Manuel d'utilisateur d'edTOOL®

ecodesign tool

Auteurs :

inédit
innovation for sustainability

Universitat Autònoma de Barcelona

sostenipra

Traduction avec le soutien de

CCI NICE CÔTE D'AZUR

French version, v1, December 2014
Le Projet ECO-SCP-MED

Le PROJET ECO-SCP-MED (Intégration d'Expériences et de Recommandations dans l'Eco-innovation pour la Production et la Consommation DURABLES dans la Zone Méditerranéenne) a pour but d'assurer la durabilité de la chaîne d'approvisionnement des principaux produits et services dans la zone MED.

Sa pierre angulaire repose sur l'amélioration des connaissances sur la Consommation et la Production DURABLES (CPD) et l'incitation à l'éco-innovation et à la compétitivité par la coopération transnationale et, en particulier, la capitalisation des principales réalisations, activités et pratiques de coopération déjà développées dans l'espace méditerranéen.

Financé par Europe/ERDF, le projet est divisé en quatre domaines principaux :
- Durabilité des produits et des services
- Habitudes et Comportement de Consommation Durable
- Gestion Durable dans les Zones Industrielles

EdTOOL et son Manuel d'Utilisation, font partie du travail effectué au sein de la zone de "Durabilité des Produits et des Services", qui a été coordonné par l'Universitat Autònoma de Barcelona (UAB) avec la participation des partenaires suivants : Province de Bologne, ENEA, CRO-CPC, IAT et SSSUP.

COORDINATION

Xavier Gabarrell, Coordinateur du Projet (UAB)

DEVELOPPEMENT D'OUTILS ET REALISATION DU MANUEL D'UTILISATION

UAB (Xavier Gabarrell, Pere llorach, Joan Rieradevall)
inédit (Ramon Farreny, Raul Garcia-lozano, Carles M. Gasol, Markel Cormenzana)

PARTICIPANTS

Province de Bologne (Marino Cavallo, viviana Melchiorre) ENEA
(Mario Tarantini, Arianna Dominici)
CRO-CPC (Goran Romac, Ivana Ivicic)
IAT (Anne Furphy, victor váquez, Lorenzo Chacon). SSSUP
(Tiberio Daddi, Maria Rosa de Giacomo)
Table des matières

1) Introduction ... 1
 Quels sont les destinataires de l'edTOOL ? ... 1
 Pourquoi ce Manuel d'Utilisation ? .. 2

2) Concepts de base d'edTOOL .. 3
 Qu'est-ce que l'ecoconception ? .. 3
 Aperçu d'edTOOL et considérations préalables .. 3

3) Comment utiliser edTOOL ? .. 5
 Accéder à edTool .. 5
 Page de garde de l'edTool .. 5
 Démarrage de l'ecoconception .. 6

4) Etape 1 : Définition .. 8
 Démarrer l'ecoconception .. 9
 Descriptif & Objectifs ... 10
 Contraintes Juridiques ... 11
 Étude de Marché ... 11
 Personnalisation des critères .. 11
 Cas particulier n°1 .. 14
 Cas particulier n°2 .. 14

5) Etape 2 : Evaluation environnementale ... 15
 Sélection des stratégies d'ecoconception ... 16
 Résultats .. 17
 Cas particulier n°3 .. 19

6) Etape 3 : Stratégie ... 20
 Critères d'évaluation .. 20
 Hiérarchiser les stratégies d'ecoconception .. 21
 Plan d'Action ÉCOCONCEPTION ... 23

7) Etape 4 : Rapport .. 24
 Rapport récapitulatif ... 25
 Rapport Personnalisé .. 26

Annexe A : Nouveau Couteau de Conception écologique d'ARCOS ... 27

Annexe B : Études de Cas ... 28
 Étude de Cas de la Veste ... 28
 Étude de Cas de la Caisse en Bois .. 31

Liste des critères de cycle de vie utile .. 33

Annexe C : critères et stratégies des cycles de vie ... 33
 Liste des stratégies d'amélioration environnementale .. 38

Remerciements .. 48
1) Introduction

L'edTOOL est un outil Internet d'aide au processus d'écoconception des produits et des services développé dans le cadre du Projet ECO-SCP-MED (Intégration des Expériences et des Recommandations dans l'Eco-innovation pour la Production et la Consommation Durables dans la Zone Méditerranéenne).

L'edTOOL vise à améliorer la durabilité des produits et des services en mettant en œuvre l'écoconception dans les entreprises de manière progressive et intuitive.

Cet outil a les caractéristiques suivantes :

- Utile pour guider les entreprises tout au long du processus de mise en œuvre de l'écoconception.
- Flexible et intuitif.
- Proposif, avec des recommandations pour l'amélioration environnementale.
- Pratique, avec des exemples réels issus de l'expérience des partenaires.

Quels sont les destinataires de l'edTOOL ?

Les principaux utilisateurs de la boîte à outils seront les entreprises cherchant à appliquer l'écoconception à leurs produits et/ou services. L'utilisation d'edTOOL leur permettra de pouvoir évaluer écologiquement leurs produits et services actuels et définir les stratégies d'amélioration. edTOOL a été développé afin de faciliter l'introduction des concepts d'écoconception dans les produits et les services pour les entreprises.

Grâce à l'edTOOL, les entreprises ayant des niveaux différents de maturité environnementale pourront suivre la méthodologie graduée et intégrer les améliorations environnementales dans leurs produits et services. Le niveau de performance environnementale du produit ou du service éco-conçu dépendra des possibilités et des intérêts des entreprises, mais elles seront toutes encouragées à intégrer les aspects environnementaux dans leurs produits et services.

En outre, la boîte à outils peut également être utilisée dans l'administration publique comme moyen de preuve de la mise en œuvre de l'écoconception dans les produits et les services. Ainsi, elle peut être envisagée dans les procédures publiques d'achats "verts". De même, les décideurs économiques pourront utiliser la boîte à outils pour encourager la mise en œuvre de l'écoconception et de la vulgariser.

Enfin, tous les acteurs intéressés par l'écoconception et l'amélioration environnementale pourront utiliser la boîte à outils afin d'apprendre la méthodologie et l'appliquer dans n'importe quelle étude de cas.
Pourquoi ce Manuel d'Utilisation ?

L’edTOOL est un outil Internet qui inclut de courtes instructions dans chaque étape du processus afin de guider les utilisateurs tout au long de l’application de la méthodologie. Cependant, les utilisateurs sont incités à consulter le Manuel d’Utilisation afin d’obtenir des descriptions et des précisions plus détaillées.

En outre, trois études de cas pratiques sont présentées dans le guide : un Couteau, une Caisse en Bois pour des bouteilles de vin, et une Veste (Figure 1). Ces trois projets sont le résultat d’un projet de recherche promu par l’ENISA (Spanish National Innovation Company) sur l’écoconception et l’innovation dans les produits.

L’étude de cas du Couteau sera utilisée tout au long de ce Manuel d’Utilisation pour illustrer le fonctionnement d’edTOOL, tandis que les deux autres études de cas seront présentées à la Section 5 (Annexe B – Études de Cas).

Figure 1. études de cas incluses dans le Manuel d’Utilisateur.

Figure 2. Organisations et membres participant au projet ENISA.
2) Concepts de base d'edTOOL

Qu'est-ce que l'écoconception ?

L'écoconception est une méthodologie de conception de produits et de services conjuguée à une prise en compte particulière de leurs impacts sur l'environnement au cours de l'ensemble du cycle de vie utile. Il peut être défini comme la conception qui prend en compte les aspects environnement et/ou les aspects associés aux produits, procédés ou systèmes, pendant tout le cycle de vie utile, ainsi que d'autres aspects traditionnels tels que les coûts, la qualité, la sécurité, l'ergonomie, etc. (Figure 3). Ainsi, l'environnement est un autre critère qui est pris en compte pour prévenir les impacts environnementaux.

Aperçu d'edTOOL et considérations préalables

L'edTOOL est un outil Internet qui peut être utilisé sur tout ordinateur doté d'un accès Internet sans contraintes techniques spécifiques. L'outil peut être utilisé pour l'écoconception de produits et de services, bien que sa mise en œuvre soit plus simple dans le cas de l'écoconception de produits. Pour faciliter le processus de l'écoconception de services, des recommandations spécifiques seront communiquées.

Pour la mise en œuvre de la méthodologie de l'écoconception suggérée par edTOOL, une équipe d'écoconception dirigée par un Coordinateur de Projet sera constituée (de plus amples détails viendront ultérieurement). Le temps consacré à la mise en œuvre des mesures suggérées par edTOOL dépendra de chaque projet spécifique (c'est-à-dire en fonction du type de produit ou de service devant bénéficier de l'écoconception, les informations et les connaissances disponibles, les expériences antérieures de l'écoconception, le niveau de détail du projet, etc.) Cependant, en guise de calendrier de référence simplement indicatif, l'ensemble du projet (de la définition initiale des objectifs jusqu'au Plan d'Action avec des actions concrètes) pourra être mis en œuvre dans un délai allant de 1 à 5 mois. Au fil du Manuel d'Utilisateur, il sera fourni des indications sur la façon de mettre en œuvre les étapes spécifiques de l'edTOOL au sein de l'entreprise (nombre de réunions, temps consacré, etc.).

edTOOL envisage deux types d'utilisateur pour chaque projet : un Coordinateur d'écoconception et une série de Membres de l'Equipe d'écoconception. Ils travailleront ensemble tout au long du processus, même si le Coordinateur du Projet sera la personne en charge de l'utilisation de l'outil Internet au nom de l'ensemble de l'équipe d'écoconception. Le Coordinateur gérera l'outil, progressera dans la méthodologie, et décidera du rythme d'avancement du projet. Les Membres de l'Equipe seront invités par le Coordinateur et auront accès à toutes les informations saisies dans l'outil, mais avec des restrictions d'édition.
Pour démarrer un Projet d’Écoconception, le Coordinateur créera un projet, puis il effectuera les 4 étapes principales (Figure 4.).

La première étape est la Définition Initiale, qui inclut la création de l’équipe, la description du projet, la fixation des objectifs, la description des conditions juridiques et l’étude de marché (si nécessaire), et la préparation du module d'évaluation environnementale.

La deuxième étape consistera en l’Evaluation Environnementale, qui sera réalisée individuellement par chaque membre de l’équipe d’écoconception (qui seront invités par le Coordinateur) et qui fournira des informations sur les zones environnementales sensibles.

La troisième étape sera le Choix de la Stratégie d’Écoconception, au cours de laquelle le Coordinateur définira les priorités et affinera les écostratégies afin d’améliorer la performance environnementale du produit ou du service.

Enfin, le rapport récapitulatif présentera les résultats pour l’ensemble du processus.
3) Comment utiliser edTOOL ?

Accéder à edTool

edTOOL est un outil Internet gratuit téléchargeable sur http://edTOOl.sostenipra.cat. Sur cette page de garde, le Coordinateur pourra s’inscrire à l’outil en cliquant sur le bouton “login” (Figure 6). Cette étape sera effectuée une seule fois (Figure 7). Le système pourra identifier chaque utilisateur par son adresse de courrier électronique.

Page de garde de l'edTool

Dès que l'utilisateur est enregistré, il est dirigé directement vers la Page d'Accueil d'edTOOL (Figure 8). Sur cette page, une brève description de l'outil est présentée. En haut de l'écran se trouve un menu (en haut de la page avec un ombrage vert) qui présente les parties de la méthodologie qui seront présentées une par une tout au long du Manuel d'Utilisateur. Ce menu d'en-tête sera toujours présent dans l'ensemble de l'outil Internet.

Figure 6. Page de Garde de l'edTOOL (edTOOL.sostenipra.cat)

Figure 7. Procédure d’inscription.

Figure 8. Page d’Accueil d’edTOOL.
Démarrage de l'écoconception

Pour démarrer un projet d'écoconception, le Coordinateur devra cliquer sur "Démarrer l'Écoconception". Dans cette première étape, le Coordinateur pourra saisir un nom pour le nouveau projet (Figure 9).

Figure 9. Création d'un nouveau projet d'écoconception.

Dès qu'il est saisi, il apparaît sur une liste de projets qui est gérée par le Projet (Figure 10). Si c'est le seul projet créé par le Coordinateur, il sera automatiquement considéré comme projet "Actif".

Figure 10. Liste des projets d'écoconception gérés par le Coordinateur.

S'il y a plusieurs projets, le Coordinateur pourra sélectionner le projet "Actif" à partir du menu "Démarrer l'Écoconception", en cliquant sur "Sélectionner un Projet Écoconception" (Figure 11).

Figure 11. Liste des projets d'écoconception coordonnés par le Coordinateur (plusieurs projets disponibles).
Notez que lorsque le Coordinateur clique sur "Démarrer l'Écoconception", un nouveau menu apparaît sous le menu principal. Ce nouveau menu désormais dénommé "Menu État" (Figure 12), comprend des informations sur :

Le Projet en cours : le nom du projet actif apparaît ici.

État : edTOOL est basé sur quatre états différents qui sont contrôlés par le Coordinateur, à savoir : (1) Définition Initiale, (2) Évaluation Environnementale, (3) Choix de la Stratégie et (4) Rapport Récapitulatif.

Menu déroulant "Changement d'État" : il permet au Coordinateur de changer l'état du projet (des détails complémentaires seront donnés à ce sujet).

Figure 12. Menu de l'État edTOOL, à partir duquel le Coordinateur contrôle l'État du projet.
4) Etape 1 : Définition

Cette étape sera utile pour que le Coordinateur définisse l’équipe, le produit ou le service à évaluer, les contraintes juridiques affectant le produit ou le service, l’environnement du marché, et les critères d’évaluation environnementale à utiliser dans la prochaine étape.

L’étape de la Définition Initiale est la première étape de la méthodologie et permet au Coordinateur de (Figure 13) :

- Gérer l’équipe d’écoconception (ajouter et retirer des membres de l’équipe).
- Décrire le projet d’écoconception et établir les objectifs.
- Créer et modifier les contraintes juridiques affectant le produit ou le service.
- Créer et modifier les études de marché.
- Personnaliser les critères d’évaluation environnementales à utiliser ultérieurement, dans l’Etat 2, pour l’évaluation environnementales du produit ou du service de référence.

Figure 13. Sections incluses dans l’Etape 1 - Définition.
Démarrer l'écoconception

edTOOL est conçu pour être utilisé par une équipe de personnes de différents horizons et rôles. Ainsi, il est recommandé de former des équipes d'au moins 5 personnes comprenant des administrateurs, ingénieurs, personnel du marketing et des ventes, de la comptabilité et de la logistique. En général, plus il y a de personnes représentant l'ensemble de la chaîne de valeur, mieux c'est. À partir du bouton "1.1 - Équipe Écoconception", le Coordinateur pourra intégrer les participants dans le projet d'écoconception, soit du personnel de la société, soit des évaluateurs externes (Figure 14).

Pour utiliser edTOOL, l'équipe devra :

- Avoir une connaissance solide du produit ou du service à éco-concevoir et de son cycle de vie utile. Pour cette raison, il est important que l'équipe comprenne des personnes de différents horizons, y compris les experts en charge de la conception du produit ou du service.

- Avoir une connaissance générale des questions environnementales

À partir de cette section, le Coordinateur pourra ajouter des membres, en renseignant les champs d'informations indiqués à la Figure 15.

Veuillez noter que l'adresse e-mail est utilisée comme identifiant principal de chaque utilisateur d'edTOOL.

Figure 14. Écoconception team page.

Figure 15. Ajout de nouveaux membres à l'équipe d'Écoconception.
Que devrions-nous faire dans notre entreprise ?

Il serait souhaitable d’organiser une réunion de démarrage afin de présenter le projet d’écoconception (y compris le descriptif et les objectifs) et présenter tous les membres de l’équipe. En outre, ceci pourrait s’avérer utile pour que le coordinateur trouve un soutien pour le développement des étapes 1.3 et 1.4 de la méthodologie (contraintes juridiques et étude de marché) (détails complémentaires à suivre). Cette présentation pourrait être effectuée en 1 heure. Une autre façon de procéder serait de remplacer cette réunion en créant un publipostage et en partageant les informations par ce biais.

Descriptif & Objectifs

Le Coordinateur décrira le produit ou service à éco-concevoir et indiquera ce que sont les objectifs généraux poursuivis avec ce projet. (Figure 16). En outre, il pourra ajouter le logo de la société et une image liée au produit ou service. Assurez-vous que les images ne dépassent pas une déinition de 300 x 300 pixels (aucune restriction pour la résolution des images).

Figure 16. Descriptif et objectifs du Projet d’Écoconception.

Image de la couteau à éco-concevoir et le logo de la société.
Contraintes Juridiques

C'est une Etape optionnelle. Dans cette étape, le Coordinateur pourra décrire la législation et les réglementations les plus importantes affectant le produit ou service, qui devront être prises en compte lors de la réflexion sur les stratégies potentielles et les nouveaux concepts de conception écologique (Figure 17).

Figure 17. Contraintes juridiques.

Étude de Marché

C'est une Etape optionnelle. Dans cette Etape, le Coordinateur insère un descriptif et une image des produits ou services afférents qui existent sur le marché, le résultat d'une Étude de Marché (Figure 18).

Figure 18. Étude de marché.

Personnalisation des critères

Cette étape consiste en une préparation de l'Évaluation Environnementale qui sera effectuée au moyen d'une évaluation Qualitative des Critères de Cycle de vie utile. C'est une évaluation environnementale qualitative basée sur l'étude des étapes du cycle de vie utile. En bref, cet outil place dans un graphique en radar les différentes étapes du cycle de vie utile et indique un score qui est représentatif du niveau de performance environnementale de chaque étape par rapport à plusieurs critères qui les caractérisent.
Cette évaluation environnementale commence avec une définition des étapes du cycle de vie utile du produit ou du service analysé. Ici, edTOOL présente un tableau qui inclut les étapes du cycle de vie utile les plus courantes pour tout produit ou service, comme indiqué à la Figure 19.

Ensuite, après la définition des étapes du cycle de vie utile, il est temps de sélectionner les critères du cycle de vie utile qui seront ultérieurement évalués en termes environnementaux (dans les étapes suivantes). Pour chaque étape du cycle de vie utile, une sélection de critères par défaut du cycle de vie utile est présentée, qui sera utilisée afin de réaliser une évaluation environnementale du produit ou du service de référence (Figure 20). Les critères inclus dans le tableau seront adaptés à chaque projet.

Le Coordinateur sera chargé de personnaliser les critères du cycle de vie utile au nom de l'ensemble de l'équipe écoconception. Ainsi, il pourra supprimer certains critères par défaut du cycle de vie utile ou en ajouter d'autres. Des critères de cycle de vie utile supplémentaires peuvent être ajoutés à partir d'une liste prédéfinie avec d'autres critères, disponibles sous l'onglet "Ajout de critères" (Figure 21). Les nouveaux critères personnalisés peuvent être créés sous l'onglet Ajout (Figure 22). Il faut noter que les critères nouvellement créés seront disponibles uniquement pour ce projet, et ne seront pas visibles pour d'autres projets.
Pour aider l'équipe, notez que l'Annexe C inclut une liste de critères potentiels des cycles de vie utile, et un court récapitulatif de chacun d'eux.

Figure 23. Sélection de critères des cycles de vie utile, après le processus de personnalisation.

Que devrions-nous faire dans notre entreprise ?

Le processus de personnalisation des critères devra être effectué lors d'une séance d'atelier (environ 2 heures) avec l'ensemble de l'équipe d'écotoolement (coordinateur + membres de l'équipe). Le Coordinateur de Projet devra s'être préparé à cet atelier en recherchant tous les critères potentiels du cycle de vie utile disponibles dans edTOOL. Au cours de l'atelier, le Coordinateur pourra participer à la discussion comme n'importe quel autre membre, mais il pourra également avoir le rôle de facilitateur/modérateur. Le but de cet atelier sera de parvenir à un accord sur les critères du cycle de vie utile les plus pertinents pour le produit ou le service faisant l'objet de l'étude. Ceci implique implicitement que tous les membres de l'équipe comprendront la signification de chaque critère de cycle de vie utile (étant donné qu'on attend de chaque membre qu'il évalue ultérieurement et individuellement chaque critère). Pendant ou après l'atelier, le Coordinateur personnaliserá les critères sur la page Internet d'edTOOL.
Cas particulier n°1

Écoconception Produit vs Écoconception Service

edTOOL peut être utilisé pour l'écoconception de produits et de services. Cependant, l'application de l'écoconception aux produits est plus simple car il est en général plus facile de reflécher aux étapes du cycle de vie utile d'un produit qu'à celles d'un service.

edTOOL suggère un ensemble d'étapes pour le cycle de vie utile (matières premières > production > emballage distribution > maintenance par l'utilisateur > fin de vie) qui ne peuvent pas être éditées (et qui s'adaptent à la plupart des produits). Dans le cas d'un service, il est possible de rencontrer des difficultés à comprendre et à identifier les étapes du cycle de vie utile (par exemple, dans le cas d'un service de blanchisserie, qu'est-ce qui pourrait être considéré comme emballage ou distribution ?) Cependant, il faut garder à l'esprit que tous les services sont soutenus dans une certaine mesure sur une base matérielle (ex. : infrastructure, consommables, etc.) qui peut intégrer des critères d'écoconception. Par conséquent, il faut réfléchir à cette base matérielle et aux étapes afférentes au cycle de vie utile.

Dans le cas d'un service de blanchisserie, la méthodologie pourrait être la suivante (descriptif d'orientation):

1. Matières premières : elles peuvent inclure la documentation pour obtenir les machines et autres consommables (ex. : matériaux d'infrastructure).
2. Production : elle peut inclure les procédés de production pour obtenir les machines à laver et autres consommables (ex. : construction de l'infrastructure).
3. Packaging : il peut inclure les sacs utilisés pour protéger les vêtements propres et repassés.
5. Utilisation & Maintenance : peut inclure les aspects liés au fonctionnement de la blanchisserie (consommation énergétique, déchets généraux, interventions de maintenance, etc.).
6. Fin de vie : peut inclure les aspects liés à la gestion des vieilles machines à laver, etc. (ex. : fin de vie de l'infrastructure).

Cas particulier n°2

Que se passe-t-il si j'ai moins d'étapes de cycle de vie utile ? Le cas d'une caisse en bois

Comme indiqué précédemment, edTOOL suggère un ensemble d'étapes de cycle de vie utile (matières premières > production > packaging > distribution > maintenance utilisateur > fin de vie). Cependant, il se peut que certaines étapes du cycle de vie utile ne soient pas utiles pour l'écoconception d'un produit ou d'un service. Par exemple, dans le cas d'une caisse en bois pour des bouteilles de vin, l'étape de "Utilisation et maintenance" n'aura aucun intérêt car il pourrait ne pas avoir des aspects environnementaux liés à cette étape.

Si tel est le cas, edTOOL fournit une solution qui consiste à effacer tous les critères de cycle de vie utile liés à cette étape de cycle de vie utile dans l'étape de personnalisation des critères. Ensuite, personne ne pourrait évaluer cette étape du cycle de vie utile et elle ne serait représentée dans les résultats de l'évaluation environnementale (graphique en radar). Informations plus détaillées dans l’Etude de Cas de la Caisse en Bois (Annexe B).
Dès que le Coordinateur a terminé la personnalisation des critères du cycle de vie utile (Figure 23), il pourra passer l'état d'avancement du projet au niveau 2 – *Evaluation Environnementale* (Figure 24) à partir du Menu Etat d'Avancement. Ce faisant, tous les membres de l'équipe pourront poursuivre l'évaluation environnementale de chaque critère de cycle de vie utile choisi.

![Figure 24. Processus de Modification de l'Etat (de 1- Définition Initiale à 2 - Evaluation Environnementale)](image)

5) Etape 2 : Evaluation environnementale

![Diagram](image)

Tout au long de cette étape, chaque membre de l'équipe évaluera les critères précédemment définis, et les résultats seront présentés au Coordinateur.

L'état de l'Evaluation Environnementale est la deuxième étape de la méthodologie (Figure 25). Dans cette étape, le Coordinateur et tous les Membres de l'Equipe peuvent faire une évaluation des critères du cycle de vie utile précédemment définis.

![Figure 25. Sections incluses dans l'Etape 2 - Évaluation.](image)
Sélection des stratégies d'écoconception

Une fois que les critères de l'Evaluation Qualitative du Cycle de vie utile sont convenus, chaque membre de l'équipe écoconception peut passer à l'étape 2.1 et évaluer les critères. Pour ce faire, ils utiliseront l'échelle de 1 à 5 (5 étant le meilleur score et 1 le moins bon score) (Figure 26). Cette évaluation devra être faite sur la base de connaissances fiables en évitant autant que possible toute subjectivité. Dans le cas où les informations ne sont pas disponibles ou si l'utilisateur ne sait pas vraiment quel score doit être affecté à un critère particulier, il inscrira un "0".

Figure 26. Échelle utilisée pour l'évaluation des critères du cycle de vie utile.

Figure 27. Évaluation Environnementale des Critères de Cycle de Vie Utile

Après avoir sélectionné tous les critères (Figure 27), cliquez sur le bouton "Enregistrer". Notez que les cellules vides ne sont pas autorisées (Elles devront avoir soit un score entre 1 et 5, soit un 0).

Lorsque toute l'équipe d'écoconception (Coordinateur compris) aura évalué les critères du cycle de vie utile, le projet sera prêt à passer à la phase suivante.

Le Coordinateur pourra vérifier si les membres de l'équipe ont fait l'évaluation en cliquant sur le bouton "Indiquer les membres qui ont fait l'évaluation" (Figure 28).

Figure 28. Examen des membres qui ont déjà évalué les critères du cycle de vie utile.
Que devrions-nous faire dans notre entreprise ?

Le processus d'évaluation des critères de cycle de vie utile est réalisé individuellement par chaque membre de l'équipe écoconception (y compris le coordinateur). Il est fortement suggéré que cette évaluation ne soit pas faite plus d'une semaine après l'atelier des "Critères d'Evaluation" (idéalement, elle pourrait être réalisée juste après cet atelier). Cependant, étant donné qu'il s'agit d'une activité individuelle, le Coordinateur pourra décider du temps qu'il reste pour effectuer l'évaluation. Il est recommandé que le Coordinateur rappelle aux membres de l'équipe d'effectuer l'évaluation dans les délais impartis. D'autre part, il est également important que chaque personne fasse l'évaluation en une seule fois, afin de maintenir la même "échelle d'évaluation individuelle" lorsqu'elle attribue des scores à tous les critères du cycle de vie utile.

Cette évaluation individuelle, réalisée en une seule fois, ne devrait pas prendre plus d'une heure.

ÉVALUATION INDIVIDUELLE

Résultats

Les résultats de l'évaluation environnementale sont mis à disposition du Coordinateur et au reste de l'équipe uniquement lorsque le Coordinateur change l'état dans "3-Sélection de la Stratégie" (Figure 29). Juste après avoir changé l'état, les résultats seront mis à la disposition pour consultation.

Les résultats de l'évaluation environnementale pour le produit ou le service sont présentés dans un tableau récapitulatif. Ce tableau affiche le score moyen pour chaque étape des critères du cycle de vie utile (Figure 30).

En outre, les résultats individuels de chaque membre peuvent être vérifiés en cliquant sur le bouton "Visualiser les résultats par membre" (Figure 31).
Ici, le [Coordinateur] peut déterminer si les scores sont relativement similaires dans l'équipe ou s'il y a une grande hétérogénéité (Figure 32).

Un indicateur utile de cette hétérogénéité est la déviation standard relative des questions pour chacun des critères du cycle de vie utile, qui est indiquée lorsque l'on observe les résultats par membre. Si nécessaire, le Coordinateur pourra demander à l'équipe de revoir leurs scores. Pour ce faire, l'état du projet devra repasser à l'étape 2 – Evaluation Environnementale.

En outre, les deux représentations graphiques des résultats sont disponibles : le "diagramme en radar" (Figure 33) et le "Graphique des moyennes des critères" (Figure 34).

Le diagramme en radar est utile pour visualiser les étapes du cycle de vie utile ayant la performance environnementale la plus basse. Dans cette exemple, on peut constater que :
‘Utilisation & Maintenance’ et ‘Production’ présentent les scores les plus faibles. Inversement, l'étape ‘Fin de vie utile’ présente le score le plus élevé.

D'autre part, le "tableau des moyennes des critères" montre le score moyen de chacun des critères du cycle de vie utile, triés par ordre croissant. Cela signifie que ce tableau mettra en évidence les critères ayant les scores les plus faibles du côté gauche, et ceux qui ont les scores les plus élevés du côté droit. En outre, la barre de couleur correspond à l'étape du cycle de vie utile.
Que devrions-nous faire dans notre entreprise ?

Un atelier avec l'ensemble de l'équipe écoconception doit avoir lieu une fois que les résultats sont disponibles. Le temps entre l'atelier précédent (étape 1.5) et celui-ci ne doit pas dépasser 10 jours, afin de garder à l'esprit toutes les idées et tous les critères. Cet atelier sera utile pour présenter les résultats et de les commenter (cela pourrait prendre 1 heure).

En outre, cet atelier pourrait être étendu à une session d'une matinée afin de passer en revue les étapes suivantes de la méthodologie (sélection et hiérarchisation des stratégies d'écoconception, se référer à "Atelier de Stratégies d'écoconception" ultérieurement)

Cas particulier n°3

Que se passe-t-il si nous avons d'autres études d'évaluation de l'impact environnemental (ex. : LCA) ?

L'évaluation Qualitative des Critères du Cycle de vie utile est une manière facile et rapide d'effectuer une évaluation environnementale. Les principaux atouts de cet outil sont l'introduction du concept de cycle de vie utile, la facilité de lecture des professionnels non-initiés et le fait qu'il favorise la communication des améliorations. Inversement, c'est un outil plutôt subjectif dont les résultats dépendent du savoir-faire et de l'expérience de l'équipe. En outre, il ne montre pas l'importance de chacune des étapes du cycle de vie utile, lesquelles sont pondérées de manière égale. Pour cette raison, il peut être souhaitable d'utiliser d'autres outils d'évaluation environnementale pour une évaluation plus rigoureuse, telle que l'Evaluation du Cycle de Vie Utile (ECVU).

L'ECVU est un processus d'évaluation des charges environnementales associées à un produit, un processus ou une activité en identifiant et en quantifiant l'énergie et les matériaux utilisés et les rejets dans l'environnement, et d'identification et d'évaluation des opportunités de modification des améliorations environnementales. L'évaluation inclut l'ensemble du cycle de vie utile, du processus ou de l'activité, couvrant l'extraction et le traitement des matières premières ; la fabrication, le transport et la distribution ; l'utilisation, la réutilisation, la maintenance ; le recyclage, et l'élimination finale.

Dans le cas où une étude ECVU est disponible pour le produit ou service faisant l'objet de l'étude, le Coordinateur est incité à comparer ses résultats avec ceux obtenus avec edTOOL. Dans le cas où il existe une divergence entre les méthodologies des étapes du cycle de vie utile accumulant davantage d'impacts, le Coordinateur devra le prendre en compte et effectuer des modifications de la liste des stratégies d'écoconception potentielles suggérées à l'étape 3.1. Comme on le verra par la suite, edTOOL présentera une liste de stratégies faisant référence aux deux étapes de cycle de vie utile les plus impactants sur la base de l'Evaluation Qualitative des Critères du Cycle de vie utile. En particulier, le Coordinateur aura besoin d'inclure manuellement l'ensemble des stratégies liées aux étapes du cycle de vie utile qui n'ont pas été considérées comme impactant davantage selon edTOOL mais ont semblé avoir un impact substantiel selon l'étude alternative d'évaluation d'impact.

Pour plus de détails sur ce sujet, se référer à l'Etude de Cas de la Veste (Annexe B).
6) Etape 3 : Stratégie

Tout au long de cette étape, les stratégies d’écoconception potentielles sont sélectionnées, hiérarchisées et matérialisées dans un Plan d’Action.

Le statut de l’Evaluation des Stratégies est la troisième étape de la méthodologie. Dans cet état, edTOOL suggère une série de stratégies d'écoconception qui seront sélectionnées et hiérarchisées par l'ensemble de l'équipe de l'écoconception, et un Plan d’Action sera ensuite défini (Figure 35).

Critères d'évaluation

edTOOL intègre une base de données de stratégies génériques d'amélioration environnementale qui pourraient être appliquées aux produits et aux services, qui sont groupées selon la phase du cycle de vie utile à laquelle ils correspondent. En prenant cela en compte, edTOOL suggère un ensemble de stratégies d'amélioration environnementale portant spécifiquement sur les phases du cycle de vie utile avec une performance environnementale moins bonne (selon les résultats de l'évaluation environnementale).
Ensuite, le Coordinateur devra naviguer dans l'ensemble des stratégies suggérées avec la collaboration de l'ensemble de l'équipe et vérifier si les stratégies :

- sont adaptées au produit ou service évalué, ce qui signifie qu'il n'est pas logique de mettre en œuvre une telle stratégie dans le produit ou le service qui est l'objet de l'étude.
- ont déjà été achevées pour le produit ou le service qui est l'objet de l'étude, ce qui signifie que ces stratégies ont déjà été appliquées.

Seules ces stratégies sont désignées comme Appropriées et celles qui ne sont pas désignées comme Achevées seront soumises à une autre évaluation.

En outre, le Coordinateur pourra ajouter d'autres stratégies prédéfinies proposées par edTOOL qui correspondent à d'autres phases du cycle de vie utile. Pour ce faire, le Coordinateur cliquera sur "Ajouter une Etiquette de Stratégie" et recherchera des stratégies qui pourraient être intéressantes (Figure 36). Par exemple, dans l'étude du boîtier à couteaux indiquée dans ce Guide, certaines stratégies pour la phase des "Matières premières" sont incluses, car il s'agissait de la troisième phase du cycle de vie utile avec une performance environnementale moins bonne.

En outre, le Coordinateur peut définir les nouvelles stratégies sous l'étiquette "Nouvelle Stratégie Personnalisée" pour n'importe lesquelles des phases du cycle de vie utile.

Hiérarchiser les stratégies d'écoconception

Ensuite, le Coordinateur peut se déplacer vers le menu principal et sélectionner ‘3.2 – Hiérarchiser les stratégies d'écoconception’ afin d'appliquer le filtre précédent basé sur la pertinence et la complétude des stratégies. Ceci réduira la liste des stratégies d'amélioration environnementale à un ensemble plus facilement gérable, qui sera évalué en termes sociaux, économiques et techniques au sein de cette étape.

Cette évaluation envisagera une échelle de viabilité de 1 à 5, 1 étant le score le moins bon, et 5 le meilleur (Figure 37). La réalisation de cette évaluation signifie que l'ensemble de l'équipe discute des implications sociales, économiques et techniques de la mise en œuvre de chacune des stratégies, et attribue un score à chacun de ces paramètres.
Après avoir évalué ces trois 'paramètres de viabilité', le score moyen est indiqué sur la colonne avec les cellules bleues.

Ensuite, il est temps que l'équipe décide des stratégies qui seront envisagées pour le Plan d'Action, lequel se traduira en mesures spécifiques à mettre en œuvre. Il est suggéré que les stratégies ayant une viabilité moyenne au moins supérieure à 4 soient incluses dans le Plan d'Action (Figure 37).

Figure 37. Evaluation de la viabilité des stratégies potentielles et sélection de celles qui seront incluses dans le Plan d'Action

Lorsque que les stratégies ont été évaluées et que celles qui doivent être incluses dans le Plan d'Action sont sélectionnées, le Coordinateur clique sur le bouton "Enregistrer". Cela permet de passer à la prochaine étape qui est le Plan d'Action d'Écoconception. Le fait d'arriver à ce point-là de la méthodologie est, en lui-même, une réussite, car cela signifie que l'équipe a obtenu une liste de stratégies d'écocception qui devrait être mise en œuvre.

Que devrions-nous faire dans notre entreprise ?

La sélection et la hiérarchisation des stratégies devraient être faites au cours d'une session d'atelier en présence de l'ensemble de l'équipe d'ecocception (coordinateur + membres de l'équipe). Cette session d'atelier pourrait être intégrée dans l'"Atelier des Résultats de l'Evaluation Environnementale" (temps total : une matinée / un après-midi).

Pour cet atelier, il est extrêmement important que le Coordinateur du Projet se soit préparé en passant en revue toutes les stratégies potentielles d'écocception dans edTOOL (cf. Annexe C), ce qui sera utile au cours de la discussion et la gestion de l'outil Internet edTOOL.

Au cours de l'atelier, le Coordinateur pourra participer à la discussion comme n'importe quel membre mais il jouera également le rôle du facilitateur/modérateur, et introduira les changements à edTOOL au nom de l'ensemble de l'équipe.

Au cours de la discussion, les avis argumentés seront encouragés. Le but de l'atelier sera de (1) faire une sélection des stratégies d'écocception et (2) hiérarchiser les stratégies sélectionnées et, finalement, décider de celles qui feront l'objet d'un travail complémentaire dans le Plan d'Action.
Plan d'Action ECOCONCEPTION

Le Plan d’Action d’écoconception est la dernière étape avant l’obtention d’un rapport de résultats. La mise au point d’un Plan d’Action d’écoconception peut nécessiter beaucoup de temps et d’efforts, car il consiste à concrétiser les stratégies d’écoconception en actions spécifiques et concrètes. Pour cette raison, le Plan d’Action écoconception peut être considéré comme une étape avantageuse car il est probable que certaines organisations passeront outre le Plan d’Action tandis que d’autres – celles qui ont un engagement plus important ou ayant davantage de ressources disponibles – le mettront au point.

Dans cette étape, l’équipe définira les actions concrètes à effectuer afin de mettre en œuvre les stratégies écoconception sélectionnées, établir les responsabilités et les échéances. Par conséquence, pour chaque stratégie, le Coordinateur pourra introduire une ou plusieurs actions (Figure 38). Il est possible que deux stratégies puissent être mises en œuvre simultanément par une seule action ou, au contraire, qu’une seule stratégie aboutisse à plusieurs actions.

En conséquence, un Plan d’Action pour l’écoconception du produit ou du service est obtenu (Figure 39). Ce Plan d’Action est le principal résultat du processus d’écoconception, car il inclut les Actions à mettre en œuvre afin d’accroître la performance environnementale du produit ou du service. En outre, il indique la personne chargée d’appliquer les actions et une échéance.

Figure 38. Descriptif des actions au sein du Plan d’Action.

Figure 39. Plan d’Action.
Une fois l’Action réalisée, le Coordinateur pourra passer à la dernière Etape du Projet, en faisant passer le statut à ’4 – Rapport (Figure 40).

7) Etape 4 : Rapport

Tout au long de cette étape, on obtient un rapport qui récapitule les principaux résultats du projet écoconception.

Le rapport est l’étape finale de la méthodologie, au cours de laquelle le Coordinateur pourra obtenir un rapport récapitulatif prédéfini ou créer un rapport personnalisé (Figure 41).

edTOOL fournit deux types de Rapport, un rapport intitulé ’Rapport Récapitulatif’ qui est composé d’un ensemble de parties prédéterminées de la méthodologie, et un Rapport Personnalisé, dont le contenu peut être adapté à chaque projet.
Rapport récapitulatif

Le contenu du Rapport récapitulatif est préétabli afin de fournir un moyen commun de déclaration des résultats de la mise en œuvre d’edTOOL, lequel inclut les étapes et les informations les plus pertinentes (Figure 43) : Equipe d’Ecoconception, Descriptif & Objectifs, Evaluation Environnementale, Diagramme en Radar et Plan d’Action.

Ce Rapport pourrait être utilisé pour synthétiser le projet d'ecoconception. Ce rapport peut être imprimé ou converti en fichier PDF en cliquant sur le bouton ”Imprimer le Rapport”.

Figure 42. Aperçu du Rapport Récapitulatif.
Rapport Personnalisé

Cette étape, disponible dans le menu principal "4-Rapport", permet au Coordinateur de choisir les informations qui seront incluses dans le Rapport (Figure 43).
Annexe A : Nouveau Couteau de Conception écologique d'ARCOS

La mise en œuvre du Plan d'Action pour l'étude de Cas du Couteau aboutit au produit présenté sur l'illustration. On peut observer l'utilisation du matériau recyclé dans l'âme de la poignée ainsi que la nouvelle lame du couteau, dont l'épaisseur est passée de 3,0mm à 2,5mm, et qui est produit selon un nouveau processus automatisé qui réduit la production de déchets.
Annexe B : Etudes de Cas

Étude de Cas de la Veste

L'étude de Cas de la Veste porte sur une veste imperméable en nylon 100% recyclé obtenu à partir de filets de pêche, de la société ECOALF (Figure 44).

Les résultats de l'Evaluation Qualitative des Critères du Cycle de vie utile de la Veste qui fait l'objet de l'Etude de Cas sont présentés dans les Figures 45 et 46. Sur ces figures, on peut voir les critères du cycle de vie utile utilisés pour la veste (certains d'entre eux sont des critères par défaut, d'autres ont été définis par les membres de l'équipe de l'étude de cas). Cette évaluation environnementale montre que les deux phases du cycle de vie utile présentant la plus mauvaise performance sont la "fin de vie utile" et la "production" (suivies de près par le "packaging"). Au contraire, la phase du cycle de vie utile ayant la meilleure performance environnementale serait l’"Utilisation & Maintenance", suivie des "Matières Premières".

Cependant, l'Evaluation du Cycle de Vie Utile (ECVU) a été réalisée pour avoir un moyen alternatif d'évaluation de la performance environnementale du produit. Dans ce cas, l’ECVU a montré des résultats contrastés par rapport à l'évaluation Qualitative des Critères du Cycle de Vie Utile.
Selon l'ECVU, la phase du cycle de vie utile la plus impactante est l’"Utilisation & Maintenance", principalement en raison de la consommation énergétique pour le lavage, le séchage et le repassage de la veste (Figure 47). C'est un aspect qui a été négligé lors de l'Evaluation Environnementale la première fois (il ne faut pas oublier que l'écoconception vise à réduire l'impact environnemental pendant tout le cycle de vie utile des produits et des services !). De même, la seconde phase la plus impactante a été les matières premières (en raison du processus de recyclage des filets de pêche).

![Figure 47. Evaluation Environnementale de la veste de l'étude de cas. Chaque barre représente une catégorie d'impacts (ex. : GWP signifie "Potentiel de Réchauffement Climatique" ; ODP signifie "Potentiel de Destruction de la Couche d'Ozone", etc.) Les résultats varient d'une catégorie d'impacts à une autre mais, en général, les couleurs rouges et bleues sont prédominantes (ce qui signifie qu'ils contribuent le plus à l'impact environnemental de la catégorie d'impacts respective).](image)

Sur la base des Critères Qualitatifs du Cycle de vie utile, edTOOL suggère un ensemble de stratégies d'écoconception pour ces deux phases du cycle de vie utile ayant la moins bonne performance environnementale (dans cette étude de cas, il s'agit de la production et de la fin de vie). Cependant, l'équipe savait que les phases du cycle de vie utile les plus préoccupantes seraient les "Matières Premières" et l’"Utilisation & Maintenance" (selon les résultats de l'ECVU).

![Figure 48. Le Coordinateur peut supprimer les stratégies liées aux phases du cycle de vie utile qui se sont avérées les moins préjudiciables à l'environnement.](image)

Ainsi, le Coordinateur a la possibilité d'inclure (une par une) les différentes stratégies d'écoconception qui sont liées aux phases les plus impactantes du cycle de vie utile selon l'ECVU. Le Coordinateur peut également décider de conserver les stratégies suggérées par edTOOL. En fait, n'importe quelle entreprise peut choisir d'étudier les stratégies d'écoconception proposées par l'outil mais, pour des raisons évidentes de temps et de ressources, on se concentre normalement sur celles liées aux phases les plus impactantes du cycle de vie utile.

![Figure 49. Le Coordinateur peut ajouter (une par une) les stratégies liées aux phases du cycle de vie utile qui se sont avérées les plus nuisibles à l'environnement.](image)
Après avoir effectué ces modifications, l'équipe peut poursuivre la sélection et la hiérarchisation des stratégies d'écoconception, tel que décrites dans le Manuel d'Utilisateur.

Dans cette étude de cas, les stratégies qui ont été hiérarchisées et incluses dans le Plan d'Action étaient les suivantes :

1. Réduction du recours au séchage et au repassage
2. Communication sur l'utilisation et l'environnement
3. Extension des options d'aptitude à l'emploi de la veste

La mise en œuvre de ces stratégies aboutit à une veste imperméable avec capuche (filets de pêche 100% recyclés), qui a la particularité d'être fonctionnelle, dont les principales pièces peuvent être retirées (manches, bas) pour une plus grande versatilité par rapport aux conditions météorologiques ou aux souhaits du client, et qui est complétée par une doublure interne amovible (100% coton recyclé). Elle comporte un étiquetage avec les recommandations d'utilisation (Figure 50).

Figure 50. Prototype de la veste à conception écologique
Etude de Cas de la Caisse en Bois

La Caisse en Bois de l'Étude de Cas est une caisse pour trois bouteilles de vin (350 x 260 x 103 mm) en pin, en Fibre de Moyenne Densité (MDF) pour les couvercles supérieur et frontal, avec une poignée en jute, de la société FINSA (Figure 51).

A l'étape 1.5, edTOOL suggère un ensemble de phases de cycle de vie utile pour l'évaluation Qualitative des Critères de l'Evaluation Qualitative. Dans ce cas, il est logique d'évaluer la phase d'"Utilisation et Maintenance" pour une caisse en bois. Pour aborder cette situation, le Coordinateur peut supprimer les critères du cycle de vie utile pour cette étape du cycle de vie utile (Figure 52). Ce faisant, le nombre total de phases du cycle de vie utile sera réduit.

Une fois la personnalisation des critères du cycle de vie utile effectuée, les membres de l'équipe peuvent poursuivre le projet comme d'habitude et effectuer leurs évaluations (Figure 53). Dans ce cas, étant donné qu'il y a 5 phases de cycle de vie utile, le diagramme en radar aura 5 axes (pentagone) au lieu de 6 (hexagone) (Figure 54).
Après l'Évaluation Environnementale, les stratégies qui ont été hiérarchisées et incluses dans le Plan d'Action dans cette étude de cas ont été les suivantes :

- Augmentation de la Multifonctionnalité
- Augmentation de la durabilité
- Utilisation de Matériaux Locaux

La mise en œuvre de ces stratégies a abouti à une caisse en bois destinée à avoir une vie multifonctionnelle plus longue. Pour cela, elle a inclus des graphiques informatifs au verso du couvercle afin d'encourager d'autres utilisations futures (ex. : pondoir, boîte à outils). En outre, elle a remplacé la poignée d'origine en jute (provenant d'Asie) par une poignée en chanvre réalisée à partir de matériaux locaux (Figure 55).
Liste des critères de cycle de vie utile

<table>
<thead>
<tr>
<th>Matériaux</th>
<th>Diversité des matériaux</th>
<th>Elle peut être représentée par le nombre des différentes typologies des matériaux impliqués dans le produit. En général, moins ils sont nombreux, mieux c'est.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantité de matériaux</td>
<td>Elle peut être représentée par le poids des matériaux impliqués dans le produit. Moins il y a de matériaux utilisés dans un produit, moindre sont les ressources dans le processus de production.</td>
</tr>
<tr>
<td></td>
<td>Sac à dos de matériaux écocologiques</td>
<td>Un sac à dos écologique est la quantité totale de matériaux extraite de la nature pour créer un produit ou un service, minorée du poids réel du produit. Cela signifie que les sacs à dos écologiques recherchent les flux cachés de matériaux. Les sacs à dos écologiques adoptent une méthodologie du cycle de vie utile et expriment la contrainte environnementale ou l'efficacité des ressources du produit ou du service.</td>
</tr>
<tr>
<td></td>
<td>Énergie grise des matériaux</td>
<td>L'énergie grise est la somme de toutes les énergies nécessaires pour produire des biens ou des marchandises, considérées comme si cette énergie était incorporée ou "intégrée" dans le produit lui-même.</td>
</tr>
<tr>
<td></td>
<td>Renouvelabilité</td>
<td>Une ressource renouvelable est une ressource naturelle qui peut se reconstituer avec le temps, soit par reproduction biologique soit par d'autres processus de renouvellement naturel.</td>
</tr>
<tr>
<td></td>
<td>Durabilité</td>
<td>La durabilité vise à étendre la durée de vie des produits grâce aux propriétés intrinsèques des matériaux.</td>
</tr>
<tr>
<td></td>
<td>Pénurie</td>
<td>Elle fait référence au manque ou à la disponibilité limitée des ressources qui sont fondamentales dans le produit ou le service fourni. Plus elles sont rares, plus la situation est mauvaise.</td>
</tr>
<tr>
<td></td>
<td>Contenu recyclé</td>
<td>La proportion, en masse, de matériaux recyclés dans un produit ou un emballage. Seuls les matériaux de préconsommation ou de postconsommation sont considérés comme contenus recyclables.</td>
</tr>
<tr>
<td></td>
<td>Composants récupérés</td>
<td>Les matériaux récupérés sont des produits, des éléments ou des parties d’une production ou d’un flux de déchets prélevés ou séparés pour leur réutilisation (sans traitement, sinon il s’agit de recyclage).</td>
</tr>
<tr>
<td></td>
<td>Recyclabilité</td>
<td>La recyclabilité fait référence à la capacité d’un matériau d’être prélevé et séparé d’un flux de déchets pour être recyclé.</td>
</tr>
<tr>
<td></td>
<td>Biodégradabilité</td>
<td>La biodégradabilité fait référence à la capacité de décomposition par des agents biologiques, en particulier des bactéries.</td>
</tr>
<tr>
<td></td>
<td>Origine des matériaux</td>
<td>L’origine des matériaux fait référence au lieu géographique où ils sont obtenus. Les matériaux locaux sont souhaitables en raison des courtes distances</td>
</tr>
<tr>
<td></td>
<td>Toxicité</td>
<td>La toxicité fait référence au degré auquel une substance peut léser un organisme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production</th>
<th>Complexité du processus</th>
<th>Elle fait référence au niveau d’intrication du processus de production. Elle peut être réduite en limitant le nombre de procédés de production (moins il y en a, mieux c’est.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Efficacité de la technologie de production</td>
<td>Fait référence à la capacité de la technologie de production de produire les résultats souhaités sans gaspiller les intrants (matériaux, temps ou énergie)</td>
</tr>
<tr>
<td>Efficacité énergétique</td>
<td>L’efficacité énergétique fait référence au pourcentage de l’intrant énergétique total d’une machine ou d’un équipement qui est consommé dans un travail utile et non pas gaspillée sous forme de chaleur inutile.</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Efficacité de l’eau</td>
<td>Fait référence à la capacité de la technologie de production de générer les résultats souhaités sans gaspiller l’eau.</td>
<td></td>
</tr>
<tr>
<td>Efficacité des matières premières</td>
<td>Fait référence à la capacité de la technologie de production de produire les résultats souhaités sans gaspiller les matières premières.</td>
<td></td>
</tr>
<tr>
<td>Renouvelabilité de l’énergie</td>
<td>Une ressource renouvelable est une ressource naturelle qui peut se renouveler avec le temps, soit par reproduction biologique, soit par d’autres processus qui se reproduisent naturellement.</td>
<td></td>
</tr>
<tr>
<td>Origine de l’énergie</td>
<td>L’origine de l’énergie fait référence au lieu géographique à partir duquel elle est obtenue. L’énergie locale est souhaitable.</td>
<td></td>
</tr>
<tr>
<td>Production de déchets</td>
<td>Elle réfère à la quantité de matériaux ou produits qui entre dans le flux de déchets avant compostage, incinération, enfouissement ou recyclage.</td>
<td></td>
</tr>
<tr>
<td>Traitement des déchets produits</td>
<td>Déchets produits pouvant être traités de différentes manières. En général, la hiérarchie des déchets, par ordre de performance environnementale est la suivante : recyclage, (récupération des matériaux) ; autre récupération, ex. : récupération de l’énergie ; et élimination.</td>
<td></td>
</tr>
<tr>
<td>Interaction avec d’autres organisations visant l’efficacité</td>
<td>Les interactions entre les organisations peuvent offrir des opportunités pour améliorer les efficiencies et réduire les coûts (ex. : partage de services communs, réutilisation des flux de déchets…).</td>
<td></td>
</tr>
<tr>
<td>Cycle de production fermé/ouvert</td>
<td>Les systèmes à boucle ouverte sont de nature linéaire, dans lesquels les investissements en ressources et en capitaux se déplacent dans le système pour devenir des déchets, tandis que les systèmes à boucle fermée sont ceux où les déchets peuvent devenir des intrants pour de nouveaux processus.</td>
<td></td>
</tr>
<tr>
<td>Production – localisation du marché</td>
<td>Fait référence à la distance géographique entre le lieu de production et le marché pour un produit ou service donné. En général, plus la distance est courte, mieux c’est.</td>
<td></td>
</tr>
<tr>
<td>Normalisation des tailles de packaging</td>
<td>Fait référence à l'utilisation du packaging dont la taille est conforme aux normes existantes. Ces normes ont pour but d’aider l'industrie (packaging, producteurs, transport, etc.) en prenant des decisions mutuellement cohérentes sur la taille des éléments (packaging), de telle sorte que les parties puissent réaliser des gains importants.</td>
<td></td>
</tr>
<tr>
<td>Quantité de matériaux de packaging</td>
<td>Fait référence à la quantité de matériaux utilisés dans le packaging.</td>
<td></td>
</tr>
<tr>
<td>Rapport du volume packaging/produit</td>
<td>Rapport entre le poids du packaging et le volume du produit. Plus il est petit, mieux c’est.</td>
<td></td>
</tr>
<tr>
<td>Rapport du poids packaging/volume</td>
<td>Il peut être représenté par un certain nombre de typologies différentes impliquées dans le packaging.</td>
<td></td>
</tr>
<tr>
<td>Diversité des matériaux</td>
<td>Elle peut être représentée par le nombre des différentes typologies de matériaux impliqués dans le packaging. En général, plus le nombre est faible, mieux c’est.</td>
<td></td>
</tr>
<tr>
<td>Renouvelabilité</td>
<td>Une ressource renouvelable est une ressource naturelle qui peut se reconstituer avec le temps, soit par reproduction biologique, soit par d’autres processus qui se reproduisent naturellement.</td>
<td></td>
</tr>
<tr>
<td>Recyclabilité</td>
<td>La recyclabilité fait référence à un matériau à prélever et à séparer d’un flux de déchets pour son recyclage. Le packaging peut être constitué de matériaux renouvelables.</td>
<td></td>
</tr>
</tbody>
</table>
| Distribution | Contenu recyclé | La proportion massique du matériau recyclé dans un produit ou un packaging. Seuls les matériaux de préconsommation et de postconsommation seront considérés comme contenu recyclé.
|-----------------------|-----------------|
| | Taux de | Fait référence au pourcentage qui peut effectivement être récupéré ou réutilisé.
| | réutilisation/récupération du packaging | |
| | Décerts issus du packaging | Fait référence à la quantité de matériaux issus du packaging qui entrent dans un flux de déchets.
| | Dommages en cours de transport | Fait référence aux dommages subis par les produits au cours de leur transport, en partie causés par le packaging utilisé.
| | Étiquetage | Fait référence à l'étiquetage en place, qui pourrait identifier les matériaux utilisés dans le packaging et, ainsi, fournir une indication sur la meilleure option de gestion des déchets.
| | Durabilité environnementale de la logistique | Fait référence à la performance environnementale globale de la logistique en place, comprise comme étant la gestion du flux des ressources entre le point d'origine et le point de consommation afin de satisfaire certaines contraintes.
| | Efficacité de la charge transportée | Fait référence à l'optimisation du rapport entre la charge transportée et la capacité de charge du mode de transport.
| | Efficacité du volume occupé | Fait référence à l'optimisation du rapport entre le volume transporté et la capacité volumétrique du mode de transport.
| | Distances | La distance entre le lieu de production et le marché contribuent à l’impact sur l’environnement. Plus les distances sont courtes, mieux c’est.
| | Itinéraires de transport | Le transport de marchandises d'un lieu à un autre peut être effectué par différents itinéraires (ils peuvent être assez directs ou, au contraire, redondants). Par conséquent, cet aspect prend en considération le niveau d'optimisation de l’itinéraire de transport, en recherchant des distances globalement plus courtes entre les points de livraison tout au long de l’itinéraire.
| | Conduite écologique | Fait référence à la pratique consistant à conduire de telle sorte à minimiser la consommation de carburant et l’émission de dioxyde de carbone.
| | Efficacité énergétique des modes de transport | L’efficacité énergétique fait référence au pourcentage de l’énergie totale entrant dans une machine ou un équipement qui est consommée en travail utile et non pas gaspillée sous forme de chaleur inutile.
| | Impact environnemental du système de transport | Fait référence à l’impact environnemental global du système de transport grâce auquel les modes de transport pourraient être hiérarchisés. Par exemple, le transport maritime d’une tonne est écologiquement préférable au transport ferroviaire et, à son tour, le transport ferroviaire est préférable au transport routier.
| | Technologie du véhicule | La technologie des véhicules conditionne non seulement la performance du véhicule mais également l’impact environnemental de certains véhicules tels que les voitures, qui sont classés selon leur technologie (EURO 4, EURO 5, etc.).
| | Émission des véhicules | Fait référence aux gaz d'échappement des véhicules. Leur quantité et composition dépendent de la technologie des véhicules (moteurs, filtres, etc.), du carburant, et des habitudes de conduite.
| | Renouvelabilité des carburants | Une ressource renouvelable est une ressource naturelle qui peut se reconstituer avec le temps, soit par reproduction biologique, soit par des processus se reproduisant naturellement.
<table>
<thead>
<tr>
<th>Fiabilité</th>
<th>Fait référence à la confiance en ce que le produit ou le service devrait faire ou est conçu pour faire.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication environnementale</td>
<td>Fait référence à l'absence ou l'existence des aspects de communication environnementale visant à promouvoir une utilisation écologique par l'utilisation.</td>
</tr>
<tr>
<td>Efficacité de l'utilisation des matériaux</td>
<td>Fait référence à la capacité du produit ou du service à utiliser les matériaux avec modération et sans générer de déchets.</td>
</tr>
<tr>
<td>Efficacité de l'utilisation de l'énergie</td>
<td>Fait référence à la capacité du produit ou du service à utiliser l'énergie avec modération et sans générer de déchets.</td>
</tr>
<tr>
<td>Renouvelabilité de l'utilisation de l'énergie</td>
<td>Une ressource renouvelable qui peut se reconstituer avec le temps, soit par reproduction biologique, soit par processus se reproduisant naturellement.</td>
</tr>
<tr>
<td>Potentiel de personnalisation du produit</td>
<td>La personnalisation par l'utilisateur permet au client de créer une variation personnalisée de la conception initiale, qui peut créer un lien entre le produit et l'utilisateur.</td>
</tr>
<tr>
<td>Adaptabilité aux besoins de l'utilisation</td>
<td>Un "produit adaptable" peut être utilisé en fonction d'exigences variables de service et, ainsi, prévenir le remplacement prématuré du produit.</td>
</tr>
<tr>
<td>Appréciation du produit</td>
<td>Fait référence au niveau d'appréciation de l'utilisateur des qualités du produit et des services, et de leur valeur propre. En d'autres termes, il s'agit de reconnaître la qualité, la valeur ou l'importance du produit ou du service.</td>
</tr>
<tr>
<td>Intemporalité de la conception</td>
<td>L'intemporalité fait référence à une conception qui n'est ni limitée ni affectée par le temps, ce qui pourra prolonger la durée de vie utile du produit.</td>
</tr>
<tr>
<td>Durée de vie utile d'un service</td>
<td>La durée de vie utile d'un service est définie par la durabilité, l'environnement et les conditions d'utilisation. Plus la durée utile du service est longue, mieux c'est.</td>
</tr>
<tr>
<td>Fréquence d'utilisation</td>
<td>Mesure de la fréquence d'utilisation, liée à l'utilisation du potentiel offert par les produits (il est souhaitable de profiter du potentiel d'utilisation et de ne pas abuser de son usage).</td>
</tr>
<tr>
<td>Multifonctionnalité</td>
<td>Capacité d'effectuer différentes fonctions, intrinsèquement liées à la conception</td>
</tr>
<tr>
<td>Traitement du produit</td>
<td>L'ergonomie du produit fait référence aux facteurs de conception visant à maximiser la productivité (résultat) en minimisant la fatigue.</td>
</tr>
<tr>
<td>Potentiel de stockage</td>
<td>Fait référence à la capacité à stocker, en minimisant le volume/surface inoccupé/e et en libérant de l'espace.</td>
</tr>
<tr>
<td>Contraintes avant et pendant l'utilisation</td>
<td>Fait référence au travail préparatoire et au suivi nécessaire pour pouvoir utiliser le produit.</td>
</tr>
<tr>
<td>Besoin de traiter les matériaux</td>
<td>Les matériaux de traitement au cours de la phase d'utilisation sont des matériaux nécessaires au fonctionnement du produit ou du service.</td>
</tr>
<tr>
<td>Production de déchets pendant l'utilisation</td>
<td>Fait référence aux matériaux qui entrent dans le flux de déchets dérivant de l'utilisation du produit ou du service.</td>
</tr>
<tr>
<td>Réutilisabilité</td>
<td>Capacité à utiliser de nouveau un produit pour la même fonction</td>
</tr>
<tr>
<td>Besoins de maintenance</td>
<td>La maintenance implique la réparation de toutes sortes de dispositifs mécaniques, électriques ou de plomberie s'ils tombent en panne ou se cassent ; cela implique d'effectuer des tâches régulières pour maintenir les dispositifs en étant de marche ou prévenir la survenue de problèmes.</td>
</tr>
<tr>
<td>Possibilités de remise à niveau</td>
<td>La mise à niveau est le processus de remplacement d'un produit par une nouvelle version du même produit, afin de mettre le système à jour. Le remplacement de certaines pièces d'un produit ou d'un service peut les remettre à niveau et améliorer leurs performances.</td>
</tr>
<tr>
<td>Réparabilité</td>
<td>Capacité d'un équipement, d'une machine ou d'un système endommagé ou en panne de retrouver un état de fonctionnement acceptable dans un délai précis (durée de réparation).</td>
</tr>
<tr>
<td>Disponibilité des pièces détachées</td>
<td>Les pièces détachées, appelées également pièces de service/réparation/remplacement, sont des pièces interchangeables qui sont conservées dans un stock aux fins de réparation ou de remplacement de pièces défectueuses</td>
</tr>
<tr>
<td>Séparabilité des éléments</td>
<td>Capacité à séparer les éléments afin de gérer chacun d'eux d'une manière adéquate</td>
</tr>
<tr>
<td>Séparabilité des matériaux</td>
<td>Capacité à séparer les matériaux afin de gérer chacune d'eux de manière adéquate</td>
</tr>
<tr>
<td>Communication sur la fin de vie</td>
<td>Fait référence à l'absence ou la présence d'informations sur la gestion de la fin de vie du produit ou du service ou de ses parties</td>
</tr>
<tr>
<td>Identifiabilité des matériaux</td>
<td>Informations sur le type de matériau qui est utile pour une gestion adéquate des déchets</td>
</tr>
<tr>
<td>Réutilisabilité</td>
<td>Capacité à utiliser de nouveau un produit pour une fonction différente</td>
</tr>
<tr>
<td>Gestion des déchets écologique</td>
<td>Un flux donné de déchets pourra être traité à l'aide de différents systèmes ou technologies de gestion adéquate des déchets qui ont probablement des performances environnementales différentes. Une gestion environnementale saine hiérarchise la récupération des matériaux et, deuxièmement, la récupération d'énergie (et, au final, l'enfouissement)</td>
</tr>
</tbody>
</table>
Liste des stratégies d'amélioration environnementale

<table>
<thead>
<tr>
<th>Stratégie</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réduire le nombre de types différents de matériaux</td>
<td>En général, un nombre réduit de différents types de matériaux est souhaitable, car cela simplifie toutes les phases du cycle de vie utile (ex. : achat de matériaux, processus de production, gestion des déchets, etc.) Cependant, cette stratégie peut être difficile à atteindre pour des raisons de fonction, résistance, etc.</td>
</tr>
<tr>
<td>Réduire l'intrant de matériaux par une conception visant à la durabilité</td>
<td>Cette stratégie vise à réduire l'utilisation des matériaux au minimum, en prenant en compte les contraintes du produit (résistance, durabilité, durée de vie utile, etc.)</td>
</tr>
<tr>
<td>Réduire les intrants au moyen de la dématérialisation</td>
<td>La dématérialisation est le remplacement d'un produit physique par un produit ou un service non-physique, réduisant ainsi la production, la demande et l'utilisation de produits physiques ; et réduisant la dépendance de l'utilisateur aux produits physiques. En mettant en œuvre cette stratégie, plusieurs avantages peuvent être obtenus : économies sur les matériau, l'énergie, le transport, les consommables et le besoin de gérer l'élimination finale et/ou du recyclage d'un produit physique.</td>
</tr>
<tr>
<td>Réduire les intrants de matériaux au moyen d'un simple principe de fonctionnement</td>
<td>La réduction des parties non-structurelles et des connexions permet de réduire la consommation des ressources, ainsi que les délais d'assemblage et de démontage. \nLa combinaison des fonctions en un seul produit réduit la consommation des matériaux par fonction. Par conséquent, les ressources consommées sont utilisées pour assurer plusieurs fonctions (raison pour laquelle les impacts générés pourraient être affectés en partie à chacune des fonctions).</td>
</tr>
<tr>
<td>Utiliser des matériaux et des éléments ayant un sac à dos écologique inférieur</td>
<td>La consommation de ressources pour l’offre de matières premières et la fabrication de pièces et d’éléments externes a un sac à dos énergétique qui se cumule au sac à dos du produit. Par conséquent, les efforts devront porter sur la minimisation des sacs à dos écologiques accompagnant les matériaux et d’autres pièces externes. Ceci peut être réalisé par en imposant des exigences clairement définies pour la sélection des fournisseurs, pour lesquels différentes méthodes d’évaluation existent. \nDans la plupart des cas, les indicateurs seront calculés à partir des données d’analyse du cycle de vie utile (ACVU) qui peuvent être utilisées comme base pour l’évaluation de l’impact environnemental des matériaux. Naturellement, chacune des méthodes utilisées produit des résultats uniquement dans ses propres limites. Par conséquent, la connaissance de ces limites et l’impact potentiel non détecté par une méthode donnée est essentielle pour l’application pratique.</td>
</tr>
<tr>
<td>** Sélectionner des fournisseurs et des produits sous système d’éco-étiquetage ou fournissant des informations environnementales**</td>
<td>Les matériaux certifiés et éco-labellisés sont préférables \nLes matériaux à faible intensité énergétique ou à faible énergie grise sont préférables car ils réduisent la demande en énergie cumulative du produit ou du service proposé. \nLes matières premières renouvelables ne sont pas d’origine fossile mais sont, dans la plupart des cas, végétales. Leur utilisation présente des avantages car, ainsi, d’autres ressources limitées ne sont pas utilisées et, de surcroît, elle prévoit une élimination adéquate. \nL’utilisation de matériaux abondants offre de plus grandes opportunités pour les obtenir et éviter l’appauvrissement d’autres ressources qui sont plus rares.</td>
</tr>
<tr>
<td>Sélectionner des matériaux de faible intensité énergétiques</td>
<td>Les matériaux certifiés et éco-labellisés sont préférables \nLes matériaux à faible intensité énergétique ou à faible énergie grise sont préférables car ils réduisent la demande en énergie cumulative du produit ou du service proposé. \nLes matières premières renouvelables ne sont pas d’origine fossile mais sont, dans la plupart des cas, végétales. Leur utilisation présente des avantages car, ainsi, d’autres ressources limitées ne sont pas utilisées et, de surcroît, elle prévoit une élimination adéquate. \nL’utilisation de matériaux abondants offre de plus grandes opportunités pour les obtenir et éviter l’appauvrissement d’autres ressources qui sont plus rares.</td>
</tr>
<tr>
<td>Hiérarchiser les matériaux avec un haut contenu recyclable</td>
<td>La hiérarchisation des matériaux ayant un contenu recyclable élevé favorise une économie circulaire dans laquelle les matériaux sont recyclés et convertis en nouveaux produits.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Utilisation d'éléments récupérés</td>
<td>L'utilisation d'éléments récupérés évite le recours à la production de nouveaux éléments et, par voie de conséquence, tous les impacts y afférents. Ceci peut aboutir à un bénéfice environnemental mais aussi à un bénéfice économique.</td>
</tr>
<tr>
<td>Hiérarchiser les matériaux recyclables</td>
<td>Une condition préalable pour obtenir une économie circulaire avec des cycles fermés de matériaux et d'utilisation uniquement des matériaux qui sont réellement recyclables et qui garantissent aussi que ses caractéristiques sont également présentes dans le matériau secondaire à un degré suffisant. Ceci implique que non seulement les caractéristiques du matériau sont adéquates pour le recyclage mais aussi que l'infrastructure nécessaire existe pour récupérer et recycler les matériaux.</td>
</tr>
<tr>
<td>Sélectionner les matériaux biodégradables</td>
<td>Lors de la sélection des matériaux biodégradables, il est important de ne pas oublier les attentes liées à l'utilisation du produit et, par conséquent, de sélectionner les matériaux qui satisfont aux exigences techniques et de durabilité pour le produit.</td>
</tr>
<tr>
<td>Sélectionner les matériaux locaux pour réduire la demande de transport</td>
<td>L'utilisation de matières premières régionalement disponibles réduit la nécessité du transport et, ainsi, les dommages environnementaux causés par l'augmentation du trafic. Ainsi, il faut prendre en compte l'impact environnemental dû au CO2, au NOx, à la poussière et au bruit. L'intrant nécessaire pour le transport dépend de facteurs tels que la masse et le volume de la cargaison, la distance d'acheminement, le choix du moyen de transport, et le nombre d'opérations de transport nécessaires.</td>
</tr>
<tr>
<td>Sélectionner des matériaux sans substances toxiques, nocives et nuisibles</td>
<td>Les substances toxiques, nocives et nuisibles (ex. : métaux lourds, dioxines, etc.) peuvent avoir des effets graves sur l'environnement et la santé, même si elles sont utilisées en petites quantités, et elles devront être évitées autant que possible tout au long du cycle de vie utile.</td>
</tr>
<tr>
<td>Minimiser et simplifier les processus de production</td>
<td>Une simplification du processus de production peut entraîner (1) une réduction de l'utilisation des matériaux et de l'énergie, (2) une réduction des déchets, et (3) une réduction du temps de traitement. Cette stratégie sera bien évidemment étudiée en détail pour chaque processus de production, afin d'évaluer les différentes alternatives.</td>
</tr>
<tr>
<td>Utiliser des intrants faibles de matériaux, des technologies de production à émissions réduites</td>
<td>L'utilisation efficace des matériaux, des processus et des matériaux secondaires en appliquant des technologies adéquates (meilleures pratiques), réduit la consommation globale des matières premières. Ceci, à son tour, réduit les atteintes à l'environnement dues aux déchets, d'une part, et réduit la quantité de matières premières extraites de l'environnement, d'autre part. Les technologies de production à faibles émissions réduisent le recours aux usines de traitement en aval et de filtration.</td>
</tr>
<tr>
<td>Production</td>
<td>Le type de technologie de production peut avoir une influence décisive sur la consommation énergétique dans la fabrication d'un produit. La sélection de technologies de production adaptées contribue à la minimisation de la demande en énergie. L'objectif est d'analyser la consommation énergétique des phases individuelles de production et, en fonction de ces connaissances, de rendre la fabrication du produit aussi efficace que possible.</td>
</tr>
<tr>
<td>Utiliser des technologies énergétiques efficaces dans le processus de production</td>
<td>En outre, l'utilisation de technologies énergétiques efficaces, la conception de processus optimisés contribue également à une réduction de la consommation énergétique qui, à son tour, réduit l'impact environnemental causé par la production d'énergie fournie par le processus de production. Des économies peuvent être réalisées par un suivi et une optimisation continu des paramètres des processus (ex. : température, quantité de matériau secondaire, etc.)</td>
</tr>
<tr>
<td>Utiliser des techniques qui optimisent l'utilisation de l'énergie</td>
<td>Le type de technologie de production peut avoir une influence décisive sur la consommation d'eau dans la fabrication d'un produit. La sélection de technologies de production adaptées contribue à la minimisation de la demande en eau.</td>
</tr>
<tr>
<td>Utiliser des technologies d'eau efficaces</td>
<td></td>
</tr>
<tr>
<td>Utiliser des technologies qui optimisent les matières premières dans le processus de production</td>
<td>Le type de technologie peut avoir une influence décisive sur la consommation des matières premières dans la fabrication d’un produit. La sélection de technologies de production adaptées contribue à minimiser la demande en matières premières.</td>
</tr>
<tr>
<td>Utiliser de préférence des ressources renouvelables tout au long du processus</td>
<td>L'utilisation de ressources énergétiques renouvelables telles que l'énergie solaire, la biomasse, l'énergie hydroélectrique, solaire et géothermique, peut être appliquée à l'aide de technologies renouvelables et/ou en faisant appel à des fournisseurs d'électricité renouvelable. Cependant, dans ce contexte, il faut garder à l'esprit que ces ressources naturelles ne doivent pas être surexploitées car elles sont renouvelables uniquement dans le domaine d'application de leur capacité régénérative naturelle. Par conséquent, la question de l'efficacité énergétique est un facteur important dans le contexte des énergies renouvelables. De même, l'impact environnemental causé par l'exploitation de sources d'énergies renouvelables ne doit pas être négligé.</td>
</tr>
<tr>
<td>Utiliser préférentiellement des ressources énergétiques disponibles régionalement</td>
<td>L'utilisation de sources d'énergie renouvelable est étroitement liée à l'exploitation de ressources énergétiques disponibles régionalement. Ainsi, l'utilisation de la biomasse disponible régionalement réduit les distances d'acheminement et, par voie de conséquence, la consommation de sources d'énergie fossile pour le transport de la biomasse.</td>
</tr>
<tr>
<td>Utilisation de techniques qui réduisent la production de déchets et d'émissions</td>
<td>Le but de chaque processus de production consiste en la transformation de matières premières en produits. Ainsi, les déchets du processus peuvent être considérés comme un indicateur de l'utilisation inefficace des matériaux. En dehors de l'impact environnemental provoqué par l'élimination des déchets, la consommation de matières premières extraites de l'environnement doit être prise en compte.</td>
</tr>
<tr>
<td>Réduire la part des rejets dans le processus de production</td>
<td>Les rejets pourraient être définis comme un produit sans bénéfice direct attribuable à l'intrant des ressources utilisées dans la fabrication du produit ; cela signifie que l'efficacité énergétique est absolument nulle. Ainsi, la minimisation du taux de rejet est un objectif important uniquement dans le but de réduire les coûts, et constitue également un facteur-clé dans la gestion de la qualité et l’assurance qualité.</td>
</tr>
<tr>
<td>Recycler les matériaux du processus si possible</td>
<td>La consommation des matériaux peut être réduite au cours de leur recyclage. Dans certains secteurs, le recyclage de certains matériaux est déjà considéré comme une meilleure pratique (ex. : recyclage de l'eau dans des cycles fermés, associé à la récupération de chaleur). Ces stratégies peuvent non seulement réduire les impacts environnementaux mais également les coûts.</td>
</tr>
<tr>
<td>Recherche des synergies et des symbioses avec des entreprises et organisation proches</td>
<td>Les synergies et les symbioses avec d'autres organisations constituent un pilier de l'écologie industrielle, qui est une discipline qui conceptualise l'industrie sous la forme d'un écosystème artificiel qui opère d'une manière similaire aux écosystèmes naturels, lorsque les déchets ou les produits dérivés d'un processus sont utilisés comme intrants dans un autre processus. L'écologie industrielle interagit avec les écosystèmes naturels et tente de passer d'un système linéaire à un système cyclique, ou à un système à boucle fermée.</td>
</tr>
<tr>
<td>Cycles de matériaux fermés dans le processus de production</td>
<td>Le recyclage des déchets et leur réintégration dans le processus de production réduit la consommation des matières premières ainsi que le coût de leur élimination, favorisant ainsi un cycle fermé de matériaux. En outre, le recours au transport est réduit (par rapport au recyclage externe ou à l'élimination). L'une des conditions préalables est l'utilisation de matériaux recyclables ainsi que la collecte et le tri des déchets de production.</td>
</tr>
<tr>
<td>Recycler et réutiliser les déchets pour les nouveaux produits/matériaux</td>
<td>Dans de nombreux cas, il ne sera pas possible d'éviter les déchets ni de les réintégrer dans le processus de production. Il faudra envisager de les réutiliser ou recycler pour la fabrication de nouveaux produits.</td>
</tr>
<tr>
<td>Utilisation de pièces de conception identique pour différents produits</td>
<td>L'utilisation de pièces de conception identique pour différents produits réduit le nombre de pièces différentes dans la production, ce qui simplifie l'assemblage et facilite la fourniture de pièces détachées ainsi que des pièces et éléments structurels reconditionnés ou réutilisés.</td>
</tr>
<tr>
<td>Implanter l'usine de production aussi proche que possible du marché</td>
<td>Les économies locales sont celles qui concentrent dans une zone donnée la plupart des phases de cycle de vie utile d'un produit (ex. : extraction de matières premières, production, distribution, utilisation, gestion de fin de vie). Cette approche présente un avantage important en termes de distances de transport réduites. Étant donné que le marché d'un produit ne peut pas être implanté dans un endroit donné comme nous le souhaiterions, nous pouvons essayer d’implanter l'usine de production aussi proche que possible du marché.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dimensionner le packaging en fonction des mesures normalisées du transport</td>
<td>L’utilisation d’un packaging dimensionné à la logistique et aux détaillants optimise mieux le volume dans les camions et les entrepôts que le packaging normalisé.</td>
</tr>
<tr>
<td>Réduire le packaging au minimum</td>
<td>La réduction des intrants de matériaux dans le packaging peut être obtenue en optimisant le packaging ou par une conception appropriée des produits (ex. : caisses supportant le transport sans ou avec un packaging minimum).</td>
</tr>
<tr>
<td>Optimiser la relation entre le volume du packaging et le produit</td>
<td>Le système complet de packaging primaire, secondaire et de transport doit être envisagé de telle sorte que les réductions à un seul élément ne soient pas surcompensées par une augmentation d’un autre élément. La réduction des matériaux ne doit jamais compromettre la fonction primaire de la protection du produit.</td>
</tr>
<tr>
<td>Utiliser un packaging à matière unique</td>
<td>Un packaging constitué d'un seul matériau permet une manutention aisée pour une bonne gestion des déchets. Inversement, lorsque le packaging est constitué de différents matériaux, ils doivent être triés et gérés de différentes manières.</td>
</tr>
<tr>
<td>Utiliser des matières premières renouvelables pour le packaging</td>
<td>L'utilisation des matières premières renouvelables (ex. : matériaux non-fossiles) est préférable étant donné qu'il ne contribue pas à l'appauvrissement des ressources et, en outre, constitue une solution adéquate pour l'élimination du matériau de l'emballage.</td>
</tr>
<tr>
<td>Utiliser des matériaux recyclables dans le packaging</td>
<td>L'utilisation de matériaux recyclables réduit la consommation de matériaux vierges, et elle permet de recirculer les déchets dans l'économie. Les matériaux pour lesquels il existe des filières de recyclage bien établies facilitent le recyclage des matériaux de packaging.</td>
</tr>
<tr>
<td>Utiliser des matériaux recyclés dans le packaging</td>
<td>La hiérarchisation des matériaux ayant un contenu recyclé élevé favorise une économie circulaire dans laquelle les matériaux sont recyclés et convertis en nouveaux produits.</td>
</tr>
<tr>
<td>Utiliser un packaging réutilisable/consigné</td>
<td>La hiérarchisation du packaging conçu pour de multiples utilisations réduit l'impact environnemental global. En ce sens, le packaging recyclé est particulièrement avantageux lorsque des systèmes de dépôt et de retour sont en place (ce qui facilite le retour du packaging et sa réutilisation.</td>
</tr>
<tr>
<td>Réduire la quantité de déchets issus du packaging</td>
<td>La consommation de ressources peut être considérablement réduite par une minimisation des déchets. Le packaging consigné doit être envisagé, en particulier si le retour du matériau du packaging au fournisseur ne nécessite pas de transport supplémentaire.</td>
</tr>
<tr>
<td>Prévenir les dommages au cours de l'expédition</td>
<td>Le produit peut être préparé (ex. : fixation de certaines parties) pour réduire le risque de dommages et éviter des indemnités de transport.</td>
</tr>
<tr>
<td>Étiqueter les matériaux du packaging</td>
<td>Un étiquetage du matériau de packaging est nécessaire pour favoriser son recyclage. Le packaging a habituellement un cycle de vie utile très court. Par conséquent, l’étiquetage est particulièrement important pour garantir un recyclage adapté (valeur ajoutée) ou une élimination acceptable pour l’environnement.</td>
</tr>
<tr>
<td>Distribution</td>
<td>Optimiser le volume occupé dans le véhicule</td>
</tr>
<tr>
<td></td>
<td>Utiliser un packaging de produit empilable</td>
</tr>
<tr>
<td></td>
<td>Réduire les distances de distribution</td>
</tr>
<tr>
<td></td>
<td>Optimiser les itinéraires de transport et minimiser les opérations de camionnage</td>
</tr>
<tr>
<td></td>
<td>Favoriser des modèles de conduite écologique</td>
</tr>
<tr>
<td></td>
<td>Choisir des moyens de transport écologiquement acceptables pour la distribution du produit</td>
</tr>
<tr>
<td>Section</td>
<td>Text</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Utiliser les véhicules dotés de la technologie la plus efficace – consommation énergétique réduite</td>
<td>Les véhicules écologiques produisent moins de nuisances à l'environnement que les véhicules conventionnels comparables (ex. : les véhicules à combustion interne fonctionnant au gasoil ou au diesel). Dans chaque technologie de véhicule, il peut y avoir différents niveaux d'efficacité, avec des effets sur la consommation énergétique et les émissions des véhicules.</td>
</tr>
<tr>
<td>Utiliser des véhicules produisant moins d'émissions</td>
<td>Un véhicule à faibles émissions est un véhicule à moteur qui émet des niveaux relativement faibles d'émission. En général, plus la consommation d'énergie est basse, plus les émissions sont basses (ceci est particulièrement vrai pour les véhicules à moteur à combustion fonctionnant avec des carburants fossiles.</td>
</tr>
<tr>
<td>Utiliser des carburants d'origine renouvelable</td>
<td>L'utilisation de carburants d'origine renouvelable (ex. : bioéthanol, biométhanol, biodiesel et biogaz, dérivés de sources tels que l'huile de palme, colza, céréales, canne à sucre, sucre de canne, et huile végétale retraitée) constitue une alternative à l'utilisation des carburants fossiles, qui sont rares et plus polluants.</td>
</tr>
<tr>
<td>Assurer une haute fiabilité du produit</td>
<td>Le concept de fiabilité fait référence à la probabilité du produit de remplir ses fonctions dans des conditions d'exploitation données pendant une période prédéterminée sans devenir défectueux.</td>
</tr>
<tr>
<td>Introduire une communication environnementale afin d'encourager une utilisation responsable du produit ou du service</td>
<td>L'utilisation planifiée et stratégique de la communication environnementale pour soutenir une utilisation responsable du produit et du service est une stratégie importante, en particulier pour les produits qui ont un impact environnemental significatif au cours de la phase d'utilisation. Par exemple, une part importante de l'impact des textiles se produit au cours de la phase d'utilisation (lavage, séchage, repassage). Par conséquent, il est intéressant de fournir des instructions à l'utilisateur sur la façon d'entretenir les textiles de manière écologique. Pour cela, des informations peuvent être fournies sur l'étiquette de la pièce de textile.</td>
</tr>
<tr>
<td>Promouvoir une utilisation efficace des matériaux au cours de l'utilisation</td>
<td>La conception des produits et des services peut être faite de telle sorte qu'elle permette le recours aux ressources les moins nombreuses au cours de l'utilisation, sans avoir un impact négatif sur leur fonctionnalité ou apparence. Ceci peut être réalisé en introduisant davantage de dispositifs et de technologies efficaces, et par une conception intelligente contribuant à réduire la demande de ces matériaux.</td>
</tr>
<tr>
<td>Utilisation & Maintenance</td>
<td>Promouvoir une utilisation efficace de l'énergie pendant l'utilisation</td>
</tr>
<tr>
<td>Utiliser des énergies renouvelables au cours de l'utilisation</td>
<td>L'utilisation de ressources énergétiques renouvelables telles que le soleil, la biomasse, l'hydroélectricité, l'énergie éolienne et géothermique, peut être faite au moyen de technologies renouvelables et/ou en faisant appel à des fournisseurs en électricité renouvelable. Cependant, dans ce contexte, il faut garder à l'esprit que ces ressources naturelles ne doivent pas être surexploitées car elles sont renouvelables uniquement dans les limites de leur capacité naturelle à se renouveler. Par conséquent, la question de l'efficacité énergétique, est un facteur important dans le contexte des énergies renouvelables. De même, l'impact environnemental de l'exploitation des sources énergétiques renouvelables ne doit être négligé.</td>
</tr>
<tr>
<td>Permettre à l'utilisateur de personnaliser le produit et de l'adapter à ses besoins</td>
<td>La personnalisation permet au client de créer une variante personnalisée de la conception initiale, ce qui peut créer un lien entre le produit et l'utilisation.</td>
</tr>
<tr>
<td>Permettre une adaptation du produit à différents utilisateurs et/ou l'évolution de leurs besoins</td>
<td>Les produits sont produits pour différents utilisateurs et conditions d'utilisation. Pour cette raison, l'adaptabilité du produit constitue un attribut pertinent. Cette adaptabilité favorise une durée utile plus longue du produit.</td>
</tr>
<tr>
<td>Assurer une grande appréciation du produit</td>
<td>Une forte appréciation du produit de la part de l'utilisateur est une condition préalable importante pour une utilisation prolongée. Les produits qui fonctionnent bien et qui sont appréciés seront plutôt réparés qu'échangés pour de nouveaux produits.</td>
</tr>
<tr>
<td>Réaliser une conception intemporelle du produit</td>
<td>Une conception de produit intemporelle est essentielle pour obtenir une durée utile raisonnable du produit et éviter une transformation prématurée en déchets du fait de l'obsolescence. S'il n'est pas possible de réaliser une conception intemporelle pour une certaine gamme de produits, une autre approche possible serait de rendre la "coque" externe (le look caractéristique) du produit interchangeable de telle sorte qu'il puisse être adapté aux modes prédominantes.</td>
</tr>
<tr>
<td>Concevoir le produit pour une longue durée utile</td>
<td>Les produits à longue durée utile créent un bénéfice maximum sur une longue durée avec un intrant minimum de matières premières et d'énergie.</td>
</tr>
<tr>
<td>S'assurer que les surfaces sont écologiques et résistantes à la corrosion</td>
<td>La conception des surfaces a une très grande influence sur la durée utile des produits. La coque et les surface externes du produit doivent être intégrées dans un concept d'ensemble visant la durabilité. Les surfaces doivent être résistantes aux impacts et aux rayures et tolérer les traces d'usure. En outre, elles devront empêcher la corrosion.</td>
</tr>
<tr>
<td>Harmoniser la durée utile des éléments individuels</td>
<td>L'harmonisation de la durée utile des éléments individuels empêchera que le produit ne devienne un déchet après une courte durée et qu'il soit jeté en raison de défauts mineurs. Tous les éléments et pièces du produit devront avoir une durabilité égale.</td>
</tr>
<tr>
<td>Réaliser un produit orienté utilisateur visant une fréquence élevée d'utilisation</td>
<td>Les produits qui, une fois produits, ne sont pas utilisés par la suite, ne sont pas écologiquement sains, même si la fabrication a été basée sur des critères, des ressources et des énergies écologiquement acceptables qui ont déjà été utilisés pour la fabrication et le transport. Les systèmes de produits/services sont orientés vers une utilisation efficace des ressources.</td>
</tr>
<tr>
<td>Conçoivent le produit pour une utilisation multifonctionnelle</td>
<td>L'intégration de plusieurs fonctions en un seul produit peut permettre de réduire la consommation des ressources impliquées dans la satisfaction des fonctions. Cependant, cela peut ne pas être la cause d'une obsolescence prématurée car une des pièces ou fonctions ont une durée utile plus courte. En outre, la qualité fonctionnelle ne devra pas être affectée du fait de la multifonctionnalité.</td>
</tr>
<tr>
<td>Conçoivent le produit pour une manipulation et ergonomie faciles</td>
<td>La performance environnementale globale d'un produit dépend de l'utilisation effective au cours de sa durée utile. Ainsi, la manipulation simple du produit et une interface ergonomique homme/machine est essentielle pour assurer une utilisation correcte. À cette fin, l'utilisation du produit devra être intuitive, et le produit devra clairement montrer ses fonctions potentielles et la façon dont il fonctionne.</td>
</tr>
<tr>
<td>Minimiser le besoin de stockage de produits lorsqu'ils ne sont pas utilisés</td>
<td>De nombreux produits sont nécessaires et utilisés en de rares occasions ou dans des situations particulières. Lorsqu'ils ne sont pas utilisés, cependant, il est important que leur besoin de stockage soit aussi réduit que possible. La façon d'économiser l'espace consiste en des solutions utilisant des éléments gerbables ou rétractables ou des accords de consommation collaboratives.</td>
</tr>
<tr>
<td>Minimiser la contrainte de temps pour la préparation et le suivi de l'utilisation du produit</td>
<td>Le temps nécessaire pour pouvoir utiliser le produit (avant, pendant et après l'utilisation) est un facteur important qui peut déterminer si le produit est effectivement utilisé. Ceci inclut le temps et les efforts nécessaires pour mettre en place le produit, le stocker, etc. Un autre facteur, autre que le temps, est les ressources impliquées dans une telle préparation et un tel suivi.</td>
</tr>
<tr>
<td>Cycles fermés pour les matériaux de processus en phase d'utilisation</td>
<td>Les matériaux de processus doivent être utilisés dans des cycles fermés (rédutilisation privilégiée par rapport au recyclage).</td>
</tr>
<tr>
<td>Éviter et/ou minimiser les déchets en phase d'utilisation</td>
<td>La prévention des déchets en phase d'utilisation est importante pour les produits qui consomment énormément de ressources (énergies et matériaux) au cours de l'utilisation. Dans certains cas, l'impact de tels déchets peut constituer l'une des plus grandes menaces environnementales des produits.</td>
</tr>
<tr>
<td>Proposer des mesures incitatives pour collecter les déchets à partir de la phase d'utilisation</td>
<td>La collecte des déchets dès la phase d'utilisation est intéressante pour permettre la réutilisation ou le recyclage des pièces, composants et matériaux ou, si cela n'est pas possible, de fournir une gestion des déchets (en particulier pour les déchets dangereux). Certaines mesures incitatives (telles que les remises sur le nouveau produit lors de la restitution de l'ancien) se sont avérées efficaces.</td>
</tr>
<tr>
<td>Utiliser des éléments, pièces et composants normalisés pour une réutilisation facile</td>
<td>La réutilisation des composants est préférable au recyclage, qui est plus facile lorsque l'on utilise des éléments normalisés.</td>
</tr>
<tr>
<td>Réduire les besoins de maintenance au minimum</td>
<td>Les produits qui impliquent des niveaux élevés de maintenance ont une propension à devenir des déchets après une courte durée. Inversement, les produits qui ont des besoins réduits de maintenance auront une durée de service utile plus longue (réduisant ainsi les impacts environnementaux sur l'ensemble du cycle de vie utile).</td>
</tr>
<tr>
<td>Concevoir un produit et ses composants pour un nettoyage facile</td>
<td>Les produits qui sont difficiles à nettoyer ont une propension à devenir des déchets après une très courte durée. Ils seront remplacés en raison de leur aspect vieillot, et non pas pour leur dysfonctionnement. Dans ce contexte, la conception des surfaces est d'une très grande importance. Les surfaces devront être faciles à nettoyer et les angles ou bordures inaccessibles doivent être évitées.</td>
</tr>
<tr>
<td>Assurer la maintenance avec des outils standard</td>
<td>L'utilisation d'outils standard pour la maintenance est préférable afin de la faciliter, et pour s'assurer que le travail de maintenance peut être effectué à tout moment.</td>
</tr>
<tr>
<td>Concevoir des remises à neuf possibles</td>
<td>Les produits qui sont difficiles à nettoyer ont une propension à devenir des déchets après une très courte durée. Ils seront remplacés en raison de leur aspect vieillot, et non pas pour leur dysfonctionnement. Dans ce contexte, la conception des surfaces est d'une très grande importance. Les surfaces devront être faciles à nettoyer et les angles ou bordures inaccessibles doivent être évitées.</td>
</tr>
<tr>
<td>Se concentrer sur l'usure des composants remplaçables du produit</td>
<td>Si un certain degré d'usure est inévitable, il devra se porter sur les pièces du produit qui peuvent être facilement échangées et remplacées. Cette mesure vise à prolonger la vie utile du produit par une maintenance et une réparation adéquates.</td>
</tr>
<tr>
<td>Indiquer les échéances de révision pour le produit</td>
<td>Une maintenance adéquate conforme aux échéances de révision préconisées contribue à prolonger considérablement la vie utile du produit et à éviter les problèmes potentiels.</td>
</tr>
<tr>
<td>Fournir des instructions de réparation sur le produit</td>
<td>La facilité de réparation est une condition préalable pour assurer une longue durée de vie. À cette fin, les instructions fournissant des informations sur la séquence de réparation seraient utiles.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Assurer un accès facile aux éléments pour leur réparation et leur remplacement</td>
<td>La facilité d’accès aux éléments pour leur réparation et leur remplacement assure une longue durée utile. Dans de nombreux cas, les concepteurs se concentrent sur la simplicité de montage mais oublient la façon de démonter et de réparer les produits.</td>
</tr>
<tr>
<td>Normaliser les éléments</td>
<td>L'utilisation d'éléments standardisés et celle de leurs éléments structurels identiques pour différentes variantes de produits permet de simplifier la procédure de réparation et favorise leur réutilisation.</td>
</tr>
<tr>
<td>Assurer la disponibilité des pièces détachées</td>
<td>Le travail réussi de réparation présuppose que les pièces détachées sont facilement disponibles. Les pièces spéciales qui sont difficiles à obtenir rendent impossible le travail de réparation fondamentalement simple.</td>
</tr>
<tr>
<td>Utiliser de préférence des éléments remis à neuf comme pièces détachées</td>
<td>La réutilisation des pièces dans un produit, soit sous forme de pièces détachées nécessaire au travail de réparation ou sous forme de pièces remise à neuf dans la fabrication de nouveaux produits est une mesure importante dans le but de fermer des cycles et d’optimiser l’efficience des ressources. La consommation des ressources pour la remise à neuf des pièces et des éléments est habituellement bien moindre que dans le cas de la fabrication de nouveaux éléments. Les pièces structurelles conçues pour une durée utile longue peut supporter deux ou trois cycles de durée utile de produits et contribuent à la réduction de l’impact environnemental global d’une produit.</td>
</tr>
<tr>
<td>Concevoir la structure des produits pour un démontage facile</td>
<td>Une structure claire et facilement compréhensible garantit un démontage facile, ce qui est important dans le cas de défaut de fabrication et pour le travail de réparation au cours de la phase d’utilisation et, en particulier, pour le démontage après la fin de durée utile.</td>
</tr>
<tr>
<td>Assurer un montage / démontage simple grâce à la réduction des pièces utilisées</td>
<td>La réduction de la diversité des éléments facilite le montage et le démontage et minimise la quantité de travail, et elle améliore également la réparabilité du produit en phase d’utilisation.</td>
</tr>
<tr>
<td>Minimiser le temps et les phases de démontage</td>
<td>Le processus de démontage devra aussi court que possible et être aussi simple que possible, assurant des possibilités plus importantes pour la récupération des pièces et des éléments. Ainsi, le processus de (dé)montage devra être minimisé et les connexions devront être facilement détachables, évitant un démontage destructif qui pourrait compromettre la réutilisation des pièces.</td>
</tr>
<tr>
<td>Gestion de la durée utile</td>
<td>Assurer un accès facilement visible aux connexions pour le démontage</td>
</tr>
<tr>
<td>Rendre possible la séparation des matériaux pour le recyclage et éviter les matériaux composites inséparables</td>
<td>La conception devra assurer une séparation facile des différents matériaux, étant donné que le recyclage des matériaux nécessite l’utilisation de matériaux uniformes ou, du moins, recyclables. Le potentiel de recyclage est réduit lors de l’utilisation de matériaux composites ou du collage des matériaux ensemble pour des raisons de résistance.</td>
</tr>
<tr>
<td>Assurer une extraction simple des substances nocives ou utiles</td>
<td>Les substances nocives devront être identifiables et pouvoir être extraites afin d’éviter de compromettre le recyclage. En cas de substances utiles, qui conservent une valeur élevée uniquement lorsqu’elles sont traitées séparément, il doit être possible de les séparer. Ceci nécessite un étiquetage adéquat des éléments.</td>
</tr>
<tr>
<td>Prendre en compte les opportunités d’élimination pour l’utilisateur final et fournir des instructions</td>
<td>L’élimination des produits devra être simple et ne devra pas nécessiter des moyens que l’utilisateur final n’a généralement pas. À cette fin, il est utile de fournir à l’utilisateur des informations concernant l’élimination adéquate et d’encourager un comportement correct de l’utilisateur.</td>
</tr>
<tr>
<td>Permettre une identification facile des matériaux</td>
<td>Les matériaux devront être facilement identifiés grâce à un étiquetage adéquat pour permettre leur recyclage.</td>
</tr>
<tr>
<td>Créer un système de collecte nouveau ou actuel</td>
<td>Les systèmes de reprise permettent au producteur de collecter les produits et les éléments usagés et de les démonter, de remettre à neuf et de réutiliser, de recycler les matériaux, et d'éliminer les déchets de manière écologique. La reprise des produits pourrait être réalisée dans le cadre de systèmes de collectes existantes ou nouvellement établis.</td>
</tr>
<tr>
<td>Assurer un taux de retour élevé</td>
<td>Les taux de retour élevés sont essentiels pour rendre le système de reprise économiquement faisable. Plus le taux de retour est élevé, plus grands la fermeture des cycles de matériaux et les bénéfices consécutifs pour l'environnement.</td>
</tr>
<tr>
<td>Tri et séparation des déchets chaque fois que cela est possible</td>
<td>Le tri et la séparation des déchets est nécessaire, à la fois pour le recyclage et la réutilisation en interne ou externe des matériaux, et pour le traitement spécifique de différentes types de déchets.</td>
</tr>
<tr>
<td>Éliminer les déchets inévitables de manière écologiquement acceptable</td>
<td>Les déchets inévitables doivent être éliminés de telle sorte que l’impact sur l’environnement soit réduit au minimum.</td>
</tr>
<tr>
<td>Permettre la valorisation énergétique des déchets, lorsque les valorisations des matériaux ne sont pas possibles</td>
<td>La hiérarchie de la gestion des déchets privilégie la valorisation des matériaux par rapport à la valorisation énergétique. Ceci est dû au fait qu’un produit peut être matériellement recyclé plusieurs fois (en fonction du matériau) mais qu’elle ne peut être valorisée énergiquement qu’une seule fois (ce qui entraîne qu’elle doit être considérée comme option ultime de traitement). Cependant, si le produit ne peut pas être recyclé, une valorisation énergétique permettra d’obtenir de l’énergie à partir de ce produit (ce qui évitera l’obtention d’énergie à partir d’autres sources).</td>
</tr>
</tbody>
</table>
Nous aimerions remercier la Commission européenne pour le financement fourni pour développer edTOOL dans le cadre du projet ECO-SCP-MED. Nous aimerions également remercier tous les collaborateurs et parties prenantes qui ont participé d’une manière ou d’une autre à ce travail. Nous remercions, en particulier, les chercheurs du groupe de recherche de la Durabilité et la Prévention Environnementale (Sostenipra) et la Catalan Écodesign Strategy du Gouvernement catalan pour leur contribution à cet outil.