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Proemi

Les assignatures de matematiques del batxillerat cientific i tecnoldogic proporcionen
unes eines molt poderoses per emprendre amb éxit estudis cientifics. L'alumne —si
realment assoleix els coneixements que hi ha als programes d'aquestes assignatures—
coneix les funcions elementals, la derivada i la integral, els vectors i les matrius..., i ha
adquirit destresa en la manipulacié d’aquests conceptes fonamentals. Es clar que la
ciéncia i la técnica utilitzen moltes altres eines més sofisticades, pero les que ja estan
a l'abast de lestudiant que arriba, per exemple, a la Facultat de Ciéencies i al grau de
Ciencies Ambientals, constitueixen una base imprescindible i prou amplia.

Tanmateix, després d'haver adquirit les eines basiques que hem comentat, l'estu-
diant ha d'aprendre a utilitzar-les en els diversos camps cientifics. Ha d'aprendre a
modelitzar, és a dir, convertir un problema cientific en un problema matematic. Encara
que, mirant l'index d'aquest llibre, pugui semblar que es tracta d'uns apunts més o
menys estandard de matematiques basiques, la realitat és que l'émfasi principal del
curs —perqueé aquest llibre és, de fet, els apunts d'un curs— es troba en la modelitzacio.

Perqué quedi més clar aixo que estem dient, posem un exemple. Considerem aquests
dos problemes:

e Calculeu la derivada de la funcié y = xe* per x = 1.

e Doneu una estimaci6 de la pérdua d'absorcid de dioxid de carboni atmosferic als
boscos del Brasil, per culpa de la desforestacio i del canvi climatic.

Els estudiants que comencen Ciencies Ambientals saben resoldre el primer exercici,
que és una aplicacié immediata de la regla de derivacié del producte de dues funcions.
Normalment, no saben resoldre el segon ni tampoc veuen cap relacié entre el segon
exercici i el primer. Matematicament, els dos exercicis son equivalents i es redueixen
a la regla de derivacié del producte de dues funcions. La diferéncia es troba en que
el primer exercici —que en diem exercici perqué no té altra utilitat que la d'exercitar
la capacitat de calcular derivades de funcions— és un exercici abstracte de matemati-
ques, mentre que el segon problema exigeix, abans de poder-lo resoldre, un procés de
modelitzacido que el converteixi en un exercici tan simple com el primer.

D’aix0 tracta, precisament, aquest curs de Matematiques i Modelitzacié per a les
Ciéncies Ambientals: de guiar l'estudiant en els métodes més elementals del procés
de modelitzacié matematica: Quines sén les variables i quines son les funcions que
intervenen en el problema? Amb quins conceptes matematics es relaciona la qliestid
que volem resoldre? Quines hipotesis ens cal fer per poder atacar el problema? Quina
és la formulacido matematica a la qué arribem després del procés de modelitzacio?

Per tal d'assolir aquest objectiu, s’ha dedicat un esfor¢ especial a la tria dels exem-
ples i exercicis que hi ha al llarg del llibre. Els exercicis que hi ha al final de cadascuna
de les sis parts del curs s’han distribuit en dues tipologies: exercicis teorics i exerci-
cis d'aplicacié. La finalitat dels primers és exercitar-se en la utilitzacid dels diversos
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conceptes i les diverses técniques que s’han presentat —talment com les sessions d'en-
trenament esportiu—. Els exercicis de la segona part presenten auténtics problemes
de modelitzacié —forca simplificats, perd prou significatius. Cal dominar els primers
per atacar amb éxit els segons, pero és en els exercicis d'aplicacié on trobem els objec-
tius fonamentals del curs. Tornant amb el simil esportiu, els primers sén l'entrenament
i els segons son la competicid. O, si preferim comparar-ho amb la musica, els primers
serien la técnica, la practica i l'assaig i els segons serien el concert.

Molts dels capitols d'aquest llibre —cada capitol correspon, aproximadament, a
una classe d'una hora— s'acaben amb un apartat que du el titol «Fem-ho amb sageny.
En aquests apartats es donen indicacions sobre com utilitzar un programari concret
per treballar amb els conceptes que s'acaben d'estudiar. Hem escollit el programa
sage, que és excellent i, a més, és de codi lliure. A la pagina sagemath.org hi podem
trobar tota la informacid necessaria i la possibilitat de descarregar-nos el programa
en el nostre ordinador o bé obrir-hi un compte per treballar online des de qualsevol
navegador.

Exigir als estudiants que siguin capacos de resoldre els exercicis del curs utilitzant
una calculadora senzilla, no esta en contradiccié amb ensenyar-los que, més enlla de
laula, els calculs matematics es fan sempre amb algun programa com pugui ser el sage.
En conseqtiéncia, convé que l'estudiant es familiaritzi amb la utilitzacié de l'ordinador
com a instrument de calcul matematic. D'altra banda, l'autor d'aquestes notes esta
convencut que féra un greu error focalitzar la docéncia en lordinador —per exemple,
dedicant temps docent a aprendre sage— perqué la docéncia ha d'esmercar tots els
seus esforcos en els conceptes fonamentals.!

Deixeu-me acabar aquest proemi amb quatre consells sobre com s'aprenen les
matematiques.

Encara que ens passem hores i hores mirant videos d'esqui, no aprendrem a esquiar
si no ens calcem uns esquis i ens involucrem a fons en la practica de l'esqui —dirigida,
és clar, per algt que en sapiga. Aixo és evident. Hi ha moltes habilitats que no es poden
adquirir amb la simple contemplacié d’'una persona que practica aquesta habilitat. Per

"En aquest context, em semblen especialment pernicioses les veus que, com un corcé, van repetint una
vegada i una altra que la docéncia s’ha de basar en les «noves tecnologies». Sempre hi ha hagut noves
tecnologies i la seva caracteristica principal és que es converteixen en velles tecnologies a gran velocitat.
Quan lautor d'aquest llibre estudiava el batxillerat, va perdre moltes malaguanyades hores en aprendre
les noves tecnologies de l'época, que eren les Taules de Logaritmes i el Regle de Calcul. | st s’hagués
sotmés, ara fa trenta anys, quan ja era professor universitari, a la déria de les noves tecnologies, hauria
fet perdre el temps als seus alumnes ensenyant-los un programa que es deia Lotus-123 que, segurament,
ningl dels qui llegeixin aquest llibre ha sentit anomenar mai. La conclusié és ben clara: cal ensenyar
—encara més en matematiques— els principis fonamentals i no pas les noves tecnologies.
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exemple, esquiar, anar amb bicicleta, tocar el violi.. Les matematiques també tenen
aquesta propietat.

Un estudiant que es limiti a contemplar com el professor explica l'assignatura, es
practicament segur que mai no aprendra res. Les matematiques només s'aprenen fent
matematiques. Es a dir, involucrant-s’hi personalment a fons: practicant incansable-
ment, dedicant-hi hores i hores d'esfor¢ i concentracié individual. Exactament igual
que fa qualsevol persona que vol excellir en un esport de competicid, o que vol tocar
un instrument a un nivell alt.

El famés matematic Paul Halmos ens recordava amb aquestes paraules com ho hem
de fer per aprendre matematiques:

Don’t just read it; fight it! Ask your own questions, look for your own
examples, discover your own proofs.

Aquesta idea la recull molt bé un dibuix que va publicar fa temps el comic abstruse-
goose.com. Representa l'estudiant de matematiques com un Sant Jordi molt especial.?

HOW TO STUDY MATH

Don’t just read it; fight it!

— Paul R. Halmos

“Dibuix (©abstrusegoose.com publicat amb llicéncia Creative Commons.



Part I:

Les funcions elementals
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1. Els nombres

1.1 Nombres enters i nombres decimals

Tot comenca amb els nombres enters positius i negatius, i amb el zero:
.e.—7,—6,-5,—-4,-3,-2,-1,0,1,2,3,4,5,6,7...

i la primera cosa que observem és que no s‘acaben mai, és a dir, per molt gran que
sigut un nombre, sempre n'hi ha un de més gran. Diem que hi ha infinits nombres
enters.! Es a dir, des de l'inici de les matematiques ja «topemy» amb linfinit! | no
ho podem evitar: encara que els nombres que realment podem escriure en un paper
(o en qualsevol mena de suport) sdn limitats, per poder fer matematiques necessitem
admetre que hi ha nombres enters illimitadament grans.

Pero amb els nombres enters no n’hi ha prou —ni de bon tros!— per a totes les
aplicacions de les matematiques a la ciéncia. Ens calen els nombres decimals —que els
matematics anomenen nombres reals. Un nombre decimal esta format per un nombre
enter, una coma (o punt) decimal i una successié illimitada de digits arbitraris.? Aqui
tornem a topar, doncs, amb linfinit, i encara d'una manera més punyent. Pensem, per
exemple, en el nombre V2 que és, per definicid, el nombre decimal positiu que, elevat
al quadrat, dona exactament 2. Aquest nombre decimal no es pot escriure exactament
enlloc, ni en un paper (per gran que sigui) ni en un ordinador (per potent que sigut).
El podem escriure amb moltes xifres

N
1.414213562373095048801688724209698078569671875376948073176679737990
73247846210703885038753432764157273501384623091229702492483605585073
72126441214970999358314132226659275055927557999505011527820605714701
09559971605970274534596862014728517418640889198609552329230484308714
32145083976260362799525140798968725339654633180882964062061525835239
50547457502877599617298355752203375318570113543746034084988471603868
99970699004815030544027790316454247823068492936918621580578463111596
66871301301561856898723723528850926486124949771542183342042856860601
46824720771435854874155657069677653720226485447015858801620758474922
65722600208558446652145839889394437092659180031138824646815708263010

05948587040031864803421948972782906410450726368813137398552561173220 - - -

'Cal ser molt curés a I'hora d'usar la paraula infinit, perqué no té un significat intrinsec. Per tant, en
cada ocasid que surti aquesta paraula, hem de deixar clar qué significa exactament en aquest context.

2De fet, hi ha una restriccid, que consisteix en que aquesta successié illimitada de digits no pot tenir
infinites xifres 9 consecutives. Per exemple, no s’hi val 2.1999999. .. perqué aquest nombre és el mateix
que el nombre 2.2.
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perd mai el podrem escriure amb totes les seves xifres.> Podriem pensar que per a les
aplicacions practiques potser n’hi ha prou amb unes poques xifres decimals, diguem
cinc o deu, perd ens equivocariem perqué, igual que passa amb els nombres enters,
per poder fer matematiques és imprescindible admetre nombres decimals amb una
quantitat infinita de xifres decimals.

Per tant, els nombres decimals només els podem escriure de forma aproximada

V2~ 1.4
V2~ 1.4142
V2 ~ 1.41421356

etc.

Aquest fet déna lloc al problema de l'arrodoniment: cada vegada que aproximem un
nombre real per un nombre amb una quantitat finita de decimals estem cometent un
error i, per tant, els calculs que fem (a ma, amb una calculadora o amb un ordinador, per
potent que sigui) estan sempre sotmesos a aquests errors que es poden anar acumulant
fins a distorsionar completament el resultat final dels nostres calculs. Es un problema
molt serids, que no hem de menystenir.

Per minimitzar els riscos de patir aquests errors, cal tenir present aquestes normes
generals:

1. Cal fer els calculs amb la maxima exactitud que permeti la nostra calculadora
o ordinador. Es a dir, mai no hem de arrodonir a poques xifres decimals els
resultats intermedis d'un calcul.

2. Quan obtinguem el resultat final, l'arrodonirem a un nombre «convenienty» de
xifres decimals. ELl concepte de «convenient» tindra a veure amb la naturalesa
del problema i amb la precisid de les dades.

3. Cal arrodonir correctament. La idea és buscar el nombre que tingui la quantitat
de decimals que volem i que sigui el més proper possible al nombre donat. Per
exemple, el resultat d’arrodonir V5 = 2.23606797749--- a 1,2, 3,... xifres decimals
és:

2.2, 2.24, 2.236, 2.2361, 2.23607, 2.236068, 2.2360680, 2.23606798, ...

El cas que queda indeterminat és aquell en qué la part descartada consisteix en
un 5 sequit d'infinits zeros. Per exemple, si volem arrodonir 2.45 a un decimal, les
dues opcions 2.5 i 2.4 estan igualment properes al valor exacte 2.45. En aquest
cas (cientificament poc significatiu), hi ha diversos métodes i tots presenten avan-
tatges i inconvenients.

Si hem d'expressar nombres molt grans o molt petits, utilitzem la notacié cientifica
que consisteix en expressar el nostre nombre com el producte d'un nombre amb una
part entera amb poques xifres i una poténcia de 10 (d'exponent positiu o negatiu). Per
exemple:

3.45 x 102, —2.547 x 10°, 7.31 x 107>, ...

3De fet, com que aquest nombre v/2 no es pot escriure, ni en teoria, els grans matematics grecs de fa
més de dos mil anys no acceptaven que for realment un nombre.
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1.2 Ordre i intervals

Coneixem les operacions aritmétiques basiques dels nombres: la suma, la resta, la
multiplicacid i la divisié. Cal recordar que la divisid només és possible si el denominador
és un nombre diferent de zero.

Una altra propietat important dels nombres reals és que estan ordenats: donats
dos nombres diferents sempre n'hi ha un que és més gran que l'altre. Utilitzarem els
simbols

a<b a<b a>b a>b

per indicar aquesta relacid. S'anomenen positius els nombres que sén més grans que
zero i s'lanomenen negatius els nombres que sén més petits que zero. El zero no és ni
positiu ni negatiu.

El fet que els nombres estiguin ordenats ens permet parlar d'intervals. La notacio
sera:

[a, b] denota tots els nombres x tals que a < x < b
(a, b) denota tots els nombres x tals que a < x < b
[a, b) denota tots els nombres x tals que a < x < b
(a, b] denota tots els nombres x tals que a < x < b
(—o0, b] denota tots els nombres x tals que x < b
(—o0, b) denota tots els nombres x tals que x < b
[a, 00) denota tots els nombres x tals que a < x

(a, 00) denota tots els nombres x tals que a < x
o0) denota tots els nombres

(—o0

1.3 Poténcies i arrels

Ja coneixem el concepte de poténcies d’'un nombre. Si a és un nombre qualsevol i n és
un enter positiu, definim la poténcia a” com el producte repetit de a per a n vegades:

n+m n_m (an)m — anm. (*)

El concepte d'arrel enésima es defineix aixi: y/a = b vol dir que b" = a. Si n és
senar, tot nombre a té una Unica arrel n-ésima /a. En canvi, si n és parell

e 0 té una Unica arrel n-ésima: v/0 = 0.
e Els nombres negatius no tenen arrel n-ésima.

e Els nombres positius tenen dues arrels n-ésimes, una de positiva i una de nega-
tiva. La notaci6 v/a denota, en aquest cas, sempre l'arrel positiva.
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Si l'exponent no és un enter positiu, el concepte anterior de poténcia com a multiplicacio
repetida no té cap significat pero, malgrat aixo, li podem donar un sentit i ho podem
fer de manera que les dues propietats fonamentals (x) segueixin essent valides. Ho
fem aixt:

e Si a és un nombre qualsevol # 0, definim %=1

e Si a és un nombre qualsevol # 0 i n és un enter positiu, definim a=" = 1/a".
e Si a és un nombre positiu i m és un enter positiu, definim a'/™ = {/a.

/m_— &

e Si a és un nombre positiu, els apartats anteriors ja ens defineixen a” an.

Finalment, si a és un nombre positiu i r és un nombre decimal arbitrari, podem
definir a" per un métode de pas al limit que ara no discutirem.

Convé observar

e Les definicions anteriors no sén capricioses, sind que son les definicions que cal
adoptar si volem que les propietats

a’t =a"a", (a")° =a".

que ja es complien per a exponents enters positius segueixin essent valides per
a exponents arbitraris.

e Les potencies a” amb r un nombre decimal arbitrari només estan definides si
a > 0. Només en el cas en que l'exponent sigui enter podem admetre que a pugui
ser negatiu.* Finalment, si r > 0 també podem acceptar que 0" = 0.

1.4 Valor absolut i part entera

Podem dir que el valor absolut d'un nombre és «el nombre prescindint del seu signe».
Una definicié més precisa és aquesta

a sia>0
|a| = .
—a siax<0

Les propietats elementals d'aquesta funcié son aquestes
e |a| = |b| és el mateix que a = +b.
e |ab| = |a||b| i |a|/|b| = |a/b| (en aquest cas, si b # 0).

e |a+ b| <|a|+|b|.

‘Per comprendre millor aixo que estem dient aqui, observem aquesta paradoxa: —1 = (=1)! =
1/2 . '
((71)2) =112 = V1= 1. Pot veure el lector on hi ha l'error?
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e |a| < b és el mateix que —b < a< bi|al > b és el mateix que a> b o a< —b’
e Va2 =|a| i, en general, si n és parell, va" = |a|.

El valor absolut es pot considerar com una funcié f(x) = |x|. St la pensem aixi, la seva
grafica és aquesta

La part entera d'un nombre positiu és el nombre sense la seva part decimal. S'a-
costuma a denotar [x| o també INT(x). Si volem donar una definicié més precisa que
valgui també per als nombres negatius, direm que la part entera d'un nombre a és el
més gran de tots els enters n tals que n < a. Observem que, amb aquesta definicid, la
part entera de —3.18 és —4. Si dibuixem la part entera com una funcid, obtenim una
grafica que en podriem dir «esglaonada.

>Com que aquesta és, potser, la primera vegada que surt la paraula «o» en aquests apunts, és un bon
moment per recordar que, si bé aquesta paraula té dos significats diferents en el llenguatge ordinari —l'o
inclusiu i l'o exclusiu— en el llenguatge matematic té Gnicament el significat «inclusiu». En matematiques,
l'expressiéo «A o B» vol dir «o A, 0 B o ambdds».
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1.5 Fem-ho amb sage

Ja hem dit que cap ordinador pot emmagatzemar un nombre real arbitrari, perqué
aquests nombres tenen infinites xifres decimals. sage considera tres tipus de nombres:

e Nombres exactes. Per exemple, 14 i 125/41 sén nombres exactes. Les operacions
(suma, producte, divisid) que es fan amb nombres exactes sempre donen nombres
exactes.

e Nombres inexactes, que sdn els nombres decimals amb una quantitat determina-
da de decimals (com a les calculadores). EL nombre de decimals es pot escollir
i pot ser tan gran com calgui. Per exemple, 2.5 és un nombre inexacte i, de fet,
qualsevol nombre que contingui una coma decimal es considera un nombre ine-
xacte. Observem la diferéncia que hi ha entre el nombre exacte 5/2 i el nombre
inexacte 2.5. Les operacions amb nombres inexactes donen nombres inexactes,
pero hi ha algunes operacions que sage es nega a fer amb nombres inexactes,
perqué no pot garantir la correccié dels resultats. Treballar amb nombres ine-
xactes s'assembla a treballar amb una calculadora, amb la diferéncia que podem
augmentar el nombre de decimals tant com vulguem.

e Nombres simbolics. Es tracta de nombres donats per expressions simboliques
que, per tant, son exactes. Per exemple, sqrt(3), e"2 i cos(pi/7) sén nombres
simbolics. Les operacions amb nombres simbolics donen nombres simbolics.

Podem passar d’'un tipus de nombre a un altre. Per exemple, l'atribut .N() ens
déna el valor aproximat d'una expressié simbolica o d’'una fraccié. Si volem més xifres
decimals, podem indicar-ho a linterior del paréntesi. També podem utilitzar la funcié
RR(-).

sage: 125/41.NQ)
3.04878048780488
sage: sqrt(5).NQ)
2.23606797749979
sage: sqrt(5) .N(digits=29)
2.2360679774997896964091736687
sage: cos(e”2)

cos(e”2)
sage: cos(e~2.1)
-0.307141875548787
sage: cos(e~2).N(Q)
0.448356241818733
sage: RR(cos(e”2))
0.448356241818733
sage: AA(cos(pi/7))
0.90096886790241917

La funcié AA(-) ens ddna el valor aproximat de l'expressid, acabada amb un interrogant
que ens indica que sage coneix el valor exacte del nombre.

Sovint, sage ens déna una resposta tan complicada que es fa dificil llegir-la amb
comoditat. La funcié view(-) ens permet visualitzar U'expressié en format tipografic.

sage: solve(x~2+sqrt(2)*x-1,x)
[x == -1/2%sqrt(6) - 1/2*sqrt(2), x == 1/2*sqrt(6) - 1/2*sqrt(2)]
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sage: view(solve(x~2+x-1,x))

1 1 1 1
X —-—-5\/7'— §\A§,X-— 5\/7'— 5\/5

Observem la utilitzacié de la funcié solve(-) per resoldre equacions de segon grau (i
de tercer i quart), de manera que el resultat és una expressié simbolica. En general,
podem resoldre equacions amb la funcié find_root (-, -,-) sili diem entre quins valors
ha d'estar la solucid.

sage: find_root(cos(x)==sin(x),0,pi/2)
0.7853981633974484

sage: find_root(x~5+e*x-1,0,10)
0.36548046271183154

A banda de la variable x, que ja esta incorporada per defecte, podem introduir altres
variables. També podem resoldre sistemes d'equacions.

sage: alfa=var(’alfa’)
sage: solve([2*x+alfa==6, x-alfa==4],x,alfa)
[[x == (10/3), alfa == (-2/3)1]

Tenim la funcié round(-,-) per arrodonir un nombre decimal, la funcié abs(-) per
calcular el valor absolut i la funcié floor(-) per calcular la part entera. També podem
fer comparacions entre nombres.

sage: abs(sin(0.3)-co0s(0.5))
0.582062355229033
sage: round(e,4)

2.7183
sage: floor(273.5)

11
sage: RR(cos(pi/8))>RR(sin(pi/7))
True

Ja hem dit que treballar amb nombres inexactes té els seus problemes. Observem
aquest exemple:
sage: a=pi/12
sage: RR(sin(a)~2+cos(a)~2)==

False
sage: AA(sin(a)~2+cos(a)"2)==
True
Observem la diferéncia semantica entre els signes = i ==. El primer serveix per

assignar un valor a una variable mentre que el segon serveix per indicar la igualtat o
manca d'igualtat entre dos objectes.

sage: a=cos(0)

sage: a

1
sage: a==
True

La funcid solve(-,-) no pot resoldre totes les equacions, perd no esta gens mala-
ment la capacitat que té. Per exemple, aquestes equacions (extretes de la llista d'e-
xercicis), les resol sense dificultat:

sage: K,t,r,k=var(’K,t,r,k’)
sage: solve(x/(1-(x/K))==k*e"(r*t),x)
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[x == Kxk*e~(r*t)/(kxe~(r*t) + K)]
sage: solve((x+5)~2/(2*x-3)"2==1,x)
[x == (-2/3), x == 8]
sage: solve((x-1)*(x-2)==3*(1+(x-2)/(1-(x-3)/x)) ,x)
[x == -1]
sage: solve((3*x+1)*(x-2)>1,x%)
[[x < -1/6xsqrt(61) + 5/6], [x > 1/6%sqrt(61) + 5/6]]
sage: solve(abs(x+1)<=abs(x),x)
[[x == (-1/2)], [x < -11, [x == -1], [-1 <x, x < (-1/2)]]



2. Algunes qliestions de geometria
elemental

En aquesta llico repassarem alguns conceptes elementals de geometria, com sén les
rectes, les circumferéncies i la trigonometria.

2.1 Rectes del pla

Una recta del pla esta formada pels punts del pla de coordenades (x, y) que compleixen
una equacid lineal
ax+by+c=0

on a, bicsoén nombresi ai bno son tots dos zero. Les rectes verticals son les rectes
amb b =0, és a dir, les rectes x = d. Totes les altres rectes es poden escriure de la
forma

y = mx+ b.

Els coeficients m i b tenen un significat que cal recordar:

e b indica el punt de tall de la recta i l'eix d'ordenades. Es a dir, la recta passa pel
punt (0, b).

e m indica el pendent de la recta, que és l'augment de y quan x augmenta en una
unitat. St m > 0, la recta és creixent, st m < 0, la recta és decreixent. Si m =0,
la recta és horitzontal.

Es clar que dues rectes soén paralleles si tenen el mateix pendent. D’altra banda, la
geometria elemental ens diu que les rectes y = mx+biy = m'x+b’ sén perpendiculars
si els seus pendents estan relacionats per la férmula mm’ = —1.

Donats dos punts (diferents) del pla, és molt senzill escriure l'equacié de la recta
que passa per aquests dos punts. Suposem que els punts son (a, b) i (&', b'). Clarament,
el pendent de la recta ha de ser

b— b
m=——.
a—a

Per tant, l'equacid de la recta tindra la forma

bV

y = X+ cC

a—a
i ara podem determinar quin és el valor de ¢ per tal que la recta passi pel punt (a, b).

Exemple: Trobeu l'equacié de la recta que passa pel punt (1,1) i és perpendicular a
la recta que passa pels punts (0,2) i (3,1).

10
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La recta que passa per (0,2) i (3,1) té pendent m = —1/3. Per tant, una recta
perpendicular a ella tindra pendent m" = 3. Aixo ens diu que la rectasera y =3x+b i
ara cal determinar el valor de b. Com que la recta ha de passar pel punt (1,1), veiem
que b = —2. En conclusio, la recta buscada té l'equacid

y=3x—2.

2.2 Distancia i circumferéncies

La distancia entre dos punts del pla de coordenades (a, b) i (a',b') ve donada pel
teorema de Pitagores:

d= \/(a—a’)2+(b— b')2.

La circumferéncia de centre (a, b) i radi r > 0 esta formada per tots els punts del
pla que estan a distancia r del centre. Per tant, aquest punts sén els que compleixen
lequacid

(x —a)’>+ (y — b)? = r2

En particular, les circumferéncies centrades a l'origen tenen equacié

Altres figures geomeétriques que venen representades per equacions de segon gran
son les ellipses i les hipérboles. L'equacié d'una ellipse centrada a l'origen i amb eixos
els eixos de coordenades té la forma

X2 4 2y? =

ambh a# 0,11 r #0. L'equacidé d'una hipérbola en les mateixes condicions té la forma

x2—a%y?=r* o x*—a%?=—r? ar#0.

Una equacié de segon grau de la forma
_ o2
y=ax"+bx+c

amb a # 0 determina una parabola amb leix vertical.
Finalment, l'equacio

xy =k

amb k # 0 defineix una hipérbola amb aquesta forma (si k > 0):
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Si una equacié de segon grau (se'n diuen quadratiques) en dues variables repre-
senta una circumferéncia, és senzill determinar el seu centre i el seu radi per un métode
que s'anomena completar els quadrats.

Exemple: Determineu el centre i el radi de la circumferéncia x? +2x+4 y? —8y +8 = 0.
Fem aixo:

OP+2x)+ (P —8y) +8=(x+1)2 -1+ (y—4)>-16+8=(x+1)>+(y —4)* -9

i, per tant, el centre és el punt (—1,4) i el radi és 3.

2.3 Angles i trigonometria

Un angle consisteix en dues rectes que es tallen en un punt. De la mateixa manera
que, per mesurar distancies, hem de fixar una unitat de mesura, per poder mesurar
angles també hem de fixar una unitat de mesura. Pero hi ha una diferéncia essencial
entre aquests dos casos, perqué leleccid de la unitat de mesura de distancies és
relativament arbitraria i s'ha de fer utilitzant alguna propietat fisica, mentre que en el
cas dels angles, hi ha una unitat «canonica» que és l'angle «complety, és a dir la volta
completa a la circumferéncia.

De la mateixa manera que en els calculs cientifics cal utilitzar un sistema coherent
d'unitats de mesura, als calculs matematics és imprescindible mesurar els angles en
radians. Un radian és la mesura d'un angle tal que un arc de circumferéncia de radi
1 i mida 1 radian té una longitud igual a 1. Dit d'una altra manera, el radian és la
unitat de mesura d'angles tal que la circumferéncia completa mesura 27 radians. Per
tant, mitja circumferéncia sera un angle de 7 radians, un quart de circumferéncia sera
un angle de 7/2 radians, etc.

En molts casos, si hem de calcular un angle, pot ser apropiat i util donar el resultat
final en graus, minuts i segons, pero els calculs els hem de fer sempre en radians.
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Per qué? No és cap caprici. Per exemple, tots hem aprés que la derivada de la funcié
sinus és la funcié cosinus, perd aixdo només és cert si mesurem aquestes funcions en
radians. No és cert si les mesurem en graus.

Considerem un triangle rectangle i suposem que els catets mesuren a i b, mentre
que la hipotenusa mesura c. Designem per 6 la mesura de l'angle que formen el catet
de longitud b i la hipotenusa. La trigonometria estudia la relacié que hi ha entre 8, a,
b i c. Aquesta relacié ve donada per les funcions trigonomeétriques sinus i cosinus. En
concret,

sinf = E, cosf = é
c c
La geometria elemental ens diu que, efectivament, aquests quocients no depenen del
triangle rectangle que haguem pres, sempre que l'angle 8 tingui el mateix valor.
A partir del teorema de Pitagores s'obté immediatament aquesta relacié fonamental
entre les dues funcions sin i cos:

sin®f + cos? 0 = 1.

Observem que el pendent de la hipotenusa és precisament el quocient a/b. Com que
aquest concepte és tan important, introduim una nova funcié trigonometrica, la tangent
a sinf

tanf = — = }
an b cos6

Aquesta funcié trigonometrica, sense anomenar-la tangent, s'utilitza constantment
a la practica i se’'n diu el pendent. Per exemple, si a = b, la tangent val 1 i es parla
d’'un pendent del 100%. Si llegim que la carretera del Tourmalet té un pendent mitja
del 7.4%, aixo ens esta dient que la carretera fa un angle # amb l'horitzontal tal que
tan# = 0.074. Amb una calculadora trobarem que 6 ~ 4.2 graus.’

En aquest exemple ja hem vist que hi haura situacions en que, a partir del valor
d’alguna funcié trigonometrica, ens interessara calcular el valor de l'angle. Aixo ho fem
amb les funcions trigonométriques inverses.

sinf =s és el mateix que arcsins = 6
cosf =s és el mateix que arccoss = 6

tanf =s és el mateix que arctans =0

A la practica, per a pendents no gaire grans, el que es fa és dividir el guany en alcada per la distancia
recorreguda. Aixo és el sinus de l'angle d'inclinacié i no pas la seva tangent pero, si l'angle és petit, hi
ha poca diferéncia entre el sinus i la tangent. Per exemple, considerem un pendent del 10%, mesurat
dividint el guany en alcada per la distancia en horitzontal. Si ara calculem el pendent dividint el guany
en alcada per la distancia recorreguda, obtenim un pendent del 9.95%. Com podem veure, si l'angle és
petit, la diferéncia és poc significativa.
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Per la propia definicié d'aquestes funcions, ja coneixem alguns valors i algunes propi-
etats. Per exemple:

T 3
.0:. pr— _— 7:0

sin sinm cos2 cos2

3
COSOZ—COSTF:Sing:—Sing:l
s'ﬁ cosﬂ L ta7r 1

in— = - = = n— =
6 3 2’ 4

cos(x) = sin <X + g)

També, una mica de geometria elemental ens permet calcular les funcions trigonome-
triques dels angles de 30°, 45° i 60°:

. T T 2 T
st:cosZ:7; tanzzl
.o T 1
S'n6:C°S§:§
. T V3
S|n§:cos€:7
tang—\f; tang:\/g

Finalment, si a un angle li sumem 27 radians, torna a ser el mateix angle. Per tant,
aquestes funcions trigonométriques sén funcions que es van repetint cada 27. Direm
que son periodiques.

Observem també que la funcié tangent es defineix com un quocient i, per tant, només
es podra calcular quan el denominador sigui diferent de zero. Aquest denominador és
la funcié cosf que val zero precisament quan 6 = 7/2 + km i k és qualsevol nombre
enter. Per aquests angles no existira la funcié tangent.

2.4 Fem-ho amb sage

Hi ha paquets de sage dedicats a la geometria de corbes planes, perd sén massa
sofisticats per les necessitats d'aquest curs.

La funcid circle((a,b),r) ens dibuixa una circumferéncia de centre (a, b) iradir, i
una corba definida per una equacié en dues variables es pot dibuixar amb la instruccié
implicit_plot().

També hi ha funcions per dibuixar ellipses, rectes, punts, poligons,... Les possibili-
tats son tan grans que és millor consultar algun dels manuals de sage si s'ha de fer
algun dibuix concret.

Fem un petit exemple.

sage: A=circle((1,1),1,thickness=2,linestyle=’-’)

sage: B=line([(1,1),(3,3)],thickness=2,color="red’)

sage: C=ellipse((1,2),1,1/2,edgecolor="peru’,thickness=4,fill=True,
....: facecolor=’gray’,alpha=0.5)
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: D=parametric_plot([3-cos(x)-2xcos(x/4),-sin(x)+2*sin(x/4)],

(x,0,4%pi) ,thickness=2,color=’orange’)

: E=plot(x~3,(x,0,1.5),color="darkorchid’,thickness=2)

: y=var(’y’)

: F=implicit_plot ((x~2+y~2)~2-4*x*(x~2-y~2), (x,-1,4),(y,-1,2),
: color=’deeppink’)

: A+B+C+D+E+F

[u
[=]
=
%]
w
N
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3. El concepte de funcio

El concepte matematic més important a la ciéncia és el concepte de funcié. Conse-
quiientment, l'estudi de les funcions és l'objectiu central d'aquest curs.

Quan modelitzem (és a dir: quan volem descriure un sistema utilitzant conceptes
matematics) un fenomen de les ciéncies naturals, de l'economia, de les ciencies socials
o d'on sigui, comencem establint unes determinades variables x, y, z, u... que creiem
que son rellevants per a la situacié que estem estudiant. Aleshores, sovint veiem que
algunes d'aquestes variables depenen d'algunes altres. El pas seglient és intentar
descriure aquestes dependéncies a través de funcions. Posem alguns exemples:

e Latemperatura de sensacio de fred (W, pel terme en anglés wind chill) depén de
la temperatura (T) i de la velocitat del vent (V) (i, potser, d'algunes altres coses).
Es important trobar un bon model per aquesta dependéncia perqué, en les regions
més fredes, l'efecte combinat del fred i el vent pot afectar la supervivéncia de les
persones exposades a la intempérie. S'’han fet molts estudis sobre aquest tema.
Per exemple, la funcié que utilitza el servei meteorologic del Canada és

W =13.12 + 0.6215 T — (11.37 — 0.3965 T) V916

on T < 10 és la temperatura de l'aire en Celsius, V > 4.8 és la velocitat del vent
a 10 metres sobre el sol, en km/h, i W és la temperatura de sensacié (o wind
chill index) en Celsius. Tenim, doncs, una funcié que, partir de les variables T i
V ens permet calcular la variable W.

e En economia ens interessa relacionar els diversos factors de produccio Xy, ... X,
amb la produccid Q. Es a dir, s'estudien les funcions de produccié

Q= f(X1,...Xn).
Per exemple, un model classic és la funcié de produccié de Cobbh-Douglas
Q= ALPK~

on Q és la produccid total en un any, L mesura el treball (persones-hora en un
any), K indica el capital (valor de tot l'equipament que s'utilitza), A és una cons-
tant de proporcionalitat i a i 8 sdn constants relacionades amb la productivitat
i el nivell tecnologic, respectivament. Tenim, doncs, una funcié que ens permet
estudiar la influéncia que tindria en la produccié un hipotétic augment de treball
i/o capital.

e D’enca que es va prendre consciéncia de l'escalfament global, la mesura del con-
tingut de CO;, a latmosfera —i de la seva variacié en funcié del temps— ha
adquirit una gran importancia. Lobservatori de referéncia és el de Mauna Loa

16
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(Hawaii). La relacidé que s'ha observat entre la concentracié de CO; (C, en ppmv)
i la temperatura (T, en Celsius) és aquesta

C
T =4.28log <C> + To
0

on Tp i Gy son la temperatura i la concentracio de referéncia. Per a (y s'acostuma
a prendre el valor de l'any 1977 que era de Cp = 334. El valor que es pren com
a Tp és relativament indiferent, perqué el que ens interessa és l'increment de la
temperatura.! Tenim, doncs, una funcié que ens permet calcular la temperatura
com a funcid de la concentracio de CO, a l'atmosfera i, més important encara,
ens permet predir com variara la temperatura si sequeix creixent la concentracié
de CO».

e Quan estudiem un bosc, ens pot interessar conéixer la quantitat tota de biomassa
o la superficie foliar total. Es molt dificil mesurar directament aquestes variables.
S’han fet nombrosos estudis? per trobar relacions funcionals d’aquestes variables
amb variables molt més facils de mesurar com, per exemple, el diametre del tronc
dels arbres a una certa alcada del sol. Per exemple, s’ha determinat que, per als
exemplars joves de faig, la superficie foliar per arbre (em metres quadrats) és

A = 0.307 D803

on D és el diametre del tronc (en cm) a 1.37 metres d’alcada sobre el sol. D’aques-
ta manera, tenim una funcié que ens permet donar una estimacio6 de la superficie
foliar de manera relativament senzilla, mesurant el diametre dels troncs.

e Segons la llei de U'oferta i la demanda de l'economia, la relacié entre el preu d'un
producte o servei i la quantitat d'aquest producte o servei que es produeix i es
ven esta descrita per dues funcions: la funcié d'oferta i la funcié de demanda. Si
designem per p el preu unitari d'un producte o servei i per g la quantitat d'aquest
producte, la funcié d'oferta (supply curve) és

q=5(p)

que ens ddna la quantitat que es produira al preu p. Es una funcié creixent. La
funcié de demanda és

q = D(p)

i és la quantitat que els consumidors compraran al preu p. Es una funcié de-
creixent3 EL punt on es tallen les grafiques d'aquestes dues corbes és el punt
d’equilibri del mercat. En aquest punt, U'oferta és igual a la demanda.

En aquests exemples, tenim una variable dependent que s’expressa en funcié d'una
o diverses variables independents. El cas més senzill —i el que estudiarem ara— és

"Wegeu Temperature trends at the Mauna Loa observatory, Hawaii, Clim. Past, 7 (2011), 975-983.

2Vegeu Allometric Relationships of Selected European Tree Species, Institute for Environment and
Sustainability, 2003.

3Els economistes, normalment, dibuixen aquestes corbes amb p a l'eix vertical i g a leix horitzontal.
Es a dir, consideren les funcions inverses p = S7*(q) i p = D7!(q).



18 3. El concepte de funcio

el d'una variable dependent i una variable independent. Tindrem, doncs, una situacid
del tipus

y =y(x)
com en els dos ultims exemples anteriors. També utilitzarem la notacié y = f(x) i
parlarem indistintament de «y com a funcié de x» o «la funcid f(x)».

Per tant, una funcié d'una variable és una relacié entre dues variables x i y que,
per a cada valor de la variable x (dintre d'un cert ambit) ens determina un valor
(univocament determinat) d’'una variable y.

Als matematics els agrada pensar una funcié f com una maquina expenedora que
quan li introdueixes un nombre x et retorna un altre nombre f(x):

"

N

oy

3.1 Domini de definicid

Igual com passa amb les maquines expenedores, una funcié pot refusar algunes entra-
des x. Per exemple, a la funcié del wind chill de la seccid anterior, es diu explicitament
que la temperatura ha de ser inferior a 10 graus i la velocitat del vent ha de ser supe-
rior a 4.8 km/h per poder aplicar la formula. També, des d’'un punt de vista matematic,
hi ha funcions que simplement no estan definides per a certs valors de x.

El domini de definicié d'una funcidé f(x) és el conjunt de tots els nombres x per als
quals la funcid esta definida. Per exemple:

e El domini de definicié de y = 1/(x —1) és tots els nombres diferents de 1, perqué
quan x = 1 tindriem una divisié per zero, que no és valida.

e El domint de definicié de y = v/9 — x? és linterval [—3, 3] perqué, fora d'aquest
interval, 9 — x2 seria un nombre negatiu, que no té arrel quadrada.

e La funcié y = tan(x) esta definida per a tots els valors de la variable x, excepte
per x = w/2 + km, on k és un nombre enter qualsevol.
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3.2 Representacio grafica

St tenim una funciéd y = f(x), podem dibuixar la seva grafica, que esta formada per
tots els punts del pla de coordenades (x, y) tals que x pertany al domini de definicid
i y = f(x). En general, la grafica d’'una funcié sera una corba del pla.*

Per exemple, la grafica de la funcié f(x) = /x és aquesta:

3.3 Funcions inverses

Si les variables x i y estan relacionades per una funcié y = f(x), ens pot interessar
poder expressar x com a funcié de y, en la forma x = g(y). St utilitzem la idea de les
maquines expenedores, estem dient que tenim la maquina expenedora f que accepta
entrades x i et retorna y, i ara volem una nova maquina expenedora que funcioni de
manera que si li introdueixes y et retorni el nombre x que havies introduit a la primera
maquina. Es a dir, volem una maquina que «ens retorni 'import» de la primera maquina.

Ja es veu que aixd no sempre sera possible. Considerem la funcié y = x2. Aqui és
impossible trobar una maquina que, a partir de y ens retorni x perqué si, per exemple,
y =4, no podem saber si x valia 2 o valia —2. En molts casos, restringint el dominti de
la funcio, si que podem trobar funcions inverses. En aquest sentit,

multiplicar per a # 0 i dividir per a # 0 sén funcions inverses
(=)™ i v/— son funcions inverses
sin i arcsin sén funcions inverses
cos i arccos son funcions inverses

tan i arctan son funcions inverses

3.4 Composicio de funcions

Si tenim dues funcions, a més de poder-les sumar, multiplicar, dividir... podem fer una
cosa que no es pot fer amb nombres: concatenar-les o, com es diu matematicament,

*Perd no qualsevol corba del pla és la grafica d'una funcié. Observem que la grafica d'una funcié no
pot tenir dos punts en una mateixa linia vertical.
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composar-les. Per exemple, amb les dues funcions sin(x) i v/, podem fer
sin(x) + v, sin(x)vx, sin(v/x), sin(x).

(Observem que les dues maneres de composar-les donen resultats diferents!). Si pen-
sem una funcié f com una maquina expenedora, aquesta composicié de funcions seria
una operacid tan natural com empalmar la sortida d'una d'aquests maquines amb l'en-
trada d'una altra:

"

-

9(f(x))

D’aquesta manera, a partir d'un petit nombre de funcions basiques o elementals, podem
construir funcions molt més complicades.

3.5 Funcions empiriques
Comparem aquestes tres funcions:

1. y = x?sin(1 + x).
2. h(t) = ho — § t2.

3. A=0.307 D1:803

Les tres son funcions, perd representen tres situacions diverses. La primera és una
funcié que en podriem dir «abstracta». Es una funcié matematica que pot ser (til en
situacions multiples. Les variables x i y no signifiquen, a priori, res concret.

La segona funcid és una féormula fisica que ens ddéna l'alcada d’'un cos pesant que
cau per laccid de la gravetat, en abséncia d'aire, a partir d'una algada inicial hg. Es
també una funcié matematica «exacta» que s'ha obtingut a partir d'un model teoric de
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la gravitacio. De fet, és una aproximacié de la realitat, només valida per valors de t
propers a zero, que ens permetin suposar que l'acceleracié de la gravetat és constant.

La tercera funcié ha aparegut en els exemples d'estudis allomeétrics de determinats
arbres i no procedeix de cap model teoric sind que s'hi ha arribat a partir d'estudis
experimentals. Direm que és una funcié empirica. Com s’ha obtingut aquesta funcié?
D'on surten els coeficients 0.307 i 1.8037 S’han obtingut «empiricament», és a dir,
s’han pres mesures de A i D per a un gran nombre d'arbres i s’ha buscat una funcié
matematica que aproximi relativament bé aquestes observacions experimentals.

Els estudiants de batxillerat estan acostumats a «tabular» valors d'una funcié abs-
tracta. En el cas de les ciéncies experimentals, sovint el que cal fer és tot el contrari:
es té una taula de valors de x, y i cal trobar una funcié senzilla que ens permeti calcu-
lar y a partir de x. D’una funcié que hem trobat d'aquesta manera en direm una funcié
empirica.

3.6 Fem-ho amb sage

Es clar que sage té incorporades totes les funcions elementals que utilitzarem aquest
curs. A més, és possible definir funcions especifiques. Hi ha diverses formes de fer-ho.
Per exemple, suposem que volem definir una funcié que ens calculi el wind chill a partir
de la temperatura i de la velocitat del vent. Ho podem fer aixi:

sage: W(T,V)=13.12+0.6215%T-(11.37-0.3965*T)*V~0.16
sage: W(-12,65)

-25.7898830284364

sage: round(W(-12,65),1)

-25.8

La grafica d'una funcié d'una variable s'obté amb la comanda plot() que admet mdlti-
ples arguments, alguns dels quals ja els hem vist en els exemples del capitol anterior.

sage: f(x)=sqrt(x)
sage: plot(f(x),(x,0,5),aspect_ratio=1,ymax=3,ymin=-1)
sage: plot(W(0,x),(x,0,5),aspect_ratio=1,ymax=3,ymin=-1)

La comanda aspect_ratio=1 obliga a que els dos eixos estiguin a la mateixa escala.
Sense aquesta comanda, sage tria automaticament escales apropiades per a cada
eix. Cal anar amb compte amb els punts on la funcié no esta definida. Per exemple,
plot(sqrt(x), (x,-1,1)) donara un error, perqué la funciéd no esta definida entre —1
i 0.

Suposem que volem dibuixar la grafica de la funcié f(x) = x/(x — 1) a linterval
[0,2]. La comanda

sage: plot(x/(x-1),(x,0,2),aspect_ratio=1)

ddéna un resultat que no és satisfactori. EL motiu és que la funcid se’'n va cap a linfinit
quan ens acostem a x = 1. Cal restringir els valors maxims de y.

sage: plot(x/(x-1),(x,0,2),aspect_ratio=1,ymax=5,ymin=-5)

Aquesta comanda ens dibuixa la funcié i una asimptota vertical a x = 1. Si volem
eliminar aquesta asimptota vertical, podem dir-li que exclogui el valor x = 1 on la
funcid no esta definida.
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sage: plot(x/(x-1),(x,0,2),aspect_ratio=1,ymax=5,ymin=-5,exclude=[1])

Finalment, podem especificar quins punts hem de marcar a cada eix, amb latribut
ticks.

sage: plot(x/(x-1),(x,0,2),aspect_ratio=1,ymax=5,ymin=-5,exclude=[1],
....: ticks=[[0,1,2],[-1,311)

Si volem definir funcions més complicades, ho podem fer amb la sintaxi del llen-
guatge python. Per exemple, suposem que volem definir una funcié f(x) que, per a
x > 0, sigui igual a l'arrel quadrada i que valgui zero per a x < 0. Ho podem fer aix:

sage: def f(x):

ceas if x<0:

cee return 0

ceat else:

R return sqrt(x)

sage:

En aquest cas, si volem dibuixar la grafica de la funcid, no hem d'incloure la variable
x sind que hem d'usar aquesta sintaxi:

sage: plot(f,-2,2)



4. Funcions elementals

Farem un repas de les funcions més fonamentals de les matematiques, que es coneixen
amb el qualificatiu de funcions elementals.

4.1 Les funcions polinomiques

Les funcions més senzilles sén les funcions constants y = k que sén les que sempre
retornen el mateix valor k per a qualsevol valor de x.

Després de les constants, les funcions més senzilles son les funcions lineals
y=mx+b

que s'anomenen aixi perqueé la seva grafica és una linia recta.

Les funcions quadratiques sén les que s'expressen per una equacié de segon grau
_ a2
y =ax“+ bx+c.

La seva representacid grafica és una parabola. Apareixen amb molta freqiiéncia a les
aplicacions. Per exemple:

e La dinamica elemental ens diu que si un cos esta en repos a una alcada hg i
comenca a caure per l'accio de la gravetat, la seva alcada vindra donada per una
funcio quadratica del temps t:

e La llei d'accio de masses de la quimica, en la seva formulacid més elemental, ens
diu que la velocitat v d'una reaccid del tipus A+ B — C és proporcional a les
concentracions de Ai de B

v([€]) = k([Alo — [C])([Blo — [€])

on [A]o i [B]o son les concentracions inicials de A i B respectivament, i [C] és la
concentracié de C. Observem que és una funcié quadratica de la variable [C].

La generalitzacié d'aquest concepte son les funcions polinomiques de grau arbitrari
— n n—1
Y = apx + ap—1X + -4+ a1x + ap.
Aquestes funcions estan definides arreu.

23
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4.2 Les funcions racionals

Les funcions racionals son les que s'expressen com a quocient de dos polinomis

apX" 4+ ap_1x" T4 -+ aix + ag
bmXx™ + b1 x™ L+ - 4+ bix + by

f(x) =

El domini de definicio d'aquestes funcions esta format per tots els nombres excepte
aquells x per als quals el denominador sigui igual a zero. La més senzilla d'aquestes
funcions és la que té per grafica una hipérbola

Una altra funcid racional senzilla que apareix sovint és la funcié de Monod (o la
funcié de Michaelis-Menten, que és la mateixa)

f(x)

Jacques Monod va introduir aquesta funcid el 1949 per descriure la taxa de creixement
u dels microorganismes en un medi aquds com a funcié de la concentracid S del nutrient
crucial. L'equacié de Monod és

. ax
o k+x

(*)

S

M= [Imax m

on Ks és una constant que dependra de l'espécie i de les condicions ambientals. L'e-
quacio de Michaelis-Menten és
v — Vméx[s]
Kwm + [S]

(ja veiem que, matematicament és la mateixa funcié) que descriu la velocitat V d'una
reaccidé enzimatica en funcid de la concentracié [S] d'un determinat substrat. La mateixa
equacio s'ha utilitzat per descriure el rendiment d’'un camp de cereal (per exemple) en
funcio de la concentracid al sol d'un cert nutrient.

Dividint el numerador i el denominador per k a l'expressid (x), veiem que aquesta
funcié també es pot expressar en la forma

B bx
14+ Kx

f(x)

Per exemple, el model de resposta funcional de Holling' de tipus Il expressa la taxa
de consum d'un depredador com a funcid de la densitat de preses segons la formula

aR

f(R)= ———
(R) 1+ ahR

on R és la densitat de preses (o de recursos), a és una constant que mesura la taxa
de depredacio i h és una altra constant que mesura el temps necessari perquée el
depredador consumeixi la presa.’?

'C.S. Holling és un ecoleg famés, nascut el 1930 al Canada.
2Busqueu informacié a Internet sobre la Holling disc equation.
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Observem?® que, en la funcié de Monod f(x) = ax/(k + x), si x és petit, la funcié
s'acosta a una recta de pendent a/k, mentre que a mida que x creix, la funcié es va
«ajaienty» i es va acostant a un valor maxim igual a a. La representacié grafica és
aquesta

Més enlla de la funcié6 de Monod, altres funcions racionals que apareixen a les
aplicacions son les funcions de Holling de tipus Ill i tipus IV, que sdn funcions com
aquestes

ax 2 ax

J— M _ . 4
y = P21 X2 (tipus 1), y = ap———y (tipus IV)™.

Tenen aquesta forma (en vermell la de tipus IV i en blau la de tipus IlI):

La diferéncia qualitativa entre una funcié de Holling tipus Il i una tipus Il és que,
per a valors petits de la variable, la de tipus Ill té un creixement més lent que la de
tipus Il. Les funcions de tipus IV son interessants perqué poden modelar situacions en
les quals tant l'excés com la manca d'un nutrient x perjudiquen el creixement de la
variable y. Per exemple, s'han utilitzat per modelar el cultiu de microorganismes en
substrats que n’inhibeixen el metabolisme.”

3Aixd que ve ara ho entendrem millor quan haguem estudiat la derivada.

*En alguns llocs les funcions de tipus IV tenen com a numerador ax?. La diferéncia qualitativa entre
els dos casos és que, per a valors grans de x, una funcié s'acosta a 0 i l'altra s'acosta a a.

>Vegeu A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Subs-
trates, Biotechnol. Bioeng. 10 (1968), 707-723. Per exemple, els bacteris nitrificants que s'utilitzen en el
tractament d'aigiies poden sequir una funcié de tipus IV d'aquestes.
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4.3 Les funcions potencials

En els polinomis, els exponents sén nombres enters. St aquests exponents s6n nombres
decimals arbitraris, parlem de funcions potencials (en anglés, power laws). La funcid
potencial elemental és

y = kx"

on k # 0 és una constant i r és un nombre que no és enter. El domini de definicid
d’aquesta funcié és x > 0. Si r > 0, també podem considerar que la funcié esta definida
per x = 0.

Aquestes funcions potencials tenen moltes aplicacions, per exemple en el camp de
l'allometria®

e La llei de Kleiber (formulada per Max Kleiber als anys 30 del segle passat)
és l'observacio que, en un gran nombre d'animals, el seu metabolisme (és a dir,
la quantitat d'energia que generen o, equivalentment, necessiten per viure) és
proporcional a la poténcia 3/4 de la seva massa. Es a dir,

M = km0.75

on m és la massa de l'animal i M és el seu metabolisme. Per exemple, segons
aquesta llei, com que la massa del gat és aproximadament 100 vegades la del
ratoli, el metabolisme del gat sera aproximadament 32 vegades el del ratoli.

e S’han fet estudis allomeétrics que relacionen la massa del cor i la massa total de
diverses espeécies d'aus i s’ha trobat que segueixen aproximadament una funcié
potencial

Mc = 8.76 x 107> m*92

on Mc és la massa del cor (kg) i m és la massa corporal (kg).”

e En el capitol anterior hem parlat dels estudis d'allometria que s’han fet per
relacionar les diverses mesures dels arbres: diametre del tronc, alcada, biomassa
total, superficie foliar, etc. En molts casos, s'ha arribat a relacions allométriques
del tipus potencial. Per exemple, a la pagina 17 de linforme que hem citat hi
trobem la relacié allomeétrica

H = 3.240838 D B H°-613065

entre l'alcada H (en metres) d'un faig (Fagus Silvatica) i el diametre a 1.37 m
sobre el sol DBH (en cm).

El comportament de la funcié y = kx" depén de si r és positiu o negatiu i de si
[rl > 1 o0 |r] < 1. El dibuix segiient mostra diverses grafiques. La corba vermella
representa r = —0.5, la corba porpra representa r = —1.5, la corba blava representa
r =15 i la corba verda representa r = 0.5.

®Atlometria: estudi de les relacions entre les diverses mesures dels organismes.
"Vegeu Allometric relations of cardiovascular function in birds, Am ] Physiol. 1983 Oct;245(4):H567-72.
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4.4 Fem-ho amb sage
Les funcions polindmiques es poden definir de la manera que ja coneixem. Per exemple,

sage: p(x)=3*x"3-2*x~2+x+1

Recordem que una arrel d'un polinomi és un valor de la variable que fa que el
polinomi valgui zero. La comanda
sage: p(x).roots()

ens dona les arrels exactes d'aquest polinomi. En aquest cas, obtenim una expressié
molt complicada que és poc Util i, per a polinomis de grau superior a 4, la comanda
anterior pot no trobar les arrels exactes. Cal usar aquesta sintaxi:

sage: p(x).roots(ring=RR)
on l'expressié ring=RR indica que volem les arrels com a nombres reals (inexactes).
Per exemple

sage: (3*%x~8-2*x~2+x+1) .roots(ring=RR)
[(-0.928030244348921, 1), (-0.504162567229218, 1)]

troba les dues arrels reals d'aquest polinomi de grau 8. Per exemple,

sage: h(x)=x"T7T+4*x"6-14*x"4-5*x~3+18*x~2+4*x-8
sage: h(x).roots(ring=RR)

[(-2.00000000000000, 3), (-1.00000000000000, 1), (1.00000000000000, 3)]
sage: h(x).factor()

(x+2) "3 (x+1) *(x-1) "3
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5.1 Les funcions exponencials

Si a > 0, podem considerar la funcid y = a* o, més en general, la funcié
y — k arx

on k, r # 0 son constants. D'aquesta familia de funcions se’'n diuen funcions exponen-
cials i sdn molt importants a la ciéncia, com veurem al llarg del curs. El valor de a que
més s'utilitza (ja veurem el perqué més endavant) és el del nombre e. Aquest nombre

e = 2.718281828459045235360287471352662497757247093699959574967 . . .

és una constant matematica fonamental, com ho és el hombre 7. De la mateixa manera
que 7 esta relacionat amb la circumferéncia (7 és l'area limitada per una circumferéncia
de radi 1), el nombre e esta relacionat amb la hipérbola: 'area limitada per la hipérbola
xy =1 entre x =11 x = e és exactament 1.

2t y=1/z

La funcid exponencial de base e tamhé s’indica amb la notacid exp:
y = ke™ = kexp(rx).

Aquesta notacio és molt Util quan Uexponent és una expressié complicada. La grafica
de la funcid exponencial e* té aquesta forma:

28
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=
I
o

La funcid exponencial té aquestes propietats:

e La funcié exponencial esta definida arreu.

X

e X > 0 per qualsevol valor de x. En particular, e mai no val zero, encara que en

el dibuix ho sembli.

o exp(x + y) = exp(x)exp(y). Podem dir que la funcié exponencial «transforma
sumes en productesy. També exp(x — y) = exp(x)/ exp(y) i exp(sx) = exp(x)°.

e Tot nombre positiu apareix com a resultat de U'exponencial. Més exactament, si
y > 0, existeix un Unic x tal que e* =y.

e Si x << 0 (és a dir, x és un nombre negatiu i |x| és molt gran), e* =~ 0.

e Quan x > 0, la funcidé exponencial creix molt de pressa. Quan x < 0, la funcié
creix molt lentament.

La funcié exponencial és tan fonamental i apareix a tants ambits, que no posarem ara
cap exemple perqué ja n'apareixeran prou al llarg del curs.

Canviant el valor del parametre r podem modificar la forma de la grafica de la
funcid. Per exemple, aquest dibuix mostra les grafiques de e™ per r = +0.2, £0.5, £1:
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5.2 Les funcions logaritmiques

La funcié logaritme en base a > 0, y = log,(x) és la inversa de la funcié exponencial
de base a. Es a dir,
y = a~ és el mateix que x = log,(y).

La funcid logaritme «desfa» el que hagi fet la funcié exponencial:
X\ __ lo —
log,(a*) = x, aoe) =

Tal i com passava amb la funcié exponencial, la funcié logaritme més important és la
de base e. S'anomena logaritme natural o logaritme neperid' i la designarem sense
subindex. Es a dir, la funcié log(x) indicara el logaritme neperia de x.?

Com és logic, la grafica de la funcié y = log(x) és la mateixa que la de la funcié
x = e¥ i s'obté, per tant, agafant la grafica de y = €* anterior i intercanviant els eixos.
Les propietats de la funcié logaritme sén una reinterpretacio de les propietats de la
funcié exponencial. Son aquestes:

La funcid logaritme només esta definida per x > 0.

log(1) = 0.

log(xy) = log(x)+log(y). Podem dir que la funcié logaritme «transforma productes
en sumesy. També log(x/y) = log(x) — log(y) i slog(x) = log(x®).

Si x ~ 0 (és a dir, x és un nombre positiu molt petit), log(x) és un nombre negatiu
de valor absolut molt gran.

'En honor de John Napier of Merchiston (1550-1617), que va ser Uinventor dels logaritmes (1614).

2Aquesta convencié és la que utilitzen tots els matematics i és consistent amb la idea que el logaritme
neperia és el més important, perdo també és cert que, per motius de tradicid, també s'utilitza la notacid
In per indicar el logaritme en base e, és a dir, el logaritme neperia. En aquest curs, log sempre indicara
el logaritme neperia (que és el que s'utilitza en el 99% dels casos). Quan calgui utilitzar algun altre
logaritme (en base 10, en base 2, o en qualsevol altra base) indicarem explicitament la base en la forma
log,, logy,, etc.
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e Quan x > 1, la funcié logaritme creix lentament, quan x < 1, la funcid creix molt
rapidament.

2 y=log(z)

El logaritme ens permet expressar qualsevol funcié exponencial a partir de l'exponencial
de base e i qualsevol logaritme a partir del logaritme de base e:

ex108(2) — (glog(a)yx — ¥, log,(x) log(a) = log (a'°ga(x)) = log(x).

log(a)
Exemples: EL nombre de situacions cientifiques en les que apareixen funcions logarit-
miques és immens.

log,(x) = 28

e Un index que s'utilitza a ecologia per mesurar el nivell de biodiversitat en una
zona és l'index de Shannon

R
H=—>pilog(pi)
i=1

on pi,...,Ppr son les proporcions de cada espécie d'interes a la zona d'estudi.
e El pH d'una dissolucié aquosa es defineix com
pH = —logio(am,0+)

on ay,o+ és l'activitat dels cations hidroni a la dissolucid.
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e EL 1969, Jukes i Cantor van proposar un model per mesurar la distancia evolutiva
entre dues seqliéncies genétiques:

3 4
d——Z Iog<1—3p>

on p és la proporcid de diferéncies entre les dues seqliéncies.

o L'index de Richter d'un terratrémol es va definir com

on A és lamplitud de les ones sismiques i Ag és una certa funcié empirica de la
distancia a l'epicentre.

e Donades dues freqiiencies a i b, el nombre d'octaves que les separen és

n = logy (%) .

e lLa llei de Fechner de la psicofisica afirma que les sensacions sén proporcionals al
logaritme dels estimuls. La fotografia ha de tenir en compte aquesta llei, perque
els sensors digitals no sequeixen la llei de Fechner? Quantitativament, escrivim

S
p = klog —
So
on p és la percepcid rebuda i S és la magnitud de l'estimul.

e A la microeconomia classica s'estudien les funcions dutilitat que sén funcions
que, a cada possible objecte de consum d’'un determinat conjunt, li associen un
nombre que indica la preferéncia del consumidor per aquest objecte. Sovint,
aquestes funcions sén logaritmiques.*

e Un tema important en el disseny de generadors edlics i també en els estudis de
la dispersio de la pollucid atmosférica és conéixer com canvia la velocitat del vent
u en funcié de d’alcada sobre el sol z. Un model classic ve donat per la funcié®

u(z) = % <|og <ZZ_Od> (2, 20, L)> .

3La resposta del sensor d’una camera digital és aproximadament lineal. Per tant, un cop el sensor ha
adquirit la fotografia cal fer una transformacié exponencial per tal d'obtenir una fotografia que, al nostres
ulls, s'assembli a la imatge original.

*Si voleu més informacié, consulteu «Logarithmic laws in service quality perception: where microeco-
nomics meets psycophysics and quality of experience», Telecommun. Syst. 52, n. 2 (2013) 587-600.

’Per entendre qué és cada terme d'aquesta funcié, consulteu l'entrada «log wind profile» a Wikipe-
dia.org.
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5.3 L'escala logaritmica

Quan representem els nombres sobre una recta, escollim dos punts que marquem com
a0i1 (el punt1 a la dreta del punt 0) i aleshores, desplacant el segment entre 0 i 1
cap a la dreta, anem sumant 1 repetidament i obtenim els punts 2, 3, etc. Desplacant
el mateix segment cap a l'esquerra, anem restant 1 repetidament i obtenim els punts
-1, -2, -3, etc. Obtenim el que en podem dir l'escala ordindaria.

A l'escala logaritmica fem una cosa similar, pero multiplicativament: escollim dos
punts que marquem com a 1110, el 10 a la dreta de I'1. En lloc de 10, podem prendre
qualsevol altre nombre > 1. Aleshores, desplacant el segment entre 1 i 10 cap a la
dreta, anem multiplicant per 10 repetidament i obtenim els punts 100, 1000, 104, 105,
etc. Desplacant el mateix segment cap a l'esquerra, anem dividint per 10 repetidament
i obtenim els punts 0.1 = 1071, 0.01 =102 1073, 1074, etc. Obtenim el que es coneix
com l'escala logaritmica.

102 104 10-3 102 1071 1 10 102 10° 10* 10°

Observem:

e A l'escala logaritmica només hi apareixen els nombres positius.

e La relacid entre l'escala ordinaria i l'esca logaritmica és que el punt a a l'escala
ordinaria és el punt 107 a l'escala logaritmica i, reciprocament, el punt b a l'escala
logaritmica és el punt log;o(b) a l'escala ordinaria.

e El punt mig entre els punts 110 no és el punt 5, sind que és el punt v/10 = 10%5.

Si una funcié esta definida sobre els nombres positius i pren només valors positius,
podem representar la grafica d'una funcié prenent escales logaritmiques per als dos
eixos. L'aspecte de la grafica pot canviar substancialment. Per exemple, dibuixem la
funcié y = y/x en escala ordinaria i en escala logaritmica.
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10° b

107 F

107 107 10! 10° 10!

Observem que quan dibuixem la funcié y = {/x = x>

sembla una recta. Aix0 no és cap casualitat:

en escala logaritmica, la grafica

Quan dibuixem una funcié potencial y = kx" en escala logaritmica obte-
nim una recta de pendent r.

Lexplicacid és molt senzilla: si tenim y = kx" i prenem logaritmes als dos costats,
obtenim

log(y) = log(k) + rlog(x).

Es a dir, tenim
Y=K+rX

(hem posat K = log(k)) que és una recta en lescala X = log(x), Y = log(y), que és
lescala logaritmica.

Aquesta observacié és molt més important del que pot semblar al primer moment.
A la practica, el que es fa quan estudiem un fenomen que sospitem que pot venir donat
per una funcié potencial és recollir mostres i situar els valors que hem trobat en un
pla de coordenades logaritmiques. Aleshores, busquem una recta de regressié que
aproximi aquests punts. Si l'aproximacié és bona, podem afirmar que tenim una relacid
potencial, i l'exponent és el pendent d’aquesta recta de regressié que hem trobat.

De vegades, també s'utilitza l'escala semilogaritmica, que és l'escala en qué s'u-
tilitza l'escala ordinaria a l'eix x i l'escala logaritmica a leix y. En aquesta situacid
tenim:

Quan dibuixem una funcié exponencial y = ke en escala semilogaritmica
obtenim una recta de pendent r.

Exemple: Recordem la relacié allométrica entre la massa del cor i la massa corporal
de les aus que hem esmentat a la pagina 26. Resulta que, si dibuixem en escala
logaritmica la grafica de la massa del cor com a funcié de la massa corporal, obtenim
aproximadament una recta de pendent 0.92. Si una espécie A té una massa corporal
10 vegades superior a la d'una altra especie B, quina relacido hi haura entre la massa
del cor cy de l'espécie A i la massa del cor cg de l'espécie B?
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El fet que la grafica s'acosti a una recta en escala logaritmica, ens diu que la funcié
s’ha d'acostar a una funcié potencial. Si la recta té pendent 0.92, la funcié potencial
ha de ser

c = km0.92
on m és la massa corporal i ¢ és la massa del cor. Apliquem aquesta funcié a les
espécies A i B. Obtenim

ca = km%%% = k(10 x mg)®°? = 10°2km%°? = 10°%%¢c5 ~ 8.32 x cp.

Per tant, estimem que la massa del cor a l'espécie A sera 8.32 vegades la massa del
cor a l'espécie B.

Exemple: Es fa un estudi de la relacié entre la densitat de plantacié X i la produccié
per planta (per exemple, blat de moro, cirerers, etc.) Y, representem els resultats en
una escala logaritmica i observem que la grafica de Y = Y(X) s'aproxima a una recta
de pendent —3/2. Quines conclusions en traiem? En primer lloc, a nivell qualitatiu,
sabem que la produccié per planta disminueix quan augmenta la densitat de plantacid.
A nivell quantitatiu, sabem que la funciéd Y = Y/(X) sera una funcid potencial d'exponent
—3/2
Y =KX 32

Si coneixem un valor concret de Y podem determinar el valor de la constant K.

5.4 Fem-ho amb sage

Podem dibuixar grafiques en escala logaritmica o semi-logaritmica. Per exemple,

sage: m=var(’m’)

sage: f(m)=3.25*m"0.32

sage: plot(f(m),(m,0,4),aspect_ratio=1)
sage: plot(f(m), (m,0,4),scale=’loglog’)
sage: g(m)=3.25%exp(0.32*m)

sage: plot(g(m),(m,0,4),aspect_ratio=1)
sage: plot(g(m),(m,0,4),scale=’semilogy’)
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Funcions sinusoidals

Les funcions trigonométriques sin(x) i cos(x), com que només depenen de l'angle, sén
periodiques

sin(x 4+ 27) = sin(x), cos(x + 27) = cos(x)

i apareixen en l'estudi dels fenomens periodics: moviment harmonic, ones, fendomens
naturals amb periodicitat diaria o anual, etc. Per exemple:

e EL model classic de Nakatsugawa et al. de 1996 per a la temperatura de la
superficie del mar' és

T, . [2xD
T(D) = Ton+ - sin (37;5) + T,

on D és el dia de l'any (comptat a partir del dia que marca la temperatura
mitjana), T, és la temperatura mitjana anual, T, és l'amplitud termica anual i 7,
és un terme que serveix per incorporar pertorbacions com pot ser «el nifio».

En els estudis sobre la fotosintesi cal tenir en compte la irradiacié solar diaria.
L'equacié més natural és aquesta?

E(t) = Epsin (%)

on E(t) és la insolacié t hores després de la sortida del sol, E,, és la irradiacié
solar al migdia i V és el nombre d'hores de sol totals del dia.

La funcid sinusoidal més general és

f(x) = Asin(2mvx + b).

Observem que la funcid cosinus és un cas particular d'aixo, perquée

cos(x) = sin (x + g) .

Discutim ara el significat dels parametres A, v i b.

e A és la meitat de 'amplitud del moviment sinusoidal. Recordem que la funcid
sin té un valor minim de —1 © un valor maxim de 1. Per tant, st volem una funcid
sinusoidal que oscilli entre —A i A, hem de multiplicar la funcié sin per A.

"Wegeu Kawas, Anderson, Mathematical Models of Large Watershed Hydrology, p. 198.
2Vegeu Kirk, Light and Photosynthesis in Aquatic Ecosystems, p. 41.

36



6. Funcions elementals —3— 37

e v és la freqiiencia. Recordem que un cicle de la funcid sin té una longitud de 2,
és a dir, la funcid sinus es torna a repetir després de 27. Si volem una funcio
sinusoidal que es repeteixi cada 1/v, hem de considerar sin(27wvx).

e b és la fase. Recordem que sin(0) = 0. Si volem una funcié sinusoidal que tingui
el primer zero en un determinat valor x = —b, hem de considerar sin(x + b).

D’aquesta manera, escollint convenientment aquests parametres podem adaptar la fun-
ci6 sinusoidal a les nostres necessitats.

Funcions sinusoidals amb diversos valors dels parametres A, v i b.

Sumant a una funcié donada una funcié sinusoidal, podem obtenir una funcié que
vagi oscillant a l'entorn de la funcié inicial. Per exemple, la grafica seglient representa
una funcié quadratica (una parabola) amb una petita pertorbacié sinusoidal:

15+

0.5+

Apn i

¥/ \/ Y, 1 2

3]
N

La funcié és
y = 0.5x% 4+ 0.25sin(25x).

Exemple: En un estudi sobre la temperatura mitjana (de les minimes) en un deter-
minat observatori (la Seu d'Urgell), s’ha vist que segueix aproximadament una funcié
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sinusoidal. La temperatura mitjana (de les minimes) d'aquest observatori és 5.7. El dia
més fred de l'any és el 6 de febrer i lamplitud térmica anual és de 14.8 graus. Trobeu
una funcié sinusoidal que aproximi aquestes dades.

Si expressem el temps d en dies i la temperatura T en Celsius, la funcié sinusoidal
que busquem és
T = Tm+ Asin(2nvd + b)

on T, sera la temperatura mitjana anual i A sera la semi-amplitud térmica. Com que
la periodicitat ha de ser anual, ¥ = 1/365. Només ens cal determinar el parametre b.
Sabem que el minim de la funcié es produeix quan d = 37. Aquest minim correspon a
sin(2rvd + b) = —1 i, per tant, 2rvd + b = —7/2. Aixo ens déna

b=m

2 365

1 2
< x 37) ~ —0.7027.

La funcié sinusoidal que busquem és

2d
T(d) =5. Asi — —0.702 .
(d)=57+7 S|n<7r<365 0707))

12

10

\y 100 150 200 250 300 350

6.2 Fem-ho amb sage

La figura anterior amb quatre funcions sinusoidals esta feta amb aquestes comandes:

sage: p=plot(2.1*sin(2*pix*1.2xx+1),(x,-5,5),aspect_ratio=1)
sage: g=plot(1l.2xsin(2*pix*0.6%*x-2),(x,-5,5),color="red’)
sage: r=plot(1l.7*sin(2%pix*0.2xx-4),(x,-5,5),color="purple’)
sage: s=plot(0.2xsin(2*pi*8+*x-4),(x,-5,5),color=’orange’)
sage: ptqtr+s
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7.1 Comportament a llarg termini

St estudiem un fenomen descrit per una funcié y = y(x), ens interessa conéixer el
comportament de la variable y per a valors molt grans de la variable x. Si la variable
x és el temps, aix0 és precisament el qué en diem comportament de y a llarg termini.

Considerem una funcié logaritmica com y = log(x) i una funcié de Monod com
y = 10x/(1 + x). Veiem que tenen comportaments a llarg termini ben diferents:

2t y=log(z)

0.5 -

H
N
w
IS
o

05

10

102

5

La funcid logaritmica creix «illimitadament», és a dir, supera qualsevol valor N, per
gran que sigui. En canvi, la funcié de Monod es va acostant més i més al valor 10, sense
superar-lo mai. Es a dir, per qualsevol valor ¢, per petit que sigui, si x és prou gran
tindrem que |y — 10| < e. Aquestes situacions les expressarem utilitzant el concepte

matematic de limit:
lim log(x) i 10x
im log(x) = oo; im =
X—$00 & oo x—o0 1 4+ x

Si la funcid esta definida per als nombres negatius, també podem preguntar-nos pel
comportament de la funcié quan la variable «tendeix» a —oo. Per exemple, hem vist

39
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abans que
lim e =0.
X—>—00
Repassem quin és el comportament a llarg termini —el limit— de les diverses
funcions elementals.

e Lineals i polinomiques. Aquestes funcions (en valor absolut), creixen indefinida-
ment per a valors grans de la variable (en valor absolut). De fet, si |x| és molt
gran, un polinomi x" + a,_1x" 1 + ... + a9 (n > 0) es comporta igual que el seu
terme de grau maxim

lim (x" + ap_1x"1
x—to0

+--+43a)= lim x"
x—+oo
i, d'altra banda,
lim x" = oo; lim x"=(—1)"c0.
X—00 X—>—00
e Racionals. Igual que en el cas dels polinomis, quan |x| és molt gran només és
rellevant el terme de grau més gran del numerador i el denominador:

. apX" 4+ ap_1x" T4+ ag . apx" an .. _
lim T = lim —=— Im x
x—£00 byX™ + b1 XML + .-+ by x—Foo bypyx™ by, x—+oo

D’altra banda,

oo sir>0, (=1)'c0  sir>0,
lim xX"=4¢1 sir=0, lim x"=<1 sir=0,
X—00 X——00

0 si r <0. 0 st r <0.

e Potencials. x" es comporta essencialment com si l'exponent fos enter i tenim la
mateixa formula anterior. Només té sentit el cas x — oo perqué les funcions
potencials només estan definides per x > 0.

e Exponencial i logaritme. Ja hem considerat aquests casos abans. Tenim

lim e* = oo; lim e*=0; lim log(x) = occ.

X—>00 X—>—00 X—>00
En el cas del logaritme, no té sentit el limit quan x — —oo perqué la funcio
logaritme només esta definida per x > 0.

e Trigonométriques. Les funcions sinusoidals van oscillant indefinidament, sempre
amb la mateixa amplitud. Per tant, quan x tendeix a +oo aquestes funcions ni
s'acosten a cap valor concret, ni s'allunyen cap a +oo. Simplement, no tenen
limit. Aqui observem que el limit d’'una funcidé limy_,~ f(x) pot no existir. La
funcidé tangent tampoc no té limit (perqué també és periodica).

En canvi, l'altra funcid trigonometrica important, la funcié arc-tangent, st que té

un limit:
T

lim arctan(x) = us lim arctan(x) =
X300 AL R L =Ty

Es interessant recordar l'aspecte que té la grafica d'aquesta funcié:
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7.2 Limits finits i limits laterals

En concepte de limit també pot estendre al cas en que la variable tendeix a un deter-
minat valor finit a. Considerem, per exemple, la funcié y = x~2. Aquesta funcié no esta
definida per x = 0, pero podem estudiar el seu comportament quan x és «molt proper»
a zero, sense ser mai igual a zero. Veiem immediatament que quan x — 0, la funcid
creix illimitadament. Direm que

Considerem la funcié y = log(x) que només esta definida per valors x > 0. Sa-
bem que si x > 0 és molt petit, la funcid y pren valors negatius de valor absolut
illimitadament gran. Direm que

lim log(x) = —oc.
x—0+t
Observem la notacié x — at que ens indica que prenem valors de x arbitrariament
propers a a pero sempre > a. Analogament, podem considerar la notacié x — a~ que
ens indica que prenem valors de x arbitrariament propers a a pero sempre < a.
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Considerem la funcio6
X2+ x—=2

x2—1
que esta definida arreu excepte als punts x = +1 perqué en aquests punts s'anulla
el denominador. Podem preguntar-nos pels limits d'aquesta funcié quan la variable
x — £1. Observem que x? + x —2 = (x — 1)(x +2) i x> = 1 = (x + 1)(x — 1), per tant,
fora dels punts x = £1, podem escriure y = (x +2)/(x + 1). Veiem aixo:

y:

X2 4 x=2 Lo X+2 3
[im ———— = lim = —:
x—1 x2—1 x=1x+1 2
. x4 x—2 . X+ 2
lim ————— = lim = 00;
x——1t x2 -1 x——1t x+1
. x24+x—2 . x+2
lim —s— = I|im = —00;
x——1- x2—1 x—-1-x+1
6,

y=("+z-2)/(z* 1)

7.3 El concepte de continuitat

Considerem la funcié part entera y = |x] que hem definit en una seccié anterior i
observem el fenomen segiient. Considerem els nombre 0 < x < 1. La seva part entera
és zero. Per molt que x s'acosti a 1, mentre x < 1, la part entera sera zero. Pero la
part entera de 1 és 1. Tenim, doncs, una discrepancia entre el limit quan x — 17 i el
valor de la funcié quan x = 1:

0= lim |x] #[1] =1

x—1-
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Aquesta discrepancia es deu a que la funcié «fa un salt» en el punt x = 1. Diem que hi
ha una discontinuitat. Aquest és exactament el significat del concepte de continuitat
en una funcié:

Una funcié f(x) és continua en el punt x = a si lim,_,,f(x) existeix i
limy—, f(x) = f(a).

Ens interessa saber quines funcions elementals sén continues:

Totes les funcions elementals sén continues, en els seus dominis de defini-
cio. També ho son les funcions que s’obtenen per composicié de funcions
elementals, en els seus dominis de definicio.

(Aixo exclou la funcié part entera, que no la considerem com una funcid elemental.) Per
tant, per calcular el limit d'una composicié de funcions continues, quan x — a, si la
funcio esta definida a x = a, simplement hem de substituir x per a i avaluar la funcio.

7.4 Una propietat essencial de les funcions continues

La idea mateixa de continuitat ens diu, per exemple, que no podem passar continuament
de 2 a 3 sense passar per tots els valors que hi ha entre 2 i 3. Aquesta és una propietat
essencial de les funcions continues. Dit amb més precisio:

Sigui f(x) una funcié continua definida a tots els punts d’un interval [a, b].
Sigui K un valor entre f(a) i f(b). Aleshores, existeix algun valor c a
Uinterval [a, b] tal que f(c) = K.

Aixi, la funcié continua del dibuix ha de tallar necessariament la linia vermella:
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Aquesta propietat —que es coneix amb el nom de propietat de Bolzano— té una
gran importancia practica perqué ens déna un métode per resoldre equacions.

Exemple: Resoleu aquesta equacié: cos(x) = x.

Considerem la funcié f(x) = cos(x) — x, que sabem que és una funcié continua.
Observem que f(0) =1 i f(w/2) = —mw/2. Per tant, per la propietat de Bolzano hi ha
d’haver un valor ¢ entre 0 i /2 tal que f(c) = 0. Aquest valor sera una soluci6 de
lequacio. De moment sabem, doncs, que lequacio té solucid. Ara voldriem trobar-la.

Calculem el valor de la funcié en un punt intermedi entre 0 i 7/2, per exemple,
f(0.9) ~ —0.116673 < 0. Per tant, novament per la propietat de Bolzano, hi haura
una solucié de l'equacidé entre 0 i 0.9. Si anem repetint aquest procés, cada vegada
acotarem més la solucid, fins que la coneguem amb la precisié que ens calgui.

La taula seglient és un exemple fet molt rapidament amb un full de calcul. La
primera columna és un nimero A tal que f(A) > 0, la tercera columna és un niimero B
tal que f(B) < 0i la segona columna és el punt mig entre A i B. Les tres columnes de
la dreta son els valors de la funcid als punts A, B i C i aquests valors ens permeten
decidir quins son els punts A i B de la fila segiient. Rapidament arribem a un valor C
tal que f(C) ~ 0. Aquest C és una soluci6 aproximada. En la taula veiem que aquest
valor és C = 0.7390851.

Hem arribat a aquesta solucié aproximada per un procés iteratiu, és a dir, un procés
que consisteix en repetir indefinidament un mateix métode de manera que a cada nova
repeticié ens acostem més al resultat exacte de manera que, en el limit, obtindriem
aquest resultat exacte.
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A C=(A+B)2 B f(A) f(C) f(B)
0.00000000 0.75000000 | 1.50000000 || 1.00000000 | -0.01831113 | -1.42926280
0.00000000 0.37500000 | 0.75000000 || 1.00000000 0.55550762 | -0.01831113
0.37500000 0.56250000 | 0.75000000 || 0.55550762 | 0.28342450 | -0.01831113
0.56250000 0.65625000 | 0.75000000 || 0.28342450 0.13603586 | -0.01831113
0.65625000 0.70312500 | 0.75000000 || 0.13603586 | 0.05970028 | -0.01831113
0.70312500 0.72656250 | 0.75000000 || 0.05970028 0.02089986 | -0.01831113
0.72656250 0.73828125 | 0.75000000 || 0.02089986 | 0.00134515 | -0.01831113
0.73828125 0.74414063 | 0.75000000 || 0.00134515 | -0.00847036 | -0.01831113
0.73828125 0.74121094 | 0.74414063 || 0.00134515 | -0.00355944 | -0.00847036
0.73828125 0.73974609 | 0.74121094 || 0.00134515 | -0.00110635 | -0.00355944
0.73828125 0.73901367 | 0.73974609 || 0.00134515 | 0.00011960 | -0.00110635
0.73901367 0.73937988 | 0.73974609 || 0.00011960 | -0.00049333 | -0.00110635
0.73901367 0.73919678 | 0.73937988 | 0.00011960 | -0.00018685 | -0.00049333
0.73901367 0.73910522 | 0.73919678 || 0.00011960 | -0.00003363 | -0.00018685
0.73901367 0.73905945 | 0.73910522 || 0.00011960 | 0.00004299 | -0.00003363
0.73905945 0.73908234 | 0.73910522 || 0.00004299 0.00000468 | -0.00003363
0.73908234 0.73909378 | 0.73910522 || 0.00000468 | -0.00001447 | -0.00003363
0.73908234 0.73908806 | 0.73909378 || 0.00000468 | -0.00000490 | -0.00001447
0.73908234 0.73908520 | 0.73908806 || 0.00000468 | -0.00000011 | -0.00000490
0.73908234 0.73908377 | 0.73908520 || 0.00000468 | 0.00000229 | -0.00000011
0.73908377 0.73908448 | 0.73908520 || 0.00000229 0.00000109 | -0.00000011
0.73908448 0.73908484 | 0.73908520 || 0.00000109 | 0.00000049 | -0.00000011
0.73908484 0.73908502 | 0.73908520 || 0.00000049 0.00000019 | -0.00000011
0.73908502 0.73908511 | 0.73908520 || 0.00000019 | 0.00000004 | -0.00000011
0.73908511 0.73908515 | 0.73908520 || 0.00000004 | -0.00000003 | -0.00000011
0.73908511 0.73908513 | 0.73908515 || 0.00000004 | 0.00000000 | -0.00000003

7.5 Fem-ho amb sage

sage pot calcular, en alguns casos, limits de funcions. Per exemple, podem calcular els

vuit limits d'un dels exercicis d'aquesta primera part aixi:

sage: limit((1+log(x))/(2+x),x=0,dir="plus’)
-Infinity
sage: limit(sin(x)/x~2,x=00)

0

sage: limit(log((x~2+1)/x~2),x=Infinity)

0

sage: limit(log(x-1)/log(x),x=1,dir=’plus’)

-Infinity
sage: limit(sqrt(x-1)*exp(-x),x=1,dir=’plus’)

0

sage: limit(tan(x),x=pi/2,dir=’plus’)
-Infinity
sage: limit(3%e~(-x)/(1+e~(-x)),x=00)

0

sage: limit(12*exp(-5/x"2),x=0)

0

sage: limit(((x+2)/x)"x,x=00)

e”2
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8.1 Casos d'indeterminacio

Suposem que multipliquem una funcié f(x) que tendeix a oo per una altra funcié g(x)
que tendeix a 0. Qué podem afirmar del limit del producte d'aquestes dues funcions
f(x)g(x)? N'hi ha prou amb considerar alguns exemples elementals per veure que no
podem concloure res sobre el limit d’aquest producte.

Iimx~g:2; Iimx~%:O; Iimxz-g:oo.

X—00 X X—00 X X—00 X

Diem que tenim un cas d’indeterminacio del tipus oo - 0. De manera informal, podem
pensar aquest cas com una comparacio de la «forca» d'aquestes dues funcions, actuant
en sentits contraris. La primera funcié intenta que el producte sigui molt gran, la
segona funcié intenta que el producte sigui molt petit i el producte es decantara cap
un costat o l'altre segons quina de les dues funcions tingui més «forca» o, dit d’'una

altra manera, s'acosti més rapidament al seu valor a llarg termini.

Hi ha diversos casos d'indeterminacié. Per exemple'

0- oo, —, -, 00 — 00, 1°°, 0°.
00 0

En cadascun d'aquests casos, el calcul del limit s’ha de fer per metodes més o menys
ad hoc. Veurem alguns exemples, perd no pretenem cobrir tots els casos possibles.

8.2 Alguns exemples

e Exemple 1: En el cas de les funcions racionals, quan obtenim un cas d’indeter-
minacio, sempre el podem resoldre per métodes que ja hem vist abans.

i x24+x—2 .o x+2 3
im ———— = |im = —,
x—1 x2—1 x—1x+1 2
i 2X3—|-X2—|—X—1_ i 2x3_2
U 3x3 -4 _XI—EQOQ T3

e Exemple 2:

lim (x —vVx2—1) = lim (= v = D)0+ x2—1): lim !

X—+00 X—$00 X +vx2—1 X%oox+,/x2f]_:

'Aquestes «férmules» no tenen cap altre significat que ser noms per designar certes situacions que
ens podem trobar a 'hora de calcular limits. Es a dir, 0/0, co — 00, etc. no tenen cap significat matematic.

0.
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e Exemple 3:
lim sm(x).
x—=0 X

Aquest és un Llimit molt interessant que es calcula utilitzant un argument geo-
metric. Considerem un triangle rectangle d’hipotenusa 1 i amb un angle igual a
X.

D

o]

A B

En aquest triangle, el segment AC mesura sin(x), el segment BD mesura tan(x)
i l'arc de circumferéncia BC mesura x, perqué l'angle x el mesurem en radiants.
Aleshores, observant aquest triangle veiem que es compleix aquesta desigualtat:
sin(x)

sin(x) < x < tan(x) = cos(x)’

Dividint per sin(x) obtenim

1
= sin(x) = cos(x)

i observem que la funcié x/ sin(x) esta «encaixada» entre dues funcions que totes
dues tendeixen a 1 quan x — 0. Aixo ens diu que, necessariament, aquesta funcié
«encaixada» també ha de tendir a 1. Tenim, doncs, un limit que és forca util:
sin(x) X

lim = |lim — =1
x—0 X x—0 Sln(X)

Aquest métode d'encaixar una funcié de la que no coneixem el limit entre dues
funcions que sabem que tenen el mateix limit també és util en altres circumstan-

cies.
) ) 1
lim xsin| — ).
x—0 X

Observem que la funcié sin(%) ni tan sols té limit quan x — 0. Malgrat aixo,
podem encaixar-la d’aquesta manera. Recordem que el sinus val sempre entre
—1 1 1. Aleshores, si x > 0:

% (~1) < xsin <1> <x-1

X

o Exemple 4:
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isix<O:

x-(=1) > xsin <1> > 1

X

En qualsevol cas, com que les dues funcions dels extrems tendeixen a zero, també
la funcié del mig ha de tendir a zero.

1
lim xsin () =0.
x—0 X

X
lim —.
x—o0 xN

Exemple 5:

Aqut estem comparant la «forca» de U'exponencial amb la d'una poténcia d'expo-
nent arbitrari n. Les dues funcions tendeixen a oo pero, quina ho fa «més de
pressa»? La resposta és que «guanya» sempre l'exponencial. Donarem l'explica-

cio d'aixo en el cas més senzill
X

[im — = oo.
X—00 X

2x X

e e e e

fx)=—=—=—"f(x)> =

(2x) 2x 2x 2 (x) 2 2

Per tant, f(2") > 1.3"e i aix0 ens demostra que la funcié f(x) es fa illimitadament
gran, és a dir, tendeix a oco.

X

Per comprovar aixo, escrivim f(x) = €*/x i calculem f(2x) (per x > 1):
e X

f(x) > 1.3f(x).

X

lim — = oo per tot n > 0.
x—o0 XN

1 X
lim <1 + > )
x—+o0 X

Aqut tenim una indeterminacid del tipus 1°° en un limit que té un gran interés
(com veurem en els propers capitol). Malauradament, totes les maneres que hi
ha de calcular aquest limit sén una mica complicades i ens haurem de limitar a
donar el resultat, sense justificacid.

1\” 1\*
[im <1 + > = lim (1 + ) = e.
X—00 X X—>—00 X

Exemple 7: Aquest limit esta molt relacionat amb l'anterior:

Exemple 6:

_ X
lim ——.
x—=0eX —1
Es tracta d'una indeterminacié del tipus «0/0» i la podem resoldre fent el canvi
de variable y = 1/(e* —1). Observem que quan x — 0, la nova variable compleix

y — oo L tenim

: X , 1 , 1\’
im —— = lim ylog{14+ — ] = limlog{14+—] =1.
x=0eX—1 y—o y y—00 y

Per tant,
X e —1
lim ——— = lim ——— =1.
x=0eX—1 x=0 Xx
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8.3 I laregla de l'Hopital?

Hi ha un instrument molt poderds per resoldre alguns casos d'indeterminacié dels que
hem considerat aqui que es coneix amb el nom de regla de I'Hépital. Segurament,
Uestudiant ja coneix aquest métode, pero en els exemples anteriors hem preferit buscar
justificacions alternatives. La regla de I'Hopital utilitza les derivades, que estudiarem
més endavant, pero l'estudiant ja les coneix.

Recordem aqui com es pot aplicar aquesta regla:

e La regla de l'Hopital s'aplica al calcul de limits amb indeterminacions del tipus
«0/0» i «o0/ocom.

e Volem, doncs, calcular un limit com

quan f(x) it g(x) son funcions que es poden derivar. Aqui a és un nombre o també
pot ser £o0. Suposem també que g’(x) # 0 per tot x en un interval al voltant de
a excepte, potser, al punt a.

e Calculem

f(x
lim /( )
x—a g'(x)
Suposem que aquest limit existeix i val k (també pot ser k = +00).
e Aleshores,
lim — = k.

X—a g(X)

En particular, els limits dels exemples 3, 5 i 7 anteriors es poden obtenir molt
facilment amb aquest métode:

. sin(x . cos(x
lim () = lim J =1.
x—=0 X x—=0 1
X X eX eX

im —=Ilm —=Ilm ————=---= Im ———— =
x—00 XN x—oo nx"—1 X—$00 n(n — ]_)X”_2 X—$00 n(n - ]_) e 2

. X . 1

[im —— = Iim — = 1.

x—0eX—1 x—0 eX

Cal tenir en compte, pero, que en el primer d'aquests limits hem usat que la derivada
de la funcié sinus és la funcid cosinus i en els altres dos hem usat que la derivada de
la funcié exponencial de base e és ella mateixa pero, per arribar a aquests resultat cal
usar els valor dels limits de sin(x)/x i (¥ —1)/x.



0. Taxa de creixement

9.1 Velocitat de creixement: la derivada

St modelem el comportament d'una variable y com una funcié y = y(x), una quiesti6 de
maxim interés és entendre a quina velocitat creix (o decreix) la variable y en relacio a
la variable x. Per exemple,

e Si y = y(t) és lespai recorregut per un mobil en un temps t, la velocitat de y
en funcid de t és, precisament, el que coneixem com la velocitat del mobil. Si y
s'expressa en metres i t s'expressa en segons, la velocitat s'expressara en metres
per segon.

e Si P = P(q) és la produccié d'un camp de cereals en funcié de l'aportacié d’adob
g, la velocitat de P en funcié de g ens indica quantes unitats augmenta P quan
g augmenta en una unitat. Aquesta velocitat s'expressara, per exemple, en tones
de produccid per kg d'adob.

e Si T = T(C) ens indica la relacié entre la temperatura T i la concentracié C de
CO, al'atmosfera, la velocitat de creixement de T respecte de C ens indica quants
graus augmenta la temperatura per cada augment d'una unitat en la concentracié
de CO,. Aquesta velocitat s'expressara, per exemple, en graus Celsius per 1 ppmv
de CO..

No cal insistir, doncs, en la importancia d’aquest concepte que, de fet, sera un dels
conceptes centrals d’aquest curs. Matematicament, si y = y(x), la velocitat de creixe-
ment de y respecte de x s'anomena la derivada de y respecte de x. La notacié que es
fa servir és y’ i, si es vol remarcar que la variable independent és x, aleshores s’escriu

dy
dx’

En resum,

Siy = y(x) és una funcig, la derivada y’ = % és la velocitat de creixement
de y respecte de x. Les unitats de y’ sén A/B on A sén les unitats de y i
B son les unitats de x.

No cal dir que sempre utilitzarem la paraula creixement en el sentit que inclou el
decreixement com a creixement de signe negatiu.

Exemples:

e Si ens diuen que la superficie de boscos al Brasil ha anat variant al llarg del
temps, entendrem que ens estan dient que hi ha una funcié S = S(t) que descriu
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la superficie de bosc S com a funcié del temps. Si ens diuen que la superficie
de bosc ara (t = 2015) al Brasil és de 500 milions d'hectarees, entendrem que
ens estan dient que $(2015) = 500 x 10° ha. Si llegim que el Brasil esta perdent
ara 1.6 milions d’hectarees de bosc cada any, entendrem que ens estan dient que
§'(2015) = —1.6 x 10° ha/any.

Si ens diuen que un cos esta a 10 metres sobre el terra i esta caient a una
velocitat de 5 m/s, entendrem que la seva distancia al terra ve donada per una
funcié d = d(t) i que, si considerem que ara és l'instant t = 0 (per exemple), es
compleix d(0) =10 m i d’(0) = —5 m/s.

Hem d’'anar amb compte i no confondre la velocitat (és a dir, la derivada) amb la
velocitat mitjana. Per exemple, en els dos exemples anteriors

e Quantes ha de bosc hi haura al Brasil 'any que ve? 498.4 milions d'ha? Segu-

9.2

rament, no. Que la superficie de boscos al Brasil disminueixi a una velocitat de
1.6 x 10° ha/any no vol dir que d'aqui un any hi hagi 1.6 x 10° ha menys. En
efecte, la desforestacié es podria accelerar (o, més dificilment, desaccelerar) i,
després d'un any, podem haver perdut més o menys de 1.6 x 10° ha.

A quina alcada sobre el terra estara el cos després de 1 segon? A 5 metres?
No. El cos cau a 5 m/s, pero aixd no vol dir que recorri 5 metres en el proper
segon, perqué sabem que, de fet, s'esta accelerant per efecte de la gravetat i cada
vegada caura a més velocitat.

Taxa de creixement

Sovint, veiem com el creixement d’'una variable es déna en tant per cent. Queé significa?
Per exemple, si diem

e l'atur esta creixent al 0.2% anual.

e lLa poblacié mundial de balenes esta disminuint a un ritme del 3.1% anual.

Queé signifiquen aquest 0.2% i aquest 3.1%? La resposta és senzilla: és el quocient
entre la velocitat de creixement i el valor de la variable:

e Siel nombre d'aturats és N(t), estem dient que N'(t)/N(t) val, en aquest instant

de temps actual, 0.002. Les unitats, evidentment, sén angs_l.

e Si el nombre de balenes és N(t), estem dient que N'(t)/N(t) val, en aquest

instant de temps actual, 0.031. Les unitats, evidentment, sén anys™?.

D’aquest quocient se'n diu la taxa de creixement' o també, de vegades, la velocitat de
creixement per capita, o per unitat.

N'(x)
N(x)

Taxa de creixement =

'En anglés, growth rate.
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La taxa de creixement (que, evidentment, pot ser positiva, negativa o zero) té per unitats
A~1 on A sén les unitats de la variable independent x.

9.3 Creixement discret i creixement continu

Considerem aquesta pregunta d'aparenca senzilla:

Una quantitat NV té un valor 1000 i esta creixent al 4% anual. Quan valdra
d'aqui a un any?

La majoria de persones contestarien 1040 i, la majoria de vegades, s'equivocarien.
Intentem d'entendre quina és la resposta correcta.

Algunes variables creixen de manera discreta.’ Per exemple, un diposit bancari

de 1000€ a un interés del 4% anual (amb capitalitzacié anual) té un valor constant
de 1000€ durant tot un any i 'endema de que es compleixi l'any fa un salt discon-
tinu i es converteix en 1040€. Si la nostra variable N tingués aquest comportament,
efectivament el valor després d'un any seria de 1040.

Pero la majoria de variables que apareixen a la ciéncia o a la natura no creixen
de manera discreta, sind que creixen de manera continua. Per exemple, les mides d'un
ésser viu en creixement no creixen pas com un diposit bancari! En altres casos, el
creixement és discret, pero creix amb tants petits increments, que és millor considerar-
lo com un creixement continu. La mida d'una gran colonia d'animals podria ser un
exemple d'aquest tipus.

Quan el creixement és continu, hem de distingir entre créixer amb una taxa del 4%
anual i créixer un 4% en un any. Es cert que, de vegades, es confonen aquests dos
conceptes, perd son dues coses molt diferents.

En resum, quina és la resposta a la pregunta anterior? La resposta és «depénn.
Depén de que el creixement sigui discret o continu i, si és discret, depén de quantes
vegades creixi en el periode de temps que considerem (un any, per exemple). La
resposta concreta en cada cas l'estudiarem en el capitol seglient.

2En matematiques, la paraula «discrety» té el significat de «que presenta separacions, que es compon
de parts separadesy (DLC) i és el contrari de «continuy.



10. El creixement exponencial

En aquest capitol concretarem més els temes de creixement discret, creixement continu
i taxa de creixement que han sorgit al capitol anterior.

10.1 Creixement discret

Comencem amb la pregunta del final del capitol anterior. Déiem que una quantitat N
esta creixent al 4% anual i ens preguntavem quan valdria d’aqui un any. Vam dir que
ens calia més informacié. Suposem, doncs, que el creixement és discret i es produeix
un cop l'any. Podem pensar que N és un diposit bancari o la mida d’'una poblacié que
es reprodueix un cop l'any. Es clar que, en lloc de prendre l'any com la unitat de temps,
podriem prendre qualsevol altra unitat (mes, dia, segon, etc.). Amb aquesta informacio,
la resposta és clara: N x 1.04.

Com que la quantitat N va canviant amb el temps, és logic pensar-la com una funcié
N = N(t). Si comencem a comptar el temps quan la poblacié val N(0) = Ny, i si la
taxa de creixement és r (a U'exemple, r valia el 4%), la resposta anterior s'escriura

N(1) = No x (1 +r).
Més en general,
N(2) = No (1 + r)?, N(3) = No (1 +r)3, N(4) = No(1+r)4, ...
Es a dir,
N(k) = No (1 + r), k enter.

En aquest exemple hi ha igualtat entre la unitat de temps i el temps de cada periode
de creixement. En general, aquests dos temps posen ser diferents.

Exemple 1: Tenim un cultiu amb 103 bacteris que es reprodueixen per divisié cada 20
minuts. Quant de temps trigara a haver-hi 10° bacteris?

Prenem com a unitat de temps el minut. Aleshores, com que cada 20 minuts la
poblacid es duplica, la formula que ens donara la poblacié després de t minuts sera

N(t) = No x 2¢/%0,

Observem que la taxa de reproduccio és del 100% cada 20 minuts. Per resoldre el
problema hem de resoldre aquesta equacio:

108 = 103 21/20,

Prenent logaritmes, obtenim’

log(10)
log(2)

'Si el creixement és estrictament discret, aquesta resposta és només aproximada, perqué després de
200 minuts hi haura 1.024.000 bacteris i un minut abans n’hi haura 512.000.

t =60 ~ 199.3 min.
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Considerem ara aquest exemple lleugerament diferent:

Exemple 2: Un diposit bancari de 10 euros rep un interés del 3% anual i es capitalitza
cada mes. Quant de temps trigara a duplicar-se?

Prenem com a unitat de temps l'any. Evidentment, l'interés del 3% anual és un
interés del 3/12% = 0.0025 mensual. Per tant, podem aplicar la mateixa férmula de
lexemple anterior, tenint en compte que r, que era la taxa de creixement per periode,
ara sera r = 0.0025 i l'equaci6 a resoldre és

2 x 10° = 103 (1.0025)*.

Prenent logaritmes arribem a

log(2)

= — 2 d .
1210g(1.0025) 2> NS

Escrivim una formula general per a aquest cas. Suposem que la taxa de creixement
és r (en % per unitat de temps) i que el creixement es produeix cada 1/n unitats de
temps. El valor de N després de t unitats de temps sera

N(t) = N (1+%)"t.

El model de creixement que acabem d'estudiar 'anomenarem creixement exponen-
cial discret. Si r > 0 tenim creixement, si r < 0, tenim decreixement.

10.2 Creixement continu

Suposem ara que una quantitat N creix amb una taxa de creixement constant, pero
creix continuament o, equivalentment, els intervals de creixement sén molt petits. Per
exemple, la mida d'un arbre o la massa d'una substancia radioactiva (en aquest segon
cas la taxa sera negativa, evidentment). Per calcular N(t) hauriem d'aplicar la férmula
anterior

N = (1+5)"

prenent un valor molt gran de n. Més exactament, hauriem de prendre el limit d’aquesta
expressio quan n — oo:

- A\ nt . 1 (n/r)rt "
N(e)= fim No(1+ ) ZNOn'L";o(1+,,/r) = Noe™

Aquest és un resultat fonamental: el creixement continu amb taxa de creixement cons-
tant igual a r ve donat per la funcié exponencial

N(t) = Noe'™.

Per aquest motiu, en diem creixement exponencial.

Observem que el signe de r ens distingeix entre creixement i decreixement: Sir > 0
hi ha creixement, si r < 0 hi ha decreixement. Si r =0, N es manté constant.
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10.3 Creixement exponencial
Fem un resum del que hem aprés fins ara:

e Direm que una quantitat té creixement exponencial quan creix continuament amb
una taxa de creixement constant.

e Per tant, N(t) té creixement exponencial si r = N'(t)/N(t) és constant. Equiva-
lentment, st N'(t) = rN(t) amb r constant.

e Si N(t) té creixement exponencial amb taxa de creixement r, aleshores N(t) és
una funcié exponencial
N(t) = Nge'.

Hi ha molts exemples de creixement exponencial, st més no en un interval limitat
de t. Posem un parell d’exemples:

Exemple 3: Entre els anys 2000 i 2008, el nombre d'usuaris d'Internet a la Xina va
créixer a una taxa aproximadament constant del 10.24% anual. Si l'any 2000 hi havia
22.5 milions d'usuaris, feu una estimacié del nombre d'usuaris després de deu anys.

Com que aquest creixement és continu i la taxa de creixement r és constant, sera
un creixement exponencial donat per una equacio

N(t) = Ny e

on Ny és la mida per t = 0. Prenem com a unitat de temps lany i el temps t = 0 que
sigui l'any 2000. Per tant, el nombre d'usuaris per t = 10 sera

N(10) = (22.5 x 10°) exp(0.1024 x 10) ~ 62.6 x 10°.

Exemple 4: La llei de Moore és l'observacié que el nombre de transistors en un circuit
integrat (un «xip») creix exponencialment amb el temps. Aquest nombre valia 2300
lany 1970 i 10 milions després de 25 anys. Calculeu la taxa de creixement.

Com que ens diuen que el creixement és exponencial, vindra donat per l'equacié

N(t) = Ny e,

Prenem l'any com a unitat de temps i prenem t = 0 a l'any 1970. Tenim Ny = 2300 i
N(25) = 10”. Hem de resoldre aquesta equacié

107 = 2300 exp(25r).
Prenem logaritmes i arribem a

1 107
= —log —— ~0.335
"~ 25 %% 2300
i la taxa de creixement és del 33.5% anual. Si ara calculem el temps necessari per

que el nombre de transistors es multipliqui per dos, veurem que sén aproximadament 2
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anys. Aixo ens duu a l'enunciat habitual de la llei de Moore: el nombre de transistors
en un xip es duplica cada dos anys.

Exemple 5: Imaginem un actiu financer de 103 euros en un mercat continu que puja al
3% anual. Quant de temps trigara a duplicar el seu valor?

Es tracta, doncs, d'un exemple anterior, pero suposant que en lloc de capitalitzacio
mensual la capitalitzacid és continua, cada instant de temps. Aixo vol dir que creixera
exponencialment segons la llei

N(t) = Nge'.

Prenem l'any com a unitat de temps, amb la qual cosa r = 0.03. Caldra resoldre
aquesta equacio:

2 x 103 = 10 exp(0.03t).

Prenent logaritmes, la solucié és

log(2
t= c())g'é?)) ~ 23 anys.

Veiem, doncs, que en aquest exemple, hi ha poca diferéncia entre una capitalitzacié
mensual i una capitalitzacié continua.

10.4 Més sobre la taxa de creixement

Hem definit la taxa de creixement com el quocient N’/N i hem aprés a distingir entre

e Créixer al r% anual t

e créixer un r% en un any.

Fem un calcul per veure quina és exactament la discrepancia entre aquests dos
conceptes.

En un creixement continu al r% anual, tindrem creixement exponencial donat per la
formula
N(t) =Ny et

i, després d’'una unitat de temps, haurem passat de Ny a N(1) = Np e". Quin percentatge
de creixement hi ha hagut? El calculem amb aquesta férmula:

N(1) —No

No N
Si ara recordem un limit que haviem calculat en un capitol anterior, sabrem que, si r
és petit,

creixement relatiu en una unitat de temps = e"—1.

e"—1=r
i els dos valors sén propers un de l'altre.
Tenim

e La taxa de creixement r tal com 'hem definida al capitol anterior. Si hi ha perill
de confusid, en podriem dir la taxa de creixement instantania.
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e La taxa de creixement per unitat de temps R.

Hem vist que, si r és petit, r & R i també hem vist que la relacio exacta entre r i R
ve donada per les equacions

R=e"—1, r =log(1+ R).

La formula del creixement exponencial es pot escriure en funcid de r o en funcié de
R:
N(t) = Ny et = No (]. + R)t.

Hem de tenir present que, molt sovint, els dos conceptes es confonen. Per exemple,
si llegim als diaris que el PIB de la Xina va créixer, durant molts anys, el 9.5% anual,
hem de pensar que aquest valor és r 0 és R? La resposta és que, la majoria de vegades,
és R.

Tornem ara a resoldre U'exemple 1 de l'apartat anterior:

Exemple 3, segona interpretacié: Entre els anys 2000 i 2008, el nombre d'usuaris
d’Internet a la Xina va créixer de manera constant un 10.24% cada any. Si 'any 2000
hi havia 22.5 milions d'usuaris, feu una estimacié del nombre d'usuaris després de deu
anys.

Ara entenem que aquest 10.24% és el valor de R. Podem resoldre l'exercici de dues
maneres:

1. Calculem r = log(1 + R) = log(1.1024) i apliquem

N(10) = (22.5 x 10°) exp(10log(1.1024)) = 22.5 x 10° x 1.1024%.

2. Raonem que si cada any creix un 10.24%, cada any el nombre d'usuaris es mul-
tiplica per 1.1024. Per tant, en 10 anys tindrem

N(10) = 22.5 x 10° x 1.1024%°.

Els dos métodes ens condueixen al mateix resultat 59.6 x 10° que és una mica diferent
del que haviem obtingut quan interpretavem que 10.24% era el valor de r.

Per evitar aquestes confusions, en aquest curs adoptarem un punt de vista més
matematic i quan ens referim a la taxa de creixement sempre voldra dir el parametre
r, a menys que especifiquem clarament que estem parlant de R. Perd hem de ser
conscients de que, a la practica, s'utilitza més R.
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Al capitol anterior hem estudiat a fons el creixement exponencial N(t) = Np e"t. Aquest
model s'adapta forca bé a certs fenomens com, per exemple, el creixement inicial d'una
colonia d'una espécie invasiva, o l'extensid inicial d'una epidémia, en un espai de temps
limitat, perd no pot ser un bon model a llarg termini. L'explicacié és que, si r > 0, sabem
que

lim Npe™ = oo
t—o0

i, per tant, aquest creixement exponencial no és sostenible en el temps, en cap cas.

Per tant, si volem models que s’adaptin millor al comportament efectiu del crei-
xement dels éssers vius o les poblacions (per exemple), hem de modificar el model
exponencial i hem de passar a altres models més complicats que tinguin en compte
que, com que mai no disposarem de recursos illimitats, la taxa de creixement no es
pot mantenir constant a llarg termint —perqué ja sabem que una taxa constant implica
que el el creixement és exponencial.

11.1  Del model exponencial al model logistic

El model logistic és un model molt important, que estudiarem en diversos capitols
d’aquest curs. Una manera d'introduir-lo és com una modificacié del model exponencial
tal que la taxa de creixement no és constant, sind que va disminuint linealment a mida
que augmenta la mida de la poblacid.

Sigui N(t) la funcié que denoti la mida d’'una poblacié al llarg del temps t. La taxa
de creixement és

Ja sabem que si r és constant, tenim creixement exponencial. Suposem ara que r no és
constant sind que, a mida que la poblacié N és més gran, els recursos per capita son
més escassos o hi ha altres factors que fan que r vagi disminuint fins un punt en que
r = 0. Quan arribem en aquest punt direm que la poblacié ja ha exhaurit la capacitat
del medi.

Concretem més. Sigui ry la taxa de creixement quan N = 0. Suposem que r =0
quan N = K (direm que K és la «capacitat del medi»), i suposem que el pas de rp a r
és lineal, és a dir, seqgueix una linia recta.

Si calculem lequacié d'aquesta linia recta r = r(N), obtenim

N
r:rg<1—K>.

58
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7o r=r(N)

Anomenarem creixement logistic aquell en el qual la taxa de creixement ve donada
per aquesta expressid anterior. Es a dir,

(Aqui hem canviat la notacid i en lloc de ryp hem escrit r.) Es clar que aquesta equacid

també es pot escriure aixt:
N
N=rN{1-—].

Es a dir, en el creixement logistic

1. la velocitat de creixement és proporcional a la mida de la poblacié (com passa
en el creixement exponencial)

2. i la velocitat de creixement també és proporcional a la diferéncia entre 1 i el
quocient N/K.

Compareu aquesta equacié amb l'equacid corresponent del creixement exponencial:

N =rN.

Al creixement logistic hi apareixen dos parametres: r i K. ELl seu significat és
aquest:

e r és la taxa de creixement quan la poblacié és molt petita. Representa la taxa de
creixement quan els recursos limitats del medi encara no afecten el creixement de
la poblacié i, per tant, la poblacié creix de manera aproximadament exponencial.

e K representa la capacitat maxima del medi. A mida que la mida de la poblacié es
va acostant al valor K, la taxa de creixement va disminuint, de manera que si la
poblacid arribés a K, la taxa de creixement seria zero i la poblacié es mantindria
constant.



60 11. El model logistic

Igual que passava amb el model exponencial, el model logistic també té una versio
discreta que és aquesta

N(t+1) = (14 R) N(t) (1—/\2(:))

Per estudiar matematicament U'equacid logistica és convenient fer un canvi de variable
x = N/K. Aleshores, l'equacié anterior agafa l'aspecte més senzill

Xep1 = rxe(1 — x¢).

Aixo ens permet fer simulacions del comportament de la poblacié x cada unitat de
temps, a partir d’'un valor inicial xp i d’'una eleccié del parametre r.’

11.2 Comportament qualitatiu del model logistic

Vam definir el creixement exponencial per U'equacié N’ = rN i vam veure que aquest
creixement venia donat per una funcidé senzilla com és N = Ny e™. Ara hem definit el
creixement logistic per una equacié una mica més complicada N' = rN(1 — N/K) i ens
agradaria també poder disposar d'una funcié N = N(t). En aquest moment, encara no
tenim prou eines per resoldre aquest problema. Ho farem més endavant en el curs,
perd podem avancar la solucio, ni que sigui d'una manera qualitativa.

Aquesta descripcid qualitativa esta continguda en aquest dibuix:

=

K =

"Aquestes simulacions sén extraordinariament interessants perqué ens permeten observar el que es
coneix com a comportament cadtic del creixement logistic. Consulteu l'entrada Logistic map a Wikipedia.
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Leix horitzontal és el temps, leix vertical és N, la mida de la poblacié. Cada
corba representa l'evolucié de la mida de la poblacié a partir d'un valor inicial N(0).
Observem:

e Si N(0) < K, la poblacié creix amb el temps. Si N(0) > K, la poblacié decreix
amb el temps. St N(0) = K, la poblacié és constant.

e En qualsevol cas, a llarg termint la poblacié tendeix al valor K:

lim N(t) = K.

t—o00

e Si N(0) és petit respecte de K, la poblacié comenca amb creixement exponencial
(aproximadament), passa per un punt d'inflexié i s'acosta asimptoticament a K.

e Si N(0) és gran respecte de K, la poblacié decreix exponencialment (aproxima-
dament) i s'acosta asimptoticament a K.

11.3 Altres models de creixement
Parlem ara, sense aprofundir en el seu estudi, d’altres models de creixement importants.

e El model de von Bertalanffy. Karl Ludwig von Bertalanffy (1901-1972) va ser un
bioleg austriac que va proposar (1938) un model senzill per al creixement de la
mida d'un organisme. Aquest model s’aplica, entre altres coses, a la mida dels
peixos.? Si L(t) és la longitud d’un peix en el temps t, el model afirma que la
velocitat de creixement de L és proporcional a la diferéncia Lo — L on Ly, > 0 és
una constant:

L' = k(Lo — L).

Si fem el canvi de variable S = Lo, — L, aquesta férmula es converteix en S’ =
—kS que és la mateixa del creixement exponencial. Per tant, el model de von
Bertalanffy és una petita variacié del model exponencial. La formula per a L és

L= Lo — (Lo — Lo) exp(—kt)
on observem que

— Lo és la mida en el temps t = 0.
- Ly és la mida quan t — oo.
— la funcié L(t) és creixent i s'acosta asimptoticament a L.

Des d'un punt de vista matematic, aquest model és exactament el mateix que el
de la Llei de refredament de Newton que afirma que la velocitat amb qué es

2Vegeu larticle Age and Growth of the Bull Shark, Carcharhinus leucas, from Southern Gulf of Mexico,
J. Nortw. Atl. Fish. Sci., Vol. 35, 367-374. També, Introduction to Tropical Fish Stock Assessment, FAO
Fisheries Technical Paper 306/1, apartat 3.1.
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refreda (o s'escalfa) un cos és proporcional a la diferéncia entre la temperatura
ambient i la temperatura del cos:

T = k( T1mb - T),

a

que ens dona que la temperatura del cos ve donada per una funcié exponencial

T(t) = Tamp + (Tamb - To) eXp(—kt)_

Ly

e El model de Beverton-Holt. Es un model discret donat per aquesta formula que
ens ddna la poblacid en el temps t + 1 a partir de la poblacid en el temps t:

_ RN
N(t+1)= T HN(D

Aquest model va ser introduit per Beverton i Holt el 1957 en un estudi sobre la
dinamica de les piscifactories. Depén de dues constants: R mesura la capacitat
reproductiva i H té a veure amb la capacitat del medi. Aquesta equacio té la
mateixa solucio que l'equacid logistica i, per tant, el comportament és el mateix.

Hi ha una generalitzacid d’aquest model que s'anomena model de Hassell:

RN(t)

N(t+1)= A HND)E

Evidentment, aquest model es redueix al model de Beverton-Holt quan ¢ = 1.

e El model de Ricker. Aquest model va ser introduit per Bill Ricker (que es con-
sidera el fundador de la ciéncia de la piscicultura) el 1954, també en relacié al
creixement d'una colonia de peixos. Es tracta d'un model discret

N(t+1) = N(t) exp (R ( _ I\I/(<t)>>

on, igual que abans, R té a veure amb la capacitat de reproduccié i K amb la
capacitat del medi.
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Exemple. El model de Ricker s’ha utilitzat per estudiar les successives gene-
racions de salmé (Oncorhynchus nerka) als rius del nord del Pacific3 Com que
el salmo fa la posta als 4 anys, podem prendre un model de Ricker discret amb
periodes de 4 anys. Imaginem que en un d'aquests estudis tenim observacions
que ens donen (en milions d'individus, t = 0 l'any 1908, interval de temps igual
a 4 anys)

N(0) = 0.325, N(1) = 0.431, N(2) = 0.529.
Calculeu els successius valors de N(t) usant el model de Ricker.

Hem de resoldre aquest sistema de dues equacions amb dues incognites:

0.431 = 0.325 exp (R (1 — 23%))
0.529 = 0.431 exp (R (1 — 2431))

La solucid és
R =~ 0.52, K =~ 0.71.

Ara podem calcular la poblacid teorica en els periodes de 4 anys successius:

N(3) = 0.604, N(4) = 0.653, N(5) = 0.681, N(6) = 0.695, N(7) = 0.703, . ..

° ° L] L] L] L] L] L L] L] L] L] .
0.7} o °
L]
0.65 .
0.6 °
055}
L]
o5l
0.45)
L]
o4f
035)
0 5 10 15 20

11.4 Fem-ho amb sage

Un dels exercicis d'aquesta primera part demana iterar la funcié logistica discreta amb
una poblacié inicial Ny = 0.2 fixada i diversos valors del parametre r. No és gens dificil
programar aquest exercici amb sage.

sage: NO=0.2
sage: Next(r,x)=r*x*(1-x)
sage: def Logi(r):

3Vegeu el llibre Quantitative Fisheries Stock Assessment, Hilborn-Walters 1992.
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et L=[NO0]

el for i in [0..300]:

el L.append (Next (r,L[i]))

R return sum([point([i,L[i]]) for i in [0..300]])
sage: Logi(0.3)

sage: Logi(1.6)

sage: Logi(2.8)

sage: Logi(3.4)

sage: Logi(3.45)

sage: Logi(3.6)

Expliquem una mica aquest exemple. Comencem definint la poblacié inicial Ny =
0.2. A la segona linia del programa definim una funcié que, a partir del valor de r i del
valor de x, calcula el valor de x després d'una unitat de temps. En el model logistic,
aixo és

rx(1 — x).

A continuacio, definim una funcié Logi(r) que, a partir del valor de r, dibuixa
No, N1, Na, ..., N3gp.
Finalment, fem els dibuixos per als valors de

r=20.3, 1.6, 2.8, 3.4, 3.45, 3.6.

Expliquem una mica com definim la funcié Logi(r). Comencem amb una llista
de nombres L que, d'entrada, té un Unic nombre que és Np. aleshores, anem afegint
(append) valors a aquesta llista de manera que cada valor s'obté a partir de l'anterior
per la funcié logistica discreta

Nt+1 = rNt(l — Nt)

Cal recordar que a sage el primer terme d'una llista L és sempre el terme L[0]. Quan
acabem, tenim una llista amb 302 valors consecutius de la logistica discreta. La darrera
instruccid de la funcié Logi(r) dibuixa tots els punts (i, N;) per a i =0, ..., 300.



Exercicis

A. Exercicis teorics

[.A1. Expresseu en forma d'una sola poténcia:

53 '5—5.52

(a) 54 .52

(b) (3/2)° - (4/5)°,(c) [3/4 - (7/3°] 7. (@) =gy

I.A.2. Resoleu les equacions seglients:

lLA.3. Sigui

3 5x 2x (x +5)?
| — ’ by ~ "2 _q —-V25-x2=1
@ e 1 -1 P oy (@ x X
2
() (x—1)(x—2)=3 |14+ =2
1_x—3
X
N
N:kert
1-x%

on K, k i r son constants. Expresseu N com a funcid de t.

ILA/4. Trobeu nombres a i b tals que tinguem una igualtat de funcions

3x—-1 _a . b
x2—3x+2 x—-1 x-2

ILA5. Resoleu les equacions exponencials seglients:

1
()37 =

7 (B) 9 =3 =301+ 3L, ()7 8.7l i1=0.

I.A.6. Resoleu les equacions logaritmiques seglients:

(a) 2logyg x — logg (x — 16) = 2, (b) (x* — x — 3) log1p4 = 3logyg 7.

(c) (2 4 x)logy0 2%~ + log; 1250 = 4, (d) logy x? — logy(x — 3) = 2.

lLA.7. Resoleu aquest sistema de dues equacions amb dues incognites:

{0.431 —0.325 exp (R (1 — 2325))
0.529 = 0.431 exp (R (1 — 241))
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LLA.8.

[LA.9.

[.A10.

A1,

A2,

[.A13.

[.A14.

[.A15.

[.A.16.

Exercicis

Verifiqueu la igualtat de funcions

1+ cosx sin x 2

sin x 1+cosx sinx’

Calculeu

(a) sin(arctan x) en termes de x,

(b) tan(arccos x) en termes de x.
Resoleu les inequacions seglients:
(@ x+1<2x—-7, (b) —x+1<—-4, (c)By+1)(y—-2)>1,

X+ 2 s+

5 x>
Ix 7 <0, (e) <1, (f) x> =x>0.

(d)

Resoleu les inequacions segiients en les que intervé el valor absolut:

(@) [x—2] <3, (b) 5 < |x]| <6, (c) ‘1 — \XH < 3, (d) [x 4+ 1] < x|

Escriviu l'equacid cartesiana de la recta

(a) que passa pels punts (3,—1) i (—2,1);

(b) de pendent —3/5 i que passa per (1, —2);

(c) parallela a la recta 3y +2x + 1 = 0 que passa per (1, —3);

(d) perpendicular a la recta 3y 4+ 2x + 1 = 0 que passa per (—1,2);

Escriviu l'equacid de la circumferéncia que té el centre a (—1,4) i té radi 3. Trobeu
el centre i el radi de la circumferéncia d'equacié (x — 2)? + y? = 16. Trobeu el
centre i el radi de la circumferéncia d'equacié x> + y? — 4x + 2y = 11.

Escriviu les equacions de les paraboles d'eix vertical tals que

(a) passa pels punts (1,1), (—1,2) i (0,0);

(b) talla l'eix d'ordenades al punt 4 i l'eix d'abscisses als punts 1 i 2.

Determineu el domini de definicié d'aquestes funcions:

(a) f(x) = x4X++x;/)E6' (b) f(x) = log(tan(x)),

(c) f(x) = log(x® + 3x + 2), (d) f(x) = (log(x? — 1))322,

(a) Expresseu 73%4/5 com una exponencial de base e.

0.4537t

(b) Expresseu e com una exponencial de bhase 10.

(c) Expresseu log;(0.9768t) com un logaritme neperia.
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[.A.22.

[.A.23.

[.A.24.
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(d) Expresseu log,(74.5x) com un logaritme en base 10.
Trobeu una funcié de Monod N = N(x) tal que N(1.5) = 1350 i N(3.2) = 2100.

Trobeu una funcié de Monod N = N(x) tal que N(1.5) = 1300 i que el seu valor
estable sigui Ny, = 12000.

Trobeu una funcié potencial M = M(P) tal que M(2.2) =7.1 i M(3.1) =5.4.
Trobeu una funcié exponencial P = P(u) tal que P(—3.5) =22 i P(2.4) = 4560.

Trobeu una funcié sinusoidal T = T(t) on t és el temps en dies, tal que T
tingui periodicitat anual, el valor maxim tingui lloc el 12 de marg i valgui 2420, i
lamplitud sigui 174.

Dibuixeu les grafiques de les funcions seglients: f(x) = |(x —2)(x +3)| i g(x) =
Ix = 3| + [x +2|.

Calculeu aquests limits:

1+ log x . sinx . x? 41
- (b) X|I_>rTC1>O 2 () XI|_>mOO log

(d) lim M, (e) lim vx—1 exp(—x), (f) lim tanx

x—1+ log x x—1t x—>%+

.3 . 5 Lo [(x 2\
(9) Xmmmm, (h) )I([;nol2exp (_x2> (1) xh—@o( " ) .

Utilitzeu el métode de subdivisid en un full de calcul i trobeu amb 6 decimals la
solucid de l'equacid

x + log(x) = 0.

B. Exercicis d’aplicacio

1.B.1.

[.B.2.

1.B.3.

Calculeu l'index de Shannon de biodiversitat en el cas que hi hagi 10 espécies i
que totes siguin igualment abundants.

Calculeu la distancia evolutiva entre dues seqiiencies d’ADN de 300 nucleotids
amb origen comu que es diferencien en 39 nucledtids, usant el model de Jukes-
Cantor.

La probabilitat que un individu visqui més de t unitats de temps s'acostuma a
modelar amb la distribucié de Weibull* (1951):

S(t) =exp(— ()\t)ﬁ).

Per a una poblacié de Drosophila melanogaster, els parametres d’'aquesta dis-
tribucié (temps en dies) valen A = 0.019, 8 = 3.41. Calculeu la mediana de
la vida dels individus d’aquesta poblacid, és a dir, l'edat superada pel 50% dels
individus.

*Aquesta distribucié s'utilitza en diversos ambits. Per exemple, en meteorologia s'utilitza en la distri-
bucié de la velocitat del vent o dels maxims de pluja.



68

1.B.4.

[.B.5.

[.B.6.

[.B.7.

[.3.8.

1.B.9.

[.B.10.

[.B.11.

Exercicis

A lestiu, el servei meteorologic informa de la temperatura de xafogor, que té en
compte la temperatura i la humitat. Una manera de calcular aquesta temperatura
és amb l'index humidex:

41
H=T+3.4exp <19.83 - 5R8> — 5.5,

T és la temperatura en Celsius i R és l'index de rosada (una mesura de la humitat
de laire) en Kelvin. Si la temperatura és de 35 graus i U'index humidex val 42
graus, quin és l'index de rosada?

Si la temperatura és de —12 graus i la temperatura de sensacio W és de —21
graus, quina és la velocitat del vent? Utilitzeu la formula del wind chill de la
pagina 16.

Quan s’estudia la biodiversitat en un grup d'illes, s'observa que el nombre d'espé-
cies d’'un cert tipus en una illa creix en funcid de la mida de l'illa. Si es dibuixa en
escala logaritmica la grafica del nombre d'espécies S en funcié de la superficie A,
s'obté aproximadament una recta de pendent 0.23. Si en una illa de 8 km? s’han
comptabilitzat 20 espécies, determineu el nombre d'espécies esperat en una illa
de 35 km?.

La llei de Hack és una relacié empirica de tipus potencial entre la longitud d'un
riu i la superficie de la seva conca. En concret, aquesta llei afirma que la longitud
és proporcional a la poténcia 0.57 de l'area de la conca. La Noguera Pallaresa
té una longitud de 154 km i la seva conca té una superficie de 2820 km?2. El
Cardener té una longitud de 106 km. Apliqueu la llei de Hack per estimar l'area
de la conca del Cardener (que, en realitat, és de 1415 km?).

S’ha trobat una relacié allomeétrica entre la massa del cor i la massa corporal
en un grup important d'espécies d'aus, de manera que si dibuixem en escala
logaritmica la grafica de la massa del cor (en grams) com a funcié de la massa
corporal (en kg), obtenim aproximadament una recta. S’ha vist que si una espécie
A té una massa corporal 10 vegades superior a la d'una altra espécie B, la massa
del cor de l'espécie A és 8 vegades més gran que la massa del cor de l'espécie
B. Quin és el pendent de la recta que hem obtingut?

El temps de desenvolupament dels ous del zooplancton Daphnia longispina de-
pén de la temperatura: tres dies a 20 graus i 20 dies a 5 graus. S'han pres
diverses mostres i s’ha representat en una escala logaritmica el temps de desen-
volupament dels ous (en dies) en funcié de la temperatura, i les observacions es
disposen aproximadament sobre una recta. Escriviu una funcié que relacioni el
temps de desenvolupament dels ous t i la temperatura T per aquesta espécie.

En una mostra de 60 espécies d'arbre s'ha trobat una relacié entre la densitat
de la fusta i la seva resisténcia. S'ha observat que la densitat és proporcional a
la poténcia 0.82 de la resisténcia. Quin augment de la densitat correspon a un
augment del 10% en la resisténcia?

A larticle Allometric scaling of plant life history (Proc. Nat. Acad. Sci. USA 2007)
es troba una relacié allometrica entre la vida mitjana d’'una espécie vegetal i la
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seva massa. Si dibuixem en escala logaritmica la grafica de la vida mitjana (en
dies) com a funcié de la massa (en grams), obtenim aproximadament una recta
de pendent 0.21. Si una espécie A té una massa 10 vegades superior a la d’'una
altra especie B, quina relacid podem esperar entre la vida mitjana de l'especie
A i la vida mitjana de lUespéecie B?

Suposem que una determinada poblacié seqgueix una llei de creixement com

aquesta:
500t
N(t) = ——.
(t) 3+t

Determineu la mida limit de la poblacié. Feu el mateix per a una poblacié que
segueix un creixement segons la llei

100

M) = T exp(=t)

Determineu la mida limit d’'una poblacid que segueix una llei de creixement do-
nada per una funcié de Holling de tipus Ill. Feu el mateix per a una funcié de
Holling de tipus IV.

S’ha trobat una relacié empirica entre l'edat t d’'uns determinats arbres i la seva
alcada h, donada per la funcié h(t) = 132exp(—20/t) (en unes certes unitats).
Determineu l'alcada limit d'aquests arbres.

Hall (Ecology Vol. 45, No. 1 (Jan., 1964), pp. 94-112) va estudiar el creixement de
la poblacio de les espécies de zooplancton Daphnia galeata mendota a Base Line
Lake, Michigan. A finals de la primavera, es produia un creixement exponencial
en el qual la poblacié passava de 200 a 4000 (individus per 100 litres d'aigua)
en 40 dies. Determineu la poblacié 10 dies després del valor 200.

Es disposa de 70 anys de dades sobre la poblacié al Canada d’'una certa espécie
de cigonya migratoria (Grus americana) i s'ha vist que en aquest temps hi ha
hagut un creixement exponencial amb una taxa de creixement del 4.5% anual.
Si la poblacié el 1950 era de 40 individus, quina és la poblacié després de 60
anys?

En els darrers 100 anys, la produccié mundial de coure ha crescut exponenci-
alment. Si la produccié el 1940 era de 2 (milions de tones per any) i el 1990
era de 10, feu una estimaci6 de la produccié l'any 2020 (si sequeix la mateixa
tendéncia).

S’ha estudiat forca la descomposicio de la fusta dels arbres morts als boscos
tropicals i s’han trobat relacions de tipus exponencial entre el temps que ha
passat des de la mort de l'arbre i la proporcié de fusta que encara queda. En
una determinada espécie, s'ha vist que la massa de fusta es redueix a la meitat
en 7.3 anys. Si partim d’'una tona de fusta, quanta fusta hi haura després de 25
anys?

El pH d'una dissolucié és una mesura de la concentracié del catié H30™, expres-
sada en escala logaritmica, de manera que, per exemple, en una dissolucié amb
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pH = 6, aquesta concentracié és 10 vegades més gran que en una dissolucié amb
pH = 7. Quina relacié hi ha entre la concentracié de H3O™ a un suc de llimona
de pH =23 i la d'un vinagre amb pH = 37?

A lescala cromatica moderna, si la freqliéncia del Fa és de 349.228 Hz, calculeu
les freqiiencies del Mi i del Sol. (Recordeu que en aquesta escala, una octava es
divideix en 12 parts iguals anomenades semitons. Aleshores, el Mi és un semito
més greu que el Fa i el Fa és dos semitons més greu que el Sol.)

Una formula simplificada que s'utilitza per calcular la velocitat del vent v a una
alcada z a partir de la velocitat v, a una alcada de referéncia z, és aquesta:

0.143
v z
v, (zr> '

Fem observacions en una zona de terreny on hi ha d’anar un parc edlic i mesurem
el vent a 10 metres d'alcada. Per quin factor haurem de multiplicar aquests valors
per tenir la velocitat del vent a l'alcada de les turbines dels generadors, que és
de 50 metres?

La Wuminositat d’'un objectiu fotografic es mesura pel seu «nombre f» que es
defineix com el quocient de la distancia focal i el diametre maxim del diafragma.
Un punt de lluminositat (en anglés: un «stopx») és el canvi de nombre f que
multiplica per 2 la quantitat de llum que entra per l'objectiu. Si tenim un objectiu
amb f = 2, quin és el nombre f dels objectius que tenen 1, 2, 3 punts menys
de lluminositat? Quants punts de diferéncia hi ha entre un objectiu f =3.3 i un
objectiu f =6.17

Tenim dues poblacions A i B que comencen tenint la mateixa mida. A creix
continuament amb una taxa del 12% anual i B creix continuament un 12% cada
any. Quant de temps ha de passar fins que la poblacié de A sigui el doble que
la poblacié de B?

En determinats productes, hi pot haver una discrepancia important entre el preu
de mercat P i el valor V del producte en funcié de la seva qualitat. En aquests
casos, st som capacos de mesurar V, podem prendre el quocient V/P com una
mesura de la relacié qualitat-preu. Observem que el quocient V/P varia entre 0
i co. Un valor aprop de zero indica un producte amb mala relacid qualitat/preu i
un valor molt gran indica un producte amb molt bona relacié qualitat/preu. Ens
agradaria, pero, mesurar aquest concepte amb un index / que variés entre 0 i 10,
de manera que el valor / =5 correspongués al cas V = P. Com ho podem fer?

En un examen de llarga durada es demana que els participants resolguin suc-
cessivament una serie illimitada d'exercicis. Com ho farieu per avaluar aquest
examen?

Volem aproximar la temperatura T de la superficie de l'aigua del llac de Banyoles
al llarg de l'any mitjangant una funcié sinusoidal. Prenem com a unitat de temps
t la setmana. A partir de les dades publicades per les estacions meteorologiques
de U'Estartit i de Torroella de Montgri, observem que la temperatura mitjana l'any
2016 va ser de 17.9° C i que la temperatura maxima aquell mateix any va ser de
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27.2° C i es va produir a la darrera setmana de juliol. Doneu una férmula per a
la funcio T = T(t).

[.B.27. Utilitzeu un full de calcul per fer 150 iteracions d'aquests models discrets i
representeu-les graficament:

(a) Model logistic
Nip1 = rNe(1 — Ny). No=0.2; r=0.3, 1.6, 2.8, 3.4, 3.45, 3.6.

(b) Model de Beverton-Holt

1.05N,
1+ 0.0025N, /20

Nt+]_ == NO == 5

(c) Model de Ricker

Nt+1 = Nt exp(005(1 — Nt/20)) NO =5.
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12. La derivada: que és i com es pot
calcular

El concepte de derivada d’'una funcié ja el vam introduir en el capitol 9. Recordem-ho.
St y = f(x) és una funcié i xg és un valor concret de la variable independent x, la
derivada de la funcié a xp és la velocitat amb que creix y quan x = xp. Aquest valor
Uexpressavem amb les notacions

dy

! — f/ — .
y'(x0) (x0) dx b

Evidentment, aquesta derivada és un nombre, pero si fem variar xg, obtenim una nova
funcid, la funcioé derivada.

No cal dir que aquest concepte és importantissim i, per tant, ens interessa molt

e donar una definicid matematica precisa d'aquest concepte i

e trobar maneres de calcular les derivades de les funcions elementals.

Aixo és el que farem en aquest capitol.

12.1 La derivada com a limit

La idea és molt simple: suposem que x = xp. La funcié pren el valor f(xp). Si ara
canviem el valor de x i passem a xg + h, la funcié canviara el seu valor fins a f(xg + h).
Es a dir, un canvi de valor h a la variable x ha donat un canvi de valor f(xg + h) — f(xo)
a la variable dependent y. Si ara volem calcular la velocitat de canvi hem de prendre
el quocient

f(xo + h) — f(xo)

p :
Es clar que aquest quocient ens déna la velocitat de canvi quan passem de xg a xg + h.
Pero aquesta és una velocitat mitjana perqué, entre xp i Xp + h la funcié pot créixer a
velocitats variables. Sivolem la velocitat instantania en el valor x = xg hem de prendre
h molt petit o, dit més ben dit, hem de prendre el limit quan h — O:
f(XO + h) — f(Xg)

£ = | .
(XO) hlno h

Exemple. A quina velocitat creix la funcié y = x> quan x = 1?

Segons el que acabem de dir,

1+h)2-1 14+2h+hH -1 1
(1+h) . 14+2h+ : (2+>:2_

(1) = lim —~— = = = |
y'(1) hino h hT;]O h hT;]O
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Es a dir, quan x = 1, la funcid val 1 i esta creixent a velocitat 2.

Exemple. Si un cos que esta en repos a una alcada zy comenca a caure per acci6 de
la gravetat, la seva alcada en cada instant sera una funcié de t

2(t) = ho — & 2.
2
A quina velocitat esta caient?

Es una petita generalitzacié de l'exercici anterior:

£(0) = fim P~ BN (=200

Es a dir, a cada instant t, l'alcada del cos esta disminuint a una velocitat igual a gt.

Exemple. Hem modelat el rendiment R d'un conreu en funcié de la preséncia d'un cert
nutrient S al sol, segons una funcié de Monod

)
 k+ S
Determineu la velocitat de creixement de R en funcié de S.

Hem de calcular un limit que no és dificil:

w(S+h)  pS
h—0 h h—0 h(k+ S+ h)(k+S) (k+S)?

Interpretem aquest resultat. Suposem que R es mesura en tones per ha i S representa
la quantitat de nitrogen present al sol, en kg/ha. Aleshores, R’ s'expressaria en «tones
per ha per kg de nitrogen per hay.

Exemple. Si una quantitat creix exponencialment segons N = ef, a quina velocitat
creix en cada moment?

Hem de calcular la derivada de la funcié et:

d . . et+h PN . et(eh _ 1) . eh -1 .
—(e") = lim —— = lim =e' lim —— =¢".

dt h—0 h h—0 h h—0 h
Aqui hem aplicat un limit que haviem estudiat anteriorment i arribem a la conclusio
que, en el creixement exponencial, la velocitat tambhé té creixement exponencial. Dit
en unes altres paraules, la derivada de la funcié exponencial ¥ és ella mateixa.

Com que la derivada és un limit i sabem que una funcié pot no tenir limit, deduim
que hi pot haver funcions que no tinguin derivada en algun punt. Direm que no sén
derivables. Per exemple:

e Si una funcié té una discontinuitat en un punt, és clar que en aquest punt no
podem parlar de velocitat de canvi de la funcié. Per exemple, la funcié part
entera | x| no es pot derivar en els punts enters, perqué la funcié és discontinua
en aquests punts.
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e Si una funcié fa un «angle» en un punt, també és clar que en aquest punt no
podrem parlar de derivada. Per exemple, la funcié valor absolut |x| decreix a
velocitat 1 en els x < 0 i creix a velocitat 1 en els x > 0. Al punt x = 0 la funcio
fa un angle i no hi pot haver derivada.

e Si la grafica d’'una funcié és vertical en un punt, la velocitat de creixement en
aquest punt «seria infinitay i podriem dir que la derivada val co o, millor, que en
aquest punt no hi ha derivada. Per exemple, la funcié /x té aquesta propietat
quan x = 0.

Exemple. La funcié f(x) = /x no té derivada a x = 0:

3
f'(0) = lim m = lim 1

— — OQ.
h—0 h h—0 h2/3

12.2 Interpretaciéo geomeétrica

St representem graficament uns funcié y = f(x) i representem graficament el quocient

f(x0 + h) — f(xo)
h
es fa evident la segtlient propietat fonamental:

La derivada f'(xp) és igual al pendent de la recta tangent a la grafica de
la funcié y = f(x) que passa pel punt de coordenades (xp, f(xp)).

Per tant, si coneixem la derivada d'una funcié en un punt podem escriure immediatament
lequacid de la recta tangent a la grafica en aquest punt.

f(zo +h)

f(xo +h) — f(0)

f(mo)

Z 2170+h
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Exemple. Calculeu l'equacié de la recta tangent a la parabola y = x? al punt x = 1.

Abans hem vist que la derivada val y’ = 2. Per tant, només cal escriure l'equacié
de la recta de pendent 2 que passa pel punt (1,1). Es aquesta: y =2x — 1.

Exemple. Determineu l'equacid de la recta tangent a la funcié de Monod y = 3x/(2+x)
en el punt x = 2.

Segons hem vist abans, la derivada d'aquesta funcié de Monod és y’ = 6/(2+x)? =
3/8. Aleshores, la recta tangent té pendent 3/8 i passa pel punt (2,3/2). Es la recta
3x —8y +6=0.

12.3 Algunes propietats elementals

e Funcions constants. Evidentment, la derivada d’'una funcié constant és zero.
Reciprocament, si la derivada d'una funcié definida en un interval és zero, aixo
vol dir que la velocitat de creixement és zero i, per tant, la funcié ha de ser
constant en aquest interval.

e Suma de funcions. Es senzill adonar-se que
(F) +8(x)) = F(x) +&'(x)

és a dir, la derivada d'una suma de funcions és la suma de les seves derivades.
També, si multipliquem una funcié per una constant k, la seva derivada queda
multiplicada per aquesta mateixa constant:

(kf(x)) = kf'(x).

e Funcions amb la mateixa derivada. Pot passar que dues funcions diferents tin-
guin la mateixa derivada? Certament que st

(F(x) + k) = f'(x).

Si sumem una constant a una funcio, la seva derivada no canvia. D’altra banda,
st dues funcions f(x) i g(x) (definides en un mateix interval) tenen la mateixa
derivada, aleshores

e Funcions lineals. Es clar que, com que la grafica d’'una funcié lineal coincideix
amb la seva recta tangent, la derivada d’'una funcié lineal y = mx + b és igual a
m. Ultilitzant la definicié de la derivada com a un limit arribariem a la mateixa
conclusid.
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e Polinomis i funcions potencials. Pel mateix métode que hem usat abans per
calcular la derivada de la funcié x?> podem calcular la derivada de les funcions
x" per qualsevol n:

d -
— x"=nx""1.

dx

Aquesta formula també és valida per a exponents negatius i, en general, per a
qualsevol exponent real. En particular,

dX\/;(_dXX —2” N

e Derivades successives. La derivada d'una funcid és una altra funcid que també
pot ser que sigui derivable. Si derivem la derivada obtenim el que s'anomena
la segona derivada. Podem procedir successivament amb la derivada tercera,
quarta, etc. La notacidé que s'utilitza és aquesta:

d? ek
f'(x) = d—);; f"'(x) = d—);; etc.
x x

El significat de cadascuna d’'aquestes derivades és clar: la derivada segona ens
indica la velocitat a que canvia la derivada primera. En diem l'acceleracié de
la funcid. La derivada tercera ens indica la velocitat a que canvia la derivada
segona, o l'acceleracid de la derivada primera, etc.

12.4 Equacions diferencials
Una equacié diferencial és una equacié tal que

e La incognita és una funcié desconeguda f(x).

e Alequacié hi apareixen la variable x, la funcié incognita f(x) i les seves derivades.

Per exemple, y = y’ és una equacié diferencial i una solucié d’'aquesta equacié és
una funcid que coincideixi amb la seva derivada. Ja coneixem una funcié que té aquesta
propietat: la funcid exponencial y = e*. N'hi pot haver d'altres? Si, per a qualsevol
constant k, la funcié y = ke* és una solucié de l'equacid diferencial anterior.

Recordem que haviem definit el creixement exponencial com aquell en qué la taxa

de creixement és constant:
!

Yy _
—=r.
y

Aix0 és una equacio diferencial i vam veure que les solucions d'aquesta equacid dife-
rencial son les funcions exponencials y = ke™.

El creixement logistic també el vam definir a partir d'una equacié diferencial:

/

£or-7
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pero aqui no vam ser capacos de trobar les solucions d'aquesta equacié. Ho farem
més endavant. De moment, limitem-nos a donar la solucié sense explicar com 'hem
trobada. La solucié és l'anomenada corba logistica, que té aquesta equacio:

K
y(x) = 1+ kexp(—rx)’

Aqut k és una constant arbitraria. Encara que no sapiguem com trobar aquesta solucig,
el que st que és senzill de fer és comprovar que aquesta funcié és una solucid.

Si dibuixem aquesta corba per K =6, k = 3, r =1, obtenim

Entre les propietats d'aquesta corba logistica tenim

lim y = K; lim y =0.

X—>00 X——00

12.5 Fem-ho amb sage

sage pot calcular, sovint, les derivades de funcions definides simbolicament. Si f(x) és
una funcié que haguem definit, podem utilitzar la sintaxi diff (£ (x),x) o bé la sintaxi
f.diff ().

sage: f(x)=(arctan(x)) 2+sqrt(x)
sage: f.diff()

x |-> 2%(1/(x~2 + 1))*arctan(x) + 1/2/sqrt(x)
sage: f.diff() (x)

2% (1/(x~2 + 1))*arctan(x) + 1/2/sqrt(x)
sage: f.diff()(6)

1/12xsqrt(6) + 2/37*xarctan(6)
sage: g(x)=sqrt(e~x*log(1/x))
sage: view(diff(g(x),x))



13. Creixement del producte de dos factors

13.1 Derivada del producte de dues funcions

S'estima que l'any 2002, la petjada carbonica® per capita de la Xina estava creixent
a un ritme de 0.25 tones per any? i la poblacié estava creixent a una taxa del 0.6%
anual. Ens preguntem quina era la taxa de creixement de la petjada carbonica global
de la Xina. Designem per C aquesta petjada carbonica, mesurada en tones de CO,
equivalent. Designem per P la poblacié de la Xina i per Q la petjada per capita.
Evidentment, tenim

C=QxP

i el problema consisteix en determinar la taxa de creixement o la velocitat de creixement
de C si sabem que @ creix a una velocitat de 0.25 tones per any? i P creix al 0.6%
anual.

Ens adonem facilment que la resposta a aquest problema no la podem obtenir a
partir de cap combinacié dels dos nombres 0.25 i 0.006. La millor manera d'enten-
dre aquest problema és representar-lo graficament. Si representem la variable Q a
U'eix horitzontal i la variable P a leix vertical, aleshores C vindra representat per la
superficie d'un rectangle.

L+ AP
B

Qo Qo+ AQ

St Qo i Pp sén els valors de les variables en el temps de referéncia (any 2002 en
el nostre exemple), aleshores la superficie del rectangle gris representa el valor de C

TConsulteu carbonfootprintofnations.com.
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en el temps de referéncia. St Qp creix fins Qo + AQ i Py creix fins Py + AP, aleshores
el rectangle gris que representa Cp creix perqué se li afegeix la regié blava. Aquesta
regié blava representa, doncs, l'increment de C, que podem anomenar AC. Es evident
que aquesta regio blava esta formada per tres rectangles i la seva superficie és

AC = QAP+ PyAQ + APAQ.

Si ara volem determinar la velocitat de creixement de QP hem de dividir pel temps
que ha transcorregut, diguem-n'hi At
AC AQ AQ
= Qo — + Po—— + AP —
At At At
i ara hem de prendre At molt petit o, més exactament, hem de fer tendir At — 0.
L'dltim sumand tendeix a zero i apareixen les derivades:

dC dQ

E‘QO g

Aquesta férmula ens diu, doncs, com hem de calcular la derivada d’'un producte de
dues funcions. També la podem escriure aixi

(F(x)g(x))" = f'(x)g(x) + f(x)g"(x).

13.2 Exemples

Exemple 1. Comencem amb un exemple elemental. Calculem la derivada de la funcid
_ 2
f(x) = x“ exp(x).

Sabem que la derivada de la funcié x? és la funcié 2x i que la derivada de la funcié e
és ella mateixa. Per tant,

d d d
3 —(x%*) = x>—e* + < x2> eX = x?e* + 2xe~.
X X X

Exemple 2. Resolem ara el problema inicial sobre la petjada carbonica a la Xina. Ens
pregunten sobre el creixement de C, és a dir, sobre la derivada de la funcié C respecte
del temps. Pel que acabem de dir:

d d dQ
3¢~ (P = QO O dt

Veiem que no podem calcular el que ens demanen si no ens donen informacié comple-
mentaria. Necessitem conéixer els valors de @y o Py. La poblacid estimada l'any 2002
era de Py = 1280 milions de persones. La petjada carbonica per capita estimada el
2002 era Qo = 2.5 tones per habitant i per any. El creixement de Q de 0.25 tones per
any? ens diu que Q' = 0.25 i un creixement de P del 0.6% anual equival a P’ = 7.68.
Per tant,

C' =25 x7.68 + 1280 x 0.25 = 339.2.



82 13. Creixement del producte de dos factors

Si volem expressar aixd en tant per cent, hem de dividir per Cp = 2.5 x 1280 = 3200
milions de tones per any. El resultat final és que la petjada carbonica total de la Xina
creixia al 10.6% anual.

Exemple 3. L'absorcié de CO, als boscos del Brasil és molt important per a la clima-
tologia del nostre planeta. Es calcula que al Brasil hi ha uns 500 milions d’hectarees
de boscos que absorbeixen unes 15.5 tones de CO, per ha i any. Pero la desforestacid
fa que el Brasil perdi superficie forestal a un ritme de 1.6 milions d’ha per any. A més,
s'ha observat que la preséncia d'espécies invasores i l'escalfament global fan disminuir
la capacitat d'absorcié de CO, dels arbres a un ritme del 0.5% cada any. Globalment,
doncs, la quantitat de CO, que és absorbida pels boscos del Brasil esta disminuint. A
quin ritme?

Escrivim aquesta equacid
A=SxE

on A és la capacitat d'absorcid dels boscos del Brasil en tones per any; S és la superficie
de bosc en ha i E és leficiéncia del bosc, en tones per ha i per any. Totes aquestes
variables sdn funcié del temps t. Si fixem t = 0 en el moment present, 'enunciat ens
diu que

500 x 10° ha;

= 15.5 tones/haxany;

nn

(0)
E(0)
§’(0) = —1.6 x 10° ha/any;

E’(0) = —0.0775 tones/haxany?.

Aleshores, aplicant la regla de la derivada d'un producte:

A'(0) = S(0) x E'(0) + S'(0) x E(0)
=500 x 10° x (—0.0775) — 1.6 x 10° x 15.5
= —63.55 x 10° tones/any?.

13.3 Derivada del quocient de dues funcions
Si derivem els dos costats d’aquesta identitat

0 () -

obtenim una férmula per a la derivada de la funcié 1/f(x) (valida, evidentment, només
per als punts x tals que f(x) # 0):
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Exemple 4. Als estudis sobre la pesca es consideren els conceptes de «estoc» S i
«reclutamenty» R. EL primer indica la part de la poblacid de peixos (d'una determinada
espécie) que son susceptibles de ser capturats i el segon indica la quantitat de peixos
que s'incorporen a l'estoc, sigui perque atenyen la mida necessaria, sigui perque entren
a la zona de captures. El model més senzill que relaciona aquestes dues variables és
el de Beverton-Holt de 1957 que utilitza una funcié de Monod

aS
R=—.
6+S

Calculeu a quina velocitat esta creixent R quan S = f3.

Ens estan preguntant la derivada R’ per al valor S = . Utilitzem la férmula de la

derivada d’'un quocient

o afa
R (B+S5)2 4B

Exemple 5. Imaginem que la corba de demanda per a un determinat producte s'apro-
xima a D = k/P. A quina velocitat baixa la demanda quan P = k/2?

Calculem la derivada
dD k 4

LA
Interpretem aquest resultat. Suposem que la demanda D s’expressa en milers d'unitats
per dia i que el preu P s'expressa en euros. Aleshores, dD/dP s'expressa en unitats
per dia per euro i ens indica com creix la demanda per cada euro d'augment en el
preu. Evidentment, la derivada és negativa perqué la demanda decreix quan augmenta

el preu.
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14.1 Quan una variable depén d’'una altra i aquesta depén d'u-
na tercera

Sovint, una variable y és funcié d'una altra variable y = y(x) i aquesta variable x
també és funcié d'una tercera variable x = x(t). En aquests casos, ens pot interessar

y . - . . . dy :
conéixer el creixement de y en funcid de t, és a dir, la derivada 9 Considerem aquests

exemples:

e La produccié P d’'un camp és funcié de la quantitat de nitrogen al sol P = P(N)
i la quantitat de nitrogen al sol és funcié de la quantitat d'adob que aportem al
camp N = N(P). Com creix P si fem créixer A?

e Una espécie invasora (o una malaltia) apareix en un punt d'una massa vegetal
i s'estén en totes direccions a una certa velocitat. A quina velocitat creix la
superficie afectada?

e l'aire es refreda quan s'expandeix. A quin ritme baixa la temperatura quan el
volum augmenta a una certa velocitat?

e Quina relacid hi ha entre la velocitat amb qué creix l'alcada d'un arbre i la
velocitat amb que creix el diametre del seu tronc?

e Si la derivada de la funcié e* és e* i la derivada de la funcid sinx és cos x, que
podem deduir sobre la derivada de la funcié e"*?

Tots aquests problemes tenen en comd que volem calcular la derivada d'una funcié
d’'una variable, quan aquesta variable és també funcié d'una segona variable. Per
exemple, en el cas de la produccié d'un camp tenim P = P(N(A)) i volem calcular la
velocitat amb qué varia P en funcié de la variacié de A:

P = P(N(A)), % =7

La resposta es troba en la que es coneix com la regla de la cadena:

dy dy dx
Sty = y(x) i x =x(t), aleshores — = — - —.
El nom prové de que la féormula es pot estendre illimitadament al cas en que t = t(u),

u=u(z), etc.
dy dy dx dt du

dz  dx dt du dz
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14.2 Composicio de funcions i la regla de la cadena

Ja sabem que hi ha una operacié fonamental que podem fer amb funcions que és la
composicio de funcions. La regla de la cadena ens diu com podem calcular la derivada
de la composicié de dues funcions f(g(x)):

(flg(x)) = f'(g(x)) - &'(x).
St aixo ho escrivim en l'altra notacid més classica, tenim

dy dy dx
y =f(x), x = g(t) It = dx dt
i escrit d'aquesta manera, la regla sembla plausible.

Exemples

e La derivada de logx és 1/x i la derivada de sin x és cos x. Per tant,

— logsinx = - COS X

dx sin x

d sinlo (cos log x) !
— sinlog x = x)- =
dx & & X

e La derivada de X és e* i la derivada de sin x és cos x. Per tant,

d . .
L eSINX — oSINX ooy
dx

— sine* = (cos e¥) e
T ( )

e Les «cadenesy» poden ser tan llargues com calgui:
9 sin3(2x* — 3x +1)7Y/3 =
dx
1
3sin?(2x* — 3x + 1)7/3 cos(2x* — 3x +1)71/3 <—3> (2x* —3x +1)743(8x% - 3).

14.3 Resolem els problemes del primer apartat
Apliquem ara la regla de la cadena als problemes que apareixen a l'inici de la llicd.

e Com creix la produccié d'un camp amb l'addiciéo d’adob? P és la produccié del
camp, N és la quantitat de nitrogen al sol i A és la quantitat d’adob que aboquem
al camp. Podem escriure P = P(N(A)) i volem determinar com canvia P en funcid
de A. La regla de la cadena ens diu que

dP _dP dN
dA  dN dA’
Per poder obtenir resultats concrets hem de fer hipotesis sobre les funcions P(N)
t N(A).
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— Una hipotesi molt natural és que el contingut en nitrogen al sol sigui una
funcid lineal de la quantitat d’adob que utilitzem:

N(A) = kA + r

on r és el nitrogen present al sol sense addicié d'adob i kA és la quan-
titat de nitrogen aportat per l'adob que, naturalment, sera una quantitat
proporcional a la quantitat d'adob.

— La produccié P com a funcié de la preséncia de nitrogen podria modelar-se

per una funcié de Monod:
aN

p—_°"_
k+ N
on a és el limit de P quan N tendeix a infinit.

Amb aquestes hipotesis, tindriem

dP _dP dN _ ak
dA  dN dA  (k+ N)?’

Com creix la superficie afectada? Si l'espécie invasora s'expandeix en totes
direccions a una velocitat v, la superficie afectada S sera aproximadament un
disc de radi r i aquest radi creixera a velocitat v. Per tant

S=xr® F =v: S =2xrr =2nrv.

Aquest problema també té una versié tridimensional. Imaginem, per exemple,
una substancia contaminant que, a partir d’'un punt a l'interior d'una massa d'ai-
gua s’expandeix uniformement en totes direccions a una velocitat v. Aplicant la
formula del volum de l'esfera, obtindriem que la velocitat amb que creix el volum
afectat seria:

V==mur’,r =y, V' = 4xrr = 4nr?v.

A quina velocitat es refreda l'aire? Per contestar aquesta pregunta hem de
coneixer una mica de fisica de l'aire. Si consultem els articles «Heat capacity
ration» i «Adiabatic process» a Wikipedia, veurem que la formula que relaciona
la temperatura i el volum d'una massa de gas, en les circumstancies que ens
interessen (és a dir, en circumstancies «adiabatiques», quan no hi ha transferéncia
de calor ni de massa), és

TVt =k

on k és constant i el parametre v val, en el cas de laire sec, v = 1.4. Per tant,
tenim
T = kv 04

Volem determinar la velocitat de canvi de la temperatura quan el volum canvia
a una certa velocitat. Aplicant la regla de la cadena, si denotem per t el temps,

tenim:
dT

— =—04kv! 4 ——.
dt dt V dt
El signe negatiu ens indica que quan el volum augmenta, la temperatura dismi-
nueix (Uaire es refreda quan s’expandeix) i la formula ens ddéna la relacié exacta

entre les dues velocitats.

WdvV_ T dv
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e Quina relacié hi ha entre els creixements en alcada i en diametre en un arbre?
Com que és un tema de gran importancia a la ciéncia forestal, hi ha molts estudis
allomeétrics sobre la relacié entre alcada H i diametre D en els arbres. Aquestes
relacions s'utilitzen, per exemple, per estimar la massa d'un arbre a partir del
gruix del tronc a una determinada alcada del terra. Una d'aquestes relacions és

H = 3.24 p%-613

que va ser obtinguda per Forstreuter el 1999 per al faig (Fagus Sylvatica)." H
és l'alcada en metres i D és el diametre del tronc en cm, a 1.37 metres d'alcada
sobre el sol.

Si ara ens preguntem com es relaciona el creixement de H amb el de D, tenim:

aH _ 1.986 D9-387 ab

dt dt
i, st ens interessa la relacio entre les taxes de creixement, tenim

1 dH 1 dD
=20 — 06132 .
Har =285 g

14.4 Derivacié implicita

Fins ara hem derivat funcions que estan expressades de forma «explicita» y = f(x).
Una de les aplicacions de la regla de la cadena és que ens permet calcular derivades
sense necessitat d'expressar la funcié en forma explicita.

Per exemple, considerem x2 + y? = 4 (que és una circumferéncia de radi 2 centrada
a l'origen) i suposem que volem calcular la derivada de y respecte de x. Ho podem
fer sense necessitat d'expressar y com a funcid de x de forma explicita. Simplement,
derivem la relacié anterior, aplicant la regla de la cadena:

X
X +y?=4 = 2x+2yy' =0 = y'==
Exemple. Calculeu dy/dx sabent que y3x? — yx + 2y? = x. Derivant aquesta equacié

obtenim l'equacid

1-2y3x+y
32/2 23 _ / _ 4 /:1 = ,:—.
Yy XT+2y'x —yx—y+ayy y 3,22 — x + 4y

14.5 Derivada de la inversa d’'una funcio

Una altra conseqiiéncia de la regla de la cadena és que si coneixem la derivada d'una
funcid, podem calcular la derivada de la seva inversa.

"Wegeu Allometric Relationships of Selected European Tree Species, institute for Environment and
Sustainability, 2003.
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Exemple. Sabem que la derivada de la funcié e* és e*. La inversa de la funci6
exponencial és la funcid log. Aleshores,

exp(log(x)) = x = exp(log(x))(log(x))' = 1 = (log(x))' = exp(lolg(x)) _ %

14.6 Derivades de totes les funcions elementals

Amb el que hem aprés fins ara ja podem calcular la derivada de qualsevol funcié que
s'expressi a partir de les funcions elementals, utilitzant sumes, productes, quocients i
composicions. Cal recordar aixo:

e —(const)=0 . —fifex =e" . —fircosx = —sinx
X T dx dx N
! /
= d
.( ) f'+g 078X28X|Oga d . 1
X _— = —
° ( ) —f’g+fg ) ° dx arcsin x *1—)(2
By - =
° <f> _fg ) o - d -1
g ® — arccosx = ————
° filog _ ! dx V1—x?
o (f(g) ()g’ dx @ log a
d x"=rx"! 9 Ginx = . 4 arctan x = 1
L4 df =rx o asmx_cosx dx B

14.7 Fem-ho amb sage

Per calcular amb sage derivades de funcions definides implicitament hem de fer-ho de
la manera segiient. Suposem que volem calcular y’ quan sabem que x?> 4 y? = 1. Hem
de comencar dient-li a sage que y és una funcié de x:

sage: y=function(’y’) (x)

A continuacid, definim la funcid donada per la relacid implicita
sage: f(x)=x"2+y~2-1

i ara podem derivar aquesta funcié

sage: g(x)=diff (f(x),x)
sage: g(x)
2xy (x)*D[0] (y) (x) + 2*x

Finalment, si volem aillar el valor de y/,

sage: solve(g(x),diff(y,x))

[D[0] (y) (x) == -x/y(x)]
que ens déna y’ = —x/y. Fem un altre exemple, extret dels exercicis al final d'aquesta
part.

sage: y=function(’y’) (x)
sage: f(x)=x/(x*y+1)-2*x*y
sage: view(solve(f.diff(x),y.diff(x)))
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22Xy (x)° +Axy (x)° 2y (x) - 1

D[o] (y) (x) = 233y (x)% + 4x2y (x) + X2+ 2x

Resolem ara l'exemple de la velocitat a qué es refreda l'aire:

sage:
sage:
sage:
sage:

sage:

gamma,t,k=var(’gamma,t,k’)
V=function(’V?) (t)
T(t)=k*V~ (1-gamma)
view(T.diff (t) (t))

—(y =1kV ()7 D[O] (V) (1) .

view(T(gamma=1.4) .diff (t))

0.400000000000000 D[0] (V) ()
- vV (t)1'40000000000000 :
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15. Aproximacio lineal i propagacio d'errors

15.1 Aproximacio lineal

Les funcions més senzilles sén les funcions lineals
f(x)=mx+b

pero la realitat és sovint molt més complexa i no ve descrita per una funcié d’'aquestes.
També pot passar que ni tan sols sapiguem quina és la funcidé exacta que descriu el
fenomen que estem estudiant.

La pregunta que ens fem és

Si, com a primera aproximacio, volem utilitzar una funcié lineal per estu-
diar un fenomen, quina és la millor funcié lineal que podem utilitzar?

Exemples:

e Quina és la velocitat maxima que assolira una allau de neu en funcié de la
inclinacié del pendent? Es una pregunta molt dificil, sobre la que s’han fet molts
estudis. El model més classic és el de Voellmy del 1955 segons el qual la velocitat
maxima ve donada per

v = \/h&(sin 1 — pcos )

on h és l'alcada del gruix de neu, ¥ és l'angle, i p i £ sén coeficients de friccid
i turbuléncia (positius), respectivament. Si fixem el gruix de neu, quina funcié
lineal podriem prendre per estudiar aquesta velocitat per a vessants propers a
45 graus?

e Tenim una poblacio de la qual sabem la mida i la seva taxa de creixement, perd
no coneixem exactament quin model de creixement segueix. Com a primera apro-
ximacid, modelem la mida de la poblacié per una funcié lineal. Quina?

e Recordem la funcié que ens donava la temperatura de sensacio (wind chill) en
funcié de la temperatura i la velocitat del vent (pagina 16). Suposem que la
temperatura és fixa T = —10. Si la velocitat esta al voltant dels 20 km/h, com
podem aproximar W per una funcié lineal de la velocitat del vent V7

e Sabem que sin0 = 0. Sense utilitzar una calculadora, com podem trobar un valor
aproximat per a sin0.17

e Sabem que v49 = 7. Sense utilitzar una calculadora, com podem trobar un valor
aproximat per a /507

La resposta ve donada per aquesta propietat:
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La millor aproximacié lineal d'una funcié és la recta tangent a la seva
grafica.

Suposem, doncs, que volem una aproximacié lineal d'una funcié y = f(x) per a
valors de la variable x propers a a. Prendrem la recta tangent a y = f(x) pel punt
(a, f(a)):

L(x) = f(a) + f'(a)(x — a)

i tindrem que

f(x) =~ L(x)six=~ a.

St x = a, la funcid f(x) i la seva aproximacié lineal L(x) tenen el mateix valor
i la mateixa derivada. A mida que x es vagi separant de a, la funcié f(x) i la seva
aproximacid lineal L(x) es poden allunyar una de laltra i Uaproximacid lineal perdra
exactitud.

Exemples:

e Aproximacid lineal de f(x) = sinx per x ~ 0. Com que sin0 =0 i la derivada de
sin és cos i cos0 = 1, tenim

L(x)=f(a)+ f'(a)(x —a) =0+ (a—x) = x.

Per tant, la millor aproximacid lineal se la funcié sin x per valors petits de x és
la recta L(x) = x. Dit d'una altra manera,

sinx =~ x si x ~ 0.
En particular, sin0.1 ~ 0.1.
e Aproximacié lineal de f(x) = y/x per x ~ 49.
1

1
NE —(x —49).

L(x) = f(a)+ f'(a)(x —a) = va+ 12

(x—a)=T7+

En particular, /50 =~ 7.0714.

e Aproximacié lineal de la mida d’'una poblacié. Suposem que tenim una poblacié
de mida N = 250 x 10, que creix amb una taxa de creixement del 2% anual. Si
hem de fer una estimacid lineal de la poblacié en els propers mesos, farem aixo:

1 dN

N(0) = 250 x 10° — - =0.02
0) % N dt

i laproximacio lineal és

L(t) = N(0) 4+ N'(0)(t — 0) = 250 x 10° + (0.02 x 250 x 10°)t.
Per exemple, d’aqui a dos mesos, l'estimacié per a la poblacié déna N ~ 250.8 x
106.

e Quan parlavem de la taxa de creixement vam dir que si r és proper a zero,
aleshores r ~ e"—1ilog(1+r) = r. Ara ho podem justificar amb les aproximacions
lineals de les funcions e* i log(1 + x) a x = 0.



92 15. Aproximacio lineal i propagacié d’errors
15.2 Propagacio d'errors

Qualsevol mesura experimental d’'una variable x té un cert marge d’error +Ax. Si ara,
sobre aquesta variable x, avaluem una funcié y = f(x), quin error hem d'esperar a y?
Es clar que l'error =Ax es «propagara» a un error £Ay. La pregunta és quina relacié
hi ha entre Ay i Ax.

Sovint, tenim un marge d'error per al resultat final y i ens preguntem amb quina
precisido hem de determinar x perqué y no sobrepassi el marge d'error que ens hem
fixat.

Distingirem entre els conceptes d'error i precisié o error relatiu. Si Uerror d'una
variable x és Ax, la precisié és Ax/x. Lerror té les mateixes unitats que la variable i
la precisio no té unitats i s'expressa sovint en percentatge.

Exemples:

e Si coneixem un nombre x = 10 amb una precisid del 2%, amb quina precisid
coneixem log x?

e Si coneixem el radi d'una circumferéncia amb una precisié del 5%, amb quina
precisio coneixem l'area limitada per aquesta circumferéncia?

e Volem determinar aproximadament la superficie foliar d'un arbre (evidentment,
sense mesurar la superficie de totes i cadascuna de les seves fulles!). Hi ha
molts estudis allométrics que relacionen, per a cada espécie d'arbre, la relacio
entre la superficie foliar i altres mesures més facils de determinar, com el diametre
del tronc. Per exemple, la referéncia que hem citat a la pagina 87 ens ddna que,
per als exemplars joves de faig, la superficie foliar per arbre (em metres quadrats)
és

A =0.307 D*8%3
on D és el diametre del tronc (en cm) a 1.37 metres d'alcada sobre el sol. Si

estem mesurant D amb una precisié del 5%,' amb quina precisié coneixerem A?

La resposta a tot aixo s'obté recordant la definicié de derivada

i fent aquesta aproximacié?

Ay _

y v f'(x) si Ax =~ 0.

'l com és que mesurem el didmetre del tronc amb una precisié del 5% i no mesurem el diametre del
tronc exactament? D'una banda, U'exactitud absoluta no pot existir, perdo també és cert que la resposta a
aquesta pregunta es troba en el fet que estem eludint que qualsevol estudi experimental ha d'usar métodes
estadistics. Per tant, a la practica, no estarem mesurant un Unic tronc, sindé una mostra de troncs, i voldrem
estimar valors mitjans amb un cert marge d'error, etc. L'analisi estadistica és un complement necessari a
tot el que estudiem en aquest curs.

“De fet, aqui estem substituint £(x) per la seva aproximacié lineal.
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Dit d'una altra manera, la relacié entre Ay i Ax ve donada per
Ay ~ y' Ax.

Si el que volem és una férmula que ens relacioni la precisié de x amb la precisié de y,
n'hi ha prou amb dividir per y la férmula anterior. Obtenim aixo:

Ay  y'x Ax

y y X

Trobem ara la solucié dels casos plantejats als exercicis anteriors:

e Precisio del logaritme. Tenim x = 10 + 2% i posem y = log x. Aleshores,

1 Ay  1Ax  0.02
Ay~ -Ax, D i2X ~ 0.0087.
X y y x log 10

Per tant,
log x = 2.3 +0.9%.

e Precisié de l'area d’'una circumferéncia. La férmula classica S = 7R? déna
AS 27R AR

AS ~ 2n1RAR,
i la precisié de l'area és del 10%.
e Superficie foliar.

AA  1.803 x 0.307 x D9-803 AD
28 5 X < AD = 1.803 5~ = 1.803 x 0.05 ~ 9%,

A 0.307 x D1.803

Per tant, la precisio en la mesura de la superficie foliar sera del 9%.

15.3 Aproximacio quadratica

En lloc d'aproximar una funcié f(x) (per a valors propers a un valor x = a) per una
funcio lineal, com hem fet fins ara en aquest capitol, podem aproximar la funcié per una
funcié quadratica Q(x) = ax® 4 bx + c i sembla logic pensar que, d'aquesta manera,
obtindrem una aproximacié millor. Quina és la funcid quadratica que hem d’escollir?

Recordem que laproximacié lineal de f(x) al voltant del punt x = a és la funcié
L(x) = f(a) + f'(a)(x — a).
Aquesta funcié té aquestes dues propietats

e Les dues funcions f(x) i L(x) tenen el mateix valor per x = a. Es a dir, f(a) = L(a).

e Les dues funcions f(x) i L(x) creixen a la mateixa velocitat per x = a. Es a dir,
f'(a) = L'(a).
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A la vista d'aixd, una bona aproximacié quadratica sera una funcié Q(x) = ax? +
bx + ¢ que tingui aquestes tres propietats:

e Les dues funcions f(x) i Q(x) tenen el mateix valor per x = a. Es a dir, f(a) =

Q(a)-

e Les dues funcions f(x) i Q(x) creixen a la mateixa velocitat per x = a. Es a dir,
f'(a) = Q'(a).

e Les dues funcions f(x) i Q(x) creixen am la mateixa acceleraci6 per x = a. Es a
dir, f"(a) = Q"(a).

Amb aquestes tres condicions, no és dificil trobar quina és aquesta funcié quadra-

tica. El resultat és:

f”(a) (X . 3)2.

Q(x) = f(a) + f'(a)(x — a) +
Observem que, si a = 0, la part lineal de Q(X) és precisament l'aproximacid lineal L(x).

Exemple. Trobem l'aproximacié quadratica de f(x) = /1 + x a l'entorn del punt x = 0.

Cal trobar els valors f(0) =1, f/(0) = 1/2, f”(0) = —1/4. Aleshores, l'aproximacié
quadratica és

Q) =1+ 2x—2x2

X) = 5 X 3 X

i podem afirmar que

1 1
\/1+x%1+§x—§x2 st x = 0.

15.4 Fem-ho amb sage

L'aproximacié lineal o quadratica d’'una funcié es pot calcular amb sage amb la comanda
taylor(f(x),x,a,n) on a és el punt on volem trobar l'aproximacid i n = 1,2 segons
st volem l'aproximacié lineal o l'aproximacié quadratica. Els valors n = 3,4,... ens
donarien aproximacions d'ordre superior al quadratic.

sage: f(x)=sqrt(1+x)
sage: taylor(f(x),x,0,1)
1/2%x + 1

sage: taylor(f(x),x,0,2)
-1/8*%x"2 + 1/2*%x + 1



oy

16. Valors extrems d’'una funcio

16.1 Maxims i minims

Quan modelem un fenomen per una funcié y = f(x) una informacié important que ens
pot interessar és quins sdn els valors maxim i minim que pot assolir la variable y.

Exemples:

e Imaginem que estudiem el rendiment R d'una collita de cereal com a funcié del
contingut al sol d’'un determinat nutrient N (nitrogen, per exemple). Intuim que
tant l'abséncia de nutrient com l'excés de nutrient poden fer que R disminueixi.
Ens interessa, doncs, trobar un valor de N que faci que R sigui maxim.

e S’ha vist que hi ha espécies que modulen la mida de la descendéncia en funcié
dels recursos disponibles per tal d’aconseguir que l'éxit de la reproduccié sigui
maxim. Entenem per éxit de la reproduccié el nombre de cries que sobreviuen
fins que es puguin reproduir. Un model matematic pot estudiar quina pot ser la
mida que maximitzi l'éxit, i comparar-la amb els resultats experimentals.

e Hi ha espeécies (el salmd del Pacific, alguns pops, l'atzavara, el bambd...) que es
reprodueixen una UGnica vegada a la vida' i leleccié de quin és aquest moment
afecta l'éxit de la reproduccié. Un model matematic pot estudiar quina és el
moment que maximitza l'éxit, i comparar-lo amb els resultats experimentals.

e El concepte de pesca sostenible sancionat per 'ONU? es basa en un nombre
de captures que mantingui la poblacid en la seva mida de creixement maxim,
suposant que l'estoc de peixos sequeix un model logistic. Quina és aquesta mida
de creixement maxim?

e En el control bioldogic de les plagues, una plaga és contrarestada amb la intro-
duccid d’'una espeécie depredadora dels individus de la plaga. La mida de la plaga
i la mida de la poblacié de depredadors estan relacionades. Matematicament,
loptimitzacié d’'aquestes mides interdependents és una problema molt complex
que involucra maxims i minims, perd va molt més enlla.

La situacio també pot ser justament la contraria: estudiem un fenomen del que coneixem
bé els seus valors extrems i volem utilitzar una funcié per modelar aquest fenomen.
Recordem, per exemple, quan voliem modelar la variacié anual de temperatura per una
funcid sinusoidal (pagina 37) i haviem d'utilitzar el coneixement que tenim dels valors
maxims i minims de la funcid sinus.

"Consulteu l'article Semelparity and iteroparity a Wikipedia.

2Vegeu larticle 2 del document Convention on Fishing and Conservation of the Living Resources of the
High Seas, United Nations 2005. Per entendre millor aixo, consulteu l'article Maximum sustainable yield
a Wikipedia.
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Per atacar aquests problemes, comencarem introduint alguns conceptes matematics
fonamentals.

16.2 Conceptes matematics sobre maxims i minims

Sigui y = f(x) una funcié definida en un cert interval [a, b] (o també (a, b) o qualsevol
altra variant). Diem que aquesta funcid té un maxim a x = c si el valor f(c) és més gran
o igual que qualsevol altre valor f(d) amb d € [a, b]. En concepte de minim es defineix
analogament. Utilitzarem la paraula extrems per referir-nos indistintament a maxims
i minims. També parlarem de maxims, minims i extrems globals, per distingir-los d'un
altre concepte que tractarem més endavant.

Per exemple, considerem la parabola y = x? que ve donada per una funcié definida
arreu, perd suposem que només ens interessa el seu comportament a l'interval [—1, 1].
En aquest interval, la funcio té:

e un maxima x=11un maxima x = —1,

e un minim a x = 0.

Perd aquesta mateixa parabola, considerada a linterval (—1,1) no té cap maxim, i
segueix tenint un minim a x = 0.

En canvi, la recta y = x, considerada a linterval (—1,1), no té cap extrem: cap
maxim i cap minim. Aqui, que l'interval sigui obert és fonamental perqué tenim un
resultat matematic que diu aixo:

Una funcié continua en un interval tancat sempre té algun maxim i algun
minim.

Diem que una funcid y = f(x) té un maxim relatiu a x = ¢ si el valor f(c) és més
gran o igual que qualsevol altre valor f(d) quan d és a [a, b] i d també és a algun
petit interval al voltant de c. També parlarem de minim relatiu o, si volem incloure els
dos casos de maxim i minim, parlarem d’extrems relatius. També es parla de maxims,
minims o extrems locals.

Exemples:

o f(x) = |x?>—4| a linterval [-2.5,3). Per dibuixar aquesta funcié n’hi ha prou amh
dibuixar la parabola y = x> — 4 i a continuacié reflectir respecte de l'eix x la part
de la parabola que esta per sota d’'aquest eix.

Aqut observem aixo:
— No hi ha cap maxim global. A x = 3 hi hauria un maxim global, pero 3 no
pertany a l'interval que estem considerant.
- A x=21ix= -2 hi ha minims globals i també minims locals.

— Ax=-251ix=0 hi ha maxims locals.
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e f(x) = (x — 1)%(x +2) a linterval [-2,3]. Pel resultat anterior, sabem que és
segur que aquesta funcié tindra algun maxim global i algun minim global. Si
dibuixem aquesta funcid, obtenim aixo:

20 |

15|

10 |

Observem que

— Ax=-21x=1 hi ha minims globals que també sén locals.
— A x =3 hi ha un maxim global, que també és local.

— A x = —1 hi ha un maxim local (que no és global).

16.3 Extrems locals i derivada

Hi ha una relacid directa entre els extrems locals d'una funcié y = f(x) i la derivada
d’aquesta funcié f'(x):
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Si una funcié y = f(x) té un extrem local a un punt interior x = c i la
derivada f’(c) existeix, aleshores f'(c) = 0.

Aqui, punt interior és aquell punt del domini de definicid de la funcié que té al seu
voltant tot un interval obert de punts que també estan en el domini de definicié. Per
exemple, si el domini de definicié és [a, b], aleshores tots els punts de l'interval obert
(a, b) s6n punts interiors i els punts a i b no ho sén.

Els punts on s’anulla la derivada s'anomenen punts critics de la funci6. Estem
dient, doncs, que els extrems locals interiors son punts critics, sempre que la funcid
sigui derivable. L'explicacié d'aquest resultat és clara: els punts on la derivada s’anulla
sén els punts on la recta tangent a la corba y = f(x) és horitzontal i aixo és el que
passa en un maxim local i un minim local (si s6n punts interiors i la funcid és derivable).

Comentaris:

e Totes les hipotesis son necessaries: el punt ha de ser interior i la derivada ha
d’existir.

e Un punt critic pot no ser un extrem. Per exemple, la funcié x3 té un punt critic a
x = 0, pero aquesta funcid no té extrems, ni globals ni locals, quan la considerem
a tota la recta.

e Observem que l'afirmacié anterior no diu res sobre els extrems globals. Els ex-
trems locals d'una funcid poden tenir interés, pero si el que realment ens interessa
son els extrems globals, hem de procedir d'aquesta manera:

1. Trobem els punts critics de la funcio.

2. Trobem els punts on la funcié no té derivada.

3. Considerem els extrems de l'interval que estem considerant (st escau).

4. Aleshores, els extrems globals, si n’hi ha, estaran entre els punts que hem

considerata 1, 2 i 3.

e No hem d'oblidar els punts on la funcid no és derivable. Per exemple, la funcid
|x| té un minim global i local a x = 0, pero la funcié no té punts critics, perqué
la funcidé no és derivable a x = 0 (fa un «angle»).

16.4 Teoremes de valor mig

Suposem que circulem per un tinel de 5 km on la velocitat maxima permesa és de 90
km/h. La policia detecta la nostra entrada al tinel i, després d'exactament 3 minuts,
detecta la nostra sortida. Si rebem una multa per excés de velocitat, quin és el fonament
teoric d'aquesta sancid?

Sigui f(t) la funcié que indica quina longitud del tiinel hem recorregut en el temps
t. Qué sabem d'aquesta funcig?

e Sabem que f(0) =01 f(0.05) =5 (posem el temps en hores).
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e Com que la longitud del tinel és de 5 km, la nostra velocitat mitjana ha estat de

_ £(0.05) — £(0) _
Vi = 0.05 — 0 =100 km/h.

e La policia no sap res de la funcié f(t). Podem haver canviat la velocitat, ens
podem haver aturat o, fins i tot, fer marxa enrere. Pero com a minim si que sap
que la funcié f(t) és continua (no ens «teletransportemy») i és derivable (sempre
tenim «alguna» velocitat).

A partir d'aqui podem aplicar un resultat que s'anomena teorema del valor mig que
afirma que si la nostra velocitat mitjana és de 100 km/h, necessariament hi ha hagut
algun moment en que la nostra velocitat instantania ha sigut exactament 100 km/h.

Dit amb més precisio:

Si f(x) és una funcié derivable a un interval obert que contingui [a, b,
existeix un punt c entre a i b tal que

Observem que en el cas en qué f(a) = f(b), aquest resultat ens diu que hi ha
d’haver un punt c entre a i b tal que f'(c) = 0. Dit en llenguatge ordinari: Si una
quantitat té el mateix valor en dos instants diferents, és seqgur que hi ha hagut un
instant de creixement zero. Aixo es coneix amb el nom de teorema de Rolle.

Exemple: Suposem que una poblacié de mida N(0) = 100 creix a una velocitat (vari-
able) que sempre es manté per sota de 3: |N'(t)] < 3. Qué podem dir de la mida de
poblacié per t = 10?7

Pel teorema del valor mig, hi haura un temps ¢ entre 0 i 10 tal que

’ N(10) — N(0)

=N <
e BLCIEE

i, per tant, podem afirmar que

70 < N(10) < 130.



17. (De-)creixement i (des-)acceleracio

17.1 Creixement i decreixement

St estudiem un fenomen que esta modelat per una certa funcié y = f(x), és clar que
ens interessa saber si y és creixent o decreixent, quan x creix. La derivada ens déna
la resposta, perqué la derivada, precisament, mesura la velocitat de creixement de la
funcid. Per tant,

Si f/(x) > 0 a un cert interval, la funcioé f(x) és creixent en aquest interval.
Si f/(x) < 0 a un cert interval, la funcié f(x) és decreixent en aquest
interval.

Els punts en que la funcié passa de creixent a decreixent sdn punts critics amb
f'(x) = 0 i son maxims locals. De manera similar, els punts en que la funcié passa de
decreixent a creixent s6n punts critics amb f/(x) = 0 i sén minims locals.

Exemple: En el model de von Bertalanffy longitud d’'un peix com a funcié del temps ve
donada per aquesta funcié:

L(t) = Lo — (Loo — Lo) exp(—kt), Loo > Lo >0, k> 0.

L(t) és la longitud del peix en el temps t i Lo = L(0). D'altra banda, Loo = lims—oo L(2)
és la longitud a llarg termini. Si calculem la derivada d'aquesta funcid, veiem que

L'(t) = k(Loo — Lo) exp(—kt) > 0

i la funcié és creixent. A partir d'aquestes observacions, el comportament qualitatiu
d’'aquesta funcié esta clar:

L
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17.2 Acceleracio i desacceleracio

Si ja sabem que una certa funcié y = f(x) és creixent (st és decreixent, el raonament
seria similar), encara hi ha dues possibilitats:

1. f(x) pot créixer com la parabola y = x? o com la funcié exponencial y = ¢*. En

aquests casos, la velocitat de creixement va creixent. Es diu que la funcié creix
acceleradament (o amb acceleraci6 positiva).

2. f(x) pot créixer com larrel quadrada y = /x o com la funcié y = logx. En
aquests casos, la velocitat de creixement va decreixent. Es diu que la funcid creix
desacceleradament (o amb acceleracié negativa).

El que distingeix un cas de laltre és el signe de l'acceleracid. Pero l'acceleracié
ve donada per la segona derivada de la funcié f”(x). Per tant, el signe de la segona
derivada ens distingeix entre creixement accelerat i creixement desaccelerat.

Exemple: En el model de creixement dels peixos de l'exemple anterior, la segona
derivada és

L"(t) = —k*(Loo — Lo) exp(—kt) < 0

i el creixement és desaccelerat: el peix creix més de pressa quan és jove que quan és

ja gran.

De fet, encara que hem partit s'una funcid creixent per discutir aquest tema, no cal
que la funcié sigui creixent o decreixent per poder parlar d'acceleracid i desacceleracio.

17.3 Concavitat i convexitat

Encara que en el llenguatge no cientific es parla d'acceleracid i desacceleracid, els
termes que s'utilitzen en llenguatge matematic sén els de funcié convexa i funcio
concava. Malauradament, a 'hora de decidir quin dels dos casos (f”(x) > 0 o f"(x) <
0) es considera convex i quin es considera concau, hi ha una certa confusid. Aquesta
confusié és inevitable perqué «concaux» i «convex» fan referéncia a objectes solids i no
a lintes. Ningu dubta sobre qué és una pedra convexa o una concavitat en una paret
de roca. Quin sentit té dir que la grafica d’'una funcié és convexa o concava? Depén
des d'on ens la mirem. Per exemple, la funcié exponencial, mirada des de leix de les
x sembla convexa, perd mirada des de leix de les y sembla concava. En alguns textos
que s'utilitzen a l'ensenyament als Estats Units o al Canada és resol aquest problema
parlant de funcions concaves cap amunt i funcions concaves cap avall. Dit aixo, ha de
quedar clar que dir que l'exponencial és concava o convexa no pot ser res més que un
conveni i que no hi ha unanimitat a 'hora de decidir entre una opcié i l'altra.

En aquest curs, el conveni que utilitzarem és que ens mirarem les grafiques des de
baix i, en particular, la funcidé EXponencial sera convEXa. En resum:

Direm que una funcié y = f(x) és convexa si f”’(x) > 0 i direm que és
concava si f”(x) < 0.
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Els punts en qué una funcié passa de convexa a concava o viceversa son punts on
f"(x) = 0. Els anomenarem punts d'inflexié.

Exemple: Considerem una funcié de creixement de tipus Monod

N

Considerem primer el cas N > 0, que és el que més apareix a les aplicacions. Si
calculem la primera i la segona derivades d'aquesta funcié tenim

v, K,
dN ~ " (Kt N)
2y 2K
__y, o
dN? (KT N3

Deduim que Y és una funcié creixent i concava. D’altra banda,

lim Y(N) = Y
N—oo

i aixo implica que Y, és el valor de la funcié a llarg termini i també que la funcié no
pot superar aquest valor Y.

En resum, podem dir que Y és una funcié que, per N >0,

e creix sempre, perqué Y’ >0,

e creix limitadament, o «té un sostrey, perqué Y < Y, (i Ym és el valor a llarg
termini de Y).

e creix de manera desaccelerada, perqué Y” < 0.

En un llenguatge més matematic, dirlem que la funciéd Y és creixent, concava i té
una asimptota horitzontal a Y = Y.

La situacié quan N < 0 és lleugerament diferent. En primer lloc, la funcié té una
asimptota vertical al punt de discontinuitat N = —K. La derivada segueix essent
positiva arreu, i la funcié és sempre creixent. En canvi, la segona derivada és negativa
per N > —K i és positiva per N < —K. Quan N — —K™, la funcié Y — —oo, mentre
que quan N — —K~, tenim que Y — oo. Finalment, limy__ Y(N) = K.

17.4 Diminishing returns

La situacid de U'exemple anterior apareix sovint (per exemple, a 'economia) i s'acostuma
a descriure amb el terme diminishing returns. Aquest terme fa referéncia a que, si bé
és cert que la funcié (els returns) son més grans com més gran és la variable x (la
inversio), els increments de la funcié sén cada vegada més petits (diminishing) quan
més creix x.

Posem un parell d’exemples:
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e Una empresa comenca a invertir en publicitat i aixo fa augmentar les seves ven-
des molt rapidament. Si va augmentant la seva inversié en publicitat, cada ve-
gada augmenten més les seves vendes. Pero pot arribar un moment —segur que
arribara— en queé s'entri en una situacido de diminishing returns, en la qual els
mateixos augments de la despesa en publicitat produeixen només minims incre-
ments de les vendes.

e Una empresa treu al mercat un producte que és molt millor que l'anterior i fa que
les seves vendes creixin molt. Inverteix en R&D i treu nous models, cada vegada
millors que generen bones vendes, fins que arriba un punt en qué ja resulta molt
dificil fer millores substancials en el producte, que moguin el consumidor a canviar
el model actual per un de nou. Es diu que s'ha entrat en la fase de diminishing
returns. Per exemple, es diu que aixo és el que esta passant ara (2015) amb els
fabricants de cameres fotografiques digitals i amb els de PC's.

Matematicament, la situacié de diminishing returns fa referéncia a una funcié crei-
xent concava.
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18. Analisi qualitativa d’'una funcio

18.1 Els passos que hem de sequir

El que hem anat estudiant fins ara ens ddna eines per dur a terme, donada una funcié
y = f(x), una analisi qualitativa de la funcié que ens permet entendre el seu com-
portament i les seves caracteristiques principals. Aquesta analisi donara lloc a poder
dibuixar aproximadament la grafica de la funcio.

Hem d'estudiar aquests conceptes:

1. Domini de definicié. Hem de saber quin és el domini maxim on esta definida la
funcié i també quin és el domini on ens interessa estudiar la funcié. Per exemple,

la funcié de Monod
KN

Y(N) = 2N
esta definida per tot N # —a? i, si N representa, per exemple, la mida d'una
poblacié o la quantitat d’'un cert nutrient, aleshores el domini que ens interessa
és N > 0. Recordem que ja sabem exactament quins sén els dominis de definicid
de totes les funcions elementals.

2. Punts de discontinuitat. Ja sabem que les funcions elementals sén continues a
tot el seu domini de definicié. Per tant, el punt anterior ja ens déna informacié
sobre els possibles punts de discontinuitat.

3. Comportament a llarg termini. Si la funcid esta definida quan la variable tendeix
a too, calculant els limits coneixerem el seu comportament a llarg termini. Per
exemple, a la funcidé de Monod anterior tenim

: KN
lim ——— =K
N—oco a2 + N
i veiem que a llarg termint la funcid es va acostant al valor K. Matematicament,
direm que la grafica de la funcid té una asimptota horitzontal Y = K.

4. Comportament prop d’un punt de discontinuitat. Si la funcié té una discontinuitat
a x = a (no esta definida a x = a), ens interessa saber qué fa la funcié quan ens
acostem a a. Per saber-ho, calculem els limits laterals

lim f(x), lim f(x).
x—at x—a~
Aixo ens permetra saber si la funci6 té una discontinuitat de salt al punt x = a,
0 una asimptota vertical. Per exemple,
k2 k2

lim = —00, lim
x—at a — X x—a— ad— X

=00
i aquesta funcid té una asimptota vertical x = a.
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Comportament als extrems de linterval. Si estem estudiant la funcié en un
interval [a, b], ens interessa conéixer els valors f(a) i f(b).

Punts critics. Recordem que son els punts on s'anulla la derivada i poden ser
extrems de la funcié.

Punts on no hi ha derivabilitat. El calcul de la derivada al punt anterior ens
permet detectar si hi ha algun punt on la derivada no existeix. Aix0 pot passar,
per exemple, si la funcid fa un «angle» o si hi ha una recta tangent vertical. Per
exemple, la funcié /x esta definida per tot valor de x, pero no és derivable a
x = 0.

. Creixement i decreixement. Quan coneixem els punts on s’anulla la derivada,

podem determinar quins son els punts on la derivada és positiva i quins son els
punts on la derivada és negativa. Aixo ens ddna informacid sobre els intervals on
la funcid és creixent i els intervals on la funcié és decreixent.

Valors extrems. Amb la informacié anterior ja podem conéixer els extrems locals
i globals de la funcid.

Concavitat i convexitat. Sabem que la distincid entre aquests dos tipus de com-
portament es pot fer utilitzant la segona derivada ”(x). Quan aquesta segona
derivada és positiva, la funcié és convexa; quan és negativa, la funcié és concava.

Punts d'inflexio. Soén els punts on la funcié passa de convexa a concava, o
viceversa. Per tant, en aquests punts la segona derivada val zero. Pero també hi
ha punts on la segona derivada val zero i, en canvi, no hi ha inflexié. Per exemple,

el punt x = 0 per a la funcié x*.

Asimptotes. Una asimptota és una recta a la qual la funcié s'acosta a una dis-
tancia que tendeix a zero. En els apartats anteriors ja hem detectat les possibles
asimptotes horitzontals i verticals. Una asimptota obliqua per a la funcié f(x)
sera una recta y = mx + b amb m # 0, tal que

lim (f(x) — (mx+b))=00 lim (f(x)— (mx+ b)) =0.

X—00 X—>—00

Per exemple, considerem la funcié

x2 -3

f(x) = -

que té una asimptota vertical a x = 2. Si volem determinar U'existéncia d'asimpto-
tes obliqlies, observem que

2 _ _ 2 _ —
im X 3 mx— b= lim (1 —m)x*+(2m—b)x+2b—3
x—00 X — 2 X—00 X —2

i aquest limit val zero precisament si m =11 b= 2. Per tant, la recta y = x + 2
és una asimptota obliqua d’aquesta funcié. De fet, la grafica és:



106 18. Analisi qualitativa d'una funcio

10 |+

-10

18.2 Un exemple

1

Fem un estudi qualitatiu de la funcio
f(x) = (2= x)(2 4 x)?/°.

En primer lloc, observem que les funcions potencials només estan definides per a valors
positius de la variable i, en aquest cas, aix6 donaria com a domini de definicié de la
funcid anterior els valors x > —2. Ara bé, podem entendre la funcié anterior com

F(x) = (2= x)y/(2+x)?

i, d'aquesta manera, la funcid esta definida arreu. No hi ha punts de discontinuitat.

El comportament a llarg termini és clar, perqué

Xll_>ngo f(x) = —o0, thoo f(x) = oo.

St calculem la derivada de la funcid, obtenim

6+ 7x

f'(x) = —W.

Observem dues coses:

'Es una funcié forca artificial, que ha estat triada perqué exemplifiqui tots els conceptes que hem anat
estudiant.
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e La derivada no existeix quan x = —2.

e La funcié té un Gnic punt critica x = —6/7.

Com que la funcié només pot passar de creixent a decreixent (o viceversa) en el punt cri-
tic o en el punt on la derivada no existeix, calculant la funcié en tres punts convenients
arribem a que

e La funcié és decreixent a (—oo, —2) i a (—6/7, c0)
e La funcié és creixent a (=2, —6/7).

e La funcié té un maxim local a x = —6/7.

Com que els valors a llarg termini de la funcié sén —oco i oo, la funcié no pot tenir

extrems globals. Els (nics extrems locals s6n x = —6/7 (maxim local) i x = —2 (minim
local).
Per entendre millor qué passa al punt x = —2 on la funcid no és derivable, estudiem

com és la derivada quan ens acostem a aquest punt:

H / H !/
lim f'(x) = —o0, lim f'(x) = oc.
x——2" x——2%F
Aixo ens diu que la funcié «cau» vertical al punt x = —2 i «s’aixeca» vertical. En aquest

punt tenim, doncs, una mena de «ctspide» invertida.

Estudiem ara la concavitat i la convexitat de la funcid, amb la derivada segona.

52 4+ 14x

F(x) = — o T2
) = =25 )8

Observem que l'lnic punt on s'anulla aquesta derivada segona és el punt x = —26/7.
Deduim que la funcié és

e convexa a (—oo, —26/7),

e concava a (—26/7,00) excepte al punt x = —2.

Per tant, té un punt d'inflexié a x = —26/7.

La darrera comprovacié que fem és que la funcié no té asimptotes obliqiies. Su-
posem que y = mx + b fos una asimptota obliqua. Aleshores tindriem (aplicant, per
exemple, 'Hépital)

2—x

0= Iim 2=x)2+x)?® —mx—b= lim (2+x) (W—m

x—+oo x—+too

>+2m—b::|:oo.

Amb tota aquesta informacié ja coneixem prou bé el comportament qualitatiu de la
funcio:
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18.3 Fem-ho amb sage

El dibuix de la funcié que hem estudiat en aquest capitol s’ha fet amb aquesta instruc-
cio:
sage: plot((2-x)*((2+x)~2)~(1/5),(x,-6,6) ,thickness=2,
....: aspect_ratio=1,ymax=8,ymin=-8)
Els recursos que sage posa al nostre abast sdn molt Utils, perd no ens eximeixen de

conéixer els instruments teorics que ens permeten entendre el comportament qualitatiu
de les funcions i que hem estudiat en aquest capitol.
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19. Optimitzacio

Quan modelem un cert fenomen per una funcié Y = Y(N) ens pot interessar trobar
valors de la variable N que maximitzin o minimitzin el valor de la funcié Y. Matema-
ticament, es tracta de trobar els maxims i minims de la funcié, si existeixen. També
és possible que ens interessi no pas el maxim o el minim, siné un punt d'inflexié (ve-
geu lUexemple 2 d'aquest capitol). D’aquest tipus de problemes en direm problemes
d’optimitzacio.

19.1 Exemple 1. Rendiment d'un conreu

Imaginem que volem modelitzar el rendiment Y d'una explotacié en funcié de la pre-
séncia d'un cert recurs N. En un exemple anterior, modelitzavem el rendiment d'un
camp de blat de moro en funcié de la quantitat de nitrogen al sol amb una funcié de
tipus Monod N/(k 4+ N) i varem estudiar quin era el comportament de Y(N). En molts
casos, aquesta funcid de Monod no és un bon model perqué és una funcié que sempre
és creixent, mentre que sovint ens trobem que un excés del recurs N pot produir una
disminuciod en el rendiment. Una funcié més apropiada podria ser una funcié de Holling
de tipus IV

Y(N) = k24l§/l\l2 N > 0.
Observem que aquesta funcié compleix
1. Es continua i és sempre positiva.
2. Y(0)=0.
3. Quan la quantitat N és molt gran,
o= I e -

Aixo ens diu que hi ha d'haver un cert valor de N que doni un rendiment maxim
Ymax- Quin és aquest valor? Si derivem la funcid, tenim

k% — N?

/ —_—
Y(N)_k2+N2

i veiem que N = k és un punt critic. Com que hi ha d’haver necessariament un maxim,
sera aquest i el rendiment maxim és Yjax = 1/2k. No cal analitzar la segona derivada
perque ja veiem que realment la funcid és creixent per N < k i decreixent per N > k.

109
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1/2k+

19.2 Exemple 2. Tractament biologic de les plagues

En algunes explotacions vitivinicoles, per tal d'evitar l'is de pesticides, es colloquen
a les vinyes unes trampes de feromones sexuals que atrauen els insectes perjudicials.
Interessa estudiar si hi ha alguna densitat de trampes que és optima. En un estudi
publicat a la revista Crop Protection el 2004, fet en unes extenses vinyes de Sud-
africa, es va trobar una relacié entre la densitat d (en ha=!) de trampes i el nombre
de captures per trampa n. Aquesta relacié ve donada per aquesta funcio

n(d) = 153.3 exp(—5.7/d).
Aquesta funcié és sempre creixent perqué la seva derivada és

n'(d) = % exp(—5.7/d) > 0.
Per tant, no té sentit preguntar-se pel maxim de la funcié: com més trampes posem, més
captures hi haura. En circumstancies com aquesta, quan volem fer una optimitzacioé dels
recursos, pot ser interessant preguntar-se pel punt d'inflexié de la funcio, és a dir, per
aquell punt en que entrem en una etapa de desacceleracio, una etapa de diminishing
returns. !

Considerem la funcié general f(x) = kexp(—r/x) i calculem el seu punt d'inflexio.
La segona derivada és

() = kressl—r/x) (£~ 5)

x3

i el punt d'inflexi6 es troba a x = r/2.

19.3 Exemple 3. Pesca sostenible

A la pagina 95 hem comentat que els tractats internacionals defineixen la pesca sos-
tenible com aquella en que la poblacié de peixos es manté en la seva mida de maxim
creixement d'un model logistic. Mirem d'interpretar quée vol dir aixd. En el model
logistic, la poblacié N = N(t) segueix un creixement tal que

N
N=rN(1-—].
(%)

"Aquest tipus d'optimitzacié que no cerca el valor maxim siné un punt d'inflexié de la funcié, l'utilitzem
molt sovint a la vida quotidiana, de manera intuitiva.




19. Optimitzacio 111

Aleshores, la poblacié a qué fan referéncia els tractats internacionals és el valor de N
que fa que N’ siguit maxim. Per calcular aquest maxim de N’ hem de calcular la seva
derivada, és a dir, N”:

" ppf _% 2 _ﬂ _w
N—rN<1 % =r°N|(1 P 1 W)

Per tant, els punts on aquesta segona derivada s’anulla sén N = 0, K, K/2. En els
dos primers, la velocitat de creixement és zero. Per tant, la velocitat maxima es donara
precisament quan N = K/2.

Aquest maxim de la velocitat N’ coincideix amb un punt d'inflexié de la poblacié N.
L'aspecte que té la funcid N és aquest (vegeu la seccid 12.4):

19.4 Exemple 4. Distancia a una corba

Suposem que volem determinar quin és el punt de la corba

_1+X
X

y

que és més proper a l'origen de coordenades. Observem que la corba és realment una
hipérbola perqué la funcid es pot escriure aix(:

y=—-—+1
X

Geomeétricament entenem que hi ha d’haver un punt d’aquesta hipérbola que estigui a
distancia minima de l'origen.
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Aqui la funcié que volem minimitzar és la distancia a lorigen d = \/x2 + y? referida
als punts de la hipérbola. Podem simplificar els calculs si pensem que els punts extrems
de la funcié d seran també els punts extrems de la funcié d? i aquesta funcié és més
senzilla:

1+x>2x4+x2+2x+1

f(x)_dz_xz—i—yz_xz—i—( .

X2

Si ara derivem aquesta funcié per trobar els seus punts critics, tenim

, 2x> — 2x% — 2x
)= ———F"—

X
i, per trobar els extrems hem de trobar les solucions de x* — x —1 = 0. Com que és
una equacio polinomica de quart grau, sage pot trobar les solucions exactes amb la
comanda

sage: solve(x~4-x-1==0,%)

pero el resultat que obtenim és massa complicat i és millor que l'expressem en forma
de nombres inexactes. Ho podem fer amb aquesta instruccié:

sage: [s.rhs().N() for s in solve([x~4-x-1==0],x)]
[-0.248126062802622 - 1.03398206097597*1I,
-0.248126062802622 + 1.03398206097597*1,
-0.724491959000516,

1.22074408460576]

Obtenim dues solucions complexes i les solucions reals a ~ —0.7245 i b ~ 1.2207. Una
manera més senzilla de fer-ho és aquesta altra:

sage: (x"4-x-1).roots(ring=RR)

[(-0.724491959000516, 1), (1.22074408460576, 1)]
La distancia de l'origen al punt de la hipérbola d’abscissa a és aproximadament 0.82 i
la distancia de l'origen al punt de la hipérbola d'abscissa b és aproximadament 2.19.
Per tant, el punt que buscavem és, aproximadament, el punt (—0.72, —0.38).



Exercicis

A. Exercicis teorics

[ILA.1. Calculeu la funcié derivada de les funcions segtients:

(@) f(x) =6x" —2x* +2x +1 (b) f(x) = (x® + 5x — 8)*
x3 —x
(0) F(x) = (x2 — 3x + 2) €3 (d) F(x) = X2_X:
(e) F(x) =20 — logs x (f) F(x) = V3x2 = 7x — 2
(9) f(x)= ¢/ ;<2+21 (h) f(x) = €*log x
(i) f(x) = arces)i<nx (j) f(x) = arcsin x + arccos x
(k) f(x) = /arccos x () f(x) = logsinx
(m) f(x) = log arctan x (n) f(x) = e X log(x + 1)
(o) f(x) = (arctan x)? + x0-172 (p) f(x) = mV/x3arccos x> + 1
[ILA.2. Calculeu la funcié derivada de les funcions segiients:
(@) R(N) = (K + 2N) exp(—rN?) (b) S(T) = sin <2ZTT2>
(c) K(P) = PeL? (d) v(T) = /VT2 - psin(T) + uV
_ Sulog(u+1) _he" - K
(e) H(u) = TKyS2 (f) L(t) = K11

I.A.3. (a) Comproveu que y(t) = et — t és solucié de l'equacié diferencial y’ + y? =
t

et + (1 —2t)et + 2 — 1.

(b) Comproveu que y(x) = (14 ce¥)/(1 — ceX) és solucid de l'equacid diferencial

2y’ —y?2+1=0.

(c) Per a quins valors de r la funcid y(x) = e™ és solucié de l'equacid diferencial

y'+y =2y =07

A4, Calculeu % en cadascun d’aquests casos:

dx
a) x> +y?=4 b) y = x% + yx
(a) y y y
31 N X —»
(c) xy —y (d) P

[ILA.5. Calculeu l'aproximacid lineal i l'aproximacié quadratica de f al punt a en cadas-

cun d'aquests casos:

113
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[I.A.G.

ILA.7.

[I.A.8.

[I.A.9.

[.A10.

LA,

LA12.

Exercicis

1 X
(a)f(x)—m,a—o (b) f(x)=¢€¢*,a=0
() f(x)=(14+x)"", a=0 (d) f(x) =tan(x), a=7/4
Donada la corba d'equacié f(x) = arccosx i la recta y = —x + b, trobeu el valor

de b perqué la recta sigui tangent a la corba. Determineu també el punt de
tangeéncia.

Suposem que mesurem x amb una precisié del 2%. En cada cas, doneu una
estimacid per a la precisid de y.

@)y =4x3, x=15 (b) y =logx, x =20
_ 1 =4 ) y = 2mx3 (vol I fer
(o) y= T x X = (d) y = 37x> (volum d'una esfera).

Representeu graficament les funcions seglients i estudieu-ne els extrems abso-
luts a Uinterval [0, 2]:

2 2 _

@) )= B )= 5 Q)=
X X2 X

@ 00 =[5 (0 ) = s ) £l = B

Trobeu els intervals de creixement i decreixement i de concavitat i convexitat de
les funcions:

(@) f(x) =3x%> —2x+1 (b) f(x) =x3—12x+1
(c) f(x) = x?/3(1 — x) (d) f(x) = (x+ 1) e*
(e) f(x) = e/x () £(x) = log(x* — 1)
Trobeu les coordenades del punt d'inflexié de la corba logistica
K
y

T 1+ kexp(—rx)
Calculeu l'aproximacié lineal en aquest punt.

Trobeu una funcié de Holling de tipus IV que tingui un maxim per x = 1, que
aquest maxim valgui 2 i tal que la seva aproximacié lineal a x = 0 sigui y = 2x.

Sigui y(t) una solucié de l'equacié diferencial y’ = 3y? —2y. Determineu el valor
de y en el moment en qué esta decreixent el més rapidament possible.

B. Exercicis d’aplicacio

.3.1.

S’han estudiat els arbres d’'una determinada espécie, en un determinat habitat,
i s'ha trobat una relacié emplirica entre la seva edat en anys i la seva alcada en

metres: 20
h =23 exp (_t> :

Determineu a partir de quina edat es desaccelera el creixement d’aquests ar-
bres.
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[1.B.5.
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Els principis de la pesca sostenible adoptats per les organitzacions internaci-
onals es basen en mantenir l'estoc de peixos en el seu punt de velocitat de
creixement maxima. Si una poblacid de peixos sequeix un patré de creixement

de tipus logistic
100

C1+9et

(en unes determinades unitats), determineu la mida de la poblacié en el moment
en qué la velocitat de creixement és maxima. Determineu la taxa de creixement
en aquest moment.

N(t)

Al llarg del dia, les plantes d'una explotacié agricola perden aigua per evaporacio
a una velocitat proporcional a (vt —/s)y/p — t (t en hores, s < t < p) on s és
l'hora de la sortida del sol i p és l'hora de la posta. Els aportem aigua a una
velocitat constant k. Determineu en quin moment la velocitat de pérdua neta
d’'aigua és maxima si el sol surt a les 4:30 i es pon a les 19.

Satterlund-Haupt (1967) van estudiar la quantitat de neu que en una nevada
queda interceptada per diverses espécies de coniferes i van modelar aquesta
quantitat per una funcid logistica

[ S
14 exp(—k(P — Pp))

on P és la quantitat de neu caiguda (en mm d'aigua) i / és la quantitat de neu
interceptada pels arbres (en mm d'aigua). Per a una especie concreta (Douglas
fir) els coeficients que van trobar van ser S = 2.81 mm, Py = 4.88 mm, kK = 0.98
mm~L. Determineu quin percentatge de neu s'intercepta en una nevada que es
trobi en el punt d'inflexié d'aquesta corba logistica.

La funcio logistica també s’ha utilitzat a ciéncies socials. En un article del 2005
a la revista Technological Forecasting & Social Change s'estudia el nombre
(acumulat) d'atacs d'un cert grup terrorista entre els anys 1975 i 2005 i s'afirma
que aquesta grafica s'aproxima a una corba logistica

N(t) 64.87

= —FF+4203
1 + exp(—at) *

on t és el temps des de l'inici del periode d'estudi. Calculeu quin sera, segons
aquest model, el nombre total d'atacs terroristes a llarg termini. Determineu
també el nombre d'atacs en el moment en qué la funcié creix el més rapidament
possible.

En un article del 2013 a la revista Cibergeo s'estudia el nombre de botigues
en uns barris de Porto Alegre (Brasil) entre els anys 1983 i 2007 i s'afirma que
segueixen una corba logistica

4714
N(t) !

" 1+ 40.6exp(—0.2357 t)

on t és el temps des de l'inici del periode d'estudi. Calculeu quin sera, segons
aquest model, el nombre total de botigues a llarg termini. Determineu el nombre
de bhotigues en el moment en qué la funcié creix el més rapidament possible.
Calculeu la taxa de creixement maxima.
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1.B.7.

[1.B.8.

[1.B.9.

[1.B.10.

[.B.11.

1.B.12.

Exercicis

En un estudi epidemiologic s'ha vist que la velocitat amb qué creix el nombre
d’infectats N és positiva i és proporcional a N%82, aproximadament. Decidiu si,
segons aquest model, la taxa de creixement del nombre d'infectats augmenta o
disminueix amb el temps i si ho fa acceleradament o desacceleradament.

S’ha estudiat una colonia d'aus en una illa artica i s’ha vist que la velocitat de
creixement de la coldnia és positiva i és proporcional a N2>, aproximadament,
on N és la mida de la colénia. Decidiu si, segons aquest model, la taxa de
creixement augmenta o disminueix amb el temps i si ho fa acceleradament o
desacceleradament.

El coeficient de poténcia C, d'un generador eolic és el quocient entre la poténcia
que obté i la potencia del vent: C, = P/P,. La poténcia del vent és P, =
%pSVE‘, on p és la densitat de l'aire, S la superficie del disc que recorren els
rotors i V és la velocitat del vent. La poténcia que obté l'aerogenerador és
P =1pS(V + V5)?(V — Vi) on Vi és la velocitat del vent després de passar per
la turbina. Expresseu C, com a funcié del quocient x = Vi /V. Trobeu el maxim
de la funcié Cy(x). Aquest maxim es coneix com a llei de Betz i posa un limit
superior a l'eficiéencia de qualsevol generador eolic.

EL TSR (tip speed ratio) d'un generador eolic és el quocient entre la velocitat de
les puntes de les aspes i la velocitat del vent. Per a cada model de generador hi
ha una relacid entre el coeficient de poténcia del generador i el TSR, C, = Cp(\)
on A és el TSR. Hi ha, doncs, un TRS optim que és el que ddna el coeficient de
poténcia maxim per a aquell model concret. La inclinacié de les aspes permet
controlar el TSR per tal que el generador treballi sempre amb rendiment maxim.
Per a un generador senzill de tipus Perry, un cert model teoric ens ddna

1.6) A
=110 (1—3>'

Determineu quin és el TSR optim segons aquest model i quin és el coeficient de
poténcia maxim que pot assolir el generador.

Fem un model sobre l'adicié d’adob a un camp de cereals. Sigui x la quantitat
d'adob (kg/ha), pg el preu del gra de cereal (€/kg), p, el preu de l'adob (€/kg)
i e el cost (€/ha) d'aplicar adoh. Suposem que el rendiment extra gracies a
l'adob sequeix una llei de Monod del tipus ax/(1 + 5x). Trobeu una férmula
per a la quantitat optima d'adob. Suposem que p; = 0.126, p, = 1.1, g = 18
i que 50 kg/ha d'adob donen un increment de produccié de 400 kg/ha, mentre
que l'increment maxim que ens pot donar l'adob és de 500 kg/ha. En aquestes
circumstancies, quina decisié hem de prendre? (Basat en un full informatiu del
2009 del Pla per a la fertilitzacié agraria a les comarques gironines.)

El consum de formatge l'any 2000 als Estats Units era de 13.6 kg per persona
i any i creixia a un ritme anual de 115 g per persona i any. Lany 2000, la
poblacid dels Estats Units era de 282 milions de persones i creixia a un ritme
de 3 milions de persones per any. Sigui N(t) el consum total de formatge als
Estats Units (en kg per any). Calculeu a quina velocitat estava creixent N l'any
2000 (en kg per any?).
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Una illa de la zona artica del Canada esta coberta per una capa de gel de
14.400 km?, amb un gruix mitjd de 426 m. La superficie de gel s'esta reduint a
una velocitat de 8.45 km? per any. També s'esta aprimant: el gruix de la capa
de gel es redueix en 0.5 m per any. Calculeu la velocitat de pérdua de massa
de gel (en km3/any).

Els tres principals fabricants de discos durs van vendre (l'any 2014) 552 milions
d’'unitats, amb una velocitat de creixement de les vendes de 26 milions d'unitats
per any?. La capacitat mitjana dels discos que es van vendre va ser de 750 GB
i aquesta capacitat estava creixent a un ritme de 12 GB per any?. Determineu
la velocitat a que creixia el nombre de GB venuts pels tres fabricants.

Considereu el model de creixement de von Bertalanffy. En aquests model, la
mida L d'un individu d'edat t ve donada per

L(t) =11 — (Ll — Lo) exp(—kt)

on Ly, Ly i k sén constants positives i L1 > Lg. Demostreu que, en aquest model,
la velocitat de creixement d'un individu és proporcional a la diferéncia L; — L.
Calculeu la taxa de creixement quan L = (Lo + L1)/2.

Imaginem un cultiu en qué la biomassa produida és funcié del contingut de
nitrogen del sol, segons una funcié desconeguda. Experimentalment, hem vist
que una proporcid de nitrogen de 1 gram per kg de sol déna una produccié de 2.7
(en unes certes unitats), i que amb aquesta proporcid de nitrogen, la velocitat de
variacid de la biomassa produida és de 1.05 unitats per gram. Feu una estimacio
lineal de la produccié de biomassa amb un contingut de nitrogen al sol de 1.1
g/kg.

La FAO ha adoptat com a model estandard per calcular l'evapotranspiracié de
referéncia en els conreus l'equacié de Penman-Monteith

0.408A(R, — G) +~ TiO2073 ur(es — €3)

Th =
0 A+ (1 +0.34w,)

uy és la velocitat del vent a 2 metres sobre el sol. Per conéixer el significat
de les altres variables, llegiu el document Crop evapotranspiration — Guidelines
for computing crop water requirements — FAO Irrigation and drainage paper 56.
Considereu E Ty com a funcié del vent up i preneu aquests valors

R,=13.28, G=0, A=0.122, v =0.0666, T =16.9, es = 1.997, e, = 1.409
Escriviu una aproximacié lineal de E Ty per a valors de uy propers a zero.

A a l'equacié de Penman-Monteith és el pendent de la corba de pressio de vapor
de saturacid, una variable molt utilitzada a fisica de l'aire. La pressié de vapor
de saturacié depén de la temperatura segons la férmula

17271 T
e°(T):0.611exp< 2 >

T +237.3

Doneu una férmula per a A(T). Calculeu €%(15 + 1).
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Exercicis

Per calcular les emissions de CO; (en kg/kWh) d'un combustible hem d'utilitzar
la férmula g = 3.7C/h on C és el contingut de carboni al combustible i h és
l'energia (en kWh/kg) d’aquest combustible. Per un determinat gas natural amb
C =0.75 hem mesurat h = 12 + 1.5. Determineu el valor de g.

Hi ha una llei allométrica que afirma que la velocitat de vol dels insectes, ocells,
avions, etc. és proporcional a l'arrel sisena de la massa de l'objecte volador.
Decidiu si el creixement de la velocitat de vol quan creix la massa és accelerat
o desaccelerat.

Hi ha una llei allométrica que afirma que el ritme cardiac dels animals és inver-
sament proporcional a l'arrel quarta de la seva massa. Decidiu si la disminucid
del ritme cardiac quan creix la massa és accelerada o desaccelerada.

En economia, l'ingrés marginal I M es defineix com l'ingrés total que es produiria
per la venda d'una unitat addicional d’'un producte. Observeu que aixo es pot
entendre com la derivada de l'ingrés total respecte de la quantitat produida Q.
Demostreu que, si P és el preu,

dP

IM=P+Q—.

dQ
Suposeu que la corba de demanda d'un producte és tal que P = k/Q. Calculeu
l'ingrés marginal.

En l'estudi del control biologic de plagues s’ha considerat la funcié

NF

0= T (g

on N és la mida de la poblacié, F és la fecunditat i g(N) és la mida de la
poblacié en la generacid successiva. a i b son constants positives, de manera que
b = 0 indica que la poblacié creix exponencialment mentre que valors de b > 0
indiquen una dependéncia major de la densitat que frena el creixement. (Vegeu
el capitol 2 del Handbook of Biological Control.) Estudieu el comportament de
g(N)/N (creixement/decreixement i comportament a llarg termini).

Suposem que hem modelat la velocitat de creixement dels individus d’'una espécie
per una equacid diferencial

— =awb

dt
on a i b sén constants positives. Estudieu el comportament de la taxa de crei-
xement.

En les espécies que es reprodueixen una Unica vegada a la vida, la taxa de
creixement de la poblacié r pot ser funcid del moment de la reproduccié t. Un
model apropiat dona
(1) = log(p(t) m(t))
t

on p(t) és la probabilitat de sobreviure fins l'edat t i m(t) és el nombre de
cries fertils que es generen a ledat t. Si fem les hipotesis que p(t) = e 2t i
m(t) = bt¢, determineu l'edat de reproduccié optima.
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El model de Ricker és un dels qué s'utilitzen per modelar la quantitat de peixos
en una explotacid pesquera. Segons aquest model, el nombre de cries R d'un

estoc P ve donat per
R(P) = aPexp(—fP),

on a i 3 sén constants positives. Determineu el valor maxim de R. Trobeu els
punts d'inflexié de R, si n’hi ha, i estudieu la convexitat de la funcid.

Hi ha una eruga que ataca els avets del Canada i és atacada per una certa
espécie docells. En un estudi sobre aquest fenomen, s’ha modelat la velocitat
de depredacié de les erugues per part dels ocells per aquesta funcid

a’N
) = o e

on N és la densitat d'erugues i a i k son constants. Estudieu el creixement o
decreixement de la velocitat de depredacié. Determineu quina és la densitat
d’erugues quan la velocitat de depredacié és maxima.

Considerem diverses espécies presents en un habitat. Suposem que totes estan
en una situacid d'equilibri, menys una d'elles que sofreix un decreixement expo-
nencial. Sigui p = p(t) la proporcié d'individus d’'aquesta espécie en extincio.
Quina evolucid té p?






Part lll:

La integral

121



20. Multiplicar per una quantitat variable

20.1  Un exemple

Imaginem que tenim una granja de vacum que produeix, diguem, mil litres de llet cada
dia, i venem aquesta llet a 0.31€ el litre. Aixo ens déna uns ingressos bruts de 310€
al dia. Quins ingressos tindrem en 30 dies? La resposta s'obté amb una multiplicacié:

G =D x t=1000 x 0.31 x 30 = 9300 €.

Graficament, aquest resultat s'obtindria calculant la superficie d'un rectangle de base
t (els 30 dies) i alcada D (els ingressos diaris).

D

G =Dxt

Imaginem ara que el primer factor del producte anterior varia constantment. Per
exemple, varia la produccié diaria o varia el preu. En aquest cas, el guany no el podem
calcular per una simple multiplicacié G = D x t perqué el primer factor del producte és
una quantitat variable, una funcié D = D(t). De tota manera, la representacié grafica
segueix tenint sentit i el guany és també la superficie per sota de la corba de preus:

D
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20. Multiplicar per una quantitat variable

Observem, doncs, que

La superficie entre leix x i una corba y = y(x) generalitza el concepte
de multiplicacié y x x quan un dels factors és una variable que depén de
laltre factor.

(4

20.2 Superficie limitada per la grafica d'una funcio

123

Aquest concepte que hem illustrat en un exemple de l'economia apareix a molts altres

camps.

e El treball. Recordem que la nocié fisica de treball produit per una forca es
defineix com el producte de la forca per la distancia que recorre.

T=Fxd.

Si la forca varia al llarg de la distancia, el concepte de treball segueix existint,
perd no es pot calcular com un simple producte, sind que cal pensar-lo com la
superficie determinada per la funcié F(d), igual que en lexemple de la llet.

La mitjana. Tots sabem calcular la mitjana d’'uns quants nombres. Pero, si tenim
una variable continua, quin és el seu valor mitja? Per exemple, la produccid
mundial de coure ha crescut exponencialment des dels 2 milions de tones de
lany 1940 fins els 10 milions de tones l'any 1990. Quina ha estat la produccid
mitjana d'aquests anys? Com podem donar sentit a aquest concepte de produccid
mitjana?

Novament, el concepte de superficie resol aquest problema: n’hi ha prou amb
dividir la produccio total de tots aquests anys pel nombre d’anys. | la produccié
total és la superficie sota la corba exponencial y = P(t) que ens ddna la producci6
en funcié del temps.

Ht)

1040 1990
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Logicament, la produccid mitjana sera un valor P, tal que la superficie del rec-
tangle per sota d'aquest valor sigui la mateixa que la superficie sota la corba

y = P(t).

L'index de Gini. Es una mesura de la desigualtat en la distribucié de la riquesa en
una societat. Aquest index varia de 0 (maxima igualtat) a 1 (maxima desigualtat).
Per exemple, l'index de Gini d’'Espanya valia 35.9 el 2012, mentre que el d'Ecuador
era de 46.6 i el Noruega era de 25.9. Com es determina aquest index?

Imaginem el percentatge de poblacid distribuit al llarg de leix x, entre el 0%
i el 100%, ordenat de manera que la poblaci6 més pobra és a l'esquerra. A
U'eix y hi representem la riquesa de la societat, també en percentatge, de 0% a
100%. Aleshores, la corba de Lorenz y = y(x) és la corba que ens indica quin
percentatge y de la riquesa té el x% de la poblacié més pobra. Evidentment, si la
riquesa estigués distribuida igualitariament entre la poblacid, la corba de Lorenz
seria una recta —la diagonal del quadrat— i, com més s'aparti la corba de Lorenz
de la diagonal, més desigualment repartida estara la riquesa. Una manera simple
de mesurar aquesta desigualtat és considerar la superficie entre la diagonal i la
corba de Lorenz. L'index de Gini es defineix com el doble d'aquesta superficie.’

100%

riquesa

0% poblacié 100%

e Producciéo d'una placa solar. Imaginem una placa solar fixa que produeix elec-

tricitat a partir de la radiacié solar que rep. Suposem que volem calcular la seva
capacitat maxima de produccio d'energia en un dia determinat. L'astronomia ens
donara la posicio del Sol a cada moment del dia i, a partir d'aquestes dades i de
lorientacié de la placa solar, podrem calcular la radiacié R(t) que rebra la placa,
en condicions meteorologiques optimes. Per determinar la radiacié total al final
del dia haurem de «multiplicar» la radiacié pel temps. Com que la radiacio és
variable, el que haurem de fer és calcular la superficie delimitada per la corba
y = R(t) quan t varia entre el moment de la sortida del Sol i el moment de la
posta.’

'El doble perqué aixi va de 0 a 1.
2Si visiteu la pagina www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-

solar-insolation hi trobareu eines per fer aquests calculs.
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day slider to see how much radiation there is for each day of the year. |

Calculador solar a www.pveducation.org

e Recordem la funcié de demanda de l'economia g = D(p) que ens ddéna la quan-
titat que el mercat esta disposat a comprar d'un producte o servei al preu p.
Considerem la funcié inversa p = D~!(q) i suposem que el mercat comprés a
aquest preu entre g = qo i g = q1. Expliquem-ho millor. Venem a un preu (alt) pg
i tenim una demanda (baixa) go. Abaixem una mica el preu fins a pg—e i tenim una
demanda lleugerament superior gg + 0. Es a dir, el mercat compra una quantitat
addicional igual a J, pel fet de la rebaixa del preu igual a €. Prosseguim abaixant
el preu de manera continua fins que arribem a un preu (baix) p1 que déna lloc a
una demanda (alta) g1. Quants diners hem recollit en tot el procés? Exactament
la superficie limitada per la corba p = D~!(q) entre qo i g1 juntament amb la
superficie d'un rectangle adjacent com es veu a la figura.

bo

po—¢€

PLE

qQ gp+96 q1
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Considerem ara el punt on es tallen la corba d'oferta (creixent, color vermell) i
la corba de demanda (decreixent, color blau). Es el punt d’equilibri (ge, pe) en el
qual l'oferta coincideix amb la demanda. Fixem-nos ara en les superficies groga i
taronja del dibuix i pensem en quin significat tenen. La superficie CS representa
el consumer surplus i és els diners que s'estalvien els consumidors quan el preu
es situa a p.. D'altra banda, la superficie PS representa el producer surplus que
son els diners extres que reben els productors quan el preu es situa a pe.

cS

Pe
PS

Ge

20.3 La integral

El concepte matematic que hi ha al darrere de tots els exemples que hem considerat
a l'apartat anterior és el concepte d'integral d’'una funcio:

La integral d'una funcié y(x) entre dos valors x = ai x = b és l'area
limitada per la grafica de la funcid i l'eix de les x, entre aquests dos
valors. La notacid que s’'usa és

/aby(x) dx.

Els valors a i b s'anomenen limits d'integracio.
Observacions:

e La part de la superficie que es troba per sota de l'eix x es considera, a efectes
de la integral, negativa. Per exemple,

/ cosxdx =0
0

perqué la part de la superficie entre 0 i 7/2 es cancella exactament amb la part
de la superficie entre 7/2 i 7.
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/a : f(z) dz

La notacio inclou dx, que es llegeix diferencial de x. Aquesta notacid és util per
recordar-nos quina és la variable independent que considerem. Evidentment, si
la variable fos, per exemple, t, escriuriem d't.

Les arees que ja coneixem ens donen valors de certes integrals, i viceversa, si
som capacos de calcular una integral, tindrem l'area d’'una figura. Per exemple,

r
/ \/r2—x2dxzzr2
, 2

perqué la integral de U'esquerra representa l'area d'un semicercle de radi r. D'al-
tra banda, si k és una constant,

/abkdx:k(b—a)

perqué la integral de Uesquerra representa l'area d'un rectangle de base b—a'i
alcada k.

Segons el que hem dit abans, la mitjana d'una funcié 'hem de calcular amb una
integral, d’'aquesta manera:

1 b
fmn = f .
b_a/a () dx

Com a conveni, si a > b, posarem

/aby(x) dx = —/bay(x) dx.

Les propietats elementals de l'area es traslladen a propietats basiques de la
integral:

1. St k és una constant, fab kf(x)dx = kfab f(x) dx.
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2. [PF(x)dx + [ F(x)dx = [ F(x)dx.
3. JJ(F0) +g(x) dx = [} F(x) dx + [} g(x) dx,
4. Si f(x) < g(x), aleshores fab f(x)dx < fab g(x)dx.

: b . ) e
e Laintegral d'una funcié [ f(x) dx és el valor de l'area entre la seva grafica i l'eix

d’abscisses. Pero, des d'un punt de vista matematic, caldria donar una definicié
més precisa de qué és, exactament, l'area. Per fer-ho, es subdivideix molt finament
Uinterval [a, b] i aix0 déna una descomposicid de la superficie en petites bandes
verticals, molt fines, cadascuna de les quals és, aproximadament, un rectangle.
Aleshores, la definici6 rigorosa de qué és l'area consisteix en sumar les arees de
tots aquests rectangles i prendre el limit quan el gruix de cada rectangle tendeix
a zero.

En particular, la definicié matematica precisa de la integral necessita d'un pas
al limit. Podria ser que aquest limit no existis: diriem que la funcié no és inte-
grable. Per exemple, la integral de la funcié y = 1/x? entre —1 i 1 no existeix
perqué la superficie que limita la grafica d'aquesta funcié és infinitament gran.
Afortunadament, totes les funcions continues i moltes que no sén continues sén
integrables.



21. Relacié entre integral i derivada

21.1 El teorema fonamental del calcul

Al llarg dels segles XVII i XVIII, diversos matematics com Barrow, Gregory, Newton
o Leibnitz van demostrar l'existéncia d'una relacié entre els conceptes d’integral i
derivada. Aquesta relacid és tan important que es coneix amb el nom de teorema
fonamental del calcul.

Quina és aquesta relacié? Pensem que la integral d'una funcié representa l'area
entre la grafica d’'una funcid i leix de les x's, i la derivada d'una funcié representa
el pendent de la recta tangent a la grafica de la funcid, dos conceptes aparentment
allunyats un de laltre. Per entendre quina és aquesta relacié podem fer un exemple:

Exemple. Recordem l'exemple de la producciéd de llet. Cada dia les nostres vaques
produeixen una certa quantitat de litres de llet, que venem a un cert preu, de manera
que cada dia ingressem una quantitat de diners donada per una funcié f(t). Aquesta
quantitat de diners és una funcid del temps t, perqué la quantitat de llet varia i el preu
de la llet també varia. Suposem que cada dia ingressem al banc els diners que anem
obtenint a partir de la venda de la llet. Després d'un temps T, quants diners tindrem
al banc? La resposta, ja ho sabem, és

/on(t) dt.

Aquesta quantitat de diners és una funcié de T. Diguem-n’ht A(T), diners acumulats
al banc després d'un temps T:

La pregunta que ens fem ara és: com creix el saldo del nostre compte corrent? Es a
dir, quina és la velocitat de creixement de la funcié A(T). Uns instants de reflexié ens
convenceran que el nostre saldo al banc creix exactament a la velocitat que marca la
funcié f(t), que és la funcié que ens diu quants diners guanyem cada dia. Si escribim
aixo en llenguatge matematic, tenim

dA
“Z = f(T).
gt~ (1)

Aixo és, precisament, el teorema fonamental del calcul.’ Dit d'una altra manera,

d T

a7 s f(t)ydt=f(T).

'En aquest teorema hem de suposar que f(t) és una funcié continua a un interval que contingui zero.
El limit inferior de la integral pot ser 0 o pot ser qualsevol altre valor a.

129
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Exemple. Si estudiem el consum de petroli a U'India des del 1965 fins el 2008, veiem
que la grafica s'aproxima forca a una funcié com aquesta

F(£) = 258.5 exp (16%)

on t és el temps en anys des del 1965 i f(t) és el consum en milers de barrils per dia
(bbl/dia). Designem que Q(T) el consum total de petroli a l'India quan han passat T
anys des del 1965. A quina velocitat estava creixent Q l'any 20087

En primer lloc, és clar que el consum total acumulat Q(T) ve donat per una integral:

Ens pregunten per la velocitat de creixement de Q(T) quan T = 43, és a dir, ens
pregunten Q'(43). Pet teorema fonamental del calcul, Q' (T) = f(T). Per tant,

43
Q'(43) = f(43) = 258.5 exp <167> ~ 3394 x 103 bbl/dia

21.2  Primitives d'una funcié

Si F és una funcié i f és la seva derivada, direm que F és una primitiva de f. D’aquesta
manera, els conceptes de derivada i primitiva sdn inversos un de l'altre:

Com que la derivada de sinx és cosx, una primitiva de cosx és sin x.

Observem que diem una primitiva, perquée una funcié, en general, tindra moltes primiti-
ves diferents: sinx + 2 també és una primitiva de cos x. Si coneixem una primitiva F(x)
d’'una funcid f(x), totes les primitives de f(x) en un interval seran de la forma F(x)+ k,
on k és qualsevol constant.

El teorema fonamental del calcul que hem vist a l'apartat anterior ens diu que si
f(t) és una funcié continua, aleshores

és una primitiva de la funciéd f(x). En particular, si coneixem una primitiva G(x) de
f(x), tindrem que G(x) = F(x) + k i es complira aixo:

0:/af(t)dt:F(a):G(a)—k

per tant, k = G(a) i, aleshores:

/b f(t)dt = F(b) = G(b) — k = G(b) — G(a).

En resum:
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Si coneixem una primitiva G(x) d’'una funcié f(x), podem calcular de ma-
. . . b "
nera immediata la integral [} f(x) dx aixi:

b
/a F(x) dx = G(b) — G(a).

Aquesta relacid entre primitives i integrals —que també es coneix amb el nom de
teorema fonamental del calcul— fa que sovint s'utilitzi la notacié [ f(x) dx per indicar
les primitives de la funcié f(x).

Exemple. En la situacié de l'exemple anterior, calculem el consum mitja de petroli a
Uindia en els 43 anys del 1965 al 2008. Sabem que la mitjana es calcula amb una
integral:

1/ t
fo=— | 258 — ) dt.
43 /0 58.5 exp <16.7>

Pel calcular aquesta integral n’hi ha prou amb conéixer una primitiva de la funcié que
volem integrar. En aquest cas, podem trobar una primitiva «a simple vistay:

t
F(t) = 258.5 x 16.7 exp (ﬁ)

Aleshores,

1
fm = 4—3(F(43) — F(0)) ~ 1218.

En general, pot ser molt dificil (o impossible) trobar una primitiva d'una funcig,
encara que es tracti d'una funcid que s'expressi a partir de les funcions elementals. De
fet, el teorema fonamental del calcul ens diu que les funcions continues sempre tenen
una primitiva, pero el problema és que hi ha casos on no podem expressar aquesta
primitiva a partir de les funcions elementals.?

Exemple. Com determinem la velocitat de l'aigua d'un riu? A la practica, disposem d'un
instrument de mesura de la velocitat de l'aigua pero, evidentment, aquesta velocitat
depén de la profunditat a qué submergim linstrument. La velocitat és maxima a la
superficie i va disminuint a mida que ens acostem al llit del riu. La fisica d'aquesta
situacid esta ben estudiada per la hidrodinamica. Hi ha un model que ens diu que, en
condicions prou generals, la velocitat de l'aigua a una distancia x del fons ve donada
per una funcié potencial’
v(x) = kx"

on k és una constant que depén del riu i r és un cert coeficient de friccié que també
depén de les caracteristiques del riu i varia aproximadament entre 0.14 i 0.20. Aplicant

aixo, la velocitat mitjana sera
1 b
Vi = — kx" dx
D Jo

2Pensem, per exemple, en una funcié tan senzilla com la funcié 1/x. Sabem que log x és una primitiva
pero, si no coneguéssim la funcié logaritme natural, no sabriem expressar la primitiva de 1/x.

3Vegeu Lee et al,, Power Law Exponents for Vertical Velocity Distributions in Natural Rivers, Engine-
ering 2013, 5, 933-942.
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on D és la fondaria del riu.

Es molt senzill trobar «a ull nu» una primitiva de la funcié que volem integrar.

Aleshores,
1 (D 1 [kx172 &
= — k r d = — | — = Dr.
Vm D/O xoax D[r+1]0 r+l

Aqui hem utilitzat la notacié tradicional

[f(x)]a = f(b) — f(a).
A quina distancia del fons es dona aquesta velocitat mitjana? Cal resoldre l'equacio6

k
r+1

1/r
X 1 ~ 0.4.
D 14r

En resum, la velocitat mitjana de l'aigua d'un riu es troba a una profunditat (a comptar
des de la superficie) que és el 60% de la profunditat total del riu, independentment
del riu* Aquesta és la justificacié tedrica d’'una regla practica que trobarem a molts
manuals d’hidrologia.”

D" = v(x) = kx".

La solucid és

21.3 Fem-ho amb sage

Hem vist que si coneixem una primitiva d'una funcid, ja és molt facil calcular la integral
d’aquesta funcio, gracies al teorema fonamental del calcul. També hem dit que trobar
explicitament una primitiva d'una funcié pot ser molt complicat, o impossible. Per

exemple, una funcid senzilla de la que la primitiva no es pot expressar a partir de les

funcions elementals és la funcid sin x2.

Afortunadament, a la practica podem calcular integrals sense necessitat de conéixer

una primitiva. Recordem que la integral fab f(t)dt és larea limitada per la corba
y = f(t) i leix de les x’s, entre x = a i x = b. Aquesta superficie es pot aproximar tant
com calgui, com hem explicat a la pagina 128: es subdivideix molt finament linterval
[a, b] i aix0 ddna una descomposicié de la superficie en petites bandes verticals, molt
fines, cadascuna de les quals és, aproximadament, un rectangle. Aleshores, el valor
aproximat de la integral s'obté sumant les arees de tots aquests rectangles. Aquesta
idea permet que els programes com sage calculin integrals amb facilitat.

sage: integral (exp(x)*cos(x),x)
1/2*(cos(x) + sin(x))*e"x

sage: integral (exp(x)*cos(x),x,0,1)
1/2xcos (1) *e+1/2*e*sin(1)-1/2

sage: integral (exp(x)*cos(x),x,0,1) .NQ
1.37802461354736

1Observem que el resultat si que depén del riu, perd si representem graficament la funcié \’/g per
als valors de r entre 0.14 i 0.20, veurem que la funcié varia molt poc de 0.4.

>Evidentment, el tema de la velocitat de l'aigua d'un riu és un tema important i molt més complex del
que podem discutir en aquest petit exemple.
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sage: integral(sin(x~2),(x,0,pi/2)).NQ)
0.828116328842895
sage: integral (e~x*sin(x) ~3*cos(x),x)
1/34*cos (4*x)*e~x-1/10%cos (2*x) *e~x-1/136*e x*sin (4*x)+1/20%e x*sin (2*x)
sage: integral(e~x*sin(x) ~3*cos(x),x,0,pi/2)
11/85%e~(1/2%pi) + 6/85
sage: integral(e~x*sin(x) ~3*cos(x),x,0,pi/2).N(digits=30)
0.693120602242574920120039909809
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En la majoria de casos practics, la millor manera de calcular la integral d'una funcié
complicada no és intentar trobar una primitiva de la funcié per poder aplicar el teore-
ma fonamental del calcul, sind que és utilitzar un programa de calcul matematic com
sage. Malgrat aix0, és convenient ser capac¢ de trobar primitives d'algunes funcions
especialment simples. En aquesta llico estudiarem algunes estratégies per fer-ho.

22.1 Primitives trivials

Cada vegada que hem calculat la derivada d'una funcié elemental, hem calculat també
una primitiva. Per exemple, la coneguda férmula

d _
— x" = rx’ 1
dx

ens diu que

Xr+1
/erx:_H—l—C,sir;é—l.
r

Analogament, com que sabem que la derivada de log x és x~1, també sabem que

1
/dx:log\x|+C.
X

(Observem el valor absolut, necessari perquée logx només esta definit per a x > 0
mentre que 1/x també esta definida per x < 0.) D'aquest tipus de primitives en direm
primitives trivials. Fem-ne una llista:

X

a
“dx = ——+C
J & dx Ioga+

[sinxdx =—cosx + C

o [kdx=kx+C

o [(f(x)+g(x))dx = [f(x)dx+ [ g(x)dx

Xr+1 d . C
"dx = C -1 e [cosxdx =sinx+
o [x"dx r—i—1+ , r# /
1
1 ° ————dx =arcsinx + C
o/dx:log|x|+C /\/l—x2
X
1
.feXdX:eX+C ./dezarctanx—i_c

22.2  Primitives immediates

Hi ha funcions que s'assemblen molt a les de l'apartat anterior i per a les quals el
calcul d'una primitiva és molt senzill. Per exemple, sabem que una primitiva de e*

134
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és e, pero si tenim la funcié exp(3x + 1), qui és una primitiva seva? La resposta és
molt senzilla: exp(3x + 1)/3. Direm que sén primitives immediates. Posem uns quants
exemples:

° fe2x+1 dx = %ezx—’—l +C
. 1
o [sin(2x+1)dx = -5 cos(2x+ 1)+ C
1
o [V2x+1dx= 3(2x+ 1324+ C

o [(2x+1) dx = x+1) 4 C, r#-1

2(r+1)

1 1
dx = = log |2 1|+ C
./2x+1 X 2og\x+ | +

1 1/2 2
o/ 2dx://2dx:\[arctan @ +C
24 3x 1+ 3¢ 2V3 N

Recordem que quan apliquem la regla de la cadena per derivar una funcié f(g(x))
obtenim un producte '(g(x))g’(x). Aixo ens permet afirmar que

/ F(g(x))g'(x) dx = F(g(x)

Aquesta observacio ens permet calcular primitives que tinguin aquest aspecte. Posem
alguns exemples:

X 1 5

1
e [sinxcosxdx = E(sinx)2 +C

sin x

o [tanxdx= [ dx = —log|cosx| + C

COs X

o [xe¥Htdx = ée3x2+1 +C

22.3 Primitives de funcions racionals

Recordem que una funcié racional es una funcié que s'expressa com el quocient de dos
polinomis. Hi ha una estratégia que permet trobar una primitiva de qualsevol funcié
d’aquest tipus. N'aprendrem només els casos més senzills. Suposem que volem trobar
una primitiva de la funcié

1 1
x2—5x+6 (x—2)(x—3)

f(x) =
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Per fer-ho, observem que

1 _ 11
(x—2)(x—3) x—2 x-3
i, per tant,
/1dx——lo Ix — 2| + log [x — 3| + C = log | *—>| + C.
(x—2)(x—3) 7 ¢ - g x—2

Aquest métode es pot utilitzar per trobar una primitiva de qualsevol funcid racional del
tipus
ax+b

(x=r)(x—s)’

ax+ b A B

(x—r)(x—s)_x—r+x—s

r#s.

Per fer-ho, escrivim

i determinem quins sén els valors de les constants A i B. El cas r = s s’ha de fer d'una
manera una mica diferent. Per exemple,

X 1 1 1
/x2—2x—|—1dx_/x—1dX+/(x—1)2 dx—Iog|x—1|—7X_1+C.

Finalment, si el denominador és un polinomi de segon grau sense arrels reals,
lestratégia és reduir-ho al cas x> + 1, que sabem que déna lloc a la funcié arctan x.
Aix0 ho aconseguim amb el métode de completacié de quadrats que vam veure a la
pagina 12. Per exemple:

1 1
/x1+x+1 (x+3)2+3
4/ 1 23 < 1>
— dx = — arctan | —x 4+ —
G R
3 3

No estudiarem casos més complicats que aquests perqué, en general, és preferible
resoldre’ls usant sage.
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23.1 Integracio per canvi de variable

Suposem que volem calcular la superficie d'un quart de cercle de radi 1. Ja sabem, per
la geometria elemental, que aquesta superficie val 7/4 pero, ni no sabéssim aquest
resultat, hauriem de resoldre la integral

1
/ V1 —x2dx.
0

Aquesta funcié v/1 —x2 no té una primitiva immediata, perd podem trobar la seva
primitiva fent el que es coneix com un canvi de variable. El canvi de variable que resol
aquest problema concret consisteix en introduir una nova variable 6 tal que

X =sin6.

Aleshores, a la integral anterior, hem de substituir cada x pel seu valor en funcié de 6.
Es a dir:

e Hem de substituir v/1 — x2 per /1 —sin?6 = cos#.

e Hem de substituir dx per d(sinf) = cos6 df. De fet, la notacié dx serveix perqueé
no oblidem que hem de fer aquest canvi.

e Hem de substituir els limits d'integraciéo x = 0 i x = 1, pels seus valors corres-
ponents en la variable §: § =01 6 = x/2.

Aleshores,
1 w/2
/ \/1—x2dx:/ cos? 0 do.
0 0

D’aquesta manera, obtenim una nova integral que pot ser més facil o més dificil que la
integral original. En aquest exemple concret, aquesta integral es pot resoldre aplicant
una féormula de trigonometria que diu

cos(2x) = 2cos® x — 1.

Per tant,

7r/2 7'('/2
/ cos® 0 df = [9 + 1sin(29)} =
0 2 4 0

N

Fem un segon exemple. Suposem que volem trobar una primitiva de xv/2x — 1.
Podem fer el canvi u =2x — 1, amb la qual cosa du =2 dx i tenim

1 —d 1 1/2 2
/X\/QX—ldX: u—2+— ﬁ;:4/(u3/2+u1/2)du:4<5u5/2+3u3/2>+C.

137
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23.2 Integracio per parts

Recordem la regla de derivacid d'un producte de dues funcions:
(uv) =d'v—uv.

Si interpretem aquesta regla en termes de primitives, ens diu que

/uv’dx:uv—/u’vdx

que és una formula que, en alguns casos, ens pot ser util per a calcular una integral.
Aquesta férmula s'acostuma a escriure en aquesta forma equivalent:

/udv:uv—/vdu.

Se'n diu la formula d'integracio per parts perqué, per aplicar aquest metode, hem de
separar la funcié a integrar en dues parts.

Fem un exemple. Suposem que busquem una primitiva de xsinx, és a dir,

/xsinxdx.

u=x; dv=sinxdx.

Fem aixo

Aleshores,
du = dx; v:/dv:/sinxdx:—cosx

i la formula d'integracid per parts ens diu

/xsinxdx = (—cosx)x — /(—cosx) dx = —xcosx +sinx + C.

Un segon exemple podria ser aquest: [ logx dx. Separem en dues parts aixi: u =
log x, dv = dx. La férmula d'integracid per parts ens dona

1
/Iogxdx:xlogx—/xdx:xlogx—x+ C.
X

23.3 Integrals impropies
Quin sentit pot tenir una integral com aquesta

/:o F(x)dx ?

Geometricament, aquesta integral correspondria a la superficie de la regio entre leix
x i la corba y = f(x), a partir del punt x = a. Aquesta regid és illimitada per la dreta
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pero, com veurem, pot tenir una superficie finita. La manera natural d'entendre aquesta
superficie és com un limit:

/:o F(x)dx = lim /ab f(x) dx.

Posem un exemple.

En canvi,

> 1 b1
/ dx:Iim/dX:Iim log b = oo.
1 X b—o0 1 X b—o0
Direm que la integral és divergent.

D’aquestes integrals se’'n diuen integrals impropies. Un altre exemple seria aquest:

|
— dx
0 VX

que, a primera vista, pot no semblar una integral impropia perqué no hi apareix el
simbol oo, pero ho és perqué la funcid que volem integrar no esta definida a x =04,
de fet, tendeix a infinit quan x tendeix a 07. Aquesta integral també pretén calcular la
superficie d’'una regié illimitada. La resoldriem aixi:

1 1
1 1
—dx = li —dx= i 2—-2 = 2.
/0 Ncai aL”S+/a % dx = Jim.( va)

Aquestes integrals impropies apareixen a molts ambits. Per exemple, a probabilitat.

Exemple. En molts casos d'una espécie animal sotmesa a l'accié d'un depredador, s'ha
vist que lesperanca de vida dels individus d'aquesta espécie es pot modelar forca hé
pel que en estadistica es coneix com la distribucié exponencial. En aquesta distribucio,
la probabilitat que un individu superi l'edat t ve donada per una funcié

f(t) = exp(—rt).

En aquestes condicions, la vida mitjana (o esperanca de vida) es calcula com

Tm = —/ tf'(t)dt.
0

En un cert estudi sobre el ratoli de bosc (Apodemus sylvaticus) del Parc Natural de
Sant Llorenc de Munt i la Serra de l'Obac, s’ha trobat (temps en dies)

f(t) = exp(—0.0032t).

Si volem determinar l'esperanca de vida segons aquest model estadistic, hem de cal-
cular aquesta integral impropia:

—/ tf’(t)dt:0.0032/ texp(—0.0032t) dt
0 0
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Per fer-ho, comencem bhuscant aquesta primitiva:

/te‘” dt.

Aqut és util fer integracié per parts

e—rt

u=t;, dv=edt; du=dt v=——o

Aleshores, la formula d'integracié per parts ens ddona

/te‘” ge— e e

r r2

Per tant, si r és positiu, tenim

oo 1\1° 1
r/ te "t dt = lim [—e"t <x+ )] = -,
0 b—o0 r 0 r

En la situacié del ratoli de bosc, aquesta vida mitjana és 1/0.0032 = 312.5 dies.

23.4 Fem-ho amb sage

sage també permet calcular, en molts casos, integrals impropies. Ja hem vist abans que
00 es pot expressar en sage amb dues o's minlscules oo o amb la paraula Infinity.
Observem com fariem el calcul del final de l'apartat anterior.

sage: r=var(’r’)

sage: integral (xxe~(-r*x),x,0,00)
Is r positive, negative or zero?

sage: assume(r>0)

sage: integral (xxe”(-r*x),x,0,00)
r~(-2)

sage: reset(’r’)

sage: r=var(’r’)

sage: assume(r<0)

sage: integral (xxe”(-r*x),x,0,00)
ValueError: Integral is divergent.

Observem aquests altres exemples:

sage: integral(1l/x,x,1,00)
ValueError: Integral is divergent.
sage: integral(1/x"2,x,1,00)

1
sage: integral(1/sqrt(x),x,0,1)

2
sage: integral(e~(-x"2),x,-00,00)
sqrt (pi)



Exercicis

A. Exercicis teorics

[LA.1. Calculeu les primitives segiients:
2dx 5 ex
a — I dx; —dx;
@ [ ) [ edn @ [ 55

(d) /)(26—)|<—4dX; (e) [tan(2x)dx;  (f) [ sin(2x) cos(2x) dx;

[lILA.2. Calculeu aquestes primitives utilitzant integracié per parts o per canvi de vari-
able:
(@) [ x3logxdx; (b) [ arcsinx dx;

(€ [(x>+5x—9)e >dx; (d) [eXcosxdx;

(e) [ x arctan x dx; (f) /(exe_x:))ydx.

[IILA.3. Calculeu les primitives de les funcions racionals segiients:

2x+5 2x +1
S - dx; I —dx;
(1)/x2—5x+6 X (3)/x2+x+1 x

d

[IILA.4. En cadascun dels casos seglients, calculeu l'area de la regid limitada per les
corbes que es donen:

(@) y? =2x i x2 =2y; (b) y =x(3+x2), y=0,x=2;
1 x2 ; L
(C)y:2+x2:y:?; (Cl)y:e,y:e szlogz;

(e)y:X2—4,y:4—x2; (f)x=8+2y—y2,x:0,y:—1,y:3;
[11.A.5. Donada la funcio

f(x) = % eX —2e7 %,

calculeu l'area del domini de forma triangular que limiten la corba y = f(x) i
els eixos de coordenades.

[11LA.6. Calculeu el valor de a per tal que l'area definida entre x = 0 i x = 1/2 per la
corba f(x) = 172 Sigui igual a l'area definida entre x = 0 i x = 3 per la corba

g(x) =v9 —x2
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Exercicis

B. Exercicis d’aplicacio

.B.1.

.B.2.

.B.3.

[1.B.4.

[.B.5.

[.B.6.

Sigui B(t) una funcié positiva de t > 0. Per exemple, B(t) pot ser la quantitat de
biomassa en una parcella, en funcié del temps. Determineu taxa de creixement
mitjana de B(t) entre t =01t = t;.

La teoria de Haldane (1957) sobre el cost de la seleccié natural planteja la
situacié segiient. Suposem una poblacié estable amb dos allels presents en
proporcions pg i go = 1 — pp. Apareix un canvi en el medi que perjudica el
segon allel (perd no el primer), de manera que la poblacid amb aquest segon
allel passa a tenir una taxa de creixement negativa —e. Aixo vol dir que les
proporcions dels dos allels aniran variant en el temps: p(t), q(t). A cada nova
generacio, es «perdra» una proporcié eq d'individus amb l'allel menys apte, fins
que s'acabaran extingint seguint un model logistic ¢ = —egp (vegeu l'exercici
[1.B.28). La suma d'aquestes pérdues és el que Haldane anomena el cost de la

seleccid natural:
o0
C:/ eqdt.
0

Utilitzeu les propietats de la integral per comprovar que C es pot escriure com
1
1
C :/ —dp.
po P

St en una comunitat s’ha determinat experimentalment que la corba de Lorenz
s'aproxima a L(x) = 0.8x2 4 0.2x, calculeu l'index de Gini d'aquesta comunitat.

Calculeu C si pg = 1076,

Segons l'informe Wealth, Income, and Power, 'any 2010 l'u per cent de la po-
blaci6 mundial acumulava el 35.4% de la riquesa. Si pensem que la riquesa
mundial esta distribuida segons una corba de Lorenz potencial y = x", deter-
mineu aquesta corba i calculeu l'index de Gini mundial l'any 2010.

Per estudiar l'augment de la concentracié de CO;, a l'atmosfera s'utilitzen les
dades de l'observatori de Mauna Loa, a les illes Hawaii. S’ha vist que la con-
centracid (g, en ppm) s'aproxima forca bé a una funcié

q(t) = 0.0125t* + 0.5813 t + 310

on t és el temps en anys des de l'any 1950. Determineu la concentracié mitjana
de CO; a l'atmosfera de Mauna Loa des de l'any 1950 fins l'any 2010.

Consultant les estadistiques sobre la temperatura superficial de l'aigua del mar
a la platja de Barcelona en el periode 1974-2013 (IDESCAT) es veu que aquesta
temperatura s'aproxima a 17.3+ f(t) graus, on f(t) és una corba periddica com

aquesta
. (2m(t +32)
f(t) =5. —_—
(t)=5 55|n< 5 )

on t és el temps en setmanes a partir del primer de gener. Determineu la
temperatura mitjana de l'aigua entre les setmanes 24 i 37.
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Buidem per gravetat un diposit cilindric vertical i volem saber el temps que tri-
gara a buidar-se. La fisica ens diu que, en aquestes circumstancies, la velocitat
a que surt el liquid per l'aixeta que hi ha a la part inferior del diposit és una
funcid lineal del temps

v=a— [t

on « i B s6n constants positives que tenen aquests valors
a
o = +/2gho; 8= 18

ho és l'alcada del liquid a Uinici de l'operacid, A és la seccid del diposit, a és
la seccid efectiva de l'aixeta i g és l'acceleracid de la gravetat. Determineu el
temps que triga el diposit a buidar-se.

Volem determinar la quantitat d’energia solar que incideix sobre una superficie
(per exemple, una placa solar) en un dia. Com que es tracta d’'un problema molt
dificil, el resoldrem sense tenir en compte lefecte de l'atmosfera i en el cas
d’'una superficie horitzontal sobre la que incideix el sol des de que surt fins que
es pon. En aquestes circumstancies, la quantitat d'energia solar depén de:

e La latitud X\ del lloc.
e El dia de l'any n.

e 'hora solar T =t + E, on t és el temps (ordinari) i E és la discrepancia
que aproximadament només depen de n.

e L'energia que arriba del sol a la Terra que, per simplificar, suposarem que
és fixa Iy = 1367 W/m2. (De fet, varia en £3% al llarg de l'any.)

e L'angle Z amb qué incideix la llum del sol, és a dir, 'angle entre la vertical
i els rajos de sol.

e |'hora de la sortida del sol i l'hora de la posta, que es produeixen quan
Z =+7/2.

e la declinacid del sol §.

Aquestes variables estan relacionades entre elles. Tenim aquestes férmules
fonamentals

_ 2345 (2m(284+ n)
~ 180 " 365 '

cos(Z) = sin(A) sin(d) + cos(A)cos(6) cos(w).
Aqui w és el temps solar expressat en radiants a partir del migdia, és a dir
_12-T
12

Amb tota aquesta informacid, calculeu la quantitat d'energia solar que incideix
sobre una placa horitzontal de 1 m? situada al cim del Puigmal (A = 42.383°),
el dia 21 de febrer (si l'atmosfera no existis!).

w .

Quan dibuixem en escala semilogaritmica la produccié eolica mundial d'electri-
citat entre els anys 1989 i 2012 obtenim, amb forca aproximacid, una recta. Si
la produccié el 1989 va ser de 2.6 TWh i la produccié el 2012 va ser de 545
TWAh, calculeu la produccid total en tots aquests anys.
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[1.8.10.

.B.11.

Exercicis

Suposem que les corbes d'oferta i demanda d’'un cert producte s'aproximen a

6—p
S(p)=p—-1, D(p) = —.
p
Determineu, segons aquest model, el preu d'equilibri pe, la demanda d'equilibri
ge. el consumer surplus CS i el producer surplus PS.

Comenca a ploure i plou cada vegada amb més intensitat, aproximadament
segons una funcié | =4-107%t3 on t és el temps en minuts i / és la intensitat
de pluja en I/m?min. Calculeu quanta pluja haurad caigut en els primers 60
minuts.
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Equacions diferencials
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24. Conceptes basics i exemples

241 Coses que ja sabem
A lapartat 12.4 ja hem aprés que una equacio diferencial és una equacié tal que

e La incognita és una funcié desconeguda f(x).

e Alequacié hi apareixen la variable x, la funcid incognita f(x) i les seves derivades
f'(x), f"(x), etc.

Direm que sén equacions diferencials ordinaries perqué la funcié incognita és una
funcié d’'una Gnica variable.

Ja hem vist alguns exemples d'equacions diferencials:

e L'equacié del creixement exponencial
y =ry

és una equacid diferencial i les seves solucions vam veure que eren les funcions
y = ke"™ per a qualsevol valor de la constant k. Aquesta equacid es pot escriure
de maneres equivalents:
y d
—=r; —y:ry; dy = rydx.

y dx
Tanmateix, la formulacié y’'/y = r no és exactament equivalent a la formulacié
inicial y’ = ry perqué la possibilitat y = 0 esta contemplada a la formulacié
inicial pero no a la segona formulacio.

e L'equacio del creixement logistic

/=)

és una equacid diferencial. A la pagina 79 vam dir que les seves solucions son

les funcions

B K
Y T i Y ket

per a qualsevol valor de la constant k. Perd no vam dir ni com haviem arribat a
aquesta solucié ni si n’hi podia haver d'altres.

e Cada problema de calcul de la primitiva d'una funcié és també una equacid
diferencial. En efecte, si volem calcular fy dx utilitzant una primitiva de la
funcié y(x), hem de resoldre l'equacid diferencial 2/ = y.

146
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Aquests tres exemples corresponen a equacions diferencials de primer ordre que
son les que només fan intervenir la primera derivada de la funcié incognita. En canvi, la
llet de Newton de la dinamica F = ma la podem entendre com una equacid diferencial
de segon ordre. En efecte, si tenim un cos de massa m que es mou per l'accié d'una
forca F, per conéixer la seva posicié x(t) hauriem de resoldre l'equacid

d?x

F=mae

que és una equacio diferencial que involucra la segona derivada de la funcié incognita.

Les equacions diferencials de primer ordre que apareixen en els tres exemples
anteriors sén de la forma

/
y'=Fxy)
on F és una funcié continua i y = y(x) és una funcid incognita. Aquestes son les
equacions que més estudiarem en aquest curs. En els tres exemples hem vist que
teniem infinites solucions. Aixo és un fet general:'

e Una equacid diferencial y' = F(x,y) té sempre infinites solucions. Anomena-
rem solucid general la familia de totes les solucions. A la solucié general hi
apareixera un parametre k.

e Cadascuna de les solucions concretes d'una equacié diferencial y’ = F(x, y) direm
que son solucions particulars de l'equacié.

e Si considerem una equacié diferencial y’ = F(x, y) i fixem unes condicions ini-
cials, hi ha una Unica solucié particular que satisfa aquestes condicions inicials.
Fixar unes condicions inicials vol dir fixar el valor de la funcié y per a un cert
valor de la variable x.

Posem un exemple senzill. L'equacié y’ = ry. La solucié general és y = ke™.
Les solucions y = ™, y = —2e"*, y = me™, etc. sbn solucions particulars. Si fixem,
per exemple, les condicions inicials y(1) = —1, aleshores hi ha una Gnica solucié amb
aquestes condicions inicials, que és la funcié y = —e~"e™ = —e"x~ 1),

24.2 Hi ha equacions diferencials arreu

Les equacions diferencials sén omnipresents a la ciéncia. Molt sovint, les lleis de
la natura, de l'economia, de les dinamiques socials,etc., s'expressen com a equacions
diferencials. Posem alguns exemples (que siguin prou senzills per cabre dins del marc
d’'aquest curs).

e Els models de poblacié que ens diuen com evoluciona la mida d'una poblacié
vénen donats per equacions diferencials que relacionen la mida de la poblacid i

'Els comentaris que fem a continuacié no tenen un rigor matematic complet. Per formular correctament
el que es coneix com a teorema dexisténcia i unicitat de solucions d'una equacié diferencial ordindria
caldria utilitzar un llenguatge matematic molt més precis, fer hipotesis de continuitat, de diferenciabilitat,
parlar de solucions locals, d'intervals de definicio, etc. No ho farem perqué creiem que en aquest curs
tan elemental no és recomanable que ens exigim aquest nivell de rigor.



148

24. Conceptes basics i exemples

la seva taxa de creixement. Per exemple, l'equacid del creixement exponencial o
la del creixement logistic.

La llei de Newton de la dinamica F = ma és una equacid diferencial de segon
ordre que ens relaciona la segona derivada de la posicié d’'un cos amb la forca
que s'exerceix sobre ell.

La llei de la gravitacio de Newton que regeix el moviment dels cossos celestes
es pot formular com una equacié diferencial de segon ordre.

La llei de Newton del refredament d'un cos afirma que un cos situat en un ambient
més fred es refreda a una velocitat proporcional a la diferéncia entre la seva
temperatura i la de 'ambient. Aixo és pot escriure com una equacié diferencial:

dT
— = k(T — Tp).
gr = K )
El moviment d’'un péndol o el d'una molla estan regits per equacions diferencials
de segon ordre. En particular, st 8 és l'angle que forma amb la vertical un péndol
de longitud L, es compleix

L0" + gsin(0) = 0.

St tenim un cos de massa m sotmeés a l'accid d'una molla, la seva distancia x al
punt d'equilibri compleix que
mx" = —kx,

on k és una constant que depén de la «forca» de la molla.

El model de creixement de von Bertalanffy ve donat per lequacié diferencial
L' = k(Lo — L), que és idéntica a la de la llei de Newton del refredament.

D’entre les moltes equacions diferencials que apareixen a l'economia, podem citar
l'equacio de Solow-Swan (1956)

dk _ sf(k) —(n+ )k

dt

que intenta modelar l'evolucid del capital per capita k al llarg del temps, sota
unes certes hipotesis. En aquesta equacid f(k) és la produccié per capita, s és
la proporcid d'aquesta produccid que es reinverteix, n és la taxa de creixement
de la poblacié i § és la taxa de depreciacié del capital.’ Observem que, si s = 0,
tenim l'equacid del decreixement exponencial. Per poder utilitzar aquesta equacio
cal tenir algun model per a la funcié f(k) que relaciona capital i productivitat.
Per exemple, el model de Cobb-Douglas (1927) de la pagina 16 pren una funcié
potencial f(k) = Ak“.

El model més simple per modelitzar la contaminacié d’'una conca fluvial, es basa
en una equacio diferencial del tipus

dQ

g = E(t) — S(¢)

2Podeu aprendre més coses sobre aquest model al llibre Economic Growth de Robert . Barro i Xavier
Sala i Martin.



24. Conceptes basics i exemples 149

on Q(t) és la quantitat de contaminant (com a funcié del temps), E(t) és la funcié
que ens mesura el contaminant que entra a la conca t S(t) és la funcié que ens
mesura el contaminant que surt de la conca.

e Els models d'extensié d’'una epidémia utilitzen equacions diferencials. Per exem-
ple:

dl

— =kI(1—rl

77 = Kl )

on I(t) és el nombre d'infectats i l'equacié ens diu que la velocitat amb qué creix

el nombre d'infectats és proporcional al nombre d'infectats i al nombre de no
infectats. La difusié d’'un rumor es pot modelar per equacions del mateix tipus.

e En una reaccid quimica del tipus A+ B — C, la llei d'accié de masses ens diu
que la velocitat amb qué es crea l'espécie C és proporcional a les concentracions
de Aide B. Aixo ho podem escriure com una equacié diferencial

AT ko - tensn - 10

on [C] és la concentracié de C i [A]p i [B]o son les concentracions inicials de A i
B, respectivament.

Si tenim equacions diferencials, també tindrem sistemes d’equacions diferencials.
Per exemple

e El classic model depredador-presa de Lotka-Volterra (1910, 1920). Tenim una
funcié x = x(t) que ens dona el nombre de preses (per exemple, conills) en un
habitat i una altra funcié y = y(t) que ens déna el nombre de depredadors (per
exemple, guineus) en aquest mateix habitat.

El creixement d'aquestes dues funcions esta interrelacionat, deqgut a la dependén-
cia reciproca que tenen els depredadors i les preses. Les equacions que governen
aquestes funcions sén

x' =ax — Bxy

y' =bxy —y

A la primera equacid, el parametre « és la taxa de reproduccié dels conills i el
parametre [ és la taxa de depredacié dels conills per les guineus. A la segona,
0 és la taxa de reproduccid de les guineus i v és la taxa de mort de les guineus.

Una solucié particular d'aquest sistema d'equacions és una parella (x, y) de fun-
cions de t que es poden entendre com les equacions d'una corbha (parametritzada)
al pla. En funcié dels valors dels parametres «, 3, v 1§ i de les condicions inicials,
aquesta corba pot ser una corba tancada (parlarem d'una solucié periodica). Per
exemple, aqui tenim una d'aquestes solucions periodiques:
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15

0.5 -

0.5 1 15 2 2.5 3

Observem que el sistema va passant periodicament per situacions de moltes gui-
neus/poc conills, molt poques guineus/molt pocs conills, molts conills/poques gui-
neus i altre cop moltes guineus/poc conills.

Unes equacions similars s'utilitzen en el que es coneix com a model SIS d’'una
epidémia, que és aquell en qué hi ha una poblacié sana S susceptible de ser
infectada i una poblacié infectada / que es recupera a una taxa constant, de
manera que es pot tornar a infectar.

S' =al — BIS
I'=B1S — al

Aqui la poblacié total S+/ és constant, per tant, aquest sistema de dues equacions
es pot reduir a una unica equacié de tipus logistic I" = kI(1—rl). Un model més
complicat és el model SIR d’'una epidémia en la que els sans es poden infectar
i els infectats poden recuperar-se i convertir-se en immunes. St R és el nombre
de recuperats, les tres variables S, I, R compliran unes equacions com aquestes

S'=—aSl
I —aSl — Bl
R =3I

Si, com a resultat d’'una série de mutacions, diversos tipus genétics conviuen
en un habitat en les proporcions xi, ..., x,, podem pensar que el creixement de
cada poblacidé dependra de la seva mida x; i també de la diferéncia entre la seva
aptitud f; i la mitjana de les aptituds de tots els tipus. Podem modelar aquesta
situacio amb un sistema d'equacions diferencials

xt=k(fi= D xf)i i=1....n
Jj

on x; és la mida de la poblacié de tipus i i f; és la seva aptitud.?

3Vegeu Peter Schuster, Mathematical modeling of evolution. Solved and open problems, Theory Biosci.
(2011) 130:71-89.
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24.3 Resolem l'equacioé del creixement exponencial

Ja sabem que la solucié general de l'equacid diferencial y' = ry és y = ke™. Vegem
ara com podem arribar a aquesta conclusio, utilitzant un recurs técnic molt simple. En
primer lloc, escrivim l'equacié en aquesta forma equivalent

dy = rydx.

Aleshores, si suposem que y # 0, podem escriure l'equacié en aquesta altra forma
equivalent
dy
y

Aquesta igualtat sera equivalent a aquesta:

d
/y:/rdx.
y

Aquestes dues integrals indefinides les sabem calcular:

= rdx.

log |y| + k1 = rx + ko
on ki, kp sdn constants arbitraries. Si les agrupem al costat dret de U'equacio, tenim
log ly| = rx + k3
on ara k3 és una constant arbitraria. Aquesta igualtat és equivalent a
‘y’ — erx+k3 — X ek3 — Ke™.

Com que k3 és una constant arbitraria, ek és una constant positiva arbitraria, que
podem anomenar K. Si ara eliminem el valor absolut del terme de l'esquerra, obtenim

y = £Ke™.

Observem ara que kK = =K és una constant diferent de zero arbitraria. Hem arribat a
la conclusié que
y = ke™.

Si ara recordem que al comencament d'aquest procés haviem suposat que y # 0 i si
observem que y = 0 també és una solucié de l'equacid, arribem a la conclusié que totes
les solucions de l'equacio inicial son

y=ke

on ara k és una constant arbitraria (positiva, negativa o zero).

Donant valors a la constant k obtindrem les solucions particulars. Cada solucié
particular és una corba exponencial i per cada parella de valors (xp, yp) existeix una
Unica solucié particular y amb y(xg) = yo. St dibuixem les grafiques de totes aquestes
solucions particulars, omplirem el pla amb corbes exponencials. Per cada punt del pla
hi passa una solucid particular de l'equacié, i només una.



|
[

n /
[J]
—
[
£
[J]
x
[J]
n
S
(7]
-G
=]
7]
[J]
)
o
[J]
Q
c
o
@) /
< \
AN
[N
Lo
—



25. Resolucio d’algunes equacions
diferencials autonomes

En general, trobar expressions explicites de les solucions d’'una equacié diferencial pot
ser molt dificil o impossible. El métode que hem utilitzat per a U'equacié del creixement
exponencial permet resoldre certs tipus d'equacions a partir de calcular dues integrals.
En particular, aquest métode es pot utilitzar per a les equacions autonomes que son
les de la forma

y'=gl(y)

i, més en general, per a les equacions separables que son les de la forma
r_
y'=f(x)g(y).

En aquest capitol veurem alguns exemples.

25.1 Resolem l'equacioé del creixement logistic

/= li-f)

és autonoma i la podem resoldre com vam fer amb l'exponencial.

L'equacié logistica

e Escrivim lequacid aixi
dy

_ Y
y(1-%)
Fent aixdo hem descartat els casos y = 0 i y = K, que també sdn solucions de
l'equacid logistica. Al final, caldra recordar aquestes dues solucions.

= rdx.

e Integrem els dos costats de l'equacid.

dy
/M:/rdxzrx—i—c().

La integral de lU'esquerra es pot calcular pel métode de les fraccions simples

1 1 1/K

y(l-%) v 1-%

dy y y
—=lo —lo ‘1——‘:Io —_—
/y(l—%) Bl —log[t =k g‘l—%

"Cal dir que la discussié que farem aqui és essencialment heuristica. Si el lector vol una justificacié
matematicament rigorosa del que fem en aquests exemples, ha de consultar textos més teorics sobre
equacions diferencials ordinaries.
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e Per tant,

71i/ = Ce™

XI<

on C # 0 és una constant arbitraria.

e Ara ens cal aillar y de U'expressié anterior. El resultat és

K

Y= %e"x—i—l'

e Siara calculem el valor d'aquesta funcid per x = 0 observem que y(0) = CK/(C+
K). Designem yp aquest valor inicial, que és un valor arbitrari # 0. Aleshores, la
funcié y també es pot escriure aixi

K K
= k=(—-1].
y(x) 14 ke—rx' (yo )

e Finalment, ens cal afegir les dues solucions que hem descartat al principi. La
solucid y = K ja esta inclosa a la férmula anterior, agafant yp = K. Només falta
afegir la solucié y = 0.

Hem arribat a la conclusié que la solucid particular de l'equacié logistica amb les
condicions inicials y(0) = yp és
K
y(x) = p
LA S —rx
1+ (yo 1) e

y(x)=0siy =0.

si yo #0,

Mirem com sdn aquestes solucions i d'aquesta manera completarem el nostre estudi de
l'equacid logistica que ha anat apareixent en diversos moments d'aquest curs. Suposem
que K >0 (el cas K < 0 és analeg).

1. Hi ha dues solucions constants: y =01y = K.

2. Si 0 < y < K, la solucié és una corba —la corba «logisticay— que té aquesta
forma
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Aquesta corba tendeix a K quan x — oo i tendeix a 0 quan x — —oo.

3. La solucié és ben diferent si yog > K o o < 0. En aquests casos la solucio
particular té una discontinuitat —una asimptota vertical— al punt x = a i a ve

donat per
1 K
a= —log <1 — )
r Yo

de manera que la corba té dues branques. Per a valors x < a la funcié és negativa
i tendeix a —oo quan x — a~. Per a valors x > a, la funcid és positiva (de fet és
> K) i tendeix a oo quan x — at.

La forma de la grafica és la que s'observa en aquesta representacié que hem fet
amb sage.

Veiem que, igual que abans, aquesta corba tendeix a K quan x — oo i tendeix
a 0 quan x — —oo. D’altra banda, el comportament quan ens acostem a la
discontinuitat x = a ja 'hem explicat i el podem escriure aixt:

lim = oo, im = —oo0.
x—at x—a~

Si dibuixem totes les solucions, omplim el pla amb corbes solucid, de manera que per
cada punt del pla passa una solucid particular de l'equacid logistica:
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/
l(

|
\\\

e

Si les variables x, y son positives (per exemple, en el cas del model logistic de crei-
xement d'una poblacid), aquest dibuix es converteix en el que ja havia aparegut a la
pagina 60.

"
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25.2 Contaminacio d'un llac

Suposem que hi ha un vessament continuat d'un contaminant al riu Ter i volem conéixer
com evolucionara la contaminacié a l'aigua del Ter més avall de l'envasament de Sau.
En tota la seva magnitud, és un problema molt complex, perdo farem una série de
simplificacions per tal d'obtenir un primer model d’aquesta situacio.

Suposem que a Sau hi ha V = 120 milions de m3 d'aigua i que aquest volum es
manté constant. Hi entra l'aigua (contaminada) del Ter a un ritme constant de g =5
m3 per segon i en surt aigua al mateix ritme. Fem la hipotesi que la contaminacié
es reparteix uniformement per tota l'aigua de Sau. Aixo6 no sera cert, pero admetem
aquesta hipotesi simplificadora per fer el problema més accessible. Volem determinar
Uevolucié de la concentracio del contaminant a l'aigua que surt de 'embasament.

Designem per x = x(t) la concentracidé del contaminant a laigua que surt de
l'embasament. Es una funcié del temps que comenca amb el valor x(0) = 0 perqué
suposem que abans de linici del vessament no hi ha contaminacié. Fem aquestes
consideracions:

e La quantitat de contaminant present a l'embasament de Sau és xV.

e La quantitat de contaminant que entra a l'embasament per unitat de temps és
aqg, on a és la concentracié de contaminant al Ter, que suposem que és constant.

e La quantitat de contaminant que surt de 'embasament per unitat de temps és xgq.

e lLa variacié de contaminant a 'embasament ve donada per la derivada

d
E(X\/).

e La variacié de contaminant a 'embasament ve donada per la diferéncia entre el
contaminant que entra i el que en surt.

La conclusié és que s’ha de complir aquesta equacié diferencial

d

— (xV) = aq — xq.

7r XV)

La solucid particular d'aquesta equacié diferencial amb les condicions inicials x(0) = 0
en donara la funcié x(t) que calcula la concentracié de contaminant a l'aigua que surt
de 'embasament.

Aquesta equacio diferencial és autonoma i es pot resoldre pel mateix métode que

les equacions dels exemples anteriors. Comencem escrivint l'equacié en la forma

dx q
= th.

a—X

Integrem els dos costats i obtenim

—Iog\a—x|:%t+C



158 25. Resolucié d’'algunes equacions diferencials autonomes

que ens dodna la solucid general
q
x =a— kex <——t) :
PV

Les condicions inicials x(0) = 0 impliquen que la constant k val k = a. Per tant, la
solucid particular que ens interessa és

x(t) = a(1 — exp(—qt/ V).

Es a dir, la contaminacié a l'aigua que surt de l'embasament comenca amb el valor
x(0) = 0 i s'acosta asimptoticament al valor x(oco) = a sequint una corba de tipus
exponencial. D'aquesta manera, si coneixem el valor de a (concentracié del contaminant
al Ter) podem calcular efectivament el valor de x (concentracié del contaminant a l'aigua
que surt de l'embasament de Sau) en qualsevol instant de temps t. Si dibuixem aquesta
funcié obtenim

Qué passa si aturem el vessament al Ter quan la contaminacié a Sau val xp? Le-
quacio diferencial

d
E(XV) = aq — xq

seguira essent valida i la soluci6é general seguira essent

x=a— kexp (—%t)

pero ara tenim a = 0 i les condicions inicials seran x(0) = xg. Tindrem
x(t) = xoexp(—qt/ V).

La contaminacié a l'aigua de sortida comencara amb el valor xg i tendira exponencial-
ment a zero a llarg termini. La corba sera
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Zo

25.3 Una generalitzacio del model logistic

La corba logistica presenta una simetria que no sempre s'adapta a les observacions:
l'etapa d'acceleracid fins el punt d'inflexid és simetrica de l'etapa de desacceleracié a
partir del punt d'inflexié. En moltes situacions practiques, aixd no és el que s'observa
i s"han proposat models del tipus

- (2))

e |. R Usher el 1980 va proposar una equacié com aquesta per a determinar la dosi

optima de radioterapia en el tractament de tumors. El parametre s > 0 depén

del tipus de tumor.?

Per exemple

e En un estudi de lalcada (en funcié de l'edat) dels pins de Monterrey (Pinus
radiata) a Nova Zelanda, es va trobar que una equacidé com aquesta amb valors
de s entre 0.6 i 0.9 s'adaptava millor a les observacions.3

e En un estudi’ del ritme de vendes de les parcelles d'una gran urbanitzacié es va
veure que una equacié com aquesta amb s = 5.85 donava un millor model que el
de la corba logistica.

Observem que si s = 1 retrobem l'equacid logistica. Aquesta generalitzacié de
lequacio logistica és també una equacié autonoma que es pot resoldre pel mateix

2Vegeu G. W. Swan, Optimization of Human Cancer Radiotherapy, Lect. Notes Biomath. 42, 1981.

3Vegeu Oscar Garcia, Height growth of Pinus radiata in New Zealand, New Zeal. ). Forestry. Sci.
29(1): 131-145 (1999).

*Vegeu Robert B. Banks, Growth and Diffusion Phenomena: Mathematical Frameworks and Applica-
tions, Springer 1994, p. 112.
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métode que hem usat en el cas logistic. Comencem escrivint 'equacié d'aquesta manera

L
N(Ks— N5y K="

Ara integrem els dos costats de l'equacid. La integral de la dreta és senzilla, pero la
integral de l'esquerra requereix que fem el canvi de variable N* = M que la converteix
en la integral

1 1 1 1 1 1 M
S M= — [ (== ) dM = | .
s/M(KS—M) sK5/</\/I+K5—I\/I> sKs Og‘KS—M‘

Desfent el canvi, obtenim

NS
KS — NS

1

r
=—t+C.
sK +

SIog‘

Si ara prosseqguim igual que ho féeiem en el cas de la logistica, arribem a la solucid

general
K

(1 + kexp(—rst))l/s’

St dibuixem aquesta funcid veiem que és una mena de corba logistica «descompensada»
en la que les fases d'acceleracid i desacceleracid no sén simétriques una de l'altra.

s=0.3

25.4 Fem-ho amb sage

sage té diverses eines per resoldre equacions diferencials ordinaries. La més basi-
ca és la funcié desolve(). Per exemple, si volem resoldre l'equacié del creixement
exponencial y’ = re*, fem aixo:

sage: r=var(’r’)
sage: y=function(’y’) (x)
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sage: desolve(diff (y,x)==r*y,y,ivar=x)
_Cxe~ (r+*x)

La presencia d'una variable r a l'equacié ens obliga a declarar quina és la variable
independent. Ho fem amb ivar=x. Resolem ara l'equacid logistica.

sage: K,r,t=var(’K,r,t’)

sage: N=function(’N’) (t)

sage: desolve(diff (N,t)==r*N*(1-(N/K)),N,ivar=t)
-(log(-K + N(t)) - log(N(t)))/r == _C + t

Observem que la solucié ens ve donada en forma implicita. Aixo és aixi en totes les
equacions separables.

sage: K,r,t,s=var(’K,r,t,s’)

sage: N=function(’N’) (t)

sage: desolve(diff (N,t)==r*N*(1-(N/K)"s),N,ivar=t)
(s*x1og(N(t)) - log(-K~s + e~ (sxlog(N(t)))))/(r*s) == _C + t



26. Equilibri i estabilitat

26.1 Equilibris d'una equacio diferencial

El concepte d'equilibri pot ser molt ampli pero6 per a nosaltres, quan parlem de sistemes
governats per una equacid diferencial, un estat d'equilibri voldra dir un estat en quée
la variable que estem estudiant es manté constant. Per tant,

Els equilibris d'una equacié diferencial son les solucions constants d’a-
questa equacid diferencial.

Determinar els equilibris d'una equacio diferencial és, en general, forca més senzill
que resoldre U'equacid. Siy és un equilibri, y és constant i, per tant, y’ = 0. Substituint
y’ =0 a l'equacid, podem trobar els valors de y, que seran els equilibris de lequacié.

26.2 Alguns exemples

e Equilibris del creixement exponencial. L'equacié és
r_
y =ry
(amb r #0) i y’ =0 ens déna una unica solucié y = 0. Per tant, aquest és 'tinic
equilibri de l'equacio.

e Equilibris del creixement logistic. L'equacid és

/= 1-3)

(amb r # 0). Si substituim y’ = 0 veiem que hi ha exactament dos equilibris:
y =01y =K. Sila poblacié és 0 o K, es manté constant, i aquests sén els dos
Unics casos en qué la poblacid es pot mantenir constant.

e Creixement logistic amb emigracioé proporcional. Suposem que tenim una po-
blacié que segueix un model de tipus logistic en el que una certa proporcidé m
de la poblacié emigra (o és capturada) i abandona la poblacié. EL creixement
d’aquesta poblacid vindra donat per una equacié diferencial com aquesta:

N’—rN(l—g)—mN

on r és la taxa de reproduccid, K és la capacitat del medi i m, com ja hem dit és
la proporcié de la poblacié que emigra cada unitat de temps. Podriem resoldre
aquesta equacié (és una equacié autonoma) perd ara ens preocupem dels seus
equilibris. Posem N/ =0 i resolem l'equacié que s'obté

N
Oer(l—K>—mN.
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Els equilibris sén

m
=0, N=k(1-T).
r
Si N representa la mida d’'una poblacid, només hem de considerar els valors amb

N > 0. Per tant,

— Sim > r, UlGnic equilibri és N = 0.

— St m < r, hi ha dos equilibris: N=0i N = K(1—(m/r)).

e Creixement logistic amb emigracié constant. En el model anterior hem suposat
que l'emigracioé és proporcional a la poblacié. També podem considerar un model
en que l'emigracio és constant igual a M individus per unitat de temps:

N’:rN<1—x>—l\/l.

Els equilibris d’aquest (interessant) model els podem trobar resolent una equacié
de segon grau
rN? — rkKN + KM = 0.

Observem que aquest model es pot aplicar sense canvis a una poblacid de peixos,
de manera que el parametre M no representaria l'emigracid, sind l'extraccié de
peixos (la pesca). Conéixer els estats d'equilibri en funcid del valor de M ens pot
ajudar a entendre el concepte de pesca sostenible.

e El model de Levins de metapoblacions. EL 1969 l'ecoleg Richard Levins va pro-
posar un model de dinamica de poblacions que considerava que hi havia un cert
nombre d’habitats disponibles perqué els habiti una subpoblacié. En cada mo-
ment hi ha una certa proporcio p d'habitats ocupats i la proporcié complementaria
1—p d’habitats buits. Aquesta proporcid p varia amb el temps perqué un determi-
nat habitat ocupat pot quedar buit per extincid de la subpoblacié i un determinat
habitat buit pot quedar ocupat per migracid. Aleshores, l'equacidé de Levins que
governa el comportament de la funcié p és

p'=cp(l—p)—mp

que és essencialment la mateixa equacid del creixement logistic amb emigracié
proporcional que hem considerat abans. Es facil determinar els equilibris. Si
m > ¢, l'linic equilibri és p = 0. En canvi, si m < ¢, a banda de l'equilibri trivial
p = 0 tenim una segona situacié d’equilibri p = 1—(m/c) en la qual hi ha sempre
la mateixa proporcié m/c d’habitats lliures.!

o L'efecte Allee. Els models de poblacié que hem estudiat fins ara —exponencial
i logistic— tenen un defecte fonamental: quan la poblacié és molt petita, com
que els recursos per capita son immensos, el creixement és exponencial i, con-
seqiientment, no hi ha risc d'extincio. En canvi, l'experiéncia ens diu que quan
una poblacidé queda reduida a una mida molt petita, hi ha un gran risc d'extincid.
Més enlla d'aixo, Warder Clyde Allee —un dels pioners de l'ecologia— va dur a

"Consulteu l'article Metapopulation a wikipedia.org.
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terme diversos experiments que van posar de manifest que sovint succeeix exac-
tament el contrari del que prediuen els models logistic i exponencial: la densitat
de poblacié i la cooperacid entre individus actuen positivament sobre la taxa de
reproduccié. Aquest fenomen té diverses explicacions: cooperacio a 'hora d'a-
consequir aliment, cooperacié a 'hora de defensar-se dels depredadors, etc. Se’'n
diu Uefecte Allee.?

Es possible trobar un model de poblacié que incorpori aquestes idees. Per exem-

ple, lequacid diferencial
N N
N=rN{1-——)-—-1
(k) ()

s'obté afegint un terme extra a l'equacid logistica. Vegem el significat de cada
terme:

— N = rN ens ddna el creixement exponencial. r és la taxa de reproduccié.

— Elterme segtient 1—(N/K) ens diu que la taxa de reproduccid no és constant
perque, a mida que la poblacié creix i s'acosta a la capacitat del medi K, la
taxa va disminuint. Fins aqui, tenim l'equacié logistica.

— El terme addicional que hem inclos per tenir en compte l'efecte Allee és
(N/A) — 1 que fa que, si la poblacié cau per sota del llindar d’extincié A, la
taxa de creixement es converteix en negativa i la poblacié s'extingira.

Es facil calcular els equilibris d'aquest model. Prenem N’ =0 i resolem l'equacié
que s'obté. Hi ha tres equilibris: N =0 i N = K (que ja existien en el model
logistic) i un tercer equilibri N = A.

26.3 Estabilitat d'un equilibri

Ja sabem que hi ha dos tipus d’equilibri: estable i inestable. La diferéncia entre aquests
dos tipus és la segiient:

Un equilibri és estable si quan ens apartem lleugerament de l'equilibri el
sistema tendeix a retornar a l'equilibri. Es inestable si quan ens apartem
lleugerament de lequilibri el sistema tendeix a allunyar-se encara més
de lUequilibri.

Com podem determinar si un equilibri és estable o inestable? Suposem que y és

la solucié general d'una equacié diferencial i que y. és un equilibri. Per decidir si és
estable o inestable, hem d'estudiar el comportament de y’ en funcié de y a un petit
entorn del punt d'equilibri y = y.. Per exemple, imaginem que quan expressem y’ en
funcid de y obtenim una corba com aquesta

’Per a més informacié, vegeu l'entrada Allee effect a wikipedia.org.



26. Equilibri i estabilitat 165

Els equilibris es produeixen quan y’ = 0 per tant veiem que hi ha tres equilibris:
0, a i b. Observem aixo:

e Siens apartem una mica del valor y = 0 veiem que la corba esta per sota de l'eix
horitzontal. Aixo vol dir que ¥y’ < 0 i, per tant, y és decreixent. Aixo vol dir que y
retornara cap el valor y = 0. En conclusio, Uequilibri y = 0 és estable.

e Si ens apartem una mica del valor y = a, cap a un valor de y una mica superior,
veiem que la corba esta per sobre de l'eix horitzontal. Aixo vol dir que y' > 0§,
per tant, y és creixent. Aixo vol dir que y s'allunyara encara més del valor y = a.
En conclusig, l'equilibri y = a és inestable.

e Si ens apartem una mica del valor y = b, cap a un valor de y una mica superior,
veiem que la corba esta per sota de leix horitzontal. Aixo vol dir que y’' < 0§,
per tant, y és decreixent. Aixo vol dir que y retornara cap el valor y = b. Si ens
apartem una mica del valor y = b, cap a un valor de y una mica inferior, veiem
que la corba esta per sobre de leix horitzontal. Aixo vol dir que y’ > 0 i, per
tant, y és creixent. Aixo vol dir que y retornara cap el valor y = b. En conclusig,
lequilibri y = b és estable.

En el cas de les equacions autonomes, aquest estudi és molt facil de fer perqué
aquestes equacions tenen la forma

y'=gly)

i n'hi ha prou amb estudiar el valor de la derivada de la funcié g en els punts d'equilibri.
Suposem que ye és un punt d’equilibri. Aleshores,

d
o Si d—g (ve) > 0, lequilibri és inestable.
y

d
o Si CTi (ve) <0, lequilibri és estable.

Repassem rapidament l'estabilitat dels equilibris que hem trobat en els exemples
de l'apartat anterior.
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Exponencial. L'inic equilibri és y = 0, que és inestable.

Logistic. Hi ha dos equilibris: y =01 y = K. El primer és inestable i el segon
és estable.

Logistic amb emigracié proporcional. Si m > r, l'iinic equilibri és y = 0 que és
estable. Si m < r hi ha dos equilibris: y = 0 que és inestable i y = K(1—(m/r))
que és estable.

logistic amb emigracié constant. St M > K /4, no hi ha equilibris. St M = K /4, hi
ha un Unic equilibri N = K/2, que és inestable. St M < K /4 hi ha dos equilibris
Ny < K/2, inestable i N, > K /2, estable.

L'equacio d’Allee. Els equilibris y = 0iy = K sén estables. Lequilibri y = A, que
representa que la poblacié esta exactament en el llindar d'extincid, és inestable.



Exercicis

A. Exercicis teorics

IV.A1.

IV.A2.

IV.A3.

IV.A4.

IV.AS.

IV.A6.

IV.A7.

IV.A8.

IV.A9.

Trobeu la solucié general y(t) de les equacions diferencials segiients:

(@) y/ — tsint =0, (b) y' = 2t, (c) y' = 4y?,
(d) y' = ty, (e) y'=3y(100—y), ()y =(2-1)/2
(9) y' = y?cos(t),  (h)y =4y —y>

Trobeu la solucid particular y(t) d’aquestes equacions diferencials amb les con-
dicions inicials donades. Estudieu el comportament d’aquesta solucid particular
quan t — Fo0.

(a) t?dt +2ydy =0, y(0) = —2. (b) y' = ysint, y(r) = 3.
(c) y' =8t*e™, y(1) = 0. (d) y' = —1/y, y(0) = —1.

Resoleu l'equacié diferencial y’ = rylog(K/y) (r > 0 t K > 0 s6n constants i
y > 0) i expresseu el resultat en funcié de y(0). (Es l'equacié de Gompertz,
que s’ha utilitzat per modelar el creixement dels tumors i, més en general, el
creixement d'una poblacié amb recursos limitats.)

Considereu l'equacié diferencial y’ = 3y?/3. Resoleu-la. Trobeu dues solucions

particulars amb les condicions inicials y(0) = 0 (en aparent contradiccié amb
el teorema d'unicitat de solucions).

Trobeu els equilibris de l'equacié diferencial y’ = y(2 — y) i estudieu-ne lesta-
bilitat. Resoleu-la.

Considereu l'equacié diferencial y’ = y? — 6y + 5. Trobeu els seus equilibris i
estudieu-ne l'estabilitat. Trobeu la solucié particular amb les condicions inicials

y(1) =0.

Considereu lequacié diferencial y’ 4+ 2,/y = y. Trobeu els seus equilibris i
estudieu-ne l'estabilitat. Trobeu la solucié particular amb les condicions inicials
y(1) = 0. (Indicacié: feu el canvi de variable z = ,/y.)

Considereu l'equacié diferencial y’ = y?> — y — 6. Trobeu els seus equilibris i
estudieu-ne l'estabilitat. Feu un dibuix de les seves solucions.

Considereu aquest sistema de dues equacions diferencials
x' = —=3f(t)
!/
y' = 2yf(t)

on f(t) # 0 és una funcié desconeguda. Determineu y com a funcié de x.
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Exercicis

B. Exercicis d’aplicacio

IV.B.1.

IV.B.2.

IV.B.3.

IV.B.4.

IV.B.5.

IV.B.6.

IV.B.7.

Un model de difusié d’'un rumor assenyala que la rapidesa amb qué s’escampa
és proporcional al producte de la poblacié P que ha escoltat el rumor i la
poblacié que no l'ha escoltat. Plantegeu una equacio diferencial per a la funcié
P(t), segons aquest model. Un poble té 1000 habitants i a les 8 del mati 80
persones han escoltat un rumor. Al migdia la meitat del poble ha escoltat el
rumor. Segons aquest model, a quina hora tindrem que el 90% de la poblacio
haura escoltat el rumor?

En una reaccid quimica elemental, les molécules de dos reactius A i B formen
una moléecula del producte C : A+ B — C. La llei d'accié de masses afirma que
la velocitat de reaccio és proporcional al producte de les concentracions (mol/l)
de Ai B. Denoteu per x(t) la concentracié de C i per a i b les concentracions
inicials de A i B, respectivament. (a) Plantegeu una equacié diferencial per a
la funcié x(t). (b) Resoleu-la distingint els casos a = b i a # b. (c) Trobeu x(t)
en el cas a = b st sabem que x(20) = a/2.

Suposem que a l'embassament de Sau hi ha 120 milions de metres ctibics d'ai-
gua (no contaminada), que el Ter hi entra amb un cabal de 5 metres clbics
per segon i que l'embassament desaigua a la mateixa velocitat. Si hi ha un
vessament continuat d'un contaminant al Ter de manera que l'aigua que entra
a 'embassament a partir d'un moment conté 0.005 g/cm3 d'aquest contaminant,
calculeu en quin moment la concentracié de contaminant a l'aigua de l'embas-
sament sera de 0.001 g/cm3. Apliqueu el model estudiat en el curs.

En les condicions de l'exercici anterior, suposem que el vessament al Ter s'atura
precisament quan la concentracié a l'aigua que surt de Sau és de 0.001 g/cm3.
Quant de temps haura de passar fins que l'aigua que surt de Sau tingui una
concentracié de contaminant de 0.0001 g/cm3?

Fem la hipotesi que la poblacié de senglars de les Gavarres creix segons un
model logistic amb un coeficient de reproduccié aproximat de r = 6.2% anual.
Volem autoritzar una proporcié de captures per any que faci que la poblacié
estable de senglars es redueixi a la quarta part. Quina ha de ser aquesta
proporcid?

Els antropolegs han utilitzat la corba logistica per modelar el creixement de
diverses poblacions antigues (dels Pueblo del sud-oest dels actuals Estats Units
a l'imperi roma). Suposem que, en un d'aquests estudis, una poblacié va arribar
a una mida estable de 400 milers d’habitants i que, quan la poblacié era de
100 milers d'habitants, creixia a una velocitat tal que, si el creixement s’hagués
mantingut exponencial, la poblacié s'hauria multiplicat per dos en 60 anys.
Determineu quants anys van haver de passar perqué la poblacié es dupliqués
efectivament, segons el model logistic.

S'estima que la mida estable d'una determinada especie de peixos en una zona
pesquera seria de 8 x 10° kg, perd la sobreexplotacié ha reduit la mida de la
poblacié a només 2 x 10° kg. Suposem que s'acorda una moratoria de pesca i
que la poblacié comenca a créixer segons un model logistic, amb una taxa de
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reproducci6 de r = 0.71 (temps en anys). (a) Calculeu la biomassa de la poblacié
després d'un any. (b) Quant de temps ha de passar perqué la biomassa sigui
de 4 x 10° kqg?

Ha aparegut una especie invasora de papallona que, en el seu estat de larva,
necessita parasitar una especie concreta de formigues. (Seria el cas, per exem-
ple, de la reintroduccié de la Maculina arion a Anglaterra, després de la seva
extincid el 1979.) Hem identificat els habitats possibles per aquesta papallona i
volem estudiar la seva extensio utilitzant el model de Levins de metapoblacions.
Observem que quan el 1% dels habitats esta ocupat, la velocitat de creixement
de la proporcié d’habitats ocupats és de 9 x 1073 any™! i quan el 10% dels
habitats esta ocupat, aquesta velocitat és de 45 x 1073 any~!. Determineu quin
sera, segons aquest model, el percentatge estable d'habitats ocupats a llarg
termini.

Uns ambientolegs estudien la repoblacid d'un llac amb 400 peixos quan han
passat T i 2T anys des de la repoblacié. Han estimat que la poblacié s’ha
triplicat després dels primer periode de temps i ha arribat a 2000 peixos després
del segon periode de temps. Suposem un model de creixement logistic. Feu
una estimacid de la mida estable de la poblacid de peixos, a llarg termini.

Foéra molt interessant poder detectar en una especie la preséncia de lefecte
Allee i calcular el llindar d'extincid, abans que l'especie ja l'hagi superat. Aixo
és molt dificil, perd s’ha pogut fer en alguns casos.> Suposem que estudiem la
taxa efectiva de creixement d'una poblacié durant molts anys i observem que
quan expressem N’/N com a funcié de N obtenim la corba

—6 x 107" N? + 0.0013 N — 0.062.

Expliqueu per qué aixo indica la preséncia de lefecte Allee i determineu el
lindar d’extincio.

En uns estudis classics sobre el creixement de determinats tumors en ratolins,”
s'ha modelat aquest creixement amb l'equacié de Gompertz i s’han determinat
experimentalment els parametres r = 6.3% (taxa de creixement, en dies) i K =
109 cm® (mida limit tedrica del tumor). Feu una estimacid, segons aquest model,
del temps necessari perqué un tumor d’aquest tipus de 3 mm3 multipliqui la seva
mida per 100.

3Vegeu |.S. Brashares, ].R. Werner, A.R.E. Sinclair, Social ‘meltdown’ in the demise of an island endemic:
Allee effects and the Vancouver Island marmot, } of Animal Ec. 2010.
*Vegeu AK. Laird, Dynamics of tumor growth, Br | of Cancer 1964.
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27. Vectors, rectes, plans

27.1 Vectors en qualsevol dimensio

Ja coneixem els vectors del pla: donats dos punts del pla Al B, podem parlar del vector
que neix a A i acaba a B. En podem dir

AB.

Si coneixem les coordenades dels dos punts A i B, coneixerem també les coordenades

del vector AB. Si A = (a1, a2) L B = (b1, b2), aleshores les coordenades del vector A
sén (by — a1, bp — a2). Podem escriure

/ﬁ:(bl—al,bz—ag)
o també podem usar la notacio
e -
/ﬁ:(bl—al)/ +(b2*82)_/

que utilitza els vectors unitaris basics i, j .

Tot aix0 ho podem fer també en lespai de tres dimensions. En aquest cas, els
punts i els vectors vindran determinats no per dues coordenades, sind per tres. Si
A= (a1, a2, a3) i B= (b1, by, b3), aleshores

- - —
/ﬁ:(bl—al,bg—az,b3—a3):(bl—al)/ +(bp—a2)j + (b3 —a3)k

on ara tenim tres vectors unitaris bhasics i, j, k.

Els vectors es poden sumar i multiplicar per escalars. Es a dir, podem fer opera-

cions com aquestes
VW, VoW 7
i, més en general, podem fer combinacions lineals de vectors
r171 + r272 + -+ rk7k

on els coeficients rq, ..., r, s6n nombres reals arbitraris.

Observem que aquests dos conceptes de punt i vector, encara que conceptualment
son diferents, comparteixen una mateixa representacié matematica. Un punt A es pot
descriure com el vector que uneix l'origen de coordenades amb el punt A i viceversa,
un vector vV es pot descriure com el punt que té les seves mateixes coordenades.
Per exemple, podem parlar del punt (1,—1,2) o del vector (1,—1,2). D’'una manera
abstracta, tant un punt com un vector sdn simplement una parella de nombres (en el
pla) o una terna de nombres (a l'espai).
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Res no ens impedeix que, aixo que hem fet al pla i a U'espai de tres dimensions, ho
fem també en un espai de n dimensions. En aquest cas, cada punt de lespai vindra
determinat per les seves n coordenades i cada vector tindra també n coordenades.

De vegades, aquest concepte de «vectors en un espai de n dimensions» es veu
com una cosa estranya i incomprensible: «Existeix la cinquena dimensid?» Aquesta
incomprensi6 prové de no haver entés correctament el concepte de dimensid. La idea
fonamental de dimensid és aquesta: dimensioé és el nombre de parametres continus,
independents, necessaris per especificar un objecte del nostre camp d’estudi. Posem
alguns exemples:

e Si hem de comprar cable de coure, haurem d'especificar la llargada i el gruix. Es
a dir, haurem de donar dos parametres (continus, independents) que és el mateix
que donar un punt (o un vector) de l'espai de dues dimensions.

e Si hem de comprar un tauler de fusta haurem d'especificar llargada, amplada i
gruix (dimensid tres) pero si el tauler no és escairat, haurem d'especificar més
parametres, per exemple, les longituds de tres dels quatre costats, el gruix i
dos angles (dimensié 6)." Si volem que les quatre cantonades estiguin arro-
donides, haurem d’especificar un parametre extra —el radi de la circumferéncia
d’arrodoniment— i tindrem que un tauler com aquest vindra donat per un vector
en un espai de dimensio igual a 7.

e Si hem d'encarregar un neumatic per al cotxe, haurem d'especificar una série de
parametres com ara P225/50R16-91S. De tots aquests parametres, n'hi ha tres
que soén continus i independents: (225,50, 16). Per tant, podem pensar cada mida
de neumatic com un punt d'un espai de dimensié tres.

e Un observatori meteorologic envia, cada cinc minuts, informacié sobre pressié
atmosférica, temperatura, humitat, velocitat del vent, direccié del vent i radiacié
solar. Sén sis parametres (continus, independents) i formen un vector en un espai
de dimensio sis.

e En un estudi ornitologic capturem exemplars d'au d'una determinada espécie i
prenem nota de les seves mesures basiques (longitud, pes, mida del bec, enver-
gadura, etc.) que poden donar lloc a sis o set parametres: un vector en un espai
de dimensio sis o set.

e En cada instant de temps, les cotitzacions de les 30 empreses que estan incloses
a l'index Dow Jones formen un vector en un espai de dimensié 30.

La conclusié és que treballar amb espais de dimensié arbitrariament gran no és cap
elucubracid, sind que és una activitat matematica natural, de gran interés practic.

"Fixem-nos que els parametres han de ser «independents». Si donem els quatre costats, el gruix i
dos angles, tenim 7 parametres, pero no son independents perqueé la longitud del quart costat ja queda
determinada pels altres parametres. D’aquesta manera, la dimensié no és 7, sin6 que és 6.
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27.2 El producte escalar

A banda de la suma de vectors, els vector admeten una operacié molt interessant que
s'anomena producte escalar. Si V i W sén dos vectors (d'un mateix espai), el seu
producte escalar s’'indica amb alguna d’'aquestes dues notacions classiques

v-w, (VW)
Normalment, utilitzarem la primera notacié. Les propietats fonamentals d’aquesta ope-
racié son:
e El producte escalar de dos vectors és un escalar (no un vector!). D'aqut li ve el

nom.

e El producte escalar es pot calcular immediatament a partir de les coordenades
dels vectors. Si V = (v1,...,v,) i W = (wy, ..., w,), aleshores

7-W>:vlwl+~-+vnwn.

e El producte escalar compleix la propietat commutativa: V-w=w-V.

e El producte escalar es comporta, respecte de les altres operacions entre vectors
(suma i producte per escalars), de la manera esperada:

U-(rV+sw)=rU-V)+s(1d-W).

e El producte escalar esta molt relacionat amb la mesura de distancies. Si desig-
nem d(A, B) la distancia entre els punts A i B, aleshores

d(A B)? = AB - AB.

Dit d'una altra manera, si denotem per \7\ la longitud (o modul, o norma) del

vector V, es compleix
Aixo no és més que una reformulacid del classic teorema de Pitagores.

e El producte escalar esta molt relacionat amb la perpendicularitat: els vectors
perpendiculars sén els que donen zero quan els multipliques.

e El producte escalar esta molt relacionat amb la mesura d’angles. Suposem que
tenim dos vectors 7, V i denotem per o la mesura de l'angle que formen. Ales-
hores, es compleix aquesta formula basica

U -V =|U||V] cos(a).

Amb aquesta formula, si coneixem les coordenades de dos vectors, podem calcular
immediatament 'angle que formen. Observem que, a partir d'aquesta férmula, és
clar que dos vectors son perpendiculars exactament quan el seu producte escalar
és zero.

En certa manera, el producte escalar és el fonament de tota la geometria elemental
d’angles i distancies.
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27.3 Fem-ho amb sage

Podem treballar amb vectors de qualsevol dimensid, calcular productes escalars i lon-
gituds de vectors. La sintaxi apropiada la podem veure en aquests exemples:

sage: u=vector([1,1,0,-1,-3,3])
sage: u

(1, 1, 0, -1, -3, 3)
sage: norm(u)

sqrt (21)
sage: norm(u).NQ)
4.58257569495584
sage: v=vector([0,1,1,-2,-2,4])
sage: uxv

21
sage: u-2*v

1, -1, -2, 3, 1, -5)
sage: def angle(x,y):

ceed return arccos(x*y/(norm(x)*norm(y)))
sage: angle(u,v).NQ
0.453961251572380



28. Geometria en 3D

28.1 Rectes i plans en 3D

En aquest apartat considerarem com sén les equacions de rectes i plans en un espai de
tres dimensions. Com hem dit abans, podriem estudiar, sense més complicacid, el cas
general d'una dimensié n arbitraria, pero per simplicitat ens restringirem a la dimensid
tres.

Equacié d'un pla
L'equacié general d'un pla en dimensié 3 és
ax + by +cz=d.

Aquest pla esta format, logicament, per tots els punts de coordenades (x,y,z) que
satisfacin aquesta equacié. Observem:

e Sifem variar el valor del terme independent d, obtindrem tots els plans parallels
al pla ax + by + cz = d. En particular, el pla parallel que passa per lorigen és
el pla ax + by + cz = 0.

e Elvector 7 = (a, b, ¢) és perpendicular al pla. Direm que és un vector normal al
pla. Per comprovar-ho, traslladem el pla a l'origen: ax+ by + cz = 0, prenem ara
un vector vV = (x,y, z) que estigui contingut en aquest pla i, finalment, observem
que -V =0

Equacié d'una recta

Hi ha dues maneres d'expressar una recta en dimensid tres. En primer lloc, ho podem
fer com a interseccié de dos plans: si donem les equacions de dos plans (diferents i no
parallels), les dues equacions, simultaniament, determinaran una recta. Per exemple,
la recta

x —by =—-18

dx+z=7

La segona manera consisteix en donar un punt de la recta P i un vector director v
de manera que tots els punts de la recta s'obtindran sumant al punt P mdltiples del
vector director. Per exemple

(x,y,z) =(2,4,-1) + t(1,5, —4).

En aquesta equacid hi apareix un parametre t que pot prendre qualsevol valor. Direm
que és una equacid paramétrica de la recta.

176
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28.2 Exemples

e Pla perpendicular a una recta. Trobeu lequacié del pla que passa pel punt
A= (1,1,-2) i és perpendicular a la recta que passa pels punts B = (0,1,2) i
C=(1,-1,3).

La recta que passa per B i C té com a vector director el vector R =(1,-2,1).
Els plans perpendiculars a aquest vector sén els plans x — 2y + z = d, per a
qualsevol valor de d. De tots aquests plans, l'Ginic que passa per A és el pla
X—2y+z=-3

e Pla determinat per tres punts. Trobeu l'equacid del pla que passa pels punts
A=(1,11),B=(1,-2,-2)i C=(3,1,-1).

Aquest pla tindra una equacié ax+by+cz = d. Hem de determinar els valors dels
coeficients a, b, c i d per tal que les coordenades dels tres punts que ens donen
compleixin Uequacio del pla. Ho podem fer resolent un sistema (compatible) de
tres equacions amb quatre incognites. La solucié éselplax—y+z=1

e Costats i angles d'un triangle. Trobeu les longituds dels costats i la mesura dels
angles del triangle que té per vértex els punts A = (1,1,1), B = (1,-2,-2) i

C=(31,-1).

Comencem determinant els vectors /ﬁ = (0,-3,-3), R (2,0,-2) i B_C> =
(2,3,1). Les longituds d'aquests vectors (que soén les longttuds dels costats del
triangle) les podem trobar usant el producte escalar

AB| = /(=32 + (=3)2 = 3v2:

AC| = /22 + (~2)2 = 2v/2;
\EC)] =22 432412 =114,

Per calcular l'angle o que formen els vectors /ﬁ i R tornem a utilitzar el pro-

ducte escalar.
3. &

A
« = arccos 2B = arccos(1/2) = 60°.
|AB||AC]

Per calcular l'angle 5 que formen els vectors BA i BC tornem a utilitzar el pro-
ducte escalar.

BA.BE
BA-B

B = arccos EA B = arccos(2/V/7) ~ 40.89°.
|BAJ|BC]

El tercer angle no cal calcular-lo perqué sabem que la suma dels tres angles d'un
triangle val 180° i, per tant, aquest tercer angle val ~ 79.10°.

e Angle entre dos plans. Trobeu l'angle entre els plans x+y+z=2i2x4+y—z =
—b.

L'angle entre dos plans sera el mateix que l'angle entre els seus vectors normals.
Aquests vectors normals sén els vectors 7 = (1,1,1) i V = (2,1, —1) i langle
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que formen és

vV
« = arccos = arccos(V2/3) ~ 61.9°.
[T[[V]
e Distancia d’'un punt a un pla. Trobeu la distancia del punt A= (—1,2,2) al pla
2x —y —z=0.
El vector normal al pla és el vector @ = (2, —1, —1). La recta que passa pel punt
A i és perpendicular al pla és la recta

(x,y,z) =(-1,2,2) + t(2,-1,-1).

El punt on aquesta recta talla el pla és el punt corresponent a t = 2, és a dir,
és el punt B = (3,0,0). La distancia entre A i el pla sera la distancia entre els
punts A i B, que val 2v/6.

e Distancia entre dues rectes. Trobeu la distancia entre aquestes dues rectes

(2,1,0) + r(~1,1,1)
(1,0,—1) + s(0, —1,2)

Hem de trobar un punt P = (2 —r,1+ r,r) a la primera recta i un punt Q =
(1, —s, —1+2s) a la segona recta de manera que el vector @ sigui perpendicular
als vectors directors de les dues rectes. Resolent un sistema de dues equacions
obtenim que aquests punts sén P = (16/7,5/7,-2/7) it Q = (1,-1/7,-5/7).
Aleshores, la distancia entre les dues rectes sera la distancia entre aquests dos

punts: d = 3,/2/7.

28.3 Dimensions superiors a tres

Tot el que hem fet fins ara es pot fer amb vectors de n dimensions, per a qualsevol
valor de n. La principal diferéncia estara en que, de la mateixa manera que a l'espai de
dimensié 3 tenim rectes i plans, en un espai de dimensié n tindrem exactament n — 1
tipus diferents d'objectes intermedis entre els punts i l'espai total. En direm subespais
de dimensio k, per k =1,...,n— 1. Aixi, els subespais de dimensié 1 seran les rectes,
els de dimensid 2 seran els plans, hi haura els subespais de dimensié 3, 4, etc. fins
els subespais de dimensié maxima, que seran els de dimensid n — 1. Aquests darrers
subespais s'anomenen hiperplans.

De la mateixa manera que una equacid al pla representa una recta i una equacio
a l'espai 3D representa un pla, una equacié a lespai de dimensid n representa un
hiperpla. Per exemple, si considerem vectors en lUespai de dimensid 7 (és a dir, vectors
amb 7 coordenades), aquesta equacio

2x1 — 3x0 + x3 — 2x4 + \/gX5 — Xg + (1/3)X7 = -7

determinara un hiperpla amb vector normal (2, -3, 1, -2, V5, —1, 1/3).

Quan passem de l'espai de tres dimensions a un espai de dimensid superior, cal anar
amb compte amb les possible interseccions dels subespais. Per exemple, dos plans en
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3D es tallen, en general, en una recta, pero en dimensié 4 podem tenir dos plans que
es tallin en un Unic punt. La férmula general que governa tot aixo és aquesta. Suposem
que X i Y son subespais d'un espai de dimensié n, de dimensions r i s respectivament.
Aleshores, 0 bé X i Y no es tallen o es tallen en un subespai Z que pot tenir qualsevol
dimensié entre max(0, r+s—n) i min(r, s). Per exemple, dos plans en dimensié 4 poden
tallar-se en un punt, en una recta o en un pla. Un subespai de dimensié 3 i un pla en
dimensié 4 es poden tallar en una recta o en un pla, etc.



29. Introduccio al clustering

Plantejament del problema

Suposem que tenim un gran nombre de dades empiriques sobre individus que sabem o
creiem que pertanyen a dues o tres (o més) poblacions diferents. L'objectiu és desenvo-
lupar algun métode per assignar cadascun d'aquests individus (i d'altres individus que
estudiem en el futur) a la seva poblacié. Posem alguns exemples per entendre millor
de qué estem parlant.

Tenim bases de dades sobre l'aspecte visual de molts tumors al pit i els oncolegs
voldrien disposar d'un métode per deduir, a partir de l'analisi visual i amb una
bona probabilitat d’encert, si un tumor al pit és maligne o no ho és.

Disposem d'una gran base de dades meteorologiques sobre una zona i voldriem
identificar un determinat nombre de situacions meteorologiques estandard.

En un jaciment arqueologic hem trobat restes de ceramica que pertanyen a dues
civilitzacions diferents. Analitzem un gran nombre de mostres i en determinem
el contingut de diversos metalls (alumini, ferro, magnesi, etc.), amb la intencid
de trobar un criteri que ens permeti assignar cada peca a la civilitzacié a qué
pertany.

Hem trobat diversos exemplars d'una planta que voldriem saber si pertany a una
varietat coneguda (i, en cas afirmatiu, a quina). Estudiem un determinat nombre
de propietats d'aquests exemplars i necessitem una manera de comparar-les amb
les de les varietats conegudes.

Tenim una gran base de dades sobre els clients d'una empresa i voldriem cate-
goritzar aquests clients agrupant-los en un petit nombre de models, de cara a fer
campanyes de marqueting més eficients.

Volem classificar les ciutats europees segon la seva eficiencia ecologica. Per a
cadascuna d'elles mesurem un nombre de variables (percentatge de reciclatge,
contaminacio de l'aire, contaminacid acustica, Us d'energies renovables, etc.). Vo-
lem determinar si, a partir d'aquestes variables, podem classificar les ciutats en
diversos grups.

El clustering és el conjunt de técniques matematiques que s'utilitzen per atacar

aquesta mena de problemes.

La primera cosa que ohservem és que es tracta d'un problema clarament multidi-

mensional. En efecte, si en els exemples anteriors trobéssim una Unica variable que ens
distingis entre els diversos clisters, el problema seria trivial. Per exemple: Suposem
que volem distingir quimicament el vi fet amb garnatxa del vi fet amb carinyena. Si,

180
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per exemple, detectéssim que el vi de garnatxa conté sempre una determinada antocia-
nina caracteristica, mentre que el vi de carinyena no la conté mai, aleshores no caldria
fer clustering: n'hi hauria prou amb detectar analiticament la preséncia o abséncia
d’aquesta antocianina concreta. En els casos reals, aquesta situacié no es déna i cal
considerar un gran nombre de variables, de manera que el problema es converteix en
multidimensional.

Considerem amb més detall un altre exemple.! Volem caracteritzar el suc de les ta-
ronges, les mandarines i els seus hibrids a partir de l'analisi quimica dels carotenoides
que contenen. Procedim d’'aquesta manera:

1. Seleccionem un gran nombre de varietats de taronges (T), mandarines (M) i
hibrids (H). En lestudi citat, 12 varietats de T, 6 de M i 14 de H. Fem una
extraccid de suc, en condicions experimentals perfectament controlades.

2. ldentifiquem 12 tipus de carotenoide presents en els sucs d'aquests citrics. Uti-
litzant analisi cromatografica determinem les quantitats de cadascun d'aquest 12
carotenoides en el suc de cadascuna de les 32 varietats de citrics.

3. El resultat experimental consisteix, doncs, en 32 vectors (un per a cada varietat)
de dimensio 12 (una per a cada carotenoide). Aixi,

_(al 2 12
vog = (a2g, a3g, - - -+ a3

vol dir que el suc de la varietat 28 (que és la taronja sanguina) té un contingut
igual a alg del carotenoide niimero 1, (neocrom), un contingut igual a a%s del ca-
rotenoide ndimero 2, (anterxantina), etc. Com que aquests 28 vectors en dimensio
12 no els podem visualitzar, les seves propietats cal estudiar-les utilitzant les
eines de la geometria en dimensid 12.

4. Imaginem que el contingut de, diguem, S-criptoxantina (que és el carotenoide
nimero 10 de la nostra llista) s'hagués distribuit aix{ entre les 32 varietats (l'eix
horitzontal indica el contingut en S-criptoxantina i cada lletra indica una de les
32 mostres):

H gHH

H
MM MM MM THTT T T FRE A HH HHY

Aleshores, veuriem (a simple vista, sense cap necessitat d'analitzar matematica-
ment el resultat) que hi ha exactament tres cliisters formats per les tres categories
que volem estudiar i que, per tant, el contingut en aquest carotenoide concret
ens classifica els citrics en taronges, mandarines i hibrids.

Pero el resultat experimental no és com en el grafic anterior, sind que s’assembla
mes a aquest altre:

'El que ve a continuacié esta basat en l'article K. L. Goodner, R. L. Rouseff, H. J. Hofsommer, Orange,
Mandarin, and Hybrid Classification Using Multivariate Statistics Based on Carotenoid Profiles, ). Agric.
Food Chem. 49 (2001),1146-1150.
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MHHM HM HT HMHTHHT HT TTTM T H MT TH HHT T H

Aqui, no veiem clisters evidents perqué ni la S-criptoxantina ni, de fet, cap ca-
rotenoide aillat ens distingeix les tres families de citrics.

5. Cal utilitzar, com a minim, dos carotenoides. Imaginem que n'agafem dos de
concrets i aleshores cada citric ens dona un punt del pla, que és el punt de
coordenades (x,y) on x és la quantitat del primer carotenoide escollit i y és la
quantitat del segon. Suposem que obtinguéssim una grafica com la segiient en la
que st que s'observessin tres clisters relativament ben diferenciats corresponents
a les tres families de citrics que volem caracteritzar. Si aixo passés, tindriem el
problema resolt amb la utilitzacié de dues variables i la teoria matematica del
clustering practicament seria supeérflua.

Pero els resultats experimentals ens diuen que amb dues variables tampoc no
n'hi ha prou, ni amb tres, ni amb quatre.

En conclusid: ens calen eines matematiques per poder determinar (sense «veure-
ho») si uns punts de l'espai de n dimensions s’agrupen en diversos clisters. Aquestes
eines matematiques formen el que es coneix com a clustering i s6n eines que, en
lactualitat, tenen una importancia immensa en les arees de lanalisi de dades (big
data, data mining, machine learning, bioinformatica, etc.).

29.2 Estandarditzacio

Suposem que els resultats d'unes observacions sén una série de punts vi,..., v, en
un espai de dimensié m. Cada punt (o vector, com n'hi vulguem dir) representa una
observacio i els seus components representen els valors de cadascuna de les variables
que hem mesurat en aquesta observacid. En tot el que farem a partir d’ara pensarem
que aquestes variables sén numériques o, més ben dit, sén nombres reals. El cas de
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variables no numériques també és molt important a la practica, pero no el considerarem,
per no complicar l'exposicid.

Imaginem que estem fent un estudi de voltors comuns i de cada exemplar hem pres
una série de mesures (llargada, pes, envergadura, llargada de la cua, llargada del bec),
de manera que el convertim en un vector com aquest

v = (102.5cm, 8.42kg, 2.55m, 27.2cm, 7.6 cm).

Immediatament ens adonem que no podrem operar amb aquests punts (per exemple,
calcular la distancia entre dos d'ells) perque

e Estem utilitzant unitats de mesura diferents (metres i centimetres) i, encara pitjor,
magnituds diferents (longitud i pes).

e Les escales de mesura de cada variable no sén comparables. Per exemple, una
diferéncia d'un cm a Uenvergadura és insignificant, perd una diferéncia d’'un cm a
la mida del bec és molt notable.

Per tant, abans de comencar a treballar amb aquestes dades ens cal expressar-les de
manera que els diversos components siguin plenament compatibles. La resposta és
utilitzar un metode que es coneix com a estandarditzacio.

Suposem que tenim un gran nombre de valors d'una variable xi, ..., x,, expressats
en unes certes unitats. Calculem aquests dos valors estadistics fonamentals:

1. La mitjana dels valors

X1+ X
p=——.

2. La desviacio tipica dels valors

Ca = pf 4 (o = p)?
n—1 '

g =

El significat de la mitjana és ben conegut. La desviacié tipica ens mesura com es
dispersen els valors respecte de la mitjana: una desviaci6 tipica petita indica que els
nombres xi, ..., x, estan forca agrupats al voltant de la seva mitjana, mentre que una
desviacié tipica? gran indica que els nombres xg, ..., x, estan forca allunyats de la seva
mitjana. Observem que p i o tenen les mateixes unitats que la variable inicial.

Per estandarditzar, substituim cada valor x; per la seva estandarditzacié x,f

Observem que els valors x/ no tenen unitats. Sén valors estandarditzats i, per aixo
mateix, totalment comparables amb els valors estandarditzats de qualsevol altra mesura
que haguem pres, independentment de les seves unitats.

2Aqui no ens podem entretenir discutint la distincié entre estadistics mostrals i parametres poblacio-
nals. Hem de deixar-ho per als cursos d'estadistica.
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29.3 El métode k-means

En aquesta introduccié superficial a les técniques de clustering només explicarem? un

unic metode, potser el més classic de tots, anomenat k-means. En aquest métode cal
haver decidit a la bestreta el nombre de clisters que volem trobar (si no ho sabhem,
també hi ha métodes per determinar-lo, pero no els estudiarem). Diguem-n'hi k.

Tenim inicialment una colleccié de n punts d'un espai de dimensiéd m, vi,..., vy i
suposem que, si cal, els hem aplicat el procés d'estandarditzacié descrit a l'apartat
anterior. Hem decidit que volem agrupar aquests punts en k clisters. Aleshores, fem
aixo:

1. Tenim una particid en clisters aproximada (i, ..., C.

2. Per a cada cltster Cj, determinem el seu baricentre, que és el punt que té per co-
ordenades les mitjanes de les coordenades de tots els punts del clister. D'aquest
baricentre n’hi diem b;.

3. Per a cada punt x;, calculem les distancies d(x;, bj) d'aquest punt a tots els
baricentres.

4. Definim uns nous clisters CJ{ de la manera segtient. Si el baricentre més proper
al punt x; és el baricentre bj;, assignem el punt x; al clister CJ’O

5. Repetim el procés tornant a comencar pel pas 1.

Veiem que tenim un procés iteratiu en el qual, presumiblement, anirem trobant
clisters cada vegada «millors». EL concepte de millor és aquest: un clister és millor
st els seus punts s'agrupen forca bé al voltant del seu baricentre. Expliquem aixo una
mica millor. Una bona mesura de la «bondat» d'una agrupacié en clisters és aquesta.
Definim

r = suma de les distancies de cada punt al baricentre del seu clister.

Com més petit sigui el valor de r, millor sera la distribucié en clisters. ELl procés que
acabem de descriure fa disminuir el valor de r i, per tant, va obtenint clisters cada
vegada «millors». Per completar la descripcié del métode hem de tenir en compte aixo:

e Per iniciar el procés, escollim a l'atzar k punts entre els punts vi,...,v,, els
prenem com a baricentres i comencem pel pas 3. ELl resultat a que arribem
dependra d'aquesta eleccié inicial dels centres.

e En el moment que els clisters no canviin quan repetim el procés, haurem acabat.

e No hi ha garantia que el procés ens condueixi al millor resultat possible. A cada
iteracid, el procés fa disminuir el valor de r. Per tant, el procés ens conduira
a un minim local de r, que podria ser diferent del minim global. A la practica,
el que fem és aplicar aquest procés moltes vegades (recordem que cada vegada
que apliquem el procés comencarem amb uns centres diferents i, per tant, podem
arribar a resultats diferents) i quedar-nos amb el resultat que doni el valor de r
més petit.

3Molt rudimentariament!
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e Es molt senzill programar aquest métode amb qualsevol llenguatge que cone-
guem. Els llenguatges més especialitzats (com és R) ja el duen incorporat.

Fem un exemple en dimensié dos, de manera que puguem veure com a cada iteracio
ens anem acostant a la «bona» distribucié en clisters. Comencem amb un cert nombre
de punts del pla que «visualment», sembla que es distribueixin en tres clusters.
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Posem en marxa el procés i observem qué passa a cada nova iteracio. Els tres
clisters estan pintats de color blau, vermell i verd, respectivament; els tres centres sén
els punts de color negre i el valor de r apareix, en cada cas, a la part superior.
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29.4 Fem-ho amb sage

Leina idonia per als tipus de problemes que hem estudiat en aquest capitol és el
programa R. Tanmateix, sage pot invocar R, de manera que, sense sortir de sage,
podem executar comandes de R, per exemple la comanda sage: r.kmeans() invoca la
comanda kmeans del programa R. D’altra banda, el métode k-means és molt simple
de programar. Com a exemple, els dibuixos de l'exemple anterior estan generats amb
aquest codi sage:

sage: def random_between(j,k):

e a=int (random()*(k-j+1))+j

et return a

sage: def d(a,b):

....: return sqrt((a[0]-b[0])~2+(al1]l-b[1])~2)

sage: def dibuixa(L,c):

el if len(L)==1:

R return plot (100, (x,0,10),ymax=10,ymin=0,aspect_ratio=1)+

R text (r’$\bullet$’,L[0],fontsize=20,color=c)

R return text(r’$\bullet$’,L[0],fontsize=20,color=c)+dibuixa(L[1:],c)
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: A=[(1,1),(1.2,3),(2,4),(4,2),(5,4.5),(6,1.5),(6.5,4),(7,3.5),

: (7.2,4),(8,3),(9,3),(3,3.5),(2.5,2),(3.5,3),(5,3.5),

: (4.5,4),(5.5,2.5),(6.5,3),(4.5,2.5)]

: B=[(2,6),(2.2,6.5),(3,7),(3.5,9),(3.7,8.5),(2.7,8),(1.5,7),(2,9),(2,8)]
: ¢c=[(7,6),(6,6.5),(9.7,7),(9,9),(8.7,8.5),(7.7,8),(6.5,8.5),(7,9),

: (7.5,7),(6.5,7),(7,7.5)]

: L=A+B+C

: def agrupa(M):

KO=[L[i] for i in [0..len(L)-1] if d(L[i],M[0])<min(d(L[i],M[1]1),
d(L[i],M[2]1))]

K1=[L[i] for i in [0..len(L)-1] if d(L[i],M[1])<min(d(L[i],M[0]),
d(Lil,M[2]1))]

K2=[L[i] for i in [0..len(L)-1] if d(L[i],M[2])<min(d(L[i],M[0]),
d(L[i],M[11))]

return [KO,K1,K2]

: def troba_centres(H):

c=[]

for i in [0,1,2]:
a=sum([H[i] [j1[0] for j in [0..len(H[i])-11]1)/len(H[i])
b=sum([H[i] [j][1] for j in [0..len(H[i])-1]1)/len(H[i])
c.append((a,b))

return c

: def error(X):

centres=troba_centres (X)

return sum([d(centres[0],X[0][i]) for i in [0..len(X[0])-111)+
sum([d(centres[1],X[1]1[i]) for i in
[0..1en(X[1])-1]])+sum([d(centres[2],X[2] [i]) for i in [O..
len(X[2])-111)

: a=random_between(0,len(L)-1)
: b=random_between(0,len(L)-1)
: c=random_between(0,len(L)-1)
: M=[L[al,L[b],L[c]]

: centres=M

: acabat=False

: while not acabat:

R=agrupa(centres)
CC=troba_centres(R)
if centres==CC:
acabat=True
centres=CC

: dibuixa(R[0],’blue’)+dibuixa(R[1],’red’)+dibuixa(R[2], green’)+
: dibuixa(CC,’black’)+text (round(error(R),2),(8,9.5),fontsize=15,
: color=’black’)



30. Matrius

Tots estem familiaritzats amb les presentacions de dades numériques en forma de
«graella» o «taula de doble entrada», de manera que les dades estan organitzades en
files i columnes. El concepte matematic que hi ha al darrere d'aixo és el concepte de
matriu:

2/7 —1/2 0.759

6 o) (3, %) (E) e
gy cos(2.5) -3 0.908

Parlarem de matrius de n files i m columnes i, si n = m, parlarem de matrius quadrades.
Si volem escriure una matriu genérica utilitzarem la notacié del doble subindex:

a1 412 - dlm
A=1 | =(ay)
dnl dn2 - dmm

D’acquesta manera, el terme a;; de la matriu A = (aj;) és el que es troba a la fila i i
a la columna j. Observem que les matrius amb una Unica fila i les matrius amb una
Unica columna es poden entendre com si fossin vectors. St una matriu té n files i m
columnes, direm que és una matriu n x m.

30.1 Operacions algebraiques amb matrius

El concepte matematic de matriu transcendeix completament el de «graella de nom-
bres» perqué les matrius estan dotades d'unes operacions similars a la suma i el
producte de nombres i aquestes operacions son les que expliquen la immensa utilitat
de les matrius en molts camps de la ciéencia.

e Si dues matrius A i B tenen la mateixa «mida» (és a dir, el mateix nombre de
columnes i el mateix nombre de files), podem definir la seva suma A+ B a partir
de sumar cada terme de A amb el terme de B que es troba a la mateixa fila i la
mateixa columna. Es a dir, st A = (a;;) i B = (b;j), aleshores A+ B = (aj; + bj).
Si dues matrius tenen mides diferents, no es poden sumar.

e Podem multiplicar una matriu 1 x n per una matriu n x 1 aixt:

b11
bo1

(a11 @12 --- a1n) | . | = anrbun + anzbor + -+ + arnbnr.
bnl
Observem que aquesta multiplicacid és, en el fons, el mateix que el producte
escalar de vectors.

188
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e La multiplicacié anterior es pot generalitzar al cas d'una matriu A que tingui
tantes columnes com files té una matriu B. Més concretament, sigui A = (ajj)
una matriu n x m i sigui B = (bj;) una matriu m x k, aleshores podem multiplicar
aquestes dues matrius AB = (¢jj) a base de multiplicar (en el sentit del punt
anterior) cada fila de la matriu A per cada columna de la matriu B. La férmula
concreta seria

Cij = aj1byj + aizboj + - - + aimbm;.
Observem que pot passar que la multiplicacié AB sigui possible, pero la multi-
plicacié BA no ho sigui.

e Finalment, podem multiplicar una matriu A (de qualsevol mida) per un escalar r
simplement multiplicant tots els seus termes per r: r(a;;) = (rajj).

Aquestes operacions conserven les propietats fonamentals de les operacions de
nombres reals, amb alguna diferéncia important.

1. La suma de matrius i la multiplicacid per escalars compleixen aquestes conegudes
propietats

e A+ B = B+ A (propietat commutativa), (A+ B)+ C = A+ (B+ C) (propietat
associativa).

o r(A+B)=rA+rB; (r+s)A=rA+sA; 1A= A; r(sA) = (rs)A

e A+(0)=AiA—A=(0), on (0) indica una matriu de la mida apropiada

amb tots els termes igual a zero.

Evidentment, aquestes formules només tenen sentit si les matrius que hi aparei-
xen tenen mides compatibles per tal que les operacions siguin possibles.

2. La multiplicacié de matrius també compleix aquestes conegudes propietats

e (AB)C = A(BC) (propietat associativa), A(B + C) = AB + AC (propietat
distributiva).

e r(AB) = (rA)B = A(rB).

e Per a cada valor n hi ha una matriu n X n anomenada / o «matriu identitat»

amb la propietat que Al = AL IB = B, si Ai B sdn matrius de mida
convenient. Aquestes matrius / sdén

1 .- 0

1 00
W (53) (oro) | ]
00 1 0 ... 1

3. En canvi, cal anar amb molt de compte perqué les matrius es comporten diferent
dels nombres en aquests dos aspectes:

e El producte de matrius no compleix la propietat commutativa. Es a dir, és
facil trobar dues matrius A i B tal que AB # BA. Per exemple

G0l )=G DG o)=6 )G o)
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e El producte de dues matrius pot ser igual a zero (és a dir, una matriu on
tots els seus termes son zero) sense que cap de les dues matrius sigui igual

a zero. Per exemple,
1 0)\/0 0y /(0 O
1 0/\1 1) \0 0/

30.2 La matriu inversa

Per resoldre l'equacié 3x =5 diem que «passem el 3 dividint al costat dret» i obtenim
x = 5/3. Si volem analitzar millor el que realment estem fent direm que multipliquem
els dos costats de lequacié per linvers de 3, és a dir per 1/3. Aleshores, obtenim
x = (1/3)3x = (1/3)5 = 5/3. Imaginem que ara volem resoldre una equacié similar

amb matrius 2 x 2:
2 1 1 -2
G )x=G o)

De fet, ho podem fer exactament igual: multiplicant els dos costats de l'equacio per la

matriu inversa de (% fl) pero cal parar atencié en dos aspectes:

1. Quina és la matriu inversa de la matriu (% _11)?

2. Com que la multiplicacié de matrius no compleix la propietat commutativa, hem
d’anar amb molt de compte de multiplicar les matrius en l'ordre correcte.

Discutim el primer punt. Suposem que A és una matriu quadrada. La inversa de A és
una matriu A~! que té aquesta propietat

AAL = A1A= .

De la mateixa manera que el nidmero 0 no admet invers, també hi ha matrius que no

tenen inversa. Per exemple, la matriu (}9) no pot tenir inversa perqué, si en tingués,

arribariem a aquest absurd: com que
1 0y /0 0y /0 O
1 0/\1 1) \0 0/’
0 0\ /1 0\ '/0 0y (00
1 1) \10 0 0/ \0 0/

En conclusid, hi ha matrius que tenen inversa i altres que no en tenen. Quines? En el
cas de les matrius 2 x 2, la resposta és relativament simple. Observem que

a b d —b A 0
(£ 5 (% B) (2 ) -aramase

Per tant, les matrius 2 x 2 que tenen inversa sén aquelles amb A # 0 i la inversa es
calcula d'aquesta manera senzilla

o =5

també tindriem
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Aquest nimero A = ab — cd s'anomena el determinant de la matriu. Les matrius
invertibles sén exactament aquelles que tenen determinant diferent de zero.

En el cas general de les matrius quadrades de mida qualsevol, la situacid és es-
sencialment la mateixa
e Hi ha una funcié (complicada) anomenada el determinant que assigna a cada
matriu A un nombre det(A) que té la propietat fonamental
det(AB) = det(A) det(B).

Per a les matrius 2 x 2 i 3 x 3 aquesta funcié és

a b
det(c d)—ad—bc

a b c
det|d e f| =aei+cdh+ bfg— ceg— afh— bdi.
g h i

Per a les matrius més grans, la formula de calcul del determinant és massa
complicada i el calcul del determinant el farem, naturalment, amb un ordinador.

e Les matrius invertibles son exactament les que tenen determinant # 0.

e Hi ha una forma complicada de trobar efectivament la inversa d'una matriu que
tingui determinant A # 0. Per a les matrius 2 x 2 i 3 x 3 la inversa ve donada

per
a B\ ' 1(d -b
(c d) A (—C a >

a b c 1 ei—fh «ch—bi bf—ce

d e f =2 fg—di ai—cg cd-—af

g h i dh—eg bg—ah ae— bd
que, com veiem, ja és massa complicada per calcular-la sense l'ajuda de l'ordina-
dor.

Utilitzant les propietats de les operacions amb matrius, el concepte de matriu in-
versa, i anant amb compte amb lordre en qué multipliquem les matrius, podem resoldre
facilment algunes equacions amb matrius. Per exemple, Suposem que A, B, C, K i M
son matrius quadrades de la mateixa mida i busquem una matriu quadrada X d'aquesta
mateixa mida tal que

AB(XC — K)+ XC =3M.

Podem procedir d'aquesta manera
AB(XC — K)+ XC =3M
ABXC — ABK + XC =3M
ABXC + XC =3M + ABK
(ABX + X)C =3M + ABK
ABX + X = (3M + ABK)C™!
(AB+ X = (3M + ABK)C™!
X =(AB+1"'(3M + ABK)C!
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30.3 Fem-ho amb sage

Per especificar una matriu en sage n’hi ha prou amb llistar els seus elements per files
(i recordar que la primera fila és la fila zero i la primera columna és la columna zero).

sage: E=matrix([[2,3,1],[5,2,3],[1,2,0]11)
sage: E

[2 3 1]

[5 2 3]

[1 2 0]
sage: E[0,2]

1
sage: E[1,0]

5
sage: det(E)

5
sage: E~(-1)

[-6/5 2/5 7/5]

[ 3/6 -1/5 -1/5]

[ 8/6 -1/56 -11/5]
sage: ExE~(-1)

[1 0 0]

[0 1 0]

[0 0 1]
sage: ExE~(-1)==identity_matrix(3)
True
sage: F=matrix([[0,-1],[1,1],[5,-2]11)
sage: ExF

[ 8 -1]

[17 -9]

[ 2 1]
sage: K=matrix([[4,4],[-4,-311)
sage: L=matrix([[3,4],[-2,-31])
sage: D=matrix([[3,0,-1],[2,1,4]])
sage: Fx(K*L)~(-1)*D+identity_matrix(2)
[ 156/2 1 5/2]

[ 3/4 1 -1/4]

[197/4 7 69/4]
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31.1 Aplicacions lineals

Suposem que tenim una matriu n X m

a1 - dim
A=
dnl *°°  dnm
i un vector V de dimensié m
7:(V1,...,Vm)

(0 un punt de lespai de dimensié m, que és essencialment el mateix). Si escrivim
aquest vector en forma d'una matriu d’'una Unica columna, aleshores podem considerar
la multiplicacié de matrius AV i considerar que el resultat és un vector de dimensid n

il - dim Vi w1
AV = | ==

dnl ' dnm Vm Wp

D’aquesta manera, una matriu la podem pensar com una funcié que transforma vectors
en vectors. En direm una aplicacié lineal o també una transformacio lineal.

Una aplicacid lineal direm que és ortogonal si no modifica ni la dimensié ni la
longitud dels vectors. Es a dir, A ha de ser una matriu quadrada tal que || V|| = ||AV]].

Exemples:

e Considerem la transformacid lineal de vectors del pla donada per la matriu

(s

on r és un escalar diferent de 0 i de 1. Evidentment, AV = rv i aquesta
transformacid lineal és una homotécia perqué multiplica tots els vectors per un
factor constant.

e Considerem la transformacié lineal de vectors del pla donada per la matriu

=5 3

amb r # s. Aquesta transformacié és una homotécia en la direccié de la primera
coordenada i una homoteécia diferent en la direccié de la segona coordenada.
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e Considerem la transformacié lineal de vectors del pla donada per la matriu

01
A=
10
que converteix el vector (x, y) en el vector (y, x). Geométricament, es tracta de
la reflexido respecte de la diagonal del primer quadrant. Observem que aquesta
transformacié lineal, a diferéncia de les dues anteriors, no modifica les longituds
dels vectors. Es una transformacid ortogonal. La reflexié respecte de qualsevol

recta que passi per l'origen també es pot expressar com a una transformacid
ortogonal donada per una matriu apropiada.

e Una rotacio de centre a lorigen de coordenades també és una transformacié
ortogonal. En concret, la rotacié d'angle € ve donada per la matriu

cosf) —sinf
Ro = <sin0 cosf > ’
%

T Lo — 7,
Per exemple, el resultat d’aplicar la rotacié d’'angle 7/3 al vector i + 3 és

- o L3\ 71\ 1-3V3— 3+V3-
2 2

Aquest mateix concepte d'aplicacid lineal ens permet entendre els sistemes d'e-
quacions lineals com equacions matricials molt senzilles. En efecte, aquest sistema
lineal de n equacions amb m incognites

aiixy + -+ aimXm = b1

an X1+ -+ anmXm = by

és equivalent a aquesta Unica equacié matricial
AV =W

amb A = (aj)), V =(xt,....,xm), W = (b1, ..., bm). En particular, si A fos una matriu
quadrada invertible, la solucié seria V=AW

31.2 Vectors propis i valors propis

Considerem a partir d'ara les transformacions lineals donades per una matriu quadrada
A. En general, aquesta aplicacié lineal pot girar, reflectir, estirar o comprimir els
vectors de manera complexa. Si tenim un vector que no canvia de direccié quan li
apliquem la transformacié A, direm que es tracta d’'un vector propi. Aquest concepte
és extraordinariament important. Donem-ne una definicié molt precisa.

Un vector V # 0 direm que és un vector propi per a la matriu A si
AV =V per algun escalar \. Aquest escalar )\ direm que és el valor
propi de V.
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Observem que, si V és un vector propi, tots els multiples seus (diferents de zero)
també ho soén.

Exemples:

e Una rotacié al pla (d'angle # 0, 7/2, és clar) no pot tenir vectors propis perqué
tots els vectors (diferents de 0) canvien de direccio.

e Una reflexio al pla respecte d'una recta té només dos vectors propis v, w (Lels
seus multiples, és clar). En efecte, els Unics vectors que no canvien de direcci6
son els de leix de reflexié (que es queden igual) i els perpendiculars a leix de
reflexié (que canvien de signe i, per tant, no canvien de direccid). Els valors
propis corresponents sén 1 i —1. Per exemple, la reflexié respecte la diagonal
del primer quadrant té

— vectors propis de valor propi 1, que son els multiples no nuls del vector (1, 1),

— vectors propis de valor propi —1, que sén els multiples no nuls del vector
(1,-1).

e En una homotecia tots els vectors son vectors propis amb el mateix valor propi.

e En una transformacié del tipus A =

(52) amb r # s, hi ha dos vectors propis:
7 = (1,0) de valor propi ri vV =(0,1)

de valor propi s.

Com podem determinar els vectors propis d'una matriu? El métode per trobar-los
es basa en el que es coneix com el polinomi caracteristic de la matriu. Es tracta del
polinomi definit aixi

q(x) = det(A — xI)

on A és la matriu en quiestid, / és la matriu identitat (de la mateixa mida que A) i x és

la variable del polinomi. Per exemple, si A = (é j) el seu polinomi caracteristic és

aquest

q(x):det(A—xl):det(@ j)—(é 2>>:det<lgx _l_ix):x2+1

La importancia d'aquest polinomi rau en aquest fet:
Les solucions de l'equacié g(x) = 0 son els valors propis de la matriu A.

L'explicacid és ben senzilla: un vector propi de valor propi A és un vector V #0 tal

que
AV = \V =MV,

Per tant,

(A=X)V =0
i aixo ens diu que la matriu A — Al no pot ser invertible i, en conseqiiéncia, el seu
determinant ha de ser zero. Pero el seu determinant és g(\).

Tenim, doncs, un métode per trobar els vectors propis d'una matriu. Practiquem-lo
en tres exemples de matrius 2 x 2.
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Exemple. Trobem els vectors propis de la matriu

Seguim aquests passos

1. Calculem el polinomi caracteristic de la matriu.
o —3—x —2 2
q(x)-det( 4 3_X>—x—1.

2. Els valors propis seran les solucions de g(x) = 0. En aquest cas, hi ha dos valors
propis: A1 =1, A\p = —1.

3. Per a cada valor propi, trobem els vectors propis corresponents resolent un sis-
tema d’equacions.

e Vectors propis de valor propi A\; = 1. Sdn els vectors V tals que AV =7V.
Si posem V= (a, b), aquests vectors han de complir

-3 =2\ (a\ _(a

4 3 b) \b)’
Aix0 és un sistema d'equacions lineals, compatible indeterminat. Les seves
solucions sén tots els vectors multiples de V = (1, —2).

e Vectors propis de valor propi A, = —1. Sdn els vectors V tals que AV =
—~V.Si posem V= (a, b), aquests vectors han de complir

-3 =2\ (fa\ (-—a

4 3 b) \-b)’
Aix0 és un sistema d'equacions lineals, compatible indeterminat. Les seves
solucions son tots els vectors multiples de V= (1,-1).

4. En conclusid, els vectors propis de la matriu A son

e Els multiples (diferents del vector zero) de (1, —2) sén vectors propis de valor
propi 1.

e Els multiples (diferents del vector zero) de (1, —1) sén vectors propis de valor
propt —1.

Exemple. Trobem els vectors propis de la matriu
3 -1
as ().

Seguim aquests passos
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1. Calculem el polinomi caracteristic de la matriu.

3—x -1

— — 2
q(x)-det( 1 1_X>—x 4x + 4.

2. Els valors propis seran les solucions de g(x) = 0. En aquest cas, hi ha un tnic
valor propi: A = 2.

3. Per a cada valor propi, trobarem els vectors propis corresponents resolent un
sistema d'equacions. Com que només hi ha un valor propi, només hem de resoldre

aquest sistema
3 =1\ [a\ _[2a
1 1 b) \2b/)"

Aixo és un sistema d'equacions lineals, compatible indeterminat. Les seves solu-
cions sdn tots els vectors multiples de V= (1,1).

4. En conclusio, els vectors propis de la matriu A sén els multiples (diferents del
vector zero) de (1,1) i el seu valor propi és 2.

Exemple. Trobem els vectors propis de la matriu

a=(3 )

Seguim aquests passos

1. Calculem el polinomi caracteristic de la matriu.

q(X)Zdet(lgx -1 >:x2+1.

-1 —-x
2. Els valors propis seran les solucions de g(x) = 0. En aquest cas, no hi ha
solucions. Per tant, no hi ha valors propis i, en consequiéncia, no hi ha vectors
propis.

Tot aix0 que hem fet és valid també per a matrius quadrades de qualsevol mida.

31.3 Fem-ho amb sage

Podem multiplicar una matriu per un vector, si tenen les mides apropiades.

sage: E=matrix([[2,3,1],[5,2,3],[1,2,0]1)
sage: v=vector([1,0,-1])
sage: Exv

(1, 2, D

Si tenim una matriu quadrada, podem calcular el seu polinomi caracteristic, els
valors propis i els vectors propis.

sage: charpoly(E)
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x"3 - 4%x72 - 18*x - 5
sage: E.eigenvalues()
[-2.4693606212421117, -0.29915221925495197, 6.7685128404970637]
sage: E.eigenvectors_right()
[(-2.469360621242117, [(1, -1.855826774284447, 1.098119701611227)], 1),
(-0.299152219254957, [(1, -0.283166655899457, -1.449652251556587)], 1),
(6.768512840497067, [(1, 1.402151324920747, 0.5620588657348407)], 1)]

Interpretem aquest ultim resultat. En primer lloc, estem calculant els vectors propis per
la dreta perqué nosaltres sempre considerem que quan multipliquem una matriu A per
un vector v el vector és a la dreta: Av. Els valors propis son, aproximadament, —2.469,
—0.299, 6.769. Els interrogants al final indiquen que sage coneix internament els valors
exactes d'aquests valors propis, Els nombres 1 a la dreta de cada fila indiquen que els
valors propis son simples, és a dir, no repetits. Finalment, per a cada valor propi tenim
un vector propi. Per exemple, per al valor propt —2.469, un vector propi és el vector

V= (1, —1.855826774284447,1.098119701611227).

La situacié és una mica diferent si treballem amb una matriu de nombres inexactes.
Per exemple, prenem la mateixa matriu d’abans pero substituim el terme 2 pel terme
2.0.

sage: E=matrix([[2.0,3,1],[5,2,3]1,[1,2,011)

Si li demanem que calculi els valors propis obtenim els mateixos resultats d'abans,
sense els interrogants. Aixo vol dir que es tracta de nombres inexactes. A més, sage
ens avisa que estem treballant amb nombres inexactes i que no pot garantir que el
resultat sigui correcte.

sage: E.eigenvalues()

UserWarning: Using generic algorithm for an inexact ring, which will
probably give incorrect results due to numerical precision issues.
[6.76851284049706, -0.299152219254952, -2.46936062124211]

Si ara li demanem els vectors propis, no es limita a avisar-nos, siné que refusa
fer-ho.

sage: E.eigenvectors_right()
NotImplementedError: eigenspaces cannot be computed reliably for
inexact rings

Si volem que, malgrat els riscos, sage calculi els vectors propis, hem de dir que la
matriu és de RDF (nombres reals de doble precisid).

sage: E=matrix(RDF,[[2.0,3,1],[5,2,3],[1,2,0]11)
sage: E.eigenvectors_right()
[(6.768512840497064,
[(-0.5519945378497666, -0.7739798725950621, -0.3102534238356669)]1, 1),
(-0.2991522192549521,
[(-0.5606245242943896, 0.15875017175966485, 0.812710603921203)], 1),
(-2.469360621242112,
[(0.4207046550354353, -0.7807549628808617, 0.46198407025396426)]1, 1)]



32. Matriu de Leslie it matriu de mobilitat
social

32.1 Matriu de Leslie d'una poblacié estructurada

Recordem el model exponencial discret
x(t+1)=rx(t)

que apareix quan una poblacié es multiplica per una quantitat constant r cada periode
de temps. Per exemple, un cultiu de bacteris que es dupliquen (r = 2) cada unitat
de temps. Matematicament, l'estudi de l'evolucié d'aquest model és molt senzill i ja
el varem fer a l'apartat 10.1. Si comencem amb N individus, cada unitat de temps la
poblacié vindra donada per aquesta successio

No, rNo, ero, r3N0,...,rkN0,...

de manera que la poblacié tendira a infinit de manera exponencial i, en particular, la
poblacié després de k unitats de temps sera igual a r*Np.

Aquest model pressuposa que la poblacié és homogénia en el sentit que tots els seus
individus tenen el mateix comportament reproductiu. A la practica, sovint, la situacid
és diferent perqué, per exemple, els individus més joves potser encara no sdn capacgos
de reproduir-se. Podriem generalitzar el model anterior estructurant la poblacié en
dos nivells: individus joves (J) i individus adults (A), de manera que la seva reproduccid
podria venir requlada d'aquesta manera

e Els individus joves no es reprodueixen.

e Després d'una unitat de temps, el 20% dels individus joves es converteixen en
adults it Ualtre 80% ha mort. EL 60% dels individus adults ha sobreviscut i laltre
40% ha mort.

e Els individus adults tenen una taxa de reproduccié igual a r cada unitat de temps.
Es a dir, cada adult dona lloc a r individus (joves, és clar) cada unitat de temps.

Com podriem descriure matematicament el comportament d'aquesta poblacié estructu-
rada? Ens cal considerar dues variables

J(t) = nombre d'individus joves al temps t.

A(t) = nombre d'individus adults al temps ¢t.

D’aquesta manera, la mida de la poblacié a Uinstant t ja no és un nombre, siné que és
un vector de dimensid 2

N(t) = (J(1), A(t))

199
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i volem saber com evoluciona aquest vector amb el pas del temps.

Després d'una unitat de temps,’ les dues variables J(t) i A(t) hauran canviat de
valor i, d'acord amb les tres normes anteriors, valdran

J(t+1) = rA(t)

A(t+1)=0.2J(t) + 0.6 A(t)
Qué podem dir sobre la poblacié a llarg termini? Aqui l'analisi ja no sembla tan senzill
com en el cas del model exponencial.

El primer pas per poder analitzar aquesta situacié és adonar-se que la podem
escriure en forma matricial d'aquesta manera:

Jt+1)\ (0 r J(t)

A(t+1)) \02 0.6/ \A(t))"
St designem per L la matriu (o o), podem escriure aquesta equacié matricial en la
forma

N(t+1) = L N(t)

que s'assembla molt a lU'expressié del model exponencial discret, canviant la taxa de
creixement, que és un nombre, per L, que és una matriu 2 x 2.

Aquest tipus de matrius L que ens descriuen l'evolucié d'una poblacié estructurada
per edats s'anomenen matrius de Leslie, en honor de Patrick H. Leslie, un matema-
tic que va treballar a Oxford als anys 30 i 40 del segle XX, als inicis de l'ecologia
matematica.

Després d'aquest exemple, ja no hi ha d’haver cap dificultat en entendre que la
situacio pot estendre’s a una poblacié estructurada en un nombre de nivells superior
a 2. Per poder plantejar la matriu de Leslie corresponent només ens cal conéixer

e la taxa de fertilitat de cada nivell de poblacié. En U'exemple anterior, la fertilitat
dels joves (0) i la dels adults (r).

e La taxa de supervivencia de cada nivell de poblacid. En l'exemple anterior, la
supervivencia dels joves (20%) i la dels adults (60%).

Exemple. El gran gall de les praderies (Tympanuchus cupido) és un ocell de la familia
dels fasianids que habita al centre de '"Ameérica del Nord. En un estudi sobre aquestes
aus, s’ha dividit les femelles en tres grups d'edat (C, J, A) i s’ha estudiat la supervi-
véncia i la fecunditat de cada grup d'edat, en cada periode de temps. S’ha vist que les
cries més joves (C) encara no son fertils, tenen una probabilitat de supervivencia del
15% i passen al segon grup després d'un periode de temps. Els individus del segon
grup d'edat (J), tenen una probabilitat de supervivencia del 38% i una mitjana de cries
femelles de 1.87 per femella cada periode de temps. Passen al tercer grup d'edat des-
prés d’'un periode de temps. Finalment, la probabilitat de supervivéncia de les femelles
adultes (A) és del 45% per periode de temps i tenen 2.21 cries femelles per periode.

"Recordem que estem considerant models discrets i que només considerem la situacié de la poblacié
eninstants t =0,t =1, t = 2, etc.
tants t=0,t=1,t =2, et
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En aquest cas, la mida de la poblacid en cada instant de temps sera un vector de
dimensié 3

%
N = (C,J,A)
i la informacié que ens donen queda recollida en aquesta matriu de Leslie
0 187 221
015 O 0
0 0.38 045

32.2 Matriu de mobilitat social

La mateixa idea de les poblacions estructurades per edat i de la matriu de Leslie
s'utilitza en altres contextos. Per exemple, a sociologia i economia es parla de la
matriu de mobilitat social per referir-se a una matriu completament analoga a la de
Leslie. Posem uns quants exemples.

e En una gran universitat hi ha becaris (B), professors lectors (L) i professors per-
manents (P). Cada curs, la politica de contractacié de la universitat és aquesta:

1. Es renoven automaticament tots els contractes dels professors permanents,
excepte un 6% que son jubilacions, defuncions o baixes voluntaries.

2. Per cada 10 professors permanents es contracta un nou becari. Per cada 20
professors lectors es contracta un nou becari.

3. Es renova el contracte del 70% dels becaris, es contracta com a lectors el
2% dels becaris i a la resta de becaris no se’ls renova el contracte.

4. Un 10% dels lectors passen a ser professors permanents, a un 80% se'ls
renova el contracte i a la resta de lectors no se’ls renova el contracte.

Volem estudiar l'evolucid de la plantilla de professorat en aquesta universitat. La
plantilla sera un vector

N = (B, L, P)

i tindrem una matriu de Leslie (o de mobilitat social) L de manera que

\

N(t +1) = L N(t).

La informacid que ens donen és suficient per escriure aquesta matriu:

0.7 0.05 0.1
0.02 08 O
0 01 094

e En un estudi sobre mobilitat social’ es va estudiar l'ocupacié de 697 parelles
pare/fill. Les ocupacions es van estructurar en tres categories E (empleats o pro-
fessionals),®> O (obrers) i P (pagesos). Els resultats de l'estudi es poden expressar

2Vegeu J. C. Goyder, ). E. Curtis (1977) Occupational mobility in Canada over four generations, Canadian
Rev. Soc. Anthr. 14(3), 303-319.
3«White collary a Uestudi original.
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en una taula de doble entrada:

Fill
E O P
E|78 39 11

Pare | O | 64 137 14
P |58 107 189

Aix0 no és una matriu de Leslie o de mobilitat social. Hem de convertir aquests
nombres absoluts en percentatges. Obtenim

0.6094 0.2977 0.1638
L =]0.3047 0.6372 0.3023
0.0859 0.0651 0.5339

D'on surten aquests nombres? Per exemple, per obtenir el coeficient 0.3047 que
ocupa la segona fila, primera columna, hem fet aix6. Hi ha 128 pares empleats
(suma de la primera fila de la taula de doble entrada) i d’aquests n'hi ha 39 que
tenen el fill obrer. Aixo vol dir que el 30.47% dels empleats tenen fills obrers.

Tenim, doncs, que L és la matriu de mobilitat social que es desprén de lestudi.
En efecte, observem que la poblacié de pares es distribueix en 128 empleats, 215
obrers i 354 pagesos i la poblacid de fills es distribueix en 200 empleats, 283
obrers i 214 pagesos. Tenim

128 200
L1215 | = [283
354 214

En una ciutat hi ha un sistema de bicicletes de lloguer («bicing») en el qual els
usuaris poden agafar una bicicleta a qualsevol dels seus punts d’aparcament i
retornar-la a qualsevol altre punt. L'orografia de la ciutat i les necessitats dels
usuaris fan que, normalment, moltes bicicletes es retornin a llocs diferents del
lloc d'origen. Per tal de planificar el transport nocturn de bicicletes d'una zona
a una altra, es fa un estudi de la dinamica de les bicicletes. Es divideix la ciutat
en quatre grans zones: zona alta A, zona baixa B, zona est E i zona oest W i
s'observa que cada dia passa aproximadament el segiient:

— De les bicicletes que surten de A, el 10% es retornen a A, el 60% es retornen
a B, el 20% es retornen a E i el 10% es retornen a W.

— De les bicicletes que surten de B, el 2% es retornen a A, el 50% es retornen
a B, el 35% es retornen a E i el 13% es retornen a W.

— De les bicicletes que surten de E, el 10% es retornen a A, el 25% es retornen
a B, el 25% es retornen a E i el 40% es retornen a W.

— De les bicicletes que surten de W, el 15% es retornen a A, el 20% es retornen
a B, el 40% es retornen a E i el 25% es retornen a W.

D’aquesta manera, podem construir una matriu 4 x4 L que ens doni, a partir de la
quantitat de bicicletes que hi ha a cada sector a Uinici del dia N = (A, B, E, W),
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la quantitat de bicicletes que hi haura a cada sector al final del dia LN. Aquesta
matriu, amb la informacid que es desprén de l'estudi anterior, és

0.10 0.02 0.10 0.15
0.60 050 0.25 0.20
0.20 0.35 0.25 0.40
0.10 0.13 0.40 0.25

Lewis Richardson va ser un matematic britanic que, entre moltes altres coses,
va desenvolupar models matematics dels conflictes bellics. El que es coneix com
a model de Richardson de la cursa d’armaments pretén donar un model de la
quantitat d'armament que acumulen les diverses nacions, com a funcié del temps.
Per simplicitat, considerem només tres nacions A, B, C. Richardson argumenta
que la quantitat d'armament que cada nacié tindra després d’'una unitat de temps
depén de tres factors

1. Larmament que ja té, multiplicat per un coeficient d'obsolescéncia o de re-
duccid per motius de pressupost.

2. Larmament que acumula com a resposta a l'armament que tenen les nacions
que considera hostils.

3. L'augment d'armament que, de manera constant, algunes nacions poden te-
nir, independentment de l'armament que tinguin les altres nacions (reposicio
de l'armament obsolet, etc.).

El tercer factor fa que aquesta situacid no sigui exactament igual a les altres que
hem estudiat abans. Podem expressar matricialment aquesta situacid d'aquesta
manera (imaginem un exemple concret)

At +1) 05 01 0 A(t) 0.05
B(t+1)| =102 5 0.1 B(t) | +10.15
C(t+1) 0 02 025/ \C(t) 0.05

Qué observem en aquestes matrius? D'una banda, observem que B és especial-
ment bellicista. D’entrada, esta multiplicant el seu armament per 5 independent-
ment de 'armament de les altres nacions. També, el seu creixement armamentistic
«vegetatiuy és el triple del de les altres nacions (0.15 en front de 0.05). Finalment,
esta reaccionant a larmament de A i de C (coeficients 0.2 i 0.1, respectivament).
C no es preocupa de 'armament de A (i viceversa), pero si del de B, i esta retirant
una quarta part del seu armament (coeficient 0.25). Finalment, A esta retirant la
meitat del seu armament cada periode de temps i esta responent a l'armament
de B, pero menys del que ho fa C.
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Amb les matrius de Leslie i de mobilitat social que hem vist al capitol anterior, hem
substituit l'equacié del model exponencial discret

N(t+1)=rN(t)

per un altre model que s'hi assembla molt

N(t+1) = L N(t)

en el qual la mida de la poblacié no és un escalar sind que és un vector i la taxa
de creixement tampoc no és un escalar sind que és una matriu. En el cas del model
exponencial va ser molt senzill investigar com va evolucionant la poblacié amb el pas
del temps i ens agradaria poder desenvolupar una analisi similar en el cas matricial.

Si ara volem conéixer la poblacié en els temps t+1,t+2, ..., haurem de considerar
les poténcies de la matriu L

N(t+1) = LN(t), N(t +2) = L2N(t), ..., N(t + k) = LKN(t), ...

Evidentment, podem calcular explicitament les poténcies successives de la matriu L,
pero fora interessant tenir un model matematic que ens permeti predir qué succeira
quan k — oo, sense haver de calcular les poténcies L.

33.1 Poténcies i vectors propis

L'eina matematica per entendre el comportament de les potencies d'una matriu és la
teoria dels vectors propis i valors propis que hem estudiat en un capitol anterior.
Vegem-ho en un exemple.

Considerem aquesta matriu
15 2
L= <0.08 0) '

Suposem que volem calcular Lkv per qualsevol valor de k i també per a kK — oc.
Suposem que V= (105, 1). Utilitzant Uordinador podem veure que

LV =(159.5,8.4), 1>V = (256,12.8), L3V = (409.6,20.5),

[*V = (655.4,32.8), L5V = (1048.6,52.4), L5V = (1677.7,83.9), ...
i, a banda d'observar que les xifres van creixent, aquest calcul no ens déna prou infor-
macié sobre qué és el que realment esta passant.

Comencem calculant els valors propis i els vectors propis d'aquesta matriu L. A
partir del polinomi caracteristic de L i sequin el procediment que hem estudiat arribem
a que hi ha aquests vectors propis

204
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1. Els multiples de Vi = (20, 1) sén vectors propis de valor propt 1.6.

2. Els multiples de v = (5, —4) sén vectors propis de valor propi —0.1.

Recordem que aixo vol dir que
[vi =16V, L =-01%.
En particular, sobre aquests vectors és molt senzill calcular l'efecte de L¥:
v = (16)° v, LK = (-0.1)F V3.
Pero el que ens interessa és LKV Observem aixd
V = (105,1) = 5(20,1) + (5, —4) = 5V + 5.
Per tant,
LKV = BL*V] + LV = 5(1.6)X(20,1) + (—0.1)(5, —4)
i aixo és una formula concreta per a Lkv que és valida per a qualsevol valor de k. Qué

observem?

1. Quan k és molt gran, el coeficient (—0.1)% és practicament zero i podem afirmar
que
LKV ~5(1.6)K(20,1) — .

2. Si k és gran,
LKV ~ 1.6 LK V.

La situacié que hem vist en aquest exemple és forca general, si realment la matriu
té el nombre maxim de vectors propis que pot tenir (2 en el cas d'una matriu 2 x 2, 3
en el cas d’'una matriu 3 x 3, etc.).

Apliquem aixo al cas d'una matriu de Leslie o de mobilitat social. Suposem que
tenim una poblacié estructurada N (és un vector, perdo ometem la fletxa) i que la seva
evolucio ve donada per

N(t+1)=LN(t)

on L, la matriu de Leslie, és una matriu quadrada n x n.

e Suposem que la matriu L té exactament n valors propis diferents A1, ..., A,

e Anomenarem valor propi dominant el valor propi que tingui el valor absolut més
gran. Suposem que és . Sigui V un vector propi de valor propi A.

e Independentment de la poblacié inicial,’ la poblacié a llarg termini tindra una
taxa de creixement igual a A. Es a dir, si k és gran,

N(k + 1) ~ AN(K).

Es a dir, la poblacid, encara que sigui un vector, es comportara com en un model
exponencial de taxa A.

TAixd no és exactament cert. Fallaria, per exemple, si la poblacié inicial fos igual a zero i també
fallaria si la poblacié inicial, casualment, fos un vector propi de valor propi diferent de A. A la practica
experimental, aquestes dues situacions sén improbables.
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e Independentment de la poblacié inicial,’ la distribucié de la poblacié en els di-
versos nivells, a llarg termini, tendira a la distribucié donada pel vector propi

V.

33.2 Exemples

Estudiem el comportament a llarg termini en els exemples del capitol anterior.

e (El gran gall de les praderies) Aqui teniem una poblacié estructurada en tres
edats (C, J, A), que evolucionava segons una matriu de Leslie

0 187 221
L=1015 O 0
0 038 045

Calculem els vectors propis i els valors propis d'aquesta matriu.

(1,—0.4273,0.2027), A = —0.3510
(1,165.2398, —139.8179), A = 0.0009
(1,0.1875,0.2034), A = 0.8002

El valor propi dominant és A = 0.8. Aix0 ens diu que, a llarg termini, la poblacio
es multiplicara per 0.8 a cada periode de temps. Es a dir, la poblacié de cada
nivell es multiplicara per 0.8. Com que 0.8 < 1, la poblacid s'extingira.

Un vector propi corresponent al valor propi dominant és (1, 0.19, 0.20). Aixo vol dir
que, a llarg termini, la poblacid es distribuira en aquesta proporcio. Per exemple,
si tenim una poblacié total de 1390 individus, es repartiran en 1000 individus del
nivell C, 190 del nivell J i 200 del nivell A.

o (Professors d'universitat) Hi havia tres nivells B, L i P i les normes de contrac-
tacié cada curs queden reflectides en una matriu de Leslie

0.7 0.05 0.1
0.02 0.8 0
0 0.1 0.94

Calculem els vectors propis i els valors propis d'aquesta matriu.

(1,—-0.1967,0.0814), A = 0.6983
(1, —4.9406,3.4298), A = 0.7920
(1,0.1372,2.3888), A = 0.9457

El valor propt dominant és A = 0.946. Aixo ens diu que, a llarg termini, el nombre
de professors de cada nivell es multiplicara per 0.946 a cada periode de temps.
Per tant, anira baixant lentament.

2Aqui també s'aplica la nota anterior.
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Un vector propi corresponent al valor propi dominant és (1, 0.14,2.39). Aixo vol dir
que, a llarg termini, la plantilla de professorat es distribuira en aquesta proporcid.
Per exemple, si tenim un total de 3530 professors, es repartiran en 1000 beca-
ris, 140 lectors i 2390 professors permanents, aproximadament. Aquesta analisi
ens permet detectar les mancances d'aquesta politica de contractacié: reduccid
constant de plantilla i nombre insuficient de professors lectors.

(Oficis de pares i fills) Distingiem entre pagesos, obrers i professionals i teniem
una matriu experimental L que ens relacionava la professié del pare amb la del
fill.
0.6094 0.2977 0.1638
L=10.3047 0.6372 0.3023
0.0859 0.0651 0.5339

Aqut el valor propi dominant és 1, com ha de ser perqué en aquest model no hi
ha creixement de poblacid entre pares i fills. EL que interessa és conéixer quina
seria la distribucid d'oficis a llarg termini, si la situacié de l'estudi es perllongués
durant moltes generacions. Un vector propi del valor propi 1 és (1,1.12,0.34) per
tant, la poblacié s'acabaria repartint de manera que per cada empleat hi hauria
1.12 obrers i 0.34 pagesos.

(Bicing) La matriu que ens explica el moviment de bicicletes entre les quatre
zones de la ciutat és

0.10 0.02 0.10 0.15
0.60 0.50 0.25 0.20
0.20 0.35 0.25 0.40
0.10 0.13 0.40 0.25

El valor propi dominant és 1, com ha de ser perqué en aquest model no hi ha
ni augment ni disminucid de bicicletes. Un vector propi de valor propi 1 és
(1,4.26,3.80,2.90). Aixo vol dir que, si no apliquem cap mesura correctiva de
transport nocturn de bicicletes, a llarg termini, de cada 1200 bicicletes (aproxi-
madament), n’hi haura 100 a la zona alta, 426 a la zona baixa, 380 a la zona est
i 290 a la zona oest.?

33.3 Fem-ho amb sage

Resolem els quatre exemples anteriors amb sage.

sage:
sage:
sage:

A=matrix(RDF, [[0,1.87,2.21],[0.15,0,0],[0,0.38,0.45]1)
B=matrix(RDF, [[0.7,0.05,0.1],[0.02,0.8,0],[0,0.1,0.941])
C=matrix(RDF, [[0.6094,0.2977,0.1638],
[0.3047,0.6372,0.3023],

[0.0859,0.0651,0.533911])

sage:

D=matrix(RDF, [[0.10,0.02,0.10,0.15],[0.60,0.50,0.25,0.2],

3Estrictament parlant, en aquest exemple no podriem aplicar la teoria que hem desenvolupat, perqué
la matriu anterior només té dos valors propis i no quatre. De tota manera, un refinament de la teoria
(que no estudiarem) ens permet resoldre també aquests casos.
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....: [0.2,0.35,0.25,0.40],[0.1,0.13,0.4,0.25]1)
sage: A
[ 0.0 1.87 2.21]
[0.15 0.0 0.0]
[ 0.0 0.38 0.45]
sage: B
[ 0.7 0.05 0.1]
[ 0.02 0.8 0.0]
[ 0.0 0.1 0.94]
sage: C
[0.6094 0.2977 0.1638]
[0.3047 0.6372 0.3023]
[0.0859 0.0651 0.5339]
sage: D
[ 0.1 0.02 0.1 0.15]
[ 0.6 0.50.25 0.2]
[ 0.2 0.35 0.25 0.4]
[ 0.1 0.13 0.4 0.25]
sage: A.eigenvectors_right()
[(0.8001576416931175,
[(-0.9637999732392762, -0.18067689221836866, -0.1960751697749675)],1),
(-0.3510654132649406,
[(0.9040094832345003, -0.38625685516573527, 0.18322798929085068)],1),
(0.0009077715718234064,
[(-0.004619825483303375, -0.7633790746535266, 0.6459342424687123)],1)]
sage: B.eigenvectors_right ()
[(0.6983036217141203,
[(0.9780927886680308, -0.19235548112018513, 0.07958558687737832)],1),
(0.7959518780392945,
[(-0.16401668103293, 0.8103346817365105, -0.5625444266170723)],1),
(0.9457445002465843,
[(0.38560495631231606, 0.052915198262701885, 0.9211453736844124)],1)]
sage: C.eigenvectors_right()
[(1.0000000000000004,
[(-0.6481415332583796, -0.7286787024945016, -0.22122364565390876)],1),
(0.3320693975624182,
[(-0.7576550133975228, 0.6423975363022798, 0.11525747709524344)],1),
(0.4484306024375822,
[(-0.6995961594867555, -0.014789235208111403, 0.7143853946948675)],1)]
sage: D.eigenvectors_right ()
[(1.0000000000000004,
[(-0.15432583857010407, -0.6573613090506916, -0.5864895429186637,
-0.4473138282680879)],1), (0.13469732336181842 + 0.1396088897246559*1,
[(-0.3130549513931328 + 0.29038532236416076*I, 0.7608827171231797,
-0.011079383818814743 - 0.19856275194835768*1,-0.4367483819112306 -
0.09182257041580322+I)],1), (0.13469732336181842 - 0.1396088897246559%1,
[(-0.3130549513931328 - 0.29038532236416076*I, 0.7608827171231797,
-0.011079383818814743 + 0.19856275194835768*1,-0.4367483819112306 +
0.09182257041580322*1)],1), (-0.16939464672363683,
[(-0.1132693413892941, 0.17334242046374104, -0.7211653532016027,
0.661092274127156)],1)]

En conclusio:

e Elvalor propt dominant de A és =~ 0.8 i un vector propi és ~ (—0.96, —0.18, —0.20)
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o, equivalentment, ~ (1,0.19, 0.20).

e Elvalor propi dominant de B és &~ 0.946 i un vector propi és =~ (0.386, 0.053, 0.921)
o, equivalentment, ~ (1,0.14,2.39).

e El valor propi dominant de C és 1 i un vector propi és ~ (—0.65, —0.73, —0.22) o,
equivalentment, =~ (1,1.124,0.341).

e En el cas de C, apareixen valors propis no reals (I indica la unitat imaginaria
i =+/—1, pero el valor propi dominant és 1, amb vector propi

V ~ (—0.154, —0.657, —0.586, —0.447)

o, equivalentment, V ~ (1, 4.26, 3.80, 2.90).



Exercicis

A. Exercicis teorics

2
3 2 3 -1 -2 1 3 0 -1
(3 s 7) =3 1) 08 D)

0 -1 2 1 0 1 4 2
F=1(1 1 |,G6=1[1 ,H:(2 1 —1),J: 01 0 ,K:<_4 _3)
5 -2 -1 0 0 -1

1— rn+1

l+r+r4.+r"=
1—r
V.A2. Trobeu el valor de la matriu quadrada X tal que

(@) AX =2X — L
(b) AXC +BXC =K
(c) A2X +AX + X =1

V.A.3. Escriviu aquest sistema d'equacions en forma matricial i resoleu-lo matricial-
ment:

4x =2y = -2
-3x+y =0

V.A4. Apliqueu la transformacié lineal donada per la matriu E al vector k —i.
V.A5. Trobeu els valors propis i els vectors propis de les matrius A, B, C, K, L, M.

V.A.6. Trobeu un vector de longitud 1 en la direccié del vector (1,2, 3).
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Calculeu les longituds dels costats del triangle de vertex A = (2,1,5), B =
(—1,-3,7), C = (2, —4,1). Calculeu també els seus angles.

Escriviu la matriu d'una rotaci6 en sentit horari al pla, amb angle de rotacié de
22 graus. Apliqueu aquesta rotacié al vector —1.6i + 4.2j.

Considereu els vectors de lespai 2i +j — 2k i 3i — j — k. Calculeu les seves
longituds i l'angle que formen.

Determineu Uequacié del pla que passa pel punt (1,1, —1) i és perpendicular al
vector 2i + 3j — 2k.

Trobeu equacions parameétriques i cartesianes de la recta de l'espai que passa
pels punts A= (1,-1,3) i B= (2,4, -1).

Trobeu l'equacié del pla que passa pel punt (1, 1,0) i és perpendicular a la recta
que passa pels punts A= (1,-1,3) i B=(2,4,-1).

B. Exercicis d’aplicacio

V.B.1.

V.B.2.

V.B.3.

En una gran empresa productora de vi estem monitoritzant la fermentacidé del
most en tres grans diposits. Prenem mostres i mesurem el contingut de glucosa,
fructosa, acid malic, acid tartaric, glicerol, acid aceétic, acid succinic i alcohol.
Estandarditzem els resultats i els valors que obtenim per aquests tres diposits
son, respectivament,

A = (0.56,-0.12,0.05, —0.21, —0.32,0.01,0.17,0.01)
B = (0.48,0.00,0.07, —0.23, —0.44,0.07,0.13,0.11)
C = (0.49, -0.09, 0.06, —0.22, —0.46,0.02, 0.15, 0.04)

Decidiu si el most del diposit C s'assembla més al del diposit A o al del diposit
B. Raoneu la resposta.?

Considerem aquests punts del pla: A= (0,0), B=(1,0), C =(3,2), D = (2,3).
Apliqueu manualment el métode k-means a aquests quatre punts, amb k = 2,
comencant amb els punts A i B, fins que el métode finalitzi. A cada iteracid,
calculeu el valor de r.

A l'adreca archive.ics.uci.edu/ml/datasets/Wine trobareu una base de da-
des que conté els valors de 13 variables (alcohol, acid malic, magnesi, fenols,
etc.) de 178 mostres de vi que procedeixen de tres varietats diferents. Es tracta
d'utilitzar k-means amb k = 3 per intentar identificar les mostres de cada va-
rietat. Descarregueu-vos aquesta base de dades i utilitzeu el programa R per
distribuir les mostres en tres clisters. Compareu amb latribucié correcta, que
també figura a la base de dades.

‘Inspirat en l'article de A. Urtubia et al. titulat Monitoring large scale wine fermentations with infrared
spectroscopy, Talanta 64 (2004), 778-784.
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V.B.4.

V.B.5.

V.B.6.

V.B.7.

V.B.8.

V.B.9.

Exercicis

El peix escorpt (Pterois volitans) és un peix verinds que és una espécie invasiva
i destructiva a algunes zones del Carib. En un estudi sobre aquesta espécie
(Morris, Shertzer, Rice 2011) es va estructurar la poblacié de femelles en tres
nivells d'edat: larva (L), jove (J) i adult (A) i es van estudiar els parametres
de reproducci6 i supervivencia. La fase de larva dura 1 mes i la probabilitat
que una larva sobrevisqui és de 3 x 107°. La probabilitat que un exemplar jove
sobrevisqui un mes més és 0.777 i cada mes un 7.1% dels joves es converteixen
en adults. Només els adults son fertils i cada adult produeix 35000 larves cada
mes. Podem pensar que els adults sobreviuen indefinidament. Escriviu una
matriu de Leslie que descrigui U'evolucié d'aquesta poblacio.

Estudiem una poblacié de peixos classificats en A (alevins, acabats de néixer),
J (joves, encara no fertils) i F (adults, fertils). Suposem que el 25% dels alevins
i el 50% dels joves sobreviuen i suposem que el adults fertils F tenen 8 cries
i son retirats. Escriviu una matriu de Leslie que descrigui l'evolucié d'aquesta
poblacid.

Els tres nivells basics d'empleats a una empresa informatica sén (A) software
engineer, (B) senior engineer i (C) staff engineer. Imaginem que la politica
d’aquesta empresa funcionés aixi: cada any, 1) Es renoven el 95% dels contractes
de nivell C, i per cada 10 enginyers de nivell C es contracta un nou enginyer
de nivell A. 2) es renoven el 70% dels contractes de nivell A i es contracta com
a nivell B el 2% dels de nivell A. 3) Un 5% dels contractes de nivell B passen a
nivell C i un 80% dels contractes de nivell B es renoven. Escriviu una matriu L
que descrigui U'evolucié dels contractes de nivells A, B i C en aquesta empresa.

Una poblacié d'aus es troba repartida entre dues zones humides properes A
i B. Hem observat que cada dia aproximadament un 70% de les aus de A es
traslladen a B i un 50% de les aus de B es traslladen a A. Descriviu en forma
matricial l'evolucidé de les dues zones humides d'un dia al segtient. Si entre A i
B hi ha un total de 240 aus i aquest régim migratori es manté indefinidament,
quina distribucié d'aus hem d'esperar a llarg termini?

Dividim la poblacié d'isards femella en un parc natural en dos grups d'edat: joves
(durant el primer any de vida) i adultes, i hem determinat experimentalment que
l'evolucié anual de la poblacié de femelles sequeix una matriu de Leslie

0 1
A= <0.6 0.8)'

Interpreteu el significat d'aquesta matriu. Trobeu la taxa de creixement d'aques-
ta poblacid. Cada any, durant una setmana, s'autoritza la cacera d'una quantitat
de femelles adultes que es determina aplicant un percentatge h al total de fe-
melles adultes presents. Quin ha de ser el valor de h si volem que la poblacio
es mantingui estable? (Per simplificar l'exercici, hem suposat que després d'un
any les femelles ja son fertils, mentre que en realitat no ho sén fins els 3 o0 4
anys d'edat.)

Una companyia de lloguer de cotxes té tres punts de recollida i entrega de
vehicles, que anomenarem A, B i C. S'ha observat que, dels clients que lloguen
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el cotxe a A, el 10% el torna a B i el 10% el torna a C. D'entre els que lloguen
el vehicle a B, el 30% el torna a A i el 50% el torna a C. Finalment, dels que
lloguen el vehicle a C, el 20% el torna a A i el 60% a B. Si no fem cap trasllat
de vehicles d'una seu a l'altra, com s'acabara distribuint el parc de vehicles a
llarg termini?

Suposem que tenim una gran bassa d'aigua contaminada (de volum constant)
amb una filtracid que fa que cada mes un 5% de l'aigua de la bassa arribi a un
aquifer proxim. A la bassa hi ha una depuradora que neteja un 10% del material
toxic cada mes. Formuleu un model teoric (discret) de Uevolucié de la quantitat
de contaminant a la bassa i a l'aqiiifer. Quina proporcié del producte toxic que
hi havia inicialment a la bassa acabara a llarg termini a l'aquifer?






Part VI:
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34. Representacions grafiques

34.1 Quan una variable depén de dues o més variables

Al UWarg d'aquest curs hem estudiat funcions del tipus y = y(x) en les quals una
variable y depén d’una altra variable x. Es una situacié molt interessant que cal haver
entés perfectament, perd a ningut se li escapa que les necessitats de la ciéncia ens
condueixen, la majoria de vegades, a situacions en les qué una variable y depén de
dues, tres, o vint-i-cinc variables

y=yl(ab,c,...).

Parlarem, en aquests casos, de funcions de dues, tres o vint-i-cinc variables o, en
general, de funcions de diverses variables.

L'objectiu d’aquesta darrera part del curs és familiaritzar-nos amb aquestes funcions
i veure fins a quin punt els métodes que hem aprés a utilitzar amb les funcions d’'una
Unica variable poden estendre’s a les funcions de diverses variables. Comencem posant
alguns exemples.

e Els models economics estudien funcions de produccié que expressin la produccid
Q@ com a funcid del capital invertit K i del treball utilitzat L. Una funcié classica
d’aquest tipus és la funcié de produccié CES

Q(K, L) = F(aK™ + (1 — a)L")/".

Aquesta funcié té diversos parametres F, a, r que estan relacionats, respecti-
vament, amb els conceptes de productivitat, repartiment entre els dos factors
de produccié K i L i «elasticitat de substitucié» (que mesura la possibilitat de
substitucié d'un dels factors per laltre).

e Ja coneixem la funcié que ens dona la temperatura de sensacid (wind chill) com
a funcid de la temperatura i la velocitat del vent.

W(T, V) =13.12+0.6215 T — (11.37 — 0.3965 T) V16,
Es tracta d’'una funcid de dues variables.

e En un estudi' es va determinar la concentracié de O, dissolt a l'aigua d'un llac
concret com a funcié de la profunditat i de l'época de l'any. D’aquesta manera,
es va obtenir una funcié empirica de dues variables

C=C(P 1)

que doéna la concentracid C com a funcid de la profunditat a l'aigua del llac P i
el dia de l'any t.

"Wegeu L. K. Hembre i R. O. Megard, Seasonal and diel patchiness of a Daphnia population. An
acoustic analysis, Limnol. Oceanogr. 48(6), 2003, 2221-2233.
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e Un mapa meteorologic isobaric és una representacid grafica de la pressio atmos-
ferica que hi ha a cada punt d'una zona geografica, en un instant donat. Aquesta
pressio atmosfeérica podem considerar-la, doncs, com una funcid de dues variables

P=P(L 1)

on L i/ son, respectivament, la latitud i la longitud del punt on volem saber la
pressio. Si, en lloc d'un mapa isobaric fix volem un mapa en moviment, que ens
indiqui la pressié atmosférica de cada punt per a un interval de temps, tindrem

una funcid de tres variables
P = P(L,I,t).

e Una fotografia digital en blanc i negre (més correctament, en escala de grisos)
és un rectangle de pixels i, per a cada pixel, un nivell de lluminositat. Podem
entendre-la com una funcié

N = N(x,y)

que assigna, al pixel de coordenades (x,y), el seu nivell de lluminositat. Si, en
lloc d’'una fotografia digital, tenim un video, hi haura la variable temps i el video
estara perfectament determinat per una funcié de tres variables

N = N(x,y, t).

e En els exemples d'aquest curs hem considerat diverses vegades la produccié d'un
camp (per exemple, de cereals) com a funcié P = P(Q) de la preséncia al sol d'un
cert nutrient (per exemple, el nitrogen), pero és clar que un model més realista
hauria de tenir en compte la preséncia de diversos nutrients (per exemple, el
fosfor, el potassi, el sofre..). De fet, en agricultura es consideren 12 nutrients
essencials que son al sol i que s’haurien de controlar. En aquest model més
complet, la produccié seria una funcid

P=P(Q1, @, ..., Q).

e La longitud d'un vector és una funcié de les seves coordenades. Per exemple, en
el cas d'un vector de dimensio 3,

I(x,y, z)| = \/x2 4 y2 4 22,
e L'index Dow Jones Industrial Average DJIA es calcula en funcié de les cotitzacions
de les accions de 30 empreses concretes pi, ..., p3o. La funcid és aquesta

p1+ -+ p3o

DJIA =
d

on d és una constant que en aquests moments (febrer del 2017) val
d = 0.14602128057775.

Tenim, doncs, una funcid de trenta variables. En canvi, l'index Nasdag Composite
es determina a partir de les cotitzacions de més de 3000 empreses tecnologiques.
Per tant, aquest index és una funcié de més de 3000 variables.
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e Ala pagina 117 vam presentar l'equacié de Penman-Monteith que utilitza la FAO

per calcular l'evapotranspiracié del sol:

. 0.408A(R, — G) + y35r5 tz(es — €3)
0= :

A+ (14 0.34up)

Veiem que és una funcié de diverses variables: velocitat del vent, temperatura,
radiacid solar, flux de calor del sol, humitat, etc.

En els estudis d'eficiéncia térmica d'un edifici ens interessa conéixer la pérdua
de calor a les canonades d'aigua calenta. Aquesta pérdua de calor ve donada
per una funcié de diverses variables

_ A
97 log(D/Do) | 1
2k hD

Dy és el diametre exterior de la canonada, D és el diametre exterior de la capa
aillant de la canonada, A és la diferéncia entre la temperatura de laigua calenta
que circula per la canonada i la temperatura ambient, k és la conductivitat térmica
de laillament i h és el coeficient de transferéncia de calor de la superficie de
l'aillament a l'aire.?

La férmula que s’ha proposat? per estimar la superficie corporal A (en m?) d'un
ésser huma d'alcada H cm i pes W kg és

A = 0.007184 W0-425 0725

Una férmula que s'utilitza* per mesurar la temperatura d'equilibri térmic del cos
huma —és a dir, aquella en la que no notariem ni fred ni calor— és

T =31-0.155PR

on P és la produccié metabolica de calor en W/m?2 i R és la mesura de l'aillament
térmic de la vestimenta que es dugui. R es mesura en unes unitats anomenades
clo, (1 clo=0.155 Km?2/W). Per exemple, una persona dormint (P = 50) en un sac
de duvet (R = 5) tindria una temperatura d'equilibri de —7.8°C, mentre que una
persona caminant de pressa (P = 180) amb roba d'estiu (R = 0.4) tindria una
temperatura d'equilibri de 19.8°C.

34.2 Alguns conceptes basics

Hi ha una seérie de conceptes basics sobre funcions d’'una variable que tenen validesa
per a funcions de diverses variables, practicament sense fer cap canvi.

2Aquest exemple és més complicat del que sembla a primera vista perqué h depén de la temperatura de
la canonada aillada i aquesta temperatura depén de g. Calcular aquesta pérdua de calor és un problema
classic d’enginyeria.

3Vegeu B. M. Nigg i W. Herzog, Biomechanics of the Musculoskeletal System, 1998.

*Vegeu Clothing insulation a Wikipedia.org.
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e Domini de definicié Una funcié de diverses variables f(x, y, z, ...) estara definida
per a certs valors de les variables x, y, z, ... (que poden ser tots). Fora d'aquests
valors, pot ser que la funcidé no tingui sentit, o simplement que no ens interessi
estudiar-la. Per exemple, la funcio

f(x,y,z) :X2—|—y2 — 2xy

esta definida per a qualsevol valor de les variables x, y,z, per6d el domini de

definicio de la funcio
fxy) = VI—x2 =y

esta format pels punts del pla (x, y) tals que x? + y? < 1. Aquests punts sén els
punts de Uinterior de la circumferéncia de radi 1 centrada a l'origen i també els
punt d'aquesta circumferéncia.

e Limits Funcionen igual que en el cas d’'una variable:
1

. Xy .
lim —_—— = lim —
() =(00) \/x2+y2  (xy)=(00) L+3

=0.

e Continuitat Podem parlar de funcions continues, que seran aquelles tals que el
valor de la funcié en un punt qualsevol coincideix amb el limit de la funcié quan
ens acostem a aquest punt.

e Operacions amb funcions Les mateixes operacions que consideravem per a fun-
cions d'una variable —suma, resta, multiplicacid, divisié i composicié— tenen ple
sentit en el cas de diverses variables. A partir de les funcions elementals d'una
variable podem obtenim una varietat illimitada de funcions de diverses variables:

sin(xy)(e* + 1).

fxy 2) = 72 + cos(y)

34.3 Representacions grafiques

No hi ha dubte que, en el cas d'una funcié d'una variable, la representacié grafica és una
eina magnifica que ens permet visualitzar la funcié i entendre el seu comportament. En
el cas de funcions de diverses variables, la representacio grafica esdevé dificil, excepte
quan es tracta de funcions de dues variables. En efecte, si tenim una funcid

z="f(x,y)

podem actuar de manera similar a com ho feiem a l'hora de dibuixar la grafica d'una
funcid d'una variable. Representem les variables dependents x, y en un pla i, en Uespai
de tres dimensions, dibuixem el punt (x,y, f(x,y)). El que obtenim, en general, és
una superficie en 3D, de la mateixa manera que la grafica d'una funcié y = f(x) és
una corba en 2D. Utilitzant un programa de dibuix 3D podem arribar a visualitzar
relativament bé una funcié z = f(x, y), principalment si podem moure la imatge.

Per exemple, la comanda
sage: plot3d(2*x~2-y~2,(x,-5,5),(y,-5,5),adaptive=True,
....: color=rainbow(60, ’rgbtuple’))

produeix un dibuix de la superficie representada per la funcié z = 2x? — y.
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-25.0

La comanda

sage: plot3d(sin(x)+cos(y), (x,-10,10),(y,-10,10) ,adaptive=True,
....: color=rainbow(60, ’rgbtuple’))

produeix un dibuix de la superficie representada per la funcié z = sin(x) + cos(y).

-10.0

| la comanda

sage: plot3d(exp(x/5)*cos(y), (x,-5,5),(y,-5,5) ,adaptive=True,
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....: color=[’red’,’yellow’])

produeix un dibuix de la superficie representada per la funcié z = exp(x/5) cos(y).

Hi ha altres eines de visualitzacié que cal tenir presents:
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e Taula de doble entrada. Considerem, per exemple, la funcid que ens ddna la
temperatura de sensacid a partir de la temperatura i la velocitat del vent.
casos com aquest, pot ser molt Util representar els valors de la funcié en
taula de doble entrada com aquesta, feta amb un full de calcul.
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5 km/h. Cada columna representa una temperatura, de 10°C a —30°C, en intervals

de 2°C.



222

34. Representacions grafiques

e Seccions. Si, a la superficie z = f(x, y), fem que una de les tres variables sigui

constant, tindrem una corba plana que sera la interseccié d'aquesta superficie
amb un pla. Per exemple, considerem la funcid anterior

z:2x2—y2.

— Si prenem z = k constant, tenim la corba plana 2x? — y? = k, que és una
hipérbola. Per tant, les seccions horitzontals de la superficie son hipérboles.

— Si prenem x = k constant, tenim la corba plana z = 2k?> — y?, que és una
parabola amb un maxim. Per tant, tallant la superficie amb un pla vertical
x = k obtenim paraboles.

— Finalment, si fem y = k constant, tenim la corba plana z = 2x> — k?, que
és una parabola amb un minim. Per tant, tallant la superficie amb un pla
vertical y = k obtenim paraboles.

St estudiem les seccions verticals x = k i y = k de la funcié z = exp(x/5) cos(y)
ens adonarem que les primeres son corbes cosinus i les segones son corbes
exponencials i entendrem, sense necessitat de recorrer a cap programa de dibuix
3D que la grafica d'aquesta funcié sera una corba cosinus que es desplaca per
un eix i la seva amplitud es va fent cada vegada més petita o més gran segons
una funcié exponencial.

e Corbes de nivell. Es un métode classic que té molt avantatges. Les corbes de

nivell s'utilitzen als mapes topografics i també als mapes meteorologics. Sén una
bona manera de representar en un paper una funcié de dues variables. La idea
és senzilla. Si tenim una funcié y = f(x, y), una corba de nivell d’aquesta funcié
és una corba plana

f(x,y)=k
on k és una constant. Prenent diversos valors de la constant k, tenim corbes de
nivell diverses que poden dibuixar-se en un pla de coordenades.
Considerem, per exemple, la funciéd que ens ddéna la temperatura de sensacio
W(T, V) en funcié de la temperatura i la velocitat del vent, que hem representat
més amunt en una graella, donaria corbes de nivell com les de la figura seglent.
Cada corba de nivell esta dibuixada amb una comanda com aquesta:

sage: implicit_plot(W(T,V)-k, (x,-20,10),(y,10,100) ,aspect_ratio=0.3)

La grafica conté les corbes de nivell corresponents a

W =0,-6,-12,-18, —24, —30, —36, —42.
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Per exemple, els punts que estan sobre la corba de nivell W = —18 ens donen
les combinacions de T i V que donen W = —18. Quan ens movem per una
corba de nivell, sempre tenim la mateixa temperatura de sensacié. Amb un cert
entrenament,”> una grafica de corbes de nivell ens permet visualitzar amb forca
claredat el comportament d'una funcié de dues variables.

Aqut tenim corbes de nivell d’altres funcions que han aparegut en aquest capitol:

) O

-4 2 0 2 4

La funcié 2x% — y2.

Per exemple, els excursionistes que estan acostumats a utilitzar mapes topografics sén capacos d'i-
maginar la forma del terreny a partir de la informacid del mapa.
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34.4 Fem-ho amb sage

Al llarg del capitol ja hem vist quines instruccions de sage podem utilitzar per repre-
sentar funcions de dues variables. D'una banda, tenim la instruccié plot3d() de dibuix
en 3D. Per dibuixar corbes de nivell és util la comanda implicit_plot() que ja haviem
usat en algun capitol anterior.

Per estalviar feina en els dibuixos anteriors, hem definit una funcié que dibuixa
directament corbes de nivell:

sage: y=var(’y’)

sage: def corbes_nivell(f,x0,x1,y0,y1,L,h):

et P=[]

et for i in range(len(L)):

e P.append(implicit_plot(f(x,y)-L[i], (x,x0,x1), (y,y0,y1),
et aspect_ratio=h))

R return sum(P)

s una llista dels valors de k per als que volem dibuixar la corba de nivell

>

a

=
=
\_/'\
D~



35. Derivades quan hi ha diverses variables

35.1 Quan hi ha diverses variables, hi ha diverses derivades

Ja sabem que el concepte de derivada d’'una funcié d’'una variable és un concepte
que té una importancia fonamental perqué és la mesura de la velocitat amb qué creix
aquesta funcié quan creix la variable de la que depén. Aquest concepte fonamental, té
també sentit quan hi ha dues o més variables? Podem parlar de derivada quan tenim,
per exemple, una funcié z = z(x, y)? Qué voldra dir, en aquest cas, la «velocitat de
creixementy?

Si hi reflexionem un instant, entendrem que si volem parlar de derivada quan hi
ha diverses variables hem de canviar algunes coses. De fet, no podrem parlar de la
derivada, sin6 que tindrem diversos conceptes de derivada. L'explicacié quedara clara
amb l'exemple seglient.

e Imaginem un ciclista que puja per la carretera de Vallter. Quan es trobi exacta-
ment al quilometre 4 d'aquesta ascensié classica haura de fer front a un pendent
del 12%. Aquest 12% ja sabem que és la derivada de l'alcada respecte de la
longitud de la ruta (mesurada sobre l'horitzontal).

e Imaginem ara un ciclista de muntanya que esta pujant al Puigmal i es troba a la
cota 2.600, al punt vermell del mapa seglient i preguntem-nos, igual que abans,
a quin pendent ha de fer front.

226
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‘/%x \ \
L ak les Terreg
N~ del

La resposta és: depén. Depén de quin cami sequeixi. Si pedala en direcci6 a
la Collada de UEmbut, tindra un pendent moderat. Si va més cap a lesquerra
trobara un pendent molt més fort. Si va més cap a la dreta, el pendent no sera
tan fort. Finalment, si sequeix una corba de nivell, a la dreta o a lesquerra,
es mantindra a la mateixa alcada i el pendent sera zero. Veiem, doncs, que el
pendent depén de la direccid. De fet, canviant la direccid, el pendent pot prendre
qualsevol valor entre —m i m, on m és el pendent maxim.

Veiem, doncs, que si bé la velocitat de creixement d'una funcié d'una variable, en un
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punt concret, és un nombre (la derivada), quan tenim funcions de dues o més variables,
no podem parlar de derivada, perqué la velocitat de creixement depén de la direccio
que considerem.

35.2 Derivada direccional i derivades parcials

Segons el raonament que acabem de fer, si tenim una funcié de diverses variables

y =Ff(x1,...,%n),

i donem un vector

7:(V1,...,Vn)

amb tantes coordenades com variables tingui la funcié f, té sentit parlar de la velocitat
de creixement de y en la direccid indicada pel vector V. Escriurem

Doy

i direm que es tracta d'una derivada direccional de la funcié.

La manera de calcular aquesta derivada direccional és senzilla d’entendre. Es tracta
de considerar aquesta funcié d’'una Gnica variable t:

g(t)="f(x1+tvi, ..., xn+ tvp).

Aleshores, la derivada direccional en la direccié V és la derivada d'aquesta funci.

d
Dyy = Eg(t)-

Per simplificar la notacid, considerem a partir d’ara que estem parlant d'una funcié de
dues variables (pero tot el que direm és valid, sense cap canvi, per a funcions de tres
o tres-centes variables). Si tenim, doncs, una funcié

z=f(x,y)

podem considerar la seva derivada en qualsevol direccié del pla. Hi dues direccions
«especials» que son les direccions que seqgueixen els eixos de coordenades x i y,
respectivament. En direm derivades parcials respecte de x i respecte de y. La notacio
utilitza el simbol especific 0:

0z 0z

ox' Oy
La derivada parcial respecte de x la podem entendre com la derivada de la funcié z
suposant que y és constant, i la derivada parcial respecte de y la podem entendre
com la derivada de la funcid z suposant que x és constant. D'aquesta manera, les
regles de derivacidé que coneixem per a funcions d’'una variable ens permeten calcular
les derivades parcials immediatament.

Exemple. Considerem la funcidé de dues variables

z=1/4—x2-2y2
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Les seves dues derivades parcial seran

0z X 0z 2y

ox 4—x2-2y% ay 4—x2 -2y

Observem, doncs, que una funcié de dues variables té dues derivades parcials que
tornen a ser funcions de dues variables. Aixo vol dir que cadascuna delles té dues
derivades parcials, que seran derivades parcials segones de la funcié inicial. En
conclusid, una funcié de dues variables té quatre derivades parcials segones, que es
denoten aix(:

0’z 9%z 0%z 0%z
Ox2'  Qy?' 0Oxdy' Oydx

e En condicions forca generals (n'hi ha prou que les segones derivades parcials
siguin funcions continues), les derivades parcials creuades son iguals:
0%z 0%z
Oxdy  Oydx’

e Les quatre derivades parcials segones es poden escriure en forma de matriu 2 x 2
(0 n x n si estem parlant de funcions de n variables). La matriu que formen
s'anomena matriu hessiana de la funcid.

v: s
0x2  Oydx
Fe
Ox0y  Oy?

35.3 El gradient

Seguim suposant, per simplificar la notacid, que tenim una funcié de dues variables

z=2z(x,y).

S’anomena vector gradient de la funcid, o simplement gradient de la funcid, el vector
que té per coordenades les derivades parcials de la funcid. La notacié utilitza el simbol

especific V:
0z 0z
Ve = <8x ay> |

Recordem que, per a cada valor de les variables independents x, y, el gradient és un
vector.

2 cos(y), aleshores

Exemple. Siz=¢e
Vz = (2e** cos(y), —e*sin(y))
i si, per exemple, (x,y) = (0,7/2), el vector gradient en aquest punt val

vz‘(O,l) = (O, —1)

Les propietats d'aquest vector que ens interessa recordar sén aquestes:
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e El gradient ens permet calcular les derivades direccionals segons aquesta fér-
mula que utilitza el producte escalar.

B (Vz)-7
v

Dz

e Elvector gradient apunta en la direccié! de maxim pendent, és a dir, en la direccid
en la que la funcid creix més rapidament. Aquest maxim pendent, aplicant la
formula anterior, val

m = Dy,z =|Vz|.

Es a dir, el gradient ens indica la direccié de maxim pendent i la seva longitud
és el pendent maxim.

e lLa direccid de pendent zero és la direccid perpendicular al gradient. En altres
paraules, les corbes de nivell s6n perpendiculars al gradient.

e lLa direccié de maxim pendent negatiu és la direcciéd oposada al vector gradient.

Exemple. Considerem la funcié z = 2x? — y2 i el punt (1, —1). Comencem calculant les
derivades parcials.

0z 0z
— =4x, — = 2y.
Ox Oy y
Per tant, el vector gradient és
Vz = (4x,—-2y)

En el punt (1, —1) aquest gradient val Vz = (4, 2) i, per tant, la direccié de creixement
maxim és la direccié donada pel vector 4 i + 2, que és la mateixa direccid que el
s . Ny . N — -

vector 2 i + j . La direccié de decreixement maxim és la del vector =2/ — ;.

La velocitat de creixement maxim és
-
IVz| =4 +2j|=2V5.

La direccid de creixement zero (és a dir, la direccid de la corba de nivell) en aquest
punt és la direccid perpendicular a 27 4 j . Es a dir, la direccié marcada pel vector
p =
P =27

Finalment, quina seria la velocitat de creixement en la direccid del vector v =
(—=1,1)? Cal calcular la derivada direccional

D11z = (V2)-(=1L1) (42)-(-L1) 2 5

(=1,1)] (=1, 1)] V2

"Hauriem de dir el sentit.
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35.4 Fem-ho amb sage

Les derivades parcials es poden calcular amb la mateixa instruccid diff() del cas
d’'una variable. També tenim la comanda gradient ().

sage: z(x,y)=sqrt(4-x"2-2xy~2)
sage: diff(z(x,y),x)
-x/sqrt(-x"2 - 2*%y~2 + 4)
sage: diff(z(x,y),y)
-2xy/sqrt (-x~2 - 2%xy~2 + 4)
sage: z.gradient()
(x, y) |-> (-x/sqrt(-x"2 - 2xy~2 + 4), -2xy/sqrt(-x"2 - 2%y~2 + 4))
sage: z.gradient() (1,-1)
(-1, 2)
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36.1 Pla tangent

Entre les primeres aplicacions de la derivada que vam considerar en el cas d'una
variable hi ha la determinacid de la recta tangent i, com a conseqiiéncia, l'aproximacié
lineal de funcions. En el cas de dues variables podem parlar de pla tangent a la grafica
d'una funcié en un punt.

Suposem que tenim una funcié z = z(x,y) it un punt (xo, ). En aquest punt,
la funcié valdra zy = z(xo, o). Voldriem trobar l'equacié del pla que passa pel punt
(x0, Y0, 20) L és tangent a la grafica de la funcié z = z(x, y). Recordem que l'equacid
d’'un pla en 3D té la forma

ax+by+cz=d

on els coeficients a, b, ¢, d sén nombres indeterminats. Si ¢ # 0, podem escriure aquesta
equacié en la forma
z=A+Bx+ Cy

on ara A, B, C sdn nombres indeterminats. Igual que passava en el cas d'una variable,
els coeficients B i C s'identifiquen a les derivades parcials de la funcié z. Es a dir, el
pla tangent té la forma

Al 0z n 0z
Z = —_ X o -
6X (Xo,yo) 6)’ (XOryo)y

En aquesta equacié encara hi ha un coeficient indeterminat A, pero aquest coeficient
es pot calcular perqué sabem que el pla ha de passar pel punt concret (xo, yo, 2p). El
resultat final és que lequacid del pla tangent és aquesta:

0 0
2=+ 2| (x—x)+ = (y—w).
Ox | (x0.y0) 8}/ (x0.¥0)

Exemple. Trobem el pla tangent a la grafica de la funcié f(x, y) = sin(x) + cos(y) en
el punt (0, 7/2).

Comencem calculant el gradient de la funcié en aquest punt:
Vf(x,y) = (cos(x), —sin(y)) = (1, —1).
Aleshores, l'equacié del pla tangent és
z=A+x—y

it aquest pla ha de passar pel punt (0,7/2,0). Aixo ens déna A =m/2 i el pla tangent
que busquem és

T4
zZ=—+x—y.
> y

232
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Si, en lloc d'una funcié de dues variables tenim una funcié de n variables, no par-
larem de pla tangent, sin6 d'hiperpld tangent. Si tenim n variables, la grafica de la
funcid esta en un espai de dimensid n+1 i un hiperpla en aquest espai és una varietat
lineal de dimensid n.

36.2 Aproximacio lineal

En el cas de les funcions d’'una variable, l'aproximacié lineal consistia en aproximar
la funcid per una funcid lineal, és a dir, una recta. La millor aproximacié lineal s'obté
quan aquesta recta és la recta tangent a la grafica. Vam arribar a aquesta férmula

f(x) ~ f(a) + f'(a)(x — a)

on a és l'abscissa del punt de tangéncia. Quan tenim una funcié de dues variables,
la grafica de la funcid és una superficie en 3D i la millor aproximacié lineal d'una
funcidé f(x, y) s'obtindra prenent el pla tangent a la grafica de la funcié, en el punt de
referéncia. L'equacid del pla tangent ja la coneixem per l'apartat anterior i arribem a la
conclusié que l'aproximacid lineal d'una funcid f(x, y) en un punt (a, b) vindra donada
per

of 0z
f ~ f + — —a)+ — — D).
(x.y) (a, b) Ox (a,b)(X 2) dy (a,b)(y b)

Exemple. Volem aproximar la funcié z = x2y + 2xe” al punt (2,0). Hem de comencar
calculant les derivades parcials de la funcié en aquest punt.
0z 0z

a:2xy+2ey:2, @:x2+2xey:8.

En el punt (2,0) la funcié val z = 4. Aleshores, l'aproximacié lineal sera

zrR442(x—2)+8y =2x+8y.

Si la funcid que estudiem té n variables, l'aproximacid lineal també tindra n varia-
bles.

36.3 La regla de la cadena

Recordem que la regla de la cadena ens permetia trobar la derivada de la composicio
de dues funcions. La situacié era aquesta. Teniem una funcié y = y(x) en la qual la
variable x era funcié d'una tercera variable x = x(t), i voliem determinar la derivada
de y respecte de t. La regla de la cadena ens diu que aquesta derivada és igual al
producte de la derivada de y respecte de x i la derivada de x respecte de t:

dy dy dx

dt dx dt’

Quins canvis hem de fer quan tenim funcions de diverses variables? Ben pocs. N'hi
ha prou amb substituir la multiplicacié anterior pel producte escalar. Més concre-
tament, suposem que tenim una funcié de dues variables z = z(x, y) i suposem que
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cadascuna d'aquestes dues variables és funcié d’'una tercera variable x = x(t), y = y(t).

Aleshores,
dz 0z % 0z ﬂ

_ = . / /77 _
dt (Vz)- (<.y) 8xdt+aydt'

La situacié podria ser encara més complicada. Podriem tenir una funcié z = z(x, y)
en la qual les dues variables fossin funcié de dues noves variables: x = x(u,v), y =
y(u, v). En aquest cas, la millor manera d’expressar la regla de la cadena és de manera
matricial:

Ox 0Ox
0z 02\ _ (02 02\ [y g
ou Ov Ox Oy y oy
ou Ov

Exemple. Recordem (pagina 218) la férmula que s'utilitza per estimar la superficie
corporal:
A =0.007184 WO4% (0725,

En una certa societat, l'alcada mitjana d'un noi de 13 anys és 154.3 cm i el seu pes
mitja és de 43.3 kg. Volem trobar una férmula que ens doni la velocitat de creixement
de la superficie corporal. Es a dir, volem conéixer dA/dt. La regla de la cadena ens
diu aixo:

dA_ 0AdW  0AdH
dt  OW dt = OH dt’
Determinem ara el gradient de A:

VA = (0.0030532W 27> H-72>  0.0052084 W4% H~0275) = (0.013500, 0.006463).

Apliquem la regla de la cadena:

dA
!/ /
—— = 0.013500W" 4 0.006463H".
dt
D’aquesta manera, com que hi ha molts estudis sobre el creixement en alcada i en pes,
coneixem també com creix la superficie de la pell.

Totes aquestes formules es poden generalitzar sense canvis importants al cas de
funcions amb un nombre arbitrari de variables.

36.4 Fem-ho amb sage

Considerem l'exercici anterior que demanava trobar l'aproximacié lineal de la funcid
z = x?y 4+ 2xe” al punt (2,0). El podem resoldre amb sage amb aquesta comanda:

sage: z(x,y)=x"2%y+2*xx*e”y
sage: L=taylor(z, (x,2),(y,0),1)
sage: L(x,y)

2*x+8%*y

Per resoldre lU'exercici de la superficie corporal, podem fer aixo:

sage: A(W,H)=0.007184%W~0.425%xH~0.725
sage: t=var(’t’)
sage: W=function(’W’) (t)
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sage: H=function(’H’) (t)

sage: diff(A(W,H),t).subs(W==43.3,H==154.3)
0.00646265625279537*D[0] (H) (t) + 0.0135001940086864+D[0] (W) (t)

sage: view( )

0.00646265625279537 D[0] (H) (t) + 0.0135001940086864 D[0] (W) (t)



37. Optimitzacid en diverses variables

Quan estudiavem funcions d'una variable, una de les aplicacions importants de la de-
rivada va ser l'optimitzacid, és a dir, la determinacié dels maxims i minims d'una funcié.
En el cas de les funcions de diverses variables, la derivada que hem estudiat en els
capitols precedents també és una eina fonamental en Uoptimitzacid, pero alguns detalls
son una mica més complicats.

oy

37.1 Domini de definicié i punts interiors

La primera complicacié que apareix en el cas de diverses variables és la forma del
domini de definicio. En el cas d’'una variable, les funcions que apareixen a la practica
estan definides a tota la recta o potser a una colleccié d'intervals. En el cas de, per
exemple, dues variables, les funcions poden estar definides en regions del pla que
poden tenir una forma més o menys complicada.

Per exemple, la funcié
fx,y) = V1—x2 =2y

esta definida a tots els punts (x, y) del pla tals que
x> 42y < 1.

Aquesta regié esta formada pels punts de lellipse x> 4 2y? = 1 i per tots els punts
de l'interior d’aquesta ellipse. En un altre exemple, podem estar estudiant una funcid
g(p.q) = 5p°q> on p i g sén proporcions, és a dir, nombres entre 0 i 1. Aleshores,
encara que la funcié g, des d'un punt de vista matematic, esta definida arreu, el domini
de definicio on ens interessa la funcid és el quadrat

0<p<1 0<g<Ll

Al domini de definicié d'una funcié distingirem entre els punts interiors i els punts
de la frontera. Un punt és interior quan al seu voltant hi ha tot un petit disc de punts
on la funcié esta definida. En els exemples anteriors, la frontera per a la funcié f(x, y)
és una ellipse i la frontera per a la funcié g(p, q) esta formada pels quatre costats d'un
triangle.

37.2 Maxims i minims locals

Un argument geométric similar al del cas d’'una variable ens diu que si una funcié de
diverses variables té un maxim local o un minim local en un punt interior del domini
de definicié, el pla tangent' a la grafica de la funcié sera horitzontal. Si recordem

'Si es tracta d’una funcié de més de dues variables, parlarem de U'hiperpla tangent.
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lequacio del pla tangent, veiem que aquest pla és horitzontal quan totes les derivades
parcials son iguals a zero.

Un punt critic d'una funcié de diverses variables és un punt en el que totes les
derivades parcials de la funcié son iguals a zero. Els punts interiors on la funcié té un
extrem local sén punts critics de la funcié. Per trobar els punts critics d'una funcié de

diverses variables z(x, ..., x,) haurem de resoldre un sistema d'equacions.
of )
— =0, i=1,...,n.
ox;

Un cop haguem trobat els punts critics de la funcid, hem de decidir st s6n maxims o
minims locals. En el cas de les funcions d’'una variable, la derivada segona ens podia
resoldre aquest problema. En el cas de diverses variables, utilitzarem el criteri de la
matriu hessiana. Recordeu que aquesta matriu esta formada per les derivades segones
de la funcio.

Sigui H la matriu hessiana d'una funcié calculada en un punt critic P i suposem
que H és invertible. Aleshores

e Si tots els valors propis de H sdn positius, la funcié té un minim local a P.
e Si tots els valors propis de H sdn negatius, la funcié té un maxim local a P.

e Si H té valors propis positius i valors propis negatius, P és un punt de sella.
Aixo vol dir que a P hi ha direccions en les que la funcidé té un maxim local i
direccions en les que la funcid té un minim local.

Considerem, per exemple, el cas de dues variables z = z(x, y). La matriu hessiana sera
una matriu 2 x 2

2
Ox2  QyOx
e P
Ox0y  0Oy?

Suposem que P = (xp, yo) és un punt critic de la funcié. Avaluem la matriu hessiana
en aquest punt i obtenim una matriu

a b
H =
c d
on a, b, c,d son nombres. Per decidir si P és maxim local o minim local hauriem de
veure si els valors propis d'aquesta matriu son positius o negatius. Ho podem fer

calculant els valors propis, pero de fet no és necessari calcular-los explicitament per
saber si son positius o negatius. Podem utilitzar aquest criteri senzill:

e Sidet(H) >01ia>0, aleshores P és un minim local.
e Sidet(H) >01ia<0, aleshores P és un maxim local.

e Sidet(H) < 0, aleshores P és un punt de sella.
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37.3 Exemple: biodiversitat dels ratolins

A Catalunya, a banda del ratoli doméstic, hi viuen tres espécies de ratoli: el ratoli de
bosc (Apodemus sylvaticus), el ratoli lleonat (Apodemus flavicolis), i el ratoli mediter-
rani (Mus spretus). En un estudi de biodiversitat, volem calcular l'index de Shannon de
diversos habitats, referit a aquestes tres espécies. Quins sdn els valors maxim i minim
que pot prendre aquest index?

Recordem que, en el cas de tres espécies, l'index de Shannon es calcula amb la
funcié
S = —p1log(p1) — p2log(p2) — p3 log(p3)
on pi1, P2, p3 son les proporcions de cadascuna de les tres espécies en 'habitat d'estudi.
Observem que S és, de fet, una funcié de dues variables perqué

p1+p2+p3=1

Podem prendre S = S(p1,p2) i p3 = 1 — p1 — po. D’altra banda, com que pi, p2 son
proporcions, variaran entre 0 i 1 i la seva suma ha de complir p; + p» < 1. Per tant, el
domini de definicié de la funciéd S(p1, p2) és la regio triangular del pla de vértex (0, 0),
(1,0) i (0,1).

Una altra observacié que cal fer és quin valor té S quan alguna de les tres propor-

cions és igual a zero. Observem que

lim x log(x) = 0.

x—0
per tant, quan alguna proporcié és igual a zero, podem simplement ometre el terme
que la conté. Aquest limit també ens permet afirmar que la funcié S és continua i, en
conseqiiencia, tindra maxim absolut i minim absolut en el triangle de definici6. Volem
determinar quins sén. Seguim aquests passos:

e Calculem els punts critics de la funcié.

oS
ap log(ps) — log(p1) =0

oS

2 | -0
95 og(p3) — log(p2)
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La solucié d'aquestes equacions és p; = po = p3 = 1/3. En aquest punt la funcié
val log(3).

No és estrictament necessari, pero podriem usar el criteri de la matriu hessiana
per decidir si aquest punt és un maxim local, un minim local o un punt de sella.
La matriu hessiana és
1 1 1
pP1 . P3 p3 _ <—6 —3>
1 1 1 -3 —6

P3 P2 P3

i, aplicant el criteri, veiem que la funcié té un maxim local a p; = p» = p3 = 1/3.

Ara ens cal estudiar el comportament de la funcié als punts de la frontera del
domini de definicié. La frontera esta formada per les tres arestes del triangle on
esta definida la funcié. En primer lloc, als tres vertex del triangle, la funcié val
zero. Considerem, per exemple, l'aresta po = 0. Quan la restringim a aquesta
aresta, la funcid es converteix en una funcié d'una variable:

5(p1) = —p1log(p1) — (1 — p1) log(p1).

Analitzem aquesta funcié a linterval (0,1) amb les eines de les funcions d'una
variable. Obtenim que aquesta funcié té un maxim relatiu a p; = 1/2 i en aquest
punt la funcié val log(2). Les altres tres arestes donarien resultats equivalents.

Finalment, hem arribat a la conclusié que el maxim absolut i el minim absolut de
la funcid estaran en aquesta llista:

1. Els tres vertex del triangle, corresponents a que només hi ha present una
de les tres espeécies de ratoli. En aquest cas, S =0.

2. Els punts mitjos de les tres arestes del triangle, corresponents a que només
hi ha dues espécies presents, i cadascuna té un 50% de la poblacié. En
aquests punts, S = log(2).

3. El punt p; = p» = p3 = 1/3. En aquest punt, S = log(3).

04

log?2 ¢

0 log? 0
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Examinant aquests 7 candidats, arribem a la conclusi6 de el valor minim de S és
S =01ielvalor maxim de S és S = log(3) ~ 1.01. EL minim es déna quan només
hi ha present una Unica espécie i el maxim es déna quan les tres espécies estan
representades en la mateixa proporcié.? Aquesta mateixa analisi l'hauriem pogut
fer amb un nombre qualsevol n d'espécies i el resultat hauria estat analeg: el
minim de S és S = 0, quan només hi ha una Unica espécie present, i el maxim de
S és S = log(n) quan les n espécies estan representades de manera equitativa.

2Tanmateix, un resultat ben natural.



Exercicis

A. Exercicis teorics

VI.A1. Calculeu el gradient Vf per a cadascuna de les funcions segtients:

(a) F(x,y) = ¢x21+*y2;

(c) f(x, t) = arctan(x/t);  (d) f(c, B) = sina cos .

VI.A.2. Calculeu les derivades direccionals de les funcions seglients en els punts indi-
cats i en les direccions donades:

(b) f(r,s) = rlog(r? + s?);

(@) flx.y) =x+2xy —3y% (xo.y0)=(12), V=37 +
(b) f(x,y) = e cos(ry), (x0.y0) =(0,—1), V =—17 +27;

VI.A3. Trobeu la derivada direccional de f(x,y,z) = x?> — yz 4+ z%x en el punt P =
(1,—4,3) ten la direccié de P a Q =(2,-1,8).

VIA4. En quina direccié, des de (0, 1), creix més rapidament f(x, y) = x? — y??

VI.A5. Calculeu les matrius hessianes de les funcions:

X

(@) Fxy) =x* =323 (b) fxy) =

(c) f(x,y) = log(3x + 5y).

VI.A.6. Trobeu lequacié del pla tangent a la superficie en el punt que s’especifica:

(@) z=4x> —y?>+2y, P=(-1,24).
2 2

(b)y z=e7Y, P=(1-11).
(c) 22 =4x>—y?>+2y, P=(1,1,V5).

VI.A.7. Calculeu la linealitzacié d’'aquestes funcions als punts indicats:

(@) f(x,y) =+/x+2y; P=(1,0).
(b) f(x,y) =sin(x?y); P = (7/2,0).

VI.A.8. Calculeu l'aproximacid lineal de f(x,y) = sin(x 4+ 2y) al punt (0, 0) i utilitzeu-la
per donar una estimacié de f(—0.1,0.2). Compareu amb el valor exacte.

VI.A.9. Trobeu els extrems locals i els punts de sella de les funcions seglients:

(@)f(x,y) = x? —4xy + y3 + 4y; (b)f(x,y) = x% 4+ 2xy + 3y?;
(O)f(x,y) =5+4x —2x2+3y — y?;  (d)f(x,y) = e siny;

VI.A10. (a) Trobeu els extrems relatius i els punts de sella de la funcié f(x,y) =
x3 4 y3 —3x% +3y% — 4.
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VI.A11.

VI.A12.

VI.A13.

VI.A14.

Exercicis

(b) extrems relatius

(c) Considereu la superficie z = f(x, y). St us trobeu en el punt (—1,1, —4),
en quina direccidé heu d'anar per davallar pel maxim pendent? Si en comp-
tes de davallar volguéssiu mantenir la mateixa altitud, en quina direccio
haurieu d'anar?

Calculeu els maxims i minims absoluts de f(x,y) = x2 + y? 4+ 4x — 1 al domini
D={(xy): x*+y*<9}.

Calculeu els extrems absoluts de f(x,y) = 4x? — 9y? al domini
D={(x,y) : -1<x<1, -1<y<1}.

Utilitzeu la regla de la cadena per calcular % en aquests casos:

(@) u=exp(xy), x =3t%, y = t3.
(b) u=x?®—3xy+2y? x=cost, y =sint.

() u=x+4/xy =3y, x=1t3, y=1/t.

Utilitzeu la regla de la cadena per calcular du/dt, du/0s si u = log(xy/2),
x = sin(t)cos(s), y =1+ st.

B. Exercicis d’aplicacio

VI.B.1.

VI.B.2.

VI.B.3.

S’ha estudiat el rendiment d'una collita com a funcié de les concentracions de
nitrogen N i fosfor P al sol, i s’ha trobat una relacié empirica (en unes certes
unitats)

Y (N, P) = kNP exp(—0.5N — P)

on k és una constant positiva. Trobeu els valors de N i P que maximitzen la
collita.

Les corbes de nivell d’'una funcié de produccié s'anomenen isoquantes. Dibuixeu
les isoquantes d'una funcié de produccié CES Q = F(aK" 4 (1 — a)L")¥/" amb
a=20.3, r =0.5. Useu sage.

A més de l'index de Shannon, un altre index que s'utilitza per mesurar la diver-
sitat és l'index de Simpson

1

o
H=(>_p
i=1

Repetiu el mateix exercici de les tres espécies de ratoli, amb l'index de Simpson
en lloc de l'index de Shannon. Es a dir, determineu quin sén els valors maxims
i minim d'aquest index quan hi ha tres espécies.



VI.B.4.

VI.B.5.

VI.B.6.

VI.B.7.

VI.B.8.

VI.B.9.

Exercicis 243

Hi ha una férmula® que déna la minima temperatura de supervivéncia (en ab-
séncia de vent) com a funcié de la produccié metabolica de calor M (en W /m?)
i la conductancia térmica g (en mol/m?s) de la roba d'abric que es dugqui:

(0.9M — 12)(g + 0.95)

T=36—-
27.8g

M varia entre 50 (persona dormint) fins a 400 (caminant en pujada), g varia
entre 0.45 (cos nu) fins a 0.04 (plumod molt gruixut). Representeu aquesta funcid
utilitzant corbes de nivell. Dibuixeu seccions d'aquesta funcié per a M = 200
(persona caminant) i per a g = 0.14 (persona amb roba de teixit polar).

Utilitzant la teoria de l'exercici anterior, imagineu una persona que camina i
va abrigat, de manera que M =100 i g = 0.1. Va augmentant el seu ritme de
manera que M creix a una certa velocitat M’ = 0.2 W/mzs i, simultaniament, la
roba que du va quedant amarada de suor, de manera que g també creix a velo-
citat g’ = 0.0002 mol/m?s?. Calculeu la velocitat amb qué canvia la temperatura
de supervivencia.

En el model de Holling de 1959, el nombre de captures d'un depredador en un
interval de temps T s’expressa com

_ aNT
14 aToN’

on a és una mesura de l'agressivitat del depredador, N és la densitat de preses
i To és el temps que el depredador dedica a cada presa. Estudieu com es
comporta P quan augmenten (per separat) cadascuna de les variables a, N, T,
To.

Segons el model de Voellmy (vegeu la pagina 90), la velocitat maxima que
assoleix una allau ve donada per

v = \/h&(sinth — pucos 1))

on h és l'alcada del gruix de neu, ¥ és el pendent, i £ i u sén coeficients de
turbuléncia i friccid (positius), respectivament. Estudieu el comportament de v
en funcié dels diversos parametres.

Estem pujant una muntanya amb una temperatura de -3 graus i un vent de 15
km/h. A mida que pugem, la temperatura baixa a un ritme de 1 grau cada cent
metres i el vent augmenta a un ritme de 7 km/h cada cent metres. A quin ritme
disminueix la temperatura de sensacio? (Utilitzeu la férmula de la pagina 16.)

Estem a 35 graus i la temperatura de rosada és R = 300K. La temperatura esta
pujant 2 graus per hora i R esta baixant 2 graus per hora. Calculeu a quina
velocitat esta canviant la temperatura de xafogor H. (Utilitzeu la formula de la
pagina 68.)

3Aquesta férmula apareix al llibre Calculus For Biology and Medicine de Claudia Neuhauser, que no
cita la font original.
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l. Les funcions elementals

ILA1. (a) 572; (b) (6/5)%; (c) (4/7)%; (d) 6°
LA.2. (a) (74++13)/6; (b) x =8, —2/3; (c) x =4, —=3; (d) x = —1.

rt
A3, K€

1+ %e”

LA4d. a=-2,b=5

LAS. (a) x=42; (b) x=1; (¢) x = -1, =2

ILA6. (a) x =280, 20; (b) x=0,1; (c) x==41;(d) x=1,3
LA7. K=0.7116, R = 0.5196

I.A.8.

ILA.9. (a) x/v1+ x2; (b) V1 —x2/x

ILA.10. (a) x > 8; (b) x > 5; (c) x > (5 ++61)/6 0 x < (5 —/61)/6; (d) —2 < x < 7/3;
(e)s<0;(f) -1<x<0o0x2>1

LA11. (@) =1 <x <5 (b) 6<x<-505<x<6;(c) 4<x<4(dx<-1/2
LA12. (@) 2x+5y =1; (b) 3x+5y +7=0; (¢) 3y +2x+7=0; (d)2x -3y —7=0
LA13. x2 4+ y?+2x -8y +8=0; C=(2,0), r=4C=(2,-1), r=4

LA14. (@) 2y =3x% — x; (b) y = 2x> —6x + 4

ILA15. (a) x > 0, excepte x = v/2; (b) x = a+ kr amb k enter i 0 < a < 7/2; (c) Tot x
excepte [-2, —1]; (d) |x| > V2

I.A.16. (a) exp(3x log 7 + °82); (b) 10°-197¢; (c) log(0.9768t)%4343; (d) logy(74.5x)3322

n

LA17. N = 4119.23x/(3.077 + x)

ILA.18. N = 12000 x/(12.346 + x)

LA19. M =13.321 p~0798

I.LA.20. P = 520.766 exp(0.9041 u)

ILA.21. T(t) = 2333 + 87sin(0.1117 + (27t/365))

.A.22.
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I.LA.23. (a) —oc; (b) 0; () 0; (d) —oc; (e) 0; (f) —oo; (g) 0; (h) O; (i) €2
I.A.24. 0.567143

.B1. 5§=23

1.B.2. d =0.143

1.B.3. 47.27 dies.

1.B.4. 292.4° K

I.B.5. V =23.1 km/h.

1.B.6. 28

1.B.7. 1464 km?.

1.B.8. 0.903

1.B.9. t =181 T~ 1%

1.B.10. 8.13%

I.B.11. La vida mitjana de A sera 1.6 vegades superior a la de B
1.B.12. Ny, =500; M, = 100

1.B.13. a, 0.

1.B.14. hyo =132

1.B.15. N =423

1.B.16. N =595

I.B.17. 26.3 x 10° tones.

1.B.18. 93 kq.
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I.B.19. La concentracié de H3O" al suc de llimona és 5 vegades més gran que al
vinagre.

1.B.20. Mi= 329.627 Hz, Sol=391.995 Hz.
1.B.21. 1.26
1.B.22. 2.83, 4, 5.66. 1.77 punts.

1.B.23. 104 anys

1.B.24. Aquest exercici té moltes solucions possibles. Per exemple, podem usar una
funciéd de Monod o una funcié exponencial:

10x
| = , | =10(1 —-27*%
1+ x ( )

La diferencia entre aquestes dues funcions es pot veure en la grafica segiient (l'ex-
ponencial esta dibuixada en color vermell). Possiblement, la solucié millor és U'expo-
nencial.

10

I.B.25. Donem 1 punt per cada resposta correcta. Aixo ens déna una nota n que va
de zero a un nombre molt gran T. Volem convertir n en una nota final N que vagi de
0 a 10. Podem fer-ho amb una funcié exponencial o amb una funcié de Monod. També
ho podriem fer amb una funcid lineal entre 0 i T, perd aquesta no és la millor opcid
(per qué?). Possiblement, la solucié millor és l'exponencial. En tot cas, necessitem
prendre una decisid. Per exemple, podem fixar el valor de n que correspon al 5.

1.B.26. T(t) = 17.9 + 9.3sin(x(t — 17)/26)

1.B.27.
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Il. La derivada

ILA1. (a) 42x% — 8x3 4 2; (b) 40(x® + 5x — 8)3%(5x* + 5): (c) e3*(3x? — 7x + 3);

(d) (—2x* + 4x3 — 2x2 + 13x — 4)/(x% — x + 5)%; (e) 2T 1xlog(2) — (xlog(3))~%;

2
/(65— 1/2V3E T2, 0] 5o asras

(h) e(log(x) + 1/x); (i) e*(arcsin(x) — (1 — x?)~/?)(arcsin(x))~2; (j) O;

(k) —(2\/arccos(x)(1 —x2))7L; (1) 1/tan(x); (m) (arctan(x)(1 + x?))~};

1 2 arct
(n) e~ <x 1 log(x + 1)); (0) alrc+a)r:§x) +0.172x0-828,

3 3
(p) g\/}arccos(xz) — 2xmy/ 1i7x4'

4 2
ILA2. (a) 26~V (~rNK — 2rN? + 1); (b) =T cos (ZT 7—2>'.

B 2VT — pcos(T) S < u >
pa=118. (d ; | 1) );
()« (d) 2 /VT2 —usin(T) | K+ 92 s leelut )
herft
(f) K41

NA3. () r=1ir=-2

ILA.4. (a) —x/y; (b) (2x +y)/(1 = x); (c) ¥/(3y* — x);

2x2y3 +4xy? +2y — 1
—x2 —2x3y2 — 4x2y — 2x’

(d)

1
A5, (a) 1+ 2x+4x2%; (b) 14 x+ %5 () 1 — nx + ”(”; ).
1T 4261- T+ (2—mxt 2
d 5 X; > 3 ™)X )

ILA6. b=r/2, P=(0,7/2).
ILA.7. (a) 6%; (b) 0.67%; (c) 1.6%; (d) 6%.

ILA.8. (a) No té ni maxim ni minim. (b) No té ni maxim ni minim. (c) Té un minim a
x = 0; no té maxim. (d) Té maxim i minim a x = 0. (e) Minim a x = 0, maxim a x = 2.
(f) Minim a x =0 i maxima x=e— 1.
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(a) 4
(0) 4
2+
2
. .
4 2 2 4
6 4 2 2 4 6
2F
2
4L
-4
al
© . (d)
2l
2
—_— 4 2 4 6 8
6 4 2 4 6
2t
2
“ -4
1
5
L 1 2 3 4
(e) .
1
3
2
2 ()
1
4 3 2 1 1 2 3 4 3

ILA.9. (a) Convexa arreu; creixent per x > 1/3, decreixent per x < 1/3. (b) Convexa
per x > 0, concava per x < 0; creixent per |x| > 2, decreixent per |x| < 2. (c) Definida
per x > 0. Concava arreu; creixent per x < 2/5, decreixent per x > 2/5. Si entenem
x%/3 = V/x2, també podem definir la funcié per x < 0. Aleshores, la funcié és decreixent
per x < 0, convexa si 0 < —0.2 i concava si —0.2 < x < 0. (d) Convexa per x > —3,
concava per x < —3; creixent per x > —2, decreixent per x < —2. (e) Definida per
x # 0. Convexa per x > 0, concava per x < 0; creixent per x > 1, decreixent per x < 1.
(f) Definida per |x| > 1. Concava arreu; creixent per x > 1, decreixent per x < —1.
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ILA10
1.A11
11.A.12
I.B.1.
1.B.2.
1.B.3.
11.B.4.
11.B.5.
11.B.6.
1.B.7.
11.B.8.
11.B.9.
11.B.10
1.B8.11

Solucions als exercicis

. P=(log(k)/r, K/2). L(x) = (rK/4)x + (K/4)(2 — log(k)).
Ly =2x/(x>—x+1)
.y=1/3

A partir dels 10 anys.

N = 50, 50%.

A les 13:23, aproximadament.

29%

67, aproximadament. 34, aproximadament.
4714, 2357, 11.8%

Disminueix acceleradament.

Augmenta acceleradament
Co=3(1+x—x%=x3). Cnax = 16/27 = 59.3%
. A=0.84, C, =37.3%.

. La quantitat optima d'adob ve donada per x = (\/apgpn, — pn)/Bpn. De fet,

amb els valors concrets del problema, obtenim x = 14.25 que ddéna una despesa de
33.68 €/ha, mentre que el rendiment extra és de 33.56 €/ha. En conclusio, en aquestes
circumstancies és millor no adobar.

1.B.12
1.B.13
1.B.14
11.B.15
11.B.16
1.8.17
11.B.18
1.B.19
11.B.20
11.B.21
11.B.22
11.B.23
1.B.24

. 73.23 x 10° kg/any?.

. 10.8 I<m3/ang.

. 26124 milions de GB per any?.

. r=2k.

. 2.805

. 3.5049 + 0.2238u».

. A =2504(T +237.3) 2 exp(17.27T /(T + 237.3)). 1.706 4 0.110.

. 0.234+0.03.

. Desaccelerat.

. Desaccelerada (la disminucid).

. IM=0.

. Es sempre una funcié decreixent, que tendeix a zero quan N — oo.
. St b =1, la taxa de creixement és constant. St b > 1, la taxa creix. Si b < 1,

la taxa decreix desacceleradament. En tots els casos, si b # 1, la taxa de creixement
té acceleracid positiva.
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I1.B.25. t = eb1/c,

I1.B.26. EL valor maxim és a/ef. Hi ha un punt d'inflexié a P = 2/3. La funcié és
concava per P < 2/ i convexa per P > 2/f.

11.B.27. La velocitat creix per N < k i decreix per N > k. La densitat quan la velocitat
és maxima és N = k.

11.B.28. Logistica.

lll. La integral
LA, (a) —2/(9x3) + C; (b) —10v/5 — x + C; (c) log(eX +1) + C; (d) 3log(x® +4) + C;
(e) —(1/2)log | cos(2x)| + C; (f) (1/4)sin?(2x) + C.

.A.2. (a) (1/4)x* log(x)—(1/16)x*+ C; (b) x arcsin(x)++v1 — x2+C; (c) —e~2¥(x?/2+
3x+3) + C; (d) (eX/2)(sin(x) + cos(x)) + C; (e) (1/2)(x? arctan(x) + arctan(x) — x) + C;
(f) —(ex —3)"1+ C.

1.A.3. (a) —9log |x —2|+11log |x— 3|+ C; (b) log(x?>+x+1)+ C; (c) —(1/2) arctan(x) +
(1/8)log|(x = 1)/(x + 1)[ + C; (d) (1/3)log |(x = 1)/(x +2)[ + C.

ILA.4. (a) 4/3; (b) 10; (c) 0.6482; (d) 1/2; (e) 64/3; (f) 92/3.
A5, 1/2.

IILA6. a = 18.

.B.1. (1/t) log(B(t1)/B(0)).

.B.2. a

> e 1 01 11
C:/ eth:/ Ecllq'dt:—/ q’dt:—/ dq:/dp.
0 o 9 o P a P po P

C =138.
1.B.3. 0.27

.B.4. y = x*348_ | = 0.955.
11.B.5. 342.44

11.B.6. 22.03° C.

A
.B.7. T = 2,/2hy/g.

11.B.8. 379.6 Wh. Per obtenir aquest resultat hem de calcular
ty
/ cos(Z) dt
to
on tg i t; sén I'hora de la sortida/posta del sol. Es millor fer un canvi de variables:

o dt
Z)—d
/w cos( )dw w

0

on ara cos(Z) = 0 per w = twy. Tenim A ~ 0.739723, n = 52, 6 ~ —0.195936,
a=sinAsind ~ —0.131234, b = cos A cos § ~ 0.724522, wy = arccos(—a/b) ~ 1.388659.
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111.B.9. 2333.9 TWh
.B.10. p, =2.45, go = 1.45, CS =1.82, PS = 1.05.

.B.11. 12.96 1/m?
IV. Equacions diferencials

IVAA1. (a) y =sin(t) — tcos(t) + k;
(b) y = 2+ k;

(©) y = —1/(4t + k),

(d) y = kexp(2/2);

(e) y =100/(1 + kexp(—50t)), y = 0;
(f) y = (e +k)/(ef — k), y =-1

(9) y = —1/(sin(t) + k), y = 0;

(h) y = £2/4/1+ kexp(—8t), y = 0.

IVA2. (a) y = —/4 — (£3/3);
(b) y = —3exp(—1 — cos(t));
(c) y = (1/2) log(4t* - 3);
(d)y=-v1-2t

IVA3. y = Kexp (log(y(0)/K)e "), y = K.

IVAA4. y = (t + k)3, y = 0. Les dues funcions y = 0 i y = t3 sén solucions amb
les condicions inicials y(0) = 0. La contradiccié aparent amb el teorema d’unicitat de
solucions prové del fet que la funcié y?/3 no és diferenciable per y = 0. Aixd déna
lloc a infinites solucions que no estan contemplades a la férmula y = (t + k)3 i que
s'obtenen «enganxant» funcions d'aquestes amb valors diversos de k, amb un tros de
la funcié constant y = 0.

IV.LA5. Els equilibris son y = 0 (inestable) i y = 2 (estable). Les solucions sén y =0
iy =2/(1+ kexp(—2t)).

IV.A.6. Els equilibris sén y =5 (inestable) i y = 1 (estable). La solucié particular és

y =5(1 —exp(4(t — 1)))/(5 — exp(4(t — 1))).

IV.LA.7. Els equilibris sén y = 4 (inestable) i y = 0 (estable). La solucié particular és
y = 4(1 — exp(2t — 2))2.

IV.A.8. Els equilibris s6n y = 3 (inestable) i y = —2 (estable).
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NJ
ps

IVA9. y = kexp(—2x/3).
IV.B.1. P" = kP(N — P). A les 3:36.

IV.B.2. (a) X' = k(a — x)(b — x). (b) St a # b, la solucié és x = ab(1l — exp(kt/(a —
b)))/(b — aexp(kt/(a — b))). Si a = b, la solucié és x = a’kt/(akt +1). (c) x =
at/(t + 20).

IV.B.3. 62 dies.

IV.B.4. 640 dies.

IV.B.5. 4.65%.

IV.B.6. 71.3 anys.

IV.B.7. (a) 3.23 x 10° kg. (b) 1.55 anys.
IV.B.8. ELl 19%.

IV.B.9. 2400 peixos.

IV.B.10. El llindar d'extincié és N = 49.
IV.B.11. 9 dies.
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V. Vectors i matrius

4 2 -2 29 7
—29/3 —7/3
VAl (@) [ 2 1 —1];(b)(6); (c) ;(d) | 134 58 |;
(2 ~1 1) (_62 16> (62 22)
15/2 1 5/2 K ak 1k
(e (3/4 1 1/4);(f) (5 507
197/4 7 69/4

VA2, (a) <:g?§ :i); (b) (—;o _536>  (0) (1/013 ‘61/ 13).

VA3, (x,y) =(1,3).
VA4 —i—2j—k.

VAS5. A (1,0), A=3; (1,-2), A= —1. B: (1,1), A=2 C: (1,-v2), A= —v2 -2
(1,vV2), A\ =v2 -2 K:cap. L: (2,-1), A=1; (1,-1), A\ = —1. M: cap.

V.A.6. (1/V/14,2/+/14,3//14).
V.A.7. /29, /41, \/46. 69.63°, 62.26°, 48.10°.

0.9272 0.3746

V-ASB. (—0.3746 0.9272

>. 0.0899i + 4.4935j.

V.A.9. 3, V11, 45.29°.

V.A10. 2x+3y — 2z =1.

VA (x,y,z)=(1,-1,3)+r(1,5,—4). 5bx —y =6,4x+z=1T.
VA12. x+5y —4z =6.

V.B.1. C s’'assembla més a B que a A.

V.B.2.

V.B.3.

0 0 35000
V.B.4. [3x10°° 0.706 o |.

0 0.071 1

0 0
V.B5. (025 O .

0 05
07 0 0.1
V.B.6. L= 1002 0.8 0 .

0 0.05 0.9

O O

V.B.7. 100 a la zona A i 140 a la zona B.
V.B.8. r =1.27. h = 28.6%.
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V.B.9. En la proporcié 34:14:13.

o, (32 9 (8) - (). 11

VI. Funcions de diverses variables

2

2r
VIAA. (a)(—x(x? + y2) 732, —y(x® + y?)73/2); (b) < > 22

r2 + s?
(v 360
( Xt + 1" 2(x2t+ 1)Vt

+ log (r2+52) 2rs );

); (d) (cos () cos(B), —sin(a)sin(B)).

VI.A.2. (a) —5; (b) v/5/5.

VI.A3. 52/1/35.
VIAA4. (0,1).
VIAS. (a) (12_’<i8;y62y ’ jgi{;);
2y X—y
(b) _(;(j'))//)‘q' (x %2—X)/)3 ;
(x+y)? (x+y)?
9 15
() (3x —1F55y)2 (3x —2F55y)2

(3x + 5y)? (3x + 5y)?

VIAG. (a) z= —8x —2y; (b) z=142x+2y; (c) VB z = 4x + 1.
VIA7. (a) z= 3 + ix +2y; (b) z = (x2/4)y.
VIA8. z =x+2y. x+ 2y = 0.3 ~ 0.295520206661340 - - - = sin(x + 2y).

VI.A.9. (a) (4,2) minim local, (4/3,2/3) punt de sella; (b) (0,0) minim local; (c) (1, 3/2)
maxim local; (d) no en té.

VI.A10. (a) (0,0) i (2,_?2),imnt de sella; (2,0) minim; (O, —%) maxim. (b) Maxim
pendent en la direccié i + j; pendent zero en la direccié £( 7 — j).

VI.A.11. Maxim 20 al punt (3,0) i minim =5 al punt (-2, 0).
VI.A.12. Maxim 4 als punts (£1,0) i minim —9 als punts (0, +1).

VI.A13. (a) 15t*exp(3t2); (b) 2sin(t) cos(t) — 3 cos?(t) + 3sin?(t); (c) 3t? +3t~2 + 4 si
t>0,3t°+3t2—4sit<0.
1 s
+ !
tan(t)  14st'1+st

VI.A14. ( —tan(s)).

VIBA1. P=1 N=2
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N

VI.B.2.

0.2+

o
T
L

=]
=]
]
I
kS
e
o
o
]
=

VI.B.3. El minim és H =1 quan hi ha una Unica espécie present i el maxim és H =3
quan les tres espécies son igualment abundants.

0.4 | 1

0.3} 1

0.2

0.1} 1
100 200 250 300 350

VI.B.4.

50 150 400




VI.B.5.
VI.B.6.
VI.B.7.
VI.B.8.
VI.B.9.

Solucions als exercicis

10 |

0.1 0.2 0.3 0.4

10

30}

-0 |-

10 |

50 100 150 200 250 300 350 400

10

30

<0 |-

T baixa 0.88 graus per minut.

P és funcid creixent de a, N i T i funcié decreixent de Ty.

v és funcio creixent de h, ¢ i & i funcid decreixent de pu.
Baixa 2.68 graus per cada cent metres.

—0.4 graus per hora.

259
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Index alfabeétic

3D, 176

AA, 7

abs(), 8

abstrusegoose, xii

acceleracio, 78, 94, 101, 116

ADN, 32, 67

allaus, 90, 243

allometria, 26, 68, 87, 92, 118

amplitud, 36

angle, 12, 98

angle entre dos plans, 177

angles d'un triangle, 177

aplicacio ortogonal, 193, 194

aplicacions lineals, 193

append (), 63

aproximacié lineal, 90, 91, 113, 117, 232,
233, 241

aproximacié quadratica, 93

arc-cosinus, 13

arc-sinus, 13

arc-tangent, 13, 40

area, 123, 127,128, 141

arrel enésima, 4

arrodoniment, 3

asimptota horitzontal, 102, 104

astmptota obliqua, 105, 107

astmptota vertical, 104, 155

astmptotes, 105

aspect_ratio, 21, 38, 108, 222

assume (), 140

baricentre, 184

bicing, 202, 207
biodiversitat, 31, 67, 68, 238
biomassa, 17

Brasil, x, 50, 82, 115

calcul de primitives, 134
canvi de variable, 137, 141
capacitat del medi, 58, 59
carotenoides, 181
charpoly(), 197
circle(), 14

circumferéncia, 11, 87, 93

clisters, 181

clo, 218

clustering, 180

CO, a l'atmosfera, 16, 50, 80, 82, 118

coeficient de poténcia, 116

color, 38, 219

combinacions lineals, 172

completacio de quadrats, 12

comportament a llarg termini, 39, 104, 204

composicid de funcions, 19, 84

concavitat, 101, 105, 107, 114

condicions inicials, 147

conductancia, 243

consum de formatge, 116

consumer surplus, 126, 144

contaminacio d'un llac, 157

contaminacié d'una conca fluvial, 148

continuitat, 42, 219

control biologic de plagues, 95, 118

convexitat, 101, 105, 107, 114

coordenades d'un vector, 172

corba d'oferta, 125, 144

corba de demanda, 118, 125, 144

corba de Lorenz, 124

corba logistica, 79, 114, 115, 154

corbes de nivell, 222, 227, 230

cos(), 7

cosinus, 13

creixement, 50, 100, 105, 114

creixement continu, 52, 54

creixement discret, 52, 53

creixement exponencial, 53, 54, 146, 151,
162, 166

creixement exponencial discret, 54, 199

creixement logistic, 59, 78, 146, 153, 162,
166

cursa d'armaments, 203

data mining, 182
decreixement, 50, 100, 105, 114
def, 63

densitat de plantacid, 35
depredador, 95, 139, 243

2061
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depredador i presa, 24

derivacid implicita, 87

derivada, 50, 74, 97, 100, 113, 129

derivada d’'un producte, 80

derivada d’'un quocient, 82

derivada de la funcid inversa, 87

derivada direccional, 228, 241

derivades de les funcions elementals, 88

derivades parcials, 228

derivades parcials creuades, 229

derivades parcials segones, 229

derivades successives, 78

desacceleracio, 101, 110, 116

desforestacio, 82

desolve(), 160

desviacié tipica, 183

determinant, 191

diferencial, 127, 137

diff (), 79, 88, 160, 231, 234

difusid d’'un rumor, 149, 168

dimensio, 173

diminishing returns, 102, 110

dir, 45

direccié de maxim pendent, 230

discontinuitat, 43

discret, 52

distancia, 11, 112, 174

distancia d'un punt a un pla, 178

distancia entre dues rectes, 178

distribucié de Weibull, 67

distribucié exponencial, 139

divisio per zero, 4

domini de definicid, 18, 98, 104, 219, 236,
238

e, 28

ellipse, 11

edgecolor, 14

efecte Allee, 163, 166, 169
eigenvalues(), 197
eigenvectors_right (), 197, 208
elasticitat de substitucio, 216
ellipse(), 14

emigracid, 162, 163, 166
energia eolica, 143

energia solar, 143
epidemiologia, 116

equacid d'un pla, 176

Index alfabétic

equacié d’'una recta, 176

equacié de Gompertz, 167, 169
equacié de Penman-Monteith, 117, 218
equacié de Solow-Swan, 148
equacid diferencial, 78, 113, 114, 146
equacio diferencial de primer ordre, 147
equacio diferencial de segon ordre, 147
equacio diferencial ordinaria, 146
equacié parameétrica, 176

equacions autonomes, 153
equacions separables, 153

equilibri estable/inestable, 164
equilibris, 162, 167

error, 92

error relatiu, 92

escala cromatica, 70

escala logaritmica, 33

escala ordinaria, 33

escala semilogaritmica, 34
escalfament global, 16

espai de n dimensions, 173, 178
espai de tres dimensions, 176
espécie invasora, 86

esperanca de vida, 139

estabilitat, 167

estandarditzacio, 182

estoc, 83

evaporacié, 115, 117, 218

exclude, 21

extensio d'una epidéemia, 149
extrems, 114

extrems globals, 96, 107, 242
extrems locals, 107, 184, 236, 241
extrems relatius, 96

facecolor, 14
factor(), 27

Fagus Sylvatica, 87
FAO, 117, 218

fase, 37

£i11, 14
find_root(), 8
floor(), 8
fotografia, 32, 70, 217
frequiéncia, 32, 37, 70
funcio, 16

funcié CES, 216, 242
funcid logistica, 115
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funcions concaves, 101

funcions constants, 23, 77

funcions continues, 43

funcions convexes, 101

funcions creixents, 100

funcions d’oferta, 17, 125

funcions d'una variable, 18
funcions d'utilitat, 32

funcions de Cobb-Douglas, 16, 148
funcions de demanda, 17, 83, 125
funcions de diverses variables, 216
funcions de Holling, 25, 69, 109, 114
funcions de Michaelis-Menten, 24

funcions de Monod, 24, 39, 67, 75, 77, 83,

86, 102, 104, 109, 116
funcions de produccio, 16, 2106, 242
funcions decreixents, 100
funcions derivables, 75
funcions elementals, 23
funcions emplriques, 20, 69, 114
funcions exponencials, 28, 40, 75
funcions integrables, 128
funcions inverses, 19
funcions lineals, 23, 40, 77, 90
funcions logaritmiques, 30, 40
funcions no derivables, 75
funcions periodiques, 36
funcions polinomiques, 23, 40
funcions potencials, 26, 40
funcions quadratiques, 23
funcions racionals, 24, 40, 135, 141
funcions sinusoidals, 36, 95
funcions trigonometriques, 40
funcions trigonometriques inverses, 13
function(), 88, 160

garnatxa, 180

generadors edlics, 32, 70, 116
grafica d'una funcig, 19, 91, 104
gradient, 229, 241

gradient (), 231

growth rate, 51

Halmos, xii
hipérbola, 11, 111
hiperplans, 178
homotecia, 193, 195

identity_matrix, 192
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implicit_plot(), 14, 222, 225
indeterminacio, 46

index de Gini, 124

index de Richter, 32

index de rosada, 68

index de Shannon, 31, 67, 238, 242
index de Simpson, 242

index Dow Jones, 173, 217
index humidex, 68

index Nasdaq, 217

infinit, 2, 39, 41, 76
Infinity, 45

ingrés marginal, 118
integracio per parts, 138, 141
integral, 126, 129
integral(), 132, 140
integral divergent, 139
integrals impropies, 138
interval, 4

isoquantes, 242

ivar, 160

k-means, 184, 211

limit (), 45

limit, 39, 74, 219

limits d'integracio, 126, 137
Limits finits, 41

limits laterals, 41

linestyle, 14

llac de Banyoles, 70

llei d'accid de masses, 23, 149, 168
llei de Betz, 116

llei de Fechner, 32

llei de Hack, 68

llei de Kleiber, 26

llei de l'oferta i la demanda, 17
llei de Moore, 55

llet de refredament de Newton, 61, 148
llindar d'extincio, 169

lloguer de cotxes, 212
[luminositat, 70

logaritme, 30

logaritme natural, 30

logaritme neperia, 30
loglog, 35

longitud d'un vector, 174

maquina expenedora, 18
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maxims i minims, 96

mandarines, 181

mapa meteorologic, 217, 222

mapa topografic, 222

matriu, 188, 204

matriu de Leslie, 199, 200, 204, 205
matriu de mobilitat social, 201, 204, 205
matriu hessiana, 229, 237, 239, 241
matriu inversa, 190

matriu quadrada, 188

matrix (), 192, 197, 207

maxims i minims, 95, 236

menys infinit, 39

més gran que/més petit que, 4
mesura d'angles, 174

metabolisme, 243

metapoblacié, 163, 169

mitjana, 183

mitjana d'una funcio, 123, 127
model de Beverton-Holt, 62, 71, 83
model de Hassell, 62

model de Holling, 24, 243

model de Jukes-Cantor, 32, 67
model de Levins, 163, 169

model de Lotka-Volterra, 149
model de Nakatsugawa et al., 36
model de Richardson, 203

model de Ricker, 62, 71, 119
model de Voellmy, 90, 243

model de von Bertalanffy, 61, 100, 117, 148

model logistic, 58, 71, 110, 168
model SIR d'epidémies, 150
model SIS d'epidémies, 150
modelitzar, x

models depredador-presa, 149
modul d’'un vector, 174

molla, 148

moviment harmonic, 36
multiplicacié de matrius, 188

NO, 7

Napier, 30

Newton, 129, 148
nombres decimals, 2
nombres enters, 2
nombres negatius, 4
nombres positius, 4
nombres reals, 2

norm(), 175

norma d'un vector, 174
notacié cientifica, 3
noves tecnologies, xi
nutrients essencials, 217

O dissolt a laigua, 216
octava, 32

Oncorhynchus nerka, 63
ones, 36

ONU, 95

oo, 45, 140

operacions aritmeétiques, 4
optimitzacio, 109, 236
ordre, 4

parabola, 77
parametric_plot(), 14

part entera, 5, 8, 42, 43

peix escorpi, 212

pendent, 10, 13, 76, 90, 226
péendol, 148

péerdua de calor a les canonades, 218
perpendicularitat, 174

pesca sostenible, 95, 110, 115, 163, 169
petjada carbonica, 80, 81

pH, 31, 69

T, 28

pla tangent, 232, 233, 2306, 241
plaques solars, 124, 143
plot ), 14, 21, 22, 35, 38, 108
plot3d(), 219, 225

poblacid, 90, 91, 95

point (), 63

polinomi caracteristic, 195
pollucié atmosférica, 32
poténcia, 4

power laws, 26

precisio, 92, 114

pressid de vapor, 117
primitiva, 146

primitives d’'una funcio, 130, 131
primitives immediates, 134
primitives trivials, 134

procés adiabatic, 86

procés iteratiu, 44, 184
producer surplus, 126, 144
producte de matrius, 188
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producte escalar, 174, 233
productivitat, 216

propagacio6 d'errors, 92

propietat de Bolzano, 44

Puigmal, 143, 226

punt d'inflexié, 102, 105, 110, 111
punt de sella, 237, 239, 241

punts critics, 98, 100, 105, 109, 237
punts de discontinuitat, 104

punts interiors, 98, 236

quantitat de neu, 115

radian, 12

radioterapia, 159

ratoli, 139, 140, 169, 238, 242
RDF, 198

reclutament, 83

recta, 10

recta tangent, 76, 114, 232
reflexid, 194, 195

regla de l'Hopital, 49

regla de la cadena, 84, 233, 242
relacié qualitat-preu, 70
rendiment d'un conreu, 109, 242
reset (), 140

rhs(), 112

ring, 27, 112

r.kmeans (), 186

roots(), 27, 112

rotacid, 194, 195

round (), 8, 21

RR, 8

salmo, 63

scale, 35

segona derivada, 78

semilogy, 35

senglars, 168

sin(), 8

sinus, 13

sistema d'equacions lineals, 194
solucié general, 147, 167
solucid particular, 147, 151, 154, 167
solve(), 7, 88, 112

sqrt (), 7

subespais, 178

suma de matrius, 188
superficie, 123

superficie corporal, 218, 234
superficie foliar, 17, 92, 93
supply curve, 17

tangent, 13
taula de doble entrada, 221
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taxa de creixement, 50, 51, 56, 57, 91, 116,
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taylor (), 94, 234
temperatura d'equilibri térmic, 218

temperatura de sensacid, 16, 18, 21, 68, 90,

216, 221, 222, 243
temperatura de supervivéncia, 243
temperatura de xafogor, 68, 243
teorema de Pitagores, 11, 13, 174
teorema de Rolle, 99

teorema fonamental del calcul, 129, 131

teoremes de valor mig, 98
text (), 186
thickness, 14, 108
ticks, 22

tip speed ratio, 116

tractament biologic de les plagues, 110

transformacions lineals, 193
treball, 123

trigonometria, 13

TSR, 116

Vallter, 226

valor absolut, 5, 8, 76, 98
valor propi, 194, 195, 204, 237
valor propi dominant, 205
valors extrems, 95, 96, 105
var (), 8, 35, 160

vector, 172, 182, 193, 199, 204
vector (), 175, 197

vector director, 176

vector gradient, 229

vector propi, 194, 195, 204
velocitat, 51, 94

velocitat d'un riu, 131
velocitat instantania, 74
velocitat mitjana, 51, 74

vi, 211

view(), 7, 88, 234

voltor comu, 183

volum de l'esfera, 86

wind chill, 16, 18, 21, 68, 90, 216
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