ıssimes altres demostracions
(hi ha un llibre que en recopila més de tres-centes). En aquest text, basat essencialment en els
llibres Meu Professor de Matemática, de E. Lages Lima, Coleção Do Professor de Matemática,
Soc. Brasileira de Matemática, Rio de Janeiro, 1991 i Comunicación Extraterrestre, de M.
Gadner, Colección Teorema, Catedra 1986, Madrid, en recordarem unes quantes.

La primera prova que donem també és atribüıda als grecs i demostra el teorema només
per a triangles rectangles equilàters (és a dir, triangles rectangles amb els dos catets iguals).
Aquesta prova es basa en la figura següent:

......
......

......
......

.....
.......

......
......

......
....................................

a

c c

c
c

a

Observeu que el quadrat tort té àrea c2; però per altra banda la seva àrea està formada
per quatre triangles d’àrea a2

2 és a dir c2 = 2a2 = a2 + a2. Una demostració també de l’escola
grega, que és potser la més senzilla i popular, és la basada en les figures següents:

.....................
a

a

a

a a

a

b

b

bb

b

b

a

c
c

c

c

1 2

3 4

1 2
3

4
àrea

àrea

àrea

c2

a2

b2

α
β γ

b

De fet, no calen gaires explicacions. Potser només cal comentar que la figura de l’esquerra
amb els quatre costats de mida c és un quadrat i no un rombe. Això és a causa que α+β+γ = π
radiants i que α+ γ = π

2 radiants per ser els dos angles no rectes d’un triangle rectangle; per
tant, β = π

2 radiants.
A partir de només la figura de l’esquerra i amb càlculs elementals, també s’obté una

demostració usant que

àrea de quadrat total = 4 · (àrea d’un dels 4 triangles)+
+ àrea quadrat interior
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és a dir

(a + b)2 = 4 ·
(

ab

2

)
+ c2,

a2 + b2 + 2ab = 2ab + c2,

a2 + b2 = c2.

Una variació d’aquesta última prova, que s’atribueix a l’expresident dels EUA, J.A. Gard-
field, es basa en la figura següent (que, com podem observar, és la meitat de la figura de
l’esquerra anterior).

a

b

b
c

c

a

1

2

Si usem que

àrea del trapeci = 2 · (àrea del triangle 1) + àrea del triangle 2,

és a dir,
a + b

2
(a + b) = 2

(
a · b
2

)
+

c2

2
a2 + b2 + 2ab

2
=

2ab + c2

2
,

a2 + b2 = c2,

on hem usat que l’àrea d’un trapeci és el producte de la semisuma de les seves bases per la
seva altura.

Una demostració essencialment diferent es basa en la semblança de triangles. La detallem
a continuació. Prenem un triangle rectangle com el de la figura

.................................

b a

c
x

h

α β

Observem que aquest triangle determina dos altres triangles rectangles amb els mateixos
angles, i per tant semblants. Aquests són

β ab

x c − x

h h

α

α

β
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Recordem que, pel teorema de Tales (vegeu la secció d’història 5.1), els costats de triangles
semblants han de mantenir les mateixes proporcions. Per tant, prenent el triangle gran i el
de l’esquerra tenim c

b = b
x . Prenent el triangle gran i el de la dreta arribem que c

a = a
c−x .

Aquestes dues expressions s’escriuen com

b2 = cx i a2 = c(c − x).

Si les sumem, tenim de nou el teorema de Pitàgores, és a dir

a2 + b2 = c2.

No és dif́ıcil veure que el teorema de Pitàgores és cert en una situació molt més general. El
seu enunciat és degut al matemàtic hongarès G. Polya i ens diu: Si sobre cada un dels costats
d’un triangle rectangle hi posem figures semblants (seguint la raó de semblança donada pels
costats respectius), aleshores la suma de l’àrea de les figures que es recolzen sobre els catets
és igual a l’àrea de la figura que es recolza sobre la hipotenusa. La figura següent il.lustra el
teorema de Polya, Sa + Sb = Sc,

a

b
c

Sa

Sb

Sc

Hi ha un teorema similar al de Pitàgores, però per a triangles qualssevol, anomenat teorema
de Pappus i que enunciarem tot seguit. La prova que presentem està basada en la següent
propietat dels paral.lelograms:

Tots els paral.lelograms amb la mateixa base B i altura h tenen la mateixa àrea Bh. Aquesta
propietat es mostra a la figura següent:
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...............................

............................... .....
.....
.....
......
.....
.....
.....
.

h ⇒

B B

2

El teorema de Pappus es basa en la següent construcció sobre un triangle qualsevol ABC
il.lustrada a la figura següent. Es dibuixen dues ĺınies paral.leles a AC i a BC. Suposem que
es tallen a D. Dibuixem la recta que passa per DC, tracem una paral.lela a AB de manera
que la distància EF sigui igual a DC. Ara tracem ĺınies paral.leles a DC que passin per A i
B

.....................................................................

.........................................................

.........................................................

A

I

G

D

C

B
E

F J

ab

c

H

Aleshores, si es prenen paral.lelograms sobre AC i CB, les seves àrees seran iguals a les
dels paral.lelograms AGDC i CDHB respectivament. Ara bé, aquestes àrees coincideixen
amb la del paral.lelogram basat en c, ABJI. Resumint, el teorema de Pappus ens diu que
A1 + A2 = A3, on:

A1 A2

A3

Per a acabar, parlarem una mica dels triangles rectangles
amb costats de mida entera. El més senzill és el de costats 3,
4 i 5. És clar que a partir d’aquest se’n poden construir molts
més: els de mides 3k, 4k i 5k, on k és un nombre natural
qualsevol. Un triangle rectangle es diu pitagòric primitiu
si els seus costats són nombres naturals sense cap divisor
comú als tres. Es pot veure que tots els triangles pitagòrics
primitius tenen costats a, b, c que compleixen

a = m2 − n2, b = 2mn, c = m2 + n2

amb m i n naturals, primers entre si, i m > n. Són les dues àrees fosques
iguals?
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2.15 Codis secrets

La transmissió de missatges entre dues persones, de manera que no puguin ser entesos per una
tercera persona, és una pràctica que ha estat usada per la humanitat des de fa més de dos mil
anys. Es tenen not́ıcies de missatges encriptats de l’època de la Grècia clàssica. Un esquema
del mètode general que és el següent

Missatge
original Encriptació → Missatge encriptat

amb una certa clau

Tramesa del missatge
encriptat

↓

Intent de desencriptació
per a obtenir el
missatge original

← Si
És

interceptat?

No
↓

El missatge original
és rebut

← Desencriptació usant
la clau acordada

Encara que durant la història hi ha hagut nombrosos xifrats (mètodes d’encriptació de mis-
satges), hi ha dues famı́lies de xifrats clarament diferents: Els xifrats de substitució i els de
transposició. A continuació parlarem una mica de cadascun d’aquests tipus.

Xifrats de substitució

Un dels xifrats més antics és atribüıt a Juli Cèsar i ens donarà una primera idea del que són
aquests tipus de xifrats. Consisteix en el següent:

Donat un missatge substitüım cadascuna de les seves lletres per la lletra situada quatre
llocs més endavant en l’ordre alfabètic (quan s’acaben les lletres tornem a començar per la A).
Aix́ı, per exemple, la codificació de CADA seria FDHD. En general, cada lletra es substituiria
per la de sota de la següent llista.

A B C Ç D E . . . V W X Y Z
D E F G H I . . . Z A B C Ç

De seguida els desencriptadors (persones especialitzades a tractar de veure quin és el
missatge original a partir del missatge codificat) van ser capaços de desencriptar missatges
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encriptats per aquest mètode. Observem que desencriptant una lletra, se’n dedueixen totes
les altres.

Al segle XV, L.B. Alberti va començar a perfeccionar el xifrat de J. Cèsar. La millora va
consistir a prendre a la segona fila una permutació (reordenació) qualsevol de totes les lletres
de l’alfabet. Per exemple,

A B C Ç D E . . . X Y Z
H L A W T S . . . I U B

D’aquesta manera s’havien de desencriptar totes les lletres una per una. Els desencripta-
dors ho tenien una mica més dif́ıcil, però van ser capaços de nou de trobar un sistema per a
obtenir el missatge original. Aquest es basaba en estudis estad́ıstics sobre quines eren les lle-
tres que sortien més sovint, els grups de dues lletres que sortien més sovint, els de tres lletres,
etc. A partir d’aqúı, i si el missatge era una mica llarg, podien “traduir-lo”. Per exemple en
català tenim:

• lletres més freqüents per ordre: E, A, S, R, I, N, T, O,. . . , K, W.

• grups de dues lletres més freqüents: ES, AR, EN, RE, RA, SS, RI, EM, . . .

i en castellà:

• lletres més freqüents per ordre: E, A, O, S, R, I, N,. . . , Z, K, W, X.

• grups de dues lletres més freqüents: ES, EN, EL, DE, LA,. . . .

Per tant, en un text que prové del castellà, per exemple, és molt possible que la lletra que
surti més sovint sigui la que correspon a la E. A partir d’aquesta, tenim lletres candidates a
ser la S, la N o la L i aix́ı successivament.

Al segle XVI va haver-hi una millora important deguda a B. Vigenère. Aquesta consisteix
en la introducció d’una paraula clau i de considerar tants codis de Cèsar com lletres té l’alfabet.
És a dir,

A B C Ç D . . . X Y Z
B C Ç D E . . . Y Z A
C Ç D E F . . . Z A B
...
Z A B C Ç . . . W X Y

Si volem codificar una frase com

BADA A CADA CAÇADA

i la paraula clau és CAZ, fem el següent:

BADA A CADA CAÇADA
CAZC A ZCAZ CAZCAZ

i la codificació de cada lletra s’obté buscant la lletra que hi ha sota de la lletra del missatge
original que és a la fila que comença per la lletra corresponent de la paraula clau. A l’exemple
l’encriptació de la B segons la fila que comença per C és Ç, i la de tot el missatge és:

ÇAÇC A BCDZ DACCDZ
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La descodificació es fa usant la mateixa paraula clau i la taula en sentit contrari.
Aquest darrer mètode és molt més dif́ıcil de forçar (desencriptar) i és tan més complicat

com més llarga és la paraula clau. L’encriptació perfecta, segons va provar C. Shannon, durant
aquest segle s’aconsegueix quan la paraula clau té la mateixa longitud que el missatge que
volem codificar i, a més, aquesta paraula clau està generada totalment a l’atzar. Això vol
dir que la paraula clau es forma, per exemple, tirant un dau amb tantes cares com lletres té
l’alfabet. Amb altres paraules, Shannon va provar que si s’utilitza una paraula clau aleatòria
i de la mateixa mida que la frase que es vol codificar, la frase codificada és totalment aleatòria
i per tant no ofereix cap informació sobre el missatge inicial, llevat que es conegui la clau de
xifrat.

El problema d’aquest darrer sistema és evident: el receptor ha de conèixer una paraula clau
tan llarga com el missatge, i aquesta paraula és dif́ıcil de canviar. Aquest problema és resol
substituint la paraula clau totalment aleatòria pel que s’anomena una paraula pseudoaleatòria.
Hi ha molts mètodes per a aconseguir paraules pseudoaleatòries; només n’explicarem un de
molt senzill:

Considerem el número π:

3.141592653 5897932384 6264338327 95 . . .

En els decimals de π no s’ha trobat cap regularitat i es poden considerar pseudoaleatoris. Una
bona clau d’encriptació seria la següent: Prenem les deu primeres files de la taula d’encriptació
deguda a Vigenère i les numerem del 0 al 9

0 A B C Ç D . . . Z
1 B C Ç D E . . . A
2 C Ç D E F . . . B
3 Ç D E F G . . . C
...
9 I J K L M . . . H

Una clau d’encriptació de mida 100 pot ser els decimals de π des del 15 fins al 114.
Per tant, la frase i la clau d’encriptació serien

BADA A CADA CAÇADA
3 2 3 8 4 6 2 6 4 3 3 8 3 2 7

i s’encriptaria com DCGH. . .
Amb aquest últim mètode ja hem arribat als nostres dies. De fet, el sistema DES (Data

Encription Standard) de IBM es basa en aquestes idees. L’única diferència important és que
es treballa amb un altre alfabet més senzill: l’alfabet amb només dues “lletres”: 0 i 1.

Un primer pas consisteix a traduir l’alfabet usual a zeros i uns; això s’anomena ASCII
(American Standard Code of Information Interchange) i és l’usat pels ordinadors. En aquest
codi:

A és 01000001
B és 01000010
C és 01000011
Ç és 10000000
D és 01000100
...

Aleshores, la paraula BADA en ASCII és
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01000010 01000001 01000100 01000001.

Com a clau de codificació seguirem prenent els decimals de π entre 15 i 114, però convertits
en una seqüència de cent zeros i uns amb la regla: una xifra parell dóna lloc a un 0, i una
xifra senar dóna lloc a un 1. La clau corresponent a 323846 . . . seria, per tant, 101000 . . .

La taula de conversió en aquest cas segueix les mateixes regles i és molt senzilla (l’alfabet
només té dues lletres). La podem escriure aix́ı:

El missatge té: 0 1
Clau 0 0 1
Clau 1 1 0

Per tant, la nostra paraula

01000010 01000001 01. . .

amb clau

10100000 01101011 10. . .

es codifica com

11100010 00101010 11. . .

Existeixen altres xifrats de substitució basats en idees diferents. A bastants d’aquests
xifrats el coneixement de nombres primers9 grans és molt important.

Xifrats de transposició

Parlarem ara d’una famı́lia de xifrats que no gaire cosa a veure amb l’anterior. En aquests
xifrats, els valors de les lletres no varia mai. Pel que es coneix, també provenen de la Grècia
clàssica. El mètode que explicarem s’atribueix a G. Cardano (segle XVI), encara que s’ha
popularitzat per l’obra de Jules Verne Mathias Sandorf.

Els mètodes estan basats en una plantilla (nosaltres considerarem plantilles de 4 × 4)
constrüıdes de la manera següent:

1 1

11

2

2

2

2

3

3

3

3

4 4

4 4

9L’estudi dels nombres primers ha estat una constant al llarg de la història de les matemàtiques. Potser en
aquest llibre hi falta alguna secció dedicada a ells. No podem evitar comentar un parell de curiositats:

• No es coneix cap fórmula que ens doni sempre nombres primers. Euler va trobar el següent resultat sor-
prenent: la funció f(n) = n2 +n+41 dóna sempre un nombre primer quan l’avaluem a n = 0, 1, 2, . . . , 39.
Malauradament, f(40) = 412.

• Dos números primers p < q es diuen bessons si q − p = 2. Per exemple, 3 i 5, 29 i 31, 149 i 151, 7949 i
7951, 104849 i 104851 . . . són parells de nombres primers bessons. Avui en dia no se sap si hi ha o no
infinits parells de primers bessons.
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Observi’s que el que s’ha fet és omplir el quadrat 2×2 de dalt a l’esquerra amb els números
de l’1 al 4. Els altres 3 quadrats 2×2 s’omplen girant el quadrat gran 90, 180 i 270 graus en el
sentit de les agulles del rellotge i posant als quadradets buits els nombres que van passant per
sobre. Un cop fet això, es foraden quatre (o menys) quadradets respectant la regla següent:
no es poden foradar quadrats amb nombres repetits.

Triem la plantilla següent

Aleshores el mètode d’encriptació funciona aix́ı: Donada una frase a encriptar com, per
exemple,

LES MATEMÀTIQUES

es comença a escriure sobre un paper la frase usant només els forats de la plantilla. Un cop
acabats els forats, es gira 90 graus la plantilla (en el sentit de les agulles del rellotge) i es
continua escrivint i aix́ı dos cops més. El mètode seguit per a fer la plantilla ens garanteix
que mai no haurem de sobreposar lletres. Obtenim

L A AE

U T T E

E S S M

B I M Q

on hem subratllat les quatre primeres lletres. Afegim una B o qualsevol altra lletra per a
completar el quadrat de lletres. Per a acabar, les podem escriure com una frase

LAEA UT TEESS MBIMQ

Per a veure si el mètode és bo o no, el que hauria de passar és que encara que una persona
l’interceptes no fos capaç de desxifrar-lo tot i sabent que s’ha usat el mètode de les plantilles.
Per tant, la seguretat del mètode depèn del nombre diferent de plantilles que es puguin cons-
truir. En el cas 4 × 4 observeu que se’n poden construir 44 (triem un número 1 d’entre 4 per
al primer forat, un 2 d’entre 4 per al segon, i aix́ı successivament). Si prenguéssim plantilles
6 × 6 o 8 × 8, el nombre possible de plantilles seria 49 o 416, i per tant el mètode seria molt
més segur.

Tota l’exposició d’aquest tema esta basada en el llibre: Códigos secretos, de Andrea Sgamo,
Ed. Pirámide SA, Madrid 1990.
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2.16 La caracteŕıstica d’Euler. La fórmula de Pick

Hi ha un resultat d’Euler, provat el 1758, que se sol incloure a tots els llibres elementals
de matemàtiques ja que és molt bàsic i senzill d’enunciar. Aquest resultat l’anomenarem
en aquestes notes teorema d’Euler i ens diu que si considerem un poĺıedre (amb unes certes
propietats que especificarem tot seguit) i denotem per

c, el número de cares que té,
a, el número d’arestes que té,
v, el número de vèrtexs que té,

aleshores c − a + v = 2.
Per exemple, si prenem la piràmide següent

......
......
......
..............................................
.....
.....
.....
.....
.....
....

c = 5, a = 8, v = 5, i per tant c − a + v = 5 − 8 + 5 = 2, tal com diu la fórmula d’Euler.
En canvi, si prenem la figura

c = 16, a = 32, v = 16 i per tant c − a + v = 16 − 32 + 16 = 0.
Anem, doncs, en primer lloc, a fixar el tipus de poĺıedres que considerarem i, en segon lloc,

a veure per què per a aquests poĺıedres es compleix la fórmula

c − a + v = 2.

Normalment, donat un poĺıedre P , el nombre c − a + v s’anomena la caracteŕıstica d’Euler
de P i es denota per χ(P ). Aix́ı, en altres paraules, veurem per què χ(P ) = 2 sempre que P
sigui un poĺıedre amb les propietats següents:

1. El poĺıedre és tal que si les cares fossin de goma i el poguéssim inflar es tornaria com
una pilota. Tècnicament es diu que és un poĺıedre homeomorf a una esfera. Observeu
que el segon poĺıedre un cop inflat es convertiria en un “dònut”en lloc d’una pilota.

2. Cada una de les cares del poĺıedre són poĺıgons sense forats: és a dir, la vora del poĺıgon
és una única corba tancada.

3. Cada aresta és comuna a només dues cares.
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Seguirem les idees de la demostració que va donar Cauchy a 1813, per a un poĺıedre concret.
Pendrem un prisma pentagonal

..............................

................................

.............................................

Pas 1

Traiem una cara, per exemple la tapa superior. La figura resultant hauria de complir que
c − a + v = 1 (n’hem tret una cara). Representem el resultat aplanat com la figura següent
(això es pot fer pel fet que P compleix la propietat 1).

Pas 2

Triangulem totes les cares sense afegir-hi cap vèrtex nou. Observeu que si es triangula qualsevol
poĺıgon, sense afegir-hi vèrtexs, un poĺıgon de k costats queda dividit en k − 2 triangles
(augmentant k−3 cares), afegint 0 vèrtexs i k−3 arestes (aqúı s’usa la propietat 2). Per tant,
el nombre total c − a + v no variarà.
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Pas 3

Ara anem eliminant triangles de la figura, prenent-los de la seva vora. Observem que podem
eliminar dos tipus de triangles.

• Eliminem una aresta, i un triangle desapareix. En aquest cas, cada eliminació esborra
una cara i una aresta; per tant, c−a+v no varia. A la figura veiem com queda el nostre
poĺıgon aplanat i triangularitzat un cop hem eliminat cinc d’aquests triangles

• Eliminem dues arestes, i el triangle desapareix. En aquest cas cada triangle eliminat
esborra una cara, dues arestes i un vèrtex. De nou c−a+ v no varia. La figura anterior,
després de cinc eliminacions, queda com la figura següent:

Pas 4

Un cop fetes les eliminacions, queda un sol triangle (en aquest cas ens faltaria fer dues elimi-
nacions). Per a aquest triangle final, c = 1, a = 3, v = 3 i per tant c − a + v = 1 com voĺıem
veure. Per tant, hem vist per què el teorema d’Euler que ens assegura que χ(P ) = 2 és cert
per als prismes que considerem.

Aquesta exposició està basada en el llibre Meu Professor de Matemática, d’E. Lages Lima,
Coleção do Professor de Matemática, Soc. Brasileira de Matemática, Rio de Janeiro, 1991.

La fórmula de Pick

Acabarem aquesta secció amb un resultat curiós. Aquest resultat, provat pel matemàtic txec
G. Pick el 1899, i conegut amb el nom de fórmula de Pick, ens proporciona una manera útil per
a calcular àrees de poĺıgons P amb vèrtexs en una quadŕıcula i per als quals la seva vora és una
única corba tancada. El seu enunciat recorda en certa manera la fórmula de la caracteŕıstica
d’Euler.
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Sigui P un d’aquests poĺıgons. Aleshores la fórmula de Pick ens diu que l’àrea que envolta,
A(P ) es pot calcular com

A(P ) =
a(P )

2
+ c(P ) − 1,

on a(P ) és el número de punts de la quadŕıcula que són a la vora de P, i c(P ) és el número
de punts de la quadŕıcula que són a l’interior de P .

Vegeu dues figures per a les quals la fórmula es pot aplicar. Per exemple, a la figura
inferior, a(P ) = 42, c(P ) = 146, i per tant A(P ) = 21 + 146 − 1 = 166.

Intenteu fer una demostració d’aquesta fórmula basada en una triangularització de P i en
el fet que un triangle ple, tal que només té com a punts de la quadŕıcula els vèrtexs, té sempre
àrea 1/2.
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2.17 La llei de Titius-Bode

L’objectiu d’aquesta secció és presentar la llei coneguda com llei ĺımit de Titius-Bode.
Hem consultat el llibre Els amants de l’astronomia de C.A. Ronan, Editorial Blume 1982

i l’article dels professors de la Universitat Autònoma Jaume Llibre i Conxita Pinyol, “A
gravitational approach to the Titius-Bode law”, The Astronomical Journal 93 (1987), 1272-
1279.

Introdüım en primer lloc la llei de Titius-Bode.
El 1756, el cient́ıfic alemany Johann Daniel Titius va establir una relació que ens dóna la

distància dels planetes del nostre sistema al Sol. Només ho va observar com una nota en un
peu de pàgina d’un llibre que havia tradüıt. Va ser Johann Elert Bode qui el 1772 va difondre
més àmpliament el que avui en dia es coneix com la llei de Titius-Bode.

Per aquella època només es coneixien Mercuri, Venus, la Terra, Mart, Júpiter i Saturn. El
fenomen que Titius va observar és que si considerem els números següents (observeu, que tret
del 0, cadascun és el doble de l’anterior)

0, 0.3, 0.6, 1.2, 2.4, 4.8, 9.6

i els sumem 0.4, obtenim

0.4, 0.7, 1.0, 1.6, 2.8, 5.2, 10.0

que són aproximadament les distancies mitjanes10, en unitats astronòmiques11, dels planetes
al Sol, excepte pel que fa al 2.8 (vegeu la taula següent).

Mercuri Venus La Terra Mart Júpiter Saturn
0.39 0.72 1.00 1.52 5.20 9.55

Distàncies mitjanes al Sol observades.

Sistema Solar.
Els astrònoms d’aquella època van trobar misteriosa la gran concordança dels números

obtinguts matemàticament i les distancies reals dels planetes al Sol, excepte pel que fa al 2.8.
10Les òrbites dels planetes són aproximadament el.lipses, i la distància mitjana d’un planeta al Sol pot

pensar-se com el semieix major d’aquestes el.lipses.
11En unitats astronòmiques (u.a.) la distància mitjana de la Terra al Sol es 1. Una u.a. és aproximadament

150 milions de km.
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Quan William Herschel va descobrir Urà el 1781, la llei de Titius-Bode va semblar confirmar-
se, ja que la seva distància mitjana al Sol és 19.18 u.a., valor proper al que es dedueix per la
regla (19.6). Per això el 1800 van organitzar una recerca del planeta perdut. Durant un any
van estar buscant algun planeta a una distància mitjana aproximada de 2.8 u.a. però sense
èxit, fins que de manera independent i accidentalment, l’1 de gener de 1801, un astrònom
sicilià, Guisseppe Piazzi, va descobrir el primer planeta menor. Aquest cos es va batejar amb
el nom de Ceres i és situat a una distància mitjana de 2.76 u.a. (!). El 1807 ja s’havien
localitzat quatre planetes petits. Avui en dia es coneix l’òrbita de milers d’aquests planetes, i
el conjunt que formen s’anomena cinturó d’asteroides.

Quan Le Verrier va emprendre la recerca d’un nou planeta per a explicar les anomalies
observades a l’òrbita d’Urà, va utilitzar la llei de Titius-Bode per a calcular la seva distància
aproximada, que havia de ser de 38.8 u.a. No obstant això, quan va aparèixer Neptú,12 va
resultar estar molt més a prop, a 30.05 u.a., de manera que la llei sembla deixar d’aplicar-
se més enllà d’Urà. Més endavant comentarem una possible explicació d’aquest fet. Plutó,
descobert el 1930, en canvi, es mou a una distància mitjana de 39.52 u.a. del Sol, que śı que
s’aproxima a 38.8.

Si expressem amb una fórmula la successió de números obtinguda per Titius, tenim

dk = 0.4 + 0.3 × 2k.

Aquesta fórmula s’ha d’entendre de la manera següent: El número dk obtingut en substituir
k a l’expressió de la dreta representa la distància mitjana d’un planeta al Sol, amb la relació
següent: k = −∞, 0, 1, 2, 3, 4, 5, 6, 7 correspon, respectivament, a Mercuri, Venus, la Terra,
Mart, asteroides, Júpiter, Saturn, Urà i Plutó. La distància al Sol del planeta Neptú no figura
a la successió de números donada per la llei de Titius-Bode.

k dk Dist. mitjana observada
Mercuri −∞ 0.4 0.39
Venus 0 0.7 0.72

La Terra 1 1.0 1.00
Mart 2 1.6 1.52

Asteroides 3 2.8 2.2 a 3.3
Júpiter 4 5.2 5.20
Saturn 5 10.0 9.55
Urà 6 19.6 19.18

Neptú 30.05
Plutó 7 38.8 39.52

Taula 1.

La llei ĺımit de Titius-Bode és menys general que la llei de Titius-Bode. Aquesta afirma
que si prenem dos planetes consecutius del sistema solar, bastant allunyats del Sol, aleshores la
distància mitjana al Sol del més allunyat és aproximadament el doble de la distància mitjana
al Sol del més proper.

12El descobriment de Neptú el 23 de setembre de 1846 va ser un dels grans èxits de la matemàtica, ja que
la seva posició va ser predita teòricament per Urbain Jean Joseph Le Verrier i confirmada per Johan Gottfried
Galle, de l’observatori de Berĺın, després de només una hora de recerca i només a un grau de distància del punt
predit teòricament.
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Clarament, si la llei de Titius-Bode és certa, també ho serà la llei ĺımit, ja que si prenem
dos planetes consecutius del sistema solar, prou allunyats del Sol, aleshores (i ja que k és gran)

dk+1

dk
=

0.4 + 0.3 × 2k+1

0.4 + 0.3 × 2k
=

0.4
2k + 0.3 × 2

0.4
2k + 0.3

≈ 0.3 × 2
0.3

= 2.

Per tant, si k és gran, dk+1 ≈ 2dk (per exemple, si k = 5, tenim que dk+1 ≈ 1.96dk).
Si usem les distàncies mitjanes observades donades a la taula 1, obtenim els resultats

següents (no tenim en compte Neptú)

0.72
0.39

≈ 1.85,
1.00
0.72

≈ 1.39,
1.52
1.00

≈ 1.52,
2.90
1.52

≈ 1.91,
5.20
2.90

≈ 1.79,
9.55
5.20

≈ 1.84,
19.18
9.55

≈ 2.01,
39.52
19.18

≈ 2.06.

Per tant, tenim la successió 1.85, 1.39, 1.52, 1.91, 1.79, 1.84, 2.01, 2.06, que corrobora les afir-
macions de la llei ĺımit de Titius-Bode (si la distància mitjana d’un planeta al Sol fos exac-
tament el doble que la de l’anterior, els elements d’aquesta successió foren tots el número 2).

Per donar una explicació matemática de la llei, necessitem
tenir dues coses: un model teòric aproximat del sistema solar i
unes lleis de moviment que ens permetin decidir a partir de una
posició dels planetes i el Sol en un instant quina serà la seva posició
després d’un cert temps. La formulació del model teòric depèn
essencialment del problema concret a estudiar. Normalment és
una simplificació de la realitat. Deixarem aquesta part per al final
d’aquesta secció. Saturn.

La llei que ens permet predir el moviment dels cossos és la coneguda amb el nom de llei de
la gravitació i va ser formulada pel f́ısic i matemàtic Isaac Newton (1642-1727). Aquesta llei
ens diu que dos punts materials qualssevol s’atreuen mútuament amb una força directament
proporcional al producte de les seves masses i inversament proporcional al quadrat de la
distància entre ells. Si ho expressem con una fórmula, tenim que la força F entre dos cossos
de masses m i M , que estan a distància d és

F = G
mM

d2
,

on G es una constant (G = 6.67 × 10−8 dines·cm2 · g−2).
Aquesta fórmula ens permet mesurar la força que exerceix la Terra sobre cossos tan variats

com els éssers humans o com la Lluna.
Aix́ı, com la massa de la Terra és M = 5.98 × 1027 g, la força que exerceix la Terra sobre

una massa m = 100 Kg situada sobre la superf́ıcie terrestre (és a dir, a (40× 106)/(2π) m del
centre d’aquesta) és de

6.67 × 10−8 (100 × 103)(5.98 × 1027)
((4000 × 106)/2π))2

= 98416241 dines,

que en unitats més usuals és d’uns 100 kp, i és el que anomenem pes de l’objecte de massa m
a la Terra.13 Com la distància de la Lluna al centre de la Terra és aproximadament seixanta

13Aquest mateix objecte a la Lluna pesaria unes sis vegades menys (és a dir, la Lluna l’atrauria amb una
força 6.064 vegades menor que la Terra), ja que la massa de la Lluna és de 7.35 × 1025 g i el seu radi mitjà de
1.738 × 106 m.
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cops el radi de la Terra, i la massa de la Lluna és de 7.35 × 1025 g, tenim que la força amb
què la Terra atreu el seu satèl.lit és de 20.09 × 1024 dines.

De la llei de la gravitació de Newton se’n poden deduir les següents propietats sobre el
moviment dels planetes al voltant del Sol. Aquestes són les lleis de Kepler (1571-1630):

(1) Els planetes descriuen el.lipses al voltant del Sol, estant aquest situat en un dels seus focus.

(2) Les àrees escombrades pel vector posició d’un planeta respecte del Sol són iguals en temps
iguals.

(3) El quadrat del peŕıode de revolució d’un planeta és proporcional al cub del semieix major
de l’el.lipse que aquest descriu.

Un segell hongarès dedicat a Kepler.

En realitat, les lleis de Kepler són anteriors a la formulació de Newton de la llei de gravi-
tació. És més, Newton va deduir la llei de la gravitació a partir de les lleis de Kepler. Aquestes
lleis van ser obtingudes per Kepler després del redescobriment14 de Copèrnic (1473-1543) del
fet que la Terra girava al voltant del Sol i de les meticuloses mesures sobre la posició d’uns
quants planetes realitzades por Tycho Brahe (1546-1601) (aquest va realitzar aquestes mesures
sense telescopi i amb una precisió de dos minuts d’arc).

Una cop es coneixen totes les forces que actuen sobre un cos en moviment, ja es pot
determinar mitjançant una relació matemàtica quina serà la seva trajectòria futura. Aix́ı, a
partir de la llei de gravitació ja podem predir, almenys teòricament, el moviment futur dels
cossos espacials.

Vegem ara el model simplificat del sistema solar que considerarem. Aquest estarà format
pel Sol, dos planetes girant al voltant del Sol i el centre de masses (c.d.m.) de la Galàxia.
Suposarem, a més, que les òrbites dels dos planetes són en un mateix pla i que giren en el
mateix sentit.

Aquests tipus de problemes són coneguts a mecánica celest amb el nom de problemes de
quatre cossos (en aquest cas, el c.d.m. de la Galàxia, el Sol i els dos planetes). A partir de la
llei de la gravitació es coneixen les equacions que regiran el moviment d’aquests quatre cossos,
però no és coneguda la solució d’aquestes equacions. Per tant, per a tenir una idea de com és
el moviment dels quatre cossos, necessitarem encara més simplificacions.

El camı́ usual és suposar que tres d’aquests cossos es mouen d’una manera preestablerta i
el quart (que es considera que no afecta el moviment dels altres tres), seguint la llei de Newton
de la gravitació. Aquesta manera preestablerta de moure’s serà al més semblant possible al
moviment real observat.

En el nostre cas, suposarem que el c.d.m. del Sol-planeta interior es mou en una òrbita
circular al voltant del c.d.m. de la Galàxia, i que el Sol i el planeta interior es mouen també

14Ja alguns astrònoms grecs, com Aristarc de Samos (310-230 a.C.), creien que era la Terra la que feia voltes
al Sol.
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en òrbites circulars al voltant del seu centre de masses. El pla descrit pel c.d.m. del Sol-
planeta interior és aproximadament el pla galàctic, i aquest està inclinat un angle d’uns 60
graus respecte al pla que conté l’òrbita del Sol i el planeta interior (aproximadament, el pla
de l’ecĺıptica).

Després d’un estudi detallat de les equacions diferencials corresponents a aquest últim
model, s’obté una possible explicació del per què es compleix la llei ĺımit de Titius-Bode:
D’entre totes les trajectòries tancades que podria seguir el planeta exterior, se’n troba una
famiĺıa d’aquestes entre les quals la més estable15 correspon a una òrbita aproximadament
circular i amb un radi proper a uns 3

2
3 ≈ 2.08 cops el radi de l’òrbita circular del planeta

interior.
Observem que en aquest model s’ha considerat que el planeta exterior no influeix en el

moviment dels altres tres cossos. Això mai no és cert, però és raonable suposar-ho si la seva
massa és bastant més petita que la d’aquests. Si prenem com a referència la massa de la
Terra (és a dir, aquesta massa igual a 1) las masses de Júpiter, Saturn, Urà, Neptú i Plutó
són respectivament 317.8, 95.1, 14.5, 17.2, 0.1. Per tant, és raonable que el model matemàtic
simplificat estudiat modeli la realitat en considerar Júpiter i Saturn, o Saturn i Urà, però no
és raonable per a Urà i Neptú (la massa de Neptú és més gran que la d’Urà). Aquesta és,
doncs, una possible explicació de per què la llei de Titius-Bode no s’aplica a Neptú.

Per a acabar, comentarem que la llei ĺımit de Titius-Bode es formula de vegades en termes
dels peŕıodes de translació dels planetes al voltant del Sol (no s’inclouen en aquest cas els
asteroides). La llei ĺımit pot enunciar-se dient que el peŕıode de translació d’un planeta al
voltant del Sol és aproximadament el triple que el del planeta anterior. Aix́ı, per exemple,
(si no tenim en compte Neptú) sabem que els peŕıodes dels planetes Júpiter, Saturn, Urà i
Plutó són respectivament (en anys terrestres) 11.86, 29.46, 84.02 i 247.70. L’equivalència entre
aquesta formulació i l’explicada anteriorment ens la dóna la tercera llei de Kepler.

15Podem entendre el fet que una trajectòria és la més estable, com també el fet que aquesta trajectòria és la
que és més probable que segueixi existint encara que el model que tinguem sofreixi petits canvis. No oblidem
que hem estudiat un model aproximat del sistema solar real, i que creiem que el model real és proper a aquest.
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2.18 Les lleis de Mendel

El treball de Johann Gregor Mendel (1822-1884), publicat el 1866, en què estudiava com
es transmetien diferents caracteŕıstiques de les plantes de pèsol a les generacions successives
després de diversos entrecreuaments, va ser molt valuós per a la ciència des de molts punts de
vista:

• En part, el seu èxit va ser degut al bon disseny dels seus
experiments i a l’enfocament anaĺıtic dels resultats.

• Va fer proves durant vuit anys. Això ens demostra que
la pressa no és una bona aliada de la ciència.

• Un dels biòlegs més importants de l’època, Karl Näge-
li, li va dir que els seus resultats no tenien realment
valor cient́ıfic. Això ens mostra que, en qualsevol mo-
ment, una determinada persona pot fer una aportació
important i aquesta pot no ser valorada.

No va ser fins el 1900 (setze anys després de la seva mort) que Hugo De Vries va retrobar
el seu escrit i el va fer conèixer. Els seus resultats es coneixen actualment com a “lleis de
l’herència de Mendel”. Abans de començar a explicar les seves lleis i donar alguns exemples
ben coneguts de les seves implicacions, volem comentar que quan es van formular no es coneixia
en absolut com es transmetien els caràcters hereditaris d’una generació a la següent. Mendel
va deduir els seus resultats a partir de l’observació i el recull de dades. En altres paraules,
avui diŕıem que va obtenir els seus resultats fent anàlisis estad́ıstiques de dades experimentals.
Actualment, hi ha una explicació de les lleis de Mendel basada en la teoria cromosòmica de
l’herència.

Començarem amb l’exemple més t́ıpic, ja considerat per Mendel. Entre altres carac-
teŕıstiques, la superf́ıcie dels pèsols pot ser llisa o rugosa. Aquest fet està controlat per un gen
que presenta dos al.lels16. Aquests dos al.lels són L, que porta la informació per a la superf́ıcie
llisa, i l, que porta la informació per a la superf́ıcie rugosa. Aix́ı, hi ha tres tipus de llavors de
pèsol (tenint en compte només el caràcter de ser llisos o rugosos), que són els següents:

• Pèsols amb dos al.lels LL que són llisos.

• Pèsols amb dos al.lels Ll que són llisos.

• Pèsols amb dos al.lels ll que són rugosos.

Com s’observa de la classificació anterior, un pèsol que té un al.lel llis (L) sempre és llis.
Per aquest motiu es diu que ser llis és una caracteŕıstica dominant i per conveni es denota
amb una lletra majúscula. Tanmateix, l’única manera de ser rugós és tenir els dos al.lels de
tipus rugós ll. Es diu que ser rugós és una caracteŕıstica recessiva.

Ara estem en condicions d’enunciar la primera llei de Mendel:

16Al.lel és cada una de les possibles variacions en la informació que té un gen.
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1a llei. Quan s’encreuen17 dues races pures diferents18 (és a dir, pèsols que tenen dos al.lels
LL i pèsols que tenen dos al.lels ll) tots els descendents són del mateix tipus Ll. Com que L
és un caràcter dominant, tots els descendents es veuen llisos.

2a llei. Quan s’encreuen dos descendents de l’encreuament de dues races pures (és a dir,
pèsols amb al.lels Ll), s’obtenen descendents de la forma LL, Ll i ll amb proporcions 1

4 ,
2
4 i

1
4 respectivament. Aquests descendents són la segona generació de l’entrecreuament de dues
races pures. A més, el seu aspecte és 3

4 de llisos i 1
4 de rugosos.

La tercera llei fa referència a la primera i segona generacions quan s’entrecreuen races pures
amb dos caràcters diferents. Per exemple, pèsols grocs llisos LLGG, amb ambdós caràcters
dominants, amb pèsols verds rugosos llgg, amb ambdós caràcters recessius.

3a llei. Quan s’encreuen races pures amb dos caràcters dominants independents LLGG amb
races pures amb dos caràcters recessius llgg independents, aleshores els dos caràcters es com-
binen d’una manera independent. Més concretament:

(1) Tots els descendents de la primera generació són del mateix tipus LlGg.

(2) Quan s’encreuen dos descendents de la primera generació s’obtenen descendents de la
forma LLGG, LlGG, LLGg, LlGg, LLgg, Llgg, llGG, llGg i llgg amb proporcions 1

16 ,
2
16 ,

2
16 ,

4
16 ,

1
16 ,

2
16 ,

1
16 ,

2
16 i 1

16 respectivament. L’aspecte d’aquests és groc llis, verd llis,
groc rugós i verd rugós, amb proporcions 9

16 ,
3
16 ,

3
16 i 1

16 respectivament.

Noteu que a la segona generació s’observen combinacions diferents a les paternes.
A continuació veurem com es poden interpretar les lleis de Mendel a partir del producte

cartesià de conjunts, que recordem que es defineix com

A × B = {(a, b) tals que a ∈ A, b ∈ B}.

Considerem el conjunt {L,L}×{l, l} = {(L, l), (L, l), (L, l), (L, l)}, i el conjunt {L, l}×{L, l} =
{(L,L), (L, l), (l, L), (l, l)}. Observeu que els resultats dels productes coincideixen amb les pro-
porcions que diuen les dues primeres lleis de Mendel, si no tenim en compte l’ordre de les
lletres.

Pel que fa a la tercera llei de Mendel, si considerem cada caràcter per separat, tenim que
tots els elements de

({L, l} × {L, l}) × ({G, g} × {G, g}) =
= {(L,L), (L, l), (l, L), (l, l)} × {(G,G), (G, g), (g, G), (g, g)} =
= {(L,L,G,G), (L,L,G, g), (L,L, g,G), (L,L, g, g),

(L, l,G,G), (L, l,G, g), (L, l, g, G), (L, l, g, g),
(l, L,G,G), (l, L,G, g), (l, L, g, G), (l, L, g, g),
(l, l, G,G), (l, l, G, g), (l, l, g, G), (l, l, g, g)},

que són, si no tenim en compte de nou l’ordre, els resultats predits per la 3a llei de Mendel;
veugeu també la taula 1.

17Cada parell d’al.lels se separa durant la formació dels gàmetes. Quan dos gàmetes (cèl.lules sexuals) s’u-
neixen en la fecundació, la descendència rep un al.lel de cada parell, un procedent del pare i l’altre de la
mare.

18Un individu és raça pura o homozigot per a un determinat caràcter si presenta els dos al.lels iguals.
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(L,L) (L, l) (l, L) (l, l)

(g, g)

(g,G)

(G, g)

(G,G)

grocs llisos

grocs rugosos

verds llisos

verds rugosos

Taula 1. Tercera llei de Mendel.

Aquesta manera conjuntista d’interpretar les lleis de Mendel ens permet de forma sis-
temàtica veure què passaria, per exemple, si estudiem l’entrecreuament de races pures que
difereixen en tres caràcters independents. Si anomenem, per exemple x, X els al.lels recessiu i
dominant, respectivament, d’un nou caràcter, aleshores les proporcions de la segona generació
es calcularien fent el producte

({L, l} × {L, l}) × ({G, g} × {G, g}) × ({X,x} × {X,x}).

Obtindŕıem els pèsols amb aspectes LGX, LGx, LgX, lGX, lgX, lGx, Lgx i lgx, amb pro-
porcions 27

64 , 9
64 , 9

64 , 9
64 , 3

64 , 3
64 , 3

64 i 1
64 respectivament.

Voldŕıem comentar també dues coses: la primera és que no tots els caràcters són indepen-
dents i que, per tant, la tercera llei de Mendel no sempre es pot aplicar. La segona és que no
sempre hi ha només dos al.lels per a cada caràcter, i a més, en cas d’haver-n’hi només dos, no
tenen per què ser un dominant i l’altre recessiu. De vegades hi ha al.lels que es manifesten
els dos igual i s’anomenen codominants. Acabarem amb un exemple: la sang humana que té
aquests dos caràcters independents:

(1) El grup sanguini, que presenta els al.lels següents: A, B i 0. D’aquests A i B dominen
sobre 0, però entre ells són codominants (és a dir, es manifesten tots dos).

(2) El factor Rh, que té dos al.lels + i −, essent el + dominant.

A partir d’aquestes dades, podem aplicar les lleis de Mendel per a tenir informació del
tipus de sang del fill a partir de la sang dels pares. Aix́ı, un pare del grup AB+ i una mare
del grup 0−, que han de tenir al.lels AB + + o AB +− (el pare) i 00−− la mare, tindran fills

({A,B} × {0, 0}) × ({+,+} × {−,−})

o bé
({A,B} × {0, 0}) × ({+,−} × {−,−}),

és a dir que la seva sang serà d’un dels tipus següents: A+, B+, A− o B−.
Les lleis de Mendel han estat també usades per a fer proves de paternitat. Per exemple si

una parella té fills del grup AB i 0, forçosament els seus pares han de tenir sang dels tipus:
un A i l’altre B.

Per a escriure aquesta secció s’ha consultat el llibre Invitación a la bioloǵıa, de H. Curtis
i N.S. Barnes, Ed. Panamericana, 1995.
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2.19 Iteració d’aplicacions. Caos

Donada una aplicació f : X → X i un punt x0 ∈ X, s’anomena iteració de f amb inici a x0 a
la successió definida per la recurrència

{
xn+1 = f(xn),
x0 ∈ X.

(∗)

La iteració d’aplicacions té utilitat en diversos camps: resolució d’equacions, f́ısica, economia,
dinàmica de poblacions,. . . L’objectiu general sol ser calcular cap a on s’acosta la succes-
sió x0, x1, x2, x3, . . . en funció del valor inicial x0. En aquesta secció estudiarem uns quants
exemples de (∗), variant f , x0 i l’espai X.

El mètode de Newton

Una de les maneres més efectives de resoldre equacions g(x) = 0 ens la dóna el mètode de
Newton. La idea d’aquest mètode és molt senzilla. Anomenem s una solució de g(x) = 0.
Aleshores, donat x0 ∈ R, volem calcular un x1 més proper a s que x0. La figura següent ens
il.lustra la idea geomètrica.

"

!

.................................
x0

x1

s

y = g(x) recta tangent a (x0, g(x0))

'

Per a calcular x1, busquem la recta tangent a y = g(x) que passa per (x0, g(x0)). Aquesta
recta és

y − g(x0) = g′(x0)(x − x0).

El valor de x1 es calcula buscant el valor de x que fa zero l’expressió anterior. Tenim que

x1 = x0 −
g(x0)
g′(x0)

.

En general, el mètode de Newton està donat per




xn+1 = xn − g(xn)

g′(xn)
,

x0 ∈ R,

i és molt usat per a resoldre equacions. Es pot veure que per a x0 molt proper a s i per a moltes
g la successió x0, x1, x2, . . . convergeix cap a s i ho fa de manera que d’un pas al següent, el
nombre de xifres decimals correctes de s que anem trobant es dobla aproximadament.

Per exemple, si volem trobar una solució de

cos x − x = 0
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i considerem 



xn+1 = xn − cos xn − xn

− sinxn − 1
=

cos xn + xn sin xn

1 + sinxn

x0 = 0.5

tenim que

x1 = 0.7552 . . . , x2 = 0.739141 . . . ,

x3 = 0.7390851339 . . . , x4 % x5 % s = 0.7390851332 . . .

Una aplicació caòtica

Un dels exemples més senzills per als quals els iterats d’una aplicació es comporten de manera
quasi aleatòria és el donat per l’aplicació loǵıstica19

{
xn+1 = Kxn(1 − xn)
x0 ∈ [0, 1].

Aquesta aplicació depèn d’un paràmetre K ∈ R. Es pot veure que presenta un fenomen
anomenat “caos”per a certs valors del paràmetre. Queda fora de l’abast d’aquest llibre donar
una definició concreta del que és el caos i veure per què es dóna per a l’aplicació loǵıstica.
Només comentarem que una caracteŕıstica que presenten tots els sistemes caòtics és el que
s’anomena dependència sensible respecte a les condicions inicials. Aquesta propietat ens diu
que petits canvis en la condició inicial tenen una repercussió gran en els valors donats per la
iteració. De fet, aquesta propietat s’ha popularitzat amb el nom d’efecte papallona. Aquest
nom prové del fet que en l’estudi dels sistemes meteorològics es presenta la dependència sensible
respecte a les condicions inicials i es diu (exagerant) que una papallona que mou les ales a
l’Amazònia (i, per tant, canvia una mica l’estat inicial de l’atmosfera) podria provocar un
huracà a l’altre cap del món.

Per a acabar proposem un experiment musical que ens pot servir per a entendre el que és
el caos. Prepareu un programa d’ordinador que faci el següent:

Donat un valor de K ∈ [0, 4] i un valor de x0 ∈ [0, 1], calculi la successió

x0, x1, x2, x3, x4, . . . , xn

fins a un cert n prou gran (200 o 300 per exemple). Al mateix temps que es va
calculant cada xi, fem que se senti durant 1

2 segon una nota musical amb la regla
següent:

Si xi ∈
[
0, 1

7

)
, aleshores la nota és do

Si xi ∈
[

1
7 , 2

7

)
, aleshores la nota és re

Si xi ∈
[

2
7 , 3

7

)
, aleshores la nota és mi

...
...

...
...

...

Si xi ∈
[

6
7 , 7

7

]
, aleshores la nota és si

19Aquesta aplicació ens dóna també un model d’evolució de la població d’una espècie; vegeu, per exemple,
el llibre de J. D. Murray, Mathematical Biology, Springer, 1993.
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Si experimenteu amb aquest programa, observareu que per a valors de K petits (< 3) obtenim,
en augmentar n, una melodia monòtona. En augmentar K, la melodia que es repeteix té un
peŕıode més llarg. Per a 3.83 < K < 4, la melodia ja no segueix cap regla. Hem pogut
“escoltar”el caos.

Un problema obert: la conjectura 3x + 1

Una conjectura és una afirmació de la qual no se sap si és certa o falsa, encara que hi ha
indicis que pot ser certa. Presentarem una conjectura molt famosa. Aquesta conjectura té
molts noms: conjectura 3x + 1, conjectura de Collatz, de Kakutani, de Ulam, etc. Diu el
següent:

Considerem l’aplicació següent de N en N

f(x) =






3x + 1
2

, si x és senar,
x

2
, si x és parell.

Conjectura 3x + 1. Donat un x0 ∈ N positiu qualsevol si considerem la iteració de f amb
inici x0, és a dir, {

xn+1 = f(xn),
x0,

(∗∗)

existeix un valor m prou gran (dependent de x0) de manera que xm = 1.

En altres paraules, independentment de x0, els iterats per a (∗∗) són

x0, x1, x2, . . . , 4, 2, 1, 2, 1, 2, 1, . . .

La figura següent il.lustra els iterats per als valors de x0 més petits que 25, entre d’altres.
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Hi ha matemàtics a tot el món intentant saber si la conjectura 3x + 1 és certa o falsa.
Recentment, a l’agost del 1999 hi ha hagut un Congrés internacional a Alemanya per a discutir
els avenços que s’han fet. Per exemple, se sap que és certa per a x0 menor que 3 × 253 %
2.702 × 1016. També se sap que si exist́ıs una solució amb nombres naturals diferent de
(n,m) = (2, 1) per a l’equació

2n = 3m + 1,

aleshores la conjectura seria falsa. Una referència actual sobre el tema és el llibre de G. J. Wirs-
ching, The dynamical system generated by the 3n + 1 function, Lecture Notes in Mathematics
1681, Springer-Verlag, Berĺın, 1998. També podem consultar l’adreça

http://mathworld.wolfram.com/CollatzProblem.html

És fàcil veure que la conjectura 3x + 1 no és certa si es considera f : Z → Z. Busqueu
valors de x0 negatius per als quals la successió d’iterats no acabi fent 2, 1, 2, 1, 2, 1, . . .

Exemples bidimensionals

Considerem la funció f de R+ × R+ en R+ × R+ coneguda com funció de Lyness donada per

fa(x, y) =
(

y,
a + y

x

)
,

amb a un paràmetre positiu.
Agafeu un (x0, y0) ∈ (R+, R+) qualsevol i fixeu a = 1. Calculeu els seus iterats i trobareu

una propietat curiosa. Comproveu que aquesta propietat ja no es compleix per a altres valors
d’a ∈ R+.

Com a últim exemple, considerarem una aplicació del tipus anomenat Twist pertorbat.
S’ha pogut demostrar que els iterats d’aquest tipus d’aplicacions presenten comportament
caòtic. Considerarem

fa(x, y) =

(
a 0

0
1
a

)(
cos(x2 + y2)

3
2 sin(x2 + y2)

3
2

− sin(x2 + y2)
3
2 cos(x2 + y2)

3
2

)(
x
y

)
.

A l’esquerra de la figura següent representem els primers 4000 iterats prenent (x0, y0) = (0.3, 0)
i a = 1.3; a la dreta prenem (x0, y0) = (0.8, 0) i a = 1.273. Com podeu veure, el comportament
dels iterats en ambdos casos és bastant imprevisible. Aquest tipus d’aplicacions apareixen quan
s’estudia el moviment dels planetes.
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2.20 Models de poblacions

La dinàmica de poblacions intenta conèixer com evoluciona la població d’una o vàries espècies,
en passar el temps.

Considerarem, en primer lloc, el cas d’una sola espècie. Si anomenem p(t) a la població
a l’instant t, la llei de Malthus formulada el 1798 ens diu que el canvi de població (mesurat
per la derivada de p(t)) és proporcional a la població que hi ha. Aquesta llei, escrita sota
formulació matemàtica (que en aquest cas pren la forma d’una equació diferencial), ens diu
que

dp(t)
dt

= p′(t) = ap(t), (∗)

on a és una constant positiva de proporcionalitat. Si suposem que la població en un cert
instant de temps t0 és p0, tenim la dada

p(t0) = p0. (∗∗)

No és dif́ıcil comprovar que la funció

p(t) = p0e
a(t−t0)

és solució de (∗) i compleix (∗∗). Per tant, hem assolit el nostre objectiu de predir quina serà
la població per a instants de temps futurs t > t0.

Anem a aplicar aquest model a un cas concret: l’evolució del nombre d’habitants de la
Terra. Segons els estudis fets als EUA durant 1960-70 es va estimar que la constant de
proporcionalitat per a la població humana era a = 0.02. Sabem que el 1965 la població del
món era d’uns 3340 milions de persones. Quan podŕıem dir que aquesta població es doblarà?

Usant la fórmula obtinguda per a p(t), obtenim que

p(t) = 3.34 × 109e0.02(t−1965).

Volem calcular t per tal que p(t) = 6.68 × 109. Això ens porta a l’equació per a t

e0.02(t−1965) = 2,

és a dir,

t = 1965 +
ln 2
0.02

% 1965 + 34.7 % 2000.

Per tant, la llei de Malthus preveu (a partir de les dades del 1965) una població d’uns 6680
milions de persones a la Terra per l’any 2000. Com haureu llegit als diaris, al final de 1999 la
Terra ha arribat al seu habitant 6000 milions. No gaire lluny de les previsions teòriques!

De totes maneres, el model estudiat preveu que la població de la Terra creixerà indefini-
dament. Encara que només sigui per problemes d’espai f́ısic, és clar que això no pot passar.

A 1836, Verhulst va proposar un model que ja tenia en compte la saturació i la limitació
dels recursos. L’expressió matemàtica del model també és una equació diferencial:

dp(t)
dt

= p′(t) = ap(t) − bp2(t), (∗ ∗ ∗)

amb a i b constants positives.
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Encara que amb una mica més de dificultat que per a la llei de Malthus, també en aquest
cas es pot resoldre l’equació (∗ ∗ ∗) amb la condició (∗∗). La solució és

p(t) =
ap0

bp0 + (a − bp0)e−a(t−t0)
.

Un cop fixats els valors d’a, b, p0 i t0, la gràfica de la funció p(t) s’anomena corba loǵıstica i
és un bon model per a estudiar l’evolució de moltes poblacions. Per exemple, s’ha comprovat
que la corba loǵıstica s’ajusta a la població que han tingut els EUA del 1790 al 1950, amb un
error de menys d’un 3%.

Quan s’intenta modelar l’evolució de dues poblacions que interactuen, la situació és molt
més complexa. Només comentarem un exemple que ha esdevingut clàssic: el model de Volterra
per a sistemes depredador-presa.

El biòleg italià Umberto d’Ancona, va observar que la quantitat de selacis (taurons, raja-
des,etc.) capturats accidentalment en un port d’Itàlia del 1914 al 1923 seguia els percentatges
següents:

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
11.9% 21.4% 22.1% 21.2% 36.4% 27.3% 16.0% 15.9% 14.8% 10.7%

Com que els selacis no són peixos comestibles, volia trobar un motiu de per què havia aug-
mentat la seva proporció. Una diferència entre els anys amb més tant per cent de selacis podia
ser el fet que s’havia prodüıt durant aquells anys la Primera Guerra Mundial, però no trobava
cap explicació convincent.

Va ser el matemàtic Vito Volterra qui va pensar a fer un model matemàtic de la situació:

• Va anomenar p(t) a la quantitat de peixos comestibles, que a més eren preses dels selacis.

• Va anomenar q(t) a la quantitat de selacis, que eren depredadors dels peixos comestibles.

• Va donar unes equacions diferencials semblants a les de Verhulst que donaven l’evolució
de p(t) i q(t): 





dp(t)
dt

= p′(t) = ap(t) − bp(t)q(t),

dq(t)
dt

= q′(t) = −cq(t) + dp(t)q(t),

on a, b, c, d són constant positives.

No podem entrar aqúı en un estudi del sis-
tema d’equacions diferencials de Volterra, però
śı que voldŕıem dir que aquest estudi li va per-
metre donar una explicació del fenomen obser-
vat i que avui en dia es coneix com principi de
Volterra. Aquest ens diu que si en un sistema
depredador-presa des de fora del sistema aug-
mentem la quantitat d’ambdues espècies (per
exemple, amb menys pesca), aleshores la propor-
ció de depredadors creix i la de preses decreix.
També va donar el principi equivalent quan dis-
minueix la quantitat d’ambdues espècies.
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Aquest principi té importants aplicacions ecològiques. Una il.lustració és la següent: Als
EUA hi havia un pugó dels ćıtrics (molt dolent per a les collites) que era menjat per un tipus
de marieta. Quan es va descobrir el DDT, es va decidir fumigar les plantacions. Si els autors
de la fumigació haguessin conegut el principi de Volterra no ho haurien fet, ja que podien
haver pensat el següent:

• Les marietes són els depredadors.

• Els pugons són les preses.

• El DDT mata marietes i pugons indiscriminadament; per tant, fa l’efecte d’augmentar
la “pesca”.

Per conseqüent, l’efecte serà el contrari del que passa en disminuir la pesca, és a dir que els
depredadors decreixeran i les preses (que són la plaga dolenta) creixeran.

L’efecte del DDT va ser desastrós, ja que va augmentar la plaga de pugons!
Tots els exemples d’aquesta secció han estat trets del llibre de M. Braun Ecuaciones

diferenciales y sus aplicaciones, Grupo Ed. Iberoamérica, 1990.
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2.21 Matemàtiques i música

Tothom ha sentit a dir que les matemàtiques i la música estan molt relacionades. Per a
alguna gent aquesta relació es queda en un nivell descriptiu. Per exemple, si diem 1 al temps
de durada d’una negra, aleshores tenim

nota temps
Rodona 4
Blanca 2
Negra 1

Corxera 1/2
Semicorxera 1/4

Fusa 1/8
Semifusa 1/16

...
...

Si considerem les notes amb punt, tenim que la durada d’una nota amb punt és igual a 3
2

de la durada de la mateixa nota sense punt. Un altre exemple de relació podria ser el següent.
Posem les notes blanques del piano i la seva separació en nombre de tons:

. . . si
1
2↔ do

1↔ re
1↔ mi

1
2↔ fa

1↔ sol
1↔ la

1↔ si
1
2↔ do

1↔ re
1↔ mi . . .

Si prenem només de do a do, tenim la successió de semitons: 1, 1, 1
2 , 1, 1, 1, 1

2 . Donada una
nota X recordem que X# denota la nota que té un semitò més que X, i X$ la nota que té un
semitò menys que X. Per exemple, si# = do, fa$ = mi, re# = mi$.

Ara, si prenem qualsevol nota i busquem les set notes següents seguint els increments de
tons 1, 1, 1

2 , 1, 1, 1, 1
2 , obtindrem vuit notes (la primera igual a l’última), que sonaran de manera

similar a les tecles blanques del piano, però amb una tonalitat diferent. Si prenem sol per a
començar, tenim

sol
1↔ la

1↔ si
1
2↔ do

1↔ re
1↔ mi

1↔ fa#
1
2↔ sol.

És a dir, que tenim les notes de l’anomenada tonalitat de Sol Major.
L’objectiu d’aquesta secció és intentar aprofundir una mica més en aquesta relació entre

música i matemàtiques. Més concretament, donarem dues possibles explicacions de per què la
base de la música que escoltem és la divisió d’una octava en dotze intervals, és a dir, considerar
les notes:

do, do#, re, re#, mi, fa, fa#, sol, sol#, la, la#, si, do.

Aquestes explicacions s’han tret del treball de Joan Girbau, professor del Departament de
Matemàtiques de la UAB, “Les matemàtiques i les escales musicals”, Butllet́ı de la Societat
Catalana de Matemàtiques 18 (1985), 3-27.

Començarem amb unes consideracions preliminars. Identificarem un so amb la seva freqüència,
és a dir, el seu nombre de vibracions per segon.

Si prenem una corda de guitarra de longitud l, aquesta emet un so de freqüència C
l , on C

és una certa constant real que depèn del material de la corda.
Si ara prenem dos punts més a la corda, com a la figura
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.........................................

.........................................

...............................

.....................
!5

!5

!5

A BCD

l′′

l′

l

complint l
l′ = l′

l′′ observarem que si anem fent sonar la corda a l’aire, la corda de longitud l′

posant el dit a C i la corda de longitud l′′ posant el dit a D, consecutivament sembla que la
distància musical entre el primer so i el segon coincideix amb la distància entre el segon i el
tercer. És per això que quan vulguem comparar dos sons, el que farem serà dividir les seves
freqüències, en lloc de restar-les.20

De fet, donats dos sons u i v tals que u
v ó v

u és un nombre natural de la forma 2k (és
a dir, la freqüència d’una d’elles és 2k cops la freqüència de l’altra), es diu que els dos sons
corresponen a la mateixa nota, però que una és k octaves més alta que l’altra.

Donat un conjunt de sons S ⊂ R, per tal de fer música, és raonable imposar que si u ∈ S,
aleshores 2u i u

2 també pertanyen a S. Una altra condició que també seria raonable21 és
que 3u i u

3 també fosin elements de S. Malauradament, no és dif́ıcil veure que si mirem
quants sons hi hauria entre u i 2u imposant les dues condicions esmentades, veuŕıem que
haurien de ser infinits sons (!). És per això que, encara que musicalment serien desitjables,
a la pràctica és impossible compaginar les dues condicions. Les dues explicacions donades
al treball citat consideren dues maneres diferents d’imposar condicions semblants a la segona
condició esmentada.

Primera explicació: escales cromàtiques temperades

Considerem una nota base u. En quants intervals iguals22 hem de dividir [u, 2u] per tal que
3u
2 sigui al més proper possible a un dels sons que apareixen a la partició?

En altres paraules: dividim [u, 2u] en m intervals iguals:

u < 2
1
m u < 2

2
m u < 2

3
m u < · · · < 2

m−1
m u < 2u.

Per a quins valors de m existeix un valor n tal que 2
n
m sigui una bona aproximació de 3

2?
Una resposta a l’anterior qüestió és la següent: Prenem x com la solució de l’equació 2x = 3

2 .

Obtenim que x = ln 3
2

ln 2 = 0.584962500721 . . . El que hem de buscar són nombres racionals que
aproximin bé a x i considerar els seus denominadors. Ja hem abordat aquest problema a la
secció 2.2. Si calculem la successió de fraccions cont́ınues que tendeixen a x, obtenim

1
2
,

3
5
,

7
12

,
24
41

,
31
53

,
179
306

,
389
665

,
9126
15601

, . . .

20Des d’un punt de vista més tècnic, podŕıem definir la distància entre dos sons de freqüències u i v com
d(u, v) :=

˛̨
log

`
v
u

´˛̨
. Aquesta noció es correspon amb una noció més matemàtica de distància. Per exemple, si

u = v aleshores d(u, v) = 0.
21Per a fixar idees, suposem que u = 300 vibracions per segon (v/s). Aleshores, si es compleixen les dues

condicions imposades, els sons de . . . , 100, 150, 200, 300, 400, 450, . . . v/s (i molts més) serien de S i tots alhora
sonarien bé. Hi ha una explicació més tècnica basada en el fet que tot so de freqüència u, segons la teoria de
Fourier, descompon en sons sinusöıdals de freqüències u, 2u, 3u, 4u, 5u, . . . i si es complissin les dues condicions,
els quatre primers harmònics serien a S.

22Iguals en el sentit de distància que hem donat. Aix́ı, per exemple, v divideix l’interval [u, 2u] en dues parts
iguals si v

u = 2u
v , és a dir v =

√
2u.
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D’aquesta successió concloem que si hem de dividir l’interval de freqüències u i 2u amb sons
equidistants (aquesta és la definició d’escala cromàtica temperada), que tingui un so proper a
3u

2 , i amb un nombre no gaire gran ni gaire petit de sons, potser triaŕıem m = 12. Aquest és
precisament el número d’intervals en què es divideix una octava per a fer música.

La divisió en dos intervals o en cinc intervals donaria música més senzilla (però diferent).
La divisió en 41, 53, 306, . . . donaria lloc a música molt més complexa. Per a acabar, voldŕıem
comentar que al treball de J. Girbau en què ens basem també es donen dues aproximacions de
x, que no surten en usar la tècnica de les fraccions cont́ınues: 4

7 = 0.571 . . . i 17
29 = 0.5862 . . .

que donarien lloc a altres solucions del problema.

Segona explicació: escala pitagòrica cromàtica

Un segon intent d’aconseguir que donat un so u ∈ S, també siguin a S, 3u, 9u, . . . , 3lu, . . .
per a tota u és el següent: Fitxem un so u i imposem que siguin de S els sons següents:
u, 3u, 9u, . . . , 3ku i tots els seus dobles i meitats.

A la taula següent posem quins sons estarien entre u i 2u en funció del valor de k que
considerem. També diem quina és la distància màxima i mı́nima entre els sons en funció de
k. Noteu que per a aquestes distàncies es compleix 3

2 > 22

3 > 32

23 > 25

33 > 28

35 > 37

211 .

k 1 2 3 4 5 6 7 8 9 10 11
1 • • • • • • • • • • •

37/211 • • • • •
32/23 • • • • • • • • • •
39/214 • • •
34/26 • • • • • • • •

311/217 •
36/29 • • • • • •
3/2 • • • • • • • • • • •

38/212 • • • •
33/24 • • • • • • • • •

310/215 • •
35/27 • • • • • • •

2 • • • • • • • • • • •
Distància
mı́nima

22

3
32

23
32

23
32

23
28

35
28

35
28

35
28

35
28

35
28

35
28

35

Distància
màxima

3
2

22

3
22

3
25

33
25

33
32

23
32

23
32

23
32

23
32

23
37

211

Sons entre u i 2u, ometent la u multiplicant.

Com podem observar, hi ha uns valors concrets de k ≤ 11 per als quals els sons s’espesseixen
més (la distància màxima disminueix) aquests són k = 2, 4, 6 i k = 11. De nou la divisió
de [u, 2u] en dotze intervals (correspon a k = 11) apareix com un cas especial. De fet, per
a k = 11 l’escala s’uniformitza, ja que la distància màxima i la distància mı́nima són quasi
iguals: 28/35 % 1.053 i 37/211 % 1.068.
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Comparació de les dues escales

Veurem que els sons corresponents a k = 11 de la secció anterior són (aproximadament) els
mateixos sons que s’obtenen en considerar l’escala cromàtica temperada de dotze intervals.

Per tal de comparar les dues escales fixarem u per a fer que la nota que s’anomena la
(tercera) tingui 440 vibracions per segon.23 A l’escala temperada això es fa prenent u (v/s
del do) per tal que 33

24 u = 440. A l’escala cromàtica s’ha de prendre u tal que compleixi
2

9
12 u = 440. Com es pot veure, les diferències de v/s en les dues escales són molt petites.

E. temperada E. cromàtica
do 261.6 260.7
do# 277.2 278.4
re 293.7 293.3
re# 311.1 313.2
mi 329.6 330
fa 349.2 347.6
fa# 370 371.2
sol 392 391.1
sol# 415.3 417.7
la 440 440
la# 466.2 469.9
si 493.9 495
do 523.2 521.5

Vibracions per segon prenent u en cada cas
per a obtenir 440 v/s pel la

23El primer diapasó que es va utilitzar a l’Òpera de Paŕıs el 1699 donava una nota de freqüència de 404
vibracions per segon. Durant el segle XVIII va haver-hi grans diferències i es va tendir a anar elevant la
freqüència del la tercera. El 1879 es va fixar aquesta nota en 435 v/s. El 1939 es va tornar a pujar a 440
v/s. Durant alguns anys van anar convivint les 435 v/s amb les 440 v/s, encara que aquesta última xifra s’ha
imposat definitivament.
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2.22 Matemàtiques i finances: el descobriment d’un nou món

Jocs justos

Abans de parlar de finances repassarem la noció de joc just. Per a començar, cal dir que tots
els jocs del casino (excepte el BlackJack si s’hi sap jugar bé) són –lleugerament– favorables
al casino: en un sol dia passen molts jugadors; alguns guanyen, altres perden, però el casino
aprofita el seu petit avantatge per a anar guanyant diners, de forma lenta però segura (en
cas contrari, qui voldria instal.lar un casino?). S’explica la següent anècdota del propietari
d’un casino que es deia Blanc; com sabeu tots, a la ruleta la jugada més t́ıpica és apostar que
sortirà un nombre negre o un nombre vermell. Diuen que el Sr. Blanc es passejava entre les
taules de la ruleta i mentre feia una rialleta murmurava “Jugueu negre, jugueu vermell, que
Blanc sempre guanya”.

Des de l’altre punt de vista, un jugador al casino pot tenir
molt bona sort un dia, però si insisteix i juga un dia i un altre
i un altre... segur que acaba arrüınat. Un exemple extrem
d’aquesta situació és la història d’un jugador japonès, el Sr.
Akio Kashiwaki, que tenia fama d’anar a un casino, seure
en una ruleta i estar apostant cada vegada 200 000 dòlars al
mateix color fins que feia saltar la banca; sembla que mentre
durava el joc anava prenent notes dels resultats com si estigués fent un estudi experimental.
En l’argot, aquesta mena de jugadors se’ls anomena balenes. La balena japonesa Kashiwaki va
anunciar al desembre del 1989 que aniria a jugar a un casino d’Atlantic City. Els encarregats
del casino, preocupats, van consultar el matemàtic Sr. Jess Marcum sobre què havien de fer.
De les informacions disponibles es desprèn que el matemàtic els va aconsellar que la banca
mai no es retirés del joc; que a la llarga el jugador acabaria perdent i que les probabilitats de
perdre del jugador anaven augmentant com més durava el joc. Els del casino varen seguir el
consell; en acabar el tercer dia de joc el jugador japonès anava guanyant 5 milions de dòlars;
després les coses es varen començar a anivellar i, finalment, després 5 066 jugades en 70 hores
de joc, el jugador japonès es va retirar perdent més de 9 milions de dòlars. (Podeu llegir els
detalls dels càlculs sobre aquesta partida a l’article de C. A. Coyle i C. Wang, Wanna Bet?
On gambling strategies that may or may not work in a casino, The American Statistician,
Maig del 1993, vol. 47, núm. 2, pp. 108-111).

Per a formalitzar la idea de l’avantatge del casino, analitzarem un joc ben senzill. Suposem
que participem en un joc a cara i creu i que apostem 10 ptes. de la manera següent:

• Si surt cara, guanyem 15 ptes. (és a dir, ens tornen les
10 ptes. i 15 ptes. més)

• Si surt creu, perdem les 10 ptes.

Si la moneda no està trucada, la probabilitat de cara i de creu són la mateixa i igual a 1/2;
és a dir, si tirem molts cops la moneda, aproximadament la meitat de les vegades guanyarem
i l’altra meitat perdrem. En resum, si per exemple juguem 1000 cops

Guanys ≈ 500 × 15 = 7500 ptes,
Pèrdues ≈ 500 × 10 = 5000 ptes.
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De manera que el guany total serà, aproximadament,

Guany total ≈ 500 × 15 − 500 × 10 = 2500 ptes.

i el guany mitjà per jugada serà

guany mitjà per jugada ≈ 2500 ptes.
1000 jugades

= 2.5 ptes/jugada.

Notem que

Guany mitjà per jugada ≈ 5000 × 15 + 500 × (−10)
1000

= 15
1
2

+ (−10)
1
2
,

és a dir, 15 per la probabilitat de guanyar sumat amb −10 per la probabilitat de perdre.
Aquesta expressió de la dreta s’anomena l’esperança matemàtica del joc. Aquest joc que
estem analitzant ens és favorable: si juguem un cop o dos, podem tenir mala sort i perdre;
però si hi juguem molt, a la llarga acabarem guanyant, en mitjana 2.5 ptes. per jugada.
Però si ens és favorable a nosaltres, serà desfavorable a l’altre jugador. Un joc es diu just si
l’esperança del joc és 0. Per exemple, el joc a cara o creu però amb guanys 10 i −10 és un joc
just: avui puc guanyar jo i demà també, però si hi juguem molt sovint, en mitjana ni jo ni el
meu contrincant hi haurem guanyat ni perdut res (haurem passat l’estona!).

També és important observar que un joc injust es pot convertir en joc just fent pagar una
quantitat per a participar-hi. Aix́ı, al joc del principi amb la moneda on guanyava 15 o perdia
10 podria fer pagar 2.5 ptes. per a jugar una partida. Llavors el resultat seria

15 − 2.5 = 12.5 ptes. amb probabilitat 1/2,
−10 − 2.5 = −12.5 ptes. amb probabilitat 1/2.

que és un joc just.
Si es calcula l’esperança matemàtica de les apostes de la ruleta, etc. donen totes favorables

al casino. El fet que als casinos facin pagar entrada per a participar en un joc injust és allò
que els clàssics en deien cornuts i pagar el beure.

Parlem de finances. Comencem amb uns exemples

Suposem que al mes de març decideixes que al mes de juliol aniràs dues setmanes als Estats
Units i t’han dit que l’estada et costarà 500 dòlars. Suposem també que tens els diners
estalviats per al viatge; un dòlar a Barcelona costa al mes de març 170 ptes. (arrodoneixo
les quantitats per a fer càlculs més fàcils) i sembla que la tendència del dòlar és anar pujant;
per tant, seria prudent canviar avui les pessetes per dòlars i guardar-los per a l’estiu. Però
com que res no és segur, també podria ocórrer que el dòlar baixés d’aqúı a l’estiu i que t’anés
millor esperar al juliol per a comprar els dòlars. Què fer? Estàs en una situació dominada
per la incertesa: com en un joc d’atzar! Pots prendre una decisió –comprar ara els dòlars o
esperar a l’estiu– i hi ha unes expectatives de guanys o pèrdues.

En la mateixa situació, però de manera molt més greu i seriosa, es troben totes les empreses
i negocis. Considerem, per exemple, una fàbrica que produeix ordinadors i unes peces les
compra al Japó, de les quals en necessitarà un nombre determinat d’aqúı a tres mesos. Si creu
que les peces pujaran de preu, podria comprar-les ara i emmagatzemar-les; però podria ser
que baixessin de preu o fins i tot que canviés la tecnologia i quedessin obsoletes. Què ha de
fer?



104 CAPÍTOL 2. ALGUNS TEMES MATEMÀTICS

Introdüım les probabilitats

Els exemples anteriors tenen en comú, entre altres coses, l’ambient d’incertesa i la manera
habitual de tractar-la és mitjançant les probabilitats. Retornem a l’exemple del viatge als
Estats Units. Per a simplificar l’exposició, suposem que del març al juliol el preu del dòlar
només canviarà pujant 30 ptes. o baixant-ne 20. Aix́ı, el preu que tindrà el dòlar al juliol serà
200 ptes. o 150 ptes. Ara podŕıem intentar quantificar la incertesa associada amb l’evolució
futura del dòlar mitjançant una probabilitat: posem que la probabilitat que el dòlar pugi és p
i la probabilitat que baixi és 1 − p (0 ≤ p ≤ 1). Tenim, aix́ı,

Preu d’un dòlar

Març: 170 ptes.

Juliol:

{
200 ptes. amb probabilitat p,

150 ptes. amb probabilitat 1 − p.

Aquest plantejament, tot i la seva simplicitat, és molt important i s’anomena model de
Cox-Ross-Rubinstein.

En lloc de decidir ara si canviar o no les pessetes en dòlars pots comprar una opció de
compra (en anglès es diu un call), que consisteix a adquirir el dret, però no l’obligació, de
comprar dòlars l’1 de juliol a un preu que es fixa avui: posem 180 ptes. per dòlar (s’anomenna
preu d’exercici).

• Si al juliol el dòlar puja, tancaràs el tracte (exercint el
dret) i compraràs els dòlars a 180 ptes.

• Si el dòlar baixa, compraràs directament els dòlars a
un altre venedor.

Però per a adquirir una opció de compra de dòlars cal pagar alguna cosa, ja que, en cas
contrari, ningú no voldria participar venent l’opció: tu tindries tots els avantatges i el venedor
tots els inconvenients. La quantitat que cal pagar s’anomena la prima. El problema que ens
plantegem és com calcular aquesta quantitat.



2.22. MATEMÀTIQUES I FINANCES: EL DESCOBRIMENT D’UN NOU MÓN 105

Una mica d’història

A l’edat mitjana els agricultors i comerciants van començar a utilitzar els contractes de
futurs, que consisteixen (encara s’utilitzen) en un acord de compra o venda d’un producte
a un preu determinat en una data; per aquests contractes no cal pagar res, però l’acord és
ferm: el comprador i venedor han de fer l’operació pactada sigui quin sigui el preu del mercat.
Per a continuar amb l’exemple, tu podries fer al març un contracte de futurs amb un venedor
de dòlars acordant la compra de 500 dòlars a 190 ptes. l’1 de juliol. Arribats a l’1 de juliol,
l’operació s’hauria de fer i comprar els dòlars al preu estipulat, de manera que si el dòlar
baixés a 150 ptes., hi perdries diners respecte al preu de mercat; si el dòlar pugés a 200 ptes.,
compraries els dòlars a un bon preu.

Al segle XVII a Holanda es varen començar a fer opcions (de compra o venta) de bulbs de
tulipa, amb la diferència respecte als futurs que el comprador de l’opció té un dret però no
pas un deure. De seguida es van començar a fer opcions sobre accions d’empreses i, a través
d’una història no sempre fàcil, les opcions s’han anat consolidant com un producte financer
d’extrema importància. Actualment hi ha opcions de moltes menes i sobre tota mena de
productes, i aquesta tendència va a més. A les pàgines econòmiques de qualsevol diari hi ha
informació sobre els diferents mercats d’opcions.

Un salt qualitatiu absolutament fonamental en el mercat d’opcions va ser quan els econo-
mistes americans F. Black i M. Scholes van proposar el 1973 un mètode racional per a calcular
la prima de les opcions (el preu a pagar). Scholes va rebre, juntament amb Merton, el 1997
el premi Nobel d’economia per aquest descobriment (Black va morir el 1995). La conclusió
d’aquest mètode és l’anomenada fórmula de Black-Scholes, d’ús constant als mercats d’opci-
ons, als bancs, etc. Tot i que la fórmula final és molt senzilla, la demostració utilitza mètodes
sofisticats de processos estocàstics (que tracten de modelitzar fenòmens que evolucionen en el
temps segons les lleis de l’atzar –és a dir, fenòmens aleatoris o estocàstics). A partir de l’any
1973, una branca de les matemàtiques que s’havia anat desenvolupant –l’Anàlisi Estocàstica–
va trobar una nova i important́ıssima font d’aplicacions, i molts matemàtics purs varen ser
captivats per la possibilitat d’aplicar la teoria ja feta i de desenvolupar noves teories per als
problemes que la realitat suggeria: va ser el descobriment d’un nou món per als matemàtics.

Però, com es valora una opció?

Per a valorar una opció, primerament cal notar que el valor d’una opció es basa en el preu
del producte al que fa referència (en el nostre exemple, en el canvi dòlar/pesseta) i en les
probabilitats d’aquest preu al moment d’executar l’opció (la p d’abans). Però, com calcular
aquesta probabilitat? En principi, cada persona pot considerar la probabilitat que cregui
convenient; aix́ı hom pot pensar que la probabilitat que el dòlar pugi és 0.9, i un altre que és
0.3; es tracta de probabilitats subjectives. La idea –genial– és que cal buscar les probabilitats
que fan que comprar i vendre dòlars sigui un joc just. El mercat sempre es comporta per
a la majoria de gent (després comentarem la minoria) com un joc just, ja que altrament no
hi hauria participants: a la borsa uns hi guanyen perquè altres hi perden, i els guanyadors i
perdedors no poden ser sempre els mateixos (això és, de fet, més complex, ja que cal tenir en
compte l’evolució al llarg del temps, l’increment del preu del diner, i altres factors). Aplicat
al nostre problema, és tracta de la manera següent: algú compra un dòlar al més de març. El
resultat del joc serà el valor del dòlar l’1 de juliol, que hem quedat que és
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200 ptes. amb probabilitat p,

150 ptes. amb probabilitat 1 − p.

L’esperança matemàtica d’aquest joc és

Esperança = 200 p + 150 (1 − p).

El preu al qual es compraria el dòlar al març, posem 170 ptes., és el preu per a participar en
el joc. Aix́ı, per a què el joc sigui just cal que

200 p + 150 (1 − p) = 170.

La solució és

p = 0.4.

Cal remarcar que aquest mètode és una manera objectiva de calcular les probabilitats i
que, per tant, el comprador i el venedor de l’opció poden estar d’acord; però no representa
la probabilidad d’evolució futura. Ara tornem a l’opció. També el comprador i el venedor de
l’opció han de participar en un joc just. Això vol dir que el preu per a participar en el joc ha
de ser igual a l’esperança matemàtica del joc; concretament, la prima, P, ha de ser

P = (500 × (200 − 180)) × 0.4 + 0 × 0.6 = 4000 ptes.

D’aquesta manera, el resultat de l’opció l’1 de juliol serà:

• Si el dòlar puja, l’opció s’executa i en total hauràs
pagat

500 × 180 + 4000 = 94 000 ptes.

• Si el dòlar baixa, aleshores compres directament els
dòlars, i en total hauràs gastat

500 × 150 + 4000 = 79 000 ptes.

Comparem en el quadre següent la diferència entre comprar dòlars al juliol amb opció o
sense:

Sense Amb
opció opció Diferència

El dòlar puja 100 000 94 000 6 000
El dòlar baixa 75 000 79 000 −4 000

Variació 25 000 15 000
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Per tant, amb l’opció de compra aconseguim que la variació entre els possibles diners que
haurem de pagar sigui menor; concretament, hem redüıt la diferència entre els preus quan
puja o baixa el dòlar en un 40% (10 000 ptes. sobre 25 000). Aquest mateix raonament el
podem fer per a una empresa que sap que haurà de pagar una factura d’un milió de dòlars al
cap de tres mesos i amb les opcions aconsegueix reduir la incertesa de la factura que haurà de
pagar.

D’altra banda, el venedor de l’opció pot utilitzar hàbilment les 4 000 ptes. de la prima per
a no guanyar-hi ni perdre-hi res, vagin com vagin les coses; això s’anomena una cobertura.

A més d’adquirir una opció per necessitat, com seria el cas del teu viatge, o el d’una
empresa d’ordinadors que ha comprar peces al Japó o pagar una factura en dòlars al cap
d’uns quants mesos, també es pot adquirir una opció per a especular: algú que intueix que
el dòlar pujarà a l’estiu pot adquirir una opció de compra de dòlars; si el dòlar puja, llavors
executa l’opció, compra els dòlars a 180 ptes. i els torna a vendre immediatament a 200 ptes.
Si el dòlar baixa, llavors naturalment no exerceix l’opció ni compra dòlars; en total, haurà
perdut la prima: ha fet una aposta i ha perdut. També cal dir que si el dòlar pugés, al mercat
d’opcions li farien tota l’operació sense haver de comprar i vendre els dòlars: directament li
abonarien la diferència.

Les opcions tenen molts avantatges. En la meva opinió, el més important és el següent:
hem vist que al mercat d’opcions hi participen tres classes de persones, les unes per necessitat
(tu o la fàbrica d’ordinadors), unes altres altres com a intermediaris –que hi guanyen unes
comissions– i finalment els especuladors. Les opcions permeten una transferència de risc entre
qui té necessitat de prendre una decisió en un ambient d’incertesa i els que participen a la
borsa per tal de guanyar diners i que estan disposats a córrer un risc.

La borsa és justa per a tothom?

Aquesta és la qüestió més interessant de totes. La borsa és justa per a la majoria perquè hi
ha una minoria que intenta aprofitar el moment en què és injusta. Per exemple, una persona
pot estar molt atenta al preu d’unes accions de, per exemple, l’empresa Bayer, a la borsa
de Madrid i a la de Frankfurt. De tant en tant, els preus es descompensen i pot haver-hi
a Frankfurt algú que vol comprar accions de Bayer a un preu més car del que es venen a
Madrid. Llavors, en qüestió de minuts es podria (de fet, sempre hi ha algú que ho aprofita)
comprar a Madrid i vendre a Frankfurt. Sense cap risc –llevat que algú més ràpid s’interposi
en l’operació– s’haurien guanyat diners. D’aquesta operació se’n diu fer un arbitratge o
guanyar-se un dinar de franc (free lunch).

Aquesta idea, que per a què la borsa funcioni bé cal que hi hagi
uns individus dedicats a localitzar i aprofitar oportunitats d’arbi-
tratge, és realment profunda i es dóna en moltes situacions de la
vida. Als ant́ıpodes del món de les finances, al signe del ying i del
yan, a la meitat blanca hi ha una taqueta negra i a la meitat negra
una taqueta blanca, per a indicar que una cosa no és tota blanca o
negra, bona o dolenta,... A la borsa, els arbitratgistes són la petita
taca negra de la meitat blanca.
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2.23 Humor matemàtic

• Una persona és dalt d’un globus i no sap a quin lloc ha anat a parar. De sobte veu algú
i li pregunta:“On sóc?”

–A dalt d’un globus– contesta l’altre, després de pensar una estona.

–Moltes gràcies. Vostè és matemàtic, oi?

–Śı, com ho ha sabut?

–Molt fàcil, per tres motius: el primer és que ha pensat molt la resposta, el segon és que
el que ha dit és rigorosament cert i l’últim és que no em serveix de res.

• Un metge, un advocat i un matemàtic discuteixen sobre què és millor, tenir esposa o
amant.

El metge diu:“És millor tenir una esposa, és molt més segur, des del punt de vista
sanitari.”

L’advocat diu:“És millor tenir una amant. Signar contractes, encara que sigui un casa-
ment, sempre pot portar problemes.”

El matemàtic diu:“El millor és tenir esposa i amant. A l’esposa li diem que estem
amb l’amant i a l’amant que estem amb l’esposa i aix́ı tenim més temps per a fer
matemàtiques.

• S’explica que una persona sempre viatjava en avió amb una bomba a la maleta. El motiu
és que havia llegit que la probabilitat que hi haguessin dues bombes al mateix avió era
molt més petita que la probabilitat que n’hi hagués només una.

• Tres alumnes de la Llicenciatura de matemàtiques, un de primer curs un de segon i un
de tercer, viatgen junts per un páıs estranger en tren. Mirant per la finestra veuen una
ovella blanca.

L’alumne de primer curs comenta:“En aquest páıs les ovelles són blanques.”

L’alumne de segon diu:“T’equivoques, el que pots dir és que en aquest páıs hi ha una
ovella blanca.”

L’alumne de tercer replica:“El que podem assegurar és que en aquest páıs hi ha almenys
una ovella, i a més que aquesta ovella té un costat que és de color blanc.

• Anem de compres per un mercat una mica estrany (un mercat a un planeta cańıbal).
Veiem la següent oferta: “cervell d’alumne de primer curs de matemàtiques a 10 000
ptes el kg; cervell de Llicenciat en matemàtiques a 1000 ptes el kg; cervell de Doctor en
matemàtiques a 100 ptes el kg.”Aleshores preguntem estranyats sobre la gran diferència
de preus. El botiguer ens contesta:“el cervell d’alumne de primer curs és gairebé nou, el
de llicenciat està una mica atrotinat, mentre que el de doctor ja no és pot aprofitar per
a res.”

• Aquest últim acudit s’ha d’explicar en castellà.

–¿Sabes cuál es el animal que tiene entre tres y cuatro ojos?

–El piojo.
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Problemes proposats

L’objectiu d’aquesta secció és posar en contacte els alumnes de secundària amb diversos temes
de matemàtiques i estad́ıstica.

Per a intentar aconseguir-ho, es presenten problemes agrupats en deu temes diferents.
Aquests problemes han estat preparats per professors del Departament de Matemàtiques de
la Universitat Autònoma de Barcelona, especialistes en diversos vessants de les matemàtiques.
Presentem problemes de Geometria, Anàlisi, Optimització, Probabilitats, Experimentació
numèrica, Àlgebra, Modelització matemàtica, Topologia, Aritmètica i Estad́ıstica.

La seva dificultat és variable. Al text s’han marcat amb un (*) els problemes que requerei-
xen un cert esforç per a ser resolts. Els problemes marcats amb (**) són encara més dif́ıcils.
Finalment, els problemes sense cap senyal són el problemes que creiem que són més a l’abast
dels alumnes d’ensenyament secundari interessats per les matemàtiques.

Animem als lectors d’aquests problemes a pensar-los, a dedicar-hi un cert temps. Tots els
autors han inclòs la seva adreça d’Internet i el seu telèfon i estaran encantats de contestar les
preguntes que puguin sorgir de l’estudi d’aquest material.

Creiem que aquesta col.lecció de problemes ajudarà a veure que les matemàtiques i l’es-
tad́ıstica cobreixen un gran espectre de qüestions. Entre aquests problemes hi ha moltes
diferències. De tota manera, tots tenen una cosa en comú, que és potser una de les carac-
teŕıstiques que més apreciem la gent que estimem les matemàtiques: tots ens fan pensar.
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3.1 Geometria

Selecció de problemes preparada per Gregori Guasp i Bala-
guer, professor de Geometria i Topologia del Departament de
Matemàtiques de la Universitat Autònoma de Barcelona. tel.:
93 581 15 05, e-mail: gguasp@mat.uab.es.

3.1.1. Quina és la proporció que hi ha entre els costats d’un rectangle tal, que el rectangle
que queda, quan es treu el quadrat determinat pel costat més petit (mireu el dibuix),
segueix tenint la mateixa proporció entre els seus costats?

Nota: Aquesta proporció s’anomena la raó d’or.

3.1.2. En la figura següent, A i B representen punts diametralment oposats d’una circum-
ferència de centre O, i C és un altre punt de la mateixa circumferència. Els angles dels
triangles OAC i OBC estan marcats amb les lletres α, β, γ, δ, λ i µ.

A B

C

O

α

β

γ
δ

λ

µ

(a) Demostreu que la suma dels angles β i λ és un angle recte.

(b) Quina relació hi ha entre els angles α i δ?

(Ind: Alguns dels triangles són isòsceles.)

3.1.3. (*) Siguin A, B i C punts d’una circumferència de centre O representats en la figura
següent:
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O

A

B

C

α
β

γ δ
λ µ

νω

(a) Quants triangles isòsceles es poden trobar en la figura?
(b) Quina relació hi ha entre l’angle α i l’angle λ?
(c) Si considerem un altre punt qualsevol D de la mateixa circumferència, quina relació

hi haurà entre l’angle que determinen les cordes DC i DB i l’angle α?

3.1.4. (*) Abans de contestar cap pregunta, realitzeu l’experiment següent:

Retalleu una tira de paper d’uns 10 cm de longitud i sobre un dels costats
feu un senyal. Sobre un full de paper dibuixeu un parell de rectes perpendi-
culars i, posant cada un dels extrem de la tira de paper en un d’aquests eixos,
marqueu el lloc on queda el senyal que heu fet com es mostra en el dibuix
següent:

6

Aneu movent la tira de paper procurant mantenir els extrems sobre els
eixos i apareixerà una certa corba.

(a) Quin tipus de corba és la corba que apareix? Què passarà si el punt que marquem
és el punt mig de la tira de paper?

(b) Si la marca que heu fet divideix la tira de paper en dues parts de longituds a i b
i considerem que les dues rectes que hem dibuixat són els eixos de coordenades,
quina és, en funció de a i b, l’equació de la corba que apareix?
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3.1.5. (**) Considereu la circumferència de radi 1 centrada en el punt (0, 1), que és la que té
per equació x2 + (y − 1)2 = 1, i determineu l’equació dels punts P = (x, y) tals que la
distància que hi ha de P a l’eix de les x és igual a la distància que hi ha entre P i la
circumferència.

Quin tipus de corba apareix si es consideren els punts equidistants d’una circum-
ferència i una recta qualsevol?

3.1.6. Dibuixeu un rectangle de 9 cm per 4 cm. Marqueu els vèrtexs amb les lletres A, B, C i
D de tal forma que AB i CD siguin els costats de 9 cm i BC i AD els de 4 cm. Allargueu
per B el costat AB i per C el costat BC. Amb el compàs, dibuixeu la circumferència de
centre B i radi BC i marqueu com E el punt d’intersecció, que queda fora del rectangle,
d’aquesta circumferència amb la recta AB. Sigui O el punt mig del segment AE. Ara
dibuixeu la circumferència de centre O i radi OA. Marqueu com F el punt d’intersecció
de la semirecta BC amb aquesta nova circumferència. Quina és la longitud de BF?
Quina relació trobeu que hi ha entre aquesta longitud i l’àrea del rectangle?

A

D

B

C

E

F

O

Si us fixeu, l’angle entre AF i EF és un angle recte. Utilitzeu el teorema de Pitàgores
per a veure que fent aquesta construcció sempre tindrem l’alçada BF igual a l’arrel
quadrada de l’àrea del rectangle.

3.1.7. (**) Siguin A, B, C, D i E els vèrtexs d’un pentàgon regular tal com està representat
en el dibuix següent:
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A

B

CD

E

A′

B′

C ′ D′

E′

Els segments AB, BC, CD, DE i EA són els costats del pentàgon, mentre que els
segments AC, CE, EB, BD i DA són les diagonals.

(a) Quina és la mesura de l’angle que formen dos costats consecutius? (per exemple,
l’angle entre AB i AE).

(b) Quina és la mesura de l’angle que formen les diagonals amb els costats? (per
exemple, l’angle entre AB i AC).

(c) Quina és la mesura de l’angle entre les dues diagonals que arriben a cada vèrtex?
(per exemple, l’angle entre AC i AD).

(d) Comproveu que els triangles ADC i DCE′ són triangles semblants, és a dir, tenen
els mateixos angles.

(e) Comproveu que la raó que hi ha entre la longitud de la diagonal i la longitud del
costat és la raó d’or.

(f) Quin és el valor de cos(π/5) i sin(π/5)? (els angles en radiants!)

3.1.8. (*) En la figura següent, el quadrat exterior té costat 1 i els dos rectangles grisos són
iguals.

Quina és l’àrea d’aquests rectangles?
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3.2 Anàlisi

Selecció de problemes preparada per Joan J. Carmona, Armen-
gol Gasull i Francesc Mañosas, professors del Departament de
Matemàtiques de la Universitat Autònoma de Barcelona. Per
a comentaris sobre els problemes podeu contactar amb Francesc
Mañosas, tel.: 93 581 26 06, e-mail: manyosas@mat.uab.es.

3.2.1. Considereu l’equació rećıproca de quart grau x4 + 2x3 − 13x2 + 2x + 1 = 0. Trobeu les
seves quatre solucions fent el canvi de variable y = x+ 1

x . Compareu el mètode proposat
amb el mètode general explicat a la secció 2.9.

3.2.2. Demostreu que

1
3

=
1 + 3
5 + 7

=
1 + 3 + 5
7 + 9 + 11

=
1 + 3 + 5 + 7

9 + 11 + 13 + 15
= · · · =

1 + 3 + 5 + · · ·
· · ·

= · · ·

Interpreteu aquest resultat geomètricament.

3.2.3. (*) Demostreu que

x3 − 1
2x + 1

8 =
(
x −

√
5−1
4

)(
x − 1−

√
5+
√

14+6
√

5
8

)(
x − 1−

√
5−

√
14+6

√
5

8

)
.

Useu que cos π
10 = sin 4π

10 i la descomposició anterior per a calcular sin π
10 .

3.2.4. (**) Com ja sabeu, al Brasil hi ha molta inflació. El 1985, el seu Govern va decidir
que la manera mensual d’ajustar els salaris i els interessos bancaris seria la següent: Si
x1, x2 i x3 són les inflacions mensuals dels tres mesos anteriors, aleshores els salaris i
els comptes corrents augmentarien aquell mes un interès

x = 3
√

x1x2x3,

és a dir la mitjana geomètrica de les tres inflacions.

Demostreu que per a x1, x2, x3 ≥ 0 sempre es compleix

3
√

x1x2x3 ≤ x1 + x2 + x3

3
,

i aix́ı entendreu per què el Govern va pendre la mitjana geomètrica en lloc de l’aritmètica.

3.2.5. (*) Siguin x, y, z, t números reals arbitraris. Escriviu la funció

f(x, y, z, t) = x4 + y4 + z4 + t4 − 4xyzt

com a suma de quadrats d’expressions involucrant x, y, z, t. Per tant, haureu demostrat
que f(x, y, z, t) ≥ 0 per a tot x, y, z, t. Relacioneu aquest resultat amb el problema
anterior.
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3.2.6. Considereu un quadrat de costat a > 0. Amb centre a cada
un dels seus vèrtexs, dibuixem una circumferència que passi
pels altres dos vèrtexs. El quadrat queda dividit en nou
zones com a la figura. Calculeu l’àrea de cadascuna d’elles.

3.2.7. En un desert, i situats a cada un dels vèrtexs d’un triangle equilàter de 1000 km de
costat hi ha tres vehicles. Les seves velocitats màximes són de 40 km/h, 60 km/h i 100
km/h. De sobte reben l’ordre per ràdio que s’han de trobar el més aviat possible. Quant
tardaran a trobar-se i quin camı́ hauran de seguir? Suposem que cada conductor sap
exactament on es troba cadascun dels altres dos vehicles, que els conductors son intel-
ligents i que el seus vehicles poden agafar la seva velocitat màxima instantàniament.
Fins a quin valor pot disminuir la velocitat màxima del vehicle més ràpid de forma que
el punt de trobada no canvïı.

3.2.8. (**) Un camió pot carregar combustible per a recórrer una distància màxima de 900
km. També disposa i pot transportar bidons buits de totes les mides. Ha de travessar
un desert que fa d’ample 1 500 km. Com podria fer-ho per a travessar-lo, suposant que
al punt de sortida té tant de combustible com necessiti?

Explicarem, com a pista, com ho podria fer per a travessar un desert d’una amplada
de 1 200 km: ompliria el camió de combustible i s’endinsaria 300 km en el desert; deixaria
un dipòsit per a recórrer 300 km i tornaria enrere amb el combustible restant. Ompliria
de nou el camió. Quan arribés al lloc del dipòsit, podria tornar a omplir el camió i
podria fer 900 km més. En total, els 1200 km que mesura el desert.

Quina és l’amplada màxima de desert que podria travessar el camió sense preocupar-
se del temps que tardés? I suposant que anés sempre a 60 km/h, quina és l’amplada
màxima que podria travessar en una setmana?

3.2.9. Hi ha un incendi en el punt del pla (30,10). Hi ha un home amb una galleda situat
en el punt (0,20). L’eix de les x és un riu. L’home ha d’anar fins al riu, omplir la
galleda i apagar l’incendi. Quin és el camı́ més curt? Vegeu també el problema 3.3.3.
Indicació: podeu plantejar el problema com un problema de màxims i mı́nims, però hi
ha un argument geomètric que fa la solució evident.

"

!

HOME

7

2

INCENDI

....................... .........................
RIU
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3.2.10. (*) En un got ciĺındric d’alçada 20 cm i radi 5 cm hi ha una aranya al seu interior a 5
cm de la boca del got. A 5 cm de la base, però a la part exterior del got hi ha una mosca
que no es pot desplaçar. A més, la mosca i l’aranya són a generatrius oposades del got.
Quin és el camı́ més curt que ha de seguir l’aranya (i, de fet, segueix) per a arribar a la
mosca? Quina serà la longitud del camı́ recorregut?

.................................

.................................

...................

.........................

.....................

#

"

#

"

#

"5

5

20

...................

.................!5
10

3.2.11. (*) Un excursionista amic nostre ens explicava entusiasmat que l’altre dia va pujar al
Puigmal. Ens deia que va sortir a les 8 del mat́ı de Ripoll i que arribava a dalt exactament
a les 8 del vespre. Després de descansar 12 hores va fer el camı́ de baixada pel mateix
lloc, tardant també 12 hores. Avui encara està rumiant el que li vaig dir: Segur que hi
ha d’haver un instant entre les 8 del mat́ı i les 8 de la tarda en el qual eres al mateix
lloc en pujar que en baixar. El pots ajudar a aclarir per què?

3.2.12. (*) Es vol construir una interconnexió viària entre quatre
ciutats col.locades als vèrtexs d’un quadrat de costat 100 km.
Quin és el disseny de carreteres que fa mı́nima la longitud
total dissenyada? Ajuda’t de la figura adjunta.

3.2.13. (*) Diem que una recta d’equació y = r(x) és una aśımptota obliqua d’una funció f(x)
quan x → ∞ si limx→∞(r(x)−f(x)) = 0. Demostreu que el pendent de l’aśımptota es pot
calcular fent limx→∞

f(x)
x . Suposeu que f és derivable a tot punt i que el limx→∞ f ′(x)

existeix, aleshores demostreu que el pendent també es pot calcular fent limx→∞ f ′(x).
Doneu un exemple en el que limx→∞

f(x)
x existeixi, i en canvi limx→∞ f ′(x) no existeixi.

3.2.14. (*) Demostreu que el volum d’una esfera de radi R és 4
3πR

3.

3.2.15. D’entre tots els triangles rectangles de peŕımetre 8 + 4
√

2, trobeu el d’àrea màxima.

3.2.16. (**) Demostreu que per a tot n ∈ N, 3
2 − 1

n+1 ≤ 1 + 1
22 + 1

32 + 1
42 + · · · + 1

n2 < 2.

3.2.17. (**) Trobeu tots els polinomis amb coeficients reals P (x), que compleixin

P (x2) = P (x)P (x − 1),

per a tot x ∈ C.
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3.2.18. Dos ciclistes, separats 50 km, van en ĺınia recta l’un cap a l’altre, a una velocitat constant
de 25 km/h cadascun. Una mosca, que vola a 35 km/h, decideix anar volant d’un
ciclista a l’altre, des que comencen a moure’s fins que es troben. Quina distància total
ha recorregut la mosca? Suposem que no perd gens de temps cada cop que canvia de
sentit.

.........................................................................................................................................................................................................................................................................................................................................................................................................................

3.2.19. (*) Demostreu que si 0 < x < π/2, aleshores sinx < x < tanx (vegeu la figura adjunta).
Apliqueu aquestes acotacions per veure que limx→0

sinx
x = 1. Utilitzeu aquest darrer

resultat i el fet de que cos x = 1 − 2 sin2(x
2 ) per a provar que limx→0

1−cos x
x2 = 1

2 .
Demostreu també que (sin x)′ = cos x. Finalment, sense fer cap càlcul més, digueu quant
val limx→0

1−cos x
x .

"

!

.......................... .....
.....
.....
.....
.....

1

sin x tan x

.......
x

cos x ........................... ...

3.2.20. Demostreu que per a tot x > 0, xe ≤ ex. Aqúı e = exp 1 = 2.718 . . .

3.2.21. (*) Sigui p(x) = (x2 −x− 1)1999 +(x2 −x− 1)1980. Considereu el polinomi derivat p′(x).
Calculeu la suma de tots els seus coeficients.

3.2.22. Una part́ıcula es mou al pla. La seva posició en cada instant t està donada per (x(t), y(t)).
Suposeu que a l’instant t = 0 està situada a l’origen de coordenades, que té una velocitat
inicial v0 = (a0, b0) i que la seva acceleració depèn proporcionalment del temps, és a dir
a(t) = (a1t, b1t). Trobeu expĺıcitament (x(t), y(t)).

3.2.23. (*) A la secció 2.2 s’explica el que són les fraccions cont́ınues i com es calculen. Demostreu
que

1 +
√

5
2

= 1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·

,
√

2 = 1 +
1

2 +
1

2 +
1

2 +
1

2 +
1

2 + · · ·

.
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3.3 Optimització

Selecció de problemes preparada per Aureli Alabert i Romero,
professor d’Estad́ıstica i Investigació Operativa del Departament
de Matemàtiques de la Universitat Autònoma de Barcelona. tel.:
93 581 29 41, e-mail: alabert@mat.uab.es.

3.3.1. Els carrers de Barcelona que suporten un volum considerable de trànsit rodat solen tenir
els semàfors sincronitzats en “ona verda”. Volem calcular l’interval de temps òptim entre
la posada en verd d’un semàfor i la del següent per tal que el carrer pugui absorbir el
major volum possible de vehicles (nombre de vehicles per unitat de temps). Per això
suposarem:

• Distància de seguretat: Per tal que el risc d’accidents sigui prou baix, s’admet que
la separació entre vehicles ha de ser de v2/100 metres, si v és la velocitat expressada
en km/h. Suposarem que els automobilistes respecten aquesta norma.

• Longitud dels vehicles: en mitjana, podem suposar que és de 4 metres.

• Separació entre semàfors: 100 metres (la de l’Eixample de Barcelona).

3.3.2. (*) Es vol construir una escola nova que ha de donar servei a dos pobles units per una
carretera de 3 quilòmetres de longitud. Dos poĺıtics discuteixen sobre el millor lloc per
a situar-la. L’escola pot estar en un dels dos pobles, o a qualsevol lloc al llarg de la
carretera. El poble A té n nens, i el poble B té m nens. Un dels poĺıtics proposa situar
l’escola en el punt que faci mı́nima la suma dels quadrats de les distàncies que hauran
de recórrer tots els nens per arribar-hi. Busqueu aquest punt.
L’altre poĺıtic no veu per què tanta complicació amb elevar al quadrat les distàncies i
proposa posar l’escola en el punt que faci mı́nima la suma de les distàncies, simplement.
Busqueu el punt en aquest cas. Quina de les alternatives sembla més justa?

3.3.3. (*) Prop dels dos pobles del problema 3.3.2 es vol construir una estació de tren. La via
és una recta que no passa per cap dels dos pobles, i que els deixa a la mateixa banda.
Es tracta de buscar el punt de la via on cal posar l’estació de manera que cap dels dos
pobles es pugui queixar. Els dos pobles tenen un nombre similar d’habitants, de manera
que per a calcular aquest punt equitatiu només cal considerar les distàncies dels pobles
al punt de la via on es construirà l’estació. Quin és el punt òptim si el que es vol es fer
mı́nima la suma dels quadrats de les distàncies de cada poble a l’estació?
Suposem ara que volem fer mı́nima la suma de les distàncies (sense quadrats). El punt
òptim es pot obtenir de la manera següent: Anomenem A i B els punts on es troben els
pobles. Dibuixem el punt B1 simètric de B respecte la via. Tracem la recta AB1. El
punt D que busquem és el punt d’aquesta recta que cau sobre la via. Demostreu això
considerant un altre punt D′ sobre la via i veient que |AD′| + |D′B| > |AD| + |DB|.

3.3.4. (*) Dues persones juguen al joc següent: Hi ha sobre la taula dues piles de monedes. Se
sap la quantitat de monedes de cada pila. El jugadors, per torn, escullen una pila, i en
retiren la quantitat de monedes que desitgin (almenys una). Perd la partida el jugador
que retira l’última moneda de la taula.
És clar que el joc s’acaba en algun moment o altre i que no hi ha mai empat (un
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jugador perd i l’altre guanya). Es tracta d’esbrinar l’estratègia òptima per a guanyar,
i determinar si té importància o no ser el primer jugador que agafa monedes. Per a fer
això seguiu els passos següents:

0. (Notacions.) Escriurem (n,m) per a indicar que en un moment determinat hi ha n
monedes a la primera pila, i m a la segona. Aquests parells de nombres represen-
taran una posició durant la partida. Si podem assegurar que en una determinada
posició (n,m) el jugador que té el torn perdrà la partida (suposant que el contrin-
cant no s’equivoqui), direm que (n,m) és una posició perdedora; si, al contrari,
podem assegurar que el que té el torn guanyarà (si juga sense equivocar-se) direm
que (n,m) és una posició guanyadora.

1. Observeu que (1, 0) i (0, 1) són posicions perdedores.

2. Dedüıu que (n, 0), (0, n) per a n ≥ 2, i (n, 1), (1, n) per a n ≥ 1, són posicions
guanyadores.

3. Dedüıu que (2, 2) és una posició perdedora.

4. Continueu aquesta anàlisi per a trobar totes les posicions guanyadores i perdedores
d’aquest joc. Dedüıu quina estratègia cal seguir per a guanyar. Determineu si és
important o no ser el jugador que comença, i, en cas afirmatiu, què preferiŕıeu.

3.3.5. (*) Entre tots els poĺıgons regulars amb una superf́ıcie fixada, trobeu el que té peŕımetre
màxim.

3.3.6. (*) Volem trobar dues quantitats positives x1 i x2 de forma que el valor de x1 + x2 sigui
al més gran possible, però respectant les desigualtats 2x1 + 3x2 ≤ 12 i 7x1 + 4x2 ≤ 28.
Això es pot fer gràficament:
Traceu les rectes 2x1 + 3x2 = 12 i 7x1 + 4x2 = 28 sobre uns eixos coordenats. Els valors
de (x1, x2) que satisfan totes les condicions estan representats pels punts a l’interior del
quadrilàter determinat per les rectes dibuixades i els eixos coordenats. Dibuixeu també
unes quantes rectes del tipus x1 + x2 = 0, x1 + x2 = 1, x1 + x2 = 2, . . . Totes elles són
paral.leles, i es desplacen cap a la dreta i amunt quan augmentem el terme independent.
D’aqúı dedüım que el màxim valor de la suma x1 + x2 dins del quadrilàter s’obté en
el punt intersecció de les rectes 2x1 + 3x2 = 12 i 7x1 + 4x2 = 28, que és x1 = 36/13 i
x2 = 84/39. El valor de la suma és x1 + x2 = 192/39. Consulteu també la secció 2.7.

Apliqueu aquest mètode a la situació següent: una fusteria fabrica cadires i taules.
Per cada cadira obté un benefici de 100 euros; per cada taula, 200 euros. Cada cadira
ocupa 1 hora de màquina i 3 hores de personal; cada taula ocupa 3 hores de màquina i 2
hores de personal. Es disposa de 40 hores setmanals de màquina i de 80 hores setmanals
de personal. Quantes taules i cadires cal fabricar setmanalment per tal que el benefici
de la fusteria sigui màxim?
(Encara que el resultat sigui un número fraccionari de taules i cadires, es pot interpretar
com un “ritme de producció setmanal”.)

3.3.7. (*) Apliqueu la tècnica del problema 3.3.6 per a resoldre la qüestió següent:
Un granger vol que cadascuna de les seves vaques rebi diàriament com a màxim 18
quilocalories (kcal), almenys 2 quilograms de protëınes, i almenys 2.8 grams de vitami-
nes. Disposa de dos tipus de pinso que pot barrejar en qualsevol proporció, amb les
caracteŕıstiques que s’indiquen a continuació (per quilogram).
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Pinso Cost (eu) kcal Protëınes (kg) Vitamines (g)
1 0.8 3.6 0.25 0.7
2 0.6 2 0.40 0.4

El granger vol fer mı́nim el cost d’alimentació de les vaques tot mantenint les condicions
anteriors. Quina quantitat de pinso de cada tipus cal donar a les vaques cada dia?

3.3.8. (*) Observeu l’esquema següent. Les fletxes representen camins a través d’un bosc, que
uneixen diverses cases, representades per cercles. Els números sobre les fletxes indiquen
els minuts estimats per a fer cada camı́. Volem anar de la casa 4 a la casa 0 en el mı́nim
temps possible.
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Per obtenir el recorregut òptim, dividirem el problema en diverses etapes, que numerarem
1,2,3,4. A l’etapa n, calcularem el recorregut òptim des de la casa n fins a la casa 0. A
l’etapa 4, doncs, trobarem el que busquem.
A l’etapa 1 no cal decidir res, perquè només hi ha un camı́ possible, i el temps que
emprarem és de 6 minuts. Escriurem que t1 = 6.
A l’etapa 2, mirem si és millor anar de la casa 2 a la casa 1 i d’allà a la 0, o bé anar
directament a la casa 0. Veiem que és millor el recorregut 2 → 1 → 0, amb 14 minuts.
Escriurem t2 = 14.
A l’etapa 3 no hi ha res a decidir: Obtenim t3 = 35, amb el recorregut 3 → 1 → 0.
A l’etapa 4, finalment, mirem si és millor anar de la casa 4 a la 3 (6 minuts + t3 =
41) o bé anar de la 4 a la 2 (25 minuts + t2 = 39). És millor aquesta última opció. El
recorregut òptim que buscàvem és doncs 4 → 2 → 1 → 0.

Apliquem ara aquest mètode a un problema més complicat: som a Vladivostok i hem
de retornar amb urgència a casa, a Barcelona. A l’aeroport ens informen de les rutes
que podem seguir, amb el preu de cada trajecte. La nostra prioritat és que el preu total
sigui al més petit possible. Aquestes són les dades, amb els preus en euros:

Vladivostok −→ Irkutsk: 100
Vladivostok −→ Anchorage: 180
Irkutsk −→ Moscou: 120
Anchorage −→ Montreal: 220
Anchorage −→ Nova York: 200
Moscou −→ Roma: 300
Moscou −→ Frankfurt: 250
Moscou −→ Estocolm: 250
Montreal −→ Estocolm: 200
Montreal −→ Londres: 300
Nova York −→ Londres: 250
Nova York −→ Paŕıs: 270
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Nova York −→ Madrid: 290
Estocolm −→ Paŕıs: 200
Roma −→ Barcelona: 150
Frankfurt −→ Barcelona: 180
Londres −→ Barcelona: 160
Paŕıs −→ Barcelona: 140
Madrid −→ Barcelona: 100

Feu un esquema com abans i busqueu la ruta més econòmica.

3.3.9. (**) Un professor planteja les tres preguntes següents en un examen:

1. Entre tots els triangles rectangles amb la suma de les longituds dels catets fixada,
busca el que té àrea màxima.

2. Entre tots els rectangles inscrits en una circumferència, busca el que té àrea màxima.
3. La nota d’aquest examen serà la mitjana de les puntuacions a i b del problema 1 i el

problema 2. Escull quina mitjana vols que et faci: La mitjana aritmètica (a+ b)/2,
la mitjana geomètrica

√
ab, o la mitjana quadràtica

√
(a2 + b2)/2.

A partir del resultat de la pregunta 1, dedüıu que la mitjana geomètrica és sempre més
petita o igual que la mitjana aritmètica. A partir del resultat de la pregunta 2, dedüıu
que la mitjana aritmètica és sempre més petita o igual que la mitjana quadràtica. La
pregunta 3 queda, doncs, “contestada”. Comproveu també que si obteniu la mateixa
nota en els dos problemes, us és ben igual quina mitjana faci el professor.
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3.4 Probabilitats

Selecció de problemes preparada per Maria Jolis i Giménez, pro-
fessora d’Estad́ıstica i Investigació Operativa del Departament de
Matemàtiques de la Universitat Autònoma de Barcelona. tel.:
93 581 30 94, e-mail: mjolis@mat.uab.es.

3.4.1. Suposem que la probabilitat que, en el naixement d’un infant, aquest sigui un nen és
de 0.5. Quina és la probabilitat que en una famı́lia de quatre germans, com a mı́nim
n’hi hagi tres del mateix sexe? (Contràriament al que es podria pensar en un principi,
aquesta probabilitat és bastant més gran que la probabilitat que n’hi hagi dos de cada
sexe.)

3.4.2. (*) Un home que era molt despistat sovint portava els dos mitjons diferents. Suposeu
que aquest home cada mat́ı, en vestir-se, obria un calaix on guardava n parells diferents
de mitjons desaparellats i n’agafava a l’atzar 4 mitjons. Quina és la probabilitat que no
n’hi hagués cap parell del mateix model?

Suposem que aquest home també triava de la mateixa manera els guants que es posa-
va, i que tenia un altre calaix amb m parells de guants. (Suposeu que en els seus models
de guants, el guant de la dreta és diferent del de l’esquerra.) Quina és la probabilitat
que es pugui posar un parell de guants (encara que siguin de diferent model)? Quina és
la probabilitat que es pugui posar dos guants del mateix model?

3.4.3. Quina és la probabilitat que en llançar un dard contra
una diana com la del dibuix, obtinguem cadascuna
de les tres possibles puntuacions? (Suposem que no
tenim gens de punteria però que mai no surt fora de
la diana, és a dir, que el llançament és totalment a
l’atzar dins la diana.)
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3.4.4. Suposem que en una certa població en què hi ha la mateixa quantitat d’homes que de
dones, es té que la proporció de daltonians entre els homes és del 5%, mentre que la
proporció de daltonianes entre les dones és del 0.25%. En un experiment mèdic s’ha
triat un individu d’aquesta població i ha resultat que era daltonià, però la persona que
va seleccionar aquest individu no va anotar quin era el seu sexe. Quina és la probabilitat
que es tractés d’un home? Vegeu la secció 2.6.

3.4.5. S’instal.la un programa antivirus en un ordinador. La probabilitat que l’ordinador tingui
el virus detectable per l’antivirus és 0.2. Si l’ordinador té el virus, la probabilitat que
l’antivirus el detecti val 0.9. Si l’ordinador no té el virus, la probabilitat que l’antivirus
doni un missatge d’existència de virus és 0.02. Es vol conèixer:

1. La probabilitat que, si ha aparegut un missatge d’existència de virus, l’ordinador no
tingui el virus.

2. La probabilitat que l’ordinador tingui el virus i l’antivirus no el detecti.
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3. La probabilitat que, si no ha sortit cap missatge d’existència de virus, l’ordinador tingui
el virus.

3.4.6. Quina és la probabilitat que entre n persones n’hi hagi dues (com a mı́nim) amb el mateix
dia d’aniversari? Comproveu que aquesta probabilitat és d’aproximadament 0.12 per a
n = 10, 0.51 per a n = 23, i 0.99 per a n = 55 (!).

Calculeu també quina és la probabilitat que entre n persones n’hi hagi dues (com a
mı́nim) amb el mateix signe del zod́ıac (suposeu per a simplificar que els dotze signes
comprenen el mateix nombre de dies). Quin ha de ser el nombre de persones per tal
que aquesta probabilitat superi el 0.75? Fixeu-vos que si volguéssim que la probabilitat
valgués 1, es necessitarien n = 13 persones.

3.4.7. (**) En molts esports (per exemple el bàsquet i el beisbol professionals dels EUA) el
campió de la lliga es decideix en una sèrie d’un màxim de set partits que enfronta els dos
equips millor classificats al final de la lliga, essent el campió el primer equip que guanya
quatre partits. Suposeu que els dos equips que arriben a la final són igual de bons (és a
dir, a cada partit cada equip té probabilitat 1/2 de guanyar). Quina és la probabilitat
que es necessitin jugar per a saber el campió:

• quatre partits?
• cinc partits?
• sis partits?
• set partits?

Vegeu també que si es juguessin moltes d’aquestes sèries, en mitjana aquestes sèries
serien de prop de sis partits.

Per a fer aquests dos darrers problemes, vegeu també la secció 2.8.

3.4.8. (**) Suposem que sobre un terra enrajolat amb
rajoles quadrades de costat 0 = 20 cm llancem a
l’atzar una moneda de 4 cm de diàmetre. Qui-
na és la probabilitat que la moneda no toqui la
vora de cap rajola? Quina mida hauria de tenir
la moneda per tal que la probabilitat anterior
valgui 1/2?

3.4.9. (**) Suposeu que trenquem un pal de longitud
0 per dos punts escollits a l’atzar. Quina és la
probabilitat que, amb els tres palets resultants,
es pugui construir un triangle que els tingui per
costats?
Indicació: Si diem x i y les distàncies a un dels
extrems del pal dels punts de trencament, es pot
suposar que el punt (x, y) del pla és un punt triat
totalment a l’atzar dins del quadrat [0, 0]× [0, 0].
Vegeu la figura.
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3.5 Experimentació numèrica

Selecció de problemes preparada per Joan Torregrosa i Arús, pro-
fessor de Matemàtica Aplicada del Departament de Matemàtiques
de la Universitat Autònoma de Barcelona. tel.: 93 581 19 36,
e-mail: torre@mat.uab.es.

3.5.1. El professor ens demana les arrels de l’equació x2 − 2000x + 1 = 0 amb totes les xifres
correctes que ens permeti la nostra calculadora. Comproveu que l’expressió

1000 ±
√

10002 − 1

no és una manera efectiva de calcular l’arrel corresponent al signe menys. Trobeu una
expressió equivalent, però que doni menys error de càlcul.

Resposta: 5.00000125E − 04, 1.9999995E + 03

3.5.2. Hi ha diversos mètodes per a calcular l’arrel quadrada d’un nombre. Comproveu que, si
teniu una calculadora que només pot sumar, multiplicar i dividir, podeu usar la successió
definida per l’expressió recurrent

x0 = c, xn+1 =
1
2

(
xn +

c

xn

)

per a calcular
√

c, per a qualsevol número c positiu. Useu aquest mètode per a trobar√
2. Quants passos heu de fer per a què xn+1 i xn coincideixin, almenys per a tots els

d́ıgits que us dóna la vostra calculadora?

3.5.3. (*) Un amic nostre s’acaba de comprar una calculadora nova, i ens diu que
√

2.15283 −
√

2.15263 = 0.00006815617645 = 6.815617645E − 05.

Ens ho podem creure?

Com podŕıeu calcular
k
√

2.15283 − k
√

2.15263

per a k = 3, 4?

3.5.4. Leonard Euler (1707-1783) va provar que els nombres primers que s’escriuen de la forma
4n + 1 s’escriuen com a suma de dos quadrats. És a dir, que existeixen x, y ∈ N tals que
4n + 1 = x2 + y2. Comprova-ho per als primers menors que 100, trobant el parell (x, y)
corresponent a cada primer.

3.5.5. (*) Fullejant un llibre antic de la biblioteca hem trobat la fórmula següent:

1 + 2 + 3 + · · · + n =
1
2
n(n + 1).

És certa? Comproveu-la per a uns quants valors de n. Demostreu-la a partir de comptar
el nombre total de quadradets de mida unitat d’un quadrat de mida n×n de dues formes:
una com n2 i l’altres comptant els quadradets que hi ha a cada diagonal.
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1 2 3 . . . n

1
2
3

...

n

Noteu que no deixa de ser curiós que, en aquesta fórmula, hi hagi un polinomi de
segon grau en n :

1
2
n(n + 1) =

1
2
n2 +

1
2
n = a2n

2 + a1n + a0.

Amb aquesta fórmula podrem sumar els primers n nombres naturals, però com ens
ho podŕıem fer obtenir una fórmula per a calcular

12 + 22 + 32 + · · · + n2?

En el mateix llibre ens diu que en aquest cas la fórmula que hem de buscar ha de
ser un polinomi de grau 3. Però, per més que l’hem buscat no l’hem trobada; sabŕıeu
trobar-la?

Podŕıeu fer el mateix per a sumar

13 + 23 + 33 + · · · + n3?

3.5.6. (**) Per a obtenir el valor de

Ik =
∫ 1

0
xk sin(πx)dx

per a tots els valors parells de k ∈ N proveu, fent servir la fórmula d’integració per parts,
que es pot usar la fórmula recurrent següent:

I0 =
2
π

, Ik =
1
π
− k(k − 1)

π2
Ik−2.

Calculeu fent servir una calculadora el valor de Ik per k = 2, 4, 6, 8, 10. Quin valor s’obté
per a I20? S’assembla al valor correcte, que és 6.68022456848E − 03? Quina explicació
hi trobeu?

D’altra banda, considerem la mateixa recurrència que abans, però escrita al revés:

Ik−2 = (π − π2Ik)
1

k(k − 1)
.

Prenem ara un valor erroni de I40, per exemple Î40 = 0. A partir d’aquest valor, si
substitüım a la fórmula fins a obtenir Î20, arribem ara a un resultat correcte. Podries
dir que està passant?
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3.5.7. (*) Per a quins n ∈ N les solucions de l’equació

nt2 + (n + 1)t − (n + 2) = 0

són nombres racionals? Feu-ho per a alguns valors de n petits.

3.5.8. (*) Donada la funció f(x) = x2 + x, hi ha algun parell (a, b) de nombres enters tal que
4f(a) = f(b)?

3.5.9. (*) Existeixen (a, b, c) nombres enters, de forma que siguin solucions del sistema d’equa-
cions següent?

a3 − b3 − c3 = 3abc

a2 = 2(b + c)

3.5.10. (*) A partir de l’expressió

arctan(x) = x − x3

3
+

x5

5
− x7

7
+

x9

9
+ · · · =

∞∑

i=0

(−1)i

2i + 1
x2i+1,

es pot obtenir una expressió per a π usant la igualtat

π

4
=

3.1415926535897932385 . . .

4
= arctan(1) = 1 − 1

3
+

1
5
− 1

7
+

1
9

+ · · · =
∞∑

i=0

(−1)i

2i + 1
.

Quants termes us cal sumar per obtenir π amb 2 xifres decimals correctes?

Com es millora el càlcul si, en lloc d’aquesta, usem que π
4 = 2arctan(1

3) + arctan(1
7).

Hi ha altres maneres d’obtenir π. Proveu d’usar les expressions següents, i discutiu
quina és la que creieu la millor:

π

2
=

2
1

2
3

4
3

4
5

6
5

6
7

8
7

8
9

10
9

10
11

· · · ,

1 +
4
π

= 2 +
12

2 +
32

2 +
52

2 + · · ·

,

4
π

= 1 +
12

3 +
22

5 +
32

7 + · · ·

,

π2

6
= 1 +

1
22

+
1
32

+
1
42

+ · · · =
∞∑

n=1

1
n2

.

3.5.11. (**) Una parella de conills joves tarden un mes a fer-se adults, és a dir, a estar en
condicions de poder-se reproduir. Si suposem que una parella de conills adults té una
parella de conillets cada mes, quants conills tindrem al cap d’un any, si inicialment només
tenim una parella de conills joves?

Per a poder respondre a aquesta pregunta, podem plantejar la taula següent:
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0 ©
1

⊗

2
⊗

©
3

⊗ ⊗
©

4
⊗ ⊗ ⊗

© ©
5

⊗ ⊗ ⊗ ⊗ ⊗
© © ©

on el śımbol © representa una parella de conills joves, i
⊗

una parella de conills adults.
Aix́ı, al cap d’un més la parella jove s’ha convertit en adulta, i al cap de dos mesos la
parella adulta ha tingut descendència, i amb això tenim ja dues parelles, i aix́ı successi-
vament. D’aquesta manera podem construir la successió de números següent:

1, 1, 2, 3, 5, 8, 13, 21, · · ·

Una manera de d’escriure el que està passant, consisteix a considerar la successió
recurrent següent:

u0 = 1, u1 = 1, un+1 = un + un−1 per a n ≥ 2.

Aquesta successió es coneix amb el nom de successió de Fibonacci.

Comproveu que es compleixen les propietats següents:

(a) u2
n + u2

n+1 = u2n+1 si n ≥ 1.
(b) un+1un−1 − u2

n = (−1)n si n ≥ 2.
(c) Si m divideix a n, llavors um divideix a un.

3.5.12. (**) Si definim la successió de polinomis següent en la variable t,

u0(t) = 0, u1(t) = 1, un(t) = tun−1(t) − un−2(t),

comproveu, per a alguns valors de n, que

(a) u1(t) + u3(t) + · · · + u2n−1(t) = un(t)2,
(b) un(t)2 = un−1(t)un+1(t) + 1.

3.5.13. (**) Siguin n0, n1, n2, tres números enters tals que n0 < n1 < n2. Comproveu que
l’expressió

n2 − n0

2 − 0
· n2 − n1

2 − 1
· n1 − n0

1 − 0
també és un enter.

Si considerem ara que en tenim quatre, n0, n1, n2, n3, de manera que n0 < n1 < n2 < n3,
comproveu que, també en aquest cas, l’expressió

n3 − n0

3 − 0
· n3 − n1

3 − 1
· n3 − n2

3 − 2
· n2 − n0

2 − 0
· n2 − n1

2 − 1
· n1 − n0

1 − 0
és un enter.

En general, si considerem k + 1 enters tals que n0 < n1 < · · · < nk, l’expressió
∏

0≤i<j≤k

nj − ni

j − i

també és un enter.
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3.5.14. (**) Siguin a, b, c arrels de l’equació x3 − x2 − x − 1 = 0. Comproveu que són diferents.
Comproveu donant valors a n ∈ N que

bn − cn

b − c
+

cn − an

c − a
+

an − bn

a − b

és un nombre enter.

S’ha consultat el llibre Polynomials de E.J. Barbeau, Springer-Verlag, 1989.

Conjunt fractal de Mandelbrot.
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3.6 Àlgebra

Selecció de problemes preparada per Rosa Camps i Camprub́ı,
professora d’Àlgebra del Departament de Matemàtiques de la
Universitat Autònoma de Barcelona. tel.: 93 581 29 41, e-mail:
rcamps@mat.uab.es.

3.6.1. Amb quants zeros acaba el producte 1 · 2 · 3 · · · · · 100?

3.6.2. Usant cinc números x1, x2, x3, x4 i x5 i agafant-los per parells podem fer deu sumes
a1, a2, . . . , a10. Demostra que si coneixem els resultats a1, a2, . . . , a10 podem saber els
números inicials x1, x2, x3, x4, x5.

3.6.3. Troba deu números naturals consecutius que no siguin primers.

3.6.4. Busca el nombre natural positiu més petit que compleix les condicions següents:

si el dividim per 2, dóna resta 1;

si el dividim per 3, dóna resta 2;

si el dividim per 4, dóna resta 3;

si el dividim per 5, dóna resta 4;

i si el dividim per 6, dóna resta 5.

3.6.5. Agafa un nombre qualsevol de tres xifres i permuta-les ćıclicament de les dues maneres
possibles (és a dir, considera els números xyz, yzx i zxy). Demostra que la suma dels
tres nombres és sempre divisible per 37.

Què passa si en comptes de realitzar dues permutacions ćıcliques en fas dues de
qualsevol? Demostra que si sumes el número de 3 xifres amb els cinc números obtinguts
aplicant al número totes les permutacions possibles obtens un nombre divisible per 37.

3.6.6. “Tenia n anys l’any n2”, va dir en Pere Casabona l’any 1971. Quan va néixer?

3.6.7. Dos amics es troben després de molt de temps i un li pregunta a l’altre,

– Quants fills tens i quina edat tenen?

– Tinc tres filles, el producte de les seves edats és 36 i la suma és el número d’aquesta
casa– li contesta l’altre.

– Em falta una dada – diu el primer.

– Ah! bé –contesta– la gran toca el piano.

Quines són les edats de les filles?

3.6.8. (*) Demostra que la suma dels quadrats de dos enters senars no és el quadrat de cap
enter.
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3.6.9. (*) Demana a una persona que multipliqui el dia del mes que va néixer per 12, el nombre
del mes per 31 i que us doni el resultat de sumar aquestes dues quantitats. Endevina-li
la data exacta del seu naixement.

Sabries donar un mètode per a endevinar també l’any de naixement amb una sola
dada?

3.6.10. (*) Donada una matriu A de mida 2 × 2 no invertible, demostra que hi ha infinites
matrius X que compleixen AXA = A. I si la matriu és invertible?

3.6.11. (**) Sabent que els últims tres d́ıgits a la representació decimal de 7400 són 0, 0, 1, troba
els últims tres d́ıgits de la representació decimal de 79999.

3.6.12. (**) Considera una paraula P de n lletres. Tria una permutació f de les n posicions.
Ara aplica la permutació f a la paraula P . A la paraula resultant torna a aplicar-hi la
mateixa permutació f i aix́ı successivament fins a aplicar en total n! cops la permutació
f . Demostra que la paraula resultant és la paraula P.

3.6.13. (**) Si tenim la successió de matrius

(
1
)
,

(
2 3
4 5

)
,




6 7 8
9 10 11
12 13 14



 , . . .

troba la fórmula de la suma dels elements de la diagonal principal de la matriu n-èssima
en funció de n.

3.6.14. (*) Els vèrtexs d’un poĺıgon regular de 37 costats es numeren de l’1 a l’11. Qualsevol
ĺınia de simetria del poĺıgon divideix els nombres que no estan en la ĺınia de simetria en
dos subconjunts.

Diem que una numeració dels vèrtexs és “bona”respecte una ĺınia de simetria si cada
un dels nombres d’un dels dos subgrups és més gran que el seu simètric.

Hi ha alguna manera de numerar els vèrtexs que sigui “bona”respecte a qualsevol
ĺınia de simetria?
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3.7 Modelització matemàtica

Selecció de problemes preparada per Àngel Calsina i Ballesta, pro-
fessor de Matemàtica Aplicada del Departament de Matemàtiques
de la Universitat Autònoma de Barcelona i del Departament d’In-
formàtica i Matemàtica Aplicada de la Universitat de Girona. tel.:
93 581 29 06 i 972 41 89 42, e-mail: calsina@mat.uab.es, i
acalsina@ima.udg.es.

3.7.1. En un cultiu cel.lular, el nombre de divisions per unitat de temps és proporcional al
nombre de cèl.lules presents. Un cultiu que conté inicialment 10 000 individus per ml
dobla la seva població en sis hores. Quantes cèl.lules hi haurà al cap de dos dies?

3.7.2. Un model de dinàmica de poblacions estableix que la densitat de població d’una espècie
d’insectes l’any n + 1 depèn de la densitat de població l’any anterior en la forma
pn+1 = r(1 − pn)pn, on r és un coeficient positiu i menor que 4. Per a diferents va-
lors del paràmetre r i mitjançant experimentació numèrica, detecteu comportaments
de la successió de densitats any rere any de tendència a l’extinció, de tendència a un
equilibri de la població i de comportament asimptòticament periòdic.

3.7.3. (*) El pes aproximat de l’atmosfera terrestre és de 5 ·1018 kilos. Podŕıeu arribar a aquest
resultat calculant mentalment?

3.7.4. S’ha observat que la densitat de població d’una espècie de peixos en un riu de 200 km
de longitud decreix al llarg del seu curs de manera lineal des dels 150 individus per km
prop del naixement fins a només 10 peixos per km prop de la desembocadura. Calculeu
quina és la població total de peixos d’aquesta espècie en el riu.

3.7.5. En una reacció qúımica del tipus A+B → C (una molècula de A i una de B es combinen
per a formar-ne una de C), es disposa inicialment de a mols de les substàncies A i B,
mentre que C és absent. El temps que tarden a formar-se c mols de C està donat per
t = 1

k

∫ c
0

dx
(a−x)2 , on k s’anomena la constant de la reacció. Calculeu quant de temps és

necessari per a la formació de a/2 mols de C i quant tardaria la reacció a acabar-se.

3.7.6. (*) Un dipòsit conté inicialment 50 kg de sal dissolts en 1 000 l d’aigua. Entra al dipòsit
un cabal d’aigua pura de 2 l per min i en surt un cabal igual de dissolució. Calculeu la
concentració de la dissolució passades dues hores.

3.7.7. (*) Els extrems d’un abeurador horitzontal d’un metre de llarg i 40 cm d’alçada són
trapezis isòsceles la base inferior dels quals mesura 30 cm i la superior 50. En un instant
determinat observem que el nivell de l’aigua és de 20 cm i està pujant a raó d’un cm per
minut. Quant tardarà l’abeurador a ser ple si sabem que el cabal d’entrada és constant?

.................

.........................................................................

.......................................
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#
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3.7.8. (*) El consum de combustible d’un cotxe per unitat de temps és, essencialment, la suma
de dos termes, un d’independent de la velocitat i que correspon al manteniment del
motor en marxa, i un altre que és proporcional a la potència que el motor entrega i que
es dedica (en un trajecte pla) bàsicament a vèncer el fregament amb l’aire. La força de
fregament amb l’aire és aproximadament proporcional al quadrat de la velocitat. Això
fa que el consum per unitat de temps depengui de la velocitat en la forma g(v) = a+bv3.
Per què?

Quina és la velocitat més econòmica d’un vehicle amb motor diesel que gasta 4 litres
per hora al ralent́ı i 6 litres per hora circulant a 100 km/h? Quin és el consum òptim?

3.7.9. Un extrem corre per la banda en un camp de futbol que fa 50
metres d’ample i té unes porteries de 7 metres d’ample. Veu
el porter avançat i decideix xutar a porta. A quina distància
del bandeŕı de córner ha de fer-ho per a tenir l’angle més
gran possible?

.......
.......

.......
.......

.......
.......

.

........
........

........
........

........
........

.

3.7.10. (**) Se sap que una corda de 18 m té una caracteŕıstica d’allargament tal que la tensió
en kp és funció de l’allargament en metres en la forma T (x) = 100x + 10x/(6− x) per a
un allargament menor que 5.8 metres i que es trenca quan s’arriba a aquest. Calculeu
el pes màxim d’una persona que vulgui fer “ponting” amb aquesta corda. (Adaptat
del llibre Càlcul Infinitesimal, de C. Perelló, Biblioteca Universitària 21, Enciclopèdia
Catalana, 1994.)

3.7.11. (**) Es vol construir (l’any 2664) una torre de comunicacions
de 20 km d’altura amb una massa de 10 tones per metre
lineal al pol nord d’un asteroide esfèric de 100 km de radi
on la gravetat a la superf́ıcie és la cinquantena part de la
terrestre. Quin serà el pes total d’aquesta torre? Quant
pesaria si fos infinitament alta? Serien iguals els resultats si
la constrüıssin a l’equador de l’asteroide? Faltaria en aquest
cas alguna dada?

3.7.12. (**) Un dipòsit amb forma de con invertit de radi R i altura H conté aigua fins a un
nivell h. Calculeu el màxim valor de h que garanteixi que s’hi pot introduir una bola
més densa que l’aigua sense que se’n vessi gens.

.........

.............................
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3.8 Topologia

Selecció de problemes preparada per Laia Saumell i Ariño, profes-
sora de Geometria i Topologia del Departament de Matemàtiques
de la Universitat Autònoma de Barcelona. tel.: 93 581 24 13,
e-mail: laia@mat.uab.es.

3.8.1. (*) Quatre cavalls estan situats en un tauler d’escacs 3×3 com en la figura de l’esquerra.
Es poden moure, utilitzant els moviments del cavall, a la posició indicada en la figura
de la dreta?

3.8.2. (*) En aquest problema es tracta de veure que és impossible dibuixar una ĺınia cont́ınua
i que no es talli a si mateixa, de manera que aquesta talli una vegada i només una vegada
a cada un dels 16 segments que formen la xarxa de la figura següent. Evidentment, la
ĺınia dibuixada a la figura no és una solució del problema ja que deixa un dels segments
sense tallar.

3.8.3. (*) A Königsberg hi ha una illa anomenada Kuiphof. El riu que l’envolta es divideix en
dos braços i sobre ells, en el temps en què vivia Euler, hi havia set ponts com s’indica
a la figura. Per als habitants del lloc, era un tema de distracció descobrir un itinerari
per a passejar que tornés al punt de partida després d’haver creuat tot els ponts, però
passant solament una vegada per cada pont. Existeix aquest itinerari?
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3.8.4. (**) Hi ha un vell trencaclosques en què apareixen tres cases, cadascuna de les quals ha
de ser connectada al subministrament d’aigua, gas i electricitat.

Poden fer-se les connexions de manera que ni es tallin ni passin a traves de les cases
ni de les fonts de subministrament?

(*) I si les tres cases i les tres fonts de subministrament són en un planeta en forma
de tor (“donut”)?

3.8.5. Se sap des de fa uns dos mil anys que sols existeixen cinc poĺıedres regulars (totes les
cares estan formades pel mateix poĺıgon i a cada vèrtex concorren el mateix nombre
d’arestes), els cinc sòlids platònics: el tetràedre regular, el cub, l’octàedre, el dodecàedre
i l’icosàedre. Demostreu-ho utilitzant que en qualsevol poĺıedre la seva caracteŕıstica
d’Euler χ val 2. Vegeu la secció 2.16.

χ = el nombre de cares − el nombre d’arestes + el nombre de vèrtexs.

3.8.6. Demostreu que no és possible construir una pilota sols amb hexàgons de tal forma que
dos hexàgons diferents tinguin com a molt un costat en comú. (Indicació: utilitzeu
també que la caracteŕıstica d’Euler val 2.)
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3.8.7. Les pilotes de futbol estan formades per pentàgons i
hexàgons cosits de manera que a cada vèrtex hi concorren
dos hexàgons i un pentàgon. Quants pentàgons i quants
hexàgons hi ha en una pilota de futbol? (Indicació: utilit-
zeu la caracteŕıstica d’Euler.)

3.8.8. Calculeu la caracteŕıstica d’Euler de la figura següent:

(*) Com ho faŕıeu per a construir figures amb caracteŕıstica d’Euler un nombre parell
i negatiu arbitrari?

3.8.9. Es diu que dos espais són topològicament equivalents si es pot passar de l’un a l’altre de
manera cont́ınua, i es pot retornar al primer de manera cont́ınua. Com, per exemple,

Classifiqueu els espais següents en tipus topològicament equivalents.
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3.9 Aritmètica

Selecció de problemes preparada per Enric Nart i Viñals, pro-
fessor d’Àlgebra del Departament de Matemàtiques de la Uni-
versitat Autònoma de Barcelona. tel.: 93 581 14 53, e-mail:
nart@mat.uab.es.

3.9.1. Trobeu dos nombres naturals que sumen 5 264 i el seu mcm és 200 340.

3.9.2. Trobeu l’únic nombre natural que té 8 divisors positius que sumen 320.

3.9.3. (*) Proveu que 18! + 1 és múltiple de 437.

3.9.4. Proveu que el nombre de divisors positius d’un nombre natural n és senar si i només si
n és un quadrat perfecte.

3.9.5. Considerem la successió de nombres naturals:

49, 4489, 444889, 44448889, . . . ,

obtinguda intercalant en cada nombre un 48 al centre del nombre anterior.

Proveu que tots aquests nombres són quadrats perfectes i calculeu la seva arrel qua-
drada.

3.9.6. Proveu que un nombre natural és múltiple de 9 si i només si la suma de les seves xifres
és múltiple de 9.

3.9.7. (*) Sigui N la suma de les xifres del número 66666666 i sigui M la suma de les xifres del
número N . Calculeu el valor de la suma de les xifres de M .

3.9.8. En un institut de secundària hi ha matriculats 486 alumnes. Un cert dia el conserge ob-
serva que el 36.3636 . . . % dels que assisteixen a classe duen ulleres i que el 67.567567 . . . %
duen texans. Quants alumnes van faltar a classe aquell dia?

3.9.9. (*) Quines són les dues últimes xifres de 11471628111?

3.9.10. Una banda de 17 pirates s’apodera d’un bot́ı de monedes d’or, totes d’igual valor. De-
cideixen repartir-les a parts iguals, donant les 3 peces que sobren al seu cuiner xinès.
Després d’una baralla entre ells, moren 6 pirates i els sobrevivents decideixen tornar a
repartir-se les monedes (incloses les 3 del cuiner) a parts iguals, donant les 4 que sobren
al cuiner. En el viatge de tornada, el vaixell s’enfonsa i només se salven el bot́ı, 6 pirates
i el cuiner. Tornen a repartir tot el bot́ı i sobren 5 monedes per al cuiner. Quan el cuiner
mata tots els pirates i es queda el bot́ı sencer, amb quina fortuna mı́nima estimeu que
enceta una nova vida?

3.9.11. La Carme treballa quatre dies seguits i en descansa un. La Norma en treballa dos i en
descansa un. Només es veuen els dies de lluna plena (un de cada vint-i-vuit). La Norma
va tenir dia lliure ahir, la Carme el tindrà demà passat i fa 10 dies que era lluna plena.
Quants dies falten per a què es vegin?
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3.9.12. Proveu que si a, b, c són tres nombres enters senars, l’equació ax2 + bx + c = 0 no té
cap solució racional.

3.9.13. Considerem un polinomi f(x) = anxn + an−1xn−1 + · · · + a1x + a0, amb els coeficients
a0, . . . , an enters. Proveu que si x és un nombre racional que és arrel del polinomi i
escrivim x com una fracció irreductible: x = p

q , amb numerador i denominador enters
sense factors en comú, aleshores forçosament:

a0 és múltiple de p i an és múltiple de q.

Utilitzeu aquest fet per a dissenyar i programar un algoritme que trobi totes les arrels
racionals d’un polinomi amb coeficients enters.

Il.lustreu el mètode calculant totes les arrels racionals del polinomi: 6x4−11x3−x2−4.

3.9.14. En un triangle rectangle amb costats de longitud entera, el producte de les longituds
dels catets és múltiple de 12, i la longitud d’algun dels costats és múltiple de 5.

3.9.15. (*) Trobeu tots els parells n, m de nombres naturals diferents que satisfan: nm = mn.

Indicació: estudieu la gràfica de la funció f(x) = x
log(x) .

3.9.16. La Lliga de futbol professional ha estimat en 260 700 milions de pessetes el valor total
en el mercat del conjunt de futbolistes professionals que juguen a primera divisió. L’es-
timació s’ha fet classificant els jugadors en quatre categories: “cracs”, “figures”, “bons”i
“mediocres”, amb un valor de mercat de 3 825, 1 260, 700 i 300 milions de pessetes per
a cada jugador de la categoria corresponent.

Sabent que 359 jugadors han estat declarats com a mediocres i que Dani, del Barça,
ha estat classificat com a figura, trobeu quants cracs hi ha a la lliga.
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3.10 Estad́ıstica

Selecció de problemes preparada per Pedro Puig Casado, pro-
fessor d’Estad́ıstica i Investigació Operativa del Departament de
Matemàtiques de la Universitat Autònoma de Barcelona. tel.:
93 581 13 02, e-mail: ppuig@mat.uab.es.

Pollastres, mitjos pollastres i empreses igualitàries. Una de les critiques de l’es-
tad́ıstica que més sovint es veu als mitjans de comunicació està relacionada amb l’ús
incorrecte de la mitjana aritmètica. Un d’aquests comentaris que podeu trobar és que
si un individu es menja cada dia dos pollastres i un altre no se’n menja cap, de mitjana
cadascun es menja un pollastre diari! Això el que ens diu és que la mitjana aritmètica
només ens dóna una informació parcial del conjunt de dades. Aquesta informació pot
ampliar-se utilitzant altres mesures (estad́ıstics descriptius), com per exemple la desvi-
ació tipus, els quartils, etc. Podeu veure alguna d’aquestes coses amb l’exercici següent,

3.10.1. Tenim dues petites empreses cadascuna de les quals està formada pel director i nou
treballadors. Fixeu vosaltres mateixos els sous de tots, de manera que el sou mitjà
sigui el mateix per a cada empresa, però que en una d’elles el repartiment sigui menys
igualitari que en l’altre.

Calculeu ara les desviacions tipus i els quartils i compareu-los.

Criptografia, què hi diu aqúı? Edgard A. Poe en un conte titulat “L’enigma de
l’escarbat d’or”, descriu com el protagonista va desxifrar un text (escrit per un pirata)
aparentment incomprensible fent servir un mètode estad́ıstic. El pirata havia fet servir
un sistema molt simple per a xifrar el seu missatge, consistent a substituir cada lletra
de l’alfabet per un signe arbitrari. Per exemple, la A podria ser canviada per un ∗, la
B per un {, etc. El protagonista de la nostra història tenia, doncs, un text ple de signes
estranys amb un significat totalment desconegut. El que va fer per a desxifrar-lo és el
mateix que us proposem en l’exercici següent,

3.10.2. Digueu a un amic que us escrigui un missatge fent servir el mètode de xifratge descrit
anteriorment, sense dir-vos quina és la clau però śı en quin idioma està escrit. A con-
tinuació feu una llista dels signes que surten en aquest text amb el nombre de vegades
que apareix cadascun (això s’anomena distribució de freqüències). Tot seguit agafeu un
text qualsevol d’una novela, diari, etc. escrits en el mateix idioma que el missatge xifrat,
i feu també una distribució de freqüències de les lletres del text. Podem pensar que les
proporcions d’aparició de cada lletra de l’alfabet són una caracteŕıstica a cada idioma.
Per exemple, tant en català com en castellà la lletra més freqüent és la E, seguida de
la A, etc. Fent servir aquesta informació i una mica d’enginy, tracteu de desxifrar el
missatge. Com més llarg sigui el missatge, més fàcil serà desxifrar-lo! Consulteu també
la secció 2.15.

El protagonista del conte de Poe ja sabia que el seu missatge xifrat estava escrit en
anglès perquè coneixia la identitat del pirata. Si no sabem en quin idioma està escrit el
missatge, podem deduir-lo a partir del mateix text en clau? En aquest proper exercici
us proposem com fer-ho.
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3.10.3. Agafeu un text llarg qualsevol escrit en català, un altre en castellà, un altre en anglès,
etc. i per a cadascun calculeu la mitjana i la desviació tipus del nombre de lletres que té
cada paraula. Podem pensar que també aquestes dues quantitats són una caracteŕıstica
de cada idioma. Si agafem el missatge en clau del nostre amic, que ara no ens ha
dit en quin idioma ho ha escrit, encara que d’entrada no sapiguem el seu significat, śı
que podem comptar el nombre de lletres que té cada paraula i calcular la mitjana i la
desviació tipus. Amb aquesta informació podem deduir en quin idioma ha estat escrit.

Captura i recaptura, dels peixos als drogotes. Tenim una població d’un cert tipus
de peix que viu dins d’un estany. Volem conèixer el nombre de peixos que té aquesta
població. Com podem “estimar” aquesta quantitat? Una idea molt simple és capturar
uns quants peixos, marcar-los amb una tinta que no marxi amb l’aigua, deixar-los anar
dins de l’estany i, passat un quant temps, tornar-ne a capturar.

Mirant el nombre de peixos d’aquesta segona captura que ja han estat marcats a la
primera (individus recapturats), podem conèixer de manera aproximada el nombre total
de peixos de l’estany. El següent exercici és un exemple de càlcul.

3.10.4. A la primera captura hem agafat 24 peixos, els marquem i els tornem a l’estany. A
la segona captura hem agafat 32 peixos, dels quals trobem cinc marcats anteriorment
(aquests són els recapturats). Quin és el nombre aproximat de peixos que té l’estany?
(Nota: us ha de donar 154.)

Aquesta metodologia la podem aplicar a diversos problemes canviant la idea de
“marcatge”. Vegeu l’exemple següent.

Estimació del nombre d’individus que realment habiten en una ciutat o un
páıs (Laplace, s. XVIII).

Si disposem del cens oficial, això pot constituir la primera captura. Una enquesta adient
ens donarà la segona. Els enquestats que també apareguin al cens seran els recapturats.

Estimació del nombre de consumidors d’una certa droga en una ciutat o un
páıs.

El conjunt d’individus que fan una determinada teràpia de desintoxicació pot constituir
la primera captura. Els detinguts posteriorment durant un cert peŕıode de temps poden
ser la segona. Els repetits a les dues “llistes”seran els recapturats.

Cal no perdre amb les dades perdudes. Moltes vegades, revisant qüestionaris
procedents d’enquestes, podem constatar que ens falten algunes dades de certs individus.
Per exemple, d’un d’ells ens pot faltar l’edat, d’un altre el nombre de germans, etc. Si
suposem que l’omissió es deguda a l’atzar i que no hi ha cap raó relacionada amb la
natura de les mateixes dades, com per exemple seria el cas d’un que amaga el seu sou
perquè és molt elevat, com podem recuperar d’alguna manera aquesta dada perduda o
faltant? Una manera és substituint la dada faltant per la mitjana dels valors que tenim
dels altres individus. Aix́ı, per exemple, si ens falta l’edat d’un d’ells, calcularem la
mitjana de les edats dels altres i utilitzarem aquest valor en el seu lloc. A continuació
veurem una propietat interessant d’aquesta manera de procedir en forma d’exercici.

3.10.5. Tenim n−1 dades i calculem la seva mitjana. Afegim aquest nou valor als n−1 anteriors
i aix́ı aconseguim un conjunt amb n dades. Quina serà la nova mitjana per a aquestes n
dades?
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Un dels exemples més antics de dades faltants apareix a l’Antic Testament, Nom. 1, on
es fa l’anomenat cens d’Aaron. Es tracta d’un cens militar en què es compten el nombre
de mascles, més grans de vint anys per a cadascuna de les dotze tribus d’Israel excepte
per a la tribu de Levi (dada faltant). El motiu és que la tribu de Levi estava exclosa
d’utilitzar armes perquè eren els encarregats dels serveis religiosos.

De l’avinguda Meridiana a Dunkerque (passant per Paŕıs). El 1791, l’Assem-
blea Nacional francesa va decidir establir un sistema universal de mesures, anomenant
“metre” a la unitat de longitud. Es va decidir definir-lo com 1/10 000 000 de la distància
entre el pol nord i l’equador mesurat en el meridià que passa per Paŕıs. Per a portar a
terme aquest projecte l’Assemblea va nomenar Delambre i Méchain com a responsables
de mesurar la distància entre Dunquerque i Barcelona, amb el qual s’abastava uns 10o

del meridià. Méchain va ser l’encarregat de realitzar les mesures a Catalunya, on va ser
molt ben acollit pels intel.lectuals de l’època. A la plaça de les Glòries Catalanes hi ha
un monument commemoratiu d’aquest afer i, de fet, l’avinguda Meridiana de Barcelona
és el lloc per on passa el meridià Dunquerque-Paŕıs-Barcelona.

Les dades procedents d’aquestes mesures van ser analitzades per Legendre fent servir
un mètode que posteriorment ha tingut moltes aplicacions pràctiques; es tracta del
mètode de mı́nims quadrats. L’exercici següent pot il.lustrar el procediment.

Les dades reportades per Delambre i Mechain al 1799, presentades per Laplace en el seu
Traité de Mécanique Céleste, es poden observar a la següent taula,

Longituds dels arcs sobre el meridià de Paŕıs.

Lloc Latitud Dist. des de Barcelona
Barcelona 45.958281

Carcassonne 48.016790 52749.48
Évaux 51.309414 137174.03
Paŕıs 54.274614 213319.77

Dunquerque 56.706944 275792.36

Les distancies estan expressades en mòduls (1 mòdul=2 toeses, 1 toesa = 1.949 metres)
i les latituds en graus centesimals.

3.10.6. Anoteu en un paper els pesos i les alçades dels companys de classe i representeu-los en
un gràfic cartesià. Observeu la tendència lineal del núvol de punts. Consulteu la secció
2.3. Calculeu la recta de millor ajustament al núvol de punts pel mètode del mı́nims
quadrats. Interpreteu-ne els resultats.

Una polèmica cient́ıfica que s’ha fet famosa és la paternitat del mètode dels mı́nims
quadrats. Si bé la primera publicació respecte a aquesta questió va ser deguda a Legendre
en el context de la determinació del metre, Gauss va afirmar que ell havia fet servir el
mètode uns quants anys abans...



Caṕıtol 4

Passatemps matemàtics i altres
divertiments

En aquest caṕıtol s’han inclòs diversos temes de matemàtiques que tenen una part lúdica.
Creiem que la matemàtica recreativa és també una bona manera de consolidar els conceptes
matemàtics i d’entrenar la ment en el pensament lògic.

Dels quatre primers temes, “Passatemps matemàtics”, “Demostracions errònies”, “Lògica”i
“Màgia matemàtica”, s’inclouen les solucions dels tres últims. Aconsellem no mirar-les gaire
de pressa. El primer tema segueix el mateix esperit que els de la secció anterior. Qualsevol
qüestió sobre aquests temes la podeu consultar a l’autor per e-mail o telèfon.

L’última secció barreja matemàtiques i llengua. Veureu que no són temes tan llunyans.
Al final del caṕıtol s’inclou la bibliografia consultada per a preparar-lo.

Icosàedre estrellat.
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4.1 Passatemps matemàtics

Aquesta selecció de problemes i els tres temes següents han es-
tat preparats per Armengol Gasull i Embid, professor de Ma-
temàtica Aplicada del Departament de Matemàtiques de la Uni-
versitat Autònoma de Barcelona. tel.: 93 581 29 09, e-mail: ga-
sull@mat.uab.es.

4.1.1. Quadrat perdut. Considerem un quadrat 8 × 8 i el dividim en quatre trossos com a
la figura:

8

3

5

3

5

53

5
3

Aquests trossos es tornen a muntar fent un rectangle de 5 × 13

8

5

5 8

3

3
5

5

Ha aparegut un quadrat nou! D’on ha sortit?

Fes una construcció semblant partint d’un quadrat 13 × 13 fent les divisions de 5 i
8. Observeu que els números 3, 5, 8, 13 que surten en aquestes construccions són els que
s’estudien al problema 3.5.11 i estan donats per la recurrència Xn+2 = Xn+1 + Xn amb
X0 = X1 = 1. Relacionem el quadrat aparegut amb la propietat X2

n+1 − XnXn+2 =
(−1)n+1.

4.1.2. Saltar un fossat. Hi ha un castell rectangular, envoltat per un fossat d’amplada L
com a la figura:

#"

!5 CASTELL

FOSSAT

L

L
CASTELL
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Si disposeu de dos taulons d’una longitud de 10 metres cadascun, quina és la màxima L
de manera que pugueu passar el fossat usant els taulons? I si disposeu de cinc taulons
de la mateixa longitud?

4.1.3. Una altra manera de multiplicar. Per a molts de nosaltres multiplicar està associat
a saber les taules de l’1 al 9 i a conèixer com ordenar els càlculs d’una certa manera.
És sorprenent adonar-se que es pot multiplicar dos números qualssevol només sabent fer
dobles, meitats i sumes. Vegem com fer-ho amb un exemple.
Multiplicació de 77 × 132 = 10 164

77∗ 132 132
38 264
19∗ 528 528
9∗ 1 056 1 056
4 2 112
2 4 224
1∗ 8 448 +8448

10 164

Observeu que el mètode consisteix a fer dues columnes: l’una de meitats sense decimals
(normalment la del nombre més petit), i l’altra de dobles. El resultat s’obté sumant
els dobles corresponents als nombres senars de la primera columna. Per què funciona el
mètode? Per cert, aquest mètode ha estat usat a diferents lloc del món, en particular a
l’antic Egipte.

Hi ha una altra manera de multiplicar, encara avui usada a alguns llocs d’Àfrica, que
té un fonament similar a la que nosaltres usem i que il.lustrem a la figura següent:

7
7 1

3
20

7
7

1

1

1

4
4

460

2
1

1
2 1

+

0

4.1.4. Problemes de pesos i mesures. Un problema clàssic (que ha sortit fa poc en una
pel.ĺıcula d’acció nord-americana) és el següent: tenim tres recipients de 8, 5 i 3 litres,
el primer, ple de ĺıquid, i els altres dos, buits. Com omplir els dos recipients grans amb
4 litres cadascun sense utilitzar cap altre recipient? Una solució és la següent:

8 l 5 l 3 l

8 0 0
5 0 3
5 3 0
2 3 3
2 5 1
7 0 1
7 1 0
4 1 3
4 4 0
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Busqueu una solució amb menys moviments.

Podeu fer el mateix amb els recipients següents:

12 l, 7 l i 5 l ?
10 l, 6 l i 4 l ?

Alguns problemes relacionats són els següents:

• Us trobeu a la vora d’un riu amb dues galledes, una de 5 l i una altra de 3 l. Com
aconseguiŕıeu 1 l, 2 l, 3 l, 4 l, 5 l, 6 l, 7 l i 8 l exactament?

• Com mesuraŕıeu 9 minuts amb dos rellotges de sorra, un de 7 minuts i un altre de
4 minuts?

• Una companyia d’autobusos té la norma següent: els paquets que no sobrepassin
els 4 metres de longitud no paguen suplement. Com aconseguiŕıeu pujar a un
autobús d’aquesta companyia amb una canya de pescar (ŕıgida i no desmuntable)
de 5 metres de llarg, sense pagar suplement?

• 3 botigues s’han de repartir 21 barrils de vi, dels quals 7 són plens, 7 mig plens
i 7 buits. Com faŕıeu la repartició de manera que cada botiga tingués el mateix
nombre de barrils i la mateixa quantitat de vi?

• Tenim deu piles amb deu monedes cada pila. Totes les monedes són indistingibles
externament. Hi ha una pila on cada moneda pesa 9 grams, mentre què cada una
de les altres 90 monedes pesa 10 grams. Com identificaŕıeu quina és la pila en què
les monedes pesen menys fent una sola pesada en una bàscula?

• Com ho faŕıeu per a pesar exactament qualsevol quantitat entera entre 1 kg i 27
kg usant una balança amb 2 plats i només 4 pesos, els d’1kg, 3 kg, 9 kg i 27 kg?
Es poden posar pesos als dos costats de la balança.
Amb només 3 pesos, de 2 kg, 6 kg i 18 kg, també es pot determinar quant pesa un
objecte que té un pes enter entre 1 kg i 27 kg. Com ho faŕıeu?

4.1.5. Estratègia sorprenent. Explicarem un joc que apareix en diferents llocs (al carrer, als
concursos de TV, etc.) amb diferents presentacions i que té una estratègia sorprenent.
Suposem que tenim tres gobelets de cap per avall en un dels quals hi ha amagat un
premi. Ens demanen que triem un d’ells. Un cop l’hem triat la persona que ha amagat
el premi ens diu el següent: “Jo sé en quin dels tres gobelets hi ha el premi i per a
facilitar-te la tria et destaparé un dels dos gobelets que no has triat (i en destapa un dels
dos, evidentment un sense premi)”. Aleshores et pregunta si vols canviar la teva tria de
gobelet.

Explica per què et convé més canviar de gobelet que no mantenir-te amb el que havies
triat de bon començament. De fet, raona per què amb aquesta estratègia jugant moltes
partides guanyaràs el doble de premis que sense canviar de gobelet. Si no hi trobes cap
explicació, fes primer unes quantes partides amb un company per a convence’t.

4.1.6. Quadrats màgics. Un quadrat màgic és una col.lecció de n2 nombres naturals diferents
posats en un quadrat de manera que la suma de totes les columnes, la de totes les files i
la suma de les dues diagonals és un valor constant K, anomenat la constant del quadrat.
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Un dels més antics que es coneix (constrüıt segles abans de Crist a Xina i a l’́India) és
el següent d’ordre 3, amb constant K = 15

8 3 4
1 5 9
6 7 2

De fet, l’estructura general d’un quadrat màgic de mida 3 amb constant K = 3x és

x + y x − (y + z) x + z
x − (y − z) x x + (y − z)

x − z x + y + z x − y

on x, y i z són nombres naturals tals que tots els resultats del quadrat siguin positius.
Intenteu construir un quadrat màgic 3 × 3 de forma que tots els seus nombres siguin
primers. Com a pista direm que hi ha un quadrat màgic d’aquest tipus amb constant
177, en el qual el primer més petit és 5 i el més gran 113.

Un quadrat famós, que apareix al gravat d’Albert Durer, La Melencolia I, és

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Les dues caselles centrals de l’última fila indiquen l’any 1514, en el qual l’obra va ser
gravada. La constant d’aquest quadrat és K = 34.

Fragment de l’obra de Durer.
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Expliqueu com aconseguir un quadrat màgic de mida 4 amb constant K qualsevol
nombre més gran que 34 fent modificacions al quadrat de Durer (si K−34 no és múltiple
de 4, els quadrats màgics obtinguts poden tenir alguna xifra repetida).

Observeu que el quadrat màgic de Durer té moltes altres propietats: 34 surt com a
suma de les 4 caselles centrals, com a suma dels quadrats 2 × 2 de les cantonades, etc.

Descobreix quina propietat fa especial el següent quadrat màgic de constant 264

96 11 89 68
88 69 91 16
61 86 18 99
19 98 66 81

No es coneix cap mètode per a construir quadrats màgics per a qualsevol n parell, però
si que n’hi ha per a n senar. A la figura següent s’il.lustra una construcció per a n = 5.

1
2

3
4

5

6
7

8
9

10

11
12

13
14

15

16
17

18
19

20

21
22

23
24

25

3 16 9 22 15
20 8 21 14 2
7 25 13 1 19
24 12 5 18 6
11 4 17 10 23

Constrüıu un quadrat màgic 7 × 7.

Hi ha molts d’altres problemes similars als dels quadrats màgics. Per exemple, a la figura
següent hi ha una estrella màgica amb els números 1, 2, 3, . . . , 12.



4.1. PASSATEMPS MATEMÀTICS 147

4 6 7 9

8

121 10 3

5

11

2

Observa que la suma de tots els nombres alineats és 26. Sabries construir una estrella
màgica amb els mateixos nombres però de manera que la suma de les 6 puntes de l’estrella
també fos 26?

4.1.7. Al voltant del tres en ratlla. Ens proposen el següent joc: Tenim una llista dels
números de l’1 al 9. Hi ha dos jugadors, l’un amb fitxes blanques i l’altre amb fitxes
negres. Els jugadors van cobrint alternativament els nombres amb les seves fitxes. Quan
un nombre és cobert, ja no es pot tornar a cobrir. Guanya el primer jugador que obtingui
exactament 15 amb tres fitxes (no val obtenir 15 amb només dues fitxes).

Expliqueu com el quadrat màgic 3 × 3 donat al problema anterior pot ser utilitzat
per a obtenir una bona estratègia de joc.

Un joc semblant és el següent: de la llista de paraules

PALS, BATA, TRES, PRIOR, MÚSIC, BIT, CAMARA, MELÓ, PEU

dos jugadors van triant alternativament una paraula cada un. Guanya el primer jugador
que tingui tres paraules amb la mateixa lletra.

Expliqueu com dissenyar una bona estratègia de joc a partir d’un joc de tres en ratlla
associat. Inventeu grups diferents de nou paraules amb propietats semblants.

4.1.8. Creuament d’un riu. Els tres problemes següents són coneguts des de fa molt temps.

• Un barquer vol passar a l’altra banda d’un riu a un llop, una cabra i un sac de
cols, però la seva barca és tan petita que només l’admet a ell i una de les tres coses.
Com pot fer-ho sense deixar en cap moment soles les parelles: llop-cabra, cabra-sac
de cols?

• Un regiment vol passar un riu molt profund, però no hi ha pont. De cop veuen dos
nens jugant amb una barca molt petita. Com ho faran per a passar el riu utilitzant
aquesta barca, si sabem que la barca només pot aguantar el pes dels dos nens o
d’un sol soldat?
-
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• Tres marits gelosos es troben amb les seves mullers a una banda d’un riu. Volen
passar a l’altra banda i disposen d’una barca en la qual només hi caben dues
persones. Com s’ho faran per a passar els sis a l’altra banda del riu amb la condició
que cap dona es quedi mai en companyia d’un altre home sense la presència del seu
marit.

4.1.9. Cavalls d’escacs. Tenim situats quatre cavalls d’escacs (dos de blancs i dos de negres)
en un taulell 3× 3 com a la figura. Quin és el nombre mı́nim de moviments, seguint les
regles dels escacs, per tal de que els blancs i els negres intercanvïın les seves posicions?

I si el taulell és de mida 3× 4 i hi ha tres cavalls blans i tres cavalls negres a les bandes
d’amplada 3?

4.1.10. Herència conflictiva. Un pastor en morir possëıa un ramat de 23 ovelles. El seu
testament especificava que deixava tots els seus bens als seus tres fills de la manera
següent: la meitat de tots els seus bens per al fill gran, la tercera part per al fill mitjà i
la vuitena part per al fill petit. Els germans no es posaven gens d’acord en com repartir-
se les ovelles, ja que no en volien matar i trossejar cap. La solució els la va donar un
amic seu que passava per allà amb un ramat d’ovelles. Els va dir: “Jo us regalo una de
les meves ovelles. Aix́ı en teniu 24. Si us les repartiu d’acord amb els desitjos del vostre
pare, en tindreu 24/2 = 12, 24/3 = 8 i 24/8 = 3. Com veieu, heu agafat 12 + 8 + 3 = 23
ovelles; per tant, en sobra una que és la meva.”Se la va tornar a emportar i tots tan
contents. Què ha passat?
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4.2 Demostracions errònies

A tots el problemes següents hi ha una errada. L’heu de trobar. Al final hi trobareu les
explicacions dels errors comesos.

4.2.1. Prenem dos números iguals a i b.

a = b,

ab = b2 (multiplicant per b),

a2 − ab = a2 − b2 (canviant de signe i sumant a2),
a(a − b) = (a + b)(a − b) (traient factors comuns),

a = a + b (eliminant a − b als dos costats),
a = 2a (recordem que a = b),
1 = 2 !! (eliminant a).

4.2.2.

4 − 10 = 9 − 15, (claŕıssim),

4 − 10 +
25
4

= 9 − 15 +
25
4

(sumant
25
4

als dos costats),
(

2 − 5
2

)2

=
(

3 − 5
2

)2

(usant (a − b)2 = a2 − 2ab + b2),

2 − 5
2

= 3 − 5
2

(prenent arrels quadrades),

2 = 3 !! (eliminat el
5
2
).

4.2.3. És fàcil deduir que, si p
q = r

s amb qs *= 0, aleshores, quan q *= s tenim

p − r

q − s
=

p

q
.

Això és aix́ı perquè p
q = r

s si i només si ps = rq i p−r
q−s = p

q si i només si (p−r)q = p(q−s).

Prenem ara x i y tals que
3x − 5
3x − 1

=
3y − 8
3y − 4

;

aleshores, usant el resultat anterior tenim

3x − 5
3x − 1

=
3y − 8
3y − 4

=
3x − 5 − (3y − 8)
3x − 1 − (3y − 4)

=
3x − 3y + 3
3x − 3y + 3

= 1.

Si substitüım x = 1 tenim
−2
2

= 1 !!
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4.2.4. Tenim que

1
8

<
1
4(

1
2

)3

<

(
1
2

)2

(equivalent a l’expressió anterior)

log
(

1
2

)3

< log
(

1
2

)2

(el log és una funció creixent)

3 log
(

1
2

)
< 2 log

(
1
2

)
(usant log xa = a log x)

3 < 2 !! (cancel.lant als dos costats log
(

1
2

)
*= 0).

4.2.5. Volem calcular la integral definida

I(A) =
∫ 1

2 cos A

a dx√
1 − a2x2

= arcsin(ax)
∣∣∣∣
1

x=2 cos A

=

= arcsin a − arcsin(2a cos A).

Observeu que hem usat que (arcsin(ax))′ = a√
1−a2x2 .

Si prenem a = sinA, aleshores tenim que

I(A) = I(arcsin A) =
= arcsin(sinA) − arcsin(2 sin A cos A) = A − arcsin(sin 2A) =
= A − 2A = −A,

on hem usat que arcsin és la funció inversa de sin, i que sin 2A = 2 sin A cos A.

Ara fixem A = π
3 , cos A = cos π

3 = 1
2 , i per tant

I
(π

3

)
=
∫ 1

1

a dx√
1 − a2x2

= 0 (integrem en un interval de mida 0),

però, per altra banda, I
(

π
3

)
= −π

3 i, per tant,

0 = −π
3

!!

4.2.6. Volem calcular una primitiva f(θ) de sin θ cos θ, és a dir una funció f(θ) tal que f ′(θ) =
sin θ cos θ. Ja sabem que

f(θ) =
∫

sin θ cos θ dθ.

Calcularem f(θ) de dues maneres diferents i igualarem el resultat

Forma 1:

f(θ) =
∫

sin θ cos θ dθ =
∫

sin θ
d sin θ

dθ
dθ =

sin2 θ

2
.

Forma 2:

f(θ) =
∫

sin θ cos θ dθ = −
∫

d cos θ
dθ

cos θ dθ = −cos2 θ

2
.
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Observeu que les dues expressions de f(θ) són correctes ja que

d

dθ

(
sin2 θ

2

)
=

d

dθ

(
− cos2 θ

2

)
= sin θ cos θ.

Igualant ambdues expressions,

f(θ) =
sin2 θ

2
=

− cos2 θ

2
,

i per tant
sin2 θ

2
+

cos2 θ

2
= 0.

Com que sin2 θ + cos2 θ = 1, obtenim

1
2

= 0 !!

4.2.7. Recordeu que i =
√
−1 i per tant i2 = −1. Aleshores, tenim que

1 =
√

1 =
√

(−1)(−1) =
√
−1

√
−1 = ii = i2 = −1 !!

4.2.8. Prenen les corbes formades per mitges circumferències, com a la figura següent, de
manera que la ĺınia puntejada tingui longitud 1. Anomenen ln per n = 1, 2, 3, . . . les
longituds de les corbes que anem obtenint. Com que les corbes s’aproximen al segment
vertical de mida 1, les seves longituds ln s’hauran d’aproximar a 1. Per exemple l1 =
2(2π 1

8) = π
2 . Es fàcil veure que l1 = l2 = l3 = · · · = ln = · · · = π

2 . Per tant, π
2 = 1 !!

....

l1 l2 l3 l4 .... 1

.................................................................

.................................................................

.................................................................

.................................................................

4.2.9. Volem sumar els infinits números

1,−1
2
,
1
3
,−1

4
,
1
5
,−1

6
,
1
7
,−1

8
, . . .

Anomenem S la seva suma. D’una banda, tenim que

S = 1 − 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+ · · · =

=
(

1 − 1
2

)
+
(

1
3
− 1

4

)
+
(

1
5
− 1

6

)
+
(

1
7
− 1

8

)
+ · · · > 0,
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ja que 1
n − 1

n+1 > 0 per n = 1, 2, 3, . . . D’altra banda,

S = 1 − 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
+ · · · =

=
(

1 − 1
2

)
− 1

4
+
(

1
3
− 1

6

)
− 1

8
+
(

1
5
− 1

10

)
− 1

12
+ · · · =

=
1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · · =

=
1
2

(
1 − 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
S.

Com que S = 1
2S, hem obtingut que S = 0; però, usant el primer mètode, teńıem que

S > 0. Aleshores,
0 = S > 0 !!

Dues figures impossibles.

4.2.1 Explicacions

1. A la igualtat a(a− b) = (a + b)(a− b), tenim que a− b = 0, i 0 no es pot cancel.lar mai
quan està multiplicant els dos costats d’una igualtat.

2. Si no es posa cap signe davant d’una arrel quadrada, s’entén que dóna un valor positiu.
Aix́ı, √

x2 = |x|.

Per tant, √(
2 − 5

2

)2

=
∣∣∣∣2 − 5

2

∣∣∣∣ =
∣∣∣∣−

1
2

∣∣∣∣ =
1
2
.

3. Aqúı l’error ve d’usar que p−r
q−s = p

q quan q = s. Observeu que si x = 1 de l’equació 3x−5
3x−1 =

3y−8
3y−4 , obtenim que y = 2, i per tant 3x−3y+3

3x−3y+3 = 0
0 .

4. Quan es té una desigualtat certa, si la multipliquem per un nombre negatiu, canvia, per
exemple: 3 > 2, si multipliquem per −2, (−2)3 < (−2)(2). Per tant, a la demostració,
quan cancel.lem log

(
1
2

)
, que és negatiu, canviaria la desigualtat a 3 > 2.
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5. L’error ve del mal ús de la funció arcsin. Observeu que sin A = sin(π−A) = sin(2π+a) =
. . . , i per tant la funció arcsin pot prendre molts valors. Aix́ı

arcsin
√

3
2

∈
{
π

3
,
2π
3

,
7π
3

, . . .

}
,

i per A = π
3 la igualtat certa és

0 =
∫ 1

1

a dx√
1 − a2x2

= arcsin
(
sin
π

3

)
− arcsin

(
sin

2π
3

)
=

= arcsin
√

3
2

− arcsin
√

3
2

.

Observeu que hauŕıem comès un error usant que arcsin
(
sin 2π

3

)
= 2π

3 .

6. Recordeu que totes les funcions tals que derivades donen una funció concreta, com per
exemple sin θ cos θ, s’obtenen sumant una constant K arbitrària a una primitiva donada.
És a dir ∫

sin θ cos θ dθ =
sin2 θ

2
+ K.

Per tant, si tenim dues primitives sin2 θ
2 i − cos2 θ

2 de la mateixa funció sin θ cos θ, no
podem deduir que són iguals, sinó que restades donen una constant. Aquest és el cas, ja
que

sin2 θ

2
−
(
−cos2 θ

2

)
=

1
2
.

7. Fer arrels quadrades de nombres complexos és delicat. Com sempre, tenen dues solucions
(una canviada de signe respecte a l’altra), però no és clar com prendre els signes de
manera que √

ab =
√

a
√

b.

Amb d’altres paraules, podem dir que la igualtat anterior només és certa per a a i b reals
positius.

8. L’error prové de suposar que el fet que unes corbes s’aproximin a una altra implica que
les seves longituds també hauran d’aproximar la longitud de la corba ĺımit. Això només
és cert si s’aproximen a la corba ĺımit tant les corbes com les seves rectes tangents.

9. Aquest és un error molt més delicat. El problema prové de saber què vol dir sumar
infinits nombres. Per exemple, si volem sumar els infinits números:

1
2
,

1
4
,

1
8
,

1
16

,
1
32

,
1
64

, . . .

podem imaginar que aquests es corresponen a prendre les parts següents d’un quadrat de
mida 1× 1 : la meitat, la meitat de la meitat, i aix́ı successivament, obtenint rectangles
d’àrea els números donats. Vegeu la figura següent:
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1
2

1
4

1
8

1
16

1
32

Aleshores és clar
1
2

+
1
4

+
1
8

+
1
16

+
1
32

+
1
64

+ · · · = 1.

Observeu que la suma total és 1 i que el resultat que obtenim no depèn de l’ordre en
què sumem els nombres. En canvi, quan es tracta de sumar infinits nombres positius i
negatius el resultat pot dependre de l’ordre en què se sumen. Això ens pot sorprendre
perquè la suma d’un nombre finit de nombres śı que és commutativa. Podeu veure
aquest tema amb més detall, per exemple en el llibre de M. Spivak Cálculo infinitesimal,
Reverté, 1975.

Si en lloc dels números considerats prenem els següents

+1,−1,+1,−1,+1,−1,+1,−1,+1, . . .

es pot veure el problema més clar. Si els sumem de dos en dos tenim

S = (+1 − 1) + (1 − 1) + (1 − 1) + · · · = 0 + 0 + 0 + · · · = 0.

D’altra banda, si separem el número 1

S = +1 + (−1 + 1) + (−1 + 1) + · · · = 1 + 0 + 0 + 0 + · · · = 1.

Dues figures impossibles més.
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Reproducció d’una famosa obra del pintor holandès Mauritus Cornelis Escher (1898-1972).
El món de les matemàtiques ha inspirat Escher en moltes de les seves obres.

Hi ha realment un triangle blanc?
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4.3 Lògica

4.3.1. Hi ha tres persones molt intel.ligents i els volem fer una prova per a veure quina té el
raonament més ràpid. Aquesta consisteix en el següent: els diem que els posarem a
cadascuna d’elles un mocador a l’esquena i que pot ser o blanc o negre. Un cop tinguin
posat el mocador, tots podran veure el de les altres persones, però no el seu. Si veuen
algun mocador blanc hauran d’aixecar la mà. El primer que descobreixi el color del seu
mocador haurà guanyat la prova.

Col.loquem mocadors blancs a les tres persones i evidentment totes tres aixequen la
mà. Veient això, una de les tres persones diu: “Ja sé de quin color és el meu mocador,
és blanc”. Com ho ha dedüıt?

4.3.2. Som en una zona del món on només hi ha dues tribus, els Francs i els Mentiders. Els
de la primera tribu sempre diuen la veritat i els de la segona sempre menteixen. Som
al costat d’un membre d’una de les tribus i li preguntem a un membre de l’altra (que
és bastant lluny) de quina tribu és. Ell ens contesta però no el sentim bé. Aleshores li
preguntem a la persona que tenim al costat: “Què ha contestat?”Aquest respon: “Diu
que és un Franc.”A quina tribu pertany la persona que és a prop nostre?, i a quina la
persona llunyana?

4.3.3. Suposem que seguim en la mateixa zona del món que en el problema anterior i som en
una crüılla on hi ha un Franc i un Mentider. Nosaltres som incapaços de saber quin és
quin. Només un dels dos camins ens porta al bosc on volem anar. Com faŕıeu una sola
pregunta a una de les dues persones per tal de saber quin és el camı́ correcte?

4.3.4. Encara som a la mateixa zona del món que en els dos problemes anteriors, però a més
suposem que als nadius de les dues tribus no els agrada parlar gaire i només contesten
amb dos monośıl.labs: “tut”i “pap”. Sabem també que un d’aquests mots significa “śı”i
l’altre “no,”però no recordem quin és quin. Si ens trobem en una crüılla amb dos camins
a seguir i sabem que només un dels dos camins ens porta al mar, on volem anar, com
us ho faŕıeu amb una sola pregunta per a saber quin dels dos camins és el que hem de
prendre. Evidentment, som incapaços de distingir els nadius de les dues tribus.

4.3.5. Hi ha un problema extret de la famosa obra de Miguel de Cervantes Don Quijote de la
Mancha, i que li posen a Sancho Panza. És el següent, copiat literalment:

Con esta sofisteŕıa padećıa hambre Sancho, y tal, que en su secreto maldećıa el go-
bierno y aun a quien se le hab́ıa dado; pero con su hambre y con su conseva se puso
a juzgar aquel d́ıa, y lo primero que se le ofreció fue una pregunta1 que un forastero
le hizo, estando presentes a todo el mayordomo y los demás acólitos, que fue:

–Señor, un caudaloso ŕıo divid́ıa dos términos de un mismo señoŕıo (y esté vuestra
merced atento, porque el caso es de importancia y algo dificultoso). Digo, pues, que
sobre este ŕıo estaba una puente, y al cabo della, una horca y una como casa de
audiencia, en la cual de ordinario hab́ıa cuatro jueces que juzgaban2 la ley que puso
el dueño del ŕıo, de la puente y del señoŕıo, que era en esta forma: “Si alguno pasare
por esta puente de una parte a otra, ha de jurar primero adónde y a qué va; y si
jurare verdad, déjenle pasar; y si dijere mentira, muera por ello ahorcado en la horca
que alĺı se muestra, sin remisión alguna.”Sabida esta ley y la rigurosa condición della,

1Un problema, enigma.
2Aplicaban.
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pasaban muchos, y luego en lo que juraban se echaba de ver que dećıan verdad, y
los jueces los dejaban pasar libremente. Sucedió, pues, que tomando juramento a un
hombre, juró y dijo que para3 el juramento que haćıa, que iba a morir en aquella horca
que alĺı estaba, y no a otra cosa. Repararon los jueces en el juramento, y dijeron:
“Si a este hombre le dejamos pasar libremente, mintió en su juramento, y, conforme
a la ley, debe morir; y si le ahorcamos, él juró que iba a morir en aquella horca,
y, habiendo jurado verdad, por la misma ley debe ser libre.”Pı́dese a vuesa merced,
señor gobernador, qué harán los jueces de tal hombre; que aun hasta agora están
dudosos y suspensos. Y habiendo tenido noticia del agudo y elevado entendimiento
de vuestra merced, me enviaron a mı́ a que suplicase a vuestra merced de su parte
diese su parecer en tan intrincado y dudoso caso.

A lo que respondió Sancho:
–Por cierto que esos señores jueces que a mı́ os env́ıan lo pudieran haber escusado,

porque yo soy un hombre que tengo más de mostrenco que de agudo; pero, con todo
eso, repetidme otra vez el negocio de modo que yo le entienda: quizá podŕıa ser que
diese en el hito.

Volvió otra vez y otra vez el preguntante a referir lo que primero hab́ıa dicho, y
Sancho dijo:

–A mi parecer, este negocio en dos paletas le declararé yo, y es aśı: el tal hombre
jura que va a morir en la horca, y si muere en ell, juró verdad, y por la ley puesta
merece ser libre y que pase la puente; y si no le ahorcan, juró mentira, y por la misma
ley merece que le ahorquen.

–Aśı es como el señor gobernador dice —dijo el mensajero—; y cuanto a la entereza
y entendimiento del caso, no hay más que pedir ni que dudar.

Quina resposta creieu que Sancho Panza va donar. A les solucions trobareu la continuació
d’aquest text.

4.3.6. Quan es fan enunciats sobre si certes frases són certes o falses, s’arriba a situacions
sorprenents. Considerem els exemples següents:

– Un català diu: “Tots els catalans són mentiders.”Què pots dir sobre els catalans?

– Frase A: La frase B és falsa.
Frase B: La frase A és certa.

– Plató diu: “La pròxima frase de Sòcrates serà falsa.”Sócrates diu: “Plató ha dit la
veritat.”

4.3.7. Li fem un regal a un amic, i per fer-ho a una mica més divertit li diem que l’hem posat
dins d’una capsa d’entre cinc, que estan numerades de l’1 al 5. A més, li assegurem que
si obre les capses per ordre numèric, l’hem posat en una capsa de manera que mai no es
pugui esperar quina és la que conté el regal.

Aleshores ell raona de la manera següent: “El regal no pot estar a la cinquena capsa
ja que, un cop obertes les quatre primeres, ja no seria una sorpresa per a mi trobar-lo a
l’última. De la mateixa manera puc descartar la quarta, després la tercera, la segona i
la primera. Per tant, totes les capses seran buides i no tinc cap regal.”

4.3.8. La predicció del futur també porta problemes lògics. Suposem que algú ens diu que pot
predir el futur. Nosaltres li diem: “Hem escrit en un paper una cosa que pot passar o

3Por.
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no abans de demà; si creus que passarà, escriu śı en un paper, i si creus que no passarà,
escriu no”.

Nosaltres hem escrit al paper: “Abans de demà hauràs escrit no en un paper”.

Ha pogut endevinar si el que hem escrit passarà?

4.3.9. Diu la llegenda que en un petit regne medieval dos savis estrangers varen ser agafats
i condüıts a la torre més alta del regne. La torre tenia dues cel.les amb una finestra
cada una. Si es mirava per les dues finestres, es veien tots els pobles del regne, però
no hi havia cap poble que es veiés des de les dues finestres. Es va tancar a un savi
a cada cel.la de la torre amb les instruccions següents: “Heu d’endevinar, sense parlar
entre vosaltres, quants pobles hi ha al regne. Cada mat́ı vindrem a preguntar-vos si ja
ho heu descobert. Si un de vosaltres encerta el nombre de pobles, us deixarem ambdós
lliures. Si s’equivoca, us conduirem immediatament al soterrani de la torre, on passareu
la resta dels vostres dies. Només us donarem una pista: al regne hi ha tres o quatre
pobles.”Segons diu la història, un dels dos savis va parlar correctament el tercer mat́ı.

Quants pobles hi havia i quants en veia el savi que va parlar?

4.3.1 Explicacions

1. La persona ha raonat aix́ı: “Si jo hagués tingut un mocador negre a l’esquena, qualsevol
de les altres dues persones (recordem que també són molt intel.ligents) hauria raonat
de la manera següent: “veig un mocador blanc i un mocador negre; si jo tingués un
mocador negre a l’esquena, la persona que té el mocador blanc veuria dos mocadors
negres i no hauria aixecat la mà; com que ha aixecat la mà, vol dir que el meu mocador
és blanc.”Com que cap de les dues persones no ha dit res, això vol dir que el meu mocador
és blanc.”

Un problema molt similar es té quan, en lloc de dir a les persones que han d’aixecar
la mà si veuen algun mocador blanc, se’ls diu que només hi ha tres mocadors blancs i
dos de negres.

2. Observeu que, independentment de la tribu a què pertany la persona llunyana, la resposta
sempre serà: “Sóc Franc”; si ho és, perquè és cert, i si no ho és, perquè és mentida. Per
tant, com la persona que és a prop nostre ha dit: “Diu que és Franc”, això vol dir que
la persona propera diu la veritat i és Franc, i que la persona llunyana és Mentider.

3. La pregunta que li podem fer a qualsevol dels dos és: “Si li preguntés a l’altra persona
si aquest —assenyalant un dels dos camins— és el camı́ del bosc, què em diria?”

Observem que si el camı́ és el correcte, les dues persones ens contestarien que no;
el Franc perquè ens diria el que realment contestaria el Mentider, i el Mentider perquè
canviaria la resposta del Franc. De la mateixa manera podem raonar que si el camı́ no
fos el correcte, els dos ens contestarien que l’altre diria que śı que ho és. Per tant, hem
de fer el contrari del que ens contestin.

4. La pregunta que cal fer és molt enrevessada, i és la següent: “Si jo et preguntés si aquest
és el camı́ del mar, em contestaries que 5tut6?”
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Veiem les possibles respostes en funció de si la persona és Franc o Mentider i del significat
de “tut”i “pap”:

Caḿı Nadiu Significat “tut”/“pap” Resposta
Correcte Franc Śı/No Tut
Correcte Franc No/Śı Tut
Correcte Mentider Śı/No Tut
Correcte Mentider No/Śı Tut
Incorrecte Franc Śı/No Pap
Incorrecte Franc No/Śı Pap
Incorrecte Mentider Śı/No Pap
Incorrecte Mentider No/Śı Pap

Per tant, independentment de si la persona és Franc o Mentider i del significat de “tut”i
“pap”, la resposta és “tut”si el camı́ és el correcte i “pap”si el camı́ és l’incorrecte.

5. La continuació del text del Quixot és:

– Digo yo, pues, agora —replicó Sancho— que deste hombre aquella parte que
juró verdad la dejen pasar, y la que dijo mentira la ahorquen, y desta manera se
cumplirá al pie de la letra la condición del pasaje.

–Pues, señor gobernador —replicó el preguntador—, será necesario que el tal
hombre se divida en dos partes, en mentirosa y verdadera; y si se divide, por fuerza
ha de morir, y aśı no se consigue cosa alguna de lo que la ley pide, y es de necesidad
espresa que se cumpla con ella.

–Venid acá, señor buen hombre —respondió Sancho—; este pasajero que dećıs,
o yo soy un porro, o él tiene la misma razón para morir que para vivir y pasar la
puente; porque si la verdad le salva, la mentira le condena igualmente; y siendo esto
aśı, como lo es, soy de parecer que digáis a esos señores que a mı́ os enviaron que, pues
están en un fil4 las razones de condenarle o asolverle, que le dejen pasar libremente,
pues siempre es alabado más el hacer bien que mal, y esto lo diera firmado de mi
nombre si supiera firmar, y yo en este caso no he hablado de mı́o, sino que se me
vino a la memoria un precepto, entre otros muchos que me dio mi amo don Quijote la
noche antes que viniese a ser gobernador desta ı́nsula: que fue que cuando la justicia
estuviese en duda, me decantase y acogiese a la misericordia; y ha querido Dios que
agora se me acordase, por venir en este caso como de molde.

Hi ha molts altres problemes que presenten essenci-
alment la mateixa situació, per exemple el següent:
Un dinosaure pren el nen a una mare i li pregunta:
“Em menjaré el teu fill? Si respons correctament, te’l
tornaré sa i estalvi; si no, me’l menjaré”. La mare li
respon: “Et menjaràs el meu fill”.

6. Ens limitarem a posar un altre exemple. Prepareu una targeta i en una cara escriviu-hi

La frase escrita a l’altra cara d’aquesta targeta és certa

4En el fiel de la balanza.
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a l’altra cara escriviu:

La frase escrita a l’altra cara d’aquesta targeta és falsa

Quin embolic!

Recurrència gràfica infinita.

7. El regal és en una qualsevol de les capses, i tal com hav́ıem predit ell no esperava que
fos en aquella capsa.

En certa manera, el raonament del nostre amic ha fallat.

8. No; si ha escrit śı clarament, no ho ha endevinat; si ha escrit no, vol dir que creia que
no passaria el que està escrit, i realment ha passat.

9. Abans de mirar per la finestra, els dos savis es posen a pensar en totes les combinacions
possibles:

• Si un dels dos savis veu 4 pobles el primer mat́ı, parlarà i encertarà segur.

• Si l’un en veu 3 i l’altre 0, el que en veu 0 pensarà que l’altre en pot veure 3 o
4. Però, si en veiés 4 ja hauria parlat el primer mat́ı; per tant, si no ha parlat és
perquè en veu 3. Aix́ı, el segon mat́ı, el savi que veu 0 pobles encertarà el nombre
de pobles.

• Si l’un en veu 3 i l’altre 1, el savi que en veu 3 pensarà que l’altre savi en veu 0 o
1. Si en veu 0, per al cas anterior, parlarà el segon mat́ı; si no ho fa és perquè en
veu 1. Aix́ı, el tercer mat́ı el savi que en veu 3 encertarà el nombre de pobles.
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• Si un savi veu 2 pobles i l’altre 1, el savi que en veu 1 s’esperarà al tercer mat́ı. Si
el tercer mat́ı l’altre savi no ha parlat és perquè no són pas al cas anterior i, per
tant, no en veu 3, sinó 2. Aix́ı, el savi que veu 1 poble encerta el nombre de pobles
el quart mat́ı.

• Si els dos savis veuen 2 pobles, s’esperaran que arribi el quart mat́ı per a descartar
el cas anterior. Com que cap dels dos parla el quart mat́ı, el cinquè mat́ı els dos
alhora encertaran el nombre de pobles.

Per tant, si se sap que el tercer mat́ı un savi va encertar el nombre de pobles, és que
n’hi havia 4 i que el savi que va parlar és el que en veia 3.

Us salvaŕıeu vosaltres si us plantegessin el mateix problema però en comptes d’haver-
hi tres o quatre pobles, n’hi hagués vint-i-tres o vint-i-quatre?

16 dodecàedres truncats.
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4.4 Màgia matemàtica

4.4.1. Endevinar un objecte. Constrüıu una carta amb quinze objectes com a la figura

Demaneu a algú que trïı un dels quinze objectes. Després li demaneu que digui si
l’objecte que ha triat és o no a cada una de les quatre cartes següents:

L’objecte triat s’obté fent els comptes següents: s’associa a cada una de les quatre
cartes amb vuit objectes un dels números 1, 2, 4 i 8 amb la regla següent: es mira
l’objecte de dalt a esquerra. Cada un d’ells indueix el número: un pal → 1, una V → 2,
un quadrat → 4, una estrella de 8 puntes → 8. La suma dels números associats a les
cartes on hi ha l’objecte que busquem ens dóna el nombre al qual correspon l’objecte
buscat en la carta que conté tots els objectes. De fet, és millor no posar cap nombre a
la carta amb els quinze objectes i numerar-los mentalment per files (el pal l’1, la V el 2,
el cercle el 3,. . . ).

4.4.2. Endevinar una carta. D’una pila de 27 cartes demanem que algú en trïı una. Després
li diem que les barregi totes. Agafem les 27 cartes remenades i anem repartint les cartes
en tres piles (una a cada pila cada cop seguint el mateix ordre) ensenyant totes les cartes.
Li preguntem a la persona que ha triat la carta que indiqui a quina pila és la seva carta.
Recollim les tres piles posant la pila amb la carta al mig de les altres dues.
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Repetim el mateix procediment dos cops més. Sempre la carta triada és al lloc 14è de
la baralla (de fet, al lloc 5é de l’última pila que ens indica qui ha triat la carta).

Per què funciona el truc? Dissenya’n modificacions, sia amb el mateix nombre de cartes
i piles però recollint la pila amb la carta no sempre al segon lloc, sia amb diferent nombre
de cartes i piles.

4.4.3. Suma rapid́ıssima. Es preparen cinc daus amb les puntuacions següents:

Dau 1 394 592 196 493 691 295
Dau 2 564 366 465 168 861 663
Dau 3 675 576 972 378 279 873
Dau 4 636 735 438 933 537 834
Dau 5 454 355 652 553 256 751

Es diu a algú que tiri els daus i assegurem que en pocs segons direm la seva suma.
El truc consisteix en el següent: suposem que obtenim

394, 366, 972, 933, 256

aleshores sumem mentalment 4 + 6 + 2 + 3 + 6 = 21, calculem 50− 21 = 29, i el resultat
és 2921.

Per què funciona el truc? Pots construir taules diferents on funcioni el mateix truc?

4.4.4. Més jocs de cartes. Demanem que algú remeni un joc de cartes i, un cop remenat,
ens l’entrega i el posem a la butxaca. Aleshores li diem que digui un nombre de l’1 al
15. Nosaltres anem traient cartes de la butxaca i les anem ensenyant. En traiem unes
quantes de tal manera que sumin exactament el nombre que la persona ha triat.

Tot i que aquest truc és molt senzill, sol fer molt d’efecte. El truc consisteix a posar-
se primer quatre cartes ordenades a la butxaca, un 1, un 2, un 4 i un 8. Quan ens donen
la resta de les cartes les posem a continuació de les 4 triades (normalment ningú no
s’adona si d’un joc complet de cartes n’hem tret quatre). Com segueix la resta del truc?

4.4.5. Truc del calendari. Portem un calendari de tot l’any i diem a algú que agafi un
quadrat 4 × 4 (format per 16 dies d’un mes qualsevol). Un cop l’ha triat (nosaltres no
el veiem en cap moment), li diem que ens digui quin és el nombre més petit

Desembre 1999

1 2 3 4 5

8 9 10 11 1276

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31
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A continuació li diem que trïı un nombre qualsevol i que ratlli la seva fila i la seva
columna (vegeu la figura si tria al 16). D’entre els nombres restants li diem que en
trïı un altre i elimini també la seva fila i la seva columna, i aix́ı un cop més. Vegeu la
figura següent per a les tries 16, 8, 21. Queda sense ratllar el 31.

8 9 107

14 15 16 17

21 22 23 24

28 29 30 31

Li diem que sumi els quatre números no ratllats. El resultat el podem endevinar: serà
4(x + 12), on x és el nombre que ens havien dit. En aquest cas, 8 + 16 + 21 + 31 = 76 =
4(7 + 12).

4.4.6. Endevinar un número. Davant de tothom escrivim un nombre en un paper i li donem
a algú per a què s’el guardi a la butxaca. Agafem una altra persona i li diem que faci
les operacions següents:

– Que agafi un nombre de tres xifres no capicua.

– Que construeixi un altre nombre a partir del primer intercanviant la primera i la
tercera xifres.

– Que resti el més petit dels dos al més gran dels dos.

– Que agafi el resultat de la resta i construeixi un nou nombre intercanviant la primera
i la tercera xifres.

– Que sumi el nou nombre obtingut amb el resultat de la resta.

En aquest moment diem a l’altra persona que llegeixi el nombre que té guardat. Aquest
nombre coincideix amb el resultat de totes les operacions. Per què?

4.4.7. Sense cap pregunta. Donem a una persona tres o quatre jocs de cartes. Li diem que
les remeni bé. Aleshores, que pensi un nombre qualsevol de l’1 al 12. Un cop pensat,
que vagi tirant cartes cap per amunt comptant en silenci fins que arribi a la carta que
ocupa el lloc corresponent al nombre que havia pensat. Que miri el valor d’aquesta carta
i a partir d’aquesta carta que compti tantes cartes com el valor indiqui fins a arribar a
una altra carta, que miri el seu valor i continüı comptant, i aix́ı successivament. . . Per
exemple, si pensa un 3 mira la tercera carta, si és un 5 tornarà a mirar la vuitena carta,
si aquesta és un 12 tornarà a mirar la vintena carta i aix́ı successivament.

Nosaltres anem mirant passar les cartes, i sense preguntar res, quan estan a punt
d’acabar-se totes les cartes encertem quines són les cartes en què s’està fixant. Per
exemple, l’aturem i li diem:“Oi que ara et tocarà comptar tantes cartes?”Com creus que
podem endevinar-ho?
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4.4.8. Endevinar de nou un nombre. Demanem a una persona que pensi un nombre amb
tantes xifres com vulgui (millor tres com a mı́nim). Després li diem que sumi totes
les xifres del nombre i que calculi la diferència entre el nombre inicial i la suma de
les seves xifres. Un cop fet el càlcul, li diem que ratlli una de les xifres del resultat
i que ens digui la suma de les que quedin. Per exemple si pensa 1 295, hauria de fer
1 295− (1+2+9+5) = 1 295−17 = 1278. Aleshores, ratlla el 7 i ens diu 1+2+8 = 11.
Nosaltres som capaços d’endevinar el nombre que ha ratllat. Com ho fem?

4.4.9. Endevinar més nombres. Un dels trucs matemàtics més freqüents i que es basa en el
domini de les equacions és el que consisteix a demanar a algú que pensi un nombre (o
més d’un), que faci unes determinades operacions amb aquest (o aquests) i que ens digui
el resultat. A partir d’aquest resultat, i sense més que resoldre una equació, nosaltres li
podem endevinar el nombre (o nombres) que ha pensat. Posem un exemple per a fixar
idees: com endevinar l’edat d’una persona. Li diem:

– Agafa el número del mes en que vas néixer.

– Multiplica’l per 4.

– Suma 5 al resultat.

– Multiplica el resultat per 50.

– Suma 1 738 al resultat (suposant que fem el truc l’any 2000; en general, el que s’ha
de sumar és el nombre de l’any en curs menys 262).

– Resta-li l’any que vas néixer.

A partir del resultat podem deduir l’edat de la persona. L’explicació és la següent:

Sigui x el número del mes i suposem que la persona hagués nascut el 1980. Els resultats
serien

x → 4x → 4x + 5 → (4x + 5)50 =
= 200x + 250 → (200x + 250) + 1738 =
= 200x + 1988 → (200x + 1988) − 1980 =
= (2x)100 + 8;

per tant, la meitat de les dues primeres xifres ens donarà el mes (x) en què va néixer
la persona. Les dues segones xifres més 12, (8 + 12) ens donaran els anys que farà la
persona durant l’any 2000. Com que ja sabem el mes en què va nèixer (x), si fem el truc
abans del mes x li podem dir que té dinou anys; si el fem després del mes x, li direm que
en té vint. Si fem el truc el mes x, encara podrem sorprendre més la persona, ja que li
direm “No sé si tens 19 o 20 anys, però sé que aquest mes és el teu aniversari.”

Hi ha una versió d’aquests trucs de fer operacions amb uns certs números i a partir
del resultat endevinar-los que és una mica més original. Li diem a una persona que pensi
un número i que ella mateixa vagi fent-hi operacions (sumes, restes i multiplicacions,
preferentment) i que ens les expliqui en veu alta. A partir del resultat li podem dir el
nombre pel qual havia començat. Com ho podem fer?

4.4.10. Desaparició. Considerem la cartolina següent, on hi ha deu columnes iguals:
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..................................................................
.....
.....
.....
.

Si la retallem per la ĺınia puntejada i la tornem a muntar posant la part superior esquerra
a la part dreta i viceversa, obtenim la figura següent:

..................................................................
.....
.....
.....
.

Observeu que aquesta només té nou columnes, també iguals. On és la columna que falta?

4.4.11. Paper misteriós. Agafeu una tira llarga de paper, cargoleu-la mitja volta i enganxeu
les seves parts més estretes. Obtindreu una superf́ıcie que s’anomena cinta de Möbius;
vegeu la figura adjunta. Experimenteu el que passa quan retalleu la cinta per la meitat
llarga comparant-ho amb el que passaria si retalléssiu la cinta sense haver-la cargolat.
Torneu a retallar per la meitat la cinta obtinguda.

El truc de màgia consisteix a donar a algú una
cinta de Möbius molt llarga i agafar nosaltres una cinta
igual de llarga (però sense estar cargolada). Aleshores,
quan nosaltres la retallem pel mig, queda dividida en
dues cintes més estretes; en canvi a l’altra persona li
passen coses estranyes!

Reproducció d’una famosa obra del pintor holandès Mauritus Cornelis Escher (1898-1972)
basada en la cinta de Möbius.
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4.4.1 Explicacions

1. El truc està basat en l’expressió d’un nombre en base 2. Per exemple, 11 = 1 · 8+ 0 · 4+
1 · 2 + 1 · 1 = 1 · 11, i per tant l’objecte associat a l’11, és a les cartes associades a 1, 2 i
8, i no és a la carta associada al 4.

Com construiŕıeu un truc similar per a endevinar un objecte entre 31 usant cinc cartes
amb setze números? Penseu un truc basat en la base 3.

2. El truc està basat essencialment en la base 3. De fet, el que passa és que amb la primera
pregunta, un cop recollides les cartes, assegureu que la carta buscada estarà entre la 10a
i 18a; amb la informació de la segona pregunta assegureu les posicions entre 13a i 15a.
L’última pregunta col.loca la carta exactament al lloc 5è de l’última pila escollida (és a
dir, el lloc 14è un cop recollides les cartes).

3. Les cares de tots els daus tenen nombres de tres xifres p, q i r amb 0 ≤ p, q, r ≤ 9
naturals. De fet, el nombre és p · 100 + q · 10 + r.

Donat el dau i-èsim i = 1, 2, . . . , 5 posem a cada una de les seves sis cares, nombres de
la forma

(Ki − r)100 + qi10 + r

on r pot ser diferent a cada cara.

Es pren q1+q2+q3+q4+q5 = 10n on n és 1, 2, 3, ó 4 i K1+K2+K3+K4+K5 = 50−n.
Aleshores, si tirem els cinc daus, obtindrem els cinc números següents

dau 1: (K1 − a)100 + q110 + a per un cert a
dau 2: (K2 − b)100 + q210 + b per un cert b
. . . . . .
dau 5: (K5 − e)100 + q510 + e per un cert e.

Sumant els nombres i dient s = a + b + · · · + e, tenim que la suma val

(K1 + K2 + · · · + K5 − s)100 + (q1 + q2 + · · · + q5)10 + s =
= (50 − n − s)100 + (10n)10 + s = (50 − s)100 + s

i per tant tenim una explicació de per què funciona el truc. A la taula de valors s’ha
pres n = 3.

4. Com ja haureu dedüıt, el que s’ha de fer és expressar el nombre que ens han dit en base 2
i treure les cartes que corresponen als llocs on hem obtingut un 10. Per exemple, si ens
diuen 10, 10 = 1 · 8 + 0 · 4 + 1 · 2 + 0 · 1 = 10102). Per tant, hem de treure la segona i la
quarta cartes.

5. Recordem que x denotarà la data més petita del calendari. És fàcil observar que el
quadrat de 16 números triat al calendari serà

x x + 1 x + 2 x + 3
x + 7 x + 8 x + 9 x + 10
x + 14 x + 15 x + 16 x + 17
x + 21 x + 22 x + 23 x + 24
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El procediment explicat per a triar els quatre nombres fa que s’hagi de triar un número
de cada fila i un de cada columna; per tant la suma dels triats serà 4x + (8 + 16 + 24) =
4(x + 12).

En aquest cas, es pot entendre encara millor si es construeix una taula més general. Ho
farem amb un exemple. Observeu que si prenem dos blocs de cinc números {1, 0, 3, 2, 4}
i {4, 2, 1, 5, 0} i constrüım les seves sumes, tenim

1 0 3 2 4
4 5 4 7 6 8
2 3 2 5 4 6
1 2 1 4 3 5
5 6 5 8 7 9
0 1 0 3 2 4

Ara, si triem, com abans, 5 dels 25 números generats (per exemple, els marcats 5 + 5 +
1 + 7 + 4) és a dir un de cada fila i un de cada columna, la seva suma serà igual a la
suma dels deu números que generen la taula

5 + 5 + 1 + 7 + 4 = 22 = (1 + 0 + 3 + 2 + 4) + (4 + 2 + 1 + 5 + 0).

En el primer cas que estudiàvem, els generadors de la taula eren {x, x + 1, x + 2, x + 3}
i {0, 7, 14, 21} per tant la suma era

(x + (x + 1) + (x + 2) + (x + 3)) + (0 + 7 + 14 + 21) = 4x + 48 = 4(x + 12).

6. Veurem que el resultat de totes les operacions és 1 089, independentment del nombre
inicial que triem. Sigui

p100 + q10 + r

amb 0 ≤ p, q, r ≤ 9 el nombre triat. Com que no és capicua p *= r. Constrüım l’altre
nombre r100 + q10 + p. Suposem, per exemple, que p > r. Aleshores,

p100 + q10 + r − (r100 + q10 + p) =
= (p − r)100 + (r − p) = (p − r − 1)100 + 9 · 10 + (10 + r − p)

on 1 < 10 + r − p < 9. Per tant, les xifres de la resta són p − r − 1, 9 i 10 + r − p. Fem
l’última suma

((p − r − 1)100 + 9 · 10 + (10 + r − p)) + ((10 + r − p)100 + 9 · 10 + p − r − 1) =
= 9 · 100 + 18 · 10 + 9 = 1089,

independentment de les xifres del primer nombre, p, q i r.

7. Aquest truc és essencialment diferent de la resta. Només podŕıem assegurar que funci-
onaria sempre si disposéssim d’infinites cartes (cosa impossible). En aquest cas, també
és dif́ıcil donar una explicació rigorosa.

Començarem amb un cas més senzill: Suposem que tenim una moneda i l’anem tirant
molts cops fent els càlculs següents: Cada cop que surt una cara sumem 1, mentre que
cada cop que surt una creu restem 1. Es pot veure que com més gran és el nombre de
cops que tirem la moneda, més probable és que els nostres comptes passin pel valor 0.
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El nostre joc de màgia es basa en una propietat similar. El que fem nosaltres (inde-
pendentment del que faci la persona a la qual fem el truc) és pensar un nombre i seguir
les mateixes regles que ell a l’hora de contar les cartes. Si en un cert moment els dos
arriben a la mateixa carta, per sempre més anirem seguint les mateixes cartes.

Si pensem una mica, veurem que una manera diferent de mirar-se aquesta situació és
que a cada tria que fem els dos, la puntuació difereix com a molt en 11 punts (l’un tria
1 i l’altre 12 o viceversa). Aleshores, podem pensar que el que fem cada cop és sumar
un nombre d’1 a 11 si l’espectador arriba a una carta més alta que nosaltres; restar un
nombre de 1 a 11, si som nosaltres els que arribem a la carta més alta o no sumar res si
arribem a una carta amb el mateix valor. En altres paraules és com si tiréssim un dau
trucat de 23 cares (valors −11,−10, . . . ,−1, 0, 1, 2, . . . , 10, 11). El problema es fa més
dif́ıcil pel fet que no tots els valors surten en les mateixes proporcions. Es pot veure que
com més cops repet́ıssim el procés, més fàcil seria que obtinguéssim un 0 a la suma total
(això equivaldria a que els dos hauŕıem arribat a la mateixa carta).

8. Suposem que el nombre té 4 xifres, i és

1000a + 100b + 10c + d,

amb 0 ≤ a, b, c, d ≤ 9. L’operació que li demanem és

1000a + 100b + 10c + d − (a + b + c + d) =
= 999a + 99b + 9c = 9(111a + 11b + c)

i per tant el resultat sempre és múltiple de 9. Ara recordem que les xifres d’un nombre
múltiple de 9 sempre sumen un múltiple de 9; per tant, si ens ha eliminat una, la que
ha eliminat és el nombre que falta al nombre que ens diu per a arribar a ser un múltiple
de 9. A l’exemple ens diu 11; per tant, la xifra eliminada ha de ser 18 − 11 = 7.

Aquest truc té un petit problema: si la persona ratlla un 0 o un 9, el nombre que ens
dirà ja és un múltiple de 9. En aquest cas ens hem de limitar a dir que ha ratllat un 0
o un 9 i que no podem precisar més.

9. Senzillament, nosaltres prenem com x el número que la persona pensa i fem mentalment
les operacions que ella va inventant, però amb x. Al final de tots els càlculs, arribem a
un valor ax+ b. Quan ens digui el resultat, resolent l’equació obtindrem x. Les divisions
també es poden permetre, però compliquen el càlcul mental. De totes maneres hi ha un
cas en que se’ns pot presentar un problema (el cas a = 0 en la notació de dalt). Suposem
que la persona a la qual fem el truc fa les operacions següents:

• Tria un número: 5, (per a nosaltres, x).

• El dobla: 10, (per a nosaltres, 2x).

• Li suma 3: 13, (per a nosaltres, 2x + 3).

• El multiplica per 3: 39, (per a nosaltres, 6x + 9).

• Li suma 9: 48, (per a nosaltres, 6x + 18).

• El divideix per 6: 8, (per a nosaltres, x + 3).

• Li resta el número pensat: 3, (per a nosaltres, 3).
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Si en aquest moment decideix parar les operacions, estem perduts ja que no podrem
recuperar mai x. El que hem de fer en aquesta situació és dir: “No cal que continüıs
més, el resultat de les teves operacions és 3”. Això encara sorpendrà més la persona, ja
que no ens haurà dit cap nombre.

10. A la primera figura hi ha 10 columnes d’altura 9, mentre que a la segona figura hi ha
9 columnes d’altura 10. Es poden construir cartolines amb altres nombres de columnes
i amb altures diferents. Sempre n columnes d’altura n − 1 unitats. La idea de com
col.locar-les es veu més clara si es fa primer una taula només amb les seves llargades.
Aix́ı, la primera figura correspon a

7 4 1 8 5 2 9 6 3 0
2 5 8 1 4 7 0 3 6 9

mentre que la de la segona és:

8 5 2 9 6 3 0 7 4 1
2 5 8 1 4 7 0 3 6 9

Observeu que la columna 0, 0 correspon al lloc on no hi ha columna.

11. Creiem que no cal donar cap explicació.

Cub, dodecàedre i icosàedre estrellats.
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4.5 Paraules i nombres

Selecció de problemes preparada per Antoni Guillamon i Grabo-
losa, professor de Matemàtica Aplicada del Departament de Ma-
temàtica Aplicada I de la Universitat Politècnica de Catalunya.
tel.: 93 401 17 41, e-mail: toni@ma1.upc.es.

4.5.1. Un paĺındrom és una frase que es llegeix igual del dret que del revés. Per exemple, la
paraula “Anna”o la frase “Català a l’atac”en són. En el text següent hi ha ocults 13
paĺındroms, que poden ser frases senceres o paraules soltes.

El bar olot́ı té poc selaci (sic) a l’escó petit olorable. S’estimen més el peix menut i
afirmen que el bon seitó pot i és noble. Per això s’han especialitat en productes de
l’anxova.

Però avui el dia no hi transcorre amb gaire calma...

D’un tallat n’ha sortit disparat un glop de llet al clatell del véı. Val més estar a re-
cer, penso, tot i que de vegades, si vas per la ruta natural reps av́ıs. A la taula de la
dreta, una executiva parla pel mòbil i diu en veu baixa “Truca’m a casa, camacurt!”;
penja de seguida i es dirigeix lasciva al seu acompanyant tot dient-li “Tira’m ańıs a la
sina, marit!”. Al fons del bar, un aviador roda i va nu; de fet, d’entrada ja s’endevinava
que l’home tenia un aire de dèria.

Mentrestant, a fora al carrer, un noi que duu una samarreta amb una gran U, li diu
a un home gran repenjat sobre una farola: “Avi, la nit negra i argentina li va!”. Però
l’home no escolta i fixant-se en la samarreta pensa que si la U gira, deu quedar igual, i
no va gens errat.

Tornant a dins, un senyor ha demanat l’especialitat a la cambrera. Ella s’hi atansa
i callada posa la sopera. Ja reposa la sopa d’all aćı.

4.5.2. Amb les paraules ordenades alfabèticament que trobareu a continuació, heu de formar
frases palindròmiques en diversos idiomes (vegeu la definició de paĺındrom al problema
4.5.1). No sempre en coneixereu el significat; però . . . podeu endevinar l’idioma com a
mı́nim?

– a, mà, massa, massissa, massissa.

– a, a, ara, cavar, cert, la, la, rara, trec, vaca.

– gent, Islam, l’, la, mal, nega, si.

– i, nens, nenes, Senén, set, sis, té.

– ivres, meritis, munis, servi, sinum, sitirem.

– amor, ibit, motibus, Roma, subito, tibi.

– a, abad, arroz, dábale, el, la, zorra.

– amo, la, paćıfica, paloma.
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– arena, da, de, mala, mala, manera, me.
– a, a, a, canal, man, Panama, plan.
– a, a, a, dog, in, pagoda, panic.
– a, bird, imitators, rib, rot, timid.
– lavoro, oro, val.
– ama, ama, Ana Ana, e, Oto, Oto.
– à, écart, l’, mon, nom, tracé.
– ein, gazelle, mit, neger, nie, regen, zagtim.
– geen, kip, neeg, pik, toit.
– bude, dub, saze, zarastovat.
– ella, eka, Jarin, pakeni, pikk, rajalle, upukki.

4.5.3. Una modalitat més complicada de palindromia (recórrer a l’inrevés un text i trobar-hi
un significat) és la consistent a construir frases o locucions en una idioma A que llegides
en sentit contrari tinguin significat en un altre idioma B. A continuació us en posem
uns quants exemples (no n’abunden gaire) en català; esbrineu en quin idioma es pot
interpretar l’expressió inversa i separeu-ne les paraules que la componen:

1. Rera en Simó trist es troba.
2. Amor benëıt a la base.

4.5.4. Per a acabar d’esgotar els jocs de mirall, us oferim unes quantes frases amb una doble
simetria. En què consisteix?

1. SI O NO, NOIS?
2. NO SI HI SÓN
3. ON SÍ NO SONI, NO SONIS, NO
4. NO XINO, NIXON
5. O OZÓ O ZOO

4.5.5. Un altre joc de paraules entretingut és el de formar quadrats en què es puguin llegir
un conjunt de paraules, tant en sentit horitzontal com en sentit vertical; s’acostumen a
anomenar quadrats màgics. Per exemple, amb les paraules “soc”, “ona”i “cas”, es pot
formar el següent quadrat:

S O C
O N A
C A S

A continuació us donem dues paraules d’un quadrat 4×4, dues d’un quadrat 5×5, i tres
d’un quadrat 6×6. Es tracta trobar-ne 2, 3 i 3, respectivament de manera que formin
quadrats màgics. No diem tampoc l’ordre que ocupen dins del quadrat. A l’apartat de
solucions us en facilitem una, tot i que no és única.

1. eren, però.
2. amena, devem.
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3. torege, arameu, occità

4.5.6. Les frases següents tenen en comú una passió per l’ordre. La descobriu?

1. Si no surts faré importunar-te.

2. Són uns mals nens i poc humans.

3. T’estimo quan ets fi com un paper.

4. Un pagès nipó un arbre mig mort untà.

5. El vi bo, suc malèfic!, ofuscà el pilot mutant.

6. L’afegitó cus al vestidor bru; cal fer-hi costura.

7. El dijous a les cinc o quarts de sis, com tu saps, set minyons búlgars, set, inocularen
sis nous al.lels.

4.5.7. Tant els mots del primer paràgraf entre ells com els del segon tenen un tret peculiar
comú. Quan els hàgiu trobat, feu una aposta aproximada sobre quants de cada classe
pot haver-hi a la nostra llengua.

L’accés a l’illot, a l’Agost, és bell. Des del bot nou, filmo els ceps del clos i el cim
de l’est, dens de flors, bens i llops. El bou és a l’ert hort, i el jou és al clot. A dins,
l’Abel, en dejú, del got beu most de l’any, i em diu: “ahir, l’amo de l’illot hi fou mort a
cops del giny d’acer de l’àgil fill hippy. El cos nu, al llot és, i el cor del gos bru adéu diu
a l’amo bo. No et fïıs dels afins!”

No us amöıneu ni em sancioneu si al.ludeixo a la numeració evolutiva d’equacions i
l’equiparo a un dinosaure. Obraŕıeu constructivament si l’abordéssiu amb precaució.
Assumeixo que no oblidareu l’educació de què gaudeixo i la boniquesa dels eucaĺıptols
ucräınesos.

4.5.8. De vegades, darrere un missatge aparentment innocent, trobem missatges xifrats amb
finalitats més “perverses”. Les tres frases que trobareu a continuació contenen una gran
dosi d’“irracionalitat matemàtica”, tal com afirmarien, amb raó, l’Àurea i l’EPi. Sabŕıeu
dir per què?

1. L’Andreu m’esperarà. Com dos magńıfics companys correrem plegats vers horitzons
anhelats.

2. El trànsit a Sabadell és carregós; a Terrassa és embussat però menys complicat.

3. Sóc a casa i sento fugaçment un soroll melós, com dotze rossinyols fabulosos cantant.

4.5.9. Què té aquest text d’especial? Podeu aplicar-li alguna mena de canvi de gènere?

Aix́ı que vam arribar al port, vaig despullar-la de la vela; el moll cruixia després de
temps inactiu i el cel es tancava rere nostre. Com que tenia una fam de salvatge, amb
tot el dret vaig engrapar una pita sense alliberar tampoc la poma. El mos estava pre-
parat. Apassionat, m’hi vaig llançar. No vaig deixar ni una pela per llepar! Un cop
refet, vaig decidir agafar el tren i allunyar-me d’aquell lloc. Llavors, mirant avall, amb
el bitllet ben agafat, vaig observar ben clarament el que em temia: “t́ıtol esgotat”.
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4.5.10. Un company ens ha fet un encàrrec, però no volem desvetllar directament la seva iden-
titat. Si trobeu una relació entre les frases següents potser podreu arribar a aquesta
identificació.

1. Du el gringo amb malles

2. Mag negre moll: buida’ls

3. Lliga’m nou grams de ble

4. Gun smell admirable, go!

4.5.11. En Llúıs i l’Helena, arquitectes, s’acaben de casar. Els amics els han preparat una facècia
per a fer-los esbrinar qui guarda el regal de noces.

Per arribar a la solució, els passen el plànol de la figura següent, en el qual hi ha cinc
recintes dibuixats sobre una plantilla mil.limetrada. Han de calcular les seves àrees (en
mm2), i multiplicar-les entre elles. El resultat i la paraula LISENUAPDR els han de
donar la clau de volta.

5

4

3

1

2

Com que el nostre paper no és mil.limetrat, us facilitem les coordenades dels cinc recintes
per tal que en pugueu calcular les àrees:

– Recinte 1: {(−2, 24), (9, 27), (15, 15), (7, 13), (12, 6), (2, 9)}
– Recinte 2: {(−2, 1), (18, 5), (18, 28), (40, 31), (40, 13), (52, 11), (52,−5), (20,−5),

(28,−1), (20,−1)}

– Recinte 3: {(18, 30), (18, 41), (32, 41), (48, 38), (50, 35)}
– Recinte 4: {(42, 19), (52, 21), (52, 35), (62, 37), (59, 27), (64, 27), (65, 15), (62, 13),

(56, 19), (52, 14)}

– Recinte 5: {(55, 11), (65, 9), (56,−2)}

Si, tot i aix́ı, encara us fa mandra calcular les àrees, llegiu la primera ĺınia de les solucions.
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4.5.1 Explicacions

1. (a) El bar olot́ı té poc selaci (sic) a l’escó petit olorable.
(b) el bon seitó pot i és noble
(c) tallat
(d) llet al clatell
(e) recer
(f) si vas per la ruta natural reps av́ıs
(g) Truca’m a casa, camacurt!
(h) Tira’m ańıs a la sina, marit!
(i) un aviador roda i va nu
(j) aire de dèria.
(k) Avi, la nit negra i argentina li va!
(l) la U gira, deu quedar igual

(m) i callada posa la sopera. Ja reposa la sopa d’all aćı.

2. Una vegada reconstrüıdes, obtindreu les frases següents:

• CATALÀ
– A massissa massa, massisa mà.
– Cert: a la rara vaca, a cavar ara la trec.
– Mal si la gent nega l’Islam
– Senén té sis nens i set nenes.

• LLATÍ
– Meritis servi sinum munis ivres sitirem.
– Roma tibi subito motibus ibit amor.

• CASTELLÀ
– Dábale arroz a la zorra el abad.
– Amo la paćıfica paloma.
– Arena mala me da de mala manera.

• ANGLÈS
– A man a plan a canal, Panama
– A dog! A panic in a pagoda!
– Bird imitators rot a timid rib.

• ITALIÀ
– Lavoro oro val.
– Oto ama Ana e Ana ama Oto.

• FRANCÈS. Tracé mon nom a l’écart.
• ALEMANY. Ein neger mit gazelle zagtim regen nie.
• HOLANDÈS. Kip neeg toit geen pik.
• TXEC. Bude zarastovat saze dub.
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• FINÈS. Ella, Jarin eka pikk upukki pakeni rajalle.

Moltes d’elles les hem extret de la llista de paĺındroms d’en Ramon Giné que apareix a
la pàgina web www.fut.es/˜mgine. Aquesta persona, tal com diu en aquesta pàgina, és
l’“home darrere dels paĺındroms”, probablement la persona que més ha fet per la difusió
d’aquest gènere a la nostra cultura.

3. (a) En anglès, es pot llegir com Abort set. Sir Tom is nearer.

(b) En castellà, es pot llegir com Esa bala tiene broma.

4. És fàcil de veure que només hi intervenen sis lletres diferents: H, I, N, O, S, X. Aquestes,
a més de la Z, són les úniques majúscules que es veuen igual si girem el full. Per tant,
les frases que hem presentat, a part de ser paĺındroms en sentit horitzontal (vegeu els
exercicis 4.5.1 i 4.5.2), també ho són en sentit vertical. En altres idiomes, on la W és més
freqüent en el lèxic habitual, la M i la W poden actuar de simètriques l’una de l’altra.

5. Una possible solució dels tres quadrats que us proposàvem seria:

P E R O S E D A S O C C I T A
E R E N E N E M A C L A R O R
R E R E D E V E M C A D I R A
O N E S A M E N A I R I S E M

S A M A L T O R E G E
A R A M E U

En el fons, el que fem són mots encreuats simètrics sense quadres negres, i ja us podeu
imaginar que en augmentar el nombre de lletres per paraula el problema es complica en
gran manera. Els de vuit lletres en amunt es poden considerar excepcionals.

6. L’aparició de vocals en el text sempre segueix un ordre creixent (AEIOU) i és ćıclica.

7. El tret que caracteritza tots els mots del primer paràgraf és que les lletres sempre estan
en ordre creixent (paraules alfagramàtiques). Observeu, a més, que una conseqüència
immediata és que el nombre de lletres de cada paraula és més aviat curt. Aquesta propi-
etat es pot veure d’una altra manera: si demanéssim ordre estrictament creixent, en un
alfabet de L śımbols hi hauria només 1 possible paraula alfagramàtica de longitud L; L

de longitud L− 1,
(

L
2

)
de L− 2; i, en general,

(
L
p

)
possibles paraules de longitud

p, amb p ≤ L. En un alfabet de 26 śımbols com el nostre, això dóna 67 108 837 possibles
paraules alfagramàtiques. Ara bé: un cop formades, cal demanar que tinguin sentit... I
si ho fem, ens quedem amb unes 300! Per veure-ho, hem fet un programa d’ordinador que
ha analitzat totes les paraules que hi havia en un fitxer corrector de català. Ens n’han
sortit 290, però no podem assegurar que el fitxer emprat contingui tots els mots catalans.

Al segon paràgraf, la peculiaritat rau en el fet que totes les paraules de més d’una
śıl.laba contenen una i només una vegada les cinc vocals (paraules pentavocàliques).
Aquesta mena de paraules tampoc no són una raresa en el nostre idioma: a partir del
nostre fitxer, n’hem comptabilitzades unes 1 430. D’altra banda, si deixem que les vocals
es repeteixin, n’aconseguim unes 5 100. Segons explica en Màrius Serra al seu Manual
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d’enigmı́stica (Columna, 1991), que us recomanem fortament, el lingüista Llúıs de Yza-
guirre en va trobar 14 006, fet que indica que el nostre fitxer de partida no és pas dels
més complets.

8. Les paraules clau de l’enunciat són irracionalitat matemàtica, raó...àurea i E-Pi. Si
compteu el nombre de lletres de cada paraula trobareu, respectivament, els primers
decimals (tallant a la darrera xifra) de tres dels nombres irracionals més coneguts: la
raó àurea = (1+

√
5)/2 ≈ 1.6180339887498, el número e ≈ 2.7182818284590, i el número

π ≈ 3.1415926535897. Els zeros han estat substitüıts per punts, però no tots els punts
signifiquen zeros.

9. Canvieu de gènere tots els noms que hi apareixen; veureu que el text canvia completa-
ment de sentit:

Aix́ı que vam arribar a la porta, vaig despullar-la del vel; la molla. . .

10. Totes les frases tenen les mateixes lletres: AABDEEGGILLLMMNORSU. Continueu
buscant la identitat del company. Està escrita al llibre però en un altre lloc. Quan el
trobeu, podreu imaginar-vos també quin és l’encàrrec.

11. Les àrees de les diferents regions són, respectivament, 251, 997, 201, 239 i 64. La
multiplicació de totes 5 dóna p = 769383400512. Si a cada lletra de la paraula clau
LISENUAPDR li associeu un nombre del 0 al 9 i substitüıu els nombres de p per les
lletres adients, obtindreu PARE D’EN LLUÍS.
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Caṕıtol 5

Notes històriques i citacions.

Qualsevol tema d’estudi s’entén molt millor si es considera la seva evolució al llarg dels temps.
Per això hem decidit incloure una secció amb ressenyes sobre alguns dels cient́ıfics que han
contribüıt a fer que la matemàtica i l’estad́ıstica siguin com són avui en dia.

També hi ha una secció de citacions sobre matemàtiques i ciència, que creiem que ens
divertirà, i ens farà pensar a tots una miqueta.

Principia mathematica,
Isaac Newton, 1687.

Analysis infinitorum,
Leonhard Euler, 1748.
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5.1 Història

Text preparat per Ferran Cedó i Giné, professor d’Àlgebra del
Departament de Matemàtiques de la Universitat Autònoma de
Barcelona. tel.: 93 581 18 67, e-mail: cedo@mat.uab.es.

Al llarg de la història, hi ha hagut personatges famosos que han contribüıt notablement a
l’evolució de la matemàtica. Aqúı, presentem una ressenya biogràfica d’alguns d’ells. Això no
vol dir que aquests siguin els més importants. La història de la matemàtica és llarga i complexa,
i és dif́ıcil decidir quins han estat els que han incidit més en el seu desenvolupament.

Tales de Milet (aproximadament del 624 al 548 a.C.)

Matemàtic, f́ısic, filòsof i astrònom grec, un dels Set Savis
de Grècia. Se’l considera el pare de les matemàtiques de-
mostratives, el primer a demostrar resultats geomètrics. És
famós, per exemple, el teorema de Tales. Altres resultats
que la tradició manté que va demostrar són els següents:

• La suma dels angles d’un triangle equival a dos rectes.

• Un angle inscrit en un semicercle és un angle recte.

Teorema de Tales. Donades tres rectes paral-
leles r1, r2, r3 i dues rectes concurrents s1, s2 que
tallen a les rectes r1, r2, r3 en els punts A,B,C
i A′, B′, C ′ respectivament, es té que

A′B′

AB
=

B′C ′

BC

r1

r2

r3

s1

s2

A
B

C

A′
B′

C ′
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Pitàgores de Samos (aproximadament del 580 al 500 a.C.)

Matemàtic i filòsof grec. Després de viatjar a Egipte i Ba-
bilònia, i possiblement a l’́India, es va establir a Crotona (al
sud-est d’Itàlia), a la Magna Grècia. Alĺı va fundar una so-
cietat secreta, coneguda per nosaltres com escola pitagòrica.
El lema d’aquesta escola era “Tot és nombre”. El famós
teorema de Pitàgores era conegut, abans que ell visqués,
pels babilonis. És possible que Pitàgores fos el primer a
demostrar-lo, encara que no n’hi ha proves documentals.

Teorema de Pitàgores. Si ABC és un trian-
gle rectangle en A, llavors

BC
2 = AB

2 + AC
2

A B

C

Euclides d’Alexandria (s. III a.C.)

Matemàtic grec autor dels Elements, obra que recull la geo-
metria clàssica grega exposada de forma deductiva. Se sap
poc de la seva vida, no es coneix ni on va néixer. Va ser pro-
fessor a Alexandria. Els Elements és potser el llibre de text
de matemàtiques més famós de tota la història. A part de la
geometria sintètica, els Elements també tracten l’aritmètica.
Per exemple, es demostra que hi ha infinits nombres primers.

Arquimedes de Siracusa (aproximadament del 287 al 212 a.C.)

Savi grec i el matemàtic més important de tota l’antiguitat.
Va donar un mètode que permet obtenir una aproximació
de π tant bona com es vulgui. Va demostrar la relació que
hi ha entre l’àrea d’un cercle i la longitud de la seva circum-
ferència:

àrea del cercle =
radi × longitud de la circumferència

2

Una de les seves obres, el Mètode, que va estar perduda
durant segles, es va recuperar a l’any 1906. En aquesta
obra, hi ha les primeres idees d’infinitèsims. Aquestes idees
no van tornar a sorgir fins al segle XVII, amb la invenció del
càlcul diferencial.
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Es diu que Arquimedes va descobrir el seu famós principi de flotació mentre s’estava
banyant i que, un cop descobert, va sortir al carrer nu i cridant “Eureka”, que vol dir: “Ho he
trobat.”

Arquimedes va morir durant la presa de Siracusa per l’exèrcit de Marcel el 212 a.C., tot i
que Marcel el volia capturar viu.

Gerolamo Cardano (Pavia, 1501 - Roma, 1576)

Metge, matemàtic i filòsof italià. Al 1545, va publicar l’o-
bra Ars Magna, on es dóna la solució per a resoldre equaci-
ons cúbiques i quàrtiques. El mateix Cardano reconeix que
Niccolò Fontana (Tartaglia) li suggeŕı la forma de resoldre
l’equació cúbica, i que el seu secretari, Ludovico Ferrari, va
descobrir com resoldre l’equació quàrtica. De fet, però, el
primer a descobrir com es resolia l’equació cúbica de la for-
ma x3 + px = q va ser Scipione del Ferro, encara que aquest
mai no va fer públic el seu resultat. En aquell temps es fe-
ien desafiaments matemàtics. Tartaglia en va guanyar un
sobre resolució d’equacions cúbiques, fent aix́ı que Cardano
es fixés en ell.

René Descartes (L’Haia, 1596 - Estocolm, 1650)

Filòsof i matemàtic francès. Va estudiar en un col.legi de
jesüıtes i es va llicenciar en Dret a Poitiers. Més tard, va
viatjar per diversos päısos en campanyes militars. La con-
tribució més important de Descartes a la matemàtica fou
la creació de la geometria anaĺıtica, que publicà com un
apèndix, La Géométrie, de la seva famosa obra Dicours
de la méthode pour bien conduire sa raison et chercher la
vérité dans les sciences (1637).

Pierre de Fermat (Beaumont-de-Lomagne, 1601 - Castres, 1665)

Va estudiar dret a Tolosa de Llenguadoc, on va ser després conseller al Parlament. Encara que
Fermat no fos matemàtic professional, a partir del 1629, va començar a fer descobriments ma-
temàtics de gran importància. Va fundar la geometria anaĺıtica al mateix temps que Descartes.
Va ser precursor del càlcul diferencial i integral.
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Es pot dir d’ell que és el pare de la teoria de nom-
bres moderna. Fermat va demostrar que no existeixen
nombres enters positius x, y, z, tals que x3 + y3 = z3. Al
marge del seu exemplar de l’Arithmetica de Diofant, va
escriure que per a n > 2 no hi ha enters positius x, y, z,
tals que xn+yn = zn, i que havia trobat una demostració
veritablement meravellosa d’aquest fet, però que aquell
marge era massa estret per a contenir-la. Aquest resul-
tat es coneix com “últim teorema de Fermat” o “gran
teorema de Fermat”. L’estudi d’aquesta conjectura de
Fermat ha fet avançar branques importants de la ma-
temàtica. Finalment, a l’any 1995, Andrew Wiles va fer
l’últim pas en la demostració d’aquest gran teorema.

Sir Isaac Newton (Woolsthorpe, Lincolnshire, 1642 - Londres, 1727)

Després d’una infància sense gaire afecte (el seu pare ha-
via mort abans del seu naixement i la seva mare es va
tornar a casar quan ell tenia tres anys, deixant-lo amb la
seva àvia), va estudiar a Cambridge i entrà a formar part
del Trinity College al 1661.

Al final de 1664, sembla que ja coneixia tota la ma-
temàtica de l’època; havia tingut de mestre a Barrow.
Aquell any i el següent, el Trinity College va estar tancat
a causa de la pesta. Aix́ı, Newton, a casa seva, en aquest
peŕıode de temps, va fer quatre dels seus principals des-
cobriments:

1. El teorema binomial.

2. El càlcul infinitesimal.

3. La llei de gravitació universal.

4. La naturalesa dels colors.

La primera exposició impresa del càlcul de Newton va aparèixer el 1687 al Philosophiae
naturalis principia mathematica. Leibniz havia descobert el càlcul diferencial cap a l’any 1676
i ho va publicar l’any 1684. Això va fer que s’estabĺıs una disputa entre ells per l’autoria de la
creació del càlcul. Avui, se sap que Newton i Leibniz crearen el càlcul independentment l’un
de l’altre; això śı, Newton ho va fer deu anys abans i Leibniz ho va fer amb una notació més
entenedora, que és la que ha perdurat.
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Gottfried Wilhelm Leibniz (Leipzig, 1646 - Hannover, 1716)

Va ingressar a la Universitat de Leipzig als quinze anys.
Estudià teologia, dret, filosofia i matemàtiques. Als 20 anys,
ja estava preparat per a obtenir el doctorat en dret, però,
a Leipzig, no li van concedir per massa jove. Això va fer
que Leibniz abandonés Leipzig i es doctorés en Dret a la
Universitat d’Altdorf, a Nuremberg. Després, va començar
la seva carrera diplomàtica, cosa que li permeté viatjar molt.
La contribució més important de Leibniz a la matemàtica
fou el càlcul diferencial, creat el 1676 independentment de
Newton. Leibniz va ser precursor de la lògica matemàtica i
un gran creador de notació. De fet, la notació que s’usa avui
de càlcul diferencial és, pràcticament, la de Leibniz.

Leonhard Euler (Basilea, 1707 - Sant Petersburg, 1783)

Va estudiar amb els Bernoulli, una famı́lia de matemàtics que havien fugit de Bèlgica a causa
de persecucions religioses i s’havien instal.lat a Süıssa. Euler va rebre una formació molt
completa, va estudiar matemàtiques, teologia, medicina, astronomia, f́ısica i llengües orientals.
El 1730, Euler havia anat a Sant Petersburg per ocupar una plaça de medicina a l’Acadèmia i
es va trobar que havia mort l’Emperadriu Caterina I, cosa que va fer perillar la continüıtat de
l’Acadèmia. Però l’Acadèmia va sobreviure i Euler va ocupar la càtedra de filosofia natural.
El 1733, Daniel Bernoulli, que estava de professor a l’Acadèmia de Sant Petersburg abans que
hi arribés Euler, se’n va anar un altre cop a Basilea. Aix́ı, Euler es convert́ı en el matemàtic
més important de l’Acadèmia. Tret del peŕıode entre 1741 i 1766, que va estar a l’Acadèmia
de Berĺın per invitació de Frederic el Gran de Prússia, Euler va estar a Sant Petersburg la
resta de la seva vida. Alĺı, es va casar i va tenir 13 fills, als quals no va faltar la seva dedicació,
tot i que ha estat el matemàtic que ha publicat més de tota la història. El 1735, va perdre la
vista de l’ull dret i, el 1766, va començar a perdre la visió de l’ull esquerre fins a quedar-se
cec.

Euler ha estat el matemàtic més important del segle
XVIII. Va escriure un total de 886 treballs, cosa que suposa
una mitjana de 800 pàgines anuals escrites al llarg de la seva
vida. No va deixar de fer matemàtiques ni quan es va quedar
cec. Euler va fer avançar pràcticament totes les branques de
la matemàtica del seu temps: anàlisi, sèries, equacions dife-
rencials, geometria, probabilitat, teoria de nombres, etc.

El 1783, va morir mentre prenia el te i jugava amb un
nét seu.

Carl Friedrich Gauss (Brunswick, 1777 - Götingen, 1855)

Conegut com el Pŕıncep de les Matemàtiques, va ser un nen prodigi. Un dia, el mestre de
l’escola on estudiava, per tal de mantenir els seus alumnes ocupats, els va manar que sumessin
tots els nombres de l’1 al 100. Gauss, que tenia llavors 10 anys, quasi immediatament, va
posar el resultat correcte sobre la taula del mestre. Havia fet mentalment el càlcul



5.1. HISTÒRIA 185

1+ 2+ 3+ . . . +50
+100+ 99+ 98+ . . . +51
=101+ 101+ 101+ . . . 101

que és 101 × 50 = 5050.

Gauss era de famı́lia humil, i no hauria pogut estudiar si no hagués rebut l’ajuda del duc
de Brunswick. Gràcies a ell, Gauss va estudiar a la Universitat de Götingen. El 30 de març
de 1796, va fer el seu primer descobriment important: va demostrar que es podia construir
amb regle i compàs el poĺıgon regular de 17 costats. Des del temps d’Euclides, feia uns dos
mil anys, que no es coneixia cap més poĺıgon regular amb un nombre primer de costats, que es
pogués construir amb regle i compàs, que no fos un triangle o un pentàgon. Aquell mateix dia,
Gauss va començar a escriure un diari, on va anant apuntant, durant els divuit anys següents,
alguns dels seus descobriments més grans.

Gauss no publicava gaire, el seu segell portava escrit el lema: “pauca sed matura” (poc
però madur). Alguns dels seus descobriments no es van fer públics fins després de la seva
mort. Al 1799, va publicar la seva tesi doctoral, on demostrava el teorema fonamental de
l’àlgebra. Al 1801, va publicar un treball de teoria de nombres en llat́ı, les Disquisitiones
arithmeticae. Al 1827, va publicar Disquisitiones circa superficies curvas, iniciant aix́ı una
nova branca de la geometria: la geometria diferencial. Si Gauss hagués publicat tots els seus
descobriments immediatament, potser no hauria fet falta que altres matemàtics els redesco-
brissin. Per exemple: la geometria no euclidiana, inventada independentment per Lobatxevski
i Bolyai, va ser un dels treballs no publicats de Gauss.

Baró Augustin Louis Cauchy (Paŕıs, 1789 - Sceaux, 1857)

Estudià a l’Escola d’Enginyers Militars. Fou professor de la
Sorbona, del Col.legi de França i de l’Escola Politècnica. El
1830, amb l’exili de Carles X, se’n va a Itàlia, on serà pro-
fessor de la Universitat de Toŕı. El 1838, tornà a Paŕıs. Des-
prés d’Euler, és el matemàtic que ha publicat més treballs de
matemàtiques de tota la història. Contribúı a l’establiment
del rigor a la matemàtica. Va fer aportacions importants
a pràcticament tots els camps de la matemàtica, però cal
destacar la creació de la teoria de les funcions de variable
complexa.

El 1816, va ser nomenat membre de l’Acadèmia de Ciències. Aquest càrrec li va permetre
perdre, el 1826, un important treball que Abel li havia entregat, quan buscava feina de professor
a Paŕıs. Dos anys més tard, va perdre un altre treball que li havia entregat Galois. Potser
aquests dos joves matemàtics de vida intensa i curta, i obra important, no escrivien amb prou
rigor com perquè Cauchy es dignés a llegir els seus treballs, o potser Cauchy va entendre que
li podien fer ombra.
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Évariste Galois (Bourg-la-Reine, 1811 - Paŕıs, 1832)

Als 12 anys es va interessar per la Géométrie de Legendre. Més tard, va estudiar algunes
obres de Lagrange i Abel. Els seus professors el consideraven una mica estrany. Als 16 anys,
Galois, conscient que era un geni per a les matemàtiques, va presentar una sol.licitud per a
entrar a l’Escola Politècnica, però va ser rebutjat per manca de preparació sistemàtica. Als
17 anys, va entregar a Cauchy un escrit amb alguns dels seus descobriments fonamentals per
presentar-ho a l’Acadèmia. Cauchy va perdre aquest escrit. Galois va tornar a intentar entrar
a l’Escola Politècnica i va tornar a fracassar.

Finalment va entrar a l’Escola Normal per preparar-se per a l’ensenyament. Continuà les
seves investigacions matemàtiques i, el 1830, va presentar una memòria per a optar al premi
de l’Acadèmia. Fourier es va endur aquesta memòria a casa per llegir-la. Poc després, Fourier
es va morir i el treball de Galois es va perdre. Per tercera vegada, Galois presentà un altre
treball a l’Acadèmia. Aquest cop, Poisson va retornar el treball a Galois amb l’observació de
que era incomprensible. Aquest treball contenia resultats importants del que avui es coneix
com teoria de Galois.

Galois va tenir problemes també per les seves ide-
es republicanes. El 1831, va ser empresonat durant
sis mesos. El 1832, per qüestions d’honor, es va batre
en duel. La nit abans del duel, Galois va redactar,
en una carta als seus amics algunes notes sobre els
seus descobriments, expressant l’esperança que Jaco-
bi o Gauss se’n poguessin assabentar. Durant el duel,
va quedar a terra ferit de mort. Un pagès el va trobar
i el va portar a un hospital, on moŕı l’endemà. L’obra
de Galois va caure en mans de Liouville, qui, el 1846,
després de completar alguns detalls de les demostra-
cions de Galois, la va publicar.

Bernhard Riemann (Breselenz, Hannover, 1826 - Selasca, Itàlia, 1866)

Va néixer en una famı́lia modesta, però tingué una bona educació. Estudià a la Universitat
de Berĺın, on tingué de professors a Jacobi i Steiner. Després fou alumne de Dirichlet a la
Universitat de Götingen, on féu la tesi doctoral sobre funcions de variable complexa el 1851.
Gauss li proposà un treball sobre els fonaments de la geometria per la seva habilitació. Aix́ı,
el 1854, per entrar de professor a Götingen, presentà la tesi d’habilitació Über die Hypo-
thesen welche der Geometrie zu Grunde liegen (és a dir, Sobre les hipòtesis en què es basen els
fonaments de la geometria). Amb aquest treball, es creà una nova branca de la matemàtica,
la geometria riemanniana, i s’integraven, definitivament, les geometries no euclidianes a la
matemàtica. Riemann també féu grans aportacions a l’anàlisi (integral de Riemann) i a la
teoria de nombres, i fou precursor de la topologia. El 1859, ocupà la càtedra que havia deixat
Dirichlet a Götingen. Moŕı de tuberculosi als 39 anys.
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Ave Riemann

Mestre Pŕıncep tu tingueres,
Riemann de famı́lia humil.
Per a tu són les esferes,
de geometria subtil.

Integrals i superf́ıcies,
ara, porten el teu nom,
i aix́ı, la fama acaricies,
ensenyant, per tot el món,
la bellesa d’una ciència
que il.lumina l’experiència.

Georg Ferdinand Ludwig Philip Cantor (Sant Petersburg, 1845 - Halle, 1918)

Estudià a les Universitats de Zurich, Götingen i Berĺın, filosofia, f́ısica i matemàtiques. A
Berĺın, fou alumne de Weierstrass i de Kronecker. Defensà la seva tesi doctoral sobre teoria
de nombres, a Berĺın, l’any 1867. Després, fou professor a la Universitat de Halle, on estaria
la resta de la seva vida, encara que li hauria agradat ser professor a una universitat més
important.

S’interessà profundament per l’aritmetització de
l’anàlisi, seguint al seu mestre Weierstrass. Això el portà
a crear la teoria de conjunts. Tenia correspondència amb
Dedekind i compartia amb ell aquestes idees revoluci-
onàries. El 1874, demostrà que el conjunt dels nombres
reals és no numerable. Aquesta nova teoria tenia de-
tractors importants. Kronecker era un d’ells; s’oposava
radicalment a les idees de Cantor sobre l’infinit i inten-
tava destruir les seves teories. Al 1883, Cantor escriv́ı
una defensa enèrgica de les seves teories. Potser a causa
de l’estrès i les cŕıtiques sobre el seu treball, l’any 1884,
pat́ı una crisi nerviosa depressiva i el van haver d’inter-
nar al sanatori mental de Halle. La resta de la seva vida,
sortiria i entraria al sanatori diverses vegades, però, tot
i aix́ı, continuà les seves investigacions, produint impor-
tants resultats. Per exemple, l’any 1891, demostrà que el
cardinal d’un conjunt A és més petit que el cardinal del
conjunt de les seves parts P (A). El 1918, moŕı mentre
estava internat al sanatori mental.

Hilbert es referia al seu treball sobre teoria de conjunts com “el més sorprenent producte del
pensament matemàtic i una de les realitzacions més belles de l’activitat humana en el domini
de la intel.ligència pura.” També deia: “Ningú no ens expulsarà del parad́ıs que Cantor ha
creat per a nosaltres.”
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Henri Poincaré (Nancy 1854-Paŕıs 1912)

Es va graduar a l’Escola Politècnica el 1875. El
1879, es va graduar en enginyeria de mines i es
va doctorar en ciències a la Universitat de Paŕıs,
on va ocupar diverses places de professor de ma-
temàtiques i f́ısica fins a la seva mort. Poincaré
va ser un matemàtic universal, i potser el que ha
publicat més després d’Euler i Cauchy. Els seus
treballs més importants van ser de mecànica ce-
leste i el primer desenvolupament sistemàtic de
la topologia. Alguns el consideren el pare de la
topologia. Junt amb Hilbert, és el matemàtic
més important de la transició entre els segles
XIX i XX.

David Hilbert (Königsberg, 1862 - Götingen, 1943)

Estudià a la Universitat de Königsberg, on es doctorà
l’any 1884. Del 1886 al 1895, fou professor d’aquesta
universitat. Del 1895 al 1929, fou professor a la Uni-
versitat de Götingen. Féu grans aportacions a mol-
tes branques de la matemàtica: teoria de nombres,
lògica matemàtica, equacions diferencials, equacions
integrals, etc. També obtingué resultats matemàtics
que s’aplicaren a la f́ısica.

Es preocupà molt per la fonamentació de les ma-
temàtiques. El 1899, donà un sistema axiomàtic ri-
gorós de la geometria euclidiana. El 1900, quan era
considerat un dels matemàtics més importants del
moment, presentà, al Congrés Internacional de Ma-
temàtiques de Paŕıs, una llista amb 23 problemes, que
han estat molt importants en el desenvolupament de
la matemàtica del segle XX. Alguns d’aquests proble-
mes formaven part d’un pla per a la fonamentació de
les matemàtiques.
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Emmy Noether (Erlangen, 1882 - Bryn Mawr, Pennsilvània, 1935)

Filla de matemàtic, al 1907, es convert́ı en la primera
dona a obtenir el grau de doctor en una universitat ale-
manya. Va treballar amb Klein i Hilbert sobre la teoria
de la relativitat general a Götingen. El 1922, va obtenir
una plaça de professora de universitat, malgrat l’oposició
que hi havia d’atorgar una càtedra a una dona. Albert
Einstein comentava d’ella: “Descobŕı mètodes de gran
importància en el camp de l’àlgebra del qual s’han ocu-
pat quasi tots els matemàtics més excel.lents.”

Amb la creació del Partit Nacional Socialista, va haver
d’abandonar Alemanya al 1933. Se’n va anar als Estats
Units i, alĺı, va ser professora a la Universitat de Bryn
Mawr a Filadèlfia. D’alĺı, viatjava sovint a la Universitat
de Princeton, on feia conferències a l’Institut d’Estudis
Avançats.

John von Neumann (Budapest, 1903 - Washington, 1957)

Molt aviat, demostrà la seva capacitat per a les matemàtiques. Als 10 anys, estudiava sota la
direcció dels millors matemàtics hongaresos. Als 21 anys, va obtenir el grau d’enginyer qúımic
a Zuric i el de doctor en Matemàtiques a la Universitat de Budapest. Va passar un quant
temps a la Universitat de Berĺın. El 1930, va acceptar ser professor visitant a la Universitat de
Princeton. Ell i Albert Einstein van ser dels primers professors a temps complet de l’Institut
d’Estudis Avançats de la Universitat de Princeton.

Durant la Segona Guerra Mundial, va participar en
la construcció de la bomba atòmica a Los Álamos. En-
tre 1944 i 1946, va col.laborar en l’elaboració d’un in-
forme per a l’exèrcit sobre computadores, i, el 1949, va
començar a funcionar el primer computador programable.
El 1954, el president Eisenhower el va designar membre
de la Comissió d’Energia Atòmica. Les aportacions de
von Neumann tant en matemàtica aplicada com en ma-
temàtica pura són notables. Se’l considera el pare de la
teoria de jocs moderna. Es va interessar també per la
mecànica quàntica.

Va morir d’un càncer als 53 anys.
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Andrei Nikolaievitx Kolmogorov (Tambov, 1903 - Moscou, 1987)

Va estudiar a la Universitat de Moscou. El 1931, Entrà
de professor a la Universitat de Moscou. Aquest mateix
any, va fer progressos importants en la teoria dels pro-
cessos de Markov. El 1933, axiomatitzà la teoria de la
probabilitat, relacionant-la amb la teoria de la mesura,
resolent, aix́ı, part d’un dels problemes de Hilbert. Al
llarg de la seva vida, va treballar en diverses branques de
la matemàtica. Aix́ı, a més dels seus resultats en teoria
de la probabilitat, féu aportacions importants a l’estudi
de l’estabilitat de les òrbites planetàries, a la teoria de
conjunts, a la topologia, a les funcions de variable real
i a les sèries trigonomètriques. Últimament, treballà en
lògica matemàtica i en teoria de la informació.

El 1939, el van nomenar membre de l’Acadèmia So-
viètica de Ciències.

Kurt Gödel (Brno, 1906 - Princeton, 1978)

Estudià a la Universitat de Viena, on va ser professor a par-
tir del 1930. Al 1931, resolgué el segon problema de Hilbert,
provant que és impossible demostrar la consistència del sis-
tema formal de l’aritmètica dins del mateix sistema formal.
Aquest mateix any, demostrà que el sistema formal de l’a-
ritmètica no és complet, és a dir, que hi ha proposicions,
dins del sistema, que no es poden provar i tampoc es po-
den demostrar les seves negacions dins del mateix sistema.
Aquests resultats tiraren per terra el pla de Hilbert per a la
fonamentació de les matemàtiques.

A partir de 1938, s’estabĺı als Estats Units i fou membre de l’Institut d’Estudis Avançats
de Princeton. Al 1940, demostrà la consistència de la hipòtesi del continu i de l’axioma de
l’elecció amb els axiomes de teoria de conjunts de Zermelo-Fraenkel; és a dir, si suposem que
els axiomes de la teoria de conjunts de Zermelo-Fraenkel no porten a una contradicció, llavors,
afegint la hipòtesi del continu i l’axioma de l’elecció, obtenim un sistema d’axiomes que no
porten a una contradicció. Això resolia part del primer problema de Hilbert. El 1963, Paul
J. Cohen demostrà la independència de l’axioma de l’elecció i de la hipòtesi del continu dels
axiomes de la teoria de conjunts de Zermelo-Fraenkel; és a dir, si suposem que els axiomes de
Zermelo-Fraenkel no porten a una contradicció i afegim la negació de l’axioma de l’elecció o
la negació de la hipòtesi del continu com a nou axioma del sistema, llavors aquest nou sistema
d’axiomes no porta a una contradicció. Això acaba la resolució del primer problema de Hilbert,
que, de fet, era el recull de dos problemes que van portar de corcoll a Cantor durant part de
la seva vida.
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Els resultats de Gödel són de gran transcendència per a les matemàtiques. Les ma-
temàtiques actuals es basen en la teoria de conjunts de Zermelo-Fraenkel. I Gödel ens diu
que en el sistema formal de la teoria de conjunts de Zermelo-Fraenkel, encara que hi afegim
l’axioma de l’elecció o altres axiomes independents, és impossible demostrar la seva pròpia
consistència.

NOTA: Les fotografies has estan obtingudes de l’adreça d’Internet:
http://www-groups.dcs.st-and.ac.uk/∼history/PictDisplay
de la School of Mathematics and Statistics de la Universitat de St. Andrews a St. Andrews,
Escòcia.

Acabem aquesta secció amb fotografies d’altres matemàtics cèlebres.

Tartaglia (1500-1557) B. Pascal (1623-1662) I. Barrow (1630-1677)

J. Bernouilli (1654-1705) G. Hôpital (1661-1704) B. Taylor (1685-1731)

P.S. Laplace (1749-1827) J. Fourier (1768-1830) S.V. Kovaleskaia (1850-1891)
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5.2 Citacions de matemàtics i sobre matemàtiques

En aquesta secció es recullen i es tradueixen al català unes quantes citacions sobre ma-
temàtiques i ciència, ja siguin de matemàtics o d’altres personatges famosos. Les fonts prin-
cipals han estat el “Mathematical Quotation Server”de la Furman University, amb adreça
electrònica

http://math.furman.edu/∼mwoodard/mqs/mquot.shtml

i la pàgina de web “Science humor”preparada per Joachim Verhagen, amb adreça

http://www.xs4all.nl/∼jcdverha/scijokes/

La selecció ha estat feta per Armengol Gasull i Maria Jolis. Aquestes citacions es clas-
sifiquen en quatre grups: Citacions a favor de les matemàtiques, citacions en contra d’elles,
citacions sobre ciència i citacions sobre filosofia.

Citacions a favor de les matemàtiques

• Aristòtil (384-332 a. C.):

Les ciències matemàtiques mostren entre altres coses, ordre simetria i restric-
cions, i aquestes coses son les grans formes de la bellesa.

• Arthur Cayley (1825-1895):

A les matemàtiques els passa com a moltes altres coses: la bellesa es pot
percebre, però no explicar.

• Charles Darwin (1809-1882):

Les matemàtiques semblen dotar-nos amb una espècie de nou sentit.

• René Descartes (1596-1650):

Cada problema que resolc es transforma en una regla que més endavant pot
servir per a resoldre altres problemes.

• Albert Einstein (1879-1955):

Com pot ser que les matemàtiques, essent després de tot un producte humà,
independent de l’experimentació, s’adaptin admirablement als objectes de la
realitat?

• Galileu Galilei (1564-1642):

[L’univers] no es pot llegir fins que no hem après el llenguatge i ens hem fami-
liaritzat amb els caràcters en els que està escrit. Ell està escrit en llenguatge
matemàtic, i les lletres són els triangles, els cercles i altres figures geomètriques,
sense les quals és humanament impossible entendre una simple paraula.
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• Jacques Hadamard (1865-1963):

L’aplicació pràctica no es troba buscant-la i es podia dir que tot el progrés de
la civilització es basa en aquest principi.

• David Hilbert (1862-1943):

Les matemàtiques no coneixen races o fronteres geogràfiques; per a les ma-
temàtiques el món de la cultura és un páıs.

• Emmanuel Kant (1724-1804):

La ciència de les matemàtiques presenta l’exemple més brillant de com la raó
pura pot ampliar amb èxit el seu domini sense l’ajut de l’experimentació.

• Nikolai Ivànovitx Lobatxevski (1792-1856):

No hi ha cap branca de les matemàtiques, per abstracta que sigui, que un dia
no pugui ser aplicada a fenòmens del món real.

• Jules Henri Poincaré (1854-1912):

Els descobriments matemàtics, grans o petits mai no neixen per generació es-
pontània. Sempre pressuposen un terra plantat amb el coneixement preliminar
i ben preparat amb el treball tant conscient com subconscient.

• Alexandr Sergueièvitx Puixkin (1799-1837):

La inspiració es necessita en la geometria tant com en la poesia.

Citacions en contra de les matemàtiques

• Sant Agust́ı (354-430):

Si em donen una fórmula i no en sé el significat, no em pot ensenyar res; però
si ja en conec el significat, què m’ensenya?

El bon cristià hauria de tenir compte dels matemàtics i de tots aquells que fan
profecies buides. Ja hi ha el perill que els matemàtics hagin fet un pacte amb
el diable per a enfosquir l’esperit i confinar-nos a les profunditats de l’infern.

• Daniel Bernouilli (1700-1782):

Seria millor per a la veritable f́ısica si no hi hagués matemàtics a la Terra.

• Albert Einstein (1879-1955):

Quan les lleis de la matemàtica es refereixen a la realitat, no són certes; quan
són certes no es refereixen a la realitat.

Des que els matemàtics han enväıt la teoria de la relativitat, ja no m’entenc a
mi mateix.
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• Mart́ı Luter (1483-1546):

La medicina fa la gent malalta, les matemàtiques els fan tristos, i la teologia,
pecadors.

• Charles Darwin (1809-1882):

Un matemàtic és un home cec en una habitació fosca buscant un gat negre
que no és a l’habitació.

Citacions sobre la ciència

• René Descartes (1596-1659)

Els nombres perfectes1 són com els homes perfectes, molt rars.

• Évariste Galois (1811-1832):

Malauradament, el que és poc reconegut és que els llibres cient́ıfics valuosos
són aquells en els que l’autor indica clarament el que no sap; encobrir les
dificultats és el pitjor que pot fer un autor per els seus lectors.

• Karl Friedrich Gauss (1777-1855):

Sabeu que jo escric a poc a poc. Això és, sobretot, per què mai no estic satisfet
fins que no he dit tot el possible en poques paraules, i escriure amb brevetat
pren molt més temps que escriure amb extensió.

• Niels H. Abel (1802-1829):

És com una guineu2, que esborra les seves petjades a la sorra amb la cua.

• Jacques Hadamard (1865-1963):

El camı́ més curt entre dues veritats al domini real passa per domini complex.

• Oliver Heavisive (1850-1925):

Hauria de refusar un bon sopar senzillament perquè no entenc el procés de la
digestió?3

• Charles Hermite (1822-1901):

Som servents i no senyors de les matemàtiques.

1Un nombre es diu perfecte si és igual a la suma de tots els seus divisors més petits que ell. Aix́ı 6, 28, 496,
8128,... són nombres perfectes ja que 6 = 3+2+1, 28 = 14+7+4+2+1, . . .. Es pot veure que els nombres de
la forma 2n−1(2n −1) i tals que 2n −1 és primer són nombres perfectes. Els quatre que hem donat corresponen
a n = 2, 3, 5 i 7. Altres nombres perfectes s’obtenen per n = 13, 17, 19, 31, 61. Com a curiositat, direm que tots
el nombres perfectes coneguts acaben amb 6 o 8.

2Citació sobre l’estil de Gauss.
3Resposta a les cŕıtiques sobre les manipulacions algebraiques formals.
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• David Hilbert (1862-1943):

L’art de fer matemàtiques consisteix a trobar quin és el cas especial que conté
tots els gèrmens de generalitat.

Es pot mesurar la importància d’un treball cient́ıfic pel nombre de publicacions
prèvies que es tornen supèrflues per aquest.

• Lao Tze (604-531 a. C.):

Un bon calculador no necessita ajuts artificials.

• Pierre-Simon de Laplace (1749-1827):

Tal és l’avantatge d’un llenguatge ben constrüıt que la seva notació simplifi-
cada es tradueix sovint en font de profundes teories.

• Gottfried Wilhelm Leibniz (1646-1716):

El nombre imaginari és un subtil i meravellós recurs de l’esperit div́ı, quasi un
amfibi entre el ser i el no ser.

Qui estima la pràctica sense teoria és com el mariner que s’embarca en un
vaixell sense timó ni brúixola i mai no sap on pot naufragar.

• Jules Henri Poincaré (1854-1912):

Les matemàtiques son l’art de donar el mateix nom a coses diferents.4

La ciència es construeix a partir de fets, com una casa a partir de totxos. Però
una col.lecció de fets ja no és una ciència de la mateixa manera que una pila
de totxos no és una casa.

La ment usa les seves facultats per a la creativitat només quan l’experiència
la força a fer-ho.

• Edgar Alan Poe (1809-1849):

To speak algebraically, Mr. M. is execrable, but Mr. G. is (x + 1)−ecrable.5

Citacions sobre filosofia

• René Descartes (1596-1650):

Si algú vol ser un veritable buscador de la veritat ha de dubtar, almenys un
cop i tant com sigui possible, de totes les coses.

• Albert Einstein (1879-1955):

Tot hauria de ser tan simple com fos possible, però no més simple.
4En contraposició a la citació: La poesia és l’art de donar diferents noms a la mateixa cosa.
5Intradüıble.
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La cosa més maca amb la qual podem experimentar és el misteri. Aquest és
la font de tot l’art i ciència veritables.

• William Rowan Hamilton (1805-1865):

A la Terra no hi ha res tan gran com l’home; a l’home no hi ha res tan gran
com la ment.

• David Hilbert (1862-1943):

L’infinit! Cap altra qüestió ha mogut tan profundament l’esperit de l’home.

• Immanuel Kant (1724-1804):

Tot el coneixement humà comença amb intüıcions, continua amb conceptes i
acaba amb idees.

• Joseph-Louis de Lagrange (1736-1813):

Quan demanem consell, el que busquem és complicitat.

• Pierre-Simon de Laplace (1749-1827):

En la seva major part, les qüestions més importants de la vida són finalment
només problemes de càlcul de probabilitats.

El que sabem no és gaire. El que no sabem és immens.

• Gottfried Wilhelm Leibniz (1646-1716):

Res no és més impotant que veure les fonts d’una invenció, que, en la meva
opinió són més importants que les invencions per elles mateixes.

• Blaise Pascal (1623-1662):

Normalment ens convencem més fàcilment per raons trobades per nosaltres
mateixos que per les que s’han acudit a altri.

No puc jutjar el meu treball mentre l’estic fent. He de fer com fan els pintors,
allunyar-me’n i veure’l des d’una distància, però no una distància gaire gran.
Com de gran? Qui sap.

La natura és com una esfera infinita, de la qual el centre és a tot arreu i la
circumferència enlloc.

No és cert que tot sigui incert.

• Lev Nikolaievitx Tolstoi (1828-1910):

Un home és com una fracció, amb numerador el que és i amb denominador
el que pensa d’ell mateix. Com més gran és el denominador més petita és la
fracció.


