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Proemi

Les assignatures de matemàtiques del batxillerat científic i tecnològic proporcionen
unes eines molt poderoses per emprendre amb èxit estudis científics. L’alumne —si
realment assoleix els coneixements que hi ha als programes d’aquestes assignatures—
coneix les funcions elementals, la derivada i la integral, els vectors i les matrius..., i ha
adquirit destresa en la manipulació d’aquests conceptes fonamentals. És clar que la
ciència i la tècnica utilitzen moltes altres eines més sofisticades, però les que ja estan
a l’abast de l’estudiant que arriba, per exemple, a la Facultat de Ciències i al grau de
Ciències Ambientals, constitueixen una base imprescindible i prou àmplia.

Tanmateix, després d’haver adquirit les eines bàsiques que hem comentat, l’estu-
diant ha d’aprendre a utilitzar-les en els diversos camps científics. Ha d’aprendre a
modelitzar, és a dir, convertir un problema científic en un problema matemàtic. Encara
que, mirant l’índex d’aquest llibre, pugui semblar que es tracta d’uns apunts més o
menys estàndard de matemàtiques bàsiques, la realitat és que l’èmfasi principal del
curs —perquè aquest llibre és, de fet, els apunts d’un curs— es troba en la modelització.

Perquè quedi més clar això que estem dient, posem un exemple. Considerem aquests
dos problemes:

• Calculeu la derivada de la funció y = xex per x = 1.

• Doneu una estimació de la pèrdua d’absorció de diòxid de carboni atmosfèric als
boscos del Brasil, per culpa de la desforestació i del canvi climàtic.

Els estudiants que comencen Ciències Ambientals saben resoldre el primer exercici,
que és una aplicació immediata de la regla de derivació del producte de dues funcions.
Normalment, no saben resoldre el segon ni tampoc veuen cap relació entre el segon
exercici i el primer. Matemàticament, els dos exercicis són equivalents i es redueixen
a la regla de derivació del producte de dues funcions. La diferència es troba en que
el primer exercici —que en diem exercici perquè no té altra utilitat que la d’exercitar
la capacitat de calcular derivades de funcions— és un exercici abstracte de matemàti-
ques, mentre que el segon problema exigeix, abans de poder-lo resoldre, un procés de
modelització que el converteixi en un exercici tan simple com el primer.

D’això tracta, precisament, aquest curs de Matemàtiques i Modelització per a les
Ciències Ambientals: de guiar l’estudiant en els mètodes més elementals del procés
de modelització matemàtica: Quines són les variables i quines són les funcions que
intervenen en el problema? Amb quins conceptes matemàtics es relaciona la qüestió
que volem resoldre? Quines hipòtesis ens cal fer per poder atacar el problema? Quina
és la formulació matemàtica a la què arribem després del procés de modelització?

Per tal d’assolir aquest objectiu, s’ha dedicat un esforç especial a la tria dels exem-
ples i exercicis que hi ha al llarg del llibre. Els exercicis que hi ha al final de cadascuna
de les sis parts del curs s’han distribuït en dues tipologies: exercicis teòrics i exerci-
cis d’aplicació. La finalitat dels primers és exercitar-se en la utilització dels diversos
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conceptes i les diverses tècniques que s’han presentat —talment com les sessions d’en-
trenament esportiu—. Els exercicis de la segona part presenten autèntics problemes
de modelització —força simplificats, però prou significatius. Cal dominar els primers
per atacar amb èxit els segons, però és en els exercicis d’aplicació on trobem els objec-
tius fonamentals del curs. Tornant amb el símil esportiu, els primers són l’entrenament
i els segons són la competició. O, si preferim comparar-ho amb la música, els primers
serien la tècnica, la pràctica i l’assaig i els segons serien el concert.

∗

Molts dels capítols d’aquest llibre —cada capítol correspon, aproximadament, a
una classe d’una hora— s’acaben amb un apartat que du el títol «Fem-ho amb sage».
En aquests apartats es donen indicacions sobre com utilitzar un programari concret
per treballar amb els conceptes que s’acaben d’estudiar. Hem escollit el programa
sage, que és excel.lent i, a més, és de codi lliure. A la pàgina sagemath.org hi podem
trobar tota la informació necessària i la possibilitat de descarregar-nos el programa
en el nostre ordinador o bé obrir-hi un compte per treballar online des de qualsevol
navegador.

Exigir als estudiants que siguin capaços de resoldre els exercicis del curs utilitzant
una calculadora senzilla, no està en contradicció amb ensenyar-los que, més enllà de
l’aula, els càlculs matemàtics es fan sempre amb algun programa com pugui ser el sage.
En conseqüència, convé que l’estudiant es familiaritzi amb la utilització de l’ordinador
com a instrument de càlcul matemàtic. D’altra banda, l’autor d’aquestes notes està
convençut que fóra un greu error focalitzar la docència en l’ordinador —per exemple,
dedicant temps docent a aprendre sage— perquè la docència ha d’esmerçar tots els
seus esforços en els conceptes fonamentals.1

∗

Deixeu-me acabar aquest proemi amb quatre consells sobre com s’aprenen les
matemàtiques.

Encara que ens passem hores i hores mirant vídeos d’esquí, no aprendrem a esquiar
si no ens calcem uns esquís i ens involucrem a fons en la pràctica de l’esquí —dirigida,
és clar, per algú que en sàpiga. Això és evident. Hi ha moltes habilitats que no es poden
adquirir amb la simple contemplació d’una persona que practica aquesta habilitat. Per

1En aquest context, em semblen especialment pernicioses les veus que, com un corcó, van repetint una
vegada i una altra que la docència s’ha de basar en les «noves tecnologies». Sempre hi ha hagut noves
tecnologies i la seva característica principal és que es converteixen en velles tecnologies a gran velocitat.
Quan l’autor d’aquest llibre estudiava el batxillerat, va perdre moltes malaguanyades hores en aprendre
les noves tecnologies de l’època, que eren les Taules de Logaritmes i el Regle de Càlcul. I si s’hagués
sotmès, ara fa trenta anys, quan ja era professor universitari, a la dèria de les noves tecnologies, hauria
fet perdre el temps als seus alumnes ensenyant-los un programa que es deia Lotus-123 que, segurament,
ningú dels qui llegeixin aquest llibre ha sentit anomenar mai. La conclusió és ben clara: cal ensenyar
—encara més en matemàtiques— els principis fonamentals i no pas les noves tecnologies.
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exemple, esquiar, anar amb bicicleta, tocar el violí... Les matemàtiques també tenen
aquesta propietat.

Un estudiant que es limiti a contemplar com el professor explica l’assignatura, es
pràcticament segur que mai no aprendrà res. Les matemàtiques només s’aprenen fent
matemàtiques. És a dir, involucrant-s’hi personalment a fons: practicant incansable-
ment, dedicant-hi hores i hores d’esforç i concentració individual. Exactament igual
que fa qualsevol persona que vol excel.lir en un esport de competició, o que vol tocar
un instrument a un nivell alt.

El famós matemàtic Paul Halmos ens recordava amb aquestes paraules com ho hem
de fer per aprendre matemàtiques:

Don’t just read it; fight it! Ask your own questions, look for your own
examples, discover your own proofs.

Aquesta idea la recull molt bé un dibuix que va publicar fa temps el còmic abstruse-
goose.com. Representa l’estudiant de matemàtiques com un Sant Jordi molt especial.2

2Dibuix c©abstrusegoose.com publicat amb llicència Creative Commons.
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1. Els nombres

1.1 Nombres enters i nombres decimals

Tot comença amb els nombres enters positius i negatius, i amb el zero:

. . .− 7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7 . . .

i la primera cosa que observem és que no s’acaben mai, és a dir, per molt gran que
sigui un nombre, sempre n’hi ha un de més gran. Diem que hi ha infinits nombres
enters.1 És a dir, des de l’inici de les matemàtiques ja «topem» amb l’infinit! I no
ho podem evitar: encara que els nombres que realment podem escriure en un paper
(o en qualsevol mena de suport) són limitats, per poder fer matemàtiques necessitem
admetre que hi ha nombres enters il.limitadament grans.

Però amb els nombres enters no n’hi ha prou —ni de bon tros!— per a totes les
aplicacions de les matemàtiques a la ciència. Ens calen els nombres decimals —que els
matemàtics anomenen nombres reals. Un nombre decimal està format per un nombre
enter, una coma (o punt) decimal i una successió il.limitada de dígits arbitraris.2 Aquí
tornem a topar, doncs, amb l’infinit, i encara d’una manera més punyent. Pensem, per
exemple, en el nombre

√
2 que és, per definició, el nombre decimal positiu que, elevat

al quadrat, dóna exactament 2. Aquest nombre decimal no es pot escriure exactament
enlloc, ni en un paper (per gran que sigui) ni en un ordinador (per potent que sigui).
El podem escriure amb moltes xifres
√
2 =

1.414213562373095048801688724209698078569671875376948073176679737990

73247846210703885038753432764157273501384623091229702492483605585073

72126441214970999358314132226659275055927557999505011527820605714701

09559971605970274534596862014728517418640889198609552329230484308714

32145083976260362799525140798968725339654633180882964062061525835239

50547457502877599617298355752203375318570113543746034084988471603868

99970699004815030544027790316454247823068492936918621580578463111596

66871301301561856898723723528850926486124949771542183342042856860601

46824720771435854874155657069677653720226485447015858801620758474922

65722600208558446652145839889394437092659180031138824646815708263010

05948587040031864803421948972782906410450726368813137398552561173220 · · ·

1Cal ser molt curós a l’hora d’usar la paraula infinit , perquè no té un significat intrínsec. Per tant, en
cada ocasió que surti aquesta paraula, hem de deixar clar què significa exactament en aquest context.

2De fet, hi ha una restricció, que consisteix en que aquesta successió il.limitada de dígits no pot tenir
infinites xifres 9 consecutives. Per exemple, no s’hi val 2.1999999 . . . perquè aquest nombre és el mateix
que el nombre 2.2.

2
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però mai el podrem escriure amb totes les seves xifres.3 Podríem pensar que per a les
aplicacions pràctiques potser n’hi ha prou amb unes poques xifres decimals, diguem
cinc o deu, però ens equivocaríem perquè, igual que passa amb els nombres enters,
per poder fer matemàtiques és imprescindible admetre nombres decimals amb una
quantitat infinita de xifres decimals.

Per tant, els nombres decimals només els podem escriure de forma aproximada
√
2 ≈ 1.4
√
2 ≈ 1.4142
√
2 ≈ 1.41421356

etc.

Aquest fet dóna lloc al problema de l’arrodoniment: cada vegada que aproximem un
nombre real per un nombre amb una quantitat finita de decimals estem cometent un
error i, per tant, els càlculs que fem (a mà, amb una calculadora o amb un ordinador, per
potent que sigui) estan sempre sotmesos a aquests errors que es poden anar acumulant
fins a distorsionar completament el resultat final dels nostres càlculs. És un problema
molt seriós, que no hem de menystenir.

Per minimitzar els riscos de patir aquests errors, cal tenir present aquestes normes
generals:

1. Cal fer els càlculs amb la màxima exactitud que permeti la nostra calculadora
o ordinador. És a dir, mai no hem de arrodonir a poques xifres decimals els
resultats intermedis d’un càlcul.

2. Quan obtinguem el resultat final, l’arrodonirem a un nombre «convenient» de
xifres decimals. El concepte de «convenient» tindrà a veure amb la naturalesa
del problema i amb la precisió de les dades.

3. Cal arrodonir correctament. La idea és buscar el nombre que tingui la quantitat
de decimals que volem i que sigui el més proper possible al nombre donat. Per
exemple, el resultat d’arrodonir

√
5 = 2.23606797749 · · · a 1, 2, 3,... xifres decimals

és:

2.2, 2.24, 2.236, 2.2361, 2.23607, 2.236068, 2.2360680, 2.23606798, . . .

El cas que queda indeterminat és aquell en què la part descartada consisteix en
un 5 seguit d’infinits zeros. Per exemple, si volem arrodonir 2.45 a un decimal, les
dues opcions 2.5 i 2.4 estan igualment properes al valor exacte 2.45. En aquest
cas (científicament poc significatiu), hi ha diversos mètodes i tots presenten avan-
tatges i inconvenients.

Si hem d’expressar nombres molt grans o molt petits, utilitzem la notació científica
que consisteix en expressar el nostre nombre com el producte d’un nombre amb una
part entera amb poques xifres i una potència de 10 (d’exponent positiu o negatiu). Per
exemple:

3.45× 1012, −2.547× 106, 7.31× 10−5, . . .

3De fet, com que aquest nombre
√
2 no es pot escriure, ni en teoria, els grans matemàtics grecs de fa

més de dos mil anys no acceptaven que for realment un nombre.
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1.2 Ordre i intervals

Coneixem les operacions aritmètiques bàsiques dels nombres: la suma, la resta, la
multiplicació i la divisió. Cal recordar que la divisió només és possible si el denominador
és un nombre diferent de zero.

Una altra propietat important dels nombres reals és que estan ordenats: donats
dos nombres diferents sempre n’hi ha un que és més gran que l’altre. Utilitzarem els
símbols

a < b, a ≤ b, a > b, a ≥ b

per indicar aquesta relació. S’anomenen positius els nombres que són més grans que
zero i s’anomenen negatius els nombres que són més petits que zero. El zero no és ni
positiu ni negatiu.

El fet que els nombres estiguin ordenats ens permet parlar d’intervals. La notació
serà:

[a, b] denota tots els nombres x tals que a ≤ x ≤ b

(a, b) denota tots els nombres x tals que a < x < b

[a, b) denota tots els nombres x tals que a ≤ x < b

(a, b] denota tots els nombres x tals que a < x ≤ b

(−∞, b] denota tots els nombres x tals que x ≤ b

(−∞, b) denota tots els nombres x tals que x < b

[a,∞) denota tots els nombres x tals que a ≤ x

(a,∞) denota tots els nombres x tals que a < x

(−∞,∞) denota tots els nombres

1.3 Potències i arrels

Ja coneixem el concepte de potències d’un nombre. Si a és un nombre qualsevol i n és
un enter positiu, definim la potència an com el producte repetit de a per a n vegades:

an =

n︷ ︸︸ ︷
a · · · a .

Les dues propietats fonamentals d’aquesta operació són aquestes

an+m = anam, (an)m = anm. (∗)

El concepte d’arrel enèsima es defineix així: n
√

a = b vol dir que bn = a. Si n és
senar, tot nombre a té una única arrel n-èsima n

√
a. En canvi, si n és parell

• 0 té una única arrel n-èsima: n
√
0 = 0.

• Els nombres negatius no tenen arrel n-èsima.

• Els nombres positius tenen dues arrels n-èsimes, una de positiva i una de nega-
tiva. La notació n

√
a denota, en aquest cas, sempre l’arrel positiva.
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Si l’exponent no és un enter positiu, el concepte anterior de potència com a multiplicació
repetida no té cap significat però, malgrat això, li podem donar un sentit i ho podem
fer de manera que les dues propietats fonamentals (∗) segueixin essent vàlides. Ho
fem així:

• Si a és un nombre qualsevol 6= 0, definim a0 = 1.

• Si a és un nombre qualsevol 6= 0 i n és un enter positiu, definim a−n = 1/an.

• Si a és un nombre positiu i m és un enter positiu, definim a1/m = m
√

a.

• Si a és un nombre positiu, els apartats anteriors ja ens defineixen an/m = m
√

an.

• Finalment, si a és un nombre positiu i r és un nombre decimal arbitrari, podem
definir ar per un mètode de pas al límit que ara no discutirem.

Convé observar

• Les definicions anteriors no són capricioses, sinó que són les definicions que cal
adoptar si volem que les propietats

ar+s = ar as , (ar )s = ars .

que ja es complien per a exponents enters positius segueixin essent vàlides per
a exponents arbitraris.

• Les potències ar amb r un nombre decimal arbitrari només estan definides si
a > 0. Només en el cas en què l’exponent sigui enter podem admetre que a pugui
ser negatiu.4 Finalment, si r > 0 també podem acceptar que 0r = 0.

1.4 Valor absolut i part entera

Podem dir que el valor absolut d’un nombre és «el nombre prescindint del seu signe».
Una definició més precisa és aquesta

|a| =

{
a si a ≥ 0

−a si a < 0

Les propietats elementals d’aquesta funció són aquestes

• |a| = |b| és el mateix que a = ±b.

• |ab| = |a| |b| i |a|/|b| = |a/b| (en aquest cas, si b 6= 0).

• |a + b| ≤ |a|+ |b|.
4Per comprendre millor això que estem dient aquí, observem aquesta paradoxa: −1 = (−1)1 =(

(−1)2
)1/2

= 11/2 =
√
1 = 1. Pot veure el lector on hi ha l’error?
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• |a| < b és el mateix que −b < a < b i |a| > b és el mateix que a > b o a < −b.5

•
√

a2 = |a| i, en general, si n és parell, n
√

an = |a|.

El valor absolut es pot considerar com una funció f (x) = |x |. Si la pensem així, la seva
gràfica és aquesta

La part entera d’un nombre positiu és el nombre sense la seva part decimal. S’a-
costuma a denotar bxc o també INT(x). Si volem donar una definició més precisa que
valgui també per als nombres negatius, direm que la part entera d’un nombre a és el
més gran de tots els enters n tals que n ≤ a. Observem que, amb aquesta definició, la
part entera de −3.18 és −4. Si dibuixem la part entera com una funció, obtenim una
gràfica que en podríem dir «esglaonada».

5Com que aquesta és, potser, la primera vegada que surt la paraula «o» en aquests apunts, és un bon
moment per recordar que, si bé aquesta paraula té dos significats diferents en el llenguatge ordinari —l’o
inclusiu i l’o exclusiu— en el llenguatge matemàtic té únicament el significat «inclusiu». En matemàtiques,
l’expressió «A o B» vol dir «o A, o B o ambdós».
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1.5 Fem-ho amb sage

Ja hem dit que cap ordinador pot emmagatzemar un nombre real arbitrari, perquè
aquests nombres tenen infinites xifres decimals. sage considera tres tipus de nombres:

• Nombres exactes. Per exemple, 14 i 125/41 són nombres exactes. Les operacions
(suma, producte, divisió) que es fan amb nombres exactes sempre donen nombres
exactes.

• Nombres inexactes, que són els nombres decimals amb una quantitat determina-
da de decimals (com a les calculadores). El nombre de decimals es pot escollir
i pot ser tan gran com calgui. Per exemple, 2.5 és un nombre inexacte i, de fet,
qualsevol nombre que contingui una coma decimal es considera un nombre ine-
xacte. Observem la diferència que hi ha entre el nombre exacte 5/2 i el nombre
inexacte 2.5. Les operacions amb nombres inexactes donen nombres inexactes,
però hi ha algunes operacions que sage es nega a fer amb nombres inexactes,
perquè no pot garantir la correcció dels resultats. Treballar amb nombres ine-
xactes s’assembla a treballar amb una calculadora, amb la diferència que podem
augmentar el nombre de decimals tant com vulguem.

• Nombres simbòlics. Es tracta de nombres donats per expressions simbòliques
que, per tant, són exactes. Per exemple, sqrt(3), eˆ2 i cos(pi/7) són nombres
simbòlics. Les operacions amb nombres simbòlics donen nombres simbòlics.

Podem passar d’un tipus de nombre a un altre. Per exemple, l’atribut .N() ens
dóna el valor aproximat d’una expressió simbòlica o d’una fracció. Si volem més xifres
decimals, podem indicar-ho a l’interior del parèntesi. També podem utilitzar la funció
RR(-).
sage: 125/41.N()
3.04878048780488
sage: sqrt(5).N()
2.23606797749979
sage: sqrt(5).N(digits=29)
2.2360679774997896964091736687
sage: cos(e^2)
cos(e^2)
sage: cos(e^2.1)
-0.307141875548787
sage: cos(e^2).N()
0.448356241818733
sage: RR(cos(e^2))
0.448356241818733
sage: AA(cos(pi/7))
0.9009688679024191?

La funció AA(-) ens dóna el valor aproximat de l’expressió, acabada amb un interrogant
que ens indica que sage coneix el valor exacte del nombre.

Sovint, sage ens dóna una resposta tan complicada que es fa difícil llegir-la amb
comoditat. La funció view(-) ens permet visualitzar l’expressió en format tipogràfic.
sage: solve(x^2+sqrt(2)*x-1,x)
[x == -1/2*sqrt(6) - 1/2*sqrt(2), x == 1/2*sqrt(6) - 1/2*sqrt(2)]
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sage: view(solve(x^2+x-1,x))[
x = −1

2

√
6− 1

2

√
2, x =

1

2

√
6− 1

2

√
2

]
Observem la utilització de la funció solve(-) per resoldre equacions de segon grau (i
de tercer i quart), de manera que el resultat és una expressió simbòlica. En general,
podem resoldre equacions amb la funció find_root(-,-,-) si li diem entre quins valors
ha d’estar la solució.
sage: find_root(cos(x)==sin(x),0,pi/2)
0.7853981633974484
sage: find_root(x^5+e*x-1,0,10)
0.36548046271183154

A banda de la variable x , que ja està incorporada per defecte, podem introduir altres
variables. També podem resoldre sistemes d’equacions.
sage: alfa=var(’alfa’)
sage: solve([2*x+alfa==6, x-alfa==4],x,alfa)
[[x == (10/3), alfa == (-2/3)]]

Tenim la funció round(-,-) per arrodonir un nombre decimal, la funció abs(-) per
calcular el valor absolut i la funció floor(-) per calcular la part entera. També podem
fer comparacions entre nombres.
sage: abs(sin(0.3)-cos(0.5))
0.582062355229033
sage: round(e,4)
2.7183
sage: floor(2^3.5)
11
sage: RR(cos(pi/8))>RR(sin(pi/7))
True

Ja hem dit que treballar amb nombres inexactes té els seus problemes. Observem
aquest exemple:
sage: a=pi/12
sage: RR(sin(a)^2+cos(a)^2)==1
False
sage: AA(sin(a)^2+cos(a)^2)==1
True

Observem la diferència semàntica entre els signes = i ==. El primer serveix per
assignar un valor a una variable mentre que el segon serveix per indicar la igualtat o
manca d’igualtat entre dos objectes.
sage: a=cos(0)
sage: a
1
sage: a==1
True

La funció solve(-,-) no pot resoldre totes les equacions, però no està gens mala-
ment la capacitat que té. Per exemple, aquestes equacions (extretes de la llista d’e-
xercicis), les resol sense dificultat:
sage: K,t,r,k=var(’K,t,r,k’)
sage: solve(x/(1-(x/K))==k*e^(r*t),x)
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[x == K*k*e^(r*t)/(k*e^(r*t) + K)]
sage: solve((x+5)^2/(2*x-3)^2==1,x)
[x == (-2/3), x == 8]
sage: solve((x-1)*(x-2)==3*(1+(x-2)/(1-(x-3)/x)),x)
[x == -1]
sage: solve((3*x+1)*(x-2)>1,x)
[[x < -1/6*sqrt(61) + 5/6], [x > 1/6*sqrt(61) + 5/6]]
sage: solve(abs(x+1)<=abs(x),x)
[[x == (-1/2)], [x < -1], [x == -1], [-1 < x, x < (-1/2)]]



2. Algunes qüestions de geometria
elemental

En aquesta lliçó repassarem alguns conceptes elementals de geometria, com són les
rectes, les circumferències i la trigonometria.

2.1 Rectes del pla

Una recta del pla està formada pels punts del pla de coordenades (x , y) que compleixen
una equació lineal

ax + by + c = 0

on a, b i c són nombres i a i b no són tots dos zero. Les rectes verticals són les rectes
amb b = 0, és a dir, les rectes x = d . Totes les altres rectes es poden escriure de la
forma

y = mx + b.

Els coeficients m i b tenen un significat que cal recordar:

• b indica el punt de tall de la recta i l’eix d’ordenades. És a dir, la recta passa pel
punt (0, b).

• m indica el pendent de la recta, que és l’augment de y quan x augmenta en una
unitat. Si m > 0, la recta és creixent, si m < 0, la recta és decreixent. Si m = 0,
la recta és horitzontal.

És clar que dues rectes són paral.leles si tenen el mateix pendent. D’altra banda, la
geometria elemental ens diu que les rectes y = mx+b i y = m′x+b′ són perpendiculars
si els seus pendents estan relacionats per la fórmula mm′ = −1.

Donats dos punts (diferents) del pla, és molt senzill escriure l’equació de la recta
que passa per aquests dos punts. Suposem que els punts són (a, b) i (a′, b′). Clarament,
el pendent de la recta ha de ser

m =
b − b′

a− a′
.

Per tant, l’equació de la recta tindrà la forma

y =
b − b′

a− a′
x + c

i ara podem determinar quin és el valor de c per tal que la recta passi pel punt (a, b).
Exemple: Trobeu l’equació de la recta que passa pel punt (1, 1) i és perpendicular a
la recta que passa pels punts (0, 2) i (3, 1).

10
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La recta que passa per (0, 2) i (3, 1) té pendent m = −1/3. Per tant, una recta
perpendicular a ella tindrà pendent m′ = 3. Això ens diu que la recta serà y = 3x + b i
ara cal determinar el valor de b. Com que la recta ha de passar pel punt (1, 1), veiem
que b = −2. En conclusió, la recta buscada té l’equació

y = 3x − 2.

2.2 Distància i circumferències

La distància entre dos punts del pla de coordenades (a, b) i (a′, b′) ve donada pel
teorema de Pitàgores:

d =
√
(a− a′)2 + (b − b′)2.

La circumferència de centre (a, b) i radi r > 0 està formada per tots els punts del
pla que estan a distància r del centre. Per tant, aquest punts són els que compleixen
l’equació

(x − a)2 + (y − b)2 = r2.

En particular, les circumferències centrades a l’origen tenen equació

x2 + y2 = r2.

Altres figures geomètriques que venen representades per equacions de segon gran
són les el.lipses i les hipèrboles. L’equació d’una el.lipse centrada a l’origen i amb eixos
els eixos de coordenades té la forma

x2 + a2y2 = r2

amb a 6= 0, 1 i r 6= 0. L’equació d’una hipèrbola en les mateixes condicions té la forma

x2 − a2y2 = r2 o x2 − a2y2 = −r2, a, r 6= 0.

Una equació de segon grau de la forma

y = ax2 + bx + c

amb a 6= 0 determina una paràbola amb l’eix vertical.
Finalment, l’equació

xy = k

amb k 6= 0 defineix una hipèrbola amb aquesta forma (si k > 0):
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Si una equació de segon grau (se’n diuen quadràtiques) en dues variables repre-
senta una circumferència, és senzill determinar el seu centre i el seu radi per un mètode
que s’anomena completar els quadrats.
Exemple: Determineu el centre i el radi de la circumferència x2+2x + y2− 8y +8 = 0.
Fem això:

(x2 + 2x) + (y2 − 8y) + 8 = (x + 1)2 − 1 + (y − 4)2 − 16 + 8 = (x + 1)2 + (y − 4)2 − 9

i, per tant, el centre és el punt (−1, 4) i el radi és 3.

2.3 Angles i trigonometria

Un angle consisteix en dues rectes que es tallen en un punt. De la mateixa manera
que, per mesurar distàncies, hem de fixar una unitat de mesura, per poder mesurar
angles també hem de fixar una unitat de mesura. Però hi ha una diferència essencial
entre aquests dos casos, perquè l’elecció de la unitat de mesura de distàncies és
relativament arbitrària i s’ha de fer utilitzant alguna propietat física, mentre que en el
cas dels angles, hi ha una unitat «canònica» que és l’angle «complet», és a dir la volta
completa a la circumferència.

De la mateixa manera que en els càlculs científics cal utilitzar un sistema coherent
d’unitats de mesura, als càlculs matemàtics és imprescindible mesurar els angles en
radians. Un radian és la mesura d’un angle tal que un arc de circumferència de radi
1 i mida 1 radian té una longitud igual a 1. Dit d’una altra manera, el radian és la
unitat de mesura d’angles tal que la circumferència completa mesura 2π radians. Per
tant, mitja circumferència serà un angle de π radians, un quart de circumferència serà
un angle de π/2 radians, etc.

En molts casos, si hem de calcular un angle, pot ser apropiat i útil donar el resultat
final en graus, minuts i segons, però els càlculs els hem de fer sempre en radians.
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Per què? No és cap caprici. Per exemple, tots hem après que la derivada de la funció
sinus és la funció cosinus, però això només és cert si mesurem aquestes funcions en
radians. No és cert si les mesurem en graus.

Considerem un triangle rectangle i suposem que els catets mesuren a i b, mentre
que la hipotenusa mesura c . Designem per θ la mesura de l’angle que formen el catet
de longitud b i la hipotenusa. La trigonometria estudia la relació que hi ha entre θ, a,
b i c . Aquesta relació ve donada per les funcions trigonomètriques sinus i cosinus. En
concret,

sin θ =
a

c
, cos θ =

b

c
.

La geometria elemental ens diu que, efectivament, aquests quocients no depenen del
triangle rectangle que haguem pres, sempre que l’angle θ tingui el mateix valor.

A partir del teorema de Pitàgores s’obté immediatament aquesta relació fonamental
entre les dues funcions sin i cos:

sin2 θ + cos2 θ = 1.

Observem que el pendent de la hipotenusa és precisament el quocient a/b. Com que
aquest concepte és tan important, introduïm una nova funció trigonomètrica, la tangent

tan θ =
a

b
=

sin θ

cos θ
.

Aquesta funció trigonomètrica, sense anomenar-la tangent, s’utilitza constantment
a la pràctica i se’n diu el pendent. Per exemple, si a = b, la tangent val 1 i es parla
d’un pendent del 100%. Si llegim que la carretera del Tourmalet té un pendent mitjà
del 7.4%, això ens està dient que la carretera fa un angle θ amb l’horitzontal tal que
tan θ = 0.074. Amb una calculadora trobarem que θ ≈ 4.2 graus.1

En aquest exemple ja hem vist que hi haurà situacions en què, a partir del valor
d’alguna funció trigonomètrica, ens interessarà calcular el valor de l’angle. Això ho fem
amb les funcions trigonomètriques inverses.

sin θ =s és el mateix que arcsin s = θ

cos θ =s és el mateix que arccos s = θ

tan θ =s és el mateix que arctan s = θ

1A la pràctica, per a pendents no gaire grans, el que es fa és dividir el guany en alçada per la distància
recorreguda. Això és el sinus de l’angle d’inclinació i no pas la seva tangent però, si l’angle és petit, hi
ha poca diferència entre el sinus i la tangent. Per exemple, considerem un pendent del 10%, mesurat
dividint el guany en alçada per la distància en horitzontal. Si ara calculem el pendent dividint el guany
en alçada per la distància recorreguda, obtenim un pendent del 9.95%. Com podem veure, si l’angle és
petit, la diferència és poc significativa.
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Per la pròpia definició d’aquestes funcions, ja coneixem alguns valors i algunes propi-
etats. Per exemple:

sin 0 = sinπ = cos
π

2
= cos

3π

2
= 0

cos 0 = − cosπ = sin
π

2
= − sin

3π

2
= 1

sin
π

6
= cos

π

3
=

1

2
, tan

π

4
= 1

cos(x) = sin
(

x +
π

2

)
També, una mica de geometria elemental ens permet calcular les funcions trigonomè-
triques dels angles de 30◦, 45◦ i 60◦:

sin
π

4
= cos

π

4
=

√
2

2
; tan

π

4
= 1

sin
π

6
= cos

π

3
=

1

2

sin
π

3
= cos

π

6
=

√
3

2

tan
π

6
=

√
3

3
; tan

π

3
=
√
3

Finalment, si a un angle li sumem 2π radians, torna a ser el mateix angle. Per tant,
aquestes funcions trigonomètriques són funcions que es van repetint cada 2π. Direm
que són periòdiques.

Observem també que la funció tangent es defineix com un quocient i, per tant, només
es podrà calcular quan el denominador sigui diferent de zero. Aquest denominador és
la funció cos θ que val zero precisament quan θ = π/2 + kπ i k és qualsevol nombre
enter. Per aquests angles no existirà la funció tangent.

2.4 Fem-ho amb sage

Hi ha paquets de sage dedicats a la geometria de corbes planes, però són massa
sofisticats per les necessitats d’aquest curs.

La funció circle((a,b),r) ens dibuixa una circumferència de centre (a, b) i radi r , i
una corba definida per una equació en dues variables es pot dibuixar amb la instrucció
implicit_plot().

També hi ha funcions per dibuixar el.lipses, rectes, punts, polígons,... Les possibili-
tats són tan grans que és millor consultar algun dels manuals de sage si s’ha de fer
algun dibuix concret.

Fem un petit exemple.
sage: A=circle((1,1),1,thickness=2,linestyle=’–’)
sage: B=line([(1,1),(3,3)],thickness=2,color=’red’)
sage: C=ellipse((1,2),1,1/2,edgecolor=’peru’,thickness=4,fill=True,
....: facecolor=’gray’,alpha=0.5)
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sage: D=parametric_plot([3-cos(x)-2*cos(x/4),-sin(x)+2*sin(x/4)],
....: (x,0,4*pi),thickness=2,color=’orange’)
sage: E=plot(x^3,(x,0,1.5),color=’darkorchid’,thickness=2)
sage: y=var(’y’)
sage: F=implicit_plot((x^2+y^2)^2-4*x*(x^2-y^2),(x,-1,4),(y,-1,2),
....: color=’deeppink’)
sage: A+B+C+D+E+F



3. El concepte de funció

El concepte matemàtic més important a la ciència és el concepte de funció. Conse-
qüentment, l’estudi de les funcions és l’objectiu central d’aquest curs.

Quan modelitzem (és a dir: quan volem descriure un sistema utilitzant conceptes
matemàtics) un fenomen de les ciències naturals, de l’economia, de les ciències socials
o d’on sigui, comencem establint unes determinades variables x , y , z , u... que creiem
que són rellevants per a la situació que estem estudiant. Aleshores, sovint veiem que
algunes d’aquestes variables depenen d’algunes altres. El pas següent és intentar
descriure aquestes dependències a través de funcions. Posem alguns exemples:

• La temperatura de sensació de fred (W , pel terme en anglès wind chill) depèn de
la temperatura (T ) i de la velocitat del vent (V ) (i, potser, d’algunes altres coses).
És important trobar un bon model per aquesta dependència perquè, en les regions
més fredes, l’efecte combinat del fred i el vent pot afectar la supervivència de les
persones exposades a la intempèrie. S’han fet molts estudis sobre aquest tema.
Per exemple, la funció que utilitza el servei meteorològic del Canadà és

W = 13.12 + 0.6215T − (11.37− 0.3965T )V 0.16

on T < 10 és la temperatura de l’aire en Celsius, V > 4.8 és la velocitat del vent
a 10 metres sobre el sòl, en km/h, i W és la temperatura de sensació (o wind
chill index) en Celsius. Tenim, doncs, una funció que, partir de les variables T i
V ens permet calcular la variable W .

• En economia ens interessa relacionar els diversos factors de producció X1, . . .Xn

amb la producció Q . És a dir, s’estudien les funcions de producció

Q = f (X1, . . .Xn).

Per exemple, un model clàssic és la funció de producció de Cobb-Douglas

Q = ALβKα

on Q és la producció total en un any, L mesura el treball (persones-hora en un
any), K indica el capital (valor de tot l’equipament que s’utilitza), A és una cons-
tant de proporcionalitat i α i β són constants relacionades amb la productivitat
i el nivell tecnològic, respectivament. Tenim, doncs, una funció que ens permet
estudiar la influència que tindria en la producció un hipotètic augment de treball
i/o capital.

• D’ençà que es va prendre consciència de l’escalfament global, la mesura del con-
tingut de CO2 a l’atmosfera —i de la seva variació en funció del temps— ha
adquirit una gran importància. L’observatori de referència és el de Mauna Loa

16
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(Hawaii). La relació que s’ha observat entre la concentració de CO2 (C , en ppmv)
i la temperatura (T , en Celsius) és aquesta

T = 4.28 log

(
C

C0

)
+ T0

on T0 i C0 són la temperatura i la concentració de referència. Per a C0 s’acostuma
a prendre el valor de l’any 1977 que era de C0 = 334. El valor que es pren com
a T0 és relativament indiferent, perquè el que ens interessa és l’increment de la
temperatura.1 Tenim, doncs, una funció que ens permet calcular la temperatura
com a funció de la concentració de CO2 a l’atmosfera i, més important encara,
ens permet predir com variarà la temperatura si segueix creixent la concentració
de CO2.

• Quan estudiem un bosc, ens pot interessar conèixer la quantitat tota de biomassa
o la superfície foliar total. És molt difícil mesurar directament aquestes variables.
S’han fet nombrosos estudis2 per trobar relacions funcionals d’aquestes variables
amb variables molt més fàcils de mesurar com, per exemple, el diàmetre del tronc
dels arbres a una certa alçada del sòl. Per exemple, s’ha determinat que, per als
exemplars joves de faig, la superfície foliar per arbre (em metres quadrats) és

A = 0.307D1.803

on D és el diàmetre del tronc (en cm) a 1.37 metres d’alçada sobre el sòl. D’aques-
ta manera, tenim una funció que ens permet donar una estimació de la superfície
foliar de manera relativament senzilla, mesurant el diàmetre dels troncs.

• Segons la llei de l’oferta i la demanda de l’economia, la relació entre el preu d’un
producte o servei i la quantitat d’aquest producte o servei que es produeix i es
ven està descrita per dues funcions: la funció d’oferta i la funció de demanda. Si
designem per p el preu unitari d’un producte o servei i per q la quantitat d’aquest
producte, la funció d’oferta (supply curve) és

q = S(p)

que ens dóna la quantitat que es produirà al preu p. És una funció creixent. La
funció de demanda és

q = D(p)

i és la quantitat que els consumidors compraran al preu p. És una funció de-
creixent.3 El punt on es tallen les gràfiques d’aquestes dues corbes és el punt
d’equilibri del mercat. En aquest punt, l’oferta és igual a la demanda.

En aquests exemples, tenim una variable dependent que s’expressa en funció d’una
o diverses variables independents. El cas més senzill —i el que estudiarem ara— és

1Vegeu Temperature trends at the Mauna Loa observatory, Hawaii, Clim. Past, 7 (2011), 975–983.
2Vegeu Allometric Relationships of Selected European Tree Species, Institute for Environment and

Sustainability, 2003.
3Els economistes, normalment, dibuixen aquestes corbes amb p a l’eix vertical i q a l’eix horitzontal.

És a dir, consideren les funcions inverses p = S−1(q) i p = D−1(q).
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el d’una variable dependent i una variable independent. Tindrem, doncs, una situació
del tipus

y = y(x)

com en els dos últims exemples anteriors. També utilitzarem la notació y = f (x) i
parlarem indistintament de «y com a funció de x» o «la funció f (x)».

Per tant, una funció d’una variable és una relació entre dues variables x i y que,
per a cada valor de la variable x (dintre d’un cert àmbit) ens determina un valor
(unívocament determinat) d’una variable y .

Als matemàtics els agrada pensar una funció f com una màquina expenedora que
quan li introdueixes un nombre x et retorna un altre nombre f (x):

3.1 Domini de definició

Igual com passa amb les màquines expenedores, una funció pot refusar algunes entra-
des x . Per exemple, a la funció del wind chill de la secció anterior, es diu explícitament
que la temperatura ha de ser inferior a 10 graus i la velocitat del vent ha de ser supe-
rior a 4.8 km/h per poder aplicar la fórmula. També, des d’un punt de vista matemàtic,
hi ha funcions que simplement no estan definides per a certs valors de x .

El domini de definició d’una funció f (x) és el conjunt de tots els nombres x per als
quals la funció està definida. Per exemple:

• El domini de definició de y = 1/(x−1) és tots els nombres diferents de 1, perquè
quan x = 1 tindríem una divisió per zero, que no és vàlida.

• El domini de definició de y =
√
9− x2 és l’interval [−3, 3] perquè, fora d’aquest

interval, 9− x2 seria un nombre negatiu, que no té arrel quadrada.

• La funció y = tan(x) està definida per a tots els valors de la variable x , excepte
per x = π/2 + kπ, on k és un nombre enter qualsevol.
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3.2 Representació gràfica

Si tenim una funció y = f (x), podem dibuixar la seva gràfica, que està formada per
tots els punts del pla de coordenades (x , y) tals que x pertany al domini de definició
i y = f (x). En general, la gràfica d’una funció serà una corba del pla.4

Per exemple, la gràfica de la funció f (x) =
√

x és aquesta:

3.3 Funcions inverses

Si les variables x i y estan relacionades per una funció y = f (x), ens pot interessar
poder expressar x com a funció de y , en la forma x = g(y). Si utilitzem la idea de les
màquines expenedores, estem dient que tenim la màquina expenedora f que accepta
entrades x i et retorna y , i ara volem una nova màquina expenedora que funcioni de
manera que si li introdueixes y et retorni el nombre x que havies introduït a la primera
màquina. És a dir, volem una màquina que «ens retorni l’import» de la primera màquina.

Ja es veu que això no sempre serà possible. Considerem la funció y = x2. Aquí és
impossible trobar una màquina que, a partir de y ens retorni x perquè si, per exemple,
y = 4, no podem saber si x valia 2 o valia −2. En molts casos, restringint el domini de
la funció, sí que podem trobar funcions inverses. En aquest sentit,

multiplicar per a 6= 0 i dividir per a 6= 0 són funcions inverses
(−)n i n

√
− són funcions inverses

sin i arcsin són funcions inverses
cos i arccos són funcions inverses
tan i arctan són funcions inverses

3.4 Composició de funcions

Si tenim dues funcions, a més de poder-les sumar, multiplicar, dividir... podem fer una
cosa que no es pot fer amb nombres: concatenar-les o, com es diu matemàticament,

4Però no qualsevol corba del pla és la gràfica d’una funció. Observem que la gràfica d’una funció no
pot tenir dos punts en una mateixa línia vertical.
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composar-les. Per exemple, amb les dues funcions sin(x) i
√

x , podem fer

sin(x) +
√

x , sin(x)
√

x , sin(
√

x),
√
sin(x).

(Observem que les dues maneres de composar-les donen resultats diferents!). Si pen-
sem una funció f com una màquina expenedora, aquesta composició de funcions seria
una operació tan natural com empalmar la sortida d’una d’aquests màquines amb l’en-
trada d’una altra:

D’aquesta manera, a partir d’un petit nombre de funcions bàsiques o elementals, podem
construir funcions molt més complicades.

3.5 Funcions empíriques

Comparem aquestes tres funcions:

1. y = x2 sin(1 + x).

2. h(t) = h0 − g
2 t2.

3. A = 0.307D1.803

Les tres són funcions, però representen tres situacions diverses. La primera és una
funció que en podríem dir «abstracta». És una funció matemàtica que pot ser útil en
situacions múltiples. Les variables x i y no signifiquen, a priori, res concret.

La segona funció és una fórmula física que ens dóna l’alçada d’un cos pesant que
cau per l’acció de la gravetat, en absència d’aire, a partir d’una alçada inicial h0. És
també una funció matemàtica «exacta» que s’ha obtingut a partir d’un model teòric de
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la gravitació. De fet, és una aproximació de la realitat, només vàlida per valors de t
propers a zero, que ens permetin suposar que l’acceleració de la gravetat és constant.

La tercera funció ha aparegut en els exemples d’estudis al.lomètrics de determinats
arbres i no procedeix de cap model teòric sinó que s’hi ha arribat a partir d’estudis
experimentals. Direm que és una funció empírica. Com s’ha obtingut aquesta funció?
D’on surten els coeficients 0.307 i 1.803? S’han obtingut «empíricament», és a dir,
s’han pres mesures de A i D per a un gran nombre d’arbres i s’ha buscat una funció
matemàtica que aproximi relativament bé aquestes observacions experimentals.

Els estudiants de batxillerat estan acostumats a «tabular» valors d’una funció abs-
tracta. En el cas de les ciències experimentals, sovint el que cal fer és tot el contrari:
es té una taula de valors de x , y i cal trobar una funció senzilla que ens permeti calcu-
lar y a partir de x . D’una funció que hem trobat d’aquesta manera en direm una funció
empírica.

3.6 Fem-ho amb sage

És clar que sage té incorporades totes les funcions elementals que utilitzarem aquest
curs. A més, és possible definir funcions específiques. Hi ha diverses formes de fer-ho.
Per exemple, suposem que volem definir una funció que ens calculi el wind chill a partir
de la temperatura i de la velocitat del vent. Ho podem fer així:
sage: W(T,V)=13.12+0.6215*T-(11.37-0.3965*T)*V^0.16
sage: W(-12,65)
-25.7898830284364
sage: round(W(-12,65),1)
-25.8

La gràfica d’una funció d’una variable s’obté amb la comanda plot() que admet múlti-
ples arguments, alguns dels quals ja els hem vist en els exemples del capítol anterior.

sage: f(x)=sqrt(x)
sage: plot(f(x),(x,0,5),aspect_ratio=1,ymax=3,ymin=-1)
sage: plot(W(0,x),(x,0,5),aspect_ratio=1,ymax=3,ymin=-1)

La comanda aspect_ratio=1 obliga a que els dos eixos estiguin a la mateixa escala.
Sense aquesta comanda, sage tria automàticament escales apropiades per a cada
eix. Cal anar amb compte amb els punts on la funció no està definida. Per exemple,
plot(sqrt(x),(x,-1,1)) donarà un error, perquè la funció no està definida entre −1
i 0.

Suposem que volem dibuixar la gràfica de la funció f (x) = x/(x − 1) a l’interval
[0, 2]. La comanda
sage: plot(x/(x-1),(x,0,2),aspect_ratio=1)

dóna un resultat que no és satisfactori. El motiu és que la funció se’n va cap a l’infinit
quan ens acostem a x = 1. Cal restringir els valors màxims de y .
sage: plot(x/(x-1),(x,0,2),aspect_ratio=1,ymax=5,ymin=-5)

Aquesta comanda ens dibuixa la funció i una asímptota vertical a x = 1. Si volem
eliminar aquesta asímptota vertical, podem dir-li que exclogui el valor x = 1 on la
funció no està definida.
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sage: plot(x/(x-1),(x,0,2),aspect_ratio=1,ymax=5,ymin=-5,exclude=[1])

Finalment, podem especificar quins punts hem de marcar a cada eix, amb l’atribut
ticks.
sage: plot(x/(x-1),(x,0,2),aspect_ratio=1,ymax=5,ymin=-5,exclude=[1],
....: ticks=[[0,1,2],[-1,3]])

Si volem definir funcions més complicades, ho podem fer amb la sintaxi del llen-
guatge python. Per exemple, suposem que volem definir una funció f (x) que, per a
x ≥ 0, sigui igual a l’arrel quadrada i que valgui zero per a x < 0. Ho podem fer així:
sage: def f(x):
....: if x<0:
....: return 0
....: else:
....: return sqrt(x)
....:
sage:

En aquest cas, si volem dibuixar la gràfica de la funció, no hem d’incloure la variable
x sinó que hem d’usar aquesta sintaxi:
sage: plot(f,-2,2)



4. Funcions elementals

Farem un repàs de les funcions més fonamentals de les matemàtiques, que es coneixen
amb el qualificatiu de funcions elementals.

4.1 Les funcions polinòmiques

Les funcions més senzilles són les funcions constants y = k que són les que sempre
retornen el mateix valor k per a qualsevol valor de x .

Després de les constants, les funcions més senzilles son les funcions lineals

y = mx + b

que s’anomenen així perquè la seva gràfica és una línia recta.
Les funcions quadràtiques són les que s’expressen per una equació de segon grau

y = ax2 + bx + c .

La seva representació gràfica és una paràbola. Apareixen amb molta freqüència a les
aplicacions. Per exemple:

• La dinàmica elemental ens diu que si un cos està en repòs a una alçada h0 i
comença a caure per l’acció de la gravetat, la seva alçada vindrà donada per una
funció quadràtica del temps t:

h(t) = h0 −
g

2
t2.

• La llei d’acció de masses de la química, en la seva formulació més elemental, ens
diu que la velocitat v d’una reacció del tipus A + B → C és proporcional a les
concentracions de A i de B

v([C ]) = k([A]0 − [C ])([B]0 − [C ])

on [A]0 i [B]0 són les concentracions inicials de A i B respectivament, i [C ] és la
concentració de C . Observem que és una funció quadràtica de la variable [C ].

La generalització d’aquest concepte són les funcions polinòmiques de grau arbitrari

y = anxn + an−1xn−1 + · · ·+ a1x + a0.

Aquestes funcions estan definides arreu.

23
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4.2 Les funcions racionals

Les funcions racionals són les que s’expressen com a quocient de dos polinomis

f (x) =
anxn + an−1xn−1 + · · ·+ a1x + a0

bmxm + bm−1xm−1 + · · ·+ b1x + b0
.

El domini de definició d’aquestes funcions està format per tots els nombres excepte
aquells x per als quals el denominador sigui igual a zero. La més senzilla d’aquestes
funcions és la que té per gràfica una hipèrbola

f (x) =
1

x
, x 6= 0.

Una altra funció racional senzilla que apareix sovint és la funció de Monod (o la
funció de Michaelis-Menten, que és la mateixa)

f (x) =
ax

k + x
. (∗)

Jacques Monod va introduir aquesta funció el 1949 per descriure la taxa de creixement
µ dels microorganismes en un medi aquós com a funció de la concentració S del nutrient
crucial. L’equació de Monod és

µ = µmàx
S

Ks + S

on Ks és una constant que dependrà de l’espècie i de les condicions ambientals. L’e-
quació de Michaelis-Menten és

v =
Vmàx[S ]

KM + [S ]

(ja veiem que, matemàticament és la mateixa funció) que descriu la velocitat V d’una
reacció enzimàtica en funció de la concentració [S ] d’un determinat substrat. La mateixa
equació s’ha utilitzat per descriure el rendiment d’un camp de cereal (per exemple) en
funció de la concentració al sòl d’un cert nutrient.

Dividint el numerador i el denominador per k a l’expressió (∗), veiem que aquesta
funció també es pot expressar en la forma

f (x) =
bx

1 + K x
.

Per exemple, el model de resposta funcional de Holling1 de tipus II expressa la taxa
de consum d’un depredador com a funció de la densitat de preses segons la fórmula

f (R) =
aR

1 + ahR

on R és la densitat de preses (o de recursos), a és una constant que mesura la taxa
de depredació i h és una altra constant que mesura el temps necessari perquè el
depredador consumeixi la presa.2

1C.S. Holling és un ecòleg famós, nascut el 1930 al Canadà.
2Busqueu informació a Internet sobre la Holling disc equation.
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Observem3 que, en la funció de Monod f (x) = ax/(k + x), si x és petit, la funció
s’acosta a una recta de pendent a/k , mentre que a mida que x creix, la funció es va
«ajaient» i es va acostant a un valor màxim igual a a. La representació gràfica és
aquesta

Més enllà de la funció de Monod, altres funcions racionals que apareixen a les
aplicacions són les funcions de Holling de tipus III i tipus IV, que són funcions com
aquestes

y =
ax2

b2 + x2
, (tipus III), y =

ax

b + cx + x2
, (tipus IV)4.

Tenen aquesta forma (en vermell la de tipus IV i en blau la de tipus III):

La diferència qualitativa entre una funció de Holling tipus II i una tipus III és que,
per a valors petits de la variable, la de tipus III té un creixement més lent que la de
tipus II. Les funcions de tipus IV són interessants perquè poden modelar situacions en
les quals tant l’excés com la manca d’un nutrient x perjudiquen el creixement de la
variable y . Per exemple, s’han utilitzat per modelar el cultiu de microorganismes en
substrats que n’inhibeixen el metabolisme.5

3Això que ve ara ho entendrem millor quan haguem estudiat la derivada.
4En alguns llocs les funcions de tipus IV tenen com a numerador ax2. La diferència qualitativa entre

els dos casos és que, per a valors grans de x , una funció s’acosta a 0 i l’altra s’acosta a a.
5Vegeu A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Subs-

trates, Biotechnol. Bioeng. 10 (1968), 707–723. Per exemple, els bacteris nitrificants que s’utilitzen en el
tractament d’aigües poden seguir una funció de tipus IV d’aquestes.



26 4. Funcions elementals

4.3 Les funcions potencials

En els polinomis, els exponents són nombres enters. Si aquests exponents són nombres
decimals arbitraris, parlem de funcions potencials (en anglès, power laws). La funció
potencial elemental és

y = kx r

on k 6= 0 és una constant i r és un nombre que no és enter. El domini de definició
d’aquesta funció és x > 0. Si r > 0, també podem considerar que la funció està definida
per x = 0.

Aquestes funcions potencials tenen moltes aplicacions, per exemple en el camp de
l’al.lometria6

• La llei de Kleiber (formulada per Max Kleiber als anys 30 del segle passat)
és l’observació que, en un gran nombre d’animals, el seu metabolisme (és a dir,
la quantitat d’energia que generen o, equivalentment, necessiten per viure) és
proporcional a la potència 3/4 de la seva massa. És a dir,

M = km0.75

on m és la massa de l’animal i M és el seu metabolisme. Per exemple, segons
aquesta llei, com que la massa del gat és aproximadament 100 vegades la del
ratolí, el metabolisme del gat serà aproximadament 32 vegades el del ratolí.

• S’han fet estudis al.lomètrics que relacionen la massa del cor i la massa total de
diverses espècies d’aus i s’ha trobat que segueixen aproximadament una funció
potencial

MC = 8.76× 10−3 m0.92

on MC és la massa del cor (kg) i m és la massa corporal (kg).7

• En el capítol anterior hem parlat dels estudis d’al.lometria que s’han fet per
relacionar les diverses mesures dels arbres: diàmetre del tronc, alçada, biomassa
total, superfície foliar, etc. En molts casos, s’ha arribat a relacions al.lomètriques
del tipus potencial. Per exemple, a la pàgina 17 de l’informe que hem citat hi
trobem la relació al.lomètrica

H = 3.240838DBH0.613065

entre l’alçada H (en metres) d’un faig (Fagus Silvatica) i el diàmetre a 1.37 m
sobre el sòl DBH (en cm).

El comportament de la funció y = kx r depèn de si r és positiu o negatiu i de si
|r | > 1 o |r | < 1. El dibuix següent mostra diverses gràfiques. La corba vermella
representa r = −0.5, la corba porpra representa r = −1.5, la corba blava representa
r = 1.5 i la corba verda representa r = 0.5.

6Al.lometria: estudi de les relacions entre les diverses mesures dels organismes.
7Vegeu Allometric relations of cardiovascular function in birds, Am J Physiol. 1983 Oct;245(4):H567–72.
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4.4 Fem-ho amb sage

Les funcions polinòmiques es poden definir de la manera que ja coneixem. Per exemple,

sage: p(x)=3*x^3-2*x^2+x+1

Recordem que una arrel d’un polinomi és un valor de la variable que fa que el
polinomi valgui zero. La comanda
sage: p(x).roots()

ens dóna les arrels exactes d’aquest polinomi. En aquest cas, obtenim una expressió
molt complicada que és poc útil i, per a polinomis de grau superior a 4, la comanda
anterior pot no trobar les arrels exactes. Cal usar aquesta sintaxi:
sage: p(x).roots(ring=RR)

on l’expressió ring=RR indica que volem les arrels com a nombres reals (inexactes).
Per exemple
sage: (3*x^8-2*x^2+x+1).roots(ring=RR)
[(-0.928030244348921, 1), (-0.504162567229218, 1)]

troba les dues arrels reals d’aquest polinomi de grau 8. Per exemple,
sage: h(x)=x^7+4*x^6-14*x^4-5*x^3+18*x^2+4*x-8
sage: h(x).roots(ring=RR)
[(-2.00000000000000, 3), (-1.00000000000000, 1), (1.00000000000000, 3)]
sage: h(x).factor()
(x+2)^3*(x+1)*(x-1)^3
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5.1 Les funcions exponencials

Si a > 0, podem considerar la funció y = ax o, més en general, la funció

y = k arx

on k , r 6= 0 són constants. D’aquesta família de funcions se’n diuen funcions exponen-
cials i són molt importants a la ciència, com veurem al llarg del curs. El valor de a que
més s’utilitza (ja veurem el perquè més endavant) és el del nombre e . Aquest nombre

e = 2.718281828459045235360287471352662497757247093699959574967 . . .

és una constant matemàtica fonamental, com ho és el nombre π. De la mateixa manera
que π està relacionat amb la circumferència (π és l’àrea limitada per una circumferència
de radi 1), el nombre e està relacionat amb la hipèrbola: l’àrea limitada per la hipèrbola
xy = 1 entre x = 1 i x = e és exactament 1.

La funció exponencial de base e també s’indica amb la notació exp:

y = k erx = k exp(rx).

Aquesta notació és molt útil quan l’exponent és una expressió complicada. La gràfica
de la funció exponencial ex té aquesta forma:

28
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La funció exponencial té aquestes propietats:

• La funció exponencial està definida arreu.

• ex > 0 per qualsevol valor de x . En particular, ex mai no val zero, encara que en
el dibuix ho sembli.

• exp(x + y) = exp(x) exp(y). Podem dir que la funció exponencial «transforma
sumes en productes». També exp(x − y) = exp(x)/ exp(y) i exp(sx) = exp(x)s .

• Tot nombre positiu apareix com a resultat de l’exponencial. Més exactament, si
y > 0, existeix un únic x tal que ex = y .

• Si x << 0 (és a dir, x és un nombre negatiu i |x | és molt gran), ex ≈ 0.

• Quan x > 0, la funció exponencial creix molt de pressa. Quan x < 0, la funció
creix molt lentament.

La funció exponencial és tan fonamental i apareix a tants àmbits, que no posarem ara
cap exemple perquè ja n’apareixeran prou al llarg del curs.

Canviant el valor del paràmetre r podem modificar la forma de la gràfica de la
funció. Per exemple, aquest dibuix mostra les gràfiques de erx per r = ±0.2,±0.5,±1:
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5.2 Les funcions logarítmiques

La funció logaritme en base a > 0, y = loga(x) és la inversa de la funció exponencial
de base a. És a dir,

y = ax és el mateix que x = loga(y).

La funció logaritme «desfà» el que hagi fet la funció exponencial:

loga(a
x) = x , aloga(y) = y .

Tal i com passava amb la funció exponencial, la funció logaritme més important és la
de base e . S’anomena logaritme natural o logaritme neperià1 i la designarem sense
subíndex. És a dir, la funció log(x) indicarà el logaritme neperià de x .2

Com és lògic, la gràfica de la funció y = log(x) és la mateixa que la de la funció
x = ey i s’obté, per tant, agafant la gràfica de y = ex anterior i intercanviant els eixos.
Les propietats de la funció logaritme són una reinterpretació de les propietats de la
funció exponencial. Són aquestes:

• La funció logaritme només està definida per x > 0.

• log(1) = 0.

• log(xy) = log(x)+log(y). Podem dir que la funció logaritme «transforma productes
en sumes». També log(x/y) = log(x)− log(y) i s log(x) = log(x s).

• Si x ≈ 0 (és a dir, x és un nombre positiu molt petit), log(x) és un nombre negatiu
de valor absolut molt gran.

1En honor de John Napier of Merchiston (1550–1617), que va ser l’inventor dels logaritmes (1614).
2Aquesta convenció és la que utilitzen tots els matemàtics i és consistent amb la idea que el logaritme

neperià és el més important, però també és cert que, per motius de tradició, també s’utilitza la notació
ln per indicar el logaritme en base e , és a dir, el logaritme neperià. En aquest curs, log sempre indicarà
el logaritme neperià (que és el que s’utilitza en el 99% dels casos). Quan calgui utilitzar algun altre
logaritme (en base 10, en base 2, o en qualsevol altra base) indicarem explícitament la base en la forma
log2, log10, etc.
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• Quan x > 1, la funció logaritme creix lentament, quan x < 1, la funció creix molt
ràpidament.

El logaritme ens permet expressar qualsevol funció exponencial a partir de l’exponencial
de base e i qualsevol logaritme a partir del logaritme de base e:

ex log(a) = (e log(a))x = ax ; loga(x) log(a) = log
(

aloga(x)
)
= log(x).

loga(x) =
log(x)

log(a)
.

Exemples: El nombre de situacions científiques en les que apareixen funcions logarít-
miques és immens.

• Un índex que s’utilitza a ecologia per mesurar el nivell de biodiversitat en una
zona és l’índex de Shannon

H = −
R∑

i=1

pi log(pi )

on p1, . . . , pR són les proporcions de cada espècie d’interès a la zona d’estudi.

• El pH d’una dissolució aquosa es defineix com

pH = −log10(aH3O+)

on aH3O+ és l’activitat dels cations hidroni a la dissolució.
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• El 1969, Jukes i Cantor van proposar un model per mesurar la distància evolutiva
entre dues seqüències genètiques:

d = −3

4
log

(
1− 4

3
p

)
on p és la proporció de diferències entre les dues seqüències.

• L’índex de Richter d’un terratrèmol es va definir com

M = log10

(
A

A0(δ)

)
on A és l’amplitud de les ones sísmiques i A0 és una certa funció empírica de la
distància a l’epicentre.

• Donades dues freqüències a i b, el nombre d’octaves que les separen és

n = log2

(a

b

)
.

• La llei de Fechner de la psicofísica afirma que les sensacions són proporcionals al
logaritme dels estímuls. La fotografia ha de tenir en compte aquesta llei, perquè
els sensors digitals no segueixen la llei de Fechner.3 Quantitativament, escrivim

p = k log
S

S0

on p és la percepció rebuda i S és la magnitud de l’estímul.

• A la microeconomia clàssica s’estudien les funcions d’utilitat que són funcions
que, a cada possible objecte de consum d’un determinat conjunt, li associen un
nombre que indica la preferència del consumidor per aquest objecte. Sovint,
aquestes funcions són logarítmiques.4

• Un tema important en el disseny de generadors eòlics i també en els estudis de
la dispersió de la pol.lució atmosfèrica és conèixer com canvia la velocitat del vent
u en funció de d’alçada sobre el sòl z . Un model clàssic ve donat per la funció5

u(z) =
u∗
κ

(
log

(
z − d

z0

)
+ ψ(z , z0, L)

)
.

3La resposta del sensor d’una càmera digital és aproximadament lineal. Per tant, un cop el sensor ha
adquirit la fotografia cal fer una transformació exponencial per tal d’obtenir una fotografia que, al nostres
ulls, s’assembli a la imatge original.

4Si voleu més informació, consulteu «Logarithmic laws in service quality perception: where microeco-
nomics meets psycophysics and quality of experience», Telecommun. Syst. 52, n. 2 (2013) 587–600.

5Per entendre què és cada terme d’aquesta funció, consulteu l’entrada «log wind profile» a Wikipe-
dia.org.
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5.3 L’escala logarítmica

Quan representem els nombres sobre una recta, escollim dos punts que marquem com
a 0 i 1 (el punt 1 a la dreta del punt 0) i aleshores, desplaçant el segment entre 0 i 1
cap a la dreta, anem sumant 1 repetidament i obtenim els punts 2, 3, etc. Desplaçant
el mateix segment cap a l’esquerra, anem restant 1 repetidament i obtenim els punts
-1, -2, -3, etc. Obtenim el que en podem dir l’escala ordinària.

A l’escala logarítmica fem una cosa similar, però multiplicativament : escollim dos
punts que marquem com a 1 i 10, el 10 a la dreta de l’1. En lloc de 10, podem prendre
qualsevol altre nombre > 1. Aleshores, desplaçant el segment entre 1 i 10 cap a la
dreta, anem multiplicant per 10 repetidament i obtenim els punts 100, 1000, 104, 105,
etc. Desplaçant el mateix segment cap a l’esquerra, anem dividint per 10 repetidament
i obtenim els punts 0.1 = 10−1, 0.01 = 10−2, 10−3, 10−4, etc. Obtenim el que es coneix
com l’escala logarítmica.

Observem:

• A l’escala logarítmica només hi apareixen els nombres positius.

• La relació entre l’escala ordinària i l’esca logarítmica és que el punt a a l’escala
ordinària és el punt 10a a l’escala logarítmica i, recíprocament, el punt b a l’escala
logarítmica és el punt log10(b) a l’escala ordinària.

• El punt mig entre els punts 1 i 10 no és el punt 5, sinó que és el punt
√
10 = 100.5.

Si una funció està definida sobre els nombres positius i pren només valors positius,
podem representar la gràfica d’una funció prenent escales logarítmiques per als dos
eixos. L’aspecte de la gràfica pot canviar substancialment. Per exemple, dibuixem la
funció y =

√
x en escala ordinària i en escala logarítmica.
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Observem que quan dibuixem la funció y =
√

x = x0.5 en escala logarítmica, la gràfica
sembla una recta. Això no és cap casualitat:

Quan dibuixem una funció potencial y = kx r en escala logarítmica obte-
nim una recta de pendent r .

L’explicació és molt senzilla: si tenim y = kx r i prenem logaritmes als dos costats,
obtenim

log(y) = log(k) + r log(x).

És a dir, tenim
Y = K + rX

(hem posat K = log(k)) que és una recta en l’escala X = log(x), Y = log(y), que és
l’escala logarítmica.

Aquesta observació és molt més important del que pot semblar al primer moment.
A la pràctica, el que es fa quan estudiem un fenomen que sospitem que pot venir donat
per una funció potencial és recollir mostres i situar els valors que hem trobat en un
pla de coordenades logarítmiques. Aleshores, busquem una recta de regressió que
aproximi aquests punts. Si l’aproximació és bona, podem afirmar que tenim una relació
potencial, i l’exponent és el pendent d’aquesta recta de regressió que hem trobat.

De vegades, també s’utilitza l’escala semilogarítmica, que és l’escala en què s’u-
tilitza l’escala ordinària a l’eix x i l’escala logarítmica a l’eix y . En aquesta situació
tenim:

Quan dibuixem una funció exponencial y = kerx en escala semilogarítmica
obtenim una recta de pendent r .

Exemple: Recordem la relació al.lomètrica entre la massa del cor i la massa corporal
de les aus que hem esmentat a la pàgina 26. Resulta que, si dibuixem en escala
logarítmica la gràfica de la massa del cor com a funció de la massa corporal, obtenim
aproximadament una recta de pendent 0.92. Si una espècie A té una massa corporal
10 vegades superior a la d’una altra espècie B , quina relació hi haurà entre la massa
del cor cA de l’espècie A i la massa del cor cB de l’espècie B?
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El fet que la gràfica s’acosti a una recta en escala logarítmica, ens diu que la funció
s’ha d’acostar a una funció potencial. Si la recta té pendent 0.92, la funció potencial
ha de ser

c = km0.92

on m és la massa corporal i c és la massa del cor. Apliquem aquesta funció a les
espècies A i B . Obtenim

cA = km0.92
A = k(10×mB)

0.92 = 100.92km0.92
B = 100.92cB ≈ 8.32× cB .

Per tant, estimem que la massa del cor a l’espècie A serà 8.32 vegades la massa del
cor a l’espècie B .
Exemple: Es fa un estudi de la relació entre la densitat de plantació X i la producció
per planta (per exemple, blat de moro, cirerers, etc.) Y , representem els resultats en
una escala logarítmica i observem que la gràfica de Y = Y (X ) s’aproxima a una recta
de pendent −3/2. Quines conclusions en traiem? En primer lloc, a nivell qualitatiu,
sabem que la producció per planta disminueix quan augmenta la densitat de plantació.
A nivell quantitatiu, sabem que la funció Y = Y (X ) serà una funció potencial d’exponent
−3/2

Y = K X−3/2.

Si coneixem un valor concret de Y podem determinar el valor de la constant K .

5.4 Fem-ho amb sage

Podem dibuixar gràfiques en escala logarítmica o semi-logarítmica. Per exemple,
sage: m=var(’m’)
sage: f(m)=3.25*m^0.32
sage: plot(f(m),(m,0,4),aspect_ratio=1)
sage: plot(f(m),(m,0,4),scale=’loglog’)
sage: g(m)=3.25*exp(0.32*m)
sage: plot(g(m),(m,0,4),aspect_ratio=1)
sage: plot(g(m),(m,0,4),scale=’semilogy’)
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6.1 Funcions sinusoïdals

Les funcions trigonomètriques sin(x) i cos(x), com que només depenen de l’angle, són
periòdiques

sin(x + 2π) = sin(x), cos(x + 2π) = cos(x)

i apareixen en l’estudi dels fenòmens periòdics: moviment harmònic, ones, fenòmens
naturals amb periodicitat diària o anual, etc. Per exemple:

• El model clàssic de Nakatsugawa et al. de 1996 per a la temperatura de la
superfície del mar1 és

T (D) = Tm +
Tv

2
sin

(
2πD

365

)
+ Tp

on D és el dia de l’any (comptat a partir del dia que marca la temperatura
mitjana), Tm és la temperatura mitjana anual, Tv és l’amplitud tèrmica anual i Tp

és un terme que serveix per incorporar pertorbacions com pot ser «el niño».

• En els estudis sobre la fotosíntesi cal tenir en compte la irradiació solar diària.
L’equació més natural és aquesta2

E (t) = Em sin
(πt

N

)
on E (t) és la insolació t hores després de la sortida del sol, Em és la irradiació
solar al migdia i N és el nombre d’hores de sol totals del dia.

La funció sinusoïdal més general és

f (x) = A sin(2πνx + b).

Observem que la funció cosinus és un cas particular d’això, perquè

cos(x) = sin
(

x +
π

2

)
.

Discutim ara el significat dels paràmetres A, ν i b.

• A és la meitat de l’amplitud del moviment sinusoïdal. Recordem que la funció
sin té un valor mínim de −1 i un valor màxim de 1. Per tant, si volem una funció
sinusoïdal que oscil.li entre −A i A, hem de multiplicar la funció sin per A.

1Vegeu Kavvas, Anderson, Mathematical Models of Large Watershed Hydrology, p. 198.
2Vegeu Kirk, Light and Photosynthesis in Aquatic Ecosystems, p. 41.
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• ν és la freqüència. Recordem que un cicle de la funció sin té una longitud de 2π,
és a dir, la funció sinus es torna a repetir després de 2π. Si volem una funció
sinusoïdal que es repeteixi cada 1/ν, hem de considerar sin(2πνx).

• b és la fase. Recordem que sin(0) = 0. Si volem una funció sinusoïdal que tingui
el primer zero en un determinat valor x = −b, hem de considerar sin(x + b).

D’aquesta manera, escollint convenientment aquests paràmetres podem adaptar la fun-
ció sinusoïdal a les nostres necessitats.

Funcions sinusoïdals amb diversos valors dels paràmetres A, ν i b.

Sumant a una funció donada una funció sinusoïdal, podem obtenir una funció que
vagi oscil.lant a l’entorn de la funció inicial. Per exemple, la gràfica següent representa
una funció quadràtica (una paràbola) amb una petita pertorbació sinusoïdal:

La funció és
y = 0.5 x2 + 0.2 sin(25x).

Exemple: En un estudi sobre la temperatura mitjana (de les mínimes) en un deter-
minat observatori (la Seu d’Urgell), s’ha vist que segueix aproximadament una funció
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sinusoïdal. La temperatura mitjana (de les mínimes) d’aquest observatori és 5.7. El dia
més fred de l’any és el 6 de febrer i l’amplitud tèrmica anual és de 14.8 graus. Trobeu
una funció sinusoïdal que aproximi aquestes dades.

Si expressem el temps d en dies i la temperatura T en Celsius, la funció sinusoïdal
que busquem és

T = Tm + A sin(2πνd + b)

on Tm serà la temperatura mitjana anual i A serà la semi-amplitud tèrmica. Com que
la periodicitat ha de ser anual, ν = 1/365. Només ens cal determinar el paràmetre b.
Sabem que el mínim de la funció es produeix quan d = 37. Aquest mínim correspon a
sin(2πνd + b) = −1 i, per tant, 2πνd + b = −π/2. Això ens dóna

b = π

(
1

2
− 2× 37

365

)
≈ −0.7027π.

La funció sinusoïdal que busquem és

T (d) = 5.7 + 7.4 sin

(
π

(
2d

365
− 0.7027

))
.

6.2 Fem-ho amb sage

La figura anterior amb quatre funcions sinusoïdals està feta amb aquestes comandes:
sage: p=plot(2.1*sin(2*pi*1.2*x+1),(x,-5,5),aspect_ratio=1)
sage: q=plot(1.2*sin(2*pi*0.6*x-2),(x,-5,5),color=’red’)
sage: r=plot(1.7*sin(2*pi*0.2*x-4),(x,-5,5),color=’purple’)
sage: s=plot(0.2*sin(2*pi*8*x-4),(x,-5,5),color=’orange’)
sage: p+q+r+s



7. Límits i continuïtat

7.1 Comportament a llarg termini

Si estudiem un fenomen descrit per una funció y = y(x), ens interessa conèixer el
comportament de la variable y per a valors molt grans de la variable x . Si la variable
x és el temps, això és precisament el què en diem comportament de y a llarg termini.

Considerem una funció logarítmica com y = log(x) i una funció de Monod com
y = 10x/(1 + x). Veiem que tenen comportaments a llarg termini ben diferents:

La funció logarítmica creix «il.limitadament», és a dir, supera qualsevol valor N , per
gran que sigui. En canvi, la funció de Monod es va acostant més i més al valor 10, sense
superar-lo mai. És a dir, per qualsevol valor ε, per petit que sigui, si x és prou gran
tindrem que |y − 10| < ε. Aquestes situacions les expressarem utilitzant el concepte
matemàtic de límit:

lim
x→∞

log(x) =∞; lim
x→∞

10x

1 + x
= 1.

Si la funció està definida per als nombres negatius, també podem preguntar-nos pel
comportament de la funció quan la variable «tendeix» a −∞. Per exemple, hem vist
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abans que
lim

x→−∞
ex = 0.

Repassem quin és el comportament a llarg termini —el límit— de les diverses
funcions elementals.

• Lineals i polinòmiques. Aquestes funcions (en valor absolut), creixen indefinida-
ment per a valors grans de la variable (en valor absolut). De fet, si |x | és molt
gran, un polinomi xn + an−1xn−1 + · · · + a0 (n > 0) es comporta igual que el seu
terme de grau màxim

lim
x→±∞

(xn + an−1xn−1 + · · ·+ a0) = lim
x→±∞

xn

i, d’altra banda,
lim

x→∞
xn =∞; lim

x→−∞
xn = (−1)n∞.

• Racionals. Igual que en el cas dels polinomis, quan |x | és molt gran només és
rellevant el terme de grau més gran del numerador i el denominador:

lim
x→±∞

anxn + an−1xn−1 + · · ·+ a0
bmxm + bm−1xm−1 + · · ·+ b0

= lim
x→±∞

anxn

bmxm
=

an

bm
lim

x→±∞
xn−m.

D’altra banda,

lim
x→∞

x r =


∞ si r > 0,
1 si r = 0,
0 si r < 0.

lim
x→−∞

x r =


(−1)r∞ si r > 0,
1 si r = 0,
0 si r < 0.

• Potencials. x r es comporta essencialment com si l’exponent fos enter i tenim la
mateixa fórmula anterior. Només té sentit el cas x → ∞ perquè les funcions
potencials només estan definides per x > 0.

• Exponencial i logaritme. Ja hem considerat aquests casos abans. Tenim

lim
x→∞

ex =∞; lim
x→−∞

ex = 0; lim
x→∞

log(x) =∞.

En el cas del logaritme, no té sentit el límit quan x → −∞ perquè la funció
logaritme només està definida per x > 0.

• Trigonomètriques. Les funcions sinusoïdals van oscil.lant indefinidament, sempre
amb la mateixa amplitud. Per tant, quan x tendeix a ±∞ aquestes funcions ni
s’acosten a cap valor concret, ni s’allunyen cap a ±∞. Simplement, no tenen
límit. Aquí observem que el límit d’una funció limx→∞ f (x) pot no existir. La
funció tangent tampoc no té límit (perquè també és periòdica).
En canvi, l’altra funció trigonomètrica important, la funció arc-tangent, sí que té
un límit:

lim
x→∞

arctan(x) =
π

2
; lim

x→−∞
arctan(x) = −π

2
.

És interessant recordar l’aspecte que té la gràfica d’aquesta funció:
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7.2 Límits finits i límits laterals

En concepte de límit també pot estendre al cas en què la variable tendeix a un deter-
minat valor finit a. Considerem, per exemple, la funció y = x−2. Aquesta funció no està
definida per x = 0, però podem estudiar el seu comportament quan x és «molt proper»
a zero, sense ser mai igual a zero. Veiem immediatament que quan x → 0, la funció
creix il.limitadament. Direm que

lim
x→0

1

x2
=∞.

Considerem la funció y = log(x) que només està definida per valors x > 0. Sa-
bem que si x > 0 és molt petit, la funció y pren valors negatius de valor absolut
il.limitadament gran. Direm que

lim
x→0+

log(x) = −∞.

Observem la notació x → a+ que ens indica que prenem valors de x arbitràriament
propers a a però sempre > a. Anàlogament, podem considerar la notació x → a− que
ens indica que prenem valors de x arbitràriament propers a a però sempre < a.



42 7. Límits i continuïtat

Considerem la funció
y =

x2 + x − 2

x2 − 1

que està definida arreu excepte als punts x = ±1 perquè en aquests punts s’anul.la
el denominador. Podem preguntar-nos pels límits d’aquesta funció quan la variable
x → ±1. Observem que x2 + x − 2 = (x − 1)(x + 2) i x2 − 1 = (x + 1)(x − 1), per tant,
fora dels punts x = ±1, podem escriure y = (x + 2)/(x + 1). Veiem això:

lim
x→1

x2 + x − 2

x2 − 1
= lim

x→1

x + 2

x + 1
=

3

2
;

lim
x→−1+

x2 + x − 2

x2 − 1
= lim

x→−1+
x + 2

x + 1
=∞;

lim
x→−1−

x2 + x − 2

x2 − 1
= lim

x→−1−
x + 2

x + 1
= −∞;

7.3 El concepte de continuïtat

Considerem la funció part entera y = bxc que hem definit en una secció anterior i
observem el fenomen següent. Considerem els nombre 0 ≤ x < 1. La seva part entera
és zero. Per molt que x s’acosti a 1, mentre x < 1, la part entera serà zero. Però la
part entera de 1 és 1. Tenim, doncs, una discrepància entre el límit quan x → 1− i el
valor de la funció quan x = 1:

0 = lim
x→1−

bxc 6= b1c = 1.
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Aquesta discrepància es deu a que la funció «fa un salt» en el punt x = 1. Diem que hi
ha una discontinuïtat. Aquest és exactament el significat del concepte de continuïtat
en una funció:

Una funció f (x) és contínua en el punt x = a si limx→a f (x) existeix i
limx→a f (x) = f (a).

Ens interessa saber quines funcions elementals són contínues:

Totes les funcions elementals són contínues, en els seus dominis de defini-
ció. També ho són les funcions que s’obtenen per composició de funcions
elementals, en els seus dominis de definició.

(Això exclou la funció part entera, que no la considerem com una funció elemental.) Per
tant, per calcular el límit d’una composició de funcions contínues, quan x → a, si la
funció està definida a x = a, simplement hem de substituir x per a i avaluar la funció.

7.4 Una propietat essencial de les funcions contínues

La idea mateixa de continuïtat ens diu, per exemple, que no podem passar contínuament
de 2 a 3 sense passar per tots els valors que hi ha entre 2 i 3. Aquesta és una propietat
essencial de les funcions contínues. Dit amb més precisió:

Sigui f (x) una funció contínua definida a tots els punts d’un interval [a, b].
Sigui K un valor entre f (a) i f (b). Aleshores, existeix algun valor c a
l’interval [a, b] tal que f (c) = K .

Així, la funció contínua del dibuix ha de tallar necessàriament la línia vermella:
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Aquesta propietat —que es coneix amb el nom de propietat de Bolzano— té una
gran importància pràctica perquè ens dóna un mètode per resoldre equacions.
Exemple: Resoleu aquesta equació: cos(x) = x .

Considerem la funció f (x) = cos(x) − x , que sabem que és una funció contínua.
Observem que f (0) = 1 i f (π/2) = −π/2. Per tant, per la propietat de Bolzano hi ha
d’haver un valor c entre 0 i π/2 tal que f (c) = 0. Aquest valor serà una solució de
l’equació. De moment sabem, doncs, que l’equació té solució. Ara voldríem trobar-la.

Calculem el valor de la funció en un punt intermedi entre 0 i π/2, per exemple,
f (0.9) ≈ −0.116673 < 0. Per tant, novament per la propietat de Bolzano, hi haurà
una solució de l’equació entre 0 i 0.9. Si anem repetint aquest procés, cada vegada
acotarem més la solució, fins que la coneguem amb la precisió que ens calgui.

La taula següent és un exemple fet molt ràpidament amb un full de càlcul. La
primera columna és un número A tal que f (A) > 0, la tercera columna és un número B
tal que f (B) < 0 i la segona columna és el punt mig entre A i B . Les tres columnes de
la dreta són els valors de la funció als punts A, B i C i aquests valors ens permeten
decidir quins són els punts A i B de la fila següent. Ràpidament arribem a un valor C
tal que f (C ) ≈ 0. Aquest C és una solució aproximada. En la taula veiem que aquest
valor és C = 0.7390851.

Hem arribat a aquesta solució aproximada per un procés iteratiu, és a dir, un procés
que consisteix en repetir indefinidament un mateix mètode de manera que a cada nova
repetició ens acostem més al resultat exacte de manera que, en el límit, obtindríem
aquest resultat exacte.
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A C = (A + B)/2 B f (A) f (C ) f (B)
0.00000000 0.75000000 1.50000000 1.00000000 -0.01831113 -1.42926280
0.00000000 0.37500000 0.75000000 1.00000000 0.55550762 -0.01831113
0.37500000 0.56250000 0.75000000 0.55550762 0.28342450 -0.01831113
0.56250000 0.65625000 0.75000000 0.28342450 0.13603586 -0.01831113
0.65625000 0.70312500 0.75000000 0.13603586 0.05970028 -0.01831113
0.70312500 0.72656250 0.75000000 0.05970028 0.02089986 -0.01831113
0.72656250 0.73828125 0.75000000 0.02089986 0.00134515 -0.01831113
0.73828125 0.74414063 0.75000000 0.00134515 -0.00847036 -0.01831113
0.73828125 0.74121094 0.74414063 0.00134515 -0.00355944 -0.00847036
0.73828125 0.73974609 0.74121094 0.00134515 -0.00110635 -0.00355944
0.73828125 0.73901367 0.73974609 0.00134515 0.00011960 -0.00110635
0.73901367 0.73937988 0.73974609 0.00011960 -0.00049333 -0.00110635
0.73901367 0.73919678 0.73937988 0.00011960 -0.00018685 -0.00049333
0.73901367 0.73910522 0.73919678 0.00011960 -0.00003363 -0.00018685
0.73901367 0.73905945 0.73910522 0.00011960 0.00004299 -0.00003363
0.73905945 0.73908234 0.73910522 0.00004299 0.00000468 -0.00003363
0.73908234 0.73909378 0.73910522 0.00000468 -0.00001447 -0.00003363
0.73908234 0.73908806 0.73909378 0.00000468 -0.00000490 -0.00001447
0.73908234 0.73908520 0.73908806 0.00000468 -0.00000011 -0.00000490
0.73908234 0.73908377 0.73908520 0.00000468 0.00000229 -0.00000011
0.73908377 0.73908448 0.73908520 0.00000229 0.00000109 -0.00000011
0.73908448 0.73908484 0.73908520 0.00000109 0.00000049 -0.00000011
0.73908484 0.73908502 0.73908520 0.00000049 0.00000019 -0.00000011
0.73908502 0.73908511 0.73908520 0.00000019 0.00000004 -0.00000011
0.73908511 0.73908515 0.73908520 0.00000004 -0.00000003 -0.00000011
0.73908511 0.73908513 0.73908515 0.00000004 0.00000000 -0.00000003

7.5 Fem-ho amb sage

sage pot calcular, en alguns casos, límits de funcions. Per exemple, podem calcular els
vuit límits d’un dels exercicis d’aquesta primera part així:
sage: limit((1+log(x))/(2+x),x=0,dir=’plus’)
-Infinity
sage: limit(sin(x)/x^2,x=oo)
0
sage: limit(log((x^2+1)/x^2),x=Infinity)
0
sage: limit(log(x-1)/log(x),x=1,dir=’plus’)
-Infinity
sage: limit(sqrt(x-1)*exp(-x),x=1,dir=’plus’)
0
sage: limit(tan(x),x=pi/2,dir=’plus’)
-Infinity
sage: limit(3*e^(-x)/(1+e^(-x)),x=oo)
0
sage: limit(12*exp(-5/x^2),x=0)
0
sage: limit(((x+2)/x)^x,x=oo)
e^2
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8.1 Casos d’indeterminació

Suposem que multipliquem una funció f (x) que tendeix a ∞ per una altra funció g(x)
que tendeix a 0. Què podem afirmar del límit del producte d’aquestes dues funcions
f (x)g(x)? N’hi ha prou amb considerar alguns exemples elementals per veure que no
podem concloure res sobre el límit d’aquest producte.

lim
x→∞

x · 2
x
= 2; lim

x→∞
x · 2

x2
= 0; lim

x→∞
x2 · 2

x
=∞.

Diem que tenim un cas d’indeterminació del tipus ∞ · 0. De manera informal, podem
pensar aquest cas com una comparació de la «força» d’aquestes dues funcions, actuant
en sentits contraris. La primera funció intenta que el producte sigui molt gran, la
segona funció intenta que el producte sigui molt petit i el producte es decantarà cap
un costat o l’altre segons quina de les dues funcions tingui més «força» o, dit d’una
altra manera, s’acosti més ràpidament al seu valor a llarg termini.

Hi ha diversos casos d’indeterminació. Per exemple1

0 · ∞,
∞
∞

,
0

0
, ∞−∞, 1∞, 00.

En cadascun d’aquests casos, el càlcul del límit s’ha de fer per mètodes més o menys
ad hoc. Veurem alguns exemples, però no pretenem cobrir tots els casos possibles.

8.2 Alguns exemples

• Exemple 1: En el cas de les funcions racionals, quan obtenim un cas d’indeter-
minació, sempre el podem resoldre per mètodes que ja hem vist abans.

lim
x→1

x2 + x − 2

x2 − 1
= lim

x→1

x + 2

x + 1
=

3

2
.

lim
x→∞

2x3 + x2 + x − 1

3x3 − 4
= lim

x→∞

2x3

3x3
=

2

3
.

• Exemple 2:

lim
x→∞

(x −
√

x2 − 1) = lim
x→∞

(x −
√

x2 − 1)(x +
√

x2 − 1)

x +
√

x2 − 1
= lim

x→∞

1

x +
√

x2 − 1
= 0.

1Aquestes «fórmules» no tenen cap altre significat que ser noms per designar certes situacions que
ens podem trobar a l’hora de calcular límits. És a dir, 0/0,∞−∞, etc. no tenen cap significat matemàtic.
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• Exemple 3:
lim
x→0

sin(x)

x
.

Aquest és un límit molt interessant que es calcula utilitzant un argument geo-
mètric. Considerem un triangle rectangle d’hipotenusa 1 i amb un angle igual a
x .

En aquest triangle, el segment AC mesura sin(x), el segment BD mesura tan(x)
i l’arc de circumferència BC mesura x , perquè l’angle x el mesurem en radiants.
Aleshores, observant aquest triangle veiem que es compleix aquesta desigualtat:

sin(x) ≤ x ≤ tan(x) =
sin(x)

cos(x)
.

Dividint per sin(x) obtenim

1 ≤ x

sin(x)
≤ 1

cos(x)

i observem que la funció x/ sin(x) està «encaixada» entre dues funcions que totes
dues tendeixen a 1 quan x → 0. Això ens diu que, necessàriament, aquesta funció
«encaixada» també ha de tendir a 1. Tenim, doncs, un límit que és força útil:

lim
x→0

sin(x)

x
= lim

x→0

x

sin(x)
= 1.

Aquest mètode d’encaixar una funció de la que no coneixem el límit entre dues
funcions que sabem que tenen el mateix límit també és útil en altres circumstàn-
cies.

• Exemple 4:

lim
x→0

x sin

(
1

x

)
.

Observem que la funció sin( 1x ) ni tan sols té límit quan x → 0. Malgrat això,
podem encaixar-la d’aquesta manera. Recordem que el sinus val sempre entre
−1 i 1. Aleshores, si x > 0:

x · (−1) ≤ x sin

(
1

x

)
≤ x · 1
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i si x < 0:
x · (−1) ≥ x sin

(
1

x

)
≥ x · 1.

En qualsevol cas, com que les dues funcions dels extrems tendeixen a zero, també
la funció del mig ha de tendir a zero.

lim
x→0

x sin

(
1

x

)
= 0.

• Exemple 5:
lim

x→∞

ex

xn
.

Aquí estem comparant la «força» de l’exponencial amb la d’una potència d’expo-
nent arbitrari n. Les dues funcions tendeixen a ∞ però, quina ho fa «més de
pressa»? La resposta és que «guanya» sempre l’exponencial. Donarem l’explica-
ció d’això en el cas més senzill

lim
x→∞

ex

x
=∞.

Per comprovar això, escrivim f (x) = ex/x i calculem f (2x) (per x > 1):

f (2x) =
e2x

2x
=

ex ex

2x
=

ex

2
f (x) ≥ e

2
f (x) > 1.3 f (x).

Per tant, f (2r ) > 1.3r e i això ens demostra que la funció f (x) es fa il.limitadament
gran, és a dir, tendeix a ∞.

lim
x→∞

ex

xn
=∞ per tot n > 0.

• Exemple 6:

lim
x→±∞

(
1 +

1

x

)x

.

Aquí tenim una indeterminació del tipus 1∞ en un límit que té un gran interès
(com veurem en els propers capítol). Malauradament, totes les maneres que hi
ha de calcular aquest límit són una mica complicades i ens haurem de limitar a
donar el resultat, sense justificació.

lim
x→∞

(
1 +

1

x

)x

= lim
x→−∞

(
1 +

1

x

)x

= e.

• Exemple 7: Aquest límit està molt relacionat amb l’anterior:

lim
x→0

x

ex − 1
.

Es tracta d’una indeterminació del tipus «0/0» i la podem resoldre fent el canvi
de variable y = 1/(ex − 1). Observem que quan x → 0, la nova variable compleix
y →∞ i tenim

lim
x→0

x

ex − 1
= lim

y→∞
y log

(
1 +

1

y

)
= lim

y→∞
log

(
1 +

1

y

)y

= 1.

Per tant,
lim
x→0

x

ex − 1
= lim

x→0

ex − 1

x
= 1.
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8.3 I la regla de l’Hôpital?

Hi ha un instrument molt poderós per resoldre alguns casos d’indeterminació dels que
hem considerat aquí que es coneix amb el nom de regla de l’Hôpital. Segurament,
l’estudiant ja coneix aquest mètode, però en els exemples anteriors hem preferit buscar
justificacions alternatives. La regla de l’Hôpital utilitza les derivades, que estudiarem
més endavant, però l’estudiant ja les coneix.

Recordem aquí com es pot aplicar aquesta regla:

• La regla de l’Hôpital s’aplica al càlcul de límits amb indeterminacions del tipus
«0/0» i «∞/∞».

• Volem, doncs, calcular un límit com

lim
x→a

f (x)

g(x)

quan f (x) i g(x) són funcions que es poden derivar. Aquí a és un nombre o també
pot ser ±∞. Suposem també que g ′(x) 6= 0 per tot x en un interval al voltant de
a excepte, potser, al punt a.

• Calculem
lim
x→a

f ′(x)

g ′(x)
.

Suposem que aquest límit existeix i val k (també pot ser k = ±∞).

• Aleshores,
lim
x→a

f (x)

g(x)
= k .

En particular, els límits dels exemples 3, 5 i 7 anteriors es poden obtenir molt
fàcilment amb aquest mètode:

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
= 1.

lim
x→∞

ex

xn
= lim

x→∞

ex

nxn−1 = lim
x→∞

ex

n(n − 1)xn−2 = · · · = lim
x→∞

ex

n(n − 1) · · · 2
=∞

lim
x→0

x

ex − 1
= lim

x→0

1

ex
= 1.

Cal tenir en compte, però, que en el primer d’aquests límits hem usat que la derivada
de la funció sinus és la funció cosinus i en els altres dos hem usat que la derivada de
la funció exponencial de base e és ella mateixa però, per arribar a aquests resultat cal
usar els valor dels límits de sin(x)/x i (ex − 1)/x .



9. Taxa de creixement

9.1 Velocitat de creixement: la derivada

Si modelem el comportament d’una variable y com una funció y = y(x), una qüestió de
màxim interès és entendre a quina velocitat creix (o decreix) la variable y en relació a
la variable x . Per exemple,

• Si y = y(t) és l’espai recorregut per un mòbil en un temps t , la velocitat de y
en funció de t és, precisament, el que coneixem com la velocitat del mòbil. Si y
s’expressa en metres i t s’expressa en segons, la velocitat s’expressarà en metres
per segon.

• Si P = P(q) és la producció d’un camp de cereals en funció de l’aportació d’adob
q, la velocitat de P en funció de q ens indica quantes unitats augmenta P quan
q augmenta en una unitat. Aquesta velocitat s’expressarà, per exemple, en tones
de producció per kg d’adob.

• Si T = T (C ) ens indica la relació entre la temperatura T i la concentració C de
C O2 a l’atmosfera, la velocitat de creixement de T respecte de C ens indica quants
graus augmenta la temperatura per cada augment d’una unitat en la concentració
de C O2. Aquesta velocitat s’expressarà, per exemple, en graus Celsius per 1 ppmv
de C O2.

No cal insistir, doncs, en la importància d’aquest concepte que, de fet, serà un dels
conceptes centrals d’aquest curs. Matemàticament, si y = y(x), la velocitat de creixe-
ment de y respecte de x s’anomena la derivada de y respecte de x . La notació que es
fa servir és y ′ i, si es vol remarcar que la variable independent és x , aleshores s’escriu

dy

dx
.

En resum,

Si y = y(x) és una funció, la derivada y ′ = dy
dx és la velocitat de creixement

de y respecte de x . Les unitats de y ′ són A/B on A són les unitats de y i
B són les unitats de x .

No cal dir que sempre utilitzarem la paraula creixement en el sentit que inclou el
decreixement com a creixement de signe negatiu.
Exemples:

• Si ens diuen que la superfície de boscos al Brasil ha anat variant al llarg del
temps, entendrem que ens estan dient que hi ha una funció S = S(t) que descriu
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la superfície de bosc S com a funció del temps. Si ens diuen que la superfície
de bosc ara (t = 2015) al Brasil és de 500 milions d’hectàrees, entendrem que
ens estan dient que S(2015) = 500× 106 ha. Si llegim que el Brasil està perdent
ara 1.6 milions d’hectàrees de bosc cada any, entendrem que ens estan dient que
S ′(2015) = −1.6× 106 ha/any.

• Si ens diuen que un cos està a 10 metres sobre el terra i està caient a una
velocitat de 5 m/s, entendrem que la seva distància al terra ve donada per una
funció d = d(t) i que, si considerem que ara és l’instant t = 0 (per exemple), es
compleix d(0) = 10 m i d ′(0) = −5 m/s.

Hem d’anar amb compte i no confondre la velocitat (és a dir, la derivada) amb la
velocitat mitjana. Per exemple, en els dos exemples anteriors

• Quantes ha de bosc hi haurà al Brasil l’any que ve? 498.4 milions d’ha? Segu-
rament, no. Que la superfície de boscos al Brasil disminueixi a una velocitat de
1.6 × 106 ha/any no vol dir que d’aquí un any hi hagi 1.6 × 106 ha menys. En
efecte, la desforestació es podria accelerar (o, més difícilment, desaccelerar) i,
després d’un any, podem haver perdut més o menys de 1.6× 106 ha.

• A quina alçada sobre el terra estarà el cos després de 1 segon? A 5 metres?
No. El cos cau a 5 m/s, però això no vol dir que recorri 5 metres en el proper
segon, perquè sabem que, de fet, s’està accelerant per efecte de la gravetat i cada
vegada caurà a més velocitat.

9.2 Taxa de creixement

Sovint, veiem com el creixement d’una variable es dóna en tant per cent. Què significa?
Per exemple, si diem

• L’atur està creixent al 0.2% anual.

• La població mundial de balenes està disminuint a un ritme del 3.1% anual.

Què signifiquen aquest 0.2% i aquest 3.1%? La resposta és senzilla: és el quocient
entre la velocitat de creixement i el valor de la variable:

• Si el nombre d’aturats és N(t), estem dient que N ′(t)/N(t) val, en aquest instant
de temps actual, 0.002. Les unitats, evidentment, són anys−1.

• Si el nombre de balenes és N(t), estem dient que N ′(t)/N(t) val, en aquest
instant de temps actual, 0.031. Les unitats, evidentment, són anys−1.

D’aquest quocient se’n diu la taxa de creixement1 o també, de vegades, la velocitat de
creixement per capita, o per unitat.

Taxa de creixement =
N ′(x)

N(x)
.

1En anglès, growth rate.
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La taxa de creixement (que, evidentment, pot ser positiva, negativa o zero) té per unitats
A−1, on A són les unitats de la variable independent x .

9.3 Creixement discret i creixement continu

Considerem aquesta pregunta d’aparença senzilla:

Una quantitat N té un valor 1000 i està creixent al 4% anual. Quan valdrà
d’aquí a un any?

La majoria de persones contestarien 1040 i, la majoria de vegades, s’equivocarien.
Intentem d’entendre quina és la resposta correcta.

Algunes variables creixen de manera discreta.2 Per exemple, un dipòsit bancari
de 1000e a un interès del 4% anual (amb capitalització anual) té un valor constant
de 1000e durant tot un any i l’endemà de que es compleixi l’any fa un salt discon-
tinu i es converteix en 1040e. Si la nostra variable N tingués aquest comportament,
efectivament el valor després d’un any seria de 1040.

Però la majoria de variables que apareixen a la ciència o a la natura no creixen
de manera discreta, sinó que creixen de manera contínua. Per exemple, les mides d’un
ésser viu en creixement no creixen pas com un dipòsit bancari! En altres casos, el
creixement és discret, però creix amb tants petits increments, que és millor considerar-
lo com un creixement continu. La mida d’una gran colònia d’animals podria ser un
exemple d’aquest tipus.

Quan el creixement és continu, hem de distingir entre créixer amb una taxa del 4%
anual i créixer un 4% en un any. És cert que, de vegades, es confonen aquests dos
conceptes, però són dues coses molt diferents.

En resum, quina és la resposta a la pregunta anterior? La resposta és «depèn».
Depèn de que el creixement sigui discret o continu i, si és discret, depèn de quantes
vegades creixi en el període de temps que considerem (un any, per exemple). La
resposta concreta en cada cas l’estudiarem en el capítol següent.

2En matemàtiques, la paraula «discret» té el significat de «que presenta separacions, que es compon
de parts separades» (DLC) i és el contrari de «continu».
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En aquest capítol concretarem més els temes de creixement discret, creixement continu
i taxa de creixement que han sorgit al capítol anterior.

10.1 Creixement discret

Comencem amb la pregunta del final del capítol anterior. Dèiem que una quantitat N
està creixent al 4% anual i ens preguntàvem quan valdria d’aquí un any. Vam dir que
ens calia més informació. Suposem, doncs, que el creixement és discret i es produeix
un cop l’any. Podem pensar que N és un dipòsit bancari o la mida d’una població que
es reprodueix un cop l’any. És clar que, en lloc de prendre l’any com la unitat de temps,
podríem prendre qualsevol altra unitat (mes, dia, segon, etc.). Amb aquesta informació,
la resposta és clara: N × 1.04.

Com que la quantitat N va canviant amb el temps, és lògic pensar-la com una funció
N = N(t). Si comencem a comptar el temps quan la població val N(0) = N0, i si la
taxa de creixement és r (a l’exemple, r valia el 4%), la resposta anterior s’escriurà

N(1) = N0 × (1 + r).

Més en general,

N(2) = N0 (1 + r)2, N(3) = N0 (1 + r)3, N(4) = N0 (1 + r)4, . . .

És a dir,
N(k) = N0 (1 + r)k , k enter.

En aquest exemple hi ha igualtat entre la unitat de temps i el temps de cada període
de creixement. En general, aquests dos temps posen ser diferents.

Exemple 1: Tenim un cultiu amb 103 bacteris que es reprodueixen per divisió cada 20
minuts. Quant de temps trigarà a haver-hi 106 bacteris?

Prenem com a unitat de temps el minut. Aleshores, com que cada 20 minuts la
població es duplica, la fórmula que ens donarà la població després de t minuts serà

N(t) = N0 × 2t/20.

Observem que la taxa de reproducció és del 100% cada 20 minuts. Per resoldre el
problema hem de resoldre aquesta equació:

106 = 103 2t/20.

Prenent logaritmes, obtenim1

t = 60
log(10)

log(2)
≈ 199.3 min.

1Si el creixement és estrictament discret, aquesta resposta és només aproximada, perquè després de
200 minuts hi haurà 1.024.000 bacteris i un minut abans n’hi haurà 512.000.
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Considerem ara aquest exemple lleugerament diferent:

Exemple 2: Un dipòsit bancari de 103 euros rep un interès del 3% anual i es capitalitza
cada mes. Quant de temps trigarà a duplicar-se?

Prenem com a unitat de temps l’any. Evidentment, l’interès del 3% anual és un
interès del 3/12% = 0.0025 mensual. Per tant, podem aplicar la mateixa fórmula de
l’exemple anterior, tenint en compte que r , que era la taxa de creixement per període,
ara serà r = 0.0025 i l’equació a resoldre és

2× 103 = 103 (1.0025)12t .

Prenent logaritmes arribem a

t =
log(2)

12 log(1.0025)
≈ 23 anys.

Escrivim una fórmula general per a aquest cas. Suposem que la taxa de creixement
és r (en % per unitat de temps) i que el creixement es produeix cada 1/n unitats de
temps. El valor de N després de t unitats de temps serà

N(t) = N0

(
1 +

r

n

)nt
.

El model de creixement que acabem d’estudiar l’anomenarem creixement exponen-
cial discret. Si r > 0 tenim creixement, si r < 0, tenim decreixement.

10.2 Creixement continu

Suposem ara que una quantitat N creix amb una taxa de creixement constant, però
creix contínuament o, equivalentment, els intervals de creixement són molt petits. Per
exemple, la mida d’un arbre o la massa d’una substància radioactiva (en aquest segon
cas la taxa serà negativa, evidentment). Per calcular N(t) hauríem d’aplicar la fórmula
anterior

N(t) = N0

(
1 +

r

n

)nt

prenent un valor molt gran de n. Més exactament, hauríem de prendre el límit d’aquesta
expressió quan n→∞:

N(t) = lim
n→∞

N0

(
1 +

r

n

)nt
= N0 lim

n→∞

(
1 +

1

n/r

)(n/r)rt

= N0 ert .

Aquest és un resultat fonamental: el creixement continu amb taxa de creixement cons-
tant igual a r ve donat per la funció exponencial

N(t) = N0 ert .

Per aquest motiu, en diem creixement exponencial.
Observem que el signe de r ens distingeix entre creixement i decreixement: Si r > 0

hi ha creixement, si r < 0 hi ha decreixement. Si r = 0, N es manté constant.
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10.3 Creixement exponencial

Fem un resum del que hem après fins ara:

• Direm que una quantitat té creixement exponencial quan creix contínuament amb
una taxa de creixement constant.

• Per tant, N(t) té creixement exponencial si r = N ′(t)/N(t) és constant. Equiva-
lentment, si N ′(t) = rN(t) amb r constant.

• Si N(t) té creixement exponencial amb taxa de creixement r , aleshores N(t) és
una funció exponencial

N(t) = N0 ert .

Hi ha molts exemples de creixement exponencial, si més no en un interval limitat
de t . Posem un parell d’exemples:

Exemple 3: Entre els anys 2000 i 2008, el nombre d’usuaris d’Internet a la Xina va
créixer a una taxa aproximadament constant del 10.24% anual. Si l’any 2000 hi havia
22.5 milions d’usuaris, feu una estimació del nombre d’usuaris després de deu anys.

Com que aquest creixement és continu i la taxa de creixement r és constant, serà
un creixement exponencial donat per una equació

N(t) = N0 ert

on N0 és la mida per t = 0. Prenem com a unitat de temps l’any i el temps t = 0 que
sigui l’any 2000. Per tant, el nombre d’usuaris per t = 10 serà

N(10) = (22.5× 106) exp(0.1024× 10) ≈ 62.6× 106.

Exemple 4: La llei de Moore és l’observació que el nombre de transistors en un circuit
integrat (un «xip») creix exponencialment amb el temps. Aquest nombre valia 2300
l’any 1970 i 10 milions després de 25 anys. Calculeu la taxa de creixement.

Com que ens diuen que el creixement és exponencial, vindrà donat per l’equació

N(t) = N0 ert .

Prenem l’any com a unitat de temps i prenem t = 0 a l’any 1970. Tenim N0 = 2300 i
N(25) = 107. Hem de resoldre aquesta equació

107 = 2300 exp(25r).

Prenem logaritmes i arribem a

r =
1

25
log

107

2300
≈ 0.335

i la taxa de creixement és del 33.5% anual. Si ara calculem el temps necessari per
que el nombre de transistors es multipliqui per dos, veurem que són aproximadament 2
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anys. Això ens duu a l’enunciat habitual de la llei de Moore: el nombre de transistors
en un xip es duplica cada dos anys.

Exemple 5: Imaginem un actiu financer de 103 euros en un mercat continu que puja al
3% anual. Quant de temps trigarà a duplicar el seu valor?

Es tracta, doncs, d’un exemple anterior, però suposant que en lloc de capitalització
mensual la capitalització és contínua, cada instant de temps. Això vol dir que creixerà
exponencialment segons la llei

N(t) = N0 ert .

Prenem l’any com a unitat de temps, amb la qual cosa r = 0.03. Caldrà resoldre
aquesta equació:

2× 103 = 103 exp(0.03t).

Prenent logaritmes, la solució és

t =
log(2)

0.03
≈ 23 anys.

Veiem, doncs, que en aquest exemple, hi ha poca diferència entre una capitalització
mensual i una capitalització contínua.

10.4 Més sobre la taxa de creixement

Hem definit la taxa de creixement com el quocient N ′/N i hem après a distingir entre

• Créixer al r% anual i

• créixer un r% en un any.

Fem un càlcul per veure quina és exactament la discrepància entre aquests dos
conceptes.

En un creixement continu al r% anual, tindrem creixement exponencial donat per la
fórmula

N(t) = N0 ert

i, després d’una unitat de temps, haurem passat de N0 a N(1) = N0 er . Quin percentatge
de creixement hi ha hagut? El calculem amb aquesta fórmula:

creixement relatiu en una unitat de temps =
N(1)− N0

N0
= er − 1.

Si ara recordem un límit que havíem calculat en un capítol anterior, sabrem que, si r
és petit,

er − 1 ≈ r

i els dos valors són propers un de l’altre.
Tenim

• La taxa de creixement r tal com l’hem definida al capítol anterior. Si hi ha perill
de confusió, en podríem dir la taxa de creixement instantània.
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• La taxa de creixement per unitat de temps R .

Hem vist que, si r és petit, r ≈ R i també hem vist que la relació exacta entre r i R
ve donada per les equacions

R = er − 1, r = log(1 + R).

La fórmula del creixement exponencial es pot escriure en funció de r o en funció de
R :

N(t) = N0 ert = N0 (1 + R)t .

Hem de tenir present que, molt sovint, els dos conceptes es confonen. Per exemple,
si llegim als diaris que el PIB de la Xina va créixer, durant molts anys, el 9.5% anual,
hem de pensar que aquest valor és r o és R? La resposta és que, la majoria de vegades,
és R .

Tornem ara a resoldre l’exemple 1 de l’apartat anterior:

Exemple 3, segona interpretació: Entre els anys 2000 i 2008, el nombre d’usuaris
d’Internet a la Xina va créixer de manera constant un 10.24% cada any. Si l’any 2000
hi havia 22.5 milions d’usuaris, feu una estimació del nombre d’usuaris després de deu
anys.

Ara entenem que aquest 10.24% és el valor de R . Podem resoldre l’exercici de dues
maneres:

1. Calculem r = log(1 + R) = log(1.1024) i apliquem

N(10) = (22.5× 106) exp(10 log(1.1024)) = 22.5× 106 × 1.102410.

2. Raonem que si cada any creix un 10.24%, cada any el nombre d’usuaris es mul-
tiplica per 1.1024. Per tant, en 10 anys tindrem

N(10) = 22.5× 106 × 1.102410.

Els dos mètodes ens condueixen al mateix resultat 59.6× 106 que és una mica diferent
del que havíem obtingut quan interpretàvem que 10.24% era el valor de r .

Per evitar aquestes confusions, en aquest curs adoptarem un punt de vista més
matemàtic i quan ens referim a la taxa de creixement sempre voldrà dir el paràmetre
r , a menys que especifiquem clarament que estem parlant de R . Però hem de ser
conscients de que, a la pràctica, s’utilitza més R .



11. El model logístic

Al capítol anterior hem estudiat a fons el creixement exponencial N(t) = N0 ert . Aquest
model s’adapta força bé a certs fenòmens com, per exemple, el creixement inicial d’una
colònia d’una espècie invasiva, o l’extensió inicial d’una epidèmia, en un espai de temps
limitat, però no pot ser un bon model a llarg termini. L’explicació és que, si r > 0, sabem
que

lim
t→∞

N0 ert =∞

i, per tant, aquest creixement exponencial no és sostenible en el temps, en cap cas.
Per tant, si volem models que s’adaptin millor al comportament efectiu del crei-

xement dels éssers vius o les poblacions (per exemple), hem de modificar el model
exponencial i hem de passar a altres models més complicats que tinguin en compte
que, com que mai no disposarem de recursos il.limitats, la taxa de creixement no es
pot mantenir constant a llarg termini —perquè ja sabem que una taxa constant implica
que el el creixement és exponencial.

11.1 Del model exponencial al model logístic

El model logístic és un model molt important, que estudiarem en diversos capítols
d’aquest curs. Una manera d’introduir-lo és com una modificació del model exponencial
tal que la taxa de creixement no és constant, sinó que va disminuint linealment a mida
que augmenta la mida de la població.

Sigui N(t) la funció que denoti la mida d’una població al llarg del temps t . La taxa
de creixement és

r =
N ′(t)

N(t)
.

Ja sabem que si r és constant, tenim creixement exponencial. Suposem ara que r no és
constant sinó que, a mida que la població N és més gran, els recursos per capita són
més escassos o hi ha altres factors que fan que r vagi disminuint fins un punt en que
r = 0. Quan arribem en aquest punt direm que la població ja ha exhaurit la capacitat
del medi.

Concretem més. Sigui r0 la taxa de creixement quan N = 0. Suposem que r = 0
quan N = K (direm que K és la «capacitat del medi»), i suposem que el pas de r0 a r
és lineal, és a dir, segueix una línia recta.

Si calculem l’equació d’aquesta línia recta r = r(N), obtenim

r = r0

(
1− N

K

)
.
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Anomenarem creixement logístic aquell en el qual la taxa de creixement ve donada
per aquesta expressió anterior. És a dir,

N ′(t)

N(t)
= r

(
1− N(t)

K

)
.

(Aquí hem canviat la notació i en lloc de r0 hem escrit r .) És clar que aquesta equació
també es pot escriure així:

N ′ = rN

(
1− N

K

)
.

És a dir, en el creixement logístic

1. la velocitat de creixement és proporcional a la mida de la població (com passa
en el creixement exponencial)

2. i la velocitat de creixement també és proporcional a la diferència entre 1 i el
quocient N/K .

Compareu aquesta equació amb l’equació corresponent del creixement exponencial:

N ′ = rN.

Al creixement logístic hi apareixen dos paràmetres: r i K . El seu significat és
aquest:

• r és la taxa de creixement quan la població és molt petita. Representa la taxa de
creixement quan els recursos limitats del medi encara no afecten el creixement de
la població i, per tant, la població creix de manera aproximadament exponencial.

• K representa la capacitat màxima del medi. A mida que la mida de la població es
va acostant al valor K , la taxa de creixement va disminuint, de manera que si la
població arribés a K , la taxa de creixement seria zero i la població es mantindria
constant.
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Igual que passava amb el model exponencial, el model logístic també té una versió
discreta que és aquesta

N(t + 1) = (1 + R)N(t)

(
1− N(t)

K

)
.

Per estudiar matemàticament l’equació logística és convenient fer un canvi de variable
x = N/K . Aleshores, l’equació anterior agafa l’aspecte més senzill

xt+1 = rxt(1− xt).

Això ens permet fer simulacions del comportament de la població x cada unitat de
temps, a partir d’un valor inicial x0 i d’una elecció del paràmetre r .1

11.2 Comportament qualitatiu del model logístic

Vam definir el creixement exponencial per l’equació N ′ = rN i vam veure que aquest
creixement venia donat per una funció senzilla com és N = N0 ert . Ara hem definit el
creixement logístic per una equació una mica més complicada N ′ = rN(1−N/K ) i ens
agradaria també poder disposar d’una funció N = N(t). En aquest moment, encara no
tenim prou eines per resoldre aquest problema. Ho farem més endavant en el curs,
però podem avançar la solució, ni que sigui d’una manera qualitativa.

Aquesta descripció qualitativa està continguda en aquest dibuix:

1Aquestes simulacions són extraordinàriament interessants perquè ens permeten observar el que es
coneix com a comportament caòtic del creixement logístic. Consulteu l’entrada Logistic map a Wikipedia.
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L’eix horitzontal és el temps, l’eix vertical és N , la mida de la població. Cada
corba representa l’evolució de la mida de la població a partir d’un valor inicial N(0).
Observem:

• Si N(0) < K , la població creix amb el temps. Si N(0) > K , la població decreix
amb el temps. Si N(0) = K , la població és constant.

• En qualsevol cas, a llarg termini la població tendeix al valor K :

lim
t→∞

N(t) = K .

• Si N(0) és petit respecte de K , la població comença amb creixement exponencial
(aproximadament), passa per un punt d’inflexió i s’acosta asimptòticament a K .

• Si N(0) és gran respecte de K , la població decreix exponencialment (aproxima-
dament) i s’acosta asimptòticament a K .

11.3 Altres models de creixement

Parlem ara, sense aprofundir en el seu estudi, d’altres models de creixement importants.

• El model de von Bertalanffy. Karl Ludwig von Bertalanffy (1901–1972) va ser un
biòleg austríac que va proposar (1938) un model senzill per al creixement de la
mida d’un organisme. Aquest model s’aplica, entre altres coses, a la mida dels
peixos.2 Si L(t) és la longitud d’un peix en el temps t , el model afirma que la
velocitat de creixement de L és proporcional a la diferència L∞− L on L∞ > 0 és
una constant:

L′ = k(L∞ − L).

Si fem el canvi de variable S = L∞ − L, aquesta fórmula es converteix en S ′ =
−kS que és la mateixa del creixement exponencial. Per tant, el model de von
Bertalanffy és una petita variació del model exponencial. La fórmula per a L és

L = L∞ − (L∞ − L0) exp(−kt)

on observem que

– L0 és la mida en el temps t = 0.
– L∞ és la mida quan t →∞.
– la funció L(t) és creixent i s’acosta asimptòticament a L∞.

Des d’un punt de vista matemàtic, aquest model és exactament el mateix que el
de la Llei de refredament de Newton que afirma que la velocitat amb què es

2Vegeu l’article Age and Growth of the Bull Shark, Carcharhinus leucas, from Southern Gulf of Mexico,
J. Nortw. Atl. Fish. Sci., Vol. 35, 367–374. També, Introduction to Tropical Fish Stock Assessment, FAO
Fisheries Technical Paper 306/1, apartat 3.1.
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refreda (o s’escalfa) un cos és proporcional a la diferència entre la temperatura
ambient i la temperatura del cos:

T ′ = k(Tamb − T ),

que ens dóna que la temperatura del cos ve donada per una funció exponencial

T (t) = Tamb + (Tamb − T0) exp(−kt).

• El model de Beverton-Holt. És un model discret donat per aquesta fórmula que
ens dóna la població en el temps t + 1 a partir de la població en el temps t:

N(t + 1) =
RN(t)

1 + HN(t)
.

Aquest model va ser introduït per Beverton i Holt el 1957 en un estudi sobre la
dinàmica de les piscifactories. Depèn de dues constants: R mesura la capacitat
reproductiva i H té a veure amb la capacitat del medi. Aquesta equació té la
mateixa solució que l’equació logística i, per tant, el comportament és el mateix.
Hi ha una generalització d’aquest model que s’anomena model de Hassell:

N(t + 1) =
RN(t)

(1 + HN(t))c
.

Evidentment, aquest model es redueix al model de Beverton-Holt quan c = 1.

• El model de Ricker. Aquest model va ser introduït per Bill Ricker (que es con-
sidera el fundador de la ciència de la piscicultura) el 1954, també en relació al
creixement d’una colònia de peixos. Es tracta d’un model discret

N(t + 1) = N(t) exp

(
R

(
1− N(t)

K

))
on, igual que abans, R té a veure amb la capacitat de reproducció i K amb la
capacitat del medi.
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Exemple. El model de Ricker s’ha utilitzat per estudiar les successives gene-
racions de salmó (Oncorhynchus nerka) als rius del nord del Pacífic.3 Com que
el salmó fa la posta als 4 anys, podem prendre un model de Ricker discret amb
períodes de 4 anys. Imaginem que en un d’aquests estudis tenim observacions
que ens donen (en milions d’individus, t = 0 l’any 1908, interval de temps igual
a 4 anys)

N(0) = 0.325, N(1) = 0.431, N(2) = 0.529.

Calculeu els successius valors de N(t) usant el model de Ricker.
Hem de resoldre aquest sistema de dues equacions amb dues incògnites:{

0.431 = 0.325 exp
(
R
(
1− 0.325

K

))
0.529 = 0.431 exp

(
R
(
1− 0.431

K

))
La solució és

R ≈ 0.52, K ≈ 0.71.

Ara podem calcular la població teòrica en els períodes de 4 anys successius:

N(3) = 0.604, N(4) = 0.653, N(5) = 0.681, N(6) = 0.695, N(7) = 0.703, . . .

11.4 Fem-ho amb sage

Un dels exercicis d’aquesta primera part demana iterar la funció logística discreta amb
una població inicial N0 = 0.2 fixada i diversos valors del paràmetre r . No és gens difícil
programar aquest exercici amb sage.
sage: N0=0.2
sage: Next(r,x)=r*x*(1-x)
sage: def Logi(r):

3Vegeu el llibre Quantitative Fisheries Stock Assessment, Hilborn-Walters 1992.
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....: L=[N0]

....: for i in [0..300]:

....: L.append(Next(r,L[i]))

....: return sum([point([i,L[i]]) for i in [0..300]])
sage: Logi(0.3)
sage: Logi(1.6)
sage: Logi(2.8)
sage: Logi(3.4)
sage: Logi(3.45)
sage: Logi(3.6)

Expliquem una mica aquest exemple. Comencem definint la població inicial N0 =
0.2. A la segona línia del programa definim una funció que, a partir del valor de r i del
valor de x , calcula el valor de x després d’una unitat de temps. En el model logístic,
això és

rx(1− x).

A continuació, definim una funció Logi(r) que, a partir del valor de r , dibuixa

N0, N1, N2, . . . ,N300.

Finalment, fem els dibuixos per als valors de

r = 0.3, 1.6, 2.8, 3.4, 3.45, 3.6.

Expliquem una mica com definim la funció Logi(r). Comencem amb una llista
de nombres L que, d’entrada, té un únic nombre que és N0. aleshores, anem afegint
(append) valors a aquesta llista de manera que cada valor s’obté a partir de l’anterior
per la funció logística discreta

Nt+1 = rNt(1− Nt).

Cal recordar que a sage el primer terme d’una llista L és sempre el terme L[0]. Quan
acabem, tenim una llista amb 302 valors consecutius de la logística discreta. La darrera
instrucció de la funció Logi(r) dibuixa tots els punts (i ,Ni ) per a i = 0, . . . , 300.



Exercicis

A. Exercicis teòrics

I.A.1. Expresseu en forma d’una sola potència:

(a) 53 · 5−5 · 52

54 · 5−2
, (b) (3/2)6 · (4/5)6, (c)

[
(3/4)5 · (7/3)5

]−5
, (d) (23)4 · (36)2

(62)3
.

I.A.2. Resoleu les equacions següents:

(a) 3

x2 − 1
+

5x

x + 1
=

2x

x − 1
, (b) (x + 5)2

(2x − 3)2
= 1, (c) x −

√
25− x2 = 1

(d) (x − 1)(x − 2) = 3

1 +
x − 2

1− x − 3

x

 .

I.A.3. Sigui
N

1− N
K

= k ert

on K , k i r són constants. Expresseu N com a funció de t .

I.A.4. Trobeu nombres a i b tals que tinguem una igualtat de funcions

3x − 1

x2 − 3x + 2
=

a

x − 1
+

b

x − 2
.

I.A.5. Resoleu les equacions exponencials següents:

(a) 31−x2
=

1

27
, (b) 9x − 3x = 3(1 + 3x−1), (c) 72x+3 − 8 · 7x+1 + 1 = 0.

I.A.6. Resoleu les equacions logarítmiques següents:

(a) 2 log10 x − log10 (x − 16) = 2, (b) (x2 − x − 3) log10 4 = 3 log10
1
4 ,

(c) (2 + x) log10 2
2−x + log10 1250 = 4, (d) log2 x2 − log2(x − 3

4) = 2.

I.A.7. Resoleu aquest sistema de dues equacions amb dues incògnites:{
0.431 = 0.325 exp

(
R
(
1− 0.325

K

))
0.529 = 0.431 exp

(
R
(
1− 0.431

K

))
65
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I.A.8. Verifiqueu la igualtat de funcions

1 + cos x

sin x
+

sin x

1 + cos x
=

2

sin x
.

I.A.9. Calculeu

(a) sin(arctan x) en termes de x ,
(b) tan(arccos x) en termes de x .

I.A.10. Resoleu les inequacions següents:

(a) x + 1 < 2x − 7, (b) − x + 1 ≤ −4, (c) (3y + 1)(y − 2) > 1,

(d) x + 2

3x − 7
< 0, (e) s + π

s
< 1, (f ) x3 − x ≥ 0.

I.A.11. Resoleu les inequacions següents en les que intervé el valor absolut:

(a) |x − 2| ≤ 3, (b) 5 ≤ |x | ≤ 6, (c)
∣∣1− |x |∣∣ < 3, (d) |x + 1| ≤ |x |.

I.A.12. Escriviu l’equació cartesiana de la recta

(a) que passa pels punts (3,−1) i (−2, 1);
(b) de pendent −3/5 i que passa per (1,−2);
(c) paral.lela a la recta 3y + 2x + 1 = 0 que passa per (1,−3);
(d) perpendicular a la recta 3y + 2x + 1 = 0 que passa per (−1, 2);

I.A.13. Escriviu l’equació de la circumferència que té el centre a (−1, 4) i té radi 3. Trobeu
el centre i el radi de la circumferència d’equació (x − 2)2 + y2 = 16. Trobeu el
centre i el radi de la circumferència d’equació x2 + y2 − 4x + 2y = 11.

I.A.14. Escriviu les equacions de les paràboles d’eix vertical tals que

(a) passa pels punts (1, 1), (−1, 2) i (0, 0);
(b) talla l’eix d’ordenades al punt 4 i l’eix d’abscisses als punts 1 i 2.

I.A.15. Determineu el domini de definició d’aquestes funcions:

(a) f (x) =
x +
√

x

x4 + x2 − 6
, (b) f (x) = log(tan(x)),

(c) f (x) = log(x2 + 3x + 2), (d) f (x) = (log(x2 − 1))3.22.

I.A.16. (a) Expresseu 73x n
√
5 com una exponencial de base e .

(b) Expresseu e0.4537t com una exponencial de base 10.
(c) Expresseu log10(0.9768t) com un logaritme neperià.
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(d) Expresseu log2(74.5x) com un logaritme en base 10.

I.A.17. Trobeu una funció de Monod N = N(x) tal que N(1.5) = 1350 i N(3.2) = 2100.

I.A.18. Trobeu una funció de Monod N = N(x) tal que N(1.5) = 1300 i que el seu valor
estable sigui N∞ = 12000.

I.A.19. Trobeu una funció potencial M = M(P) tal que M(2.2) = 7.1 i M(3.1) = 5.4.

I.A.20. Trobeu una funció exponencial P = P(u) tal que P(−3.5) = 22 i P(2.4) = 4560.

I.A.21. Trobeu una funció sinusoïdal T = T (t) on t és el temps en dies, tal que T
tingui periodicitat anual, el valor màxim tingui lloc el 12 de març i valgui 2420, i
l’amplitud sigui 174.

I.A.22. Dibuixeu les gràfiques de les funcions següents: f (x) = |(x − 2)(x + 3)| i g(x) =
|x − 3|+ |x + 2|.

I.A.23. Calculeu aquests límits:

(a) lim
x→0+

1 + log x

2 + x
, (b) lim

x→∞

sin x

x2
, (c) lim

x→∞
log

x2 + 1

x2

(d) lim
x→1+

log(x − 1)

log x
, (e) lim

x→1+

√
x − 1 exp(−x), (f ) lim

x→π
2
+
tan x

(g) lim
x→∞

3 e−x

1 + e−x
, (h) lim

x→0
12 exp

(
− 5

x2

)
, (i) lim

x→∞

(
x + 2

x

)x

.

I.A.24. Utilitzeu el mètode de subdivisió en un full de càlcul i trobeu amb 6 decimals la
solució de l’equació

x + log(x) = 0.

B. Exercicis d’aplicació

I.B.1. Calculeu l’índex de Shannon de biodiversitat en el cas que hi hagi 10 espècies i
que totes siguin igualment abundants.

I.B.2. Calculeu la distància evolutiva entre dues seqüències d’ADN de 300 nucleòtids
amb origen comú que es diferencien en 39 nucleòtids, usant el model de Jukes-
Cantor.

I.B.3. La probabilitat que un individu visqui més de t unitats de temps s’acostuma a
modelar amb la distribució de Weibull4 (1951):

S(t) = exp
(
− (λt)β

)
.

Per a una població de Drosophila melanogaster, els paràmetres d’aquesta dis-
tribució (temps en dies) valen λ = 0.019, β = 3.41. Calculeu la mediana de
la vida dels individus d’aquesta població, és a dir, l’edat superada pel 50% dels
individus.

4Aquesta distribució s’utilitza en diversos àmbits. Per exemple, en meteorologia s’utilitza en la distri-
bució de la velocitat del vent o dels màxims de pluja.
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I.B.4. A l’estiu, el servei meteorològic informa de la temperatura de xafogor, que té en
compte la temperatura i la humitat. Una manera de calcular aquesta temperatura
és amb l’índex humidex:

H = T + 3.4 exp

(
19.83− 5418

R

)
− 5.5.

T és la temperatura en Celsius i R és l’índex de rosada (una mesura de la humitat
de l’aire) en Kelvin. Si la temperatura és de 35 graus i l’índex humidex val 42
graus, quin és l’índex de rosada?

I.B.5. Si la temperatura és de −12 graus i la temperatura de sensació W és de −21
graus, quina és la velocitat del vent? Utilitzeu la fórmula del wind chill de la
pàgina 16.

I.B.6. Quan s’estudia la biodiversitat en un grup d’illes, s’observa que el nombre d’espè-
cies d’un cert tipus en una illa creix en funció de la mida de l’illa. Si es dibuixa en
escala logarítmica la gràfica del nombre d’espècies S en funció de la superfície A,
s’obté aproximadament una recta de pendent 0.23. Si en una illa de 8 km2 s’han
comptabilitzat 20 espècies, determineu el nombre d’espècies esperat en una illa
de 35 km2.

I.B.7. La llei de Hack és una relació empírica de tipus potencial entre la longitud d’un
riu i la superfície de la seva conca. En concret, aquesta llei afirma que la longitud
és proporcional a la potència 0.57 de l’àrea de la conca. La Noguera Pallaresa
té una longitud de 154 km i la seva conca té una superfície de 2820 km2. El
Cardener té una longitud de 106 km. Apliqueu la llei de Hack per estimar l’àrea
de la conca del Cardener (que, en realitat, és de 1415 km2).

I.B.8. S’ha trobat una relació al.lomètrica entre la massa del cor i la massa corporal
en un grup important d’espècies d’aus, de manera que si dibuixem en escala
logarítmica la gràfica de la massa del cor (en grams) com a funció de la massa
corporal (en kg), obtenim aproximadament una recta. S’ha vist que si una espècie
A té una massa corporal 10 vegades superior a la d’una altra espècie B , la massa
del cor de l’espècie A és 8 vegades més gran que la massa del cor de l’espècie
B . Quin és el pendent de la recta que hem obtingut?

I.B.9. El temps de desenvolupament dels ous del zooplàncton Daphnia longispina de-
pèn de la temperatura: tres dies a 20 graus i 20 dies a 5 graus. S’han pres
diverses mostres i s’ha representat en una escala logarítmica el temps de desen-
volupament dels ous (en dies) en funció de la temperatura, i les observacions es
disposen aproximadament sobre una recta. Escriviu una funció que relacioni el
temps de desenvolupament dels ous t i la temperatura T per aquesta espècie.

I.B.10. En una mostra de 60 espècies d’arbre s’ha trobat una relació entre la densitat
de la fusta i la seva resistència. S’ha observat que la densitat és proporcional a
la potència 0.82 de la resistència. Quin augment de la densitat correspon a un
augment del 10% en la resistència?

I.B.11. A l’article Allometric scaling of plant life history (Proc. Nat. Acad. Sci. USA 2007)
es troba una relació al.lomètrica entre la vida mitjana d’una espècie vegetal i la
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seva massa. Si dibuixem en escala logarítmica la gràfica de la vida mitjana (en
dies) com a funció de la massa (en grams), obtenim aproximadament una recta
de pendent 0.21. Si una espècie A té una massa 10 vegades superior a la d’una
altra espècie B , quina relació podem esperar entre la vida mitjana de l’espècie
A i la vida mitjana de l’espècie B?

I.B.12. Suposem que una determinada població segueix una llei de creixement com
aquesta:

N(t) =
500t

3 + t
.

Determineu la mida límit de la població. Feu el mateix per a una població que
segueix un creixement segons la llei

M(t) =
100

1 + 9 exp(−t)
.

I.B.13. Determineu la mida límit d’una població que segueix una llei de creixement do-
nada per una funció de Holling de tipus III. Feu el mateix per a una funció de
Holling de tipus IV.

I.B.14. S’ha trobat una relació empírica entre l’edat t d’uns determinats arbres i la seva
alçada h, donada per la funció h(t) = 132 exp(−20/t) (en unes certes unitats).
Determineu l’alçada límit d’aquests arbres.

I.B.15. Hall (Ecology Vol. 45, No. 1 (Jan., 1964), pp. 94–112) va estudiar el creixement de
la població de les espècies de zooplàncton Daphnia galeata mendota a Base Line
Lake, Michigan. A finals de la primavera, es produïa un creixement exponencial
en el qual la població passava de 200 a 4000 (individus per 100 litres d’aigua)
en 40 dies. Determineu la població 10 dies després del valor 200.

I.B.16. Es disposa de 70 anys de dades sobre la població al Canadà d’una certa espècie
de cigonya migratòria (Grus americana) i s’ha vist que en aquest temps hi ha
hagut un creixement exponencial amb una taxa de creixement del 4.5% anual.
Si la població el 1950 era de 40 individus, quina és la població després de 60
anys?

I.B.17. En els darrers 100 anys, la producció mundial de coure ha crescut exponenci-
alment. Si la producció el 1940 era de 2 (milions de tones per any) i el 1990
era de 10, feu una estimació de la producció l’any 2020 (si segueix la mateixa
tendència).

I.B.18. S’ha estudiat força la descomposició de la fusta dels arbres morts als boscos
tropicals i s’han trobat relacions de tipus exponencial entre el temps que ha
passat des de la mort de l’arbre i la proporció de fusta que encara queda. En
una determinada espècie, s’ha vist que la massa de fusta es redueix a la meitat
en 7.3 anys. Si partim d’una tona de fusta, quanta fusta hi haurà després de 25
anys?

I.B.19. El pH d’una dissolució és una mesura de la concentració del catió H3O+, expres-
sada en escala logarítmica, de manera que, per exemple, en una dissolució amb
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pH = 6, aquesta concentració és 10 vegades més gran que en una dissolució amb
pH = 7. Quina relació hi ha entre la concentració de H3O+ a un suc de llimona
de pH = 2.3 i la d’un vinagre amb pH = 3?

I.B.20. A l’escala cromàtica moderna, si la freqüència del Fa és de 349.228 Hz, calculeu
les freqüències del Mi i del Sol. (Recordeu que en aquesta escala, una octava es
divideix en 12 parts iguals anomenades semitons. Aleshores, el Mi és un semitò
més greu que el Fa i el Fa és dos semitons més greu que el Sol.)

I.B.21. Una fórmula simplificada que s’utilitza per calcular la velocitat del vent v a una
alçada z a partir de la velocitat vr a una alçada de referència zr és aquesta:

v

vr
=

(
z

zr

)0.143

.

Fem observacions en una zona de terreny on hi ha d’anar un parc eòlic i mesurem
el vent a 10 metres d’alçada. Per quin factor haurem de multiplicar aquests valors
per tenir la velocitat del vent a l’alçada de les turbines dels generadors, que és
de 50 metres?

I.B.22. La lluminositat d’un objectiu fotogràfic es mesura pel seu «nombre f » que es
defineix com el quocient de la distància focal i el diàmetre màxim del diafragma.
Un punt de lluminositat (en anglès: un «stop») és el canvi de nombre f que
multiplica per 2 la quantitat de llum que entra per l’objectiu. Si tenim un objectiu
amb f = 2, quin és el nombre f dels objectius que tenen 1, 2, 3 punts menys
de lluminositat? Quants punts de diferència hi ha entre un objectiu f = 3.3 i un
objectiu f = 6.1?

I.B.23. Tenim dues poblacions A i B que comencen tenint la mateixa mida. A creix
contínuament amb una taxa del 12% anual i B creix contínuament un 12% cada
any. Quant de temps ha de passar fins que la població de A sigui el doble que
la població de B?

I.B.24. En determinats productes, hi pot haver una discrepància important entre el preu
de mercat P i el valor V del producte en funció de la seva qualitat. En aquests
casos, si som capaços de mesurar V , podem prendre el quocient V /P com una
mesura de la relació qualitat-preu. Observem que el quocient V /P varia entre 0
i ∞. Un valor aprop de zero indica un producte amb mala relació qualitat/preu i
un valor molt gran indica un producte amb molt bona relació qualitat/preu. Ens
agradaria, però, mesurar aquest concepte amb un índex I que variés entre 0 i 10,
de manera que el valor I = 5 correspongués al cas V = P . Com ho podem fer?

I.B.25. En un examen de llarga durada es demana que els participants resolguin suc-
cessivament una sèrie il.limitada d’exercicis. Com ho faríeu per avaluar aquest
examen?

I.B.26. Volem aproximar la temperatura T de la superfície de l’aigua del llac de Banyoles
al llarg de l’any mitjançant una funció sinusoïdal. Prenem com a unitat de temps
t la setmana. A partir de les dades publicades per les estacions meteorològiques
de l’Estartit i de Torroella de Montgrí, observem que la temperatura mitjana l’any
2016 va ser de 17.9◦ C i que la temperatura màxima aquell mateix any va ser de
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27.2◦ C i es va produir a la darrera setmana de juliol. Doneu una fórmula per a
la funció T = T (t).

I.B.27. Utilitzeu un full de càlcul per fer 150 iteracions d’aquests models discrets i
representeu-les gràficament:

(a) Model logístic

Nt+1 = rNt(1− Nt). N0 = 0.2; r = 0.3, 1.6, 2.8, 3.4, 3.45, 3.6.

(b) Model de Beverton-Holt

Nt+1 =
1.05Nt

1 + 0.0025Nt/20
. N0 = 5.

(c) Model de Ricker

Nt+1 = Nt exp(0.05(1− Nt/20)). N0 = 5.
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12. La derivada: què és i com es pot
calcular

El concepte de derivada d’una funció ja el vam introduir en el capítol 9. Recordem-ho.
Si y = f (x) és una funció i x0 és un valor concret de la variable independent x , la
derivada de la funció a x0 és la velocitat amb que creix y quan x = x0. Aquest valor
l’expressàvem amb les notacions

y ′(x0) = f ′(x0) =
dy

dx

∣∣∣
x0
.

Evidentment, aquesta derivada és un nombre, però si fem variar x0, obtenim una nova
funció, la funció derivada.

No cal dir que aquest concepte és importantíssim i, per tant, ens interessa molt

• donar una definició matemàtica precisa d’aquest concepte i

• trobar maneres de calcular les derivades de les funcions elementals.

Això és el que farem en aquest capítol.

12.1 La derivada com a límit

La idea és molt simple: suposem que x = x0. La funció pren el valor f (x0). Si ara
canviem el valor de x i passem a x0 + h, la funció canviarà el seu valor fins a f (x0 + h).
És a dir, un canvi de valor h a la variable x ha donat un canvi de valor f (x0+h)− f (x0)
a la variable dependent y . Si ara volem calcular la velocitat de canvi hem de prendre
el quocient

f (x0 + h)− f (x0)

h
.

És clar que aquest quocient ens dóna la velocitat de canvi quan passem de x0 a x0+h.
Però aquesta és una velocitat mitjana perquè, entre x0 i x0 + h la funció pot créixer a
velocitats variables. Si volem la velocitat instantània en el valor x = x0 hem de prendre
h molt petit o, dit més ben dit, hem de prendre el límit quan h→ 0:

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

Exemple. A quina velocitat creix la funció y = x2 quan x = 1?
Segons el que acabem de dir,

y ′(1) = lim
h→0

(1 + h)2 − 1

h
= lim

h→0

1 + 2h + h2 − 1

h
= lim

h→0

(
2 +

1

h

)
= 2.
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És a dir, quan x = 1, la funció val 1 i està creixent a velocitat 2.

Exemple. Si un cos que està en repòs a una alçada z0 comença a caure per acció de
la gravetat, la seva alçada en cada instant serà una funció de t

z(t) = h0 −
g

2
t2.

A quina velocitat està caient?
És una petita generalització de l’exercici anterior:

z ′(t) = lim
h→0

h0 − (g/2)(t + h)2 − (h0 − (g/2)t2)

h
= −gt.

És a dir, a cada instant t , l’alçada del cos està disminuint a una velocitat igual a gt .

Exemple. Hem modelat el rendiment R d’un conreu en funció de la presència d’un cert
nutrient S al sòl, segons una funció de Monod

R =
µS

k + S
.

Determineu la velocitat de creixement de R en funció de S .
Hem de calcular un límit que no és difícil:

R ′ = lim
h→0

µ(S + h)

k + S + h
− µS

k + S
h

= lim
h→0

µhk

h(k + S + h)(k + S)
=

µk

(k + S)2
.

Interpretem aquest resultat. Suposem que R es mesura en tones per ha i S representa
la quantitat de nitrogen present al sòl, en kg/ha. Aleshores, R ′ s’expressaria en «tones
per ha per kg de nitrogen per ha».

Exemple. Si una quantitat creix exponencialment segons N = et , a quina velocitat
creix en cada moment?

Hem de calcular la derivada de la funció et :

d

dt
(et) = lim

h→0

et+h − et

h
= lim

h→0

et(eh − 1)

h
= et lim

h→0

eh − 1

h
= et .

Aquí hem aplicat un límit que havíem estudiat anteriorment i arribem a la conclusió
que, en el creixement exponencial, la velocitat també té creixement exponencial. Dit
en unes altres paraules, la derivada de la funció exponencial ex és ella mateixa.

Com que la derivada és un límit i sabem que una funció pot no tenir límit, deduïm
que hi pot haver funcions que no tinguin derivada en algun punt. Direm que no són
derivables. Per exemple:

• Si una funció té una discontinuïtat en un punt, és clar que en aquest punt no
podem parlar de velocitat de canvi de la funció. Per exemple, la funció part
entera bxc no es pot derivar en els punts enters, perquè la funció és discontínua
en aquests punts.
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• Si una funció fa un «angle» en un punt, també és clar que en aquest punt no
podrem parlar de derivada. Per exemple, la funció valor absolut |x | decreix a
velocitat 1 en els x < 0 i creix a velocitat 1 en els x > 0. Al punt x = 0 la funció
fa un angle i no hi pot haver derivada.

• Si la gràfica d’una funció és vertical en un punt, la velocitat de creixement en
aquest punt «seria infinita» i podríem dir que la derivada val ∞ o, millor, que en
aquest punt no hi ha derivada. Per exemple, la funció

√
x té aquesta propietat

quan x = 0.

Exemple. La funció f (x) = 3
√

x no té derivada a x = 0:

f ′(0) = lim
h→0

3
√

h − 0

h
= lim

h→0

1

h2/3
=∞.

12.2 Interpretació geomètrica

Si representem gràficament uns funció y = f (x) i representem gràficament el quocient
f (x0 + h)− f (x0)

h

es fa evident la següent propietat fonamental:

La derivada f ′(x0) és igual al pendent de la recta tangent a la gràfica de
la funció y = f (x) que passa pel punt de coordenades (x0, f (x0)).

Per tant, si coneixem la derivada d’una funció en un punt podem escriure immediatament
l’equació de la recta tangent a la gràfica en aquest punt.
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Exemple. Calculeu l’equació de la recta tangent a la paràbola y = x2 al punt x = 1.
Abans hem vist que la derivada val y ′ = 2. Per tant, només cal escriure l’equació

de la recta de pendent 2 que passa pel punt (1, 1). És aquesta: y = 2x − 1.

Exemple. Determineu l’equació de la recta tangent a la funció de Monod y = 3x/(2+x)
en el punt x = 2.

Segons hem vist abans, la derivada d’aquesta funció de Monod és y ′ = 6/(2+x)2 =
3/8. Aleshores, la recta tangent té pendent 3/8 i passa pel punt (2, 3/2). És la recta
3x − 8y + 6 = 0.

12.3 Algunes propietats elementals

• Funcions constants. Evidentment, la derivada d’una funció constant és zero.
Recíprocament, si la derivada d’una funció definida en un interval és zero, això
vol dir que la velocitat de creixement és zero i, per tant, la funció ha de ser
constant en aquest interval.

• Suma de funcions. És senzill adonar-se que

(f (x) + g(x))′ = f ′(x) + g ′(x)

és a dir, la derivada d’una suma de funcions és la suma de les seves derivades.
També, si multipliquem una funció per una constant k , la seva derivada queda
multiplicada per aquesta mateixa constant:

(kf (x))′ = kf ′(x).

• Funcions amb la mateixa derivada. Pot passar que dues funcions diferents tin-
guin la mateixa derivada? Certament que sí:

(f (x) + k)′ = f ′(x).

Si sumem una constant a una funció, la seva derivada no canvia. D’altra banda,
si dues funcions f (x) i g(x) (definides en un mateix interval) tenen la mateixa
derivada, aleshores

(f (x)− g(x))′ = f ′(x)− g ′(x) = 0

i deduïm que les dues funcions difereixen en una constant

f (x) = g(x) + k.

• Funcions lineals. És clar que, com que la gràfica d’una funció lineal coincideix
amb la seva recta tangent, la derivada d’una funció lineal y = mx + b és igual a
m. Utilitzant la definició de la derivada com a un límit arribaríem a la mateixa
conclusió.
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• Polinomis i funcions potencials. Pel mateix mètode que hem usat abans per
calcular la derivada de la funció x2 podem calcular la derivada de les funcions
xn per qualsevol n:

d

dx
xn = n xn−1.

Aquesta fórmula també és vàlida per a exponents negatius i, en general, per a
qualsevol exponent real. En particular,

d

dx

√
x =

d

dx
x1/2 =

1

2
x−1/2 =

1

2
√

x
.

• Derivades successives. La derivada d’una funció és una altra funció que també
pot ser que sigui derivable. Si derivem la derivada obtenim el que s’anomena
la segona derivada. Podem procedir successivament amb la derivada tercera,
quarta, etc. La notació que s’utilitza és aquesta:

f ′′(x) =
d2x

dx2
; f ′′′(x) =

d3x

dx3
; etc.

El significat de cadascuna d’aquestes derivades és clar: la derivada segona ens
indica la velocitat a que canvia la derivada primera. En diem l’acceleració de
la funció. La derivada tercera ens indica la velocitat a que canvia la derivada
segona, o l’acceleració de la derivada primera, etc.

12.4 Equacions diferencials

Una equació diferencial és una equació tal que

• La incògnita és una funció desconeguda f (x).

• A l’equació hi apareixen la variable x , la funció incògnita f (x) i les seves derivades.

Per exemple, y = y ′ és una equació diferencial i una solució d’aquesta equació és
una funció que coincideixi amb la seva derivada. Ja coneixem una funció que té aquesta
propietat: la funció exponencial y = ex . N’hi pot haver d’altres? Sí, per a qualsevol
constant k , la funció y = kex és una solució de l’equació diferencial anterior.

Recordem que havíem definit el creixement exponencial com aquell en què la taxa
de creixement és constant:

y ′

y
= r .

Això és una equació diferencial i vam veure que les solucions d’aquesta equació dife-
rencial són les funcions exponencials y = kerx .

El creixement logístic també el vam definir a partir d’una equació diferencial:

y ′

y
= r

(
1− y

K

)
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però aquí no vam ser capaços de trobar les solucions d’aquesta equació. Ho farem
més endavant. De moment, limitem-nos a donar la solució sense explicar com l’hem
trobada. La solució és l’anomenada corba logística, que té aquesta equació:

y(x) =
K

1 + k exp(−rx)
.

Aquí k és una constant arbitrària. Encara que no sapiguem com trobar aquesta solució,
el que sí que és senzill de fer és comprovar que aquesta funció és una solució.

Si dibuixem aquesta corba per K = 6, k = 3, r = 1, obtenim

Entre les propietats d’aquesta corba logística tenim

lim
x→∞

y = K ; lim
x→−∞

y = 0.

12.5 Fem-ho amb sage

sage pot calcular, sovint, les derivades de funcions definides simbòlicament. Si f (x) és
una funció que haguem definit, podem utilitzar la sintaxi diff(f(x),x) o bé la sintaxi
f.diff().
sage: f(x)=(arctan(x))^2+sqrt(x)
sage: f.diff()
x |–> 2*(1/(x^2 + 1))*arctan(x) + 1/2/sqrt(x)
sage: f.diff()(x)
2*(1/(x^2 + 1))*arctan(x) + 1/2/sqrt(x)
sage: f.diff()(6)
1/12*sqrt(6) + 2/37*arctan(6)
sage: g(x)=sqrt(e^x*log(1/x))
sage: view(diff(g(x),x))

ex log
(
1
x

)
− ex

x

2
√

ex log
(
1
x

)



13. Creixement del producte de dos factors

13.1 Derivada del producte de dues funcions

S’estima que l’any 2002, la petjada carbònica1 per capita de la Xina estava creixent
a un ritme de 0.25 tones per any2 i la població estava creixent a una taxa del 0.6%
anual. Ens preguntem quina era la taxa de creixement de la petjada carbònica global
de la Xina. Designem per C aquesta petjada carbònica, mesurada en tones de C O2

equivalent. Designem per P la població de la Xina i per Q la petjada per capita.
Evidentment, tenim

C = Q × P

i el problema consisteix en determinar la taxa de creixement o la velocitat de creixement
de C si sabem que Q creix a una velocitat de 0.25 tones per any2 i P creix al 0.6%
anual.

Ens adonem fàcilment que la resposta a aquest problema no la podem obtenir a
partir de cap combinació dels dos nombres 0.25 i 0.006. La millor manera d’enten-
dre aquest problema és representar-lo gràficament. Si representem la variable Q a
l’eix horitzontal i la variable P a l’eix vertical, aleshores C vindrà representat per la
superfície d’un rectangle.

Si Q0 i P0 són els valors de les variables en el temps de referència (any 2002 en
el nostre exemple), aleshores la superfície del rectangle gris representa el valor de C

1Consulteu carbonfootprintofnations.com.

80



13. Creixement del producte de dos factors 81

en el temps de referència. Si Q0 creix fins Q0 + ∆Q i P0 creix fins P0 + ∆P , aleshores
el rectangle gris que representa C0 creix perquè se li afegeix la regió blava. Aquesta
regió blava representa, doncs, l’increment de C , que podem anomenar ∆C . És evident
que aquesta regió blava està formada per tres rectangles i la seva superfície és

∆C = Q0∆P + P0∆Q + ∆P∆Q.

Si ara volem determinar la velocitat de creixement de QP hem de dividir pel temps
que ha transcorregut, diguem-n’hi ∆t

∆C

∆t
= Q0

∆P

∆t
+ P0

∆Q

∆t
+ ∆P

∆Q

∆t

i ara hem de prendre ∆t molt petit o, més exactament, hem de fer tendir ∆t → 0.
L’últim sumand tendeix a zero i apareixen les derivades:

dC

dt
= Q0

dP

dt
+ P0

dQ

dt
.

Aquesta fórmula ens diu, doncs, com hem de calcular la derivada d’un producte de
dues funcions. També la podem escriure així

(f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x).

13.2 Exemples

Exemple 1. Comencem amb un exemple elemental. Calculem la derivada de la funció

f (x) = x2 exp(x).

Sabem que la derivada de la funció x2 és la funció 2x i que la derivada de la funció ex

és ella mateixa. Per tant,

d

dx
(x2ex) = x2 d

dx
ex +

(
d

dx
x2

)
ex = x2ex + 2xex .

Exemple 2. Resolem ara el problema inicial sobre la petjada carbònica a la Xina. Ens
pregunten sobre el creixement de C , és a dir, sobre la derivada de la funció C respecte
del temps. Pel que acabem de dir:

d

dt
C =

d

dt
(QP) = Q0

dP

dt
+ P0

dQ

dt
.

Veiem que no podem calcular el que ens demanen si no ens donen informació comple-
mentària. Necessitem conèixer els valors de Q0 o P0. La població estimada l’any 2002
era de P0 = 1280 milions de persones. La petjada carbònica per capita estimada el
2002 era Q0 = 2.5 tones per habitant i per any. El creixement de Q de 0.25 tones per
any2 ens diu que Q ′ = 0.25 i un creixement de P del 0.6% anual equival a P ′ = 7.68.
Per tant,

C ′ = 2.5× 7.68 + 1280× 0.25 = 339.2.
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Si volem expressar això en tant per cent, hem de dividir per C0 = 2.5 × 1280 = 3200
milions de tones per any. El resultat final és que la petjada carbònica total de la Xina
creixia al 10.6% anual.

Exemple 3. L’absorció de C O2 als boscos del Brasil és molt important per a la clima-
tologia del nostre planeta. Es calcula que al Brasil hi ha uns 500 milions d’hectàrees
de boscos que absorbeixen unes 15.5 tones de C O2 per ha i any. Però la desforestació
fa que el Brasil perdi superfície forestal a un ritme de 1.6 milions d’ha per any. A més,
s’ha observat que la presència d’espècies invasores i l’escalfament global fan disminuir
la capacitat d’absorció de C O2 dels arbres a un ritme del 0.5% cada any. Globalment,
doncs, la quantitat de C O2 que és absorbida pels boscos del Brasil està disminuint. A
quin ritme?

Escrivim aquesta equació
A = S × E

on A és la capacitat d’absorció dels boscos del Brasil en tones per any; S és la superfície
de bosc en ha i E és l’eficiència del bosc, en tones per ha i per any. Totes aquestes
variables són funció del temps t . Si fixem t = 0 en el moment present, l’enunciat ens
diu que

S(0) = 500× 106 ha;
E (0) = 15.5 tones/ha×any;
S ′(0) = −1.6× 106 ha/any;
E ′(0) = −0.0775 tones/ha×any2.

Aleshores, aplicant la regla de la derivada d’un producte:

A′(0) = S(0)× E ′(0) + S ′(0)× E (0)

= 500× 106 × (−0.0775)− 1.6× 106 × 15.5

= −63.55× 106 tones/any2.

13.3 Derivada del quocient de dues funcions

Si derivem els dos costats d’aquesta identitat

f (x)

(
1

f (x)

)
= 1

obtenim una fórmula per a la derivada de la funció 1/f (x) (vàlida, evidentment, només
per als punts x tals que f (x) 6= 0):

d

dx

1

f (x)
= − f ′(x)

f (x)2
.

Ara ja és senzill obtenir una fórmula per a la derivada del quocient de dues funcions:(
f (x)

g(x)

)′
=

g(x)f ′(x)− f (x)g ′(x)

g(x)2
.
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Exemple 4. Als estudis sobre la pesca es consideren els conceptes de «estoc» S i
«reclutament» R . El primer indica la part de la població de peixos (d’una determinada
espècie) que són susceptibles de ser capturats i el segon indica la quantitat de peixos
que s’incorporen a l’estoc, sigui perquè atenyen la mida necessària, sigui perquè entren
a la zona de captures. El model més senzill que relaciona aquestes dues variables és
el de Beverton-Holt de 1957 que utilitza una funció de Monod

R =
αS

β + S
.

Calculeu a quina velocitat està creixent R quan S = β.
Ens estan preguntant la derivada R ′ per al valor S = β. Utilitzem la fórmula de la

derivada d’un quocient
R ′ =

αβ

(β + S)2
=

α

4β
.

Exemple 5. Imaginem que la corba de demanda per a un determinat producte s’apro-
xima a D = k/P . A quina velocitat baixa la demanda quan P = k/2?

Calculem la derivada
dD

dP
= − k

P2
= −4

k
.

Interpretem aquest resultat. Suposem que la demanda D s’expressa en milers d’unitats
per dia i que el preu P s’expressa en euros. Aleshores, dD/dP s’expressa en unitats
per dia per euro i ens indica com creix la demanda per cada euro d’augment en el
preu. Evidentment, la derivada és negativa perquè la demanda decreix quan augmenta
el preu.



14. Funcions de funcions de funcions de...

14.1 Quan una variable depèn d’una altra i aquesta depèn d’u-
na tercera

Sovint, una variable y és funció d’una altra variable y = y(x) i aquesta variable x
també és funció d’una tercera variable x = x(t). En aquests casos, ens pot interessar
conèixer el creixement de y en funció de t , és a dir, la derivada dy

dt
. Considerem aquests

exemples:

• La producció P d’un camp és funció de la quantitat de nitrogen al sòl P = P(N)
i la quantitat de nitrogen al sòl és funció de la quantitat d’adob que aportem al
camp N = N(P). Com creix P si fem créixer A?

• Una espècie invasora (o una malaltia) apareix en un punt d’una massa vegetal
i s’estén en totes direccions a una certa velocitat. A quina velocitat creix la
superfície afectada?

• L’aire es refreda quan s’expandeix. A quin ritme baixa la temperatura quan el
volum augmenta a una certa velocitat?

• Quina relació hi ha entre la velocitat amb què creix l’alçada d’un arbre i la
velocitat amb què creix el diàmetre del seu tronc?

• Si la derivada de la funció ex és ex i la derivada de la funció sin x és cos x , què
podem deduir sobre la derivada de la funció esin x?

Tots aquests problemes tenen en comú que volem calcular la derivada d’una funció
d’una variable, quan aquesta variable és també funció d’una segona variable. Per
exemple, en el cas de la producció d’un camp tenim P = P(N(A)) i volem calcular la
velocitat amb què varia P en funció de la variació de A:

P = P(N(A)),
dP

dA
=?

La resposta es troba en la que es coneix com la regla de la cadena:

Si y = y(x) i x = x(t), aleshores dy

dt
=

dy

dx
· dx

dt
.

El nom prové de que la fórmula es pot estendre il.limitadament al cas en que t = t(u),
u = u(z), etc.:

dy

dz
=

dy

dx
· dx

dt
· dt

du
· du

dz
.

84
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14.2 Composició de funcions i la regla de la cadena

Ja sabem que hi ha una operació fonamental que podem fer amb funcions que és la
composició de funcions. La regla de la cadena ens diu com podem calcular la derivada
de la composició de dues funcions f (g(x)):

(f (g(x))′ = f ′(g(x)) · g ′(x).

Si això ho escrivim en l’altra notació més clàssica, tenim

y = f (x), x = g(t);
dy

dt
=

dy

dx
· dx

dt

i escrit d’aquesta manera, la regla sembla plausible.
Exemples

• La derivada de log x és 1/x i la derivada de sin x és cos x . Per tant,

d

dx
log sin x =

1

sin x
· cos x

d

dx
sin log x = (cos log x) · 1

x

• La derivada de ex és ex i la derivada de sin x és cos x . Per tant,
d

dx
esin x = esin x cos x

d

dx
sin ex = (cos ex) ex

• Les «cadenes» poden ser tan llargues com calgui:

d

dx
sin3(2x4 − 3x + 1)−1/3 =

3 sin2(2x4 − 3x + 1)−1/3 cos(2x4 − 3x + 1)−1/3
(
−1

3

)
(2x4 − 3x + 1)−4/3(8x3 − 3).

14.3 Resolem els problemes del primer apartat

Apliquem ara la regla de la cadena als problemes que apareixen a l’inici de la lliçó.

• Com creix la producció d’un camp amb l’addició d’adob? P és la producció del
camp, N és la quantitat de nitrogen al sòl i A és la quantitat d’adob que aboquem
al camp. Podem escriure P = P(N(A)) i volem determinar com canvia P en funció
de A. La regla de la cadena ens diu que

dP

dA
=

dP

dN
· dN

dA
.

Per poder obtenir resultats concrets hem de fer hipòtesis sobre les funcions P(N)
i N(A).
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– Una hipòtesi molt natural és que el contingut en nitrogen al sòl sigui una
funció lineal de la quantitat d’adob que utilitzem:

N(A) = kA + r

on r és el nitrogen present al sòl sense addició d’adob i kA és la quan-
titat de nitrogen aportat per l’adob que, naturalment, serà una quantitat
proporcional a la quantitat d’adob.

– La producció P com a funció de la presència de nitrogen podria modelar-se
per una funció de Monod:

P =
aN

k + N

on a és el límit de P quan N tendeix a infinit.

Amb aquestes hipòtesis, tindríem
dP

dA
=

dP

dN
· dN

dA
=

ak

(k + N)2
.

• Com creix la superfície afectada? Si l’espècie invasora s’expandeix en totes
direccions a una velocitat v , la superfície afectada S serà aproximadament un
disc de radi r i aquest radi creixerà a velocitat v . Per tant

S = πr2, r ′ = v ; S ′ = 2πr r ′ = 2πr v .

Aquest problema també té una versió tridimensional. Imaginem, per exemple,
una substància contaminant que, a partir d’un punt a l’interior d’una massa d’ai-
gua s’expandeix uniformement en totes direccions a una velocitat v . Aplicant la
fórmula del volum de l’esfera, obtindríem que la velocitat amb què creix el volum
afectat seria:

V =
4

3
πr3, r ′ = v ; V ′ = 4πr2 r ′ = 4πr2 v .

• A quina velocitat es refreda l’aire? Per contestar aquesta pregunta hem de
conèixer una mica de física de l’aire. Si consultem els articles «Heat capacity
ratio» i «Adiabatic process» a Wikipedia, veurem que la fórmula que relaciona
la temperatura i el volum d’una massa de gas, en les circumstàncies que ens
interessen (és a dir, en circumstàncies «adiabàtiques», quan no hi ha transferència
de calor ni de massa), és

T V γ−1 = k

on k és constant i el paràmetre γ val, en el cas de l’aire sec, γ = 1.4. Per tant,
tenim

T = kV−0.4.

Volem determinar la velocitat de canvi de la temperatura quan el volum canvia
a una certa velocitat. Aplicant la regla de la cadena, si denotem per t el temps,
tenim:

dT

dt
= −0.4 kV−1.4

dV

dt
= −0.4 T

V

dV

dt
.

El signe negatiu ens indica que quan el volum augmenta, la temperatura dismi-
nueix (l’aire es refreda quan s’expandeix) i la fórmula ens dóna la relació exacta
entre les dues velocitats.
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• Quina relació hi ha entre els creixements en alçada i en diàmetre en un arbre?
Com que és un tema de gran importància a la ciència forestal, hi ha molts estudis
al.lomètrics sobre la relació entre alçada H i diàmetre D en els arbres. Aquestes
relacions s’utilitzen, per exemple, per estimar la massa d’un arbre a partir del
gruix del tronc a una determinada alçada del terra. Una d’aquestes relacions és

H = 3.24D0.613

que va ser obtinguda per Forstreuter el 1999 per al faig (Fagus Sylvatica).1 H
és l’alçada en metres i D és el diàmetre del tronc en cm, a 1.37 metres d’alçada
sobre el sòl.
Si ara ens preguntem com es relaciona el creixement de H amb el de D , tenim:

dH

dt
= 1.986D−0.387

dD

dt

i, si ens interessa la relació entre les taxes de creixement, tenim

1

H

dH

dt
= 0.613

1

D

dD

dt
.

14.4 Derivació implícita

Fins ara hem derivat funcions que estan expressades de forma «explícita» y = f (x).
Una de les aplicacions de la regla de la cadena és que ens permet calcular derivades
sense necessitat d’expressar la funció en forma explícita.

Per exemple, considerem x2+ y2 = 4 (que és una circumferència de radi 2 centrada
a l’origen) i suposem que volem calcular la derivada de y respecte de x . Ho podem
fer sense necessitat d’expressar y com a funció de x de forma explícita. Simplement,
derivem la relació anterior, aplicant la regla de la cadena:

x2 + y2 = 4 ⇒ 2x + 2yy ′ = 0 ⇒ y ′ = −x

y
.

Exemple. Calculeu dy/dx sabent que y3x2 − yx + 2y2 = x . Derivant aquesta equació
obtenim l’equació

3y2y ′x2 + 2y3x − y ′x − y + 4yy ′ = 1 ⇒ y ′ =
1− 2y3x + y

3y2x2 − x + 4y
.

14.5 Derivada de la inversa d’una funció

Una altra conseqüència de la regla de la cadena és que si coneixem la derivada d’una
funció, podem calcular la derivada de la seva inversa.

1Vegeu Allometric Relationships of Selected European Tree Species, institute for Environment and
Sustainability, 2003.
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Exemple. Sabem que la derivada de la funció ex és ex . La inversa de la funció
exponencial és la funció log. Aleshores,

exp(log(x)) = x ⇒ exp(log(x))(log(x))′ = 1 ⇒ (log(x))′ =
1

exp(log(x))
=

1

x
.

14.6 Derivades de totes les funcions elementals

Amb el que hem après fins ara ja podem calcular la derivada de qualsevol funció que
s’expressi a partir de les funcions elementals, utilitzant sumes, productes, quocients i
composicions. Cal recordar això:

• d

dx
(const.) = 0

• (f + g)′ = f ′ + g ′

• (f g)′ = f ′g + f g ′

•
(

f

g

)′
=

gf ′ − f g ′

g2

• (f (g))′ = f ′(g) g ′

• d

dx
x r = rx r−1

• d

dx
ex = ex

• d

dx
ax = ax log a

• d

dx
log x =

1

x

• d

dx
loga x =

1

x log a

• d

dx
sin x = cos x

• d

dx
cos x = − sin x

• d

dx
arcsin x =

1√
1− x2

• d

dx
arccos x =

−1√
1− x2

• d

dx
arctan x =

1

1 + x2

14.7 Fem-ho amb sage

Per calcular amb sage derivades de funcions definides implícitament hem de fer-ho de
la manera següent. Suposem que volem calcular y ′ quan sabem que x2 + y2 = 1. Hem
de començar dient-li a sage que y és una funció de x :
sage: y=function(’y’)(x)

A continuació, definim la funció donada per la relació implícita
sage: f(x)=x^2+y^2-1

i ara podem derivar aquesta funció
sage: g(x)=diff(f(x),x)
sage: g(x)
2*y(x)*D[0](y)(x) + 2*x

Finalment, si volem aïllar el valor de y ′,
sage: solve(g(x),diff(y,x))
[D[0](y)(x) == -x/y(x)]

que ens dóna y ′ = −x/y . Fem un altre exemple, extret dels exercicis al final d’aquesta
part.
sage: y=function(’y’)(x)
sage: f(x)=x/(x*y+1)-2*x*y
sage: view(solve(f.diff(x),y.diff(x)))
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[
D[0] (y) (x) = −2 x2y (x)3 + 4 xy (x)2 + 2 y (x)− 1

2 x3y (x)2 + 4 x2y (x) + x2 + 2 x

]
.

Resolem ara l’exemple de la velocitat a què es refreda l’aire:
sage: gamma,t,k=var(’gamma,t,k’)
sage: V=function(’V’)(t)
sage: T(t)=k*V^(1-gamma)
sage: view(T.diff(t)(t))

−(γ − 1)kV (t)−γ D[0] (V ) (t) .

sage: view(T(gamma=1.4).diff(t))

−0.400000000000000D[0] (V ) (t)

V (t)1.40000000000000
.



15. Aproximació lineal i propagació d’errors

15.1 Aproximació lineal

Les funcions més senzilles són les funcions lineals

f (x) = mx + b

però la realitat és sovint molt més complexa i no ve descrita per una funció d’aquestes.
També pot passar que ni tan sols sapiguem quina és la funció exacta que descriu el
fenomen que estem estudiant.

La pregunta que ens fem és

Si, com a primera aproximació, volem utilitzar una funció lineal per estu-
diar un fenomen, quina és la millor funció lineal que podem utilitzar?

Exemples:

• Quina és la velocitat màxima que assolirà una allau de neu en funció de la
inclinació del pendent? És una pregunta molt difícil, sobre la que s’han fet molts
estudis. El model més clàssic és el de Voellmy del 1955 segons el qual la velocitat
màxima ve donada per

v =
√

hξ(sinψ − µ cosψ)

on h és l’alçada del gruix de neu, ψ és l’angle, i µ i ξ són coeficients de fricció
i turbulència (positius), respectivament. Si fixem el gruix de neu, quina funció
lineal podríem prendre per estudiar aquesta velocitat per a vessants propers a
45 graus?

• Tenim una població de la qual sabem la mida i la seva taxa de creixement, però
no coneixem exactament quin model de creixement segueix. Com a primera apro-
ximació, modelem la mida de la població per una funció lineal. Quina?

• Recordem la funció que ens donava la temperatura de sensació (wind chill) en
funció de la temperatura i la velocitat del vent (pàgina 16). Suposem que la
temperatura és fixa T = −10. Si la velocitat està al voltant dels 20 km/h, com
podem aproximar W per una funció lineal de la velocitat del vent V ?

• Sabem que sin 0 = 0. Sense utilitzar una calculadora, com podem trobar un valor
aproximat per a sin 0.1?

• Sabem que
√
49 = 7. Sense utilitzar una calculadora, com podem trobar un valor

aproximat per a
√
50?

La resposta ve donada per aquesta propietat:

90
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La millor aproximació lineal d’una funció és la recta tangent a la seva
gràfica.

Suposem, doncs, que volem una aproximació lineal d’una funció y = f (x) per a
valors de la variable x propers a a. Prendrem la recta tangent a y = f (x) pel punt
(a, f (a)):

L(x) = f (a) + f ′(a)(x − a)

i tindrem que
f (x) ≈ L(x) si x ≈ a.

Si x = a, la funció f (x) i la seva aproximació lineal L(x) tenen el mateix valor
i la mateixa derivada. A mida que x es vagi separant de a, la funció f (x) i la seva
aproximació lineal L(x) es poden allunyar una de l’altra i l’aproximació lineal perdrà
exactitud.
Exemples:

• Aproximació lineal de f (x) = sin x per x ≈ 0. Com que sin 0 = 0 i la derivada de
sin és cos i cos 0 = 1, tenim

L(x) = f (a) + f ′(a)(x − a) = 0 + (a− x) = x .

Per tant, la millor aproximació lineal se la funció sin x per valors petits de x és
la recta L(x) = x . Dit d’una altra manera,

sin x ≈ x si x ≈ 0.

En particular, sin 0.1 ≈ 0.1.

• Aproximació lineal de f (x) =
√

x per x ≈ 49.

L(x) = f (a) + f ′(a)(x − a) =
√

a +
1

2
√

a
(x − a) = 7 +

1

14
(x − 49).

En particular,
√
50 ≈ 7.0714.

• Aproximació lineal de la mida d’una població. Suposem que tenim una població
de mida N = 250 × 106, que creix amb una taxa de creixement del 2% anual. Si
hem de fer una estimació lineal de la població en els propers mesos, farem això:

N(0) = 250× 106
1

N

dN

dt
= 0.02

i l’aproximació lineal és

L(t) = N(0) + N ′(0)(t − 0) = 250× 106 + (0.02× 250× 106)t.

Per exemple, d’aquí a dos mesos, l’estimació per a la població dóna N ≈ 250.8×
106.

• Quan parlàvem de la taxa de creixement vam dir que si r és proper a zero,
aleshores r ≈ er−1 i log(1+r) ≈ r . Ara ho podem justificar amb les aproximacions
lineals de les funcions ex i log(1 + x) a x = 0.
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15.2 Propagació d’errors

Qualsevol mesura experimental d’una variable x té un cert marge d’error ±∆x . Si ara,
sobre aquesta variable x , avaluem una funció y = f (x), quin error hem d’esperar a y?
És clar que l’error ±∆x es «propagarà» a un error ±∆y . La pregunta és quina relació
hi ha entre ∆y i ∆x .

Sovint, tenim un marge d’error per al resultat final y i ens preguntem amb quina
precisió hem de determinar x perquè y no sobrepassi el marge d’error que ens hem
fixat.

Distingirem entre els conceptes d’error i precisió o error relatiu. Si l’error d’una
variable x és ∆x , la precisió és ∆x/x . L’error té les mateixes unitats que la variable i
la precisió no té unitats i s’expressa sovint en percentatge.

Exemples:

• Si coneixem un nombre x = 10 amb una precisió del 2%, amb quina precisió
coneixem log x?

• Si coneixem el radi d’una circumferència amb una precisió del 5%, amb quina
precisió coneixem l’àrea limitada per aquesta circumferència?

• Volem determinar aproximadament la superfície foliar d’un arbre (evidentment,
sense mesurar la superfície de totes i cadascuna de les seves fulles!). Hi ha
molts estudis al.lomètrics que relacionen, per a cada espècie d’arbre, la relació
entre la superfície foliar i altres mesures més fàcils de determinar, com el diàmetre
del tronc. Per exemple, la referència que hem citat a la pàgina 87 ens dóna que,
per als exemplars joves de faig, la superfície foliar per arbre (em metres quadrats)
és

A = 0.307D1.803

on D és el diàmetre del tronc (en cm) a 1.37 metres d’alçada sobre el sòl. Si
estem mesurant D amb una precisió del 5%,1 amb quina precisió coneixerem A?

La resposta a tot això s’obté recordant la definició de derivada

f ′(x) = lim
∆x→0

∆y

∆x

i fent aquesta aproximació2

∆y

∆x
≈ f ′(x) si ∆x ≈ 0.

1I com és que mesurem el diàmetre del tronc amb una precisió del 5% i no mesurem el diàmetre del
tronc exactament? D’una banda, l’exactitud absoluta no pot existir, però també és cert que la resposta a
aquesta pregunta es troba en el fet que estem eludint que qualsevol estudi experimental ha d’usar mètodes
estadístics. Per tant, a la pràctica, no estarem mesurant un únic tronc, sinó una mostra de troncs, i voldrem
estimar valors mitjans amb un cert marge d’error, etc. L’anàlisi estadística és un complement necessari a
tot el que estudiem en aquest curs.

2De fet, aquí estem substituint f (x) per la seva aproximació lineal.
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Dit d’una altra manera, la relació entre ∆y i ∆x ve donada per

∆y ≈ y ′∆x .

Si el que volem és una fórmula que ens relacioni la precisió de x amb la precisió de y ,
n’hi ha prou amb dividir per y la fórmula anterior. Obtenim això:

∆y

y
=

y ′x

y

∆x

x
.

Trobem ara la solució dels casos plantejats als exercicis anteriors:

• Precisió del logaritme. Tenim x = 10± 2% i posem y = log x . Aleshores,

∆y ≈ 1

x
∆x ,

∆y

y
≈ 1

y

∆x

x
=

0.02

log 10
≈ 0.0087.

Per tant,
log x = 2.3± 0.9%.

• Precisió de l’àrea d’una circumferència. La fórmula clàssica S = πR2 dóna

∆S ≈ 2πR∆R,
∆S

S
≈ 2πR

πR2
∆R = 2

∆R

R
= 10%

i la precisió de l’àrea és del 10%.

• Superfície foliar.

∆A

A
≈ 1.803× 0.307× D0.803

0.307× D1.803
∆D = 1.803

∆D

D
= 1.803× 0.05 ≈ 9%.

Per tant, la precisió en la mesura de la superfície foliar serà del 9%.

15.3 Aproximació quadràtica

En lloc d’aproximar una funció f (x) (per a valors propers a un valor x = a) per una
funció lineal, com hem fet fins ara en aquest capítol, podem aproximar la funció per una
funció quadràtica Q(x) = ax2 + bx + c i sembla lògic pensar que, d’aquesta manera,
obtindrem una aproximació millor. Quina és la funció quadràtica que hem d’escollir?

Recordem que l’aproximació lineal de f (x) al voltant del punt x = a és la funció

L(x) = f (a) + f ′(a)(x − a).

Aquesta funció té aquestes dues propietats

• Les dues funcions f (x) i L(x) tenen el mateix valor per x = a. És a dir, f (a) = L(a).

• Les dues funcions f (x) i L(x) creixen a la mateixa velocitat per x = a. És a dir,
f ′(a) = L′(a).
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A la vista d’això, una bona aproximació quadràtica serà una funció Q(x) = ax2 +
bx + c que tingui aquestes tres propietats:

• Les dues funcions f (x) i Q(x) tenen el mateix valor per x = a. És a dir, f (a) =
Q(a).

• Les dues funcions f (x) i Q(x) creixen a la mateixa velocitat per x = a. És a dir,
f ′(a) = Q ′(a).

• Les dues funcions f (x) i Q(x) creixen am la mateixa acceleració per x = a. És a
dir, f ′′(a) = Q ′′(a).

Amb aquestes tres condicions, no és difícil trobar quina és aquesta funció quadrà-
tica. El resultat és:

Q(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2.

Observem que, si a = 0, la part lineal de Q(X ) és precisament l’aproximació lineal L(x).

Exemple. Trobem l’aproximació quadràtica de f (x) =
√
1 + x a l’entorn del punt x = 0.

Cal trobar els valors f (0) = 1, f ′(0) = 1/2, f ′′(0) = −1/4. Aleshores, l’aproximació
quadràtica és

Q(x) = 1 +
1

2
x − 1

8
x2

i podem afirmar que
√
1 + x ≈ 1 +

1

2
x − 1

8
x2 si x ≈ 0.

15.4 Fem-ho amb sage

L’aproximació lineal o quadràtica d’una funció es pot calcular amb sage amb la comanda
taylor(f(x),x,a,n) on a és el punt on volem trobar l’aproximació i n = 1, 2 segons
si volem l’aproximació lineal o l’aproximació quadràtica. Els valors n = 3, 4, . . . ens
donarien aproximacions d’ordre superior al quadràtic.
sage: f(x)=sqrt(1+x)
sage: taylor(f(x),x,0,1)
1/2*x + 1
sage: taylor(f(x),x,0,2)
-1/8*x^2 + 1/2*x + 1



16. Valors extrems d’una funció

16.1 Màxims i mínims

Quan modelem un fenomen per una funció y = f (x) una informació important que ens
pot interessar és quins són els valors màxim i mínim que pot assolir la variable y .
Exemples:

• Imaginem que estudiem el rendiment R d’una collita de cereal com a funció del
contingut al sòl d’un determinat nutrient N (nitrogen, per exemple). Intuïm que
tant l’absència de nutrient com l’excés de nutrient poden fer que R disminueixi.
Ens interessa, doncs, trobar un valor de N que faci que R sigui màxim.

• S’ha vist que hi ha espècies que modulen la mida de la descendència en funció
dels recursos disponibles per tal d’aconseguir que l’èxit de la reproducció sigui
màxim. Entenem per èxit de la reproducció el nombre de cries que sobreviuen
fins que es puguin reproduir. Un model matemàtic pot estudiar quina pot ser la
mida que maximitzi l’èxit, i comparar-la amb els resultats experimentals.

• Hi ha espècies (el salmó del Pacífic, alguns pops, l’atzavara, el bambú...) que es
reprodueixen una única vegada a la vida1 i l’elecció de quin és aquest moment
afecta l’èxit de la reproducció. Un model matemàtic pot estudiar quina és el
moment que maximitza l’èxit, i comparar-lo amb els resultats experimentals.

• El concepte de pesca sostenible sancionat per l’ONU2 es basa en un nombre
de captures que mantingui la població en la seva mida de creixement màxim,
suposant que l’estoc de peixos segueix un model logístic. Quina és aquesta mida
de creixement màxim?

• En el control biològic de les plagues, una plaga és contrarestada amb la intro-
ducció d’una espècie depredadora dels individus de la plaga. La mida de la plaga
i la mida de la població de depredadors estan relacionades. Matemàticament,
l’optimització d’aquestes mides interdependents és una problema molt complex
que involucra màxims i mínims, però va molt més enllà.

La situació també pot ser justament la contrària: estudiem un fenomen del que coneixem
bé els seus valors extrems i volem utilitzar una funció per modelar aquest fenomen.
Recordem, per exemple, quan volíem modelar la variació anual de temperatura per una
funció sinusoïdal (pagina 37) i havíem d’utilitzar el coneixement que tenim dels valors
màxims i mínims de la funció sinus.

1Consulteu l’article Semelparity and iteroparity a Wikipedia.
2Vegeu l’article 2 del document Convention on Fishing and Conservation of the Living Resources of the

High Seas, United Nations 2005. Per entendre millor això, consulteu l’article Maximum sustainable yield
a Wikipedia.

95



96 16. Valors extrems d’una funció

Per atacar aquests problemes, començarem introduint alguns conceptes matemàtics
fonamentals.

16.2 Conceptes matemàtics sobre màxims i mínims

Sigui y = f (x) una funció definida en un cert interval [a, b] (o també (a, b) o qualsevol
altra variant). Diem que aquesta funció té un màxim a x = c si el valor f (c) és més gran
o igual que qualsevol altre valor f (d) amb d ∈ [a, b]. En concepte de mínim es defineix
anàlogament. Utilitzarem la paraula extrems per referir-nos indistintament a màxims
i mínims. També parlarem de màxims, mínims i extrems globals, per distingir-los d’un
altre concepte que tractarem més endavant.

Per exemple, considerem la paràbola y = x2 que ve donada per una funció definida
arreu, però suposem que només ens interessa el seu comportament a l’interval [−1, 1].
En aquest interval, la funció té:

• un màxim a x = 1 i un màxim a x = −1,

• un mínim a x = 0.

Però aquesta mateixa paràbola, considerada a l’interval (−1, 1) no té cap màxim, i
segueix tenint un mínim a x = 0.

En canvi, la recta y = x , considerada a l’interval (−1, 1), no té cap extrem: cap
màxim i cap mínim. Aquí, que l’interval sigui obert és fonamental perquè tenim un
resultat matemàtic que diu això:

Una funció contínua en un interval tancat sempre té algun màxim i algun
mínim.

Diem que una funció y = f (x) té un màxim relatiu a x = c si el valor f (c) és més
gran o igual que qualsevol altre valor f (d) quan d és a [a, b] i d també és a algun
petit interval al voltant de c . També parlarem de mínim relatiu o, si volem incloure els
dos casos de màxim i mínim, parlarem d’extrems relatius. També es parla de màxims,
mínims o extrems locals.
Exemples:

• f (x) = |x2−4| a l’interval [−2.5, 3). Per dibuixar aquesta funció n’hi ha prou amb
dibuixar la paràbola y = x2− 4 i a continuació reflectir respecte de l’eix x la part
de la paràbola que està per sota d’aquest eix.
Aquí observem això:

– No hi ha cap màxim global. A x = 3 hi hauria un màxim global, però 3 no
pertany a l’interval que estem considerant.

– A x = 2 i x = −2 hi ha mínims globals i també mínims locals.
– A x = −2.5 i x = 0 hi ha màxims locals.
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• f (x) = (x − 1)2(x + 2) a l’interval [−2, 3]. Pel resultat anterior, sabem que és
segur que aquesta funció tindrà algun màxim global i algun mínim global. Si
dibuixem aquesta funció, obtenim això:

Observem que

– A x = −2 i x = 1 hi ha mínims globals que també són locals.
– A x = 3 hi ha un màxim global, que també és local.
– A x = −1 hi ha un màxim local (que no és global).

16.3 Extrems locals i derivada

Hi ha una relació directa entre els extrems locals d’una funció y = f (x) i la derivada
d’aquesta funció f ′(x):
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Si una funció y = f (x) té un extrem local a un punt interior x = c i la
derivada f ′(c) existeix, aleshores f ′(c) = 0.

Aquí, punt interior és aquell punt del domini de definició de la funció que té al seu
voltant tot un interval obert de punts que també estan en el domini de definició. Per
exemple, si el domini de definició és [a, b], aleshores tots els punts de l’interval obert
(a, b) són punts interiors i els punts a i b no ho són.

Els punts on s’anul.la la derivada s’anomenen punts crítics de la funció. Estem
dient, doncs, que els extrems locals interiors són punts crítics, sempre que la funció
sigui derivable. L’explicació d’aquest resultat és clara: els punts on la derivada s’anul.la
són els punts on la recta tangent a la corba y = f (x) és horitzontal i això és el que
passa en un màxim local i un mínim local (si són punts interiors i la funció és derivable).
Comentaris:

• Totes les hipòtesis són necessàries: el punt ha de ser interior i la derivada ha
d’existir.

• Un punt crític pot no ser un extrem. Per exemple, la funció x3 té un punt crític a
x = 0, però aquesta funció no té extrems, ni globals ni locals, quan la considerem
a tota la recta.

• Observem que l’afirmació anterior no diu res sobre els extrems globals. Els ex-
trems locals d’una funció poden tenir interès, però si el que realment ens interessa
són els extrems globals, hem de procedir d’aquesta manera:

1. Trobem els punts crítics de la funció.
2. Trobem els punts on la funció no té derivada.
3. Considerem els extrems de l’interval que estem considerant (si escau).
4. Aleshores, els extrems globals, si n’hi ha, estaran entre els punts que hem

considerat a 1, 2 i 3.

• No hem d’oblidar els punts on la funció no és derivable. Per exemple, la funció
|x | té un mínim global i local a x = 0, però la funció no té punts crítics, perquè
la funció no és derivable a x = 0 (fa un «angle»).

16.4 Teoremes de valor mig

Suposem que circulem per un túnel de 5 km on la velocitat màxima permesa és de 90
km/h. La policia detecta la nostra entrada al túnel i, després d’exactament 3 minuts,
detecta la nostra sortida. Si rebem una multa per excés de velocitat, quin és el fonament
teòric d’aquesta sanció?

Sigui f (t) la funció que indica quina longitud del túnel hem recorregut en el temps
t . Què sabem d’aquesta funció?

• Sabem que f (0) = 0 i f (0.05) = 5 (posem el temps en hores).
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• Com que la longitud del túnel és de 5 km, la nostra velocitat mitjana ha estat de

vm =
f (0.05)− f (0)

0.05− 0
= 100 km/h.

• La policia no sap res de la funció f (t). Podem haver canviat la velocitat, ens
podem haver aturat o, fins i tot, fer marxa enrere. Però com a mínim sí que sap
que la funció f (t) és contínua (no ens «teletransportem») i és derivable (sempre
tenim «alguna» velocitat).

A partir d’aquí podem aplicar un resultat que s’anomena teorema del valor mig que
afirma que si la nostra velocitat mitjana és de 100 km/h, necessàriament hi ha hagut
algun moment en que la nostra velocitat instantània ha sigut exactament 100 km/h.

Dit amb més precisió:

Si f (x) és una funció derivable a un interval obert que contingui [a, b],
existeix un punt c entre a i b tal que

f ′(c) =
f (b)− f (a)

b − a
.

Observem que en el cas en què f (a) = f (b), aquest resultat ens diu que hi ha
d’haver un punt c entre a i b tal que f ′(c) = 0. Dit en llenguatge ordinari: Si una
quantitat té el mateix valor en dos instants diferents, és segur que hi ha hagut un
instant de creixement zero. Això es coneix amb el nom de teorema de Rolle.
Exemple: Suposem que una població de mida N(0) = 100 creix a una velocitat (vari-
able) que sempre es manté per sota de 3: |N ′(t)| ≤ 3. Què podem dir de la mida de
població per t = 10?

Pel teorema del valor mig, hi haurà un temps c entre 0 i 10 tal que∣∣∣∣N(10)− N(0)

10− 0

∣∣∣∣ = |N ′(c)| ≤ 3

i, per tant, podem afirmar que

70 ≤ N(10) ≤ 130.



17. (De-)creixement i (des-)acceleració

17.1 Creixement i decreixement

Si estudiem un fenomen que està modelat per una certa funció y = f (x), és clar que
ens interessa saber si y és creixent o decreixent, quan x creix. La derivada ens dóna
la resposta, perquè la derivada, precisament, mesura la velocitat de creixement de la
funció. Per tant,

Si f ′(x) > 0 a un cert interval, la funció f (x) és creixent en aquest interval.
Si f ′(x) < 0 a un cert interval, la funció f (x) és decreixent en aquest
interval.

Els punts en que la funció passa de creixent a decreixent són punts crítics amb
f ′(x) = 0 i són màxims locals. De manera similar, els punts en que la funció passa de
decreixent a creixent són punts crítics amb f ′(x) = 0 i són mínims locals.
Exemple: En el model de von Bertalanffy longitud d’un peix com a funció del temps ve
donada per aquesta funció:

L(t) = L∞ − (L∞ − L0) exp(−kt), L∞ > L0 > 0, k > 0.

L(t) és la longitud del peix en el temps t i L0 = L(0). D’altra banda, L∞ = limt→∞ L(t)
és la longitud a llarg termini. Si calculem la derivada d’aquesta funció, veiem que

L′(t) = k(L∞ − L0) exp(−kt) > 0

i la funció és creixent. A partir d’aquestes observacions, el comportament qualitatiu
d’aquesta funció està clar:

100
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17.2 Acceleració i desacceleració

Si ja sabem que una certa funció y = f (x) és creixent (si és decreixent, el raonament
seria similar), encara hi ha dues possibilitats:

1. f (x) pot créixer com la paràbola y = x2 o com la funció exponencial y = ex . En
aquests casos, la velocitat de creixement va creixent. Es diu que la funció creix
acceleradament (o amb acceleració positiva).

2. f (x) pot créixer com l’arrel quadrada y =
√

x o com la funció y = log x . En
aquests casos, la velocitat de creixement va decreixent. Es diu que la funció creix
desacceleradament (o amb acceleració negativa).

El que distingeix un cas de l’altre és el signe de l’acceleració. Però l’acceleració
ve donada per la segona derivada de la funció f ′′(x). Per tant, el signe de la segona
derivada ens distingeix entre creixement accelerat i creixement desaccelerat.
Exemple: En el model de creixement dels peixos de l’exemple anterior, la segona
derivada és

L′′(t) = −k2(L∞ − L0) exp(−kt) < 0

i el creixement és desaccelerat: el peix creix més de pressa quan és jove que quan és
ja gran.

De fet, encara que hem partit s’una funció creixent per discutir aquest tema, no cal
que la funció sigui creixent o decreixent per poder parlar d’acceleració i desacceleració.

17.3 Concavitat i convexitat

Encara que en el llenguatge no científic es parla d’acceleració i desacceleració, els
termes que s’utilitzen en llenguatge matemàtic són els de funció convexa i funció
còncava. Malauradament, a l’hora de decidir quin dels dos casos (f ′′(x) > 0 o f ′′(x) <
0) es considera convex i quin es considera còncau, hi ha una certa confusió. Aquesta
confusió és inevitable perquè «còncau» i «convex» fan referència a objectes sòlids i no
a línies. Ningú dubta sobre què és una pedra convexa o una concavitat en una paret
de roca. Quin sentit té dir que la gràfica d’una funció és convexa o còncava? Depèn
des d’on ens la mirem. Per exemple, la funció exponencial, mirada des de l’eix de les
x sembla convexa, però mirada des de l’eix de les y sembla còncava. En alguns textos
que s’utilitzen a l’ensenyament als Estats Units o al Canadà és resol aquest problema
parlant de funcions còncaves cap amunt i funcions còncaves cap avall. Dit això, ha de
quedar clar que dir que l’exponencial és còncava o convexa no pot ser res més que un
conveni i que no hi ha unanimitat a l’hora de decidir entre una opció i l’altra.

En aquest curs, el conveni que utilitzarem és que ens mirarem les gràfiques des de
baix i, en particular, la funció EXponencial serà convEXa. En resum:

Direm que una funció y = f (x) és convexa si f ′′(x) > 0 i direm que és
còncava si f ′′(x) < 0.
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Els punts en què una funció passa de convexa a còncava o viceversa són punts on
f ′′(x) = 0. Els anomenarem punts d’inflexió.
Exemple: Considerem una funció de creixement de tipus Monod

Y (N) = Ym
N

K + N
, K ,Ym > 0.

Considerem primer el cas N ≥ 0, que és el que més apareix a les aplicacions. Si
calculem la primera i la segona derivades d’aquesta funció tenim

dY

dN
= Ym

K

(K + N)2
> 0

d2Y

dN2
= −Ym

2K

(K + N)3
< 0.

Deduïm que Y és una funció creixent i còncava. D’altra banda,

lim
N→∞

Y (N) = Ym

i això implica que Ym és el valor de la funció a llarg termini i també que la funció no
pot superar aquest valor Ym.

En resum, podem dir que Y és una funció que, per N ≥ 0,

• creix sempre, perquè Y ′ > 0,

• creix limitadament, o «té un sostre», perquè Y < Ym (i Ym és el valor a llarg
termini de Y ).

• creix de manera desaccelerada, perquè Y ′′ < 0.

En un llenguatge més matemàtic, diríem que la funció Y és creixent, còncava i té
una asímptota horitzontal a Y = Ym.

La situació quan N < 0 és lleugerament diferent. En primer lloc, la funció té una
asímptota vertical al punt de discontinuïtat N = −K . La derivada segueix essent
positiva arreu, i la funció és sempre creixent. En canvi, la segona derivada és negativa
per N > −K i és positiva per N < −K . Quan N → −K+, la funció Y → −∞, mentre
que quan N → −K−, tenim que Y →∞. Finalment, limN→−∞ Y (N) = K .

17.4 Diminishing returns

La situació de l’exemple anterior apareix sovint (per exemple, a l’economia) i s’acostuma
a descriure amb el terme diminishing returns. Aquest terme fa referència a que, si bé
és cert que la funció (els returns) són més grans com més gran és la variable x (la
inversió), els increments de la funció són cada vegada més petits (diminishing) quan
més creix x .

Posem un parell d’exemples:
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• Una empresa comença a invertir en publicitat i això fa augmentar les seves ven-
des molt ràpidament. Si va augmentant la seva inversió en publicitat, cada ve-
gada augmenten més les seves vendes. Però pot arribar un moment —segur que
arribarà— en què s’entri en una situació de diminishing returns, en la qual els
mateixos augments de la despesa en publicitat produeixen només mínims incre-
ments de les vendes.

• Una empresa treu al mercat un producte que és molt millor que l’anterior i fa que
les seves vendes creixin molt. Inverteix en R&D i treu nous models, cada vegada
millors que generen bones vendes, fins que arriba un punt en què ja resulta molt
difícil fer millores substancials en el producte, que moguin el consumidor a canviar
el model actual per un de nou. Es diu que s’ha entrat en la fase de diminishing
returns. Per exemple, es diu que això és el que està passant ara (2015) amb els
fabricants de càmeres fotogràfiques digitals i amb els de PC’s.

Matemàticament, la situació de diminishing returns fa referència a una funció crei-
xent còncava.



18. Anàlisi qualitativa d’una funció

18.1 Els passos que hem de seguir

El que hem anat estudiant fins ara ens dóna eines per dur a terme, donada una funció
y = f (x), una anàlisi qualitativa de la funció que ens permet entendre el seu com-
portament i les seves característiques principals. Aquesta anàlisi donarà lloc a poder
dibuixar aproximadament la gràfica de la funció.

Hem d’estudiar aquests conceptes:

1. Domini de definició. Hem de saber quin és el domini màxim on està definida la
funció i també quin és el domini on ens interessa estudiar la funció. Per exemple,
la funció de Monod

Y (N) =
K N

a2 + N

està definida per tot N 6= −a2 i, si N representa, per exemple, la mida d’una
població o la quantitat d’un cert nutrient, aleshores el domini que ens interessa
és N ≥ 0. Recordem que ja sabem exactament quins són els dominis de definició
de totes les funcions elementals.

2. Punts de discontinuïtat. Ja sabem que les funcions elementals són contínues a
tot el seu domini de definició. Per tant, el punt anterior ja ens dóna informació
sobre els possibles punts de discontinuïtat.

3. Comportament a llarg termini. Si la funció està definida quan la variable tendeix
a ±∞, calculant els límits coneixerem el seu comportament a llarg termini. Per
exemple, a la funció de Monod anterior tenim

lim
N→∞

K N

a2 + N
= K

i veiem que a llarg termini la funció es va acostant al valor K . Matemàticament,
direm que la gràfica de la funció té una asímptota horitzontal Y = K .

4. Comportament prop d’un punt de discontinuïtat. Si la funció té una discontinuïtat
a x = a (no està definida a x = a), ens interessa saber què fa la funció quan ens
acostem a a. Per saber-ho, calculem els límits laterals

lim
x→a+

f (x), lim
x→a−

f (x).

Això ens permetrà saber si la funció té una discontinuïtat de salt al punt x = a,
o una asímptota vertical. Per exemple,

lim
x→a+

k2

a− x
= −∞, lim

x→a−

k2

a− x
=∞

i aquesta funció té una asímptota vertical x = a.

104
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5. Comportament als extrems de l’interval. Si estem estudiant la funció en un
interval [a, b], ens interessa conèixer els valors f (a) i f (b).

6. Punts crítics. Recordem que són els punts on s’anul.la la derivada i poden ser
extrems de la funció.

7. Punts on no hi ha derivabilitat. El càlcul de la derivada al punt anterior ens
permet detectar si hi ha algun punt on la derivada no existeix. Això pot passar,
per exemple, si la funció fa un «angle» o si hi ha una recta tangent vertical. Per
exemple, la funció 3

√
x està definida per tot valor de x , però no és derivable a

x = 0.

8. Creixement i decreixement. Quan coneixem els punts on s’anul.la la derivada,
podem determinar quins són els punts on la derivada és positiva i quins són els
punts on la derivada és negativa. Això ens dóna informació sobre els intervals on
la funció és creixent i els intervals on la funció és decreixent.

9. Valors extrems. Amb la informació anterior ja podem conèixer els extrems locals
i globals de la funció.

10. Concavitat i convexitat. Sabem que la distinció entre aquests dos tipus de com-
portament es pot fer utilitzant la segona derivada f ′′(x). Quan aquesta segona
derivada és positiva, la funció és convexa; quan és negativa, la funció és còncava.

11. Punts d’inflexió. Són els punts on la funció passa de convexa a còncava, o
viceversa. Per tant, en aquests punts la segona derivada val zero. Però també hi
ha punts on la segona derivada val zero i, en canvi, no hi ha inflexió. Per exemple,
el punt x = 0 per a la funció x4.

12. Asímptotes. Una asímptota és una recta a la qual la funció s’acosta a una dis-
tància que tendeix a zero. En els apartats anteriors ja hem detectat les possibles
asímptotes horitzontals i verticals. Una asímptota obliqua per a la funció f (x)
serà una recta y = mx + b amb m 6= 0, tal que

lim
x→∞

(f (x)− (mx + b)) = 0 o lim
x→−∞

(f (x)− (mx + b)) = 0.

Per exemple, considerem la funció

f (x) =
x2 − 3

x − 2

que té una asímptota vertical a x = 2. Si volem determinar l’existència d’asímpto-
tes obliqües, observem que

lim
x→∞

x2 − 3

x − 2
−mx − b = lim

x→∞

(1−m)x2 + (2m − b)x + 2b − 3

x − 2

i aquest límit val zero precisament si m = 1 i b = 2. Per tant, la recta y = x + 2
és una asímptota obliqua d’aquesta funció. De fet, la gràfica és:
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18.2 Un exemple

Fem un estudi qualitatiu de la funció1

f (x) = (2− x)(2 + x)2/5.

En primer lloc, observem que les funcions potencials només estan definides per a valors
positius de la variable i, en aquest cas, això donaria com a domini de definició de la
funció anterior els valors x > −2. Ara bé, podem entendre la funció anterior com

f (x) = (2− x) 5

√
(2 + x)2

i, d’aquesta manera, la funció està definida arreu. No hi ha punts de discontinuïtat.
El comportament a llarg termini és clar, perquè

lim
x→∞

f (x) = −∞, lim
x→−∞

f (x) =∞.

Si calculem la derivada de la funció, obtenim

f ′(x) = − 6 + 7x

5(2 + x)3/5
.

Observem dues coses:
1És una funció força artificial, que ha estat triada perquè exemplifiqui tots els conceptes que hem anat

estudiant.
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• La derivada no existeix quan x = −2.

• La funció té un únic punt crític a x = −6/7.

Com que la funció només pot passar de creixent a decreixent (o viceversa) en el punt crí-
tic o en el punt on la derivada no existeix, calculant la funció en tres punts convenients
arribem a que

• La funció és decreixent a (−∞,−2) i a (−6/7,∞)

• La funció és creixent a (−2,−6/7).

• La funció té un màxim local a x = −6/7.

Com que els valors a llarg termini de la funció són −∞ i ∞, la funció no pot tenir
extrems globals. Els únics extrems locals són x = −6/7 (màxim local) i x = −2 (mínim
local).

Per entendre millor què passa al punt x = −2 on la funció no és derivable, estudiem
com és la derivada quan ens acostem a aquest punt:

lim
x→−2−

f ′(x) = −∞, lim
x→−2+

f ′(x) =∞.

Això ens diu que la funció «cau» vertical al punt x = −2 i «s’aixeca» vertical. En aquest
punt tenim, doncs, una mena de «cúspide» invertida.

Estudiem ara la concavitat i la convexitat de la funció, amb la derivada segona.

f ′′(x) = − 52 + 14x

25(2 + x)8/5
.

Observem que l’únic punt on s’anul.la aquesta derivada segona és el punt x = −26/7.
Deduïm que la funció és

• convexa a (−∞,−26/7),

• còncava a (−26/7,∞) excepte al punt x = −2.

Per tant, té un punt d’inflexió a x = −26/7.
La darrera comprovació que fem és que la funció no té asímptotes obliqües. Su-

posem que y = mx + b fos una asímptota obliqua. Aleshores tindríem (aplicant, per
exemple, l’Hôpital)

0 = lim
x→±∞

(2− x)(2+ x)2/5−mx − b = lim
x→±∞

(2+ x)

(
2− x

(2 + x)3/5
−m

)
+2m− b = ±∞.

Amb tota aquesta informació ja coneixem prou bé el comportament qualitatiu de la
funció:
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18.3 Fem-ho amb sage

El dibuix de la funció que hem estudiat en aquest capítol s’ha fet amb aquesta instruc-
ció:
sage: plot((2-x)*((2+x)^2)^(1/5),(x,-6,6),thickness=2,
....: aspect_ratio=1,ymax=8,ymin=-8)

Els recursos que sage posa al nostre abast són molt útils, però no ens eximeixen de
conèixer els instruments teòrics que ens permeten entendre el comportament qualitatiu
de les funcions i que hem estudiat en aquest capítol.



19. Optimització

Quan modelem un cert fenomen per una funció Y = Y (N) ens pot interessar trobar
valors de la variable N que maximitzin o minimitzin el valor de la funció Y . Matemà-
ticament, es tracta de trobar els màxims i mínims de la funció, si existeixen. També
és possible que ens interessi no pas el màxim o el mínim, sinó un punt d’inflexió (ve-
geu l’exemple 2 d’aquest capítol). D’aquest tipus de problemes en direm problemes
d’optimització.

19.1 Exemple 1. Rendiment d’un conreu

Imaginem que volem modelitzar el rendiment Y d’una explotació en funció de la pre-
sència d’un cert recurs N . En un exemple anterior, modelitzàvem el rendiment d’un
camp de blat de moro en funció de la quantitat de nitrogen al sòl amb una funció de
tipus Monod N/(k +N) i vàrem estudiar quin era el comportament de Y (N). En molts
casos, aquesta funció de Monod no és un bon model perquè és una funció que sempre
és creixent, mentre que sovint ens trobem que un excés del recurs N pot produir una
disminució en el rendiment. Una funció més apropiada podria ser una funció de Holling
de tipus IV

Y (N) =
N

k2 + N2
, N ≥ 0.

Observem que aquesta funció compleix

1. És contínua i és sempre positiva.

2. Y (0) = 0.

3. Quan la quantitat N és molt gran,

Y∞ = lim
N→∞

N

k2 + N2
= 0

Això ens diu que hi ha d’haver un cert valor de N que doni un rendiment màxim
Ymax. Quin és aquest valor? Si derivem la funció, tenim

Y ′(N) =
k2 − N2

k2 + N2

i veiem que N = k és un punt crític. Com que hi ha d’haver necessàriament un màxim,
serà aquest i el rendiment màxim és Ymax = 1/2k . No cal analitzar la segona derivada
perquè ja veiem que realment la funció és creixent per N < k i decreixent per N > k .

109
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19.2 Exemple 2. Tractament biològic de les plagues

En algunes explotacions vitivinícoles, per tal d’evitar l’ús de pesticides, es col.loquen
a les vinyes unes trampes de feromones sexuals que atrauen els insectes perjudicials.
Interessa estudiar si hi ha alguna densitat de trampes que és òptima. En un estudi
publicat a la revista Crop Protection el 2004, fet en unes extenses vinyes de Sud-
àfrica, es va trobar una relació entre la densitat d (en ha−1) de trampes i el nombre
de captures per trampa n. Aquesta relació ve donada per aquesta funció

n(d) = 153.3 exp(−5.7/d).

Aquesta funció és sempre creixent perquè la seva derivada és

n′(d) =
153.3× 5.7

d2
exp(−5.7/d) > 0.

Per tant, no té sentit preguntar-se pel màxim de la funció: com més trampes posem, més
captures hi haurà. En circumstàncies com aquesta, quan volem fer una optimització dels
recursos, pot ser interessant preguntar-se pel punt d’inflexió de la funció, és a dir, per
aquell punt en que entrem en una etapa de desacceleració, una etapa de diminishing
returns. 1

Considerem la funció general f (x) = k exp(−r/x) i calculem el seu punt d’inflexió.
La segona derivada és

f ′′(x) = kr exp(−r/x)

(
r

x4
− 2

x3

)
i el punt d’inflexió es troba a x = r/2.

19.3 Exemple 3. Pesca sostenible

A la pàgina 95 hem comentat que els tractats internacionals defineixen la pesca sos-
tenible com aquella en que la població de peixos es manté en la seva mida de màxim
creixement d’un model logístic. Mirem d’interpretar què vol dir això. En el model
logístic, la població N = N(t) segueix un creixement tal que

N ′ = rN

(
1− N

K

)
.

1Aquest tipus d’optimització que no cerca el valor màxim sinó un punt d’inflexió de la funció, l’utilitzem
molt sovint a la vida quotidiana, de manera intuïtiva.
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Aleshores, la població a què fan referència els tractats internacionals és el valor de N
que fa que N ′ sigui màxim. Per calcular aquest màxim de N ′ hem de calcular la seva
derivada, és a dir, N ′′:

N ′′ = rN ′
(
1− 2N

K

)
= r2N

(
1− N

K

)(
1− 2N

K

)
.

Per tant, els punts on aquesta segona derivada s’anul.la són N = 0, K , K/2. En els
dos primers, la velocitat de creixement és zero. Per tant, la velocitat màxima es donarà
precisament quan N = K/2.

Aquest màxim de la velocitat N ′ coincideix amb un punt d’inflexió de la població N .
L’aspecte que té la funció N és aquest (vegeu la secció 12.4):

19.4 Exemple 4. Distància a una corba

Suposem que volem determinar quin és el punt de la corba

y =
1 + x

x

que és més proper a l’origen de coordenades. Observem que la corba és realment una
hipèrbola perquè la funció es pot escriure així:

y =
1

x
+ 1.

Geomètricament entenem que hi ha d’haver un punt d’aquesta hipèrbola que estigui a
distància mínima de l’origen.
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Aquí la funció que volem minimitzar és la distància a l’origen d =
√

x2 + y2 referida
als punts de la hipèrbola. Podem simplificar els càlculs si pensem que els punts extrems
de la funció d seran també els punts extrems de la funció d2 i aquesta funció és més
senzilla:

f (x) = d2 = x2 + y2 = x2 +

(
1 + x

x

)2

=
x4 + x2 + 2x + 1

x2
.

Si ara derivem aquesta funció per trobar els seus punts crítics, tenim

f ′(x) =
2x5 − 2x2 − 2x

x4

i, per trobar els extrems hem de trobar les solucions de x4 − x − 1 = 0. Com que és
una equació polinòmica de quart grau, sage pot trobar les solucions exactes amb la
comanda
sage: solve(x^4-x-1==0,x)

però el resultat que obtenim és massa complicat i és millor que l’expressem en forma
de nombres inexactes. Ho podem fer amb aquesta instrucció:
sage: [s.rhs().N() for s in solve([x^4-x-1==0],x)]
[-0.248126062802622 - 1.03398206097597*I,
-0.248126062802622 + 1.03398206097597*I,
-0.724491959000516,
1.22074408460576]

Obtenim dues solucions complexes i les solucions reals a ≈ −0.7245 i b ≈ 1.2207. Una
manera més senzilla de fer-ho és aquesta altra:
sage: (x^4-x-1).roots(ring=RR)
[(-0.724491959000516, 1), (1.22074408460576, 1)]

La distància de l’origen al punt de la hipèrbola d’abscissa a és aproximadament 0.82 i
la distància de l’origen al punt de la hipèrbola d’abscissa b és aproximadament 2.19.
Per tant, el punt que buscàvem és, aproximadament, el punt (−0.72,−0.38).



Exercicis

A. Exercicis teòrics

II.A.1. Calculeu la funció derivada de les funcions següents:
(a) f (x) = 6x7 − 2x4 + 2x + 1 (b) f (x) = (x5 + 5x − 8)40

(c) f (x) = (x2 − 3x + 2) e3x (d) f (x) =
x3 − x + 1

x2 − x + 5

(e) f (x) = 2(x
2) − log3 x (f ) f (x) =

√
3x2 − 7x − 2

(g) f (x) = 3

√
x − 2

x2 + 1
(h) f (x) = ex log x

(i) f (x) =
ex

arcsin x
(j) f (x) = arcsin x + arccos x

(k) f (x) =
√
arccos x (l) f (x) = log sin x

(m) f (x) = log arctan x (n) f (x) = e−x log(x + 1)

(o) f (x) = (arctan x)2 + x0.172 (p) f (x) = π
√

x3 arccos x2 + 1

II.A.2. Calculeu la funció derivada de les funcions següents:

(a) R(N) = (K + 2N) exp(−rN2) (b) S(T ) = sin

(
2π

L
T 2

)
(c) K (P) = PαLβ (d) v(T ) =

√
V T 2 − µ sin(T ) + µV

(e) H(u) =
Su log(u + 1)

K + S2
(f ) L(t) =

her−t − K

K + 1

II.A.3. (a) Comproveu que y(t) = et − t és solució de l’equació diferencial y ′ + y2 =
e2t + (1− 2t)et + t2 − 1.
(b) Comproveu que y(x) = (1+ cex)/(1− cex) és solució de l’equació diferencial
2y ′ − y2 + 1 = 0.
(c) Per a quins valors de r la funció y(x) = erx és solució de l’equació diferencial
y ′′ + y ′ − 2y = 0?

II.A.4. Calculeu dy
dx en cadascun d’aquests casos:

(a) x2 + y2 = 4 (b) y = x2 + yx

(c) xy − y3 = 1 (d) x

xy + 1
= 2xy

II.A.5. Calculeu l’aproximació lineal i l’aproximació quadràtica de f al punt a en cadas-
cun d’aquests casos:
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(a) f (x) =
1

1− 2x
, a = 0 (b) f (x) = ex , a = 0

(c) f (x) = (1 + x)−n, a = 0 (d) f (x) = tan(x), a = π/4

II.A.6. Donada la corba d’equació f (x) = arccos x i la recta y = −x + b, trobeu el valor
de b perquè la recta sigui tangent a la corba. Determineu també el punt de
tangència.

II.A.7. Suposem que mesurem x amb una precisió del 2%. En cada cas, doneu una
estimació per a la precisió de y .
(a) y = 4x3, x = 1.5 (b) y = log x , x = 20

(c) y =
1

1 + x
, x = 4 (d) y = 4

3πx3 (volum d’una esfera).

II.A.8. Representeu gràficament les funcions següents i estudieu-ne els extrems abso-
luts a l’interval [0, 2]:

(a) f (x) =
2x

4x − 3
(b) f (x) =

x2 + 1

1− x2
(c) f (x) =

x2 − 2x

x2 − 4

(d) f (x) =

√
x

x − 2
(e) f (x) =

x2

√
x2 + 2

(f ) f (x) =
log(x + 1)

x + 1

II.A.9. Trobeu els intervals de creixement i decreixement i de concavitat i convexitat de
les funcions:
(a) f (x) = 3x2 − 2x + 1 (b) f (x) = x3 − 12x + 1

(c) f (x) = x2/3(1− x) (d) f (x) = (x + 1) ex

(e) f (x) = ex/x (f ) f (x) = log(x2 − 1)

II.A.10. Trobeu les coordenades del punt d’inflexió de la corba logística

y =
K

1 + k exp(−rx)
.

Calculeu l’aproximació lineal en aquest punt.

II.A.11. Trobeu una funció de Holling de tipus IV que tingui un màxim per x = 1, que
aquest màxim valgui 2 i tal que la seva aproximació lineal a x = 0 sigui y = 2x .

II.A.12. Sigui y(t) una solució de l’equació diferencial y ′ = 3y2−2y . Determineu el valor
de y en el moment en què està decreixent el més ràpidament possible.

B. Exercicis d’aplicació

II.B.1. S’han estudiat els arbres d’una determinada espècie, en un determinat hàbitat,
i s’ha trobat una relació empírica entre la seva edat en anys i la seva alçada en
metres:

h = 23 exp

(
−20

t

)
.

Determineu a partir de quina edat es desaccelera el creixement d’aquests ar-
bres.
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II.B.2. Els principis de la pesca sostenible adoptats per les organitzacions internaci-
onals es basen en mantenir l’estoc de peixos en el seu punt de velocitat de
creixement màxima. Si una població de peixos segueix un patró de creixement
de tipus logístic

N(t) =
100

1 + 9e−t

(en unes determinades unitats), determineu la mida de la població en el moment
en què la velocitat de creixement és màxima. Determineu la taxa de creixement
en aquest moment.

II.B.3. Al llarg del dia, les plantes d’una explotació agrícola perden aigua per evaporació
a una velocitat proporcional a (

√
t −
√

s)
√

p − t (t en hores, s ≤ t ≤ p) on s és
l’hora de la sortida del sol i p és l’hora de la posta. Els aportem aigua a una
velocitat constant k . Determineu en quin moment la velocitat de pèrdua neta
d’aigua és màxima si el sol surt a les 4:30 i es pon a les 19.

II.B.4. Satterlund-Haupt (1967) van estudiar la quantitat de neu que en una nevada
queda interceptada per diverses espècies de coníferes i van modelar aquesta
quantitat per una funció logística

I =
S

1 + exp(−k(P − P0))

on P és la quantitat de neu caiguda (en mm d’aigua) i I és la quantitat de neu
interceptada pels arbres (en mm d’aigua). Per a una espècie concreta (Douglas
fir ) els coeficients que van trobar van ser S = 2.81 mm, P0 = 4.88 mm, k = 0.98
mm−1. Determineu quin percentatge de neu s’intercepta en una nevada que es
trobi en el punt d’inflexió d’aquesta corba logística.

II.B.5. La funció logística també s’ha utilitzat a ciències socials. En un article del 2005
a la revista Technological Forecasting & Social Change s’estudia el nombre
(acumulat) d’atacs d’un cert grup terrorista entre els anys 1975 i 2005 i s’afirma
que aquesta gràfica s’aproxima a una corba logística

N(t) =
64.87

1 + exp(−at)
+ 2.03

on t és el temps des de l’inici del període d’estudi. Calculeu quin serà, segons
aquest model, el nombre total d’atacs terroristes a llarg termini. Determineu
també el nombre d’atacs en el moment en què la funció creix el més ràpidament
possible.

II.B.6. En un article del 2013 a la revista Cibergeo s’estudia el nombre de botigues
en uns barris de Porto Alegre (Brasil) entre els anys 1983 i 2007 i s’afirma que
segueixen una corba logística

N(t) =
4714

1 + 40.6 exp(−0.2357 t)

on t és el temps des de l’inici del període d’estudi. Calculeu quin serà, segons
aquest model, el nombre total de botigues a llarg termini. Determineu el nombre
de botigues en el moment en què la funció creix el més ràpidament possible.
Calculeu la taxa de creixement màxima.
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II.B.7. En un estudi epidemiològic s’ha vist que la velocitat amb què creix el nombre
d’infectats N és positiva i és proporcional a N0.82, aproximadament. Decidiu si,
segons aquest model, la taxa de creixement del nombre d’infectats augmenta o
disminueix amb el temps i si ho fa acceleradament o desacceleradament.

II.B.8. S’ha estudiat una colònia d’aus en una illa àrtica i s’ha vist que la velocitat de
creixement de la colònia és positiva i és proporcional a N1.215, aproximadament,
on N és la mida de la colònia. Decidiu si, segons aquest model, la taxa de
creixement augmenta o disminueix amb el temps i si ho fa acceleradament o
desacceleradament.

II.B.9. El coeficient de potència Cp d’un generador eòlic és el quocient entre la potència
que obté i la potència del vent: Cp = P/Pw . La potència del vent és Pw =
1
2ρSV 3, on ρ és la densitat de l’aire, S la superfície del disc que recorren els
rotors i V és la velocitat del vent. La potència que obté l’aerogenerador és
P = 1

4ρS(V + Vs)
2(V −Vs) on Vs és la velocitat del vent després de passar per

la turbina. Expresseu Cp com a funció del quocient x = Vs/V . Trobeu el màxim
de la funció Cp(x). Aquest màxim es coneix com a llei de Betz i posa un límit
superior a l’eficiència de qualsevol generador eòlic.

II.B.10. El TSR (tip speed ratio) d’un generador eòlic és el quocient entre la velocitat de
les puntes de les aspes i la velocitat del vent. Per a cada model de generador hi
ha una relació entre el coeficient de potència del generador i el TSR, Cp = Cp(λ)
on λ és el TSR. Hi ha, doncs, un TRS òptim que és el que dóna el coeficient de
potència màxim per a aquell model concret. La inclinació de les aspes permet
controlar el TSR per tal que el generador treballi sempre amb rendiment màxim.
Per a un generador senzill de tipus Perry, un cert model teòric ens dóna

Cp =
1.6λ

1 + 1.9λ

(
1− λ

3

)
.

Determineu quin és el TSR òptim segons aquest model i quin és el coeficient de
potència màxim que pot assolir el generador.

II.B.11. Fem un model sobre l’adició d’adob a un camp de cereals. Sigui x la quantitat
d’adob (kg/ha), pg el preu del gra de cereal (e/kg), pn el preu de l’adob (e/kg)
i e0 el cost (e/ha) d’aplicar adob. Suposem que el rendiment extra gràcies a
l’adob segueix una llei de Monod del tipus αx/(1 + βx). Trobeu una fórmula
per a la quantitat òptima d’adob. Suposem que pg = 0.126, pn = 1.1, e0 = 18
i que 50 kg/ha d’adob donen un increment de producció de 400 kg/ha, mentre
que l’increment màxim que ens pot donar l’adob és de 500 kg/ha. En aquestes
circumstàncies, quina decisió hem de prendre? (Basat en un full informatiu del
2009 del Pla per a la fertilització agrària a les comarques gironines.)

II.B.12. El consum de formatge l’any 2000 als Estats Units era de 13.6 kg per persona
i any i creixia a un ritme anual de 115 g per persona i any. L’any 2000, la
població dels Estats Units era de 282 milions de persones i creixia a un ritme
de 3 milions de persones per any. Sigui N(t) el consum total de formatge als
Estats Units (en kg per any). Calculeu a quina velocitat estava creixent N l’any
2000 (en kg per any2).
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II.B.13. Una illa de la zona àrtica del Canadà està coberta per una capa de gel de
14.400 km2, amb un gruix mitjà de 426 m. La superfície de gel s’està reduint a
una velocitat de 8.45 km2 per any. També s’està aprimant: el gruix de la capa
de gel es redueix en 0.5 m per any. Calculeu la velocitat de pèrdua de massa
de gel (en km3/any).

II.B.14. Els tres principals fabricants de discos durs van vendre (l’any 2014) 552 milions
d’unitats, amb una velocitat de creixement de les vendes de 26 milions d’unitats
per any2. La capacitat mitjana dels discos que es van vendre va ser de 750 GB
i aquesta capacitat estava creixent a un ritme de 12 GB per any2. Determineu
la velocitat a que creixia el nombre de GB venuts pels tres fabricants.

II.B.15. Considereu el model de creixement de von Bertalanffy. En aquests model, la
mida L d’un individu d’edat t ve donada per

L(t) = L1 − (L1 − L0) exp(−kt)

on L0, L1 i k són constants positives i L1 > L0. Demostreu que, en aquest model,
la velocitat de creixement d’un individu és proporcional a la diferència L1 − L.
Calculeu la taxa de creixement quan L = (L0 + L1)/2.

II.B.16. Imaginem un cultiu en què la biomassa produïda és funció del contingut de
nitrogen del sòl, segons una funció desconeguda. Experimentalment, hem vist
que una proporció de nitrogen de 1 gram per kg de sòl dóna una producció de 2.7
(en unes certes unitats), i que amb aquesta proporció de nitrogen, la velocitat de
variació de la biomassa produïda és de 1.05 unitats per gram. Feu una estimació
lineal de la producció de biomassa amb un contingut de nitrogen al sòl de 1.1
g/kg.

II.B.17. La FAO ha adoptat com a model estàndard per calcular l’evapotranspiració de
referència en els conreus l’equació de Penman-Monteith

E T0 =
0.408∆(Rn − G ) + γ 900

T+273u2(es − ea)

∆ + γ(1 + 0.34u2)
.

u2 és la velocitat del vent a 2 metres sobre el sòl. Per conèixer el significat
de les altres variables, llegiu el document Crop evapotranspiration – Guidelines
for computing crop water requirements – FAO Irrigation and drainage paper 56.
Considereu E T0 com a funció del vent u2 i preneu aquests valors

Rn = 13.28, G = 0, ∆ = 0.122, γ = 0.0666, T = 16.9, es = 1.997, ea = 1.409

Escriviu una aproximació lineal de E T0 per a valors de u2 propers a zero.

II.B.18. ∆ a l’equació de Penman-Monteith és el pendent de la corba de pressió de vapor
de saturació, una variable molt utilitzada a física de l’aire. La pressió de vapor
de saturació depèn de la temperatura segons la fórmula

e0(T ) = 0.611 exp

(
17.27T

T + 237.3

)
.

Doneu una fórmula per a ∆(T ). Calculeu e0(15± 1).
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II.B.19. Per calcular les emissions de CO2 (en kg/kWh) d’un combustible hem d’utilitzar
la fórmula q = 3.7C/h on C és el contingut de carboni al combustible i h és
l’energia (en kWh/kg) d’aquest combustible. Per un determinat gas natural amb
C = 0.75 hem mesurat h = 12± 1.5. Determineu el valor de q.

II.B.20. Hi ha una llei al.lomètrica que afirma que la velocitat de vol dels insectes, ocells,
avions, etc. és proporcional a l’arrel sisena de la massa de l’objecte volador.
Decidiu si el creixement de la velocitat de vol quan creix la massa és accelerat
o desaccelerat.

II.B.21. Hi ha una llei al.lomètrica que afirma que el ritme cardíac dels animals és inver-
sament proporcional a l’arrel quarta de la seva massa. Decidiu si la disminució
del ritme cardíac quan creix la massa és accelerada o desaccelerada.

II.B.22. En economia, l’ingrés marginal I M es defineix com l’ingrés total que es produiria
per la venda d’una unitat addicional d’un producte. Observeu que això es pot
entendre com la derivada de l’ingrés total respecte de la quantitat produïda Q .
Demostreu que, si P és el preu,

I M = P + Q
dP

dQ
.

Suposeu que la corba de demanda d’un producte és tal que P = k/Q . Calculeu
l’ingrés marginal.

II.B.23. En l’estudi del control biològic de plagues s’ha considerat la funció

g(N) =
NF

1 + (N/a)b

on N és la mida de la població, F és la fecunditat i g(N) és la mida de la
població en la generació successiva. a i b són constants positives, de manera que
b = 0 indica que la població creix exponencialment mentre que valors de b > 0
indiquen una dependència major de la densitat que frena el creixement. (Vegeu
el capítol 2 del Handbook of Biological Control.) Estudieu el comportament de
g(N)/N (creixement/decreixement i comportament a llarg termini).

II.B.24. Suposem que hem modelat la velocitat de creixement dels individus d’una espècie
per una equació diferencial

dW

dt
= aW b

on a i b són constants positives. Estudieu el comportament de la taxa de crei-
xement.

II.B.25. En les espècies que es reprodueixen una única vegada a la vida, la taxa de
creixement de la població r pot ser funció del moment de la reproducció t . Un
model apropiat dóna

r(t) =
log(p(t)m(t))

t

on p(t) és la probabilitat de sobreviure fins l’edat t i m(t) és el nombre de
cries fèrtils que es generen a l’edat t . Si fem les hipòtesis que p(t) = e−at i
m(t) = btc , determineu l’edat de reproducció òptima.
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II.B.26. El model de Ricker és un dels què s’utilitzen per modelar la quantitat de peixos
en una explotació pesquera. Segons aquest model, el nombre de cries R d’un
estoc P ve donat per

R(P) = αP exp(−βP),

on α i β són constants positives. Determineu el valor màxim de R . Trobeu els
punts d’inflexió de R , si n’hi ha, i estudieu la convexitat de la funció.

II.B.27. Hi ha una eruga que ataca els avets del Canadà i és atacada per una certa
espècie d’ocells. En un estudi sobre aquest fenomen, s’ha modelat la velocitat
de depredació de les erugues per part dels ocells per aquesta funció

f (N) =
a2N

k2 + N2
,

on N és la densitat d’erugues i a i k són constants. Estudieu el creixement o
decreixement de la velocitat de depredació. Determineu quina és la densitat
d’erugues quan la velocitat de depredació és màxima.

II.B.28. Considerem diverses espècies presents en un hàbitat. Suposem que totes estan
en una situació d’equilibri, menys una d’elles que sofreix un decreixement expo-
nencial. Sigui p = p(t) la proporció d’individus d’aquesta espècie en extinció.
Quina evolució té p?





Part III:

La integral
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20. Multiplicar per una quantitat variable

20.1 Un exemple

Imaginem que tenim una granja de vacum que produeix, diguem, mil litres de llet cada
dia, i venem aquesta llet a 0.31e el litre. Això ens dóna uns ingressos bruts de 310e
al dia. Quins ingressos tindrem en 30 dies? La resposta s’obté amb una multiplicació:

G = D × t = 1000× 0.31× 30 = 9300e.

Gràficament, aquest resultat s’obtindria calculant la superfície d’un rectangle de base
t (els 30 dies) i alçada D (els ingressos diaris).

Imaginem ara que el primer factor del producte anterior varia constantment. Per
exemple, varia la producció diària o varia el preu. En aquest cas, el guany no el podem
calcular per una simple multiplicació G = D× t perquè el primer factor del producte és
una quantitat variable, una funció D = D(t). De tota manera, la representació gràfica
segueix tenint sentit i el guany és també la superfície per sota de la corba de preus:
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Observem, doncs, que

La superfície entre l’eix x i una corba y = y(x) generalitza el concepte
de multiplicació y × x quan un dels factors és una variable que depèn de
l’altre factor.

20.2 Superfície limitada per la gràfica d’una funció

Aquest concepte que hem il.lustrat en un exemple de l’economia apareix a molts altres
camps.

• El treball. Recordem que la noció física de treball produït per una força es
defineix com el producte de la força per la distància que recorre.

T = F × d .

Si la força varia al llarg de la distància, el concepte de treball segueix existint,
però no es pot calcular com un simple producte, sinó que cal pensar-lo com la
superfície determinada per la funció F (d), igual que en l’exemple de la llet.

• La mitjana. Tots sabem calcular la mitjana d’uns quants nombres. Però, si tenim
una variable contínua, quin és el seu valor mitjà? Per exemple, la producció
mundial de coure ha crescut exponencialment des dels 2 milions de tones de
l’any 1940 fins els 10 milions de tones l’any 1990. Quina ha estat la producció
mitjana d’aquests anys? Com podem donar sentit a aquest concepte de producció
mitjana?
Novament, el concepte de superfície resol aquest problema: n’hi ha prou amb
dividir la producció total de tots aquests anys pel nombre d’anys. I la producció
total és la superfície sota la corba exponencial y = P(t) que ens dóna la producció
en funció del temps.
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Lògicament, la producció mitjana serà un valor Pm tal que la superfície del rec-
tangle per sota d’aquest valor sigui la mateixa que la superfície sota la corba
y = P(t).

• L’índex de Gini. És una mesura de la desigualtat en la distribució de la riquesa en
una societat. Aquest índex varia de 0 (màxima igualtat) a 1 (màxima desigualtat).
Per exemple, l’índex de Gini d’Espanya valia 35.9 el 2012, mentre que el d’Ecuador
era de 46.6 i el Noruega era de 25.9. Com es determina aquest índex?

Imaginem el percentatge de població distribuït al llarg de l’eix x , entre el 0%
i el 100%, ordenat de manera que la població més pobra és a l’esquerra. A
l’eix y hi representem la riquesa de la societat, també en percentatge, de 0% a
100%. Aleshores, la corba de Lorenz y = y(x) és la corba que ens indica quin
percentatge y de la riquesa té el x% de la població més pobra. Evidentment, si la
riquesa estigués distribuïda igualitàriament entre la població, la corba de Lorenz
seria una recta —la diagonal del quadrat— i, com més s’aparti la corba de Lorenz
de la diagonal, més desigualment repartida estarà la riquesa. Una manera simple
de mesurar aquesta desigualtat és considerar la superfície entre la diagonal i la
corba de Lorenz. L’índex de Gini es defineix com el doble d’aquesta superfície.1

• Producció d’una placa solar. Imaginem una placa solar fixa que produeix elec-
tricitat a partir de la radiació solar que rep. Suposem que volem calcular la seva
capacitat màxima de producció d’energia en un dia determinat. L’astronomia ens
donarà la posició del Sol a cada moment del dia i, a partir d’aquestes dades i de
l’orientació de la placa solar, podrem calcular la radiació R(t) que rebrà la placa,
en condicions meteorològiques òptimes. Per determinar la radiació total al final
del dia haurem de «multiplicar» la radiació pel temps. Com que la radiació és
variable, el que haurem de fer és calcular la superfície delimitada per la corba
y = R(t) quan t varia entre el moment de la sortida del Sol i el moment de la
posta.2

1El doble perquè així va de 0 a 1.
2Si visiteu la pàgina www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-

solar-insolation hi trobareu eines per fer aquests càlculs.
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Calculador solar a www.pveducation.org

• Recordem la funció de demanda de l’economia q = D(p) que ens dóna la quan-
titat que el mercat està disposat a comprar d’un producte o servei al preu p.
Considerem la funció inversa p = D−1(q) i suposem que el mercat comprés a
aquest preu entre q = q0 i q = q1. Expliquem-ho millor. Venem a un preu (alt) p0

i tenim una demanda (baixa) q0. Abaixem una mica el preu fins a p0−ε i tenim una
demanda lleugerament superior q0 + δ. És a dir, el mercat compra una quantitat
addicional igual a δ, pel fet de la rebaixa del preu igual a ε. Prosseguim abaixant
el preu de manera contínua fins que arribem a un preu (baix) p1 que dóna lloc a
una demanda (alta) q1. Quants diners hem recollit en tot el procés? Exactament
la superfície limitada per la corba p = D−1(q) entre q0 i q1 juntament amb la
superfície d’un rectangle adjacent com es veu a la figura.
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Considerem ara el punt on es tallen la corba d’oferta (creixent, color vermell) i
la corba de demanda (decreixent, color blau). És el punt d’equilibri (qe , pe) en el
qual l’oferta coincideix amb la demanda. Fixem-nos ara en les superfícies groga i
taronja del dibuix i pensem en quin significat tenen. La superfície C S representa
el consumer surplus i és els diners que s’estalvien els consumidors quan el preu
es situa a pe . D’altra banda, la superfície PS representa el producer surplus que
són els diners extres que reben els productors quan el preu es situa a pe .

20.3 La integral

El concepte matemàtic que hi ha al darrere de tots els exemples que hem considerat
a l’apartat anterior és el concepte d’integral d’una funció:

La integral d’una funció y(x) entre dos valors x = a i x = b és l’àrea
limitada per la gràfica de la funció i l’eix de les x , entre aquests dos
valors. La notació que s’usa és∫ b

a
y(x) dx .

Els valors a i b s’anomenen límits d’integració.
Observacions:

• La part de la superfície que es troba per sota de l’eix x es considera, a efectes
de la integral, negativa. Per exemple,∫ π

0
cos x dx = 0

perquè la part de la superfície entre 0 i π/2 es cancel.la exactament amb la part
de la superfície entre π/2 i π.
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• La notació inclou dx , que es llegeix diferencial de x . Aquesta notació és útil per
recordar-nos quina és la variable independent que considerem. Evidentment, si
la variable fos, per exemple, t , escriuríem dt .

• Les àrees que ja coneixem ens donen valors de certes integrals, i viceversa, si
som capaços de calcular una integral, tindrem l’àrea d’una figura. Per exemple,∫ r

−r

√
r2 − x2 dx =

π

2
r2

perquè la integral de l’esquerra representa l’àrea d’un semicercle de radi r . D’al-
tra banda, si k és una constant,∫ b

a
k dx = k(b − a)

perquè la integral de l’esquerra representa l’àrea d’un rectangle de base b − a i
alçada k .

• Segons el que hem dit abans, la mitjana d’una funció l’hem de calcular amb una
integral, d’aquesta manera:

fm =
1

b − a

∫ b

a
f (x) dx .

• Com a conveni, si a > b, posarem∫ b

a
y(x) dx = −

∫ a

b
y(x) dx .

• Les propietats elementals de l’àrea es traslladen a propietats bàsiques de la
integral:

1. Si k és una constant,
∫ b

a kf (x) dx = k
∫ b

a f (x) dx .
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2.
∫ b

a f (x) dx +
∫ c

b f (x) dx =
∫ c

a f (x) dx .

3.
∫ b

a (f (x) + g(x)) dx =
∫ b

a f (x) dx +
∫ b

a g(x) dx .

4. Si f (x) ≤ g(x), aleshores
∫ b

a f (x) dx ≤
∫ b

a g(x) dx .

• La integral d’una funció
∫ b

a f (x) dx és el valor de l’àrea entre la seva gràfica i l’eix
d’abscisses. Però, des d’un punt de vista matemàtic, caldria donar una definició
més precisa de què és, exactament, l’àrea. Per fer-ho, es subdivideix molt finament
l’interval [a, b] i això dóna una descomposició de la superfície en petites bandes
verticals, molt fines, cadascuna de les quals és, aproximadament, un rectangle.
Aleshores, la definició rigorosa de què és l’àrea consisteix en sumar les àrees de
tots aquests rectangles i prendre el límit quan el gruix de cada rectangle tendeix
a zero.
En particular, la definició matemàtica precisa de la integral necessita d’un pas
al límit. Podria ser que aquest límit no existís: diríem que la funció no és inte-
grable. Per exemple, la integral de la funció y = 1/x2 entre −1 i 1 no existeix
perquè la superfície que limita la gràfica d’aquesta funció és infinitament gran.
Afortunadament, totes les funcions contínues i moltes que no són contínues són
integrables.



21. Relació entre integral i derivada

21.1 El teorema fonamental del càlcul

Al llarg dels segles XVII i XVIII, diversos matemàtics com Barrow, Gregory, Newton
o Leibnitz van demostrar l’existència d’una relació entre els conceptes d’integral i
derivada. Aquesta relació és tan important que es coneix amb el nom de teorema
fonamental del càlcul.

Quina és aquesta relació? Pensem que la integral d’una funció representa l’àrea
entre la gràfica d’una funció i l’eix de les x ’s, i la derivada d’una funció representa
el pendent de la recta tangent a la gràfica de la funció, dos conceptes aparentment
allunyats un de l’altre. Per entendre quina és aquesta relació podem fer un exemple:
Exemple. Recordem l’exemple de la producció de llet. Cada dia les nostres vaques
produeixen una certa quantitat de litres de llet, que venem a un cert preu, de manera
que cada dia ingressem una quantitat de diners donada per una funció f (t). Aquesta
quantitat de diners és una funció del temps t , perquè la quantitat de llet varia i el preu
de la llet també varia. Suposem que cada dia ingressem al banc els diners que anem
obtenint a partir de la venda de la llet. Després d’un temps T , quants diners tindrem
al banc? La resposta, ja ho sabem, és∫ T

0
f (t) dt.

Aquesta quantitat de diners és una funció de T . Diguem-n’hi A(T ), diners acumulats
al banc després d’un temps T :

A(T ) =

∫ T

0
f (t) dt.

La pregunta que ens fem ara és: com creix el saldo del nostre compte corrent? És a
dir, quina és la velocitat de creixement de la funció A(T ). Uns instants de reflexió ens
convenceran que el nostre saldo al banc creix exactament a la velocitat que marca la
funció f (t), que és la funció que ens diu quants diners guanyem cada dia. Si escribim
això en llenguatge matemàtic, tenim

dA

dT
= f (T ).

Això és, precisament, el teorema fonamental del càlcul.1 Dit d’una altra manera,

d

dT

∫ T

0
f (t) dt = f (T ).

1En aquest teorema hem de suposar que f (t) és una funció contínua a un interval que contingui zero.
El límit inferior de la integral pot ser 0 o pot ser qualsevol altre valor a.
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Exemple. Si estudiem el consum de petroli a l’Índia des del 1965 fins el 2008, veiem
que la gràfica s’aproxima força a una funció com aquesta

f (t) = 258.5 exp
( t

16.7

)
on t és el temps en anys des del 1965 i f (t) és el consum en milers de barrils per dia
(bbl/dia). Designem que Q(T ) el consum total de petroli a l’Índia quan han passat T
anys des del 1965. A quina velocitat estava creixent Q l’any 2008?

En primer lloc, és clar que el consum total acumulat Q(T ) ve donat per una integral:

Q(T ) =

∫ T

0
f (t) dt.

Ens pregunten per la velocitat de creixement de Q(T ) quan T = 43, és a dir, ens
pregunten Q ′(43). Pet teorema fonamental del càlcul, Q ′(T ) = f (T ). Per tant,

Q ′(43) = f (43) = 258.5 exp

(
43

16.7

)
≈ 3394× 103 bbl/dia

21.2 Primitives d’una funció

Si F és una funció i f és la seva derivada, direm que F és una primitiva de f . D’aquesta
manera, els conceptes de derivada i primitiva són inversos un de l’altre:

Com que la derivada de sin x és cos x , una primitiva de cos x és sin x .

Observem que diem una primitiva, perquè una funció, en general, tindrà moltes primiti-
ves diferents: sin x +2 també és una primitiva de cos x . Si coneixem una primitiva F (x)
d’una funció f (x), totes les primitives de f (x) en un interval seran de la forma F (x)+k ,
on k és qualsevol constant.

El teorema fonamental del càlcul que hem vist a l’apartat anterior ens diu que si
f (t) és una funció contínua, aleshores

F (x) =

∫ x

a
f (t) dt

és una primitiva de la funció f (x). En particular, si coneixem una primitiva G (x) de
f (x), tindrem que G (x) = F (x) + k i es complirà això:

0 =

∫ a

a
f (t) dt = F (a) = G (a)− k

per tant, k = G (a) i, aleshores:∫ b

a
f (t) dt = F (b) = G (b)− k = G (b)− G (a).

En resum:
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Si coneixem una primitiva G (x) d’una funció f (x), podem calcular de ma-
nera immediata la integral

∫ b
a f (x) dx així:∫ b

a
f (x) dx = G (b)− G (a).

Aquesta relació entre primitives i integrals —que també es coneix amb el nom de
teorema fonamental del càlcul— fa que sovint s’utilitzi la notació

∫
f (x) dx per indicar

les primitives de la funció f (x).

Exemple. En la situació de l’exemple anterior, calculem el consum mitjà de petroli a
l’índia en els 43 anys del 1965 al 2008. Sabem que la mitjana es calcula amb una
integral:

fm =
1

43

∫ 43

0
258.5 exp

( t

16.7

)
dt.

Pel calcular aquesta integral n’hi ha prou amb conèixer una primitiva de la funció que
volem integrar. En aquest cas, podem trobar una primitiva «a simple vista»:

F (t) = 258.5× 16.7 exp
( t

16.7

)
Aleshores,

fm =
1

43
(F (43)− F (0)) ≈ 1218.

En general, pot ser molt difícil (o impossible) trobar una primitiva d’una funció,
encara que es tracti d’una funció que s’expressi a partir de les funcions elementals. De
fet, el teorema fonamental del càlcul ens diu que les funcions contínues sempre tenen
una primitiva, però el problema és que hi ha casos on no podem expressar aquesta
primitiva a partir de les funcions elementals.2

Exemple. Com determinem la velocitat de l’aigua d’un riu? A la pràctica, disposem d’un
instrument de mesura de la velocitat de l’aigua però, evidentment, aquesta velocitat
depèn de la profunditat a què submergim l’instrument. La velocitat és màxima a la
superfície i va disminuint a mida que ens acostem al llit del riu. La física d’aquesta
situació està ben estudiada per la hidrodinàmica. Hi ha un model que ens diu que, en
condicions prou generals, la velocitat de l’aigua a una distància x del fons ve donada
per una funció potencial3

v(x) = kx r

on k és una constant que depèn del riu i r és un cert coeficient de fricció que també
depèn de les característiques del riu i varia aproximadament entre 0.14 i 0.20. Aplicant
això, la velocitat mitjana serà

vm =
1

D

∫ D

0
kx r dx

2Pensem, per exemple, en una funció tan senzilla com la funció 1/x . Sabem que log x és una primitiva
però, si no coneguéssim la funció logaritme natural, no sabríem expressar la primitiva de 1/x .

3Vegeu Lee et al., Power Law Exponents for Vertical Velocity Distributions in Natural Rivers, Engine-
ering 2013, 5, 933–942.
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on D és la fondària del riu.
És molt senzill trobar «a ull nu» una primitiva de la funció que volem integrar.

Aleshores,

vm =
1

D

∫ D

0
kx r dx =

1

D

[
kx r+1

r + 1

]D

0

=
k

r + 1
Dr .

Aquí hem utilitzat la notació tradicional[
f (x)

]b
a
= f (b)− f (a).

A quina distància del fons es dóna aquesta velocitat mitjana? Cal resoldre l’equació

k

r + 1
Dr = v(x) = kx r .

La solució és
x

D
=

(
1

1 + r

)1/r

≈ 0.4.

En resum, la velocitat mitjana de l’aigua d’un riu es troba a una profunditat (a comptar
des de la superfície) que és el 60% de la profunditat total del riu, independentment
del riu.4 Aquesta és la justificació teòrica d’una regla pràctica que trobarem a molts
manuals d’hidrologia.5

21.3 Fem-ho amb sage

Hem vist que si coneixem una primitiva d’una funció, ja és molt fàcil calcular la integral
d’aquesta funció, gràcies al teorema fonamental del càlcul. També hem dit que trobar
explícitament una primitiva d’una funció pot ser molt complicat, o impossible. Per
exemple, una funció senzilla de la que la primitiva no es pot expressar a partir de les
funcions elementals és la funció sin x2.

Afortunadament, a la pràctica podem calcular integrals sense necessitat de conèixer
una primitiva. Recordem que la integral

∫ b
a f (t)dt és l’àrea limitada per la corba

y = f (t) i l’eix de les x ’s, entre x = a i x = b. Aquesta superfície es pot aproximar tant
com calgui, com hem explicat a la pàgina 128: es subdivideix molt finament l’interval
[a, b] i això dóna una descomposició de la superfície en petites bandes verticals, molt
fines, cadascuna de les quals és, aproximadament, un rectangle. Aleshores, el valor
aproximat de la integral s’obté sumant les àrees de tots aquests rectangles. Aquesta
idea permet que els programes com sage calculin integrals amb facilitat.
sage: integral(exp(x)*cos(x),x)
1/2*(cos(x) + sin(x))*e^x
sage: integral(exp(x)*cos(x),x,0,1)
1/2*cos(1)*e+1/2*e*sin(1)-1/2
sage: integral(exp(x)*cos(x),x,0,1).N()
1.37802461354736

4Observem que el resultat sí que depèn del riu, però si representem gràficament la funció r

√
1

1+r
per

als valors de r entre 0.14 i 0.20, veurem que la funció varia molt poc de 0.4.
5Evidentment, el tema de la velocitat de l’aigua d’un riu és un tema important i molt més complex del

que podem discutir en aquest petit exemple.
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sage: integral(sin(x^2),(x,0,pi/2)).N()
0.828116328842895
sage: integral(e^x*sin(x)^3*cos(x),x)
1/34*cos(4*x)*e^x-1/10*cos(2*x)*e^x-1/136*e^x*sin(4*x)+1/20*e^x*sin(2*x)
sage: integral(e^x*sin(x)^3*cos(x),x,0,pi/2)
11/85*e^(1/2*pi) + 6/85
sage: integral(e^x*sin(x)^3*cos(x),x,0,pi/2).N(digits=30)
0.693120602242574920120039909809
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En la majoria de casos pràctics, la millor manera de calcular la integral d’una funció
complicada no és intentar trobar una primitiva de la funció per poder aplicar el teore-
ma fonamental del càlcul, sinó que és utilitzar un programa de càlcul matemàtic com
sage. Malgrat això, és convenient ser capaç de trobar primitives d’algunes funcions
especialment simples. En aquesta lliçó estudiarem algunes estratègies per fer-ho.

22.1 Primitives trivials

Cada vegada que hem calculat la derivada d’una funció elemental, hem calculat també
una primitiva. Per exemple, la coneguda fórmula

d

dx
x r = rx r−1

ens diu que ∫
x r dx =

x r+1

r + 1
+ C , si r 6= −1.

Anàlogament, com que sabem que la derivada de log x és x−1, també sabem que∫
1

x
dx = log |x |+ C .

(Observem el valor absolut, necessari perquè log x només està definit per a x > 0
mentre que 1/x també està definida per x < 0.) D’aquest tipus de primitives en direm
primitives trivials. Fem-ne una llista:

•
∫

k dx = kx + C

•
∫
(f (x)+g(x)) dx =

∫
f (x) dx+

∫
g(x) dx

•
∫

x r dx =
x r+1

r + 1
+ C , r 6= −1

•
∫

1

x
dx = log |x |+ C

•
∫

ex dx = ex + C

•
∫

ax dx =
ax

log a
+ C

•
∫
sin x dx = − cos x + C

•
∫
cos x dx = sin x + C

•
∫

1√
1− x2

dx = arcsin x + C

•
∫

1

1 + x2
dx = arctan x + C

22.2 Primitives immediates

Hi ha funcions que s’assemblen molt a les de l’apartat anterior i per a les quals el
càlcul d’una primitiva és molt senzill. Per exemple, sabem que una primitiva de ex

134
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és ex , però si tenim la funció exp(3x + 1), qui és una primitiva seva? La resposta és
molt senzilla: exp(3x + 1)/3. Direm que són primitives immediates. Posem uns quants
exemples:

•
∫

e2x+1 dx =
1

2
e2x+1 + C

•
∫
sin(2x + 1) dx = −1

2
cos(2x + 1) + C

•
∫ √

2x + 1 dx =
1

3
(2x + 1)3/2 + C

•
∫
(2x + 1)r dx =

1

2(r + 1)
(2x + 1)r+1 + C , r 6= −1

•
∫

1

2x + 1
dx =

1

2
log |2x + 1|+ C

•
∫

1

2 + 3x2
dx =

∫
1/2

1 + 3x2

2

dx =

√
2

2
√
3
arctan

(√
3x√
2

)
+ C

Recordem que quan apliquem la regla de la cadena per derivar una funció f (g(x))
obtenim un producte f ′(g(x))g ′(x). Això ens permet afirmar que∫

f ′(g(x))g ′(x) dx = f (g(x)).

Aquesta observació ens permet calcular primitives que tinguin aquest aspecte. Posem
alguns exemples:

•
∫

x

3x2 + 5
dx =

1

6
log |3x2 + 5|+ C

•
∫
sin x cos x dx =

1

2
(sin x)2 + C

•
∫
tan x dx =

∫ sin x

cos x
dx = − log | cos x |+ C

•
∫

xe3x2+1 dx =
1

6
e3x2+1 + C

22.3 Primitives de funcions racionals

Recordem que una funció racional es una funció que s’expressa com el quocient de dos
polinomis. Hi ha una estratègia que permet trobar una primitiva de qualsevol funció
d’aquest tipus. N’aprendrem només els casos més senzills. Suposem que volem trobar
una primitiva de la funció

f (x) =
1

x2 − 5x + 6
=

1

(x − 2)(x − 3)
.



136 22. Càlcul de primitives —1—

Per fer-ho, observem que

1

(x − 2)(x − 3)
=
−1

x − 2
+

1

x − 3

i, per tant,∫
1

(x − 2)(x − 3)
dx = − log |x − 2|+ log |x − 3|+ C = log

∣∣∣∣x − 3

x − 2

∣∣∣∣+ C .

Aquest mètode es pot utilitzar per trobar una primitiva de qualsevol funció racional del
tipus

ax + b

(x − r)(x − s)
, r 6= s.

Per fer-ho, escrivim
ax + b

(x − r)(x − s)
=

A

x − r
+

B

x − s

i determinem quins són els valors de les constants A i B . El cas r = s s’ha de fer d’una
manera una mica diferent. Per exemple,∫

1

x2 − 2x + 1
dx =

∫
1

(x − 1)2
dx =

∫
(x − 1)−2 dx = −(x − 1)−1 + C .

∫
x

x2 − 2x + 1
dx =

∫
1

x − 1
dx +

∫
1

(x − 1)2
dx = log |x − 1| − 1

x − 1
+ C .

Finalment, si el denominador és un polinomi de segon grau sense arrels reals,
l’estratègia és reduir-ho al cas x2 + 1, que sabem que dóna lloc a la funció arctan x .
Això ho aconseguim amb el mètode de completació de quadrats que vam veure a la
pàgina 12. Per exemple:∫

1

x2 + x + 1
dx =

∫
1

(x + 1
2)

2 + 3
4

dx =

4

3

∫
1(

2√
3

x + 1√
3

)2
+ 1

dx =
2
√
3

3
arctan

(
2√
3

x +
1√
3

)
+ C .

No estudiarem casos més complicats que aquests perquè, en general, és preferible
resoldre’ls usant sage.
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23.1 Integració per canvi de variable

Suposem que volem calcular la superfície d’un quart de cercle de radi 1. Ja sabem, per
la geometria elemental, que aquesta superfície val π/4 però, ni no sabéssim aquest
resultat, hauríem de resoldre la integral∫ 1

0

√
1− x2 dx .

Aquesta funció
√
1− x2 no té una primitiva immediata, però podem trobar la seva

primitiva fent el que es coneix com un canvi de variable. El canvi de variable que resol
aquest problema concret consisteix en introduir una nova variable θ tal que

x = sin θ.

Aleshores, a la integral anterior, hem de substituir cada x pel seu valor en funció de θ.
És a dir:

• Hem de substituir
√
1− x2 per

√
1− sin2 θ = cos θ.

• Hem de substituir dx per d(sin θ) = cos θ dθ. De fet, la notació dx serveix perquè
no oblidem que hem de fer aquest canvi.

• Hem de substituir els límits d’integració x = 0 i x = 1, pels seus valors corres-
ponents en la variable θ: θ = 0 i θ = π/2.

Aleshores, ∫ 1

0

√
1− x2 dx =

∫ π/2

0
cos2 θ dθ.

D’aquesta manera, obtenim una nova integral que pot ser més fàcil o més difícil que la
integral original. En aquest exemple concret, aquesta integral es pot resoldre aplicant
una fórmula de trigonometria que diu

cos(2x) = 2 cos2 x − 1.

Per tant, ∫ π/2

0
cos2 θ dθ =

[
θ

2
+

1

4
sin(2θ)

]π/2
0

=
π

4
.

Fem un segon exemple. Suposem que volem trobar una primitiva de x
√
2x − 1.

Podem fer el canvi u = 2x − 1, amb la qual cosa du = 2 dx i tenim∫
x
√
2x − 1 dx =

∫
u + 1

2

√
u

du

2
=

1

4

∫
(u3/2 + u1/2) du =

1

4

(
2

5
u5/2 +

2

3
u3/2

)
+ C .
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23.2 Integració per parts

Recordem la regla de derivació d’un producte de dues funcions:

(uv)′ = u′v − uv ′.

Si interpretem aquesta regla en termes de primitives, ens diu que∫
uv ′ dx = uv −

∫
u′v dx

que és una fórmula que, en alguns casos, ens pot ser útil per a calcular una integral.
Aquesta fórmula s’acostuma a escriure en aquesta forma equivalent:∫

u dv = uv −
∫

v du.

Se’n diu la fórmula d’integració per parts perquè, per aplicar aquest mètode, hem de
separar la funció a integrar en dues parts.

Fem un exemple. Suposem que busquem una primitiva de x sin x , és a dir,∫
x sin x dx .

Fem això
u = x ; dv = sin x dx .

Aleshores,
du = dx ; v =

∫
dv =

∫
sin x dx = − cos x

i la fórmula d’integració per parts ens diu∫
x sin x dx = (− cos x)x −

∫
(− cos x) dx = −x cos x + sin x + C .

Un segon exemple podria ser aquest:
∫
log x dx . Separem en dues parts així: u =

log x , dv = dx . La fórmula d’integració per parts ens dóna∫
log x dx = x log x −

∫
x
1

x
dx = x log x − x + C .

23.3 Integrals impròpies

Quin sentit pot tenir una integral com aquesta∫ ∞
a

f (x) dx ?

Geomètricament, aquesta integral correspondria a la superfície de la regió entre l’eix
x i la corba y = f (x), a partir del punt x = a. Aquesta regió és il.limitada per la dreta
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però, com veurem, pot tenir una superfície finita. La manera natural d’entendre aquesta
superfície és com un límit: ∫ ∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx .

Posem un exemple.∫ ∞
1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞
(1− b−1) = 1.

En canvi, ∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞
log b =∞.

Direm que la integral és divergent.
D’aquestes integrals se’n diuen integrals impròpies. Un altre exemple seria aquest:∫ 1

0

1√
x

dx

que, a primera vista, pot no semblar una integral impròpia perquè no hi apareix el
símbol ∞, però ho és perquè la funció que volem integrar no està definida a x = 0 i,
de fet, tendeix a infinit quan x tendeix a 0+. Aquesta integral també pretén calcular la
superfície d’una regió il.limitada. La resoldríem així:∫ 1

0

1√
x

dx = lim
a→0+

∫ 1

a

1√
x

dx = lim
a→0+

(2− 2
√

a) = 2.

Aquestes integrals impròpies apareixen a molts àmbits. Per exemple, a probabilitat.

Exemple. En molts casos d’una espècie animal sotmesa a l’acció d’un depredador, s’ha
vist que l’esperança de vida dels individus d’aquesta espècie es pot modelar força bé
pel que en estadística es coneix com la distribució exponencial. En aquesta distribució,
la probabilitat que un individu superi l’edat t ve donada per una funció

f (t) = exp(−r t).

En aquestes condicions, la vida mitjana (o esperança de vida) es calcula com

Tm = −
∫ ∞
0

t f ′(t) dt.

En un cert estudi sobre el ratolí de bosc (Apodemus sylvaticus) del Parc Natural de
Sant Llorenç de Munt i la Serra de l’Obac, s’ha trobat (temps en dies)

f (t) = exp(−0.0032t).

Si volem determinar l’esperança de vida segons aquest model estadístic, hem de cal-
cular aquesta integral impròpia:

−
∫ ∞
0

t f ′(t) dt = 0.0032

∫ ∞
0

t exp(−0.0032t) dt
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Per fer-ho, comencem buscant aquesta primitiva:∫
te−rt dt.

Aquí és útil fer integració per parts

u = t; dv = e−rt dt; du = dt; v = −e−rt

r
.

Aleshores, la fórmula d’integració per parts ens dóna∫
te−rt dt = − te−rt

r
− e−rt

r2
.

Per tant, si r és positiu, tenim

r

∫ ∞
0

te−rt dt = lim
b→∞

[
−e−rt

(
x +

1

r

)]b

0

=
1

r
.

En la situació del ratolí de bosc, aquesta vida mitjana és 1/0.0032 = 312.5 dies.

23.4 Fem-ho amb sage

sage també permet calcular, en molts casos, integrals impròpies. Ja hem vist abans que
∞ es pot expressar en sage amb dues o’s minúscules oo o amb la paraula Infinity.
Observem com faríem el càlcul del final de l’apartat anterior.
sage: r=var(’r’)
sage: integral(x*e^(-r*x),x,0,oo)
Is r positive, negative or zero?
sage: assume(r>0)
sage: integral(x*e^(-r*x),x,0,oo)
r^(-2)
sage: reset(’r’)
sage: r=var(’r’)
sage: assume(r<0)
sage: integral(x*e^(-r*x),x,0,oo)
ValueError: Integral is divergent.

Observem aquests altres exemples:
sage: integral(1/x,x,1,oo)
ValueError: Integral is divergent.
sage: integral(1/x^2,x,1,oo)
1
sage: integral(1/sqrt(x),x,0,1)
2
sage: integral(e^(-x^2),x,-oo,oo)
sqrt(pi)



Exercicis

A. Exercicis teòrics
III.A.1. Calculeu les primitives següents:

(a)
∫

2 dx

3x4
; (b)

∫
5√
5− x

dx ; (c)
∫

ex

ex + 1
dx ;

(d)
∫

6x

x2 + 4
dx ; (e)

∫
tan(2x) dx ; (f )

∫
sin(2x) cos(2x) dx ;

III.A.2. Calculeu aquestes primitives utilitzant integració per parts o per canvi de vari-
able:
(a)
∫

x3 log x dx ; (b)
∫
arcsin x dx ;

(c)
∫
(x2 + 5x − 9) e−2x dx ; (d)

∫
ex cos x dx ;

(e)
∫

x arctan x dx ; (f )
∫

ex

(ex − 3)2
dx .

III.A.3. Calculeu les primitives de les funcions racionals següents:

(a)
∫

2x + 5

x2 − 5x + 6
dx ; (b)

∫
2x + 1

x2 + x + 1
dx ;

(c)
∫

1

x4 − 1
dx ; (d)

∫
dx

x2 + x − 2
;

III.A.4. En cadascun dels casos següents, calculeu l’àrea de la regió limitada per les
corbes que es donen:
(a) y2 = 2x i x2 = 2y ; (b) y = x(3 + x2), y = 0, x = 2;

(c) y =
1

2 + x2
, y =

x2

3
; (d) y = ex , y = e−x i x = log 2;

(e) y = x2 − 4, y = 4− x2; (f ) x = 8 + 2y − y2, x = 0, y = −1, y = 3;

III.A.5. Donada la funció
f (x) =

1

2
ex − 2e−x ,

calculeu l’àrea del domini de forma triangular que limiten la corba y = f (x) i
els eixos de coordenades.

III.A.6. Calculeu el valor de a per tal que l’àrea definida entre x = 0 i x = 1/2 per la
corba f (x) = a

1+4x2 sigui igual a l’àrea definida entre x = 0 i x = 3 per la corba
g(x) =

√
9− x2.
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B. Exercicis d’aplicació

III.B.1. Sigui B(t) una funció positiva de t ≥ 0. Per exemple, B(t) pot ser la quantitat de
biomassa en una parcel.la, en funció del temps. Determineu taxa de creixement
mitjana de B(t) entre t = 0 i t = t1.

III.B.2. La teoria de Haldane (1957) sobre el cost de la selecció natural planteja la
situació següent. Suposem una població estable amb dos al.lels presents en
proporcions p0 i q0 = 1 − p0. Apareix un canvi en el medi que perjudica el
segon al.lel (però no el primer), de manera que la població amb aquest segon
al.lel passa a tenir una taxa de creixement negativa −ε. Això vol dir que les
proporcions dels dos al.lels aniran variant en el temps: p(t), q(t). A cada nova
generació, es «perdrà» una proporció εq d’individus amb l’al.lel menys apte, fins
que s’acabaran extingint seguint un model logístic q′ = −εqp (vegeu l’exercici
II.B.28). La suma d’aquestes pèrdues és el que Haldane anomena el cost de la
selecció natural:

C =

∫ ∞
0

εq dt.

Utilitzeu les propietats de la integral per comprovar que C es pot escriure com

C =

∫ 1

p0

1

p
dp.

Calculeu C si p0 = 10−6.

III.B.3. Si en una comunitat s’ha determinat experimentalment que la corba de Lorenz
s’aproxima a L(x) = 0.8x2 +0.2x , calculeu l’índex de Gini d’aquesta comunitat.

III.B.4. Segons l’informe Wealth, Income, and Power, l’any 2010 l’u per cent de la po-
blació mundial acumulava el 35.4% de la riquesa. Si pensem que la riquesa
mundial està distribuïda segons una corba de Lorenz potencial y = x r , deter-
mineu aquesta corba i calculeu l’índex de Gini mundial l’any 2010.

III.B.5. Per estudiar l’augment de la concentració de CO2 a l’atmosfera s’utilitzen les
dades de l’observatori de Mauna Loa, a les illes Hawaii. S’ha vist que la con-
centració (q, en ppm) s’aproxima força bé a una funció

q(t) = 0.0125 t2 + 0.5813 t + 310

on t és el temps en anys des de l’any 1950. Determineu la concentració mitjana
de CO2 a l’atmosfera de Mauna Loa des de l’any 1950 fins l’any 2010.

III.B.6. Consultant les estadístiques sobre la temperatura superficial de l’aigua del mar
a la platja de Barcelona en el període 1974–2013 (IDESCAT) es veu que aquesta
temperatura s’aproxima a 17.3+ f (t) graus, on f (t) és una corba periòdica com
aquesta

f (t) = 5.5 sin

(
2π(t + 32)

52

)
on t és el temps en setmanes a partir del primer de gener. Determineu la
temperatura mitjana de l’aigua entre les setmanes 24 i 37.
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III.B.7. Buidem per gravetat un dipòsit cilíndric vertical i volem saber el temps que tri-
garà a buidar-se. La física ens diu que, en aquestes circumstàncies, la velocitat
a que surt el líquid per l’aixeta que hi ha a la part inferior del dipòsit és una
funció lineal del temps

v = α− βt

on α i β són constants positives que tenen aquests valors

α =
√
2gh0; β =

a

A
g .

h0 és l’alçada del líquid a l’inici de l’operació, A és la secció del dipòsit, a és
la secció efectiva de l’aixeta i g és l’acceleració de la gravetat. Determineu el
temps que triga el dipòsit a buidar-se.

III.B.8. Volem determinar la quantitat d’energia solar que incideix sobre una superfície
(per exemple, una placa solar) en un dia. Com que es tracta d’un problema molt
difícil, el resoldrem sense tenir en compte l’efecte de l’atmosfera i en el cas
d’una superfície horitzontal sobre la que incideix el sol des de que surt fins que
es pon. En aquestes circumstàncies, la quantitat d’energia solar depèn de:

• La latitud λ del lloc.
• El dia de l’any n.
• L’hora solar T = t + E , on t és el temps (ordinari) i E és la discrepància

que aproximadament només depèn de n.
• L’energia que arriba del sol a la Terra que, per simplificar, suposarem que

és fixa I0 = 1367 W/m2. (De fet, varia en ±3% al llarg de l’any.)
• L’angle Z amb què incideix la llum del sol, és a dir, l’angle entre la vertical

i els rajos de sol.
• L’hora de la sortida del sol i l’hora de la posta, que es produeixen quan

Z = ±π/2.
• la declinació del sol δ.

Aquestes variables estan relacionades entre elles. Tenim aquestes fórmules
fonamentals

δ =
23.45

180
π sin

(
2π(284 + n)

365

)
.

cos(Z ) = sin(λ) sin(δ) + cos(λ)cos(δ) cos(ω).

Aquí ω és el temps solar expressat en radiants a partir del migdia, és a dir

ω =
12− T

12
π.

Amb tota aquesta informació, calculeu la quantitat d’energia solar que incideix
sobre una placa horitzontal de 1 m2 situada al cim del Puigmal (λ = 42.383◦),
el dia 21 de febrer (si l’atmosfera no existís!).

III.B.9. Quan dibuixem en escala semilogarítmica la producció eòlica mundial d’electri-
citat entre els anys 1989 i 2012 obtenim, amb força aproximació, una recta. Si
la producció el 1989 va ser de 2.6 TWh i la producció el 2012 va ser de 545
TWh, calculeu la producció total en tots aquests anys.
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III.B.10. Suposem que les corbes d’oferta i demanda d’un cert producte s’aproximen a

S(p) = p − 1; D(p) =
6− p

p
.

Determineu, segons aquest model, el preu d’equilibri pe , la demanda d’equilibri
qe , el consumer surplus C S i el producer surplus PS .

III.B.11. Comença a ploure i plou cada vegada amb més intensitat, aproximadament
segons una funció I = 4 · 10−6 t3 on t és el temps en minuts i I és la intensitat
de pluja en l/m2 min. Calculeu quanta pluja haurà caigut en els primers 60
minuts.



Part IV:
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24.1 Coses que ja sabem

A l’apartat 12.4 ja hem après que una equació diferencial és una equació tal que

• La incògnita és una funció desconeguda f (x).

• A l’equació hi apareixen la variable x , la funció incògnita f (x) i les seves derivades
f ′(x), f ′′(x), etc.

Direm que són equacions diferencials ordinàries perquè la funció incògnita és una
funció d’una única variable.

Ja hem vist alguns exemples d’equacions diferencials:

• L’equació del creixement exponencial

y ′ = ry

és una equació diferencial i les seves solucions vam veure que eren les funcions
y = kerx per a qualsevol valor de la constant k . Aquesta equació es pot escriure
de maneres equivalents:

y ′

y
= r ;

dy

dx
= ry ; dy = ry dx .

Tanmateix, la formulació y ′/y = r no és exactament equivalent a la formulació
inicial y ′ = ry perquè la possibilitat y = 0 està contemplada a la formulació
inicial però no a la segona formulació.

• L’equació del creixement logístic

y ′ = ry
(
1− y

K

)
és una equació diferencial. A la pàgina 79 vam dir que les seves solucions són
les funcions

y =
K

1 + ke−rt

per a qualsevol valor de la constant k . Però no vam dir ni com havíem arribat a
aquesta solució ni si n’hi podia haver d’altres.

• Cada problema de càlcul de la primitiva d’una funció és també una equació
diferencial. En efecte, si volem calcular

∫
y dx utilitzant una primitiva de la

funció y(x), hem de resoldre l’equació diferencial z ′ = y .
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Aquests tres exemples corresponen a equacions diferencials de primer ordre que
són les que només fan intervenir la primera derivada de la funció incògnita. En canvi, la
llei de Newton de la dinàmica F = ma la podem entendre com una equació diferencial
de segon ordre. En efecte, si tenim un cos de massa m que es mou per l’acció d’una
força F , per conèixer la seva posició x(t) hauríem de resoldre l’equació

F = m
d2x

dt2

que és una equació diferencial que involucra la segona derivada de la funció incògnita.
Les equacions diferencials de primer ordre que apareixen en els tres exemples

anteriors són de la forma
y ′ = F (x , y)

on F és una funció contínua i y = y(x) és una funció incògnita. Aquestes són les
equacions que més estudiarem en aquest curs. En els tres exemples hem vist que
teníem infinites solucions. Això és un fet general:1

• Una equació diferencial y ′ = F (x , y) té sempre infinites solucions. Anomena-
rem solució general la família de totes les solucions. A la solució general hi
apareixerà un paràmetre k .

• Cadascuna de les solucions concretes d’una equació diferencial y ′ = F (x , y) direm
que són solucions particulars de l’equació.

• Si considerem una equació diferencial y ′ = F (x , y) i fixem unes condicions ini-
cials, hi ha una única solució particular que satisfà aquestes condicions inicials.
Fixar unes condicions inicials vol dir fixar el valor de la funció y per a un cert
valor de la variable x .

Posem un exemple senzill. L’equació y ′ = ry . La solució general és y = kerx .
Les solucions y = erx , y = −2erx , y = πerx , etc. són solucions particulars. Si fixem,
per exemple, les condicions inicials y(1) = −1, aleshores hi ha una única solució amb
aquestes condicions inicials, que és la funció y = −e−r erx = −er(x−1).

24.2 Hi ha equacions diferencials arreu

Les equacions diferencials són omnipresents a la ciència. Molt sovint, les lleis de
la natura, de l’economia, de les dinàmiques socials,etc., s’expressen com a equacions
diferencials. Posem alguns exemples (que siguin prou senzills per cabre dins del marc
d’aquest curs).

• Els models de població que ens diuen com evoluciona la mida d’una població
vénen donats per equacions diferencials que relacionen la mida de la població i

1Els comentaris que fem a continuació no tenen un rigor matemàtic complet. Per formular correctament
el que es coneix com a teorema d’existència i unicitat de solucions d’una equació diferencial ordinària
caldria utilitzar un llenguatge matemàtic molt més precís, fer hipòtesis de continuïtat, de diferenciabilitat,
parlar de solucions locals, d’intervals de definició, etc. No ho farem perquè creiem que en aquest curs
tan elemental no és recomanable que ens exigim aquest nivell de rigor.
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la seva taxa de creixement. Per exemple, l’equació del creixement exponencial o
la del creixement logístic.

• La llei de Newton de la dinàmica F = ma és una equació diferencial de segon
ordre que ens relaciona la segona derivada de la posició d’un cos amb la força
que s’exerceix sobre ell.

• La llei de la gravitació de Newton que regeix el moviment dels cossos celestes
es pot formular com una equació diferencial de segon ordre.

• La llei de Newton del refredament d’un cos afirma que un cos situat en un ambient
més fred es refreda a una velocitat proporcional a la diferència entre la seva
temperatura i la de l’ambient. Això és pot escriure com una equació diferencial:

dT

dt
= k(T − TA).

• El moviment d’un pèndol o el d’una molla estan regits per equacions diferencials
de segon ordre. En particular, si θ és l’angle que forma amb la vertical un pèndol
de longitud L, es compleix

Lθ′′ + g sin(θ) = 0.

Si tenim un cos de massa m sotmès a l’acció d’una molla, la seva distància x al
punt d’equilibri compleix que

mx ′′ = −kx ,

on k és una constant que depèn de la «força» de la molla.

• El model de creixement de von Bertalanffy ve donat per l’equació diferencial
L′ = k(L∞ − L), que és idèntica a la de la llei de Newton del refredament.

• D’entre les moltes equacions diferencials que apareixen a l’economia, podem citar
l’equació de Solow-Swan (1956)

dk

dt
= sf (k)− (n + δ)k

que intenta modelar l’evolució del capital per capita k al llarg del temps, sota
unes certes hipòtesis. En aquesta equació f (k) és la producció per capita, s és
la proporció d’aquesta producció que es reinverteix, n és la taxa de creixement
de la població i δ és la taxa de depreciació del capital.2 Observem que, si s = 0,
tenim l’equació del decreixement exponencial. Per poder utilitzar aquesta equació
cal tenir algun model per a la funció f (k) que relaciona capital i productivitat.
Per exemple, el model de Cobb-Douglas (1927) de la pàgina 16 pren una funció
potencial f (k) = Akα.

• El model més simple per modelitzar la contaminació d’una conca fluvial, es basa
en una equació diferencial del tipus

dQ

dt
= E (t)− S(t)

2Podeu aprendre més coses sobre aquest model al llibre Economic Growth de Robert J. Barro i Xavier
Sala i Martin.
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on Q(t) és la quantitat de contaminant (com a funció del temps), E (t) és la funció
que ens mesura el contaminant que entra a la conca i S(t) és la funció que ens
mesura el contaminant que surt de la conca.

• Els models d’extensió d’una epidèmia utilitzen equacions diferencials. Per exem-
ple:

dI

dt
= kI (1− r I )

on I (t) és el nombre d’infectats i l’equació ens diu que la velocitat amb què creix
el nombre d’infectats és proporcional al nombre d’infectats i al nombre de no
infectats. La difusió d’un rumor es pot modelar per equacions del mateix tipus.

• En una reacció química del tipus A + B → C , la llei d’acció de masses ens diu
que la velocitat amb què es crea l’espècie C és proporcional a les concentracions
de A i de B . Això ho podem escriure com una equació diferencial

d [C ]

dt
= k([A]0 − [C ])([B]0 − [C ])

on [C ] és la concentració de C i [A]0 i [B]0 són les concentracions inicials de A i
B , respectivament.

Si tenim equacions diferencials, també tindrem sistemes d’equacions diferencials.
Per exemple

• El clàssic model depredador-presa de Lotka-Volterra (1910, 1920). Tenim una
funció x = x(t) que ens dóna el nombre de preses (per exemple, conills) en un
hàbitat i una altra funció y = y(t) que ens dóna el nombre de depredadors (per
exemple, guineus) en aquest mateix hàbitat.

El creixement d’aquestes dues funcions està interrelacionat, degut a la dependèn-
cia recíproca que tenen els depredadors i les preses. Les equacions que governen
aquestes funcions són

x ′ =αx − βxy

y ′ =δxy − γy

A la primera equació, el paràmetre α és la taxa de reproducció dels conills i el
paràmetre β és la taxa de depredació dels conills per les guineus. A la segona,
δ és la taxa de reproducció de les guineus i γ és la taxa de mort de les guineus.

Una solució particular d’aquest sistema d’equacions és una parella (x , y) de fun-
cions de t que es poden entendre com les equacions d’una corba (parametritzada)
al pla. En funció dels valors dels paràmetres α, β, γ i δ i de les condicions inicials,
aquesta corba pot ser una corba tancada (parlarem d’una solució periòdica). Per
exemple, aquí tenim una d’aquestes solucions periòdiques:



150 24. Conceptes bàsics i exemples

Observem que el sistema va passant periòdicament per situacions de moltes gui-
neus/poc conills, molt poques guineus/molt pocs conills, molts conills/poques gui-
neus i altre cop moltes guineus/poc conills.

• Unes equacions similars s’utilitzen en el que es coneix com a model SIS d’una
epidèmia, que és aquell en què hi ha una població sana S susceptible de ser
infectada i una població infectada I que es recupera a una taxa constant, de
manera que es pot tornar a infectar.

S ′ =αI − βI S

I ′ =βI S − αI

Aquí la població total S+I és constant, per tant, aquest sistema de dues equacions
es pot reduir a una única equació de tipus logístic I ′ = kI (1− r I ). Un model més
complicat és el model SIR d’una epidèmia en la que els sans es poden infectar
i els infectats poden recuperar-se i convertir-se en immunes. Si R és el nombre
de recuperats, les tres variables S , I , R compliran unes equacions com aquestes

S ′ =− αSI

I ′ =αSI − βI

R ′ =βI

• Si, com a resultat d’una sèrie de mutacions, diversos tipus genètics conviuen
en un hàbitat en les proporcions x1, . . . , xn, podem pensar que el creixement de
cada població dependrà de la seva mida xi i també de la diferència entre la seva
aptitud fi i la mitjana de les aptituds de tots els tipus. Podem modelar aquesta
situació amb un sistema d’equacions diferencials

x ′i = ki xi

(
fi −

∑
j

xj fj

)
; i = 1, . . . , n

on xi és la mida de la població de tipus i i fi és la seva aptitud.3

3Vegeu Peter Schuster, Mathematical modeling of evolution. Solved and open problems, Theory Biosci.
(2011) 130:71–89.
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24.3 Resolem l’equació del creixement exponencial

Ja sabem que la solució general de l’equació diferencial y ′ = ry és y = kerx . Vegem
ara com podem arribar a aquesta conclusió, utilitzant un recurs tècnic molt simple. En
primer lloc, escrivim l’equació en aquesta forma equivalent

dy = ry dx .

Aleshores, si suposem que y 6= 0, podem escriure l’equació en aquesta altra forma
equivalent

dy

y
= r dx .

Aquesta igualtat serà equivalent a aquesta:∫
dy

y
=

∫
r dx .

Aquestes dues integrals indefinides les sabem calcular:

log |y |+ k1 = rx + k2

on k1, k2 són constants arbitràries. Si les agrupem al costat dret de l’equació, tenim

log |y | = rx + k3

on ara k3 és una constant arbitrària. Aquesta igualtat és equivalent a

|y | = erx+k3 = erx ek3 = K erx .

Com que k3 és una constant arbitrària, ek3 és una constant positiva arbitrària, que
podem anomenar K . Si ara eliminem el valor absolut del terme de l’esquerra, obtenim

y = ±K erx .

Observem ara que k = ±K és una constant diferent de zero arbitrària. Hem arribat a
la conclusió que

y = kerx .

Si ara recordem que al començament d’aquest procés havíem suposat que y 6= 0 i si
observem que y = 0 també és una solució de l’equació, arribem a la conclusió que totes
les solucions de l’equació inicial són

y = k erx

on ara k és una constant arbitrària (positiva, negativa o zero).
Donant valors a la constant k obtindrem les solucions particulars. Cada solució

particular és una corba exponencial i per cada parella de valors (x0, y0) existeix una
única solució particular y amb y(x0) = y0. Si dibuixem les gràfiques de totes aquestes
solucions particulars, omplirem el pla amb corbes exponencials. Per cada punt del pla
hi passa una solució particular de l’equació, i només una.
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25. Resolució d’algunes equacions
diferencials autònomes

En general, trobar expressions explícites de les solucions d’una equació diferencial pot
ser molt difícil o impossible. El mètode que hem utilitzat per a l’equació del creixement
exponencial permet resoldre certs tipus d’equacions a partir de calcular dues integrals.
En particular, aquest mètode es pot utilitzar per a les equacions autònomes que són
les de la forma

y ′ = g(y)

i, més en general, per a les equacions separables que són les de la forma

y ′ = f (x)g(y).

En aquest capítol veurem alguns exemples.1

25.1 Resolem l’equació del creixement logístic

L’equació logística
y ′ = ry

(
1− y

K

)
.

és autònoma i la podem resoldre com vam fer amb l’exponencial.

• Escrivim l’equació així
dy

y
(
1− y

K

) = r dx .

Fent això hem descartat els casos y = 0 i y = K , que també són solucions de
l’equació logística. Al final, caldrà recordar aquestes dues solucions.

• Integrem els dos costats de l’equació.∫
dy

y
(
1− y

K

) =

∫
r dx = rx + C0.

La integral de l’esquerra es pot calcular pel mètode de les fraccions simples

1

y
(
1− y

K

) =
1

y
+

1/K

1− y
K

.

∫
dy

y
(
1− y

K

) = log |y | − log
∣∣∣1− y

K

∣∣∣ = log

∣∣∣∣ y

1− y
K

∣∣∣∣ .
1Cal dir que la discussió que farem aquí és essencialment heurística. Si el lector vol una justificació

matemàticament rigorosa del que fem en aquests exemples, ha de consultar textos més teòrics sobre
equacions diferencials ordinàries.
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• Per tant,
y

1− y
K

= C erx

on C 6= 0 és una constant arbitrària.

• Ara ens cal aïllar y de l’expressió anterior. El resultat és

y =
K

K
C e−rx + 1

.

• Si ara calculem el valor d’aquesta funció per x = 0 observem que y(0) = C K/(C+
K ). Designem y0 aquest valor inicial, que és un valor arbitrari 6= 0. Aleshores, la
funció y també es pot escriure així

y(x) =
K

1 + ke−rx
, k =

(
K

y0
− 1

)
.

• Finalment, ens cal afegir les dues solucions que hem descartat al principi. La
solució y = K ja està inclosa a la fórmula anterior, agafant y0 = K . Només falta
afegir la solució y = 0.

Hem arribat a la conclusió que la solució particular de l’equació logística amb les
condicions inicials y(0) = y0 és

y(x) =
K

1 +
(

K
y0
− 1
)

e−rx
si y0 6= 0,

y(x) = 0 si y0 = 0.

Mirem com són aquestes solucions i d’aquesta manera completarem el nostre estudi de
l’equació logística que ha anat apareixent en diversos moments d’aquest curs. Suposem
que K > 0 (el cas K < 0 és anàleg).

1. Hi ha dues solucions constants: y = 0 i y = K .

2. Si 0 < y0 < K , la solució és una corba —la corba «logística»— que té aquesta
forma
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Aquesta corba tendeix a K quan x →∞ i tendeix a 0 quan x → −∞.

3. La solució és ben diferent si y0 > K o y0 < 0. En aquests casos la solució
particular té una discontinuïtat —una asímptota vertical— al punt x = a i a ve
donat per

a =
1

r
log

(
1− K

y0

)
de manera que la corba té dues branques. Per a valors x < a la funció és negativa
i tendeix a −∞ quan x → a−. Per a valors x > a, la funció és positiva (de fet és
> K ) i tendeix a ∞ quan x → a+.

La forma de la gràfica és la que s’observa en aquesta representació que hem fet
amb sage.

Veiem que, igual que abans, aquesta corba tendeix a K quan x → ∞ i tendeix
a 0 quan x → −∞. D’altra banda, el comportament quan ens acostem a la
discontinuïtat x = a ja l’hem explicat i el podem escriure així:

lim
x→a+

=∞, lim
x→a−

= −∞.

Si dibuixem totes les solucions, omplim el pla amb corbes solució, de manera que per
cada punt del pla passa una solució particular de l’equació logística:
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Si les variables x , y són positives (per exemple, en el cas del model logístic de crei-
xement d’una població), aquest dibuix es converteix en el que ja havia aparegut a la
pàgina 60.
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25.2 Contaminació d’un llac

Suposem que hi ha un vessament continuat d’un contaminant al riu Ter i volem conèixer
com evolucionarà la contaminació a l’aigua del Ter més avall de l’envasament de Sau.
En tota la seva magnitud, és un problema molt complex, però farem una sèrie de
simplificacions per tal d’obtenir un primer model d’aquesta situació.

Suposem que a Sau hi ha V = 120 milions de m3 d’aigua i que aquest volum es
manté constant. Hi entra l’aigua (contaminada) del Ter a un ritme constant de q = 5
m3 per segon i en surt aigua al mateix ritme. Fem la hipòtesi que la contaminació
es reparteix uniformement per tota l’aigua de Sau. Això no serà cert, però admetem
aquesta hipòtesi simplificadora per fer el problema més accessible. Volem determinar
l’evolució de la concentració del contaminant a l’aigua que surt de l’embasament.

Designem per x = x(t) la concentració del contaminant a l’aigua que surt de
l’embasament. És una funció del temps que comença amb el valor x(0) = 0 perquè
suposem que abans de l’inici del vessament no hi ha contaminació. Fem aquestes
consideracions:

• La quantitat de contaminant present a l’embasament de Sau és xV .

• La quantitat de contaminant que entra a l’embasament per unitat de temps és
aq, on a és la concentració de contaminant al Ter, que suposem que és constant.

• La quantitat de contaminant que surt de l’embasament per unitat de temps és xq.

• La variació de contaminant a l’embasament ve donada per la derivada

d

dt
(xV ).

• La variació de contaminant a l’embasament ve donada per la diferència entre el
contaminant que entra i el que en surt.

La conclusió és que s’ha de complir aquesta equació diferencial

d

dt
(xV ) = aq − xq.

La solució particular d’aquesta equació diferencial amb les condicions inicials x(0) = 0
en donarà la funció x(t) que calcula la concentració de contaminant a l’aigua que surt
de l’embasament.

Aquesta equació diferencial és autònoma i es pot resoldre pel mateix mètode que
les equacions dels exemples anteriors. Comencem escrivint l’equació en la forma

dx

a− x
=

q

V
dt.

Integrem els dos costats i obtenim

− log |a− x | = q

V
t + C
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que ens dóna la solució general

x = a− k exp
(
− q

V
t
)
.

Les condicions inicials x(0) = 0 impliquen que la constant k val k = a. Per tant, la
solució particular que ens interessa és

x(t) = a(1− exp(−qt/V )).

És a dir, la contaminació a l’aigua que surt de l’embasament comença amb el valor
x(0) = 0 i s’acosta asimptòticament al valor x(∞) = a seguint una corba de tipus
exponencial. D’aquesta manera, si coneixem el valor de a (concentració del contaminant
al Ter) podem calcular efectivament el valor de x (concentració del contaminant a l’aigua
que surt de l’embasament de Sau) en qualsevol instant de temps t . Si dibuixem aquesta
funció obtenim

Què passa si aturem el vessament al Ter quan la contaminació a Sau val x0? L’e-
quació diferencial

d

dt
(xV ) = aq − xq

seguirà essent vàlida i la solució general seguirà essent

x = a− k exp
(
− q

V
t
)

però ara tenim a = 0 i les condicions inicials seran x(0) = x0. Tindrem

x(t) = x0 exp(−qt/V ).

La contaminació a l’aigua de sortida començarà amb el valor x0 i tendirà exponencial-
ment a zero a llarg termini. La corba serà
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25.3 Una generalització del model logístic

La corba logística presenta una simetria que no sempre s’adapta a les observacions:
l’etapa d’acceleració fins el punt d’inflexió és simètrica de l’etapa de desacceleració a
partir del punt d’inflexió. En moltes situacions pràctiques, això no és el que s’observa
i s’han proposat models del tipus

dN

dt
= rN

(
1−

(
N

K

)s)
.

Per exemple

• J. R. Usher el 1980 va proposar una equació com aquesta per a determinar la dosi
òptima de radioteràpia en el tractament de tumors. El paràmetre s > 0 depèn
del tipus de tumor.2

• En un estudi de l’alçada (en funció de l’edat) dels pins de Monterrey (Pinus
radiata) a Nova Zelanda, es va trobar que una equació com aquesta amb valors
de s entre 0.6 i 0.9 s’adaptava millor a les observacions.3

• En un estudi4 del ritme de vendes de les parcel.les d’una gran urbanització es va
veure que una equació com aquesta amb s = 5.85 donava un millor model que el
de la corba logística.

Observem que si s = 1 retrobem l’equació logística. Aquesta generalització de
l’equació logística és també una equació autònoma que es pot resoldre pel mateix

2Vegeu G. W. Swan, Optimization of Human Cancer Radiotherapy, Lect. Notes Biomath. 42, 1981.
3Vegeu Oscar García, Height growth of Pinus radiata in New Zealand, New Zeal. J. Forestry. Sci.

29(1): 131–145 (1999).
4Vegeu Robert B. Banks, Growth and Diffusion Phenomena: Mathematical Frameworks and Applica-

tions, Springer 1994, p. 112.
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mètode que hem usat en el cas logístic. Comencem escrivint l’equació d’aquesta manera

dN

N(K s − Ns)
=

r

K s
dt.

Ara integrem els dos costats de l’equació. La integral de la dreta és senzilla, però la
integral de l’esquerra requereix que fem el canvi de variable Ns = M que la converteix
en la integral

1

s

∫
1

M(K s −M)
dM =

1

sK s

∫ (
1

M
+

1

K s −M

)
dM =

1

sK s
log

∣∣∣∣ M

K s −M

∣∣∣∣ .
Desfent el canvi, obtenim

1

sK s
log

∣∣∣∣ Ns

K s − Ns

∣∣∣∣ = r

K s
t + C .

Si ara prosseguim igual que ho fèiem en el cas de la logística, arribem a la solució
general

N =
K

(1 + k exp(−rst))1/s
.

Si dibuixem aquesta funció veiem que és una mena de corba logística «descompensada»
en la que les fases d’acceleració i desacceleració no són simètriques una de l’altra.

25.4 Fem-ho amb sage

sage té diverses eines per resoldre equacions diferencials ordinàries. La més bàsi-
ca és la funció desolve(). Per exemple, si volem resoldre l’equació del creixement
exponencial y ′ = rex , fem això:
sage: r=var(’r’)
sage: y=function(’y’)(x)
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sage: desolve(diff(y,x)==r*y,y,ivar=x)
_C*e^(r*x)

La presència d’una variable r a l’equació ens obliga a declarar quina és la variable
independent. Ho fem amb ivar=x. Resolem ara l’equació logística.
sage: K,r,t=var(’K,r,t’)
sage: N=function(’N’)(t)
sage: desolve(diff(N,t)==r*N*(1-(N/K)),N,ivar=t)
-(log(-K + N(t)) - log(N(t)))/r == _C + t

Observem que la solució ens ve donada en forma implícita. Això és així en totes les
equacions separables.
sage: K,r,t,s=var(’K,r,t,s’)
sage: N=function(’N’)(t)
sage: desolve(diff(N,t)==r*N*(1-(N/K)^s),N,ivar=t)
(s*log(N(t)) - log(-K^s + e^(s*log(N(t)))))/(r*s) == _C + t



26. Equilibri i estabilitat

26.1 Equilibris d’una equació diferencial

El concepte d’equilibri pot ser molt ampli però per a nosaltres, quan parlem de sistemes
governats per una equació diferencial, un estat d’equilibri voldrà dir un estat en què
la variable que estem estudiant es manté constant. Per tant,

Els equilibris d’una equació diferencial són les solucions constants d’a-
questa equació diferencial.

Determinar els equilibris d’una equació diferencial és, en general, força més senzill
que resoldre l’equació. Si y és un equilibri, y és constant i, per tant, y ′ = 0. Substituint
y ′ = 0 a l’equació, podem trobar els valors de y , que seran els equilibris de l’equació.

26.2 Alguns exemples

• Equilibris del creixement exponencial. L’equació és

y ′ = ry

(amb r 6= 0) i y ′ = 0 ens dóna una única solució y = 0. Per tant, aquest és l’únic
equilibri de l’equació.

• Equilibris del creixement logístic. L’equació és

y ′ = ry
(
1− y

K

)
(amb r 6= 0). Si substituïm y ′ = 0 veiem que hi ha exactament dos equilibris:
y = 0 i y = K . Si la població és 0 o K , es manté constant, i aquests són els dos
únics casos en què la població es pot mantenir constant.

• Creixement logístic amb emigració proporcional. Suposem que tenim una po-
blació que segueix un model de tipus logístic en el que una certa proporció m
de la població emigra (o és capturada) i abandona la població. El creixement
d’aquesta població vindrà donat per una equació diferencial com aquesta:

N ′ = rN

(
1− N

K

)
−mN

on r és la taxa de reproducció, K és la capacitat del medi i m, com ja hem dit és
la proporció de la població que emigra cada unitat de temps. Podríem resoldre
aquesta equació (és una equació autònoma) però ara ens preocupem dels seus
equilibris. Posem N ′ = 0 i resolem l’equació que s’obté

0 = rN

(
1− N

K

)
−mN.
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Els equilibris són
N1 = 0; N2 = K

(
1− m

r

)
.

Si N representa la mida d’una població, només hem de considerar els valors amb
N ≥ 0. Per tant,

– Si m ≥ r , l’únic equilibri és N = 0.
– Si m < r , hi ha dos equilibris: N = 0 i N = K (1− (m/r)).

• Creixement logístic amb emigració constant. En el model anterior hem suposat
que l’emigració és proporcional a la població. També podem considerar un model
en què l’emigració és constant igual a M individus per unitat de temps:

N ′ = rN

(
1− N

K

)
−M.

Els equilibris d’aquest (interessant) model els podem trobar resolent una equació
de segon grau

rN2 − rK N + K M = 0.

Observem que aquest model es pot aplicar sense canvis a una població de peixos,
de manera que el paràmetre M no representaria l’emigració, sinó l’extracció de
peixos (la pesca). Conèixer els estats d’equilibri en funció del valor de M ens pot
ajudar a entendre el concepte de pesca sostenible.

• El model de Levins de metapoblacions. El 1969 l’ecòleg Richard Levins va pro-
posar un model de dinàmica de poblacions que considerava que hi havia un cert
nombre d’hàbitats disponibles perquè els habiti una subpoblació. En cada mo-
ment hi ha una certa proporció p d’hàbitats ocupats i la proporció complementària
1−p d’hàbitats buits. Aquesta proporció p varia amb el temps perquè un determi-
nat hàbitat ocupat pot quedar buit per extinció de la subpoblació i un determinat
hàbitat buit pot quedar ocupat per migració. Aleshores, l’equació de Levins que
governa el comportament de la funció p és

p′ = cp(1− p)−mp

que és essencialment la mateixa equació del creixement logístic amb emigració
proporcional que hem considerat abans. És fàcil determinar els equilibris. Si
m ≥ c , l’únic equilibri és p = 0. En canvi, si m < c , a banda de l’equilibri trivial
p = 0 tenim una segona situació d’equilibri p = 1−(m/c) en la qual hi ha sempre
la mateixa proporció m/c d’hàbitats lliures.1

• L’efecte Allee. Els models de població que hem estudiat fins ara —exponencial
i logístic— tenen un defecte fonamental: quan la població és molt petita, com
que els recursos per capita són immensos, el creixement és exponencial i, con-
seqüentment, no hi ha risc d’extinció. En canvi, l’experiència ens diu que quan
una població queda reduïda a una mida molt petita, hi ha un gran risc d’extinció.
Més enllà d’això, Warder Clyde Allee —un dels pioners de l’ecologia— va dur a

1Consulteu l’article Metapopulation a wikipedia.org.
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terme diversos experiments que van posar de manifest que sovint succeeix exac-
tament el contrari del que prediuen els models logístic i exponencial: la densitat
de població i la cooperació entre individus actuen positivament sobre la taxa de
reproducció. Aquest fenomen té diverses explicacions: cooperació a l’hora d’a-
conseguir aliment, cooperació a l’hora de defensar-se dels depredadors, etc. Se’n
diu l’efecte Allee.2

És possible trobar un model de població que incorpori aquestes idees. Per exem-
ple, l’equació diferencial

N ′ = rN

(
1− N

K

)(
N

A
− 1

)
s’obté afegint un terme extra a l’equació logística. Vegem el significat de cada
terme:

– N ′ = rN ens dóna el creixement exponencial. r és la taxa de reproducció.

– El terme següent 1−(N/K ) ens diu que la taxa de reproducció no és constant
perquè, a mida que la població creix i s’acosta a la capacitat del medi K , la
taxa va disminuint. Fins aquí, tenim l’equació logística.

– El terme addicional que hem inclòs per tenir en compte l’efecte Allee és
(N/A)− 1 que fa que, si la població cau per sota del llindar d’extinció A, la
taxa de creixement es converteix en negativa i la població s’extingirà.

És fàcil calcular els equilibris d’aquest model. Prenem N ′ = 0 i resolem l’equació
que s’obté. Hi ha tres equilibris: N = 0 i N = K (que ja existien en el model
logístic) i un tercer equilibri N = A.

26.3 Estabilitat d’un equilibri

Ja sabem que hi ha dos tipus d’equilibri: estable i inestable. La diferència entre aquests
dos tipus és la següent:

Un equilibri és estable si quan ens apartem lleugerament de l’equilibri el
sistema tendeix a retornar a l’equilibri. És inestable si quan ens apartem
lleugerament de l’equilibri el sistema tendeix a allunyar-se encara més
de l’equilibri.

Com podem determinar si un equilibri és estable o inestable? Suposem que y és
la solució general d’una equació diferencial i que ye és un equilibri. Per decidir si és
estable o inestable, hem d’estudiar el comportament de y ′ en funció de y a un petit
entorn del punt d’equilibri y = ye . Per exemple, imaginem que quan expressem y ′ en
funció de y obtenim una corba com aquesta

2Per a més informació, vegeu l’entrada Allee effect a wikipedia.org.
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Els equilibris es produeixen quan y ′ = 0 per tant veiem que hi ha tres equilibris:
0, a i b. Observem això:

• Si ens apartem una mica del valor y = 0 veiem que la corba està per sota de l’eix
horitzontal. Això vol dir que y ′ < 0 i, per tant, y és decreixent. Això vol dir que y
retornarà cap el valor y = 0. En conclusió, l’equilibri y = 0 és estable.

• Si ens apartem una mica del valor y = a, cap a un valor de y una mica superior,
veiem que la corba està per sobre de l’eix horitzontal. Això vol dir que y ′ > 0 i,
per tant, y és creixent. Això vol dir que y s’allunyarà encara més del valor y = a.
En conclusió, l’equilibri y = a és inestable.

• Si ens apartem una mica del valor y = b, cap a un valor de y una mica superior,
veiem que la corba està per sota de l’eix horitzontal. Això vol dir que y ′ < 0 i,
per tant, y és decreixent. Això vol dir que y retornarà cap el valor y = b. Si ens
apartem una mica del valor y = b, cap a un valor de y una mica inferior, veiem
que la corba està per sobre de l’eix horitzontal. Això vol dir que y ′ > 0 i, per
tant, y és creixent. Això vol dir que y retornarà cap el valor y = b. En conclusió,
l’equilibri y = b és estable.

En el cas de les equacions autònomes, aquest estudi és molt fàcil de fer perquè
aquestes equacions tenen la forma

y ′ = g(y)

i n’hi ha prou amb estudiar el valor de la derivada de la funció g en els punts d’equilibri.
Suposem que ye és un punt d’equilibri. Aleshores,

• Si dg

dy
(ye) > 0, l’equilibri és inestable.

• Si dg

dy
(ye) < 0, l’equilibri és estable.

Repassem ràpidament l’estabilitat dels equilibris que hem trobat en els exemples
de l’apartat anterior.
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• Exponencial. L’únic equilibri és y = 0, que és inestable.

• Logístic. Hi ha dos equilibris: y = 0 i y = K . El primer és inestable i el segon
és estable.

• Logístic amb emigració proporcional. Si m ≥ r , l’únic equilibri és y = 0 que és
estable. Si m < r hi ha dos equilibris: y = 0 que és inestable i y = K (1− (m/r))
que és estable.

• logístic amb emigració constant. Si M > K/4, no hi ha equilibris. Si M = K/4, hi
ha un únic equilibri N = K/2, que és inestable. Si M < K/4 hi ha dos equilibris
N1 < K/2, inestable i N2 > K/2, estable.

• L’equació d’Allee. Els equilibris y = 0 i y = K són estables. L’equilibri y = A, que
representa que la població està exactament en el llindar d’extinció, és inestable.



Exercicis

A. Exercicis teòrics

IV.A.1. Trobeu la solució general y(t) de les equacions diferencials següents:

(a) y ′ − t sin t = 0, (b) y ′ = 2t, (c) y ′ = 4y2,
(d) y ′ = ty , (e) y ′ = 1

2y(100− y), (f ) y ′ = (y2 − 1)/2,
(g) y ′ = y2 cos(t), (h) y ′ = 4y − y3.

IV.A.2. Trobeu la solució particular y(t) d’aquestes equacions diferencials amb les con-
dicions inicials donades. Estudieu el comportament d’aquesta solució particular
quan t → ±∞.

(a) t2dt + 2ydy = 0, y(0) = −2. (b) y ′ = y sin t, y(π) = −3.
(c) y ′ = 8t3e−2y , y(1) = 0. (d) y ′ = −1/y , y(0) = −1.

IV.A.3. Resoleu l’equació diferencial y ′ = ry log(K/y) (r > 0 i K > 0 són constants i
y > 0) i expresseu el resultat en funció de y(0). (És l’equació de Gompertz,
que s’ha utilitzat per modelar el creixement dels tumors i, més en general, el
creixement d’una població amb recursos limitats.)

IV.A.4. Considereu l’equació diferencial y ′ = 3y2/3. Resoleu-la. Trobeu dues solucions
particulars amb les condicions inicials y(0) = 0 (en aparent contradicció amb
el teorema d’unicitat de solucions).

IV.A.5. Trobeu els equilibris de l’equació diferencial y ′ = y(2− y) i estudieu-ne l’esta-
bilitat. Resoleu-la.

IV.A.6. Considereu l’equació diferencial y ′ = y2 − 6y + 5. Trobeu els seus equilibris i
estudieu-ne l’estabilitat. Trobeu la solució particular amb les condicions inicials
y(1) = 0.

IV.A.7. Considereu l’equació diferencial y ′ + 2
√

y = y . Trobeu els seus equilibris i
estudieu-ne l’estabilitat. Trobeu la solució particular amb les condicions inicials
y(1) = 0. (Indicació: feu el canvi de variable z =

√
y .)

IV.A.8. Considereu l’equació diferencial y ′ = y2 − y − 6. Trobeu els seus equilibris i
estudieu-ne l’estabilitat. Feu un dibuix de les seves solucions.

IV.A.9. Considereu aquest sistema de dues equacions diferencials

x ′ = −3f (t)

y ′ = 2yf (t)

on f (t) 6= 0 és una funció desconeguda. Determineu y com a funció de x .
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B. Exercicis d’aplicació

IV.B.1. Un model de difusió d’un rumor assenyala que la rapidesa amb què s’escampa
és proporcional al producte de la població P que ha escoltat el rumor i la
població que no l’ha escoltat. Plantegeu una equació diferencial per a la funció
P(t), segons aquest model. Un poble té 1000 habitants i a les 8 del matí 80
persones han escoltat un rumor. Al migdia la meitat del poble ha escoltat el
rumor. Segons aquest model, a quina hora tindrem que el 90% de la població
haurà escoltat el rumor?

IV.B.2. En una reacció química elemental, les molècules de dos reactius A i B formen
una molècula del producte C : A+B → C . La llei d’acció de masses afirma que
la velocitat de reacció és proporcional al producte de les concentracions (mol/l)
de A i B . Denoteu per x(t) la concentració de C i per a i b les concentracions
inicials de A i B , respectivament. (a) Plantegeu una equació diferencial per a
la funció x(t). (b) Resoleu-la distingint els casos a = b i a 6= b. (c) Trobeu x(t)
en el cas a = b si sabem que x(20) = a/2.

IV.B.3. Suposem que a l’embassament de Sau hi ha 120 milions de metres cúbics d’ai-
gua (no contaminada), que el Ter hi entra amb un cabal de 5 metres cúbics
per segon i que l’embassament desaigua a la mateixa velocitat. Si hi ha un
vessament continuat d’un contaminant al Ter de manera que l’aigua que entra
a l’embassament a partir d’un moment conté 0.005 g/cm3 d’aquest contaminant,
calculeu en quin moment la concentració de contaminant a l’aigua de l’embas-
sament serà de 0.001 g/cm3. Apliqueu el model estudiat en el curs.

IV.B.4. En les condicions de l’exercici anterior, suposem que el vessament al Ter s’atura
precisament quan la concentració a l’aigua que surt de Sau és de 0.001 g/cm3.
Quant de temps haurà de passar fins que l’aigua que surt de Sau tingui una
concentració de contaminant de 0.0001 g/cm3?

IV.B.5. Fem la hipòtesi que la població de senglars de les Gavarres creix segons un
model logístic amb un coeficient de reproducció aproximat de r = 6.2% anual.
Volem autoritzar una proporció de captures per any que faci que la població
estable de senglars es redueixi a la quarta part. Quina ha de ser aquesta
proporció?

IV.B.6. Els antropòlegs han utilitzat la corba logística per modelar el creixement de
diverses poblacions antigues (dels Pueblo del sud-oest dels actuals Estats Units
a l’imperi romà). Suposem que, en un d’aquests estudis, una població va arribar
a una mida estable de 400 milers d’habitants i que, quan la població era de
100 milers d’habitants, creixia a una velocitat tal que, si el creixement s’hagués
mantingut exponencial, la població s’hauria multiplicat per dos en 60 anys.
Determineu quants anys van haver de passar perquè la població es dupliqués
efectivament, segons el model logístic.

IV.B.7. S’estima que la mida estable d’una determinada especie de peixos en una zona
pesquera seria de 8 × 106 kg, però la sobreexplotació ha reduït la mida de la
població a només 2 × 106 kg. Suposem que s’acorda una moratòria de pesca i
que la població comença a créixer segons un model logístic, amb una taxa de
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reproducció de r = 0.71 (temps en anys). (a) Calculeu la biomassa de la població
després d’un any. (b) Quant de temps ha de passar perquè la biomassa sigui
de 4× 106 kg?

IV.B.8. Ha aparegut una especie invasora de papallona que, en el seu estat de larva,
necessita parasitar una especie concreta de formigues. (Seria el cas, per exem-
ple, de la reintroducció de la Maculina arion a Anglaterra, després de la seva
extinció el 1979.) Hem identificat els hàbitats possibles per aquesta papallona i
volem estudiar la seva extensió utilitzant el model de Levins de metapoblacions.
Observem que quan el 1% dels hàbitats està ocupat, la velocitat de creixement
de la proporció d’hàbitats ocupats és de 9 × 10−3 any−1 i quan el 10% dels
hàbitats està ocupat, aquesta velocitat és de 45×10−3 any−1. Determineu quin
serà, segons aquest model, el percentatge estable d’hàbitats ocupats a llarg
termini.

IV.B.9. Uns ambientòlegs estudien la repoblació d’un llac amb 400 peixos quan han
passat T i 2T anys des de la repoblació. Han estimat que la població s’ha
triplicat després dels primer període de temps i ha arribat a 2000 peixos després
del segon període de temps. Suposem un model de creixement logístic. Feu
una estimació de la mida estable de la població de peixos, a llarg termini.

IV.B.10. Fóra molt interessant poder detectar en una especie la presència de l’efecte
Allee i calcular el llindar d’extinció, abans que l’especie ja l’hagi superat. Això
és molt difícil, però s’ha pogut fer en alguns casos.3 Suposem que estudiem la
taxa efectiva de creixement d’una població durant molts anys i observem que
quan expressem N ′/N com a funció de N obtenim la corba

−6× 10−7N2 + 0.0013N − 0.062.

Expliqueu per què això indica la presència de l’efecte Allee i determineu el
llindar d’extinció.

IV.B.11. En uns estudis clàssics sobre el creixement de determinats tumors en ratolins,4
s’ha modelat aquest creixement amb l’equació de Gompertz i s’han determinat
experimentalment els paràmetres r = 6.3% (taxa de creixement, en dies) i K =
109 cm3 (mida límit teòrica del tumor). Feu una estimació, segons aquest model,
del temps necessari perquè un tumor d’aquest tipus de 3 mm3 multipliqui la seva
mida per 100.

3Vegeu J.S. Brashares, J.R. Werner, A.R.E. Sinclair, Social ‘meltdown’ in the demise of an island endemic:
Allee effects and the Vancouver Island marmot, J of Animal Ec. 2010.

4Vegeu A.K. Laird, Dynamics of tumor growth, Br J of Cancer 1964.
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27. Vectors, rectes, plans

27.1 Vectors en qualsevol dimensió

Ja coneixem els vectors del pla: donats dos punts del pla A i B , podem parlar del vector
que neix a A i acaba a B . En podem dir

−→
AB.

Si coneixem les coordenades dels dos punts A i B , coneixerem també les coordenades
del vector −→AB . Si A = (a1, a2) i B = (b1, b2), aleshores les coordenades del vector −→AB
són (b1 − a1, b2 − a2). Podem escriure

−→
AB = (b1 − a1, b2 − a2)

o també podem usar la notació

−→
AB = (b1 − a1)

−→
i + (b2 − a2)

−→
j

que utilitza els vectors unitaris bàsics −→i , −→j .
Tot això ho podem fer també en l’espai de tres dimensions. En aquest cas, els

punts i els vectors vindran determinats no per dues coordenades, sinó per tres. Si
A = (a1, a2, a3) i B = (b1, b2, b3), aleshores

−→
AB = (b1 − a1, b2 − a2, b3 − a3) = (b1 − a1)

−→
i + (b2 − a2)

−→
j + (b3 − a3)

−→
k

on ara tenim tres vectors unitaris bàsics −→i , −→j , −→k .
Els vectors es poden sumar i multiplicar per escalars. És a dir, podem fer opera-

cions com aquestes
−→v +−→w , −→v −−→w , r−→v

i, més en general, podem fer combinacions lineals de vectors

r1
−→v 1 + r2

−→v 2 + · · ·+ rk
−→v k

on els coeficients r1, . . . , rk són nombres reals arbitraris.
Observem que aquests dos conceptes de punt i vector, encara que conceptualment

són diferents, comparteixen una mateixa representació matemàtica. Un punt A es pot
descriure com el vector que uneix l’origen de coordenades amb el punt A i viceversa,
un vector −→v es pot descriure com el punt que té les seves mateixes coordenades.
Per exemple, podem parlar del punt (1,−1, 2) o del vector (1,−1, 2). D’una manera
abstracta, tant un punt com un vector són simplement una parella de nombres (en el
pla) o una terna de nombres (a l’espai).
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Res no ens impedeix que, això que hem fet al pla i a l’espai de tres dimensions, ho
fem també en un espai de n dimensions. En aquest cas, cada punt de l’espai vindrà
determinat per les seves n coordenades i cada vector tindrà també n coordenades.

De vegades, aquest concepte de «vectors en un espai de n dimensions» es veu
com una cosa estranya i incomprensible: «Existeix la cinquena dimensió?» Aquesta
incomprensió prové de no haver entès correctament el concepte de dimensió. La idea
fonamental de dimensió és aquesta: dimensió és el nombre de paràmetres continus,
independents, necessaris per especificar un objecte del nostre camp d’estudi. Posem
alguns exemples:

• Si hem de comprar cable de coure, haurem d’especificar la llargada i el gruix. És
a dir, haurem de donar dos paràmetres (continus, independents) que és el mateix
que donar un punt (o un vector) de l’espai de dues dimensions.

• Si hem de comprar un tauler de fusta haurem d’especificar llargada, amplada i
gruix (dimensió tres) però si el tauler no és escairat, haurem d’especificar més
paràmetres, per exemple, les longituds de tres dels quatre costats, el gruix i
dos angles (dimensió 6).1 Si volem que les quatre cantonades estiguin arro-
donides, haurem d’especificar un paràmetre extra —el radi de la circumferència
d’arrodoniment— i tindrem que un tauler com aquest vindrà donat per un vector
en un espai de dimensió igual a 7.

• Si hem d’encarregar un neumàtic per al cotxe, haurem d’especificar una sèrie de
paràmetres com ara P225/50R16-91S. De tots aquests paràmetres, n’hi ha tres
que són continus i independents: (225, 50, 16). Per tant, podem pensar cada mida
de neumàtic com un punt d’un espai de dimensió tres.

• Un observatori meteorològic envia, cada cinc minuts, informació sobre pressió
atmosfèrica, temperatura, humitat, velocitat del vent, direcció del vent i radiació
solar. Són sis paràmetres (continus, independents) i formen un vector en un espai
de dimensió sis.

• En un estudi ornitològic capturem exemplars d’au d’una determinada espècie i
prenem nota de les seves mesures bàsiques (longitud, pes, mida del bec, enver-
gadura, etc.) que poden donar lloc a sis o set paràmetres: un vector en un espai
de dimensió sis o set.

• En cada instant de temps, les cotitzacions de les 30 empreses que estan incloses
a l’índex Dow Jones formen un vector en un espai de dimensió 30.

La conclusió és que treballar amb espais de dimensió arbitràriament gran no és cap
elucubració, sinó que és una activitat matemàtica natural, de gran interès pràctic.

1Fixem-nos que els paràmetres han de ser «independents». Si donem els quatre costats, el gruix i
dos angles, tenim 7 paràmetres, però no són independents perquè la longitud del quart costat ja queda
determinada pels altres paràmetres. D’aquesta manera, la dimensió no és 7, sinó que és 6.
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27.2 El producte escalar

A banda de la suma de vectors, els vector admeten una operació molt interessant que
s’anomena producte escalar. Si −→v i −→w són dos vectors (d’un mateix espai), el seu
producte escalar s’indica amb alguna d’aquestes dues notacions clàssiques

−→v · −→w , 〈−→v ,−→w 〉.

Normalment, utilitzarem la primera notació. Les propietats fonamentals d’aquesta ope-
ració són:

• El producte escalar de dos vectors és un escalar (no un vector!). D’aquí li ve el
nom.

• El producte escalar es pot calcular immediatament a partir de les coordenades
dels vectors. Si −→v = (v1, . . . , vn) i −→w = (w1, . . . ,wn), aleshores

−→v · −→w = v1w1 + · · ·+ vnwn.

• El producte escalar compleix la propietat commutativa: −→v · −→w = −→w · −→v .

• El producte escalar es comporta, respecte de les altres operacions entre vectors
(suma i producte per escalars), de la manera esperada:

−→u · (r−→v + s−→w ) = r(−→u · −→v ) + s(−→u · −→w ).

• El producte escalar està molt relacionat amb la mesura de distàncies. Si desig-
nem d(A,B) la distància entre els punts A i B , aleshores

d(A,B)2 =
−→
AB ·

−→
AB.

Dit d’una altra manera, si denotem per |−→v | la longitud (o mòdul, o norma) del
vector −→v , es compleix

|−→v | =
√−→v · −→v .

Això no és més que una reformulació del clàssic teorema de Pitàgores.

• El producte escalar està molt relacionat amb la perpendicularitat: els vectors
perpendiculars són els que donen zero quan els multipliques.

• El producte escalar està molt relacionat amb la mesura d’angles. Suposem que
tenim dos vectors −→u , −→v i denotem per α la mesura de l’angle que formen. Ales-
hores, es compleix aquesta fórmula bàsica

−→u · −→v = |−→u | |−→v | cos(α).

Amb aquesta fórmula, si coneixem les coordenades de dos vectors, podem calcular
immediatament l’angle que formen. Observem que, a partir d’aquesta fórmula, és
clar que dos vectors són perpendiculars exactament quan el seu producte escalar
és zero.

En certa manera, el producte escalar és el fonament de tota la geometria elemental
d’angles i distàncies.
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27.3 Fem-ho amb sage

Podem treballar amb vectors de qualsevol dimensió, calcular productes escalars i lon-
gituds de vectors. La sintaxi apropiada la podem veure en aquests exemples:
sage: u=vector([1,1,0,-1,-3,3])
sage: u
(1, 1, 0, -1, -3, 3)
sage: norm(u)
sqrt(21)
sage: norm(u).N()
4.58257569495584
sage: v=vector([0,1,1,-2,-2,4])
sage: u*v
21
sage: u-2*v
(1, -1, -2, 3, 1, -5)
sage: def angle(x,y):
....: return arccos(x*y/(norm(x)*norm(y)))
....:
sage: angle(u,v).N()
0.453961251572380



28. Geometria en 3D

28.1 Rectes i plans en 3D

En aquest apartat considerarem com són les equacions de rectes i plans en un espai de
tres dimensions. Com hem dit abans, podríem estudiar, sense més complicació, el cas
general d’una dimensió n arbitrària, però per simplicitat ens restringirem a la dimensió
tres.

Equació d’un pla

L’equació general d’un pla en dimensió 3 és

ax + by + cz = d .

Aquest pla està format, lògicament, per tots els punts de coordenades (x , y , z) que
satisfacin aquesta equació. Observem:

• Si fem variar el valor del terme independent d , obtindrem tots els plans paral.lels
al pla ax + by + cz = d . En particular, el pla paral.lel que passa per l’origen és
el pla ax + by + cz = 0.

• El vector −→n = (a, b, c) és perpendicular al pla. Direm que és un vector normal al
pla. Per comprovar-ho, traslladem el pla a l’origen: ax + by + cz = 0, prenem ara
un vector −→v = (x , y , z) que estigui contingut en aquest pla i, finalment, observem
que −→n · −→v = 0.

Equació d’una recta

Hi ha dues maneres d’expressar una recta en dimensió tres. En primer lloc, ho podem
fer com a intersecció de dos plans: si donem les equacions de dos plans (diferents i no
paral.lels), les dues equacions, simultàniament, determinaran una recta. Per exemple,
la recta {

x − 5y = −18
4x + z = 7

La segona manera consisteix en donar un punt de la recta P i un vector director −→v
de manera que tots els punts de la recta s’obtindran sumant al punt P múltiples del
vector director. Per exemple

(x , y , z) = (2, 4,−1) + t(1, 5,−4).

En aquesta equació hi apareix un paràmetre t que pot prendre qualsevol valor. Direm
que és una equació paramètrica de la recta.
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28.2 Exemples

• Pla perpendicular a una recta. Trobeu l’equació del pla que passa pel punt
A = (1, 1,−2) i és perpendicular a la recta que passa pels punts B = (0, 1, 2) i
C = (1,−1, 3).

La recta que passa per B i C té com a vector director el vector −→BC = (1,−2, 1).
Els plans perpendiculars a aquest vector són els plans x − 2y + z = d , per a
qualsevol valor de d . De tots aquests plans, l’únic que passa per A és el pla
x − 2y + z = −3.

• Pla determinat per tres punts. Trobeu l’equació del pla que passa pels punts
A = (1, 1, 1), B = (1,−2,−2) i C = (3, 1,−1).
Aquest pla tindrà una equació ax+by+cz = d . Hem de determinar els valors dels
coeficients a, b, c i d per tal que les coordenades dels tres punts que ens donen
compleixin l’equació del pla. Ho podem fer resolent un sistema (compatible) de
tres equacions amb quatre incògnites. La solució és el pla x − y + z = 1.

• Costats i angles d’un triangle. Trobeu les longituds dels costats i la mesura dels
angles del triangle que té per vèrtex els punts A = (1, 1, 1), B = (1,−2,−2) i
C = (3, 1,−1).

Comencem determinant els vectors −→AB = (0,−3,−3), −→AC = (2, 0,−2) i −→BC =
(2, 3, 1). Les longituds d’aquests vectors (que són les longituds dels costats del
triangle) les podem trobar usant el producte escalar

|
−→
AB| =

√
(−3)2 + (−3)2 = 3

√
2;

|
−→
AC | =

√
22 + (−2)2 = 2

√
2;

|
−→
BC | =

√
22 + 32 + 12 =

√
14.

Per calcular l’angle α que formen els vectors −→AB i −→AC tornem a utilitzar el pro-
ducte escalar.

α = arccos

−→
AB ·

−→
AC

|
−→
AB| |

−→
AC |

= arccos(1/2) = 60◦.

Per calcular l’angle β que formen els vectors −→BA i −→BC tornem a utilitzar el pro-
ducte escalar.

β = arccos

−→
BA ·

−→
BC

|
−→
BA| |

−→
BC |

= arccos(2/
√
7) ≈ 40.89◦.

El tercer angle no cal calcular-lo perquè sabem que la suma dels tres angles d’un
triangle val 180◦ i, per tant, aquest tercer angle val ≈ 79.10◦.

• Angle entre dos plans. Trobeu l’angle entre els plans x +y + z = 2 i 2x +y − z =
−5.
L’angle entre dos plans serà el mateix que l’angle entre els seus vectors normals.
Aquests vectors normals són els vectors −→u = (1, 1, 1) i −→v = (2, 1,−1) i l’angle
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que formen és

α = arccos
−→u · −→v
|−→u | |−→v |

= arccos(
√
2/3) ≈ 61.9◦.

• Distància d’un punt a un pla. Trobeu la distància del punt A = (−1, 2, 2) al pla
2x − y − z = 6.
El vector normal al pla és el vector −→n = (2,−1,−1). La recta que passa pel punt
A i és perpendicular al pla és la recta

(x , y , z) = (−1, 2, 2) + t(2,−1,−1).

El punt on aquesta recta talla el pla és el punt corresponent a t = 2, és a dir,
és el punt B = (3, 0, 0). La distància entre A i el pla serà la distància entre els
punts A i B , que val 2

√
6.

• Distància entre dues rectes. Trobeu la distància entre aquestes dues rectes

(2, 1, 0) + r(−1, 1, 1)
(1, 0,−1) + s(0,−1, 2)

Hem de trobar un punt P = (2 − r , 1 + r , r) a la primera recta i un punt Q =

(1,−s,−1+2s) a la segona recta de manera que el vector −→PQ sigui perpendicular
als vectors directors de les dues rectes. Resolent un sistema de dues equacions
obtenim que aquests punts són P = (16/7, 5/7,−2/7) i Q = (1,−1/7,−5/7).
Aleshores, la distància entre les dues rectes serà la distància entre aquests dos
punts: d = 3

√
2/7.

28.3 Dimensions superiors a tres

Tot el que hem fet fins ara es pot fer amb vectors de n dimensions, per a qualsevol
valor de n. La principal diferència estarà en que, de la mateixa manera que a l’espai de
dimensió 3 tenim rectes i plans, en un espai de dimensió n tindrem exactament n − 1
tipus diferents d’objectes intermedis entre els punts i l’espai total. En direm subespais
de dimensió k , per k = 1, . . . , n− 1. Així, els subespais de dimensió 1 seran les rectes,
els de dimensió 2 seran els plans, hi haurà els subespais de dimensió 3, 4, etc. fins
els subespais de dimensió màxima, que seran els de dimensió n − 1. Aquests darrers
subespais s’anomenen hiperplans.

De la mateixa manera que una equació al pla representa una recta i una equació
a l’espai 3D representa un pla, una equació a l’espai de dimensió n representa un
hiperplà. Per exemple, si considerem vectors en l’espai de dimensió 7 (és a dir, vectors
amb 7 coordenades), aquesta equació

2x1 − 3x2 + x3 − 2x4 +
√
5x5 − x6 + (1/3)x7 = −π

determinarà un hiperplà amb vector normal (2,−3, 1,−2,
√
5,−1, 1/3).

Quan passem de l’espai de tres dimensions a un espai de dimensió superior, cal anar
amb compte amb les possible interseccions dels subespais. Per exemple, dos plans en
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3D es tallen, en general, en una recta, però en dimensió 4 podem tenir dos plans que
es tallin en un únic punt. La fórmula general que governa tot això és aquesta. Suposem
que X i Y són subespais d’un espai de dimensió n, de dimensions r i s respectivament.
Aleshores, o bé X i Y no es tallen o es tallen en un subespai Z que pot tenir qualsevol
dimensió entre max(0, r +s−n) i min(r , s). Per exemple, dos plans en dimensió 4 poden
tallar-se en un punt, en una recta o en un pla. Un subespai de dimensió 3 i un pla en
dimensió 4 es poden tallar en una recta o en un pla, etc.



29. Introducció al clustering

29.1 Plantejament del problema

Suposem que tenim un gran nombre de dades empíriques sobre individus que sabem o
creiem que pertanyen a dues o tres (o més) poblacions diferents. L’objectiu és desenvo-
lupar algun mètode per assignar cadascun d’aquests individus (i d’altres individus que
estudiem en el futur) a la seva població. Posem alguns exemples per entendre millor
de què estem parlant.

• Tenim bases de dades sobre l’aspecte visual de molts tumors al pit i els oncòlegs
voldrien disposar d’un mètode per deduir, a partir de l’anàlisi visual i amb una
bona probabilitat d’encert, si un tumor al pit és maligne o no ho és.

• Disposem d’una gran base de dades meteorològiques sobre una zona i voldríem
identificar un determinat nombre de situacions meteorològiques estàndard.

• En un jaciment arqueològic hem trobat restes de ceràmica que pertanyen a dues
civilitzacions diferents. Analitzem un gran nombre de mostres i en determinem
el contingut de diversos metalls (alumini, ferro, magnesi, etc.), amb la intenció
de trobar un criteri que ens permeti assignar cada peça a la civilització a què
pertany.

• Hem trobat diversos exemplars d’una planta que voldríem saber si pertany a una
varietat coneguda (i, en cas afirmatiu, a quina). Estudiem un determinat nombre
de propietats d’aquests exemplars i necessitem una manera de comparar-les amb
les de les varietats conegudes.

• Tenim una gran base de dades sobre els clients d’una empresa i voldríem cate-
goritzar aquests clients agrupant-los en un petit nombre de models, de cara a fer
campanyes de màrqueting més eficients.

• Volem classificar les ciutats europees segon la seva eficiència ecològica. Per a
cadascuna d’elles mesurem un nombre de variables (percentatge de reciclatge,
contaminació de l’aire, contaminació acústica, ús d’energies renovables, etc.). Vo-
lem determinar si, a partir d’aquestes variables, podem classificar les ciutats en
diversos grups.

El clustering és el conjunt de tècniques matemàtiques que s’utilitzen per atacar
aquesta mena de problemes.

La primera cosa que observem és que es tracta d’un problema clarament multidi-
mensional. En efecte, si en els exemples anteriors trobéssim una única variable que ens
distingís entre els diversos clústers, el problema seria trivial. Per exemple: Suposem
que volem distingir químicament el vi fet amb garnatxa del vi fet amb carinyena. Si,
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per exemple, detectéssim que el vi de garnatxa conté sempre una determinada antocia-
nina característica, mentre que el vi de carinyena no la conté mai, aleshores no caldria
fer clustering: n’hi hauria prou amb detectar analíticament la presència o absència
d’aquesta antocianina concreta. En els casos reals, aquesta situació no es dóna i cal
considerar un gran nombre de variables, de manera que el problema es converteix en
multidimensional.

Considerem amb més detall un altre exemple.1 Volem caracteritzar el suc de les ta-
ronges, les mandarines i els seus híbrids a partir de l’anàlisi química dels carotenoides
que contenen. Procedim d’aquesta manera:

1. Seleccionem un gran nombre de varietats de taronges (T ), mandarines (M) i
híbrids (H). En l’estudi citat, 12 varietats de T , 6 de M i 14 de H . Fem una
extracció de suc, en condicions experimentals perfectament controlades.

2. Identifiquem 12 tipus de carotenoide presents en els sucs d’aquests cítrics. Uti-
litzant anàlisi cromatogràfica determinem les quantitats de cadascun d’aquest 12
carotenoides en el suc de cadascuna de les 32 varietats de cítrics.

3. El resultat experimental consisteix, doncs, en 32 vectors (un per a cada varietat)
de dimensió 12 (una per a cada carotenoide). Així,

v28 = (a128, a228, . . . , a1228)

vol dir que el suc de la varietat 28 (que és la taronja sanguina) té un contingut
igual a a128 del carotenoide número 1, (neocrom), un contingut igual a a228 del ca-
rotenoide número 2, (anterxantina), etc. Com que aquests 28 vectors en dimensió
12 no els podem visualitzar, les seves propietats cal estudiar-les utilitzant les
eines de la geometria en dimensió 12.

4. Imaginem que el contingut de, diguem, β-criptoxantina (que és el carotenoide
número 10 de la nostra llista) s’hagués distribuït així entre les 32 varietats (l’eix
horitzontal indica el contingut en β-criptoxantina i cada lletra indica una de les
32 mostres):

Aleshores, veuríem (a simple vista, sense cap necessitat d’analitzar matemàtica-
ment el resultat) que hi ha exactament tres clústers formats per les tres categories
que volem estudiar i que, per tant, el contingut en aquest carotenoide concret
ens classifica els cítrics en taronges, mandarines i híbrids.

Però el resultat experimental no és com en el gràfic anterior, sinó que s’assembla
mes a aquest altre:

1El que ve a continuació està basat en l’article K. L. Goodner, R. L. Rouseff, H. J. Hofsommer, Orange,
Mandarin, and Hybrid Classification Using Multivariate Statistics Based on Carotenoid Profiles, J. Agric.
Food Chem. 49 (2001),1146–1150.
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Aquí, no veiem clústers evidents perquè ni la β-criptoxantina ni, de fet, cap ca-
rotenoide aïllat ens distingeix les tres famílies de cítrics.

5. Cal utilitzar, com a mínim, dos carotenoides. Imaginem que n’agafem dos de
concrets i aleshores cada cítric ens dóna un punt del pla, que és el punt de
coordenades (x , y) on x és la quantitat del primer carotenoide escollit i y és la
quantitat del segon. Suposem que obtinguéssim una gràfica com la següent en la
que sí que s’observessin tres clústers relativament ben diferenciats corresponents
a les tres famílies de cítrics que volem caracteritzar. Si això passés, tindríem el
problema resolt amb la utilització de dues variables i la teoria matemàtica del
clustering pràcticament seria supèrflua.
Però els resultats experimentals ens diuen que amb dues variables tampoc no
n’hi ha prou, ni amb tres, ni amb quatre.

En conclusió: ens calen eines matemàtiques per poder determinar (sense «veure-
ho») si uns punts de l’espai de n dimensions s’agrupen en diversos clústers. Aquestes
eines matemàtiques formen el que es coneix com a clustering i són eines que, en
l’actualitat, tenen una importància immensa en les àrees de l’anàlisi de dades (big
data, data mining, machine learning, bioinformàtica, etc.).

29.2 Estandardització

Suposem que els resultats d’unes observacions són una sèrie de punts v1, . . . , vn en
un espai de dimensió m. Cada punt (o vector, com n’hi vulguem dir) representa una
observació i els seus components representen els valors de cadascuna de les variables
que hem mesurat en aquesta observació. En tot el que farem a partir d’ara pensarem
que aquestes variables són numèriques o, més ben dit, són nombres reals. El cas de
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variables no numèriques també és molt important a la pràctica, però no el considerarem,
per no complicar l’exposició.

Imaginem que estem fent un estudi de voltors comuns i de cada exemplar hem pres
una sèrie de mesures (llargada, pes, envergadura, llargada de la cua, llargada del bec),
de manera que el convertim en un vector com aquest

v = (102.5 cm, 8.42 kg, 2.55m, 27.2 cm, 7.6 cm).

Immediatament ens adonem que no podrem operar amb aquests punts (per exemple,
calcular la distància entre dos d’ells) perquè

• Estem utilitzant unitats de mesura diferents (metres i centímetres) i, encara pitjor,
magnituds diferents (longitud i pes).

• Les escales de mesura de cada variable no són comparables. Per exemple, una
diferència d’un cm a l’envergadura és insignificant, però una diferència d’un cm a
la mida del bec és molt notable.

Per tant, abans de començar a treballar amb aquestes dades ens cal expressar-les de
manera que els diversos components siguin plenament compatibles. La resposta és
utilitzar un mètode que es coneix com a estandardització.

Suposem que tenim un gran nombre de valors d’una variable x1, . . . , xn, expressats
en unes certes unitats. Calculem aquests dos valors estadístics fonamentals:

1. La mitjana dels valors
µ =

x1 + · · ·+ xn

n
.

2. La desviació típica dels valors

σ =

√
(x1 − µ)2 + · · · (xn − µ)2

n − 1
.

El significat de la mitjana és ben conegut. La desviació típica ens mesura com es
dispersen els valors respecte de la mitjana: una desviació típica petita indica que els
nombres x1, . . . , xn estan força agrupats al voltant de la seva mitjana, mentre que una
desviació típica2 gran indica que els nombres x1, . . . , xn estan força allunyats de la seva
mitjana. Observem que µ i σ tenen les mateixes unitats que la variable inicial.

Per estandarditzar, substituïm cada valor xi per la seva estandardització x ′i

x ′i =
xi − µ
σ

.

Observem que els valors x ′i no tenen unitats. Són valors estandarditzats i, per això
mateix, totalment comparables amb els valors estandarditzats de qualsevol altra mesura
que haguem pres, independentment de les seves unitats.

2Aquí no ens podem entretenir discutint la distinció entre estadístics mostrals i paràmetres poblacio-
nals. Hem de deixar-ho per als cursos d’estadística.
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29.3 El mètode k-means

En aquesta introducció superficial a les tècniques de clustering només explicarem3 un
únic mètode, potser el més clàssic de tots, anomenat k-means. En aquest mètode cal
haver decidit a la bestreta el nombre de clústers que volem trobar (si no ho sabem,
també hi ha mètodes per determinar-lo, però no els estudiarem). Diguem-n’hi k .

Tenim inicialment una col.lecció de n punts d’un espai de dimensió m, v1, . . . , vn i
suposem que, si cal, els hem aplicat el procés d’estandardització descrit a l’apartat
anterior. Hem decidit que volem agrupar aquests punts en k clústers. Aleshores, fem
això:

1. Tenim una partició en clústers aproximada C1, . . . ,Ck .

2. Per a cada clúster Cj , determinem el seu baricentre, que és el punt que té per co-
ordenades les mitjanes de les coordenades de tots els punts del clúster. D’aquest
baricentre n’hi diem bj .

3. Per a cada punt xi , calculem les distàncies d(xi , bj) d’aquest punt a tots els
baricentres.

4. Definim uns nous clústers C ′j de la manera següent. Si el baricentre més proper
al punt xi és el baricentre bj0 , assignem el punt xi al clúster C ′j0 .

5. Repetim el procés tornant a començar pel pas 1.

Veiem que tenim un procés iteratiu en el qual, presumiblement, anirem trobant
clústers cada vegada «millors». El concepte de millor és aquest: un clúster és millor
si els seus punts s’agrupen força bé al voltant del seu baricentre. Expliquem això una
mica millor. Una bona mesura de la «bondat» d’una agrupació en clústers és aquesta.
Definim

r = suma de les distàncies de cada punt al baricentre del seu clúster.

Com més petit sigui el valor de r , millor serà la distribució en clústers. El procés que
acabem de descriure fa disminuir el valor de r i, per tant, va obtenint clústers cada
vegada «millors». Per completar la descripció del mètode hem de tenir en compte això:

• Per iniciar el procés, escollim a l’atzar k punts entre els punts v1, . . . , vn, els
prenem com a baricentres i comencem pel pas 3. El resultat a què arribem
dependrà d’aquesta elecció inicial dels centres.

• En el moment que els clústers no canviïn quan repetim el procés, haurem acabat.

• No hi ha garantia que el procés ens condueixi al millor resultat possible. A cada
iteració, el procés fa disminuir el valor de r . Per tant, el procés ens conduirà
a un mínim local de r , que podria ser diferent del mínim global. A la pràctica,
el que fem és aplicar aquest procés moltes vegades (recordem que cada vegada
que apliquem el procés començarem amb uns centres diferents i, per tant, podem
arribar a resultats diferents) i quedar-nos amb el resultat que doni el valor de r
més petit.

3Molt rudimentàriament!
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• Es molt senzill programar aquest mètode amb qualsevol llenguatge que cone-
guem. Els llenguatges més especialitzats (com és R) ja el duen incorporat.

Fem un exemple en dimensió dos, de manera que puguem veure com a cada iteració
ens anem acostant a la «bona» distribució en clústers. Comencem amb un cert nombre
de punts del pla que «visualment», sembla que es distribueixin en tres clústers.

Posem en marxa el procés i observem què passa a cada nova iteració. Els tres
clústers estan pintats de color blau, vermell i verd, respectivament; els tres centres són
els punts de color negre i el valor de r apareix, en cada cas, a la part superior.
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29.4 Fem-ho amb sage

L’eina idònia per als tipus de problemes que hem estudiat en aquest capítol és el
programa R. Tanmateix, sage pot invocar R, de manera que, sense sortir de sage,
podem executar comandes de R, per exemple la comanda sage: r.kmeans() invoca la
comanda kmeans del programa R. D’altra banda, el mètode k-means és molt simple
de programar. Com a exemple, els dibuixos de l’exemple anterior estan generats amb
aquest codi sage:
sage: def random_between(j,k):
....: a=int(random()*(k-j+1))+j
....: return a
sage: def d(a,b):
....: return sqrt((a[0]-b[0])^2+(a[1]-b[1])^2)
sage: def dibuixa(L,c):
....: if len(L)==1:
....: return plot(100,(x,0,10),ymax=10,ymin=0,aspect_ratio=1)+
....: text(r’$\bullet$’,L[0],fontsize=20,color=c)
....: return text(r’$\bullet$’,L[0],fontsize=20,color=c)+dibuixa(L[1:],c)
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sage: A=[(1,1),(1.2,3),(2,4),(4,2),(5,4.5),(6,1.5),(6.5,4),(7,3.5),
....: (7.2,4),(8,3),(9,3),(3,3.5),(2.5,2),(3.5,3),(5,3.5),
....: (4.5,4),(5.5,2.5),(6.5,3),(4.5,2.5)]
sage: B=[(2,6),(2.2,6.5),(3,7),(3.5,9),(3.7,8.5),(2.7,8),(1.5,7),(2,9),(2,8)]
sage: C=[(7,6),(6,6.5),(9.7,7),(9,9),(8.7,8.5),(7.7,8),(6.5,8.5),(7,9),
....: (7.5,7),(6.5,7),(7,7.5)]
sage: L=A+B+C
sage: def agrupa(M):
....: K0=[L[i] for i in [0..len(L)-1] if d(L[i],M[0])<min(d(L[i],M[1]),
....: d(L[i],M[2]))]
....: K1=[L[i] for i in [0..len(L)-1] if d(L[i],M[1])<min(d(L[i],M[0]),
....: d(L[i],M[2]))]
....: K2=[L[i] for i in [0..len(L)-1] if d(L[i],M[2])<min(d(L[i],M[0]),
....: d(L[i],M[1]))]
....: return [K0,K1,K2]
sage: def troba_centres(H):
....: c=[]
....: for i in [0,1,2]:
....: a=sum([H[i][j][0] for j in [0..len(H[i])-1]])/len(H[i])
....: b=sum([H[i][j][1] for j in [0..len(H[i])-1]])/len(H[i])
....: c.append((a,b))
....: return c
sage: def error(X):
....: centres=troba_centres(X)
....: return sum([d(centres[0],X[0][i]) for i in [0..len(X[0])-1]])+
....: sum([d(centres[1],X[1][i]) for i in
....: [0..len(X[1])-1]])+sum([d(centres[2],X[2][i]) for i in [0..
....: len(X[2])-1]])
sage: a=random_between(0,len(L)-1)
sage: b=random_between(0,len(L)-1)
sage: c=random_between(0,len(L)-1)
sage: M=[L[a],L[b],L[c]]
sage: centres=M
sage: acabat=False
sage: while not acabat:
....: R=agrupa(centres)
....: CC=troba_centres(R)
....: if centres==CC:
....: acabat=True
....: centres=CC
sage: dibuixa(R[0],’blue’)+dibuixa(R[1],’red’)+dibuixa(R[2],’green’)+
....: dibuixa(CC,’black’)+text(round(error(R),2),(8,9.5),fontsize=15,
....: color=’black’)



30. Matrius

Tots estem familiaritzats amb les presentacions de dades numèriques en forma de
«graella» o «taula de doble entrada», de manera que les dades estan organitzades en
files i columnes. El concepte matemàtic que hi ha al darrere d’això és el concepte de
matriu:(

2 −1
0 3

)
,

(
3.1 0 7.2
1.9 2.0 1.2

)
,

 2/7 −1/2
1/2 6π

cos(2.5) −3

 ,

0.759
0.245
0.908

 , (2 1 − 1).

Parlarem de matrius de n files i m columnes i, si n = m, parlarem de matrius quadrades.
Si volem escriure una matriu genèrica utilitzarem la notació del doble subíndex:

A =

a11 a12 · · · a1m
...

...
...

an1 an2 · · · anm

 = (ai j) .

D’aquesta manera, el terme ai j de la matriu A = (ai j) és el que es troba a la fila i i
a la columna j . Observem que les matrius amb una única fila i les matrius amb una
única columna es poden entendre com si fossin vectors. Si una matriu té n files i m
columnes, direm que és una matriu n ×m.

30.1 Operacions algebraiques amb matrius

El concepte matemàtic de matriu transcendeix completament el de «graella de nom-
bres» perquè les matrius estan dotades d’unes operacions similars a la suma i el
producte de nombres i aquestes operacions són les que expliquen la immensa utilitat
de les matrius en molts camps de la ciència.

• Si dues matrius A i B tenen la mateixa «mida» (és a dir, el mateix nombre de
columnes i el mateix nombre de files), podem definir la seva suma A + B a partir
de sumar cada terme de A amb el terme de B que es troba a la mateixa fila i la
mateixa columna. És a dir, si A = (ai j) i B = (bi j), aleshores A + B = (ai j + bi j).
Si dues matrius tenen mides diferents, no es poden sumar.

• Podem multiplicar una matriu 1× n per una matriu n × 1 així:

(a11 a12 · · · a1n)


b11

b21
...

bn1

 = a11b11 + a12b21 + · · ·+ a1nbn1.

Observem que aquesta multiplicació és, en el fons, el mateix que el producte
escalar de vectors.

188
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• La multiplicació anterior es pot generalitzar al cas d’una matriu A que tingui
tantes columnes com files té una matriu B . Més concretament, sigui A = (ai j)
una matriu n×m i sigui B = (bi j) una matriu m× k , aleshores podem multiplicar
aquestes dues matrius AB = (ci j) a base de multiplicar (en el sentit del punt
anterior) cada fila de la matriu A per cada columna de la matriu B . La fórmula
concreta seria

ci j = ai1b1j + ai2b2j + · · ·+ aimbmj .

Observem que pot passar que la multiplicació AB sigui possible, però la multi-
plicació BA no ho sigui.

• Finalment, podem multiplicar una matriu A (de qualsevol mida) per un escalar r
simplement multiplicant tots els seus termes per r : r (ai j) = (rai j).

Aquestes operacions conserven les propietats fonamentals de les operacions de
nombres reals, amb alguna diferència important.

1. La suma de matrius i la multiplicació per escalars compleixen aquestes conegudes
propietats

• A+B = B +A (propietat commutativa), (A+B)+C = A+(B +C ) (propietat
associativa).

• r(A + B) = rA + rB ; (r + s)A = rA + sA; 1A = A; r(sA) = (rs)A.
• A + (0) = A i A − A = (0), on (0) indica una matriu de la mida apropiada

amb tots els termes igual a zero.

Evidentment, aquestes fórmules només tenen sentit si les matrius que hi aparei-
xen tenen mides compatibles per tal que les operacions siguin possibles.

2. La multiplicació de matrius també compleix aquestes conegudes propietats

• (AB)C = A(BC ) (propietat associativa), A(B + C ) = AB + AC (propietat
distributiva).

• r(AB) = (rA)B = A(rB).
• Per a cada valor n hi ha una matriu n× n anomenada I o «matriu identitat»

amb la propietat que AI = A i I B = B , si A i B són matrius de mida
convenient. Aquestes matrius I són

(1),

(
1 0
0 1

)
,

1 0 0
0 1 0
0 0 1

 , · · · ,

1 · · · 0
... . . . ...
0 · · · 1

 , · · ·

3. En canvi, cal anar amb molt de compte perquè les matrius es comporten diferent
dels nombres en aquests dos aspectes:

• El producte de matrius no compleix la propietat commutativa. És a dir, és
fàcil trobar dues matrius A i B tal que AB 6= BA. Per exemple(

1 1
1 0

)(
1 1
0 1

)
=

(
1 2
1 1

)
6=
(
2 1
1 0

)
=

(
1 1
0 1

)(
1 1
1 0

)
.
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• El producte de dues matrius pot ser igual a zero (és a dir, una matriu on
tots els seus termes són zero) sense que cap de les dues matrius sigui igual
a zero. Per exemple, (

1 0
1 0

)(
0 0
1 1

)
=

(
0 0
0 0

)
.

30.2 La matriu inversa

Per resoldre l’equació 3x = 5 diem que «passem el 3 dividint al costat dret» i obtenim
x = 5/3. Si volem analitzar millor el que realment estem fent direm que multipliquem
els dos costats de l’equació per l’invers de 3, és a dir per 1/3. Aleshores, obtenim
x = (1/3)3x = (1/3)5 = 5/3. Imaginem que ara volem resoldre una equació similar
amb matrius 2× 2: (

2 1
1 −1

)
X =

(
1 −2
1 0

)
.

De fet, ho podem fer exactament igual: multiplicant els dos costats de l’equació per la
matriu inversa de

(
2 1
1 −1

)
, però cal parar atenció en dos aspectes:

1. Quina és la matriu inversa de la matriu
(
2 1
1 −1

)
?

2. Com que la multiplicació de matrius no compleix la propietat commutativa, hem
d’anar amb molt de compte de multiplicar les matrius en l’ordre correcte.

Discutim el primer punt. Suposem que A és una matriu quadrada. La inversa de A és
una matriu A−1 que té aquesta propietat

AA−1 = A−1A = I .

De la mateixa manera que el número 0 no admet invers, també hi ha matrius que no
tenen inversa. Per exemple, la matriu ( 1 0

1 0 ) no pot tenir inversa perquè, si en tingués,
arribaríem a aquest absurd: com que(

1 0
1 0

)(
0 0
1 1

)
=

(
0 0
0 0

)
,

també tindríem (
0 0
1 1

)
=

(
1 0
1 0

)−1(
0 0
0 0

)
=

(
0 0
0 0

)
.

En conclusió, hi ha matrius que tenen inversa i altres que no en tenen. Quines? En el
cas de les matrius 2× 2, la resposta és relativament simple. Observem que(

a b
c d

)(
d −b
−c a

)
=

(
∆ 0
0 ∆

)
= ∆I , ∆ = ad − bc

Per tant, les matrius 2 × 2 que tenen inversa són aquelles amb ∆ 6= 0 i la inversa es
calcula d’aquesta manera senzilla(

a b
c d

)−1
=

1

∆

(
d −b
−c a

)
.



30. Matrius 191

Aquest número ∆ = ab − cd s’anomena el determinant de la matriu. Les matrius
invertibles són exactament aquelles que tenen determinant diferent de zero.

En el cas general de les matrius quadrades de mida qualsevol, la situació és es-
sencialment la mateixa

• Hi ha una funció (complicada) anomenada el determinant que assigna a cada
matriu A un nombre det(A) que té la propietat fonamental

det(AB) = det(A) det(B).

Per a les matrius 2× 2 i 3× 3 aquesta funció és

det

(
a b
c d

)
= ad − bc

det

a b c
d e f
g h i

 = aei + cdh + bf g − ceg − af h − bdi .

Per a les matrius més grans, la fórmula de càlcul del determinant és massa
complicada i el càlcul del determinant el farem, naturalment, amb un ordinador.

• Les matrius invertibles són exactament les que tenen determinant 6= 0.

• Hi ha una forma complicada de trobar efectivament la inversa d’una matriu que
tingui determinant ∆ 6= 0. Per a les matrius 2 × 2 i 3 × 3 la inversa ve donada
per (

a b
c d

)−1
=

1

∆

(
d −b
−c a

)
a b c

d e f
g h i

 =
1

∆

 ei − f h ch − bi bf − ce
f g − di ai − cg cd − af
dh − eg bg − ah ae − bd


que, com veiem, ja és massa complicada per calcular-la sense l’ajuda de l’ordina-
dor.

Utilitzant les propietats de les operacions amb matrius, el concepte de matriu in-
versa, i anant amb compte amb l’ordre en què multipliquem les matrius, podem resoldre
fàcilment algunes equacions amb matrius. Per exemple, Suposem que A, B , C , K i M
són matrius quadrades de la mateixa mida i busquem una matriu quadrada X d’aquesta
mateixa mida tal que

AB(XC − K ) + XC = 3M.

Podem procedir d’aquesta manera
AB(XC − K ) + XC = 3M

ABXC − ABK + XC = 3M

ABXC + XC = 3M + ABK

(ABX + X )C = 3M + ABK

ABX + X = (3M + ABK )C−1

(AB + I )X = (3M + ABK )C−1

X = (AB + I )−1(3M + ABK )C−1
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30.3 Fem-ho amb sage

Per especificar una matriu en sage n’hi ha prou amb llistar els seus elements per files
(i recordar que la primera fila és la fila zero i la primera columna és la columna zero).
sage: E=matrix([[2,3,1],[5,2,3],[1,2,0]])
sage: E
[2 3 1]
[5 2 3]
[1 2 0]
sage: E[0,2]
1
sage: E[1,0]
5
sage: det(E)
5
sage: E^(-1)
[-6/5 2/5 7/5]
[ 3/5 -1/5 -1/5]
[ 8/5 -1/5 -11/5]
sage: E*E^(-1)
[1 0 0]
[0 1 0]
[0 0 1]
sage: E*E^(-1)==identity_matrix(3)
True
sage: F=matrix([[0,-1],[1,1],[5,-2]])
sage: E*F
[ 8 -1]
[17 -9]
[ 2 1]
sage: K=matrix([[4,4],[-4,-3]])
sage: L=matrix([[3,4],[-2,-3]])
sage: D=matrix([[3,0,-1],[2,1,4]])
sage: F*(K*L)^(-1)*D+identity_matrix(2)
[ 15/2 1 5/2]
[ 3/4 1 -1/4]
[197/4 7 69/4]



31. Aplicacions lineals i vectors propis

31.1 Aplicacions lineals

Suposem que tenim una matriu n ×m

A =

a11 · · · a1m
...

...
an1 · · · anm


i un vector −→v de dimensió m

−→v = (v1, . . . , vm)

(o un punt de l’espai de dimensió m, que és essencialment el mateix). Si escrivim
aquest vector en forma d’una matriu d’una única columna, aleshores podem considerar
la multiplicació de matrius A−→v i considerar que el resultat és un vector de dimensió n

A−→v =

a11 · · · a1m
...

...
an1 · · · anm


v1

...
vm

 =

w1
...

wn

 = −→w .

D’aquesta manera, una matriu la podem pensar com una funció que transforma vectors
en vectors. En direm una aplicació lineal o també una transformació lineal.

Una aplicació lineal direm que és ortogonal si no modifica ni la dimensió ni la
longitud dels vectors. És a dir, A ha de ser una matriu quadrada tal que ||−→v || = ||A−→v ||.
Exemples:

• Considerem la transformació lineal de vectors del pla donada per la matriu

A =

(
r 0
0 r

)
on r és un escalar diferent de 0 i de 1. Evidentment, A−→v = r−→v i aquesta
transformació lineal és una homotècia perquè multiplica tots els vectors per un
factor constant.

• Considerem la transformació lineal de vectors del pla donada per la matriu

A =

(
r 0
0 s

)
amb r 6= s . Aquesta transformació és una homotècia en la direcció de la primera
coordenada i una homotècia diferent en la direcció de la segona coordenada.
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• Considerem la transformació lineal de vectors del pla donada per la matriu

A =

(
0 1
1 0

)
que converteix el vector (x , y) en el vector (y , x). Geomètricament, es tracta de
la reflexió respecte de la diagonal del primer quadrant. Observem que aquesta
transformació lineal, a diferència de les dues anteriors, no modifica les longituds
dels vectors. És una transformació ortogonal. La reflexió respecte de qualsevol
recta que passi per l’origen també es pot expressar com a una transformació
ortogonal donada per una matriu apropiada.

• Una rotació de centre a l’origen de coordenades també és una transformació
ortogonal. En concret, la rotació d’angle θ ve donada per la matriu

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Per exemple, el resultat d’aplicar la rotació d’angle π/3 al vector −→i + 3
−→
j és

Rπ/3(
−→
i + 3

−→
j ) =

(
1
2 −

√
3
2√

3
2

1
2

)(
1
3

)
=

1− 3
√
3

2

−→
i +

3 +
√
3

2

−→
j .

Aquest mateix concepte d’aplicació lineal ens permet entendre els sistemes d’e-
quacions lineals com equacions matricials molt senzilles. En efecte, aquest sistema
lineal de n equacions amb m incògnites

a11x1 + · · ·+ a1mxm = b1

...
an1x1 + · · ·+ anmxm = bn

és equivalent a aquesta única equació matricial

A−→v = −→w

amb A = (ai j), −→v = (x1, . . . , xm), −→w = (b1, . . . , bm). En particular, si A fos una matriu
quadrada invertible, la solució seria −→v = A−1−→w .

31.2 Vectors propis i valors propis

Considerem a partir d’ara les transformacions lineals donades per una matriu quadrada
A. En general, aquesta aplicació lineal pot girar, reflectir, estirar o comprimir els
vectors de manera complexa. Si tenim un vector que no canvia de direcció quan li
apliquem la transformació A, direm que es tracta d’un vector propi. Aquest concepte
és extraordinàriament important. Donem-ne una definició molt precisa.

Un vector −→v 6= 0 direm que és un vector propi per a la matriu A si
A−→v = λ−→v per algun escalar λ. Aquest escalar λ direm que és el valor
propi de −→v .
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Observem que, si −→v és un vector propi, tots els múltiples seus (diferents de zero)
també ho són.
Exemples:

• Una rotació al pla (d’angle 6= 0, π/2, és clar) no pot tenir vectors propis perquè
tots els vectors (diferents de −→0 ) canvien de direcció.

• Una reflexió al pla respecte d’una recta té només dos vectors propis −→u , −→w (i els
seus múltiples, és clar). En efecte, els únics vectors que no canvien de direcció
són els de l’eix de reflexió (que es queden igual) i els perpendiculars a l’eix de
reflexió (que canvien de signe i, per tant, no canvien de direcció). Els valors
propis corresponents són 1 i −1. Per exemple, la reflexió respecte la diagonal
del primer quadrant té

– vectors propis de valor propi 1, que són els múltiples no nuls del vector (1, 1),
– vectors propis de valor propi −1, que són els múltiples no nuls del vector
(1,−1).

• En una homotècia tots els vectors són vectors propis amb el mateix valor propi.

• En una transformació del tipus A = ( r 0
0 s ) amb r 6= s , hi ha dos vectors propis:

−→u = (1, 0) de valor propi r i −→v = (0, 1) de valor propi s .

Com podem determinar els vectors propis d’una matriu? El mètode per trobar-los
es basa en el que es coneix com el polinomi característic de la matriu. Es tracta del
polinomi definit així

q(x) = det(A− xI )

on A és la matriu en qüestió, I és la matriu identitat (de la mateixa mida que A) i x és
la variable del polinomi. Per exemple, si A =

(
1 −1
2 −1

)
, el seu polinomi característic és

aquest

q(x) = det(A− xI ) = det

((
1 −1
2 −1

)
−
(

x 0
0 x

))
= det

(
1− x −1
2 −1− x

)
= x2 + 1

La importància d’aquest polinomi rau en aquest fet:

Les solucions de l’equació q(x) = 0 són els valors propis de la matriu A.

L’explicació és ben senzilla: un vector propi de valor propi λ és un vector −→v 6= 0 tal
que

A−→v = λ−→v = λI−→v .

Per tant,
(A− λI )−→v = 0

i això ens diu que la matriu A − λI no pot ser invertible i, en conseqüència, el seu
determinant ha de ser zero. Però el seu determinant és q(λ).

Tenim, doncs, un mètode per trobar els vectors propis d’una matriu. Practiquem-lo
en tres exemples de matrius 2× 2.
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Exemple. Trobem els vectors propis de la matriu

A =

(
−3 −2
4 3

)
.

Seguim aquests passos

1. Calculem el polinomi característic de la matriu.

q(x) = det

(
−3− x −2

4 3− x

)
= x2 − 1.

2. Els valors propis seran les solucions de q(x) = 0. En aquest cas, hi ha dos valors
propis: λ1 = 1, λ2 = −1.

3. Per a cada valor propi, trobem els vectors propis corresponents resolent un sis-
tema d’equacions.

• Vectors propis de valor propi λ1 = 1. Són els vectors −→v tals que A−→v = −→v .
Si posem −→v = (a, b), aquests vectors han de complir(

−3 −2
4 3

)(
a
b

)
=

(
a
b

)
.

Això és un sistema d’equacions lineals, compatible indeterminat. Les seves
solucions són tots els vectors múltiples de −→v = (1,−2).

• Vectors propis de valor propi λ2 = −1. Són els vectors −→v tals que A−→v =
−−→v . Si posem −→v = (a, b), aquests vectors han de complir(

−3 −2
4 3

)(
a
b

)
=

(
−a
−b

)
.

Això és un sistema d’equacions lineals, compatible indeterminat. Les seves
solucions són tots els vectors múltiples de −→v = (1,−1).

4. En conclusió, els vectors propis de la matriu A són

• Els múltiples (diferents del vector zero) de (1,−2) són vectors propis de valor
propi 1.

• Els múltiples (diferents del vector zero) de (1,−1) són vectors propis de valor
propi −1.

Exemple. Trobem els vectors propis de la matriu

A =

(
3 −1
1 1

)
.

Seguim aquests passos
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1. Calculem el polinomi característic de la matriu.

q(x) = det

(
3− x −1
1 1− x

)
= x2 − 4x + 4.

2. Els valors propis seran les solucions de q(x) = 0. En aquest cas, hi ha un únic
valor propi: λ = 2.

3. Per a cada valor propi, trobarem els vectors propis corresponents resolent un
sistema d’equacions. Com que només hi ha un valor propi, només hem de resoldre
aquest sistema (

3 −1
1 1

)(
a
b

)
=

(
2a
2b

)
.

Això és un sistema d’equacions lineals, compatible indeterminat. Les seves solu-
cions són tots els vectors múltiples de −→v = (1, 1).

4. En conclusió, els vectors propis de la matriu A són els múltiples (diferents del
vector zero) de (1, 1) i el seu valor propi és 2.

Exemple. Trobem els vectors propis de la matriu

A =

(
1 −1
2 −1

)
.

Seguim aquests passos

1. Calculem el polinomi característic de la matriu.

q(x) = det

(
1− x −1
2 −1− x

)
= x2 + 1.

2. Els valors propis seran les solucions de q(x) = 0. En aquest cas, no hi ha
solucions. Per tant, no hi ha valors propis i, en conseqüència, no hi ha vectors
propis.

Tot això que hem fet és vàlid també per a matrius quadrades de qualsevol mida.

31.3 Fem-ho amb sage

Podem multiplicar una matriu per un vector, si tenen les mides apropiades.
sage: E=matrix([[2,3,1],[5,2,3],[1,2,0]])
sage: v=vector([1,0,-1])
sage: E*v
(1, 2, 1)

Si tenim una matriu quadrada, podem calcular el seu polinomi característic, els
valors propis i els vectors propis.
sage: charpoly(E)
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x^3 - 4*x^2 - 18*x - 5
sage: E.eigenvalues()
[-2.469360621242111?, -0.2991522192549519?, 6.768512840497063?]
sage: E.eigenvectors_right()
[(-2.46936062124211?, [(1, -1.85582677428444?, 1.09811970161122?)], 1),
(-0.29915221925495?, [(1, -0.28316665589945?, -1.44965225155658?)], 1),
(6.76851284049706?, [(1, 1.40215132492074?, 0.562058865734840?)], 1)]

Interpretem aquest últim resultat. En primer lloc, estem calculant els vectors propis per
la dreta perquè nosaltres sempre considerem que quan multipliquem una matriu A per
un vector v el vector és a la dreta: Av . Els valors propis són, aproximadament, −2.469,
−0.299, 6.769. Els interrogants al final indiquen que sage coneix internament els valors
exactes d’aquests valors propis, Els nombres 1 a la dreta de cada fila indiquen que els
valors propis són simples, és a dir, no repetits. Finalment, per a cada valor propi tenim
un vector propi. Per exemple, per al valor propi −2.469, un vector propi és el vector

−→v = (1,−1.85582677428444?, 1.09811970161122?).

La situació és una mica diferent si treballem amb una matriu de nombres inexactes.
Per exemple, prenem la mateixa matriu d’abans però substituïm el terme 2 pel terme
2.0.
sage: E=matrix([[2.0,3,1],[5,2,3],[1,2,0]])

Si li demanem que calculi els valors propis obtenim els mateixos resultats d’abans,
sense els interrogants. Això vol dir que es tracta de nombres inexactes. A més, sage
ens avisa que estem treballant amb nombres inexactes i que no pot garantir que el
resultat sigui correcte.
sage: E.eigenvalues()
UserWarning: Using generic algorithm for an inexact ring, which will
probably give incorrect results due to numerical precision issues.
[6.76851284049706, -0.299152219254952, -2.46936062124211]

Si ara li demanem els vectors propis, no es limita a avisar-nos, sinó que refusa
fer-ho.
sage: E.eigenvectors_right()
NotImplementedError: eigenspaces cannot be computed reliably for
inexact rings

Si volem que, malgrat els riscos, sage calculi els vectors propis, hem de dir que la
matriu és de RDF (nombres reals de doble precisió).
sage: E=matrix(RDF,[[2.0,3,1],[5,2,3],[1,2,0]])
sage: E.eigenvectors_right()
[(6.768512840497064,

[(-0.5519945378497666, -0.7739798725950621, -0.3102534238356669)], 1),
(-0.2991522192549521,

[(-0.5606245242943896, 0.15875017175966485, 0.812710603921203)], 1),
(-2.469360621242112,

[(0.4207046550354353, -0.7807549628808617, 0.46198407025396426)], 1)]



32. Matriu de Leslie i matriu de mobilitat
social

32.1 Matriu de Leslie d’una població estructurada

Recordem el model exponencial discret

x(t + 1) = r x(t)

que apareix quan una població es multiplica per una quantitat constant r cada període
de temps. Per exemple, un cultiu de bacteris que es dupliquen (r = 2) cada unitat
de temps. Matemàticament, l’estudi de l’evolució d’aquest model és molt senzill i ja
el vàrem fer a l’apartat 10.1. Si comencem amb N0 individus, cada unitat de temps la
població vindrà donada per aquesta successió

N0, rN0, r2N0, r3N0, . . . , r k N0, . . .

de manera que la població tendirà a infinit de manera exponencial i, en particular, la
població després de k unitats de temps serà igual a r k N0.

Aquest model pressuposa que la població és homogènia en el sentit que tots els seus
individus tenen el mateix comportament reproductiu. A la pràctica, sovint, la situació
és diferent perquè, per exemple, els individus més joves potser encara no són capaços
de reproduir-se. Podríem generalitzar el model anterior estructurant la població en
dos nivells: individus joves (J) i individus adults (A), de manera que la seva reproducció
podria venir regulada d’aquesta manera

• Els individus joves no es reprodueixen.

• Després d’una unitat de temps, el 20% dels individus joves es converteixen en
adults i l’altre 80% ha mort. El 60% dels individus adults ha sobreviscut i l’altre
40% ha mort.

• Els individus adults tenen una taxa de reproducció igual a r cada unitat de temps.
És a dir, cada adult dóna lloc a r individus (joves, és clar) cada unitat de temps.

Com podríem descriure matemàticament el comportament d’aquesta població estructu-
rada? Ens cal considerar dues variables

J(t) = nombre d’individus joves al temps t .
A(t) = nombre d’individus adults al temps t .

D’aquesta manera, la mida de la població a l’instant t ja no és un nombre, sinó que és
un vector de dimensió 2 −−→

N(t) = (J(t),A(t))

199
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i volem saber com evoluciona aquest vector amb el pas del temps.
Després d’una unitat de temps,1 les dues variables J(t) i A(t) hauran canviat de

valor i, d’acord amb les tres normes anteriors, valdran{
J(t + 1) = rA(t)

A(t + 1) = 0.2 J(t) + 0.6A(t)

Què podem dir sobre la població a llarg termini? Aquí l’anàlisi ja no sembla tan senzill
com en el cas del model exponencial.

El primer pas per poder analitzar aquesta situació és adonar-se que la podem
escriure en forma matricial d’aquesta manera:(

J(t + 1)
A(t + 1)

)
=

(
0 r
0.2 0.6

)(
J(t)
A(t)

)
.

Si designem per L la matriu ( 0 r
0.2 0.6 ), podem escriure aquesta equació matricial en la

forma −−−−−→
N(t + 1) = L

−−→
N(t)

que s’assembla molt a l’expressió del model exponencial discret, canviant la taxa de
creixement, que és un nombre, per L, que és una matriu 2× 2.

Aquest tipus de matrius L que ens descriuen l’evolució d’una població estructurada
per edats s’anomenen matrius de Leslie, en honor de Patrick H. Leslie, un matemà-
tic que va treballar a Oxford als anys 30 i 40 del segle XX, als inicis de l’ecologia
matemàtica.

Després d’aquest exemple, ja no hi ha d’haver cap dificultat en entendre que la
situació pot estendre’s a una població estructurada en un nombre de nivells superior
a 2. Per poder plantejar la matriu de Leslie corresponent només ens cal conèixer

• La taxa de fertilitat de cada nivell de població. En l’exemple anterior, la fertilitat
dels joves (0) i la dels adults (r ).

• La taxa de supervivència de cada nivell de població. En l’exemple anterior, la
supervivència dels joves (20%) i la dels adults (60%).

Exemple. El gran gall de les praderies (Tympanuchus cupido) és un ocell de la família
dels fasiànids que habita al centre de l’Amèrica del Nord. En un estudi sobre aquestes
aus, s’ha dividit les femelles en tres grups d’edat (C , J,A) i s’ha estudiat la supervi-
vència i la fecunditat de cada grup d’edat, en cada període de temps. S’ha vist que les
cries més joves (C ) encara no són fèrtils, tenen una probabilitat de supervivència del
15% i passen al segon grup després d’un període de temps. Els individus del segon
grup d’edat (J), tenen una probabilitat de supervivència del 38% i una mitjana de cries
femelles de 1.87 per femella cada període de temps. Passen al tercer grup d’edat des-
prés d’un període de temps. Finalment, la probabilitat de supervivència de les femelles
adultes (A) és del 45% per període de temps i tenen 2.21 cries femelles per període.

1Recordem que estem considerant models discrets i que només considerem la situació de la població
en instants t = 0, t = 1, t = 2, etc.
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En aquest cas, la mida de la població en cada instant de temps serà un vector de
dimensió 3 −→

N = (C , J,A)

i la informació que ens donen queda recollida en aquesta matriu de Leslie 0 1.87 2.21
0.15 0 0
0 0.38 0.45

 .

32.2 Matriu de mobilitat social

La mateixa idea de les poblacions estructurades per edat i de la matriu de Leslie
s’utilitza en altres contextos. Per exemple, a sociologia i economia es parla de la
matriu de mobilitat social per referir-se a una matriu completament anàloga a la de
Leslie. Posem uns quants exemples.

• En una gran universitat hi ha becaris (B), professors lectors (L) i professors per-
manents (P). Cada curs, la política de contractació de la universitat és aquesta:

1. Es renoven automàticament tots els contractes dels professors permanents,
excepte un 6% que són jubilacions, defuncions o baixes voluntàries.

2. Per cada 10 professors permanents es contracta un nou becari. Per cada 20
professors lectors es contracta un nou becari.

3. Es renova el contracte del 70% dels becaris, es contracta com a lectors el
2% dels becaris i a la resta de becaris no se’ls renova el contracte.

4. Un 10% dels lectors passen a ser professors permanents, a un 80% se’ls
renova el contracte i a la resta de lectors no se’ls renova el contracte.

Volem estudiar l’evolució de la plantilla de professorat en aquesta universitat. La
plantilla serà un vector

−→
N = (B, L,P)

i tindrem una matriu de Leslie (o de mobilitat social) L de manera que
−−−−−→
N(t + 1) = L

−−→
N(t).

La informació que ens donen és suficient per escriure aquesta matriu: 0.7 0.05 0.1
0.02 0.8 0
0 0.1 0.94

 .

• En un estudi sobre mobilitat social2 es va estudiar l’ocupació de 697 parelles
pare/fill. Les ocupacions es van estructurar en tres categories E (empleats o pro-
fessionals),3 O (obrers) i P (pagesos). Els resultats de l’estudi es poden expressar

2Vegeu J. C. Goyder, J. E. Curtis (1977) Occupational mobility in Canada over four generations, Canadian
Rev. Soc. Anthr. 14(3), 303–319.

3«White collar» a l’estudi original.
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en una taula de doble entrada:

Fill
E O P

E 78 39 11
Pare O 64 137 14

P 58 107 189

Això no és una matriu de Leslie o de mobilitat social. Hem de convertir aquests
nombres absoluts en percentatges. Obtenim

L =

0.6094 0.2977 0.1638
0.3047 0.6372 0.3023
0.0859 0.0651 0.5339

 .

D’on surten aquests nombres? Per exemple, per obtenir el coeficient 0.3047 que
ocupa la segona fila, primera columna, hem fet això. Hi ha 128 pares empleats
(suma de la primera fila de la taula de doble entrada) i d’aquests n’hi ha 39 que
tenen el fill obrer. Això vol dir que el 30.47% dels empleats tenen fills obrers.
Tenim, doncs, que L és la matriu de mobilitat social que es desprèn de l’estudi.
En efecte, observem que la població de pares es distribueix en 128 empleats, 215
obrers i 354 pagesos i la població de fills es distribueix en 200 empleats, 283
obrers i 214 pagesos. Tenim

L

128
215
354

 =

200
283
214

 .

• En una ciutat hi ha un sistema de bicicletes de lloguer («bicing») en el qual els
usuaris poden agafar una bicicleta a qualsevol dels seus punts d’aparcament i
retornar-la a qualsevol altre punt. L’orografia de la ciutat i les necessitats dels
usuaris fan que, normalment, moltes bicicletes es retornin a llocs diferents del
lloc d’origen. Per tal de planificar el transport nocturn de bicicletes d’una zona
a una altra, es fa un estudi de la dinàmica de les bicicletes. Es divideix la ciutat
en quatre grans zones: zona alta A, zona baixa B , zona est E i zona oest W i
s’observa que cada dia passa aproximadament el següent:

– De les bicicletes que surten de A, el 10% es retornen a A, el 60% es retornen
a B , el 20% es retornen a E i el 10% es retornen a W .

– De les bicicletes que surten de B , el 2% es retornen a A, el 50% es retornen
a B , el 35% es retornen a E i el 13% es retornen a W .

– De les bicicletes que surten de E , el 10% es retornen a A, el 25% es retornen
a B , el 25% es retornen a E i el 40% es retornen a W .

– De les bicicletes que surten de W , el 15% es retornen a A, el 20% es retornen
a B , el 40% es retornen a E i el 25% es retornen a W .

D’aquesta manera, podem construir una matriu 4×4 L que ens doni, a partir de la
quantitat de bicicletes que hi ha a cada sector a l’inici del dia −→N = (A,B,E ,W ),
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la quantitat de bicicletes que hi haurà a cada sector al final del dia L
−→
N . Aquesta

matriu, amb la informació que es desprèn de l’estudi anterior, és

L =


0.10 0.02 0.10 0.15
0.60 0.50 0.25 0.20
0.20 0.35 0.25 0.40
0.10 0.13 0.40 0.25


• Lewis Richardson va ser un matemàtic britànic que, entre moltes altres coses,

va desenvolupar models matemàtics dels conflictes bèl.lics. El que es coneix com
a model de Richardson de la cursa d’armaments pretén donar un model de la
quantitat d’armament que acumulen les diverses nacions, com a funció del temps.
Per simplicitat, considerem només tres nacions A, B , C . Richardson argumenta
que la quantitat d’armament que cada nació tindrà després d’una unitat de temps
depèn de tres factors

1. L’armament que ja té, multiplicat per un coeficient d’obsolescència o de re-
ducció per motius de pressupost.

2. L’armament que acumula com a resposta a l’armament que tenen les nacions
que considera hostils.

3. L’augment d’armament que, de manera constant, algunes nacions poden te-
nir, independentment de l’armament que tinguin les altres nacions (reposició
de l’armament obsolet, etc.).

El tercer factor fa que aquesta situació no sigui exactament igual a les altres que
hem estudiat abans. Podem expressar matricialment aquesta situació d’aquesta
manera (imaginem un exemple concret)A(t + 1)

B(t + 1)
C (t + 1)

 =

0.5 0.1 0
0.2 5 0.1
0 0.2 0.25

A(t)
B(t)
C (t)

+

0.05
0.15
0.05

 .

Què observem en aquestes matrius? D’una banda, observem que B és especial-
ment bel.licista. D’entrada, està multiplicant el seu armament per 5 independent-
ment de l’armament de les altres nacions. També, el seu creixement armamentístic
«vegetatiu» és el triple del de les altres nacions (0.15 en front de 0.05). Finalment,
està reaccionant a l’armament de A i de C (coeficients 0.2 i 0.1, respectivament).
C no es preocupa de l’armament de A (i viceversa), però sí del de B , i està retirant
una quarta part del seu armament (coeficient 0.25). Finalment, A està retirant la
meitat del seu armament cada període de temps i està responent a l’armament
de B , però menys del que ho fa C .
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Amb les matrius de Leslie i de mobilitat social que hem vist al capítol anterior, hem
substituït l’equació del model exponencial discret

N(t + 1) = r N(t)

per un altre model que s’hi assembla molt
−−−−−→
N(t + 1) = L

−−→
N(t)

en el qual la mida de la població no és un escalar sinó que és un vector i la taxa
de creixement tampoc no és un escalar sinó que és una matriu. En el cas del model
exponencial va ser molt senzill investigar com va evolucionant la població amb el pas
del temps i ens agradaria poder desenvolupar una anàlisi similar en el cas matricial.

Si ara volem conèixer la població en els temps t +1, t +2, . . ., haurem de considerar
les potències de la matriu L

N(t + 1) = L N(t), N(t + 2) = L2N(t), . . . , N(t + k) = Lk N(t), . . .

Evidentment, podem calcular explícitament les potències successives de la matriu L,
però fóra interessant tenir un model matemàtic que ens permeti predir què succeirà
quan k →∞, sense haver de calcular les potències Lk .

33.1 Potències i vectors propis

L’eina matemàtica per entendre el comportament de les potències d’una matriu és la
teoria dels vectors propis i valors propis que hem estudiat en un capítol anterior.
Vegem-ho en un exemple.

Considerem aquesta matriu

L =

(
1.5 2
0.08 0

)
.

Suposem que volem calcular Lk−→v per qualsevol valor de k i també per a k → ∞.
Suposem que −→v = (105, 1). Utilitzant l’ordinador podem veure que

L−→v = (159.5, 8.4), L2−→v = (256, 12.8), L3−→v = (409.6, 20.5),

L4−→v = (655.4, 32.8), L5−→v = (1048.6, 52.4), L6−→v = (1677.7, 83.9), . . .

i, a banda d’observar que les xifres van creixent, aquest càlcul no ens dóna prou infor-
mació sobre què és el que realment està passant.

Comencem calculant els valors propis i els vectors propis d’aquesta matriu L. A
partir del polinomi característic de L i seguin el procediment que hem estudiat arribem
a que hi ha aquests vectors propis

204
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1. Els múltiples de −→v1 = (20, 1) són vectors propis de valor propi 1.6.

2. Els múltiples de −→v2 = (5,−4) són vectors propis de valor propi −0.1.

Recordem que això vol dir que

L−→v1 = 1.6−→v1 , L−→v2 = −0.1−→v2 .

En particular, sobre aquests vectors és molt senzill calcular l’efecte de Lk :

Lk−→v1 = (1.6)k −→v1 , Lk−→v2 = (−0.1)k −→v2 .

Però el que ens interessa és Lk−→v . Observem això
−→v = (105, 1) = 5(20, 1) + (5,−4) = 5−→v1 +−→v2 .

Per tant,
Lk−→v = 5Lk−→v1 + Lk−→v2 = 5(1.6)k(20, 1) + (−0.1)k(5,−4)

i això és una fórmula concreta per a Lk−→v que és vàlida per a qualsevol valor de k . Què
observem?

1. Quan k és molt gran, el coeficient (−0.1)k és pràcticament zero i podem afirmar
que

Lk−→v ≈ 5 (1.6)k (20, 1)→∞.

2. Si k és gran,
Lk+1−→v ≈ 1.6 Lk−→v .

La situació que hem vist en aquest exemple és força general, si realment la matriu
té el nombre màxim de vectors propis que pot tenir (2 en el cas d’una matriu 2 × 2, 3
en el cas d’una matriu 3× 3, etc.).

Apliquem això al cas d’una matriu de Leslie o de mobilitat social. Suposem que
tenim una població estructurada N (és un vector, però ometem la fletxa) i que la seva
evolució ve donada per

N(t + 1) = L N(t)

on L, la matriu de Leslie, és una matriu quadrada n × n.

• Suposem que la matriu L té exactament n valors propis diferents λ1, . . . ,λn.

• Anomenarem valor propi dominant el valor propi que tingui el valor absolut més
gran. Suposem que és λ. Sigui −→v un vector propi de valor propi λ.

• Independentment de la població inicial,1 la població a llarg termini tindrà una
taxa de creixement igual a λ. És a dir, si k és gran,

N(k + 1) ≈ λN(k).

És a dir, la població, encara que sigui un vector, es comportarà com en un model
exponencial de taxa λ.

1Això no és exactament cert. Fallaria, per exemple, si la població inicial fos igual a zero i també
fallaria si la població inicial, casualment, fos un vector propi de valor propi diferent de λ. A la pràctica
experimental, aquestes dues situacions són improbables.
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• Independentment de la població inicial,2 la distribució de la població en els di-
versos nivells, a llarg termini, tendirà a la distribució donada pel vector propi
−→v .

33.2 Exemples

Estudiem el comportament a llarg termini en els exemples del capítol anterior.

• (El gran gall de les praderies) Aquí teníem una població estructurada en tres
edats (C , J,A), que evolucionava segons una matriu de Leslie

L =

 0 1.87 2.21
0.15 0 0
0 0.38 0.45

 .

Calculem els vectors propis i els valors propis d’aquesta matriu.

(1,−0.4273, 0.2027), λ = −0.3510
(1, 165.2398,−139.8179), λ = 0.0009

(1, 0.1875, 0.2034), λ = 0.8002

El valor propi dominant és λ = 0.8. Això ens diu que, a llarg termini, la població
es multiplicarà per 0.8 a cada període de temps. És a dir, la població de cada
nivell es multiplicarà per 0.8. Com que 0.8 < 1, la població s’extingirà.
Un vector propi corresponent al valor propi dominant és (1, 0.19, 0.20). Això vol dir
que, a llarg termini, la població es distribuirà en aquesta proporció. Per exemple,
si tenim una població total de 1390 individus, es repartiran en 1000 individus del
nivell C , 190 del nivell J i 200 del nivell A.

• (Professors d’universitat) Hi havia tres nivells B , L i P i les normes de contrac-
tació cada curs queden reflectides en una matriu de Leslie 0.7 0.05 0.1

0.02 0.8 0
0 0.1 0.94

 .

Calculem els vectors propis i els valors propis d’aquesta matriu.

(1,−0.1967, 0.0814), λ = 0.6983

(1,−4.9406, 3.4298), λ = 0.7920

(1, 0.1372, 2.3888), λ = 0.9457

El valor propi dominant és λ = 0.946. Això ens diu que, a llarg termini, el nombre
de professors de cada nivell es multiplicarà per 0.946 a cada període de temps.
Per tant, anirà baixant lentament.

2Aquí també s’aplica la nota anterior.



33. Comportament a llarg termini 207

Un vector propi corresponent al valor propi dominant és (1, 0.14, 2.39). Això vol dir
que, a llarg termini, la plantilla de professorat es distribuirà en aquesta proporció.
Per exemple, si tenim un total de 3530 professors, es repartiran en 1000 beca-
ris, 140 lectors i 2390 professors permanents, aproximadament. Aquesta anàlisi
ens permet detectar les mancances d’aquesta política de contractació: reducció
constant de plantilla i nombre insuficient de professors lectors.

• (Oficis de pares i fills) Distingíem entre pagesos, obrers i professionals i teníem
una matriu experimental L que ens relacionava la professió del pare amb la del
fill.

L =

0.6094 0.2977 0.1638
0.3047 0.6372 0.3023
0.0859 0.0651 0.5339

 .

Aquí el valor propi dominant és 1, com ha de ser perquè en aquest model no hi
ha creixement de població entre pares i fills. El que interessa és conèixer quina
seria la distribució d’oficis a llarg termini, si la situació de l’estudi es perllongués
durant moltes generacions. Un vector propi del valor propi 1 és (1, 1.12, 0.34) per
tant, la població s’acabaria repartint de manera que per cada empleat hi hauria
1.12 obrers i 0.34 pagesos.

• (Bicing) La matriu que ens explica el moviment de bicicletes entre les quatre
zones de la ciutat és

L =


0.10 0.02 0.10 0.15
0.60 0.50 0.25 0.20
0.20 0.35 0.25 0.40
0.10 0.13 0.40 0.25


El valor propi dominant és 1, com ha de ser perquè en aquest model no hi ha
ni augment ni disminució de bicicletes. Un vector propi de valor propi 1 és
(1, 4.26, 3.80, 2.90). Això vol dir que, si no apliquem cap mesura correctiva de
transport nocturn de bicicletes, a llarg termini, de cada 1200 bicicletes (aproxi-
madament), n’hi haurà 100 a la zona alta, 426 a la zona baixa, 380 a la zona est
i 290 a la zona oest.3

33.3 Fem-ho amb sage

Resolem els quatre exemples anteriors amb sage.
sage: A=matrix(RDF,[[0,1.87,2.21],[0.15,0,0],[0,0.38,0.45]])
sage: B=matrix(RDF,[[0.7,0.05,0.1],[0.02,0.8,0],[0,0.1,0.94]])
sage: C=matrix(RDF,[[0.6094,0.2977,0.1638],
....: [0.3047,0.6372,0.3023],
[0.0859,0.0651,0.5339]])
sage: D=matrix(RDF,[[0.10,0.02,0.10,0.15],[0.60,0.50,0.25,0.2],

3Estrictament parlant, en aquest exemple no podríem aplicar la teoria que hem desenvolupat, perquè
la matriu anterior només té dos valors propis i no quatre. De tota manera, un refinament de la teoria
(que no estudiarem) ens permet resoldre també aquests casos.
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....: [0.2,0.35,0.25,0.40],[0.1,0.13,0.4,0.25]])
sage: A
[ 0.0 1.87 2.21]
[0.15 0.0 0.0]
[ 0.0 0.38 0.45]
sage: B
[ 0.7 0.05 0.1]
[ 0.02 0.8 0.0]
[ 0.0 0.1 0.94]
sage: C
[0.6094 0.2977 0.1638]
[0.3047 0.6372 0.3023]
[0.0859 0.0651 0.5339]
sage: D
[ 0.1 0.02 0.1 0.15]
[ 0.6 0.5 0.25 0.2]
[ 0.2 0.35 0.25 0.4]
[ 0.1 0.13 0.4 0.25]
sage: A.eigenvectors_right()
[(0.8001576416931175,
[(-0.9637999732392762, -0.18067689221836866, -0.1960751697749675)],1),
(-0.3510654132649406,
[(0.9040094832345003, -0.38625685516573527, 0.18322798929085068)],1),
(0.0009077715718234064,
[(-0.004619825483303375, -0.7633790746535266, 0.6459342424687123)],1)]

sage: B.eigenvectors_right()
[(0.6983036217141203,
[(0.9780927886680308, -0.19235548112018513, 0.07958558687737832)],1),
(0.7959518780392945,
[(-0.16401668103293, 0.8103346817365105, -0.5625444266170723)],1),
(0.9457445002465843,
[(0.38560495631231606, 0.052915198262701885, 0.9211453736844124)],1)]

sage: C.eigenvectors_right()
[(1.0000000000000004,
[(-0.6481415332583796, -0.7286787024945016, -0.22122364565390876)],1),
(0.3320693975624182,
[(-0.7576550133975228, 0.6423975363022798, 0.11525747709524344)],1),
(0.4484306024375822,
[(-0.6995961594867555, -0.014789235208111403, 0.7143853946948675)],1)]

sage: D.eigenvectors_right()
[(1.0000000000000004,
[(-0.15432583857010407, -0.6573613090506916, -0.5864895429186637,
-0.4473138282680879)],1), (0.13469732336181842 + 0.1396088897246559*I,
[(-0.3130549513931328 + 0.29038532236416076*I, 0.7608827171231797,
-0.011079383818814743 - 0.19856275194835768*I,-0.4367483819112306 -
0.09182257041580322*I)],1), (0.13469732336181842 - 0.1396088897246559*I,
[(-0.3130549513931328 - 0.29038532236416076*I, 0.7608827171231797,
-0.011079383818814743 + 0.19856275194835768*I,-0.4367483819112306 +
0.09182257041580322*I)],1), (-0.16939464672363683,
[(-0.1132693413892941, 0.17334242046374104, -0.7211653532016027,
0.661092274127156)],1)]

En conclusió:

• El valor propi dominant de A és ≈ 0.8 i un vector propi és ≈ (−0.96,−0.18,−0.20)
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o, equivalentment, ≈ (1, 0.19, 0.20).

• El valor propi dominant de B és ≈ 0.946 i un vector propi és ≈ (0.386, 0.053, 0.921)
o, equivalentment, ≈ (1, 0.14, 2.39).

• El valor propi dominant de C és 1 i un vector propi és ≈ (−0.65,−0.73,−0.22) o,
equivalentment, ≈ (1, 1.124, 0.341).

• En el cas de C , apareixen valors propis no reals (I indica la unitat imaginària
i =
√
−1, però el valor propi dominant és 1, amb vector propi

−→v ≈ (−0.154,−0.657,−0.586,−0.447)

o, equivalentment, −→v ≈ (1, 4.26, 3.80, 2.90).



Exercicis

A. Exercicis teòrics

A =

(
3 2
0 −1

)
, B =

(
3 −1
1 1

)
, C =

(
−2 1
2 −2

)
, D =

(
3 0 −1
2 1 4

)
, E =

2 3 1
5 2 3
1 2 0



F =

0 −1
1 1
5 −2

 , G =

 2
1
−1

 , H =
(
2 1 −1

)
, J =

1 0 1
0 1 0
0 0 −1

 , K =

(
4 4
−4 −3

)

L =

(
3 4
−2 −3

)
, M =

(
1 2
−2 0

)
.

V.A.1. Calculeu (a mà)

(a) G H

(b) HG

(c) A−1DF − DEF

(d) (E − J)F (B + 2A)

(e) F (K L)−1D + I (I és la matriu identitat.)
(f ) Ak per qualsevol valor de k > 0. Utilitzeu la fórmula

1 + r + r2 + · · ·+ r n =
1− r n+1

1− r
.

V.A.2. Trobeu el valor de la matriu quadrada X tal que

(a) AX = 2X − L

(b) AXC + BXC = K

(c) A2X + AX + X = I

V.A.3. Escriviu aquest sistema d’equacions en forma matricial i resoleu-lo matricial-
ment: {

4x − 2y = −2
−3x + y = 0

V.A.4. Apliqueu la transformació lineal donada per la matriu E al vector k− i.

V.A.5. Trobeu els valors propis i els vectors propis de les matrius A, B , C , K , L, M .

V.A.6. Trobeu un vector de longitud 1 en la direcció del vector (1, 2, 3).

210
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V.A.7. Calculeu les longituds dels costats del triangle de vèrtex A = (2, 1, 5), B =
(−1,−3, 7), C = (2,−4, 1). Calculeu també els seus angles.

V.A.8. Escriviu la matriu d’una rotació en sentit horari al pla, amb angle de rotació de
22 graus. Apliqueu aquesta rotació al vector −1.6i+ 4.2j.

V.A.9. Considereu els vectors de l’espai 2i + j − 2k i 3i − j − k. Calculeu les seves
longituds i l’angle que formen.

V.A.10. Determineu l’equació del pla que passa pel punt (1, 1,−1) i és perpendicular al
vector 2i+ 3j− 2k.

V.A.11. Trobeu equacions paramètriques i cartesianes de la recta de l’espai que passa
pels punts A = (1,−1, 3) i B = (2, 4,−1).

V.A.12. Trobeu l’equació del pla que passa pel punt (1, 1, 0) i és perpendicular a la recta
que passa pels punts A = (1,−1, 3) i B = (2, 4,−1).

B. Exercicis d’aplicació

V.B.1. En una gran empresa productora de vi estem monitoritzant la fermentació del
most en tres grans dipòsits. Prenem mostres i mesurem el contingut de glucosa,
fructosa, àcid màlic, àcid tartàric, glicerol, àcid acètic, àcid succínic i alcohol.
Estandarditzem els resultats i els valors que obtenim per aquests tres dipòsits
són, respectivament,

A = (0.56,−0.12, 0.05,−0.21,−0.32, 0.01, 0.17, 0.01)
B = (0.48, 0.00, 0.07,−0.23,−0.44, 0.07, 0.13, 0.11)
C = (0.49,−0.09, 0.06,−0.22,−0.46, 0.02, 0.15, 0.04)

Decidiu si el most del dipòsit C s’assembla més al del dipòsit A o al del dipòsit
B . Raoneu la resposta.4

V.B.2. Considerem aquests punts del pla: A = (0, 0), B = (1, 0), C = (3, 2), D = (2, 3).
Apliqueu manualment el mètode k-means a aquests quatre punts, amb k = 2,
començant amb els punts A i B , fins que el mètode finalitzi. A cada iteració,
calculeu el valor de r .

V.B.3. A l’adreça archive.ics.uci.edu/ml/datasets/Wine trobareu una base de da-
des que conté els valors de 13 variables (alcohol, àcid màlic, magnesi, fenols,
etc.) de 178 mostres de vi que procedeixen de tres varietats diferents. Es tracta
d’utilitzar k-means amb k = 3 per intentar identificar les mostres de cada va-
rietat. Descarregueu-vos aquesta base de dades i utilitzeu el programa R per
distribuir les mostres en tres clústers. Compareu amb l’atribució correcta, que
també figura a la base de dades.

4Inspirat en l’article de A. Urtubia et al. titulat Monitoring large scale wine fermentations with infrared
spectroscopy, Talanta 64 (2004), 778–784.
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V.B.4. El peix escorpí (Pterois volitans) és un peix verinós que és una espècie invasiva
i destructiva a algunes zones del Carib. En un estudi sobre aquesta espècie
(Morris, Shertzer, Rice 2011) es va estructurar la població de femelles en tres
nivells d’edat: larva (L), jove (J) i adult (A) i es van estudiar els paràmetres
de reproducció i supervivència. La fase de larva dura 1 mes i la probabilitat
que una larva sobrevisqui és de 3× 10−5. La probabilitat que un exemplar jove
sobrevisqui un mes més és 0.777 i cada mes un 7.1% dels joves es converteixen
en adults. Només els adults són fèrtils i cada adult produeix 35000 larves cada
mes. Podem pensar que els adults sobreviuen indefinidament. Escriviu una
matriu de Leslie que descrigui l’evolució d’aquesta població.

V.B.5. Estudiem una població de peixos classificats en A (alevins, acabats de néixer),
J (joves, encara no fèrtils) i F (adults, fèrtils). Suposem que el 25% dels alevins
i el 50% dels joves sobreviuen i suposem que el adults fèrtils F tenen 8 cries
i són retirats. Escriviu una matriu de Leslie que descrigui l’evolució d’aquesta
població.

V.B.6. Els tres nivells bàsics d’empleats a una empresa informàtica són (A) software
engineer, (B) senior engineer i (C ) staff engineer. Imaginem que la política
d’aquesta empresa funcionés així: cada any, 1) Es renoven el 95% dels contractes
de nivell C , i per cada 10 enginyers de nivell C es contracta un nou enginyer
de nivell A. 2) es renoven el 70% dels contractes de nivell A i es contracta com
a nivell B el 2% dels de nivell A. 3) Un 5% dels contractes de nivell B passen a
nivell C i un 80% dels contractes de nivell B es renoven. Escriviu una matriu L
que descrigui l’evolució dels contractes de nivells A, B i C en aquesta empresa.

V.B.7. Una població d’aus es troba repartida entre dues zones humides properes A
i B . Hem observat que cada dia aproximadament un 70% de les aus de A es
traslladen a B i un 50% de les aus de B es traslladen a A. Descriviu en forma
matricial l’evolució de les dues zones humides d’un dia al següent. Si entre A i
B hi ha un total de 240 aus i aquest règim migratori es manté indefinidament,
quina distribució d’aus hem d’esperar a llarg termini?

V.B.8. Dividim la població d’isards femella en un parc natural en dos grups d’edat: joves
(durant el primer any de vida) i adultes, i hem determinat experimentalment que
l’evolució anual de la població de femelles segueix una matriu de Leslie

A =

(
0 1
0.6 0.8

)
.

Interpreteu el significat d’aquesta matriu. Trobeu la taxa de creixement d’aques-
ta població. Cada any, durant una setmana, s’autoritza la cacera d’una quantitat
de femelles adultes que es determina aplicant un percentatge h al total de fe-
melles adultes presents. Quin ha de ser el valor de h si volem que la població
es mantingui estable? (Per simplificar l’exercici, hem suposat que després d’un
any les femelles ja són fèrtils, mentre que en realitat no ho són fins els 3 o 4
anys d’edat.)

V.B.9. Una companyia de lloguer de cotxes té tres punts de recollida i entrega de
vehicles, que anomenarem A, B i C . S’ha observat que, dels clients que lloguen
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el cotxe a A, el 10% el torna a B i el 10% el torna a C . D’entre els que lloguen
el vehicle a B , el 30% el torna a A i el 50% el torna a C . Finalment, dels que
lloguen el vehicle a C , el 20% el torna a A i el 60% a B . Si no fem cap trasllat
de vehicles d’una seu a l’altra, com s’acabarà distribuint el parc de vehicles a
llarg termini?

V.B.10. Suposem que tenim una gran bassa d’aigua contaminada (de volum constant)
amb una filtració que fa que cada mes un 5% de l’aigua de la bassa arribi a un
aqüífer pròxim. A la bassa hi ha una depuradora que neteja un 10% del material
tòxic cada mes. Formuleu un model teòric (discret) de l’evolució de la quantitat
de contaminant a la bassa i a l’aqüífer. Quina proporció del producte tòxic que
hi havia inicialment a la bassa acabarà a llarg termini a l’aqüífer?





Part VI:

Funcions de diverses variables
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34. Representacions gràfiques

34.1 Quan una variable depèn de dues o més variables

Al llarg d’aquest curs hem estudiat funcions del tipus y = y(x) en les quals una
variable y depèn d’una altra variable x . És una situació molt interessant que cal haver
entès perfectament, però a ningú se li escapa que les necessitats de la ciència ens
condueixen, la majoria de vegades, a situacions en les què una variable y depèn de
dues, tres, o vint-i-cinc variables

y = y(a, b, c , . . .).

Parlarem, en aquests casos, de funcions de dues, tres o vint-i-cinc variables o, en
general, de funcions de diverses variables.

L’objectiu d’aquesta darrera part del curs és familiaritzar-nos amb aquestes funcions
i veure fins a quin punt els mètodes que hem après a utilitzar amb les funcions d’una
única variable poden estendre’s a les funcions de diverses variables. Comencem posant
alguns exemples.

• Els models econòmics estudien funcions de producció que expressin la producció
Q com a funció del capital invertit K i del treball utilitzat L. Una funció clàssica
d’aquest tipus és la funció de producció CES

Q(K , L) = F (aK r + (1− a)Lr )1/r .

Aquesta funció té diversos paràmetres F , a, r que estan relacionats, respecti-
vament, amb els conceptes de productivitat, repartiment entre els dos factors
de producció K i L i «elasticitat de substitució» (que mesura la possibilitat de
substitució d’un dels factors per l’altre).

• Ja coneixem la funció que ens dóna la temperatura de sensació (wind chill) com
a funció de la temperatura i la velocitat del vent.

W (T ,V ) = 13.12 + 0.6215T − (11.37− 0.3965T )V 0.16.

Es tracta d’una funció de dues variables.

• En un estudi1 es va determinar la concentració de O2 dissolt a l’aigua d’un llac
concret com a funció de la profunditat i de l’època de l’any. D’aquesta manera,
es va obtenir una funció empírica de dues variables

C = C (P, t)

que dóna la concentració C com a funció de la profunditat a l’aigua del llac P i
el dia de l’any t .

1Vegeu L. K. Hembre i R. O. Megard, Seasonal and diel patchiness of a Daphnia population. An
acoustic analysis, Limnol. Oceanogr. 48(6), 2003, 2221–2233.
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• Un mapa meteorològic isobàric és una representació gràfica de la pressió atmos-
fèrica que hi ha a cada punt d’una zona geogràfica, en un instant donat. Aquesta
pressió atmosfèrica podem considerar-la, doncs, com una funció de dues variables

P = P(L, l)

on L i l són, respectivament, la latitud i la longitud del punt on volem saber la
pressió. Si, en lloc d’un mapa isobàric fix volem un mapa en moviment, que ens
indiqui la pressió atmosfèrica de cada punt per a un interval de temps, tindrem
una funció de tres variables

P = P(L, l , t).

• Una fotografia digital en blanc i negre (més correctament, en escala de grisos)
és un rectangle de píxels i, per a cada píxel, un nivell de lluminositat. Podem
entendre-la com una funció

N = N(x , y)

que assigna, al píxel de coordenades (x , y), el seu nivell de lluminositat. Si, en
lloc d’una fotografia digital, tenim un vídeo, hi haurà la variable temps i el vídeo
estarà perfectament determinat per una funció de tres variables

N = N(x , y , t).

• En els exemples d’aquest curs hem considerat diverses vegades la producció d’un
camp (per exemple, de cereals) com a funció P = P(Q) de la presència al sòl d’un
cert nutrient (per exemple, el nitrogen), però és clar que un model més realista
hauria de tenir en compte la presència de diversos nutrients (per exemple, el
fòsfor, el potassi, el sofre...). De fet, en agricultura es consideren 12 nutrients
essencials que són al sòl i que s’haurien de controlar. En aquest model més
complet, la producció seria una funció

P = P(Q1,Q2, . . . ,Q12).

• La longitud d’un vector és una funció de les seves coordenades. Per exemple, en
el cas d’un vector de dimensió 3,

|
−−−−−→
(x , y , z)| =

√
x2 + y2 + z2.

• L’índex Dow Jones Industrial Average DJI A es calcula en funció de les cotitzacions
de les accions de 30 empreses concretes p1, . . . , p30. La funció és aquesta

DJI A =
p1 + · · ·+ p30

d

on d és una constant que en aquests moments (febrer del 2017) val

d = 0.14602128057775.

Tenim, doncs, una funció de trenta variables. En canvi, l’índex Nasdaq Composite
es determina a partir de les cotitzacions de més de 3000 empreses tecnològiques.
Per tant, aquest índex és una funció de més de 3000 variables.
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• A la pàgina 117 vam presentar l’equació de Penman-Monteith que utilitza la FAO
per calcular l’evapotranspiració del sòl:

E T0 =
0.408∆(Rn − G ) + γ 900

T+273u2(es − ea)

∆ + γ(1 + 0.34u2)
.

Veiem que és una funció de diverses variables: velocitat del vent, temperatura,
radiació solar, flux de calor del sòl, humitat, etc.

• En els estudis d’eficiència tèrmica d’un edifici ens interessa conèixer la pèrdua
de calor a les canonades d’aigua calenta. Aquesta pèrdua de calor ve donada
per una funció de diverses variables

q =
π∆

log(D/D0)

2k
+

1

hD

.

D0 és el diàmetre exterior de la canonada, D és el diàmetre exterior de la capa
aïllant de la canonada, ∆ és la diferència entre la temperatura de l’aigua calenta
que circula per la canonada i la temperatura ambient, k és la conductivitat tèrmica
de l’aïllament i h és el coeficient de transferència de calor de la superfície de
l’aïllament a l’aire.2

• La fórmula que s’ha proposat3 per estimar la superfície corporal A (en m2) d’un
ésser humà d’alçada H cm i pes W kg és

A = 0.007184W 0.425H0.725.

• Una fórmula que s’utilitza4 per mesurar la temperatura d’equilibri tèrmic del cos
humà —és a dir, aquella en la que no notaríem ni fred ni calor— és

T = 31− 0.155PR

on P és la producció metabòlica de calor en W/m2 i R és la mesura de l’aïllament
tèrmic de la vestimenta que es dugui. R es mesura en unes unitats anomenades
clo, (1 clo=0.155 K m2/W). Per exemple, una persona dormint (P = 50) en un sac
de duvet (R = 5) tindria una temperatura d’equilibri de −7.8◦C, mentre que una
persona caminant de pressa (P = 180) amb roba d’estiu (R = 0.4) tindria una
temperatura d’equilibri de 19.8◦C.

34.2 Alguns conceptes bàsics

Hi ha una sèrie de conceptes bàsics sobre funcions d’una variable que tenen validesa
per a funcions de diverses variables, pràcticament sense fer cap canvi.

2Aquest exemple és més complicat del que sembla a primera vista perquè h depèn de la temperatura de
la canonada aïllada i aquesta temperatura depèn de q. Calcular aquesta pèrdua de calor és un problema
clàssic d’enginyeria.

3Vegeu B. M. Nigg i W. Herzog, Biomechanics of the Musculoskeletal System, 1998.
4Vegeu Clothing insulation a Wikipedia.org.
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• Domini de definició Una funció de diverses variables f (x , y , z , . . .) estarà definida
per a certs valors de les variables x , y , z , . . . (que poden ser tots). Fora d’aquests
valors, pot ser que la funció no tingui sentit, o simplement que no ens interessi
estudiar-la. Per exemple, la funció

f (x , y , z) = x2 + y2 − 2xy

està definida per a qualsevol valor de les variables x , y , z , però el domini de
definició de la funció

f (x , y) =
√

1− x2 − y2

està format pels punts del pla (x , y) tals que x2 + y2 ≤ 1. Aquests punts són els
punts de l’interior de la circumferència de radi 1 centrada a l’origen i també els
punt d’aquesta circumferència.

• Límits Funcionen igual que en el cas d’una variable:

lim
(x ,y)→(0,0)

xy√
x2 + y2

= lim
(x ,y)→(0,0)

1√
1

y2 +
1

x2

= 0.

• Continuïtat Podem parlar de funcions contínues, que seran aquelles tals que el
valor de la funció en un punt qualsevol coincideix amb el límit de la funció quan
ens acostem a aquest punt.

• Operacions amb funcions Les mateixes operacions que consideràvem per a fun-
cions d’una variable —suma, resta, multiplicació, divisió i composició— tenen ple
sentit en el cas de diverses variables. A partir de les funcions elementals d’una
variable podem obtenim una varietat il.limitada de funcions de diverses variables:

f (x , y , z) =
sin(xy)(ez + 1)

z2 + cos(y)
.

34.3 Representacions gràfiques

No hi ha dubte que, en el cas d’una funció d’una variable, la representació gràfica és una
eina magnífica que ens permet visualitzar la funció i entendre el seu comportament. En
el cas de funcions de diverses variables, la representació gràfica esdevé difícil, excepte
quan es tracta de funcions de dues variables. En efecte, si tenim una funció

z = f (x , y)

podem actuar de manera similar a com ho fèiem a l’hora de dibuixar la gràfica d’una
funció d’una variable. Representem les variables dependents x , y en un pla i, en l’espai
de tres dimensions, dibuixem el punt (x , y , f (x , y)). El que obtenim, en general, és
una superfície en 3D, de la mateixa manera que la gràfica d’una funció y = f (x) és
una corba en 2D. Utilitzant un programa de dibuix 3D podem arribar a visualitzar
relativament bé una funció z = f (x , y), principalment si podem moure la imatge.

Per exemple, la comanda
sage: plot3d(2*x^2-y^2,(x,-5,5),(y,-5,5),adaptive=True,
....: color=rainbow(60,’rgbtuple’))

produeix un dibuix de la superfície representada per la funció z = 2x2 − y2.
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La comanda
sage: plot3d(sin(x)+cos(y),(x,-10,10),(y,-10,10),adaptive=True,
....: color=rainbow(60,’rgbtuple’))

produeix un dibuix de la superfície representada per la funció z = sin(x) + cos(y).

I la comanda
sage: plot3d(exp(x/5)*cos(y),(x,-5,5),(y,-5,5),adaptive=True,
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....: color=[’red’,’yellow’])

produeix un dibuix de la superfície representada per la funció z = exp(x/5) cos(y).

Hi ha altres eines de visualització que cal tenir presents:

• Taula de doble entrada. Considerem, per exemple, la funció que ens dóna la
temperatura de sensació a partir de la temperatura i la velocitat del vent. En
casos com aquest, pot ser molt útil representar els valors de la funció en una
taula de doble entrada com aquesta, feta amb un full de càlcul.

Cada fila representa una velocitat del vent, de 5 km/h a 100 km/h, en intervals de
5 km/h. Cada columna representa una temperatura, de 10◦C a −30◦C, en intervals
de 2◦C.
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• Seccions. Si, a la superfície z = f (x , y), fem que una de les tres variables sigui
constant, tindrem una corba plana que serà la intersecció d’aquesta superfície
amb un pla. Per exemple, considerem la funció anterior

z = 2x2 − y2.

– Si prenem z = k constant, tenim la corba plana 2x2 − y2 = k , que és una
hipèrbola. Per tant, les seccions horitzontals de la superfície són hipèrboles.

– Si prenem x = k constant, tenim la corba plana z = 2k2 − y2, que és una
paràbola amb un màxim. Per tant, tallant la superfície amb un pla vertical
x = k obtenim paràboles.

– Finalment, si fem y = k constant, tenim la corba plana z = 2x2 − k2, que
és una paràbola amb un mínim. Per tant, tallant la superfície amb un pla
vertical y = k obtenim paràboles.

Si estudiem les seccions verticals x = k i y = k de la funció z = exp(x/5) cos(y)
ens adonarem que les primeres són corbes cosinus i les segones són corbes
exponencials i entendrem, sense necessitat de recórrer a cap programa de dibuix
3D que la gràfica d’aquesta funció serà una corba cosinus que es desplaça per
un eix i la seva amplitud es va fent cada vegada més petita o més gran segons
una funció exponencial.

• Corbes de nivell. És un mètode clàssic que té molt avantatges. Les corbes de
nivell s’utilitzen als mapes topogràfics i també als mapes meteorològics. Són una
bona manera de representar en un paper una funció de dues variables. La idea
és senzilla. Si tenim una funció y = f (x , y), una corba de nivell d’aquesta funció
és una corba plana

f (x , y) = k

on k és una constant. Prenent diversos valors de la constant k , tenim corbes de
nivell diverses que poden dibuixar-se en un pla de coordenades.

Considerem, per exemple, la funció que ens dóna la temperatura de sensació
W (T ,V ) en funció de la temperatura i la velocitat del vent, que hem representat
més amunt en una graella, donaria corbes de nivell com les de la figura següent.
Cada corba de nivell està dibuixada amb una comanda com aquesta:

sage: implicit_plot(W(T,V)-k,(x,-20,10),(y,10,100),aspect_ratio=0.3)

La gràfica conté les corbes de nivell corresponents a

W = 0,−6,−12,−18,−24,−30,−36,−42.
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Per exemple, els punts que estan sobre la corba de nivell W = −18 ens donen
les combinacions de T i V que donen W = −18. Quan ens movem per una
corba de nivell, sempre tenim la mateixa temperatura de sensació. Amb un cert
entrenament,5 una gràfica de corbes de nivell ens permet visualitzar amb força
claredat el comportament d’una funció de dues variables.
Aquí tenim corbes de nivell d’altres funcions que han aparegut en aquest capítol:

La funció 2x2 − y2.
5Per exemple, els excursionistes que estan acostumats a utilitzar mapes topogràfics són capaços d’i-

maginar la forma del terreny a partir de la informació del mapa.
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la funció sin(x) + cos(y).

La funció exp(x/5) cos(y).



34. Representacions gràfiques 225

34.4 Fem-ho amb sage

Al llarg del capítol ja hem vist quines instruccions de sage podem utilitzar per repre-
sentar funcions de dues variables. D’una banda, tenim la instrucció plot3d() de dibuix
en 3D. Per dibuixar corbes de nivell és útil la comanda implicit_plot() que ja havíem
usat en algun capítol anterior.

Per estalviar feina en els dibuixos anteriors, hem definit una funció que dibuixa
directament corbes de nivell:
sage: y=var(’y’)
sage: def corbes_nivell(f,x0,x1,y0,y1,L,h):
....: P=[]
....: for i in range(len(L)):
....: P.append(implicit_plot(f(x,y)-L[i],(x,x0,x1),(y,y0,y1),
....: aspect_ratio=h))
....: return sum(P)

Aquí L és una llista dels valors de k per als que volem dibuixar la corba de nivell
f (x , y) = k .



35. Derivades quan hi ha diverses variables

35.1 Quan hi ha diverses variables, hi ha diverses derivades

Ja sabem que el concepte de derivada d’una funció d’una variable és un concepte
que té una importància fonamental perquè és la mesura de la velocitat amb què creix
aquesta funció quan creix la variable de la que depèn. Aquest concepte fonamental, té
també sentit quan hi ha dues o més variables? Podem parlar de derivada quan tenim,
per exemple, una funció z = z(x , y)? Què voldrà dir, en aquest cas, la «velocitat de
creixement»?

Si hi reflexionem un instant, entendrem que si volem parlar de derivada quan hi
ha diverses variables hem de canviar algunes coses. De fet, no podrem parlar de la
derivada, sinó que tindrem diversos conceptes de derivada. L’explicació quedarà clara
amb l’exemple següent.

• Imaginem un ciclista que puja per la carretera de Vallter. Quan es trobi exacta-
ment al quilòmetre 4 d’aquesta ascensió clàssica haurà de fer front a un pendent
del 12%. Aquest 12% ja sabem que és la derivada de l’alçada respecte de la
longitud de la ruta (mesurada sobre l’horitzontal).

• Imaginem ara un ciclista de muntanya que està pujant al Puigmal i es troba a la
cota 2.600, al punt vermell del mapa següent i preguntem-nos, igual que abans,
a quin pendent ha de fer front.

226
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La resposta és: depèn. Depèn de quin camí segueixi. Si pedala en direcció a
la Collada de l’Embut, tindrà un pendent moderat. Si va més cap a l’esquerra
trobarà un pendent molt més fort. Si va més cap a la dreta, el pendent no serà
tan fort. Finalment, si segueix una corba de nivell, a la dreta o a l’esquerra,
es mantindrà a la mateixa alçada i el pendent serà zero. Veiem, doncs, que el
pendent depèn de la direcció. De fet, canviant la direcció, el pendent pot prendre
qualsevol valor entre −m i m, on m és el pendent màxim.

Veiem, doncs, que si bé la velocitat de creixement d’una funció d’una variable, en un
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punt concret, és un nombre (la derivada), quan tenim funcions de dues o més variables,
no podem parlar de derivada, perquè la velocitat de creixement depèn de la direcció
que considerem.

35.2 Derivada direccional i derivades parcials

Segons el raonament que acabem de fer, si tenim una funció de diverses variables

y = f (x1, . . . , xn),

i donem un vector
−→v = (v1, . . . , vn)

amb tantes coordenades com variables tingui la funció f , té sentit parlar de la velocitat
de creixement de y en la direcció indicada pel vector −→v . Escriurem

D−→v y

i direm que es tracta d’una derivada direccional de la funció.
La manera de calcular aquesta derivada direccional és senzilla d’entendre. Es tracta

de considerar aquesta funció d’una única variable t:

g(t) = f (x1 + tv1, . . . , xn + tvn).

Aleshores, la derivada direccional en la direcció −→v és la derivada d’aquesta funció.

D−→v y =
d

dt
g(t).

Per simplificar la notació, considerem a partir d’ara que estem parlant d’una funció de
dues variables (però tot el que direm és vàlid, sense cap canvi, per a funcions de tres
o tres-centes variables). Si tenim, doncs, una funció

z = f (x , y)

podem considerar la seva derivada en qualsevol direcció del pla. Hi dues direccions
«especials» que són les direccions que segueixen els eixos de coordenades x i y ,
respectivament. En direm derivades parcials respecte de x i respecte de y . La notació
utilitza el símbol específic ∂:

∂z

∂x
,

∂z

∂y
.

La derivada parcial respecte de x la podem entendre com la derivada de la funció z
suposant que y és constant, i la derivada parcial respecte de y la podem entendre
com la derivada de la funció z suposant que x és constant. D’aquesta manera, les
regles de derivació que coneixem per a funcions d’una variable ens permeten calcular
les derivades parcials immediatament.

Exemple. Considerem la funció de dues variables

z =
√
4− x2 − 2y2.
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Les seves dues derivades parcial seran

∂z

∂x
= − x√

4− x2 − 2y2
,

∂z

∂y
= − 2y√

4− x2 − 2y2
.

Observem, doncs, que una funció de dues variables té dues derivades parcials que
tornen a ser funcions de dues variables. Això vol dir que cadascuna d’elles té dues
derivades parcials, que seran derivades parcials segones de la funció inicial. En
conclusió, una funció de dues variables té quatre derivades parcials segones, que es
denoten així:

∂2z

∂x2
,

∂2z

∂y2
,

∂2z

∂x∂y
,

∂2z

∂y∂x
.

• En condicions força generals (n’hi ha prou que les segones derivades parcials
siguin funcions contínues), les derivades parcials creuades són iguals:

∂2z

∂x∂y
=

∂2z

∂y∂x
.

• Les quatre derivades parcials segones es poden escriure en forma de matriu 2×2
(o n × n si estem parlant de funcions de n variables). La matriu que formen
s’anomena matriu hessiana de la funció.

∂2z

∂x2

∂2z

∂y∂x
∂2z

∂x∂y

∂2z

∂y2

 .

35.3 El gradient

Seguim suposant, per simplificar la notació, que tenim una funció de dues variables

z = z(x , y).

S’anomena vector gradient de la funció, o simplement gradient de la funció, el vector
que té per coordenades les derivades parcials de la funció. La notació utilitza el símbol
específic ∇:

∇z =

(
∂z

∂x
,
∂z

∂y

)
.

Recordem que, per a cada valor de les variables independents x , y , el gradient és un
vector.
Exemple. Si z = e2x cos(y), aleshores

∇z = (2e2x cos(y),−e2x sin(y))

i si, per exemple, (x , y) = (0,π/2), el vector gradient en aquest punt val

∇z |(0,1) = (0,−1).

Les propietats d’aquest vector que ens interessa recordar són aquestes:
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• El gradient ens permet calcular les derivades direccionals segons aquesta fór-
mula que utilitza el producte escalar.

D−→v z =
(∇z) · −→v
|v |

.

• El vector gradient apunta en la direcció1 de màxim pendent, és a dir, en la direcció
en la que la funció creix més ràpidament. Aquest màxim pendent, aplicant la
fórmula anterior, val

m = D∇z z = |∇z |.

És a dir, el gradient ens indica la direcció de màxim pendent i la seva longitud
és el pendent màxim.

• La direcció de pendent zero és la direcció perpendicular al gradient. En altres
paraules, les corbes de nivell són perpendiculars al gradient.

• La direcció de màxim pendent negatiu és la direcció oposada al vector gradient.

Exemple. Considerem la funció z = 2x2− y2 i el punt (1,−1). Comencem calculant les
derivades parcials.

∂z

∂x
= 4x ,

∂z

∂y
= −2y .

Per tant, el vector gradient és
∇z = (4x ,−2y)

En el punt (1,−1) aquest gradient val ∇z = (4, 2) i, per tant, la direcció de creixement
màxim és la direcció donada pel vector 4

−→
i + 2

−→
j , que és la mateixa direcció que el

vector 2
−→
i +
−→
j . La direcció de decreixement màxim és la del vector −2−→i −−→j .

La velocitat de creixement màxim és

|∇z | = |4−→i + 2
−→
j | = 2

√
5.

La direcció de creixement zero (és a dir, la direcció de la corba de nivell) en aquest
punt és la direcció perpendicular a 2

−→
i +
−→
j . És a dir, la direcció marcada pel vector

−→
i − 2

−→
j .

Finalment, quina seria la velocitat de creixement en la direcció del vector −→u =
(−1, 1)? Cal calcular la derivada direccional

D(−1,1)z =
(∇z) · (−1, 1)
|(−1, 1)|

=
(4, 2) · (−1, 1)
|(−1, 1)|

= − 2√
2
= −
√
2.

1Hauríem de dir el sentit.
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35.4 Fem-ho amb sage

Les derivades parcials es poden calcular amb la mateixa instrucció diff() del cas
d’una variable. També tenim la comanda gradient().
sage: z(x,y)=sqrt(4-x^2-2*y^2)
sage: diff(z(x,y),x)
-x/sqrt(-x^2 - 2*y^2 + 4)
sage: diff(z(x,y),y)
-2*y/sqrt(-x^2 - 2*y^2 + 4)
sage: z.gradient()
(x, y) |–> (-x/sqrt(-x^2 - 2*y^2 + 4), -2*y/sqrt(-x^2 - 2*y^2 + 4))
sage: z.gradient()(1,-1)
(-1, 2)



36. Pla tangent i aproximació lineal

36.1 Pla tangent

Entre les primeres aplicacions de la derivada que vam considerar en el cas d’una
variable hi ha la determinació de la recta tangent i, com a conseqüència, l’aproximació
lineal de funcions. En el cas de dues variables podem parlar de pla tangent a la gràfica
d’una funció en un punt.

Suposem que tenim una funció z = z(x , y) i un punt (x0, y0). En aquest punt,
la funció valdrà z0 = z(x0, y0). Voldríem trobar l’equació del pla que passa pel punt
(x0, y0, z0) i és tangent a la gràfica de la funció z = z(x , y). Recordem que l’equació
d’un pla en 3D té la forma

ax + by + cz = d

on els coeficients a, b, c , d són nombres indeterminats. Si c 6= 0, podem escriure aquesta
equació en la forma

z = A + Bx + C y

on ara A,B,C són nombres indeterminats. Igual que passava en el cas d’una variable,
els coeficients B i C s’identifiquen a les derivades parcials de la funció z . És a dir, el
pla tangent té la forma

z = A +
∂z

∂x

∣∣∣
(x0,y0)

x +
∂z

∂y

∣∣∣
(x0,y0)

y .

En aquesta equació encara hi ha un coeficient indeterminat A, però aquest coeficient
es pot calcular perquè sabem que el pla ha de passar pel punt concret (x0, y0, z0). El
resultat final és que l’equació del pla tangent és aquesta:

z = z0 +
∂z

∂x

∣∣∣
(x0,y0)

(x − x0) +
∂z

∂y

∣∣∣
(x0,y0)

(y − y0).

Exemple. Trobem el pla tangent a la gràfica de la funció f (x , y) = sin(x) + cos(y) en
el punt (0,π/2).

Comencem calculant el gradient de la funció en aquest punt:

∇f (x , y) = (cos(x),− sin(y)) = (1,−1).

Aleshores, l’equació del pla tangent és

z = A + x − y

i aquest pla ha de passar pel punt (0,π/2, 0). Això ens dóna A = π/2 i el pla tangent
que busquem és

z =
π

2
+ x − y .

232
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Si, en lloc d’una funció de dues variables tenim una funció de n variables, no par-
larem de pla tangent, sinó d’hiperplà tangent. Si tenim n variables, la gràfica de la
funció està en un espai de dimensió n+1 i un hiperplà en aquest espai és una varietat
lineal de dimensió n.

36.2 Aproximació lineal

En el cas de les funcions d’una variable, l’aproximació lineal consistia en aproximar
la funció per una funció lineal, és a dir, una recta. La millor aproximació lineal s’obté
quan aquesta recta és la recta tangent a la gràfica. Vam arribar a aquesta fórmula

f (x) ≈ f (a) + f ′(a)(x − a)

on a és l’abscissa del punt de tangència. Quan tenim una funció de dues variables,
la gràfica de la funció és una superfície en 3D i la millor aproximació lineal d’una
funció f (x , y) s’obtindrà prenent el pla tangent a la gràfica de la funció, en el punt de
referència. L’equació del pla tangent ja la coneixem per l’apartat anterior i arribem a la
conclusió que l’aproximació lineal d’una funció f (x , y) en un punt (a, b) vindrà donada
per

f (x , y) ≈ f (a, b) +
∂f

∂x

∣∣∣
(a,b)

(x − a) +
∂z

∂y

∣∣∣
(a,b)

(y − b).

Exemple. Volem aproximar la funció z = x2y + 2xey al punt (2, 0). Hem de començar
calculant les derivades parcials de la funció en aquest punt.

∂z

∂x
= 2xy + 2ey = 2,

∂z

∂y
= x2 + 2xey = 8.

En el punt (2, 0) la funció val z = 4. Aleshores, l’aproximació lineal serà

z ≈ 4 + 2(x − 2) + 8y = 2x + 8y .

Si la funció que estudiem té n variables, l’aproximació lineal també tindrà n varia-
bles.

36.3 La regla de la cadena

Recordem que la regla de la cadena ens permetia trobar la derivada de la composició
de dues funcions. La situació era aquesta. Teníem una funció y = y(x) en la qual la
variable x era funció d’una tercera variable x = x(t), i volíem determinar la derivada
de y respecte de t . La regla de la cadena ens diu que aquesta derivada és igual al
producte de la derivada de y respecte de x i la derivada de x respecte de t:

dy

dt
=

dy

dx
· dx

dt
.

Quins canvis hem de fer quan tenim funcions de diverses variables? Ben pocs. N’hi
ha prou amb substituir la multiplicació anterior pel producte escalar. Més concre-
tament, suposem que tenim una funció de dues variables z = z(x , y) i suposem que
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cadascuna d’aquestes dues variables és funció d’una tercera variable x = x(t), y = y(t).
Aleshores,

dz

dt
= (∇z) · (x ′, y ′) =

∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

La situació podria ser encara més complicada. Podríem tenir una funció z = z(x , y)
en la qual les dues variables fossin funció de dues noves variables: x = x(u, v), y =
y(u, v). En aquest cas, la millor manera d’expressar la regla de la cadena és de manera
matricial: (

∂z

∂u

∂z

∂v

)
=

(
∂z

∂x

∂z

∂y

)∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

 .

Exemple. Recordem (pàgina 218) la fórmula que s’utilitza per estimar la superfície
corporal:

A = 0.007184W 0.425H0.725.

En una certa societat, l’alçada mitjana d’un noi de 13 anys és 154.3 cm i el seu pes
mitjà és de 43.3 kg. Volem trobar una fórmula que ens doni la velocitat de creixement
de la superfície corporal. És a dir, volem conèixer dA/dt . La regla de la cadena ens
diu això:

dA

dt
=

∂A

∂W

dW

dt
+
∂A

∂H

dH

dt
.

Determinem ara el gradient de A:

∇A =
(
0.0030532W−0.575H0.725, 0.0052084W 0.425H−0.275

)
= (0.013500, 0.006463).

Apliquem la regla de la cadena:

dA

dt
= 0.013500W ′ + 0.006463H ′.

D’aquesta manera, com que hi ha molts estudis sobre el creixement en alçada i en pes,
coneixem també com creix la superfície de la pell.

Totes aquestes fórmules es poden generalitzar sense canvis importants al cas de
funcions amb un nombre arbitrari de variables.

36.4 Fem-ho amb sage

Considerem l’exercici anterior que demanava trobar l’aproximació lineal de la funció
z = x2y + 2xey al punt (2, 0). El podem resoldre amb sage amb aquesta comanda:
sage: z(x,y)=x^2*y+2*x*e^y
sage: L=taylor(z,(x,2),(y,0),1)
sage: L(x,y)
2*x+8*y

Per resoldre l’exercici de la superfície corporal, podem fer això:
sage: A(W,H)=0.007184*W^0.425*H^0.725
sage: t=var(’t’)
sage: W=function(’W’)(t)
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sage: H=function(’H’)(t)
sage: diff(A(W,H),t).subs(W==43.3,H==154.3)
0.00646265625279537*D[0](H)(t) + 0.0135001940086864*D[0](W)(t)
sage: view(_)

0.00646265625279537D[0] (H) (t) + 0.0135001940086864D[0] (W ) (t)



37. Optimització en diverses variables

Quan estudiàvem funcions d’una variable, una de les aplicacions importants de la de-
rivada va ser l’optimització, és a dir, la determinació dels màxims i mínims d’una funció.
En el cas de les funcions de diverses variables, la derivada que hem estudiat en els
capítols precedents també és una eina fonamental en l’optimització, però alguns detalls
són una mica més complicats.

37.1 Domini de definició i punts interiors

La primera complicació que apareix en el cas de diverses variables és la forma del
domini de definició. En el cas d’una variable, les funcions que apareixen a la pràctica
estan definides a tota la recta o potser a una col.lecció d’intervals. En el cas de, per
exemple, dues variables, les funcions poden estar definides en regions del pla que
poden tenir una forma més o menys complicada.

Per exemple, la funció
f (x , y) =

√
1− x2 − 2y2

està definida a tots els punts (x , y) del pla tals que

x2 + 2y2 ≤ 1.

Aquesta regió està formada pels punts de l’el.lipse x2 + 2y2 = 1 i per tots els punts
de l’interior d’aquesta el.lipse. En un altre exemple, podem estar estudiant una funció
g(p, q) = 5p2q3 on p i q són proporcions, és a dir, nombres entre 0 i 1. Aleshores,
encara que la funció g , des d’un punt de vista matemàtic, està definida arreu, el domini
de definició on ens interessa la funció és el quadrat

0 ≤ p ≤ 1, 0 ≤ q ≤ 1.

Al domini de definició d’una funció distingirem entre els punts interiors i els punts
de la frontera. Un punt és interior quan al seu voltant hi ha tot un petit disc de punts
on la funció està definida. En els exemples anteriors, la frontera per a la funció f (x , y)
és una el.lipse i la frontera per a la funció g(p, q) està formada pels quatre costats d’un
triangle.

37.2 Màxims i mínims locals

Un argument geomètric similar al del cas d’una variable ens diu que si una funció de
diverses variables té un màxim local o un mínim local en un punt interior del domini
de definició, el pla tangent1 a la gràfica de la funció serà horitzontal. Si recordem

1Si es tracta d’una funció de més de dues variables, parlarem de l’hiperplà tangent.
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l’equació del pla tangent, veiem que aquest pla és horitzontal quan totes les derivades
parcials són iguals a zero.

Un punt crític d’una funció de diverses variables és un punt en el que totes les
derivades parcials de la funció són iguals a zero. Els punts interiors on la funció té un
extrem local són punts crítics de la funció. Per trobar els punts crítics d’una funció de
diverses variables z(x1, . . . , xn) haurem de resoldre un sistema d’equacions.

∂f

∂xi
= 0, i = 1, . . . , n.

Un cop haguem trobat els punts crítics de la funció, hem de decidir si són màxims o
mínims locals. En el cas de les funcions d’una variable, la derivada segona ens podia
resoldre aquest problema. En el cas de diverses variables, utilitzarem el criteri de la
matriu hessiana. Recordeu que aquesta matriu està formada per les derivades segones
de la funció.

Sigui H la matriu hessiana d’una funció calculada en un punt crític P i suposem
que H és invertible. Aleshores

• Si tots els valors propis de H són positius, la funció té un mínim local a P .

• Si tots els valors propis de H són negatius, la funció té un màxim local a P .

• Si H té valors propis positius i valors propis negatius, P és un punt de sella.
Això vol dir que a P hi ha direccions en les que la funció té un màxim local i
direccions en les que la funció té un mínim local.

Considerem, per exemple, el cas de dues variables z = z(x , y). La matriu hessiana serà
una matriu 2× 2 

∂2z

∂x2

∂2z

∂y∂x
∂2z

∂x∂y

∂2z

∂y2

 .

Suposem que P = (x0, y0) és un punt crític de la funció. Avaluem la matriu hessiana
en aquest punt i obtenim una matriu

H =

(
a b
c d

)
on a, b, c , d són nombres. Per decidir si P és màxim local o mínim local hauríem de
veure si els valors propis d’aquesta matriu són positius o negatius. Ho podem fer
calculant els valors propis, però de fet no és necessari calcular-los explícitament per
saber si són positius o negatius. Podem utilitzar aquest criteri senzill:

• Si det(H) > 0 i a > 0, aleshores P és un mínim local.

• Si det(H) > 0 i a < 0, aleshores P és un màxim local.

• Si det(H) < 0, aleshores P és un punt de sella.
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37.3 Exemple: biodiversitat dels ratolins

A Catalunya, a banda del ratolí domèstic, hi viuen tres espècies de ratolí: el ratolí de
bosc (Apodemus sylvaticus), el ratolí lleonat (Apodemus flavicolis), i el ratolí mediter-
rani (Mus spretus). En un estudi de biodiversitat, volem calcular l’índex de Shannon de
diversos hàbitats, referit a aquestes tres espècies. Quins són els valors màxim i mínim
que pot prendre aquest índex?

Recordem que, en el cas de tres espècies, l’índex de Shannon es calcula amb la
funció

S = −p1 log(p1)− p2 log(p2)− p3 log(p3)

on p1, p2, p3 són les proporcions de cadascuna de les tres espècies en l’hàbitat d’estudi.
Observem que S és, de fet, una funció de dues variables perquè

p1 + p2 + p3 = 1.

Podem prendre S = S(p1, p2) i p3 = 1 − p1 − p2. D’altra banda, com que p1, p2 són
proporcions, variaran entre 0 i 1 i la seva suma ha de complir p1 + p2 ≤ 1. Per tant, el
domini de definició de la funció S(p1, p2) és la regió triangular del pla de vèrtex (0, 0),
(1, 0) i (0, 1).

Una altra observació que cal fer és quin valor té S quan alguna de les tres propor-
cions és igual a zero. Observem que

lim
x→0

x log(x) = 0.

per tant, quan alguna proporció és igual a zero, podem simplement ometre el terme
que la conté. Aquest límit també ens permet afirmar que la funció S és contínua i, en
conseqüència, tindrà màxim absolut i mínim absolut en el triangle de definició. Volem
determinar quins són. Seguim aquests passos:

• Calculem els punts crítics de la funció.
∂S

∂p1
= log(p3)− log(p1) = 0

∂S

∂p2
= log(p3)− log(p2) = 0



37. Optimització en diverses variables 239

La solució d’aquestes equacions és p1 = p2 = p3 = 1/3. En aquest punt la funció
val log(3).

• No és estrictament necessari, però podríem usar el criteri de la matriu hessiana
per decidir si aquest punt és un màxim local, un mínim local o un punt de sella.
La matriu hessiana és−

1

p1
− 1

p3
− 1

p3

− 1

p3
− 1

p2
− 1

p3

 =

(
−6 −3
−3 −6

)

i, aplicant el criteri, veiem que la funció té un màxim local a p1 = p2 = p3 = 1/3.

• Ara ens cal estudiar el comportament de la funció als punts de la frontera del
domini de definició. La frontera està formada per les tres arestes del triangle on
està definida la funció. En primer lloc, als tres vèrtex del triangle, la funció val
zero. Considerem, per exemple, l’aresta p2 = 0. Quan la restringim a aquesta
aresta, la funció es converteix en una funció d’una variable:

S(p1) = −p1 log(p1)− (1− p1) log(p1).

Analitzem aquesta funció a l’interval (0, 1) amb les eines de les funcions d’una
variable. Obtenim que aquesta funció té un màxim relatiu a p1 = 1/2 i en aquest
punt la funció val log(2). Les altres tres arestes donarien resultats equivalents.

• Finalment, hem arribat a la conclusió que el màxim absolut i el mínim absolut de
la funció estaran en aquesta llista:

1. Els tres vèrtex del triangle, corresponents a que només hi ha present una
de les tres espècies de ratolí. En aquest cas, S = 0.

2. Els punts mitjos de les tres arestes del triangle, corresponents a que només
hi ha dues espècies presents, i cadascuna té un 50% de la població. En
aquests punts, S = log(2).

3. El punt p1 = p2 = p3 = 1/3. En aquest punt, S = log(3).
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Examinant aquests 7 candidats, arribem a la conclusió de el valor mínim de S és
S = 0 i el valor màxim de S és S = log(3) ≈ 1.01. El mínim es dóna quan només
hi ha present una única espècie i el màxim es dóna quan les tres espècies estan
representades en la mateixa proporció.2 Aquesta mateixa anàlisi l’hauríem pogut
fer amb un nombre qualsevol n d’espècies i el resultat hauria estat anàleg: el
mínim de S és S = 0, quan només hi ha una única espècie present, i el màxim de
S és S = log(n) quan les n espècies estan representades de manera equitativa.

2Tanmateix, un resultat ben natural.



Exercicis

A. Exercicis teòrics

VI.A.1. Calculeu el gradient ∇f per a cadascuna de les funcions següents:

(a) f (x , y) =
1√

x2 + y2
; (b) f (r , s) = r log(r2 + s2);

(c) f (x , t) = arctan(x
√

t); (d) f (α,β) = sinα cosβ.

VI.A.2. Calculeu les derivades direccionals de les funcions següents en els punts indi-
cats i en les direccions donades:

(a) f (x , y) = x + 2xy − 3y2, (x0, y0) = (1, 2), −→v = 3
−→
i + 4

−→
j ;

(b) f (x , y) = ex cos(πy), (x0, y0) = (0,−1), −→v = −−→i + 2
−→
j ;

VI.A.3. Trobeu la derivada direccional de f (x , y , z) = x2 − yz + z2x en el punt P =
(1,−4, 3) i en la direcció de P a Q = (2,−1, 8).

VI.A.4. En quina direcció, des de (0, 1), creix més ràpidament f (x , y) = x2 − y2?

VI.A.5. Calculeu les matrius hessianes de les funcions:

(a) f (x , y) = x4 − 3x2y3; (b) f (x , y) =
x

x + y
; (c) f (x , y) = log(3x + 5y).

VI.A.6. Trobeu l’equació del pla tangent a la superfície en el punt que s’especifica:

(a) z = 4x2 − y2 + 2y , P = (−1, 2, 4).
(b) z = ex2−y2

, P = (1,−1, 1).
(c) z2 = 4x2 − y2 + 2y , P = (1, 1,

√
5).

VI.A.7. Calculeu la linealització d’aquestes funcions als punts indicats:

(a) f (x , y) =
√

x + 2y ; P = (1, 0).
(b) f (x , y) = sin(x2y); P = (π/2, 0).

VI.A.8. Calculeu l’aproximació lineal de f (x , y) = sin(x +2y) al punt (0, 0) i utilitzeu-la
per donar una estimació de f (−0.1, 0.2). Compareu amb el valor exacte.

VI.A.9. Trobeu els extrems locals i els punts de sella de les funcions següents:
(a)f (x , y) = x2 − 4xy + y3 + 4y ; (b)f (x , y) = x2 + 2xy + 3y2;
(c)f (x , y) = 5 + 4x − 2x2 + 3y − y2; (d)f (x , y) = ex sin y ;

VI.A.10. (a) Trobeu els extrems relatius i els punts de sella de la funció f (x , y) =
x3 + y3 − 3x2 + 3y2 − 4.
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(b) extrems relatius
(c) Considereu la superfície z = f (x , y). Si us trobeu en el punt (−1, 1,−4),

en quina direcció heu d’anar per davallar pel màxim pendent? Si en comp-
tes de davallar volguéssiu mantenir la mateixa altitud, en quina direcció
hauríeu d’anar?

VI.A.11. Calculeu els màxims i mínims absoluts de f (x , y) = x2 + y2 + 4x − 1 al domini

D = {(x , y) : x2 + y2 ≤ 9}.

VI.A.12. Calculeu els extrems absoluts de f (x , y) = 4x2 − 9y2 al domini

D = {(x , y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}.

VI.A.13. Utilitzeu la regla de la cadena per calcular du
dt en aquests casos:

(a) u = exp(xy), x = 3t2, y = t3.
(b) u = x2 − 3xy + 2y2, x = cos t , y = sin t .
(c) u = x + 4

√
xy − 3y , x = t3, y = 1/t .

VI.A.14. Utilitzeu la regla de la cadena per calcular ∂u/∂t , ∂u/∂s si u = log(xy/2),
x = sin(t) cos(s), y = 1 + st .

B. Exercicis d’aplicació

VI.B.1. S’ha estudiat el rendiment d’una collita com a funció de les concentracions de
nitrogen N i fòsfor P al sòl, i s’ha trobat una relació empírica (en unes certes
unitats)

Y (N,P) = kNP exp(−0.5N − P)

on k és una constant positiva. Trobeu els valors de N i P que maximitzen la
collita.

VI.B.2. Les corbes de nivell d’una funció de producció s’anomenen isoquantes. Dibuixeu
les isoquantes d’una funció de producció CES Q = F (aK r + (1 − a)Lr )1/r amb
a = 0.3, r = 0.5. Useu sage.

VI.B.3. A més de l’índex de Shannon, un altre índex que s’utilitza per mesurar la diver-
sitat és l’índex de Simpson

H =

(
n∑

i=1

p2
i

)−1
.

Repetiu el mateix exercici de les tres espècies de ratolí, amb l’índex de Simpson
en lloc de l’índex de Shannon. És a dir, determineu quin són els valors màxims
i mínim d’aquest índex quan hi ha tres espècies.
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VI.B.4. Hi ha una fórmula3 que dóna la mínima temperatura de supervivència (en ab-
sència de vent) com a funció de la producció metabòlica de calor M (en W /m2)
i la conductància tèrmica g (en mol/m2s) de la roba d’abric que es dugui:

T = 36− (0.9M − 12)(g + 0.95)

27.8g
.

M varia entre 50 (persona dormint) fins a 400 (caminant en pujada), g varia
entre 0.45 (cos nu) fins a 0.04 (plumó molt gruixut). Representeu aquesta funció
utilitzant corbes de nivell. Dibuixeu seccions d’aquesta funció per a M = 200
(persona caminant) i per a g = 0.14 (persona amb roba de teixit polar).

VI.B.5. Utilitzant la teoria de l’exercici anterior, imagineu una persona que camina i
va abrigat, de manera que M = 100 i g = 0.1. Va augmentant el seu ritme de
manera que M creix a una certa velocitat M ′ = 0.2W /m2s i, simultàniament, la
roba que du va quedant amarada de suor, de manera que g també creix a velo-
citat g ′ = 0.0002mol/m2s2. Calculeu la velocitat amb què canvia la temperatura
de supervivència.

VI.B.6. En el model de Holling de 1959, el nombre de captures d’un depredador en un
interval de temps T s’expressa com

P =
aNT

1 + aT0N
,

on a és una mesura de l’agressivitat del depredador, N és la densitat de preses
i T0 és el temps que el depredador dedica a cada presa. Estudieu com es
comporta P quan augmenten (per separat) cadascuna de les variables a, N , T ,
T0.

VI.B.7. Segons el model de Voellmy (vegeu la pàgina 90), la velocitat màxima que
assoleix una allau ve donada per

v =
√

hξ(sinψ − µ cosψ)

on h és l’alçada del gruix de neu, ψ és el pendent, i ξ i µ són coeficients de
turbulència i fricció (positius), respectivament. Estudieu el comportament de v
en funció dels diversos paràmetres.

VI.B.8. Estem pujant una muntanya amb una temperatura de -3 graus i un vent de 15
km/h. A mida que pugem, la temperatura baixa a un ritme de 1 grau cada cent
metres i el vent augmenta a un ritme de 7 km/h cada cent metres. A quin ritme
disminueix la temperatura de sensació? (Utilitzeu la fórmula de la pàgina 16.)

VI.B.9. Estem a 35 graus i la temperatura de rosada és R = 300K . La temperatura està
pujant 2 graus per hora i R està baixant 2 graus per hora. Calculeu a quina
velocitat està canviant la temperatura de xafogor H . (Utilitzeu la fórmula de la
pàgina 68.)

3Aquesta fórmula apareix al llibre Calculus For Biology and Medicine de Claudia Neuhauser, que no
cita la font original.
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I. Les funcions elementals

I.A.1. (a) 5−2; (b) (6/5)6; (c) (4/7)25; (d) 66

I.A.2. (a) (7±
√
13)/6; (b) x = 8, −2/3; (c) x = 4, −3; (d) x = −1.

I.A.3. kert

1 +
k

K
ert

I.A.4. a = −2, b = 5

I.A.5. (a) x = ±2; (b) x = 1; (c) x = −1, −2

I.A.6. (a) x = 80, 20; (b) x = 0, 1; (c) x = ±1; (d) x = 1, 3

I.A.7. K = 0.7116, R = 0.5196

I.A.8.

I.A.9. (a) x/
√
1 + x2; (b)

√
1− x2/x

I.A.10. (a) x > 8; (b) x ≥ 5; (c) x > (5 +
√
61)/6 o x < (5−

√
61)/6; (d) −2 < x < 7/3;

(e) s < 0; (f ) −1 ≤ x ≤ 0 o x ≥ 1

I.A.11. (a) −1 ≤ x ≤ 5; (b) −6 ≤ x ≤ −5 o 5 ≤ x ≤ 6; (c) −4 < x < 4; (d) x ≤ −1/2

I.A.12. (a) 2x + 5y = 1; (b) 3x + 5y + 7 = 0; (c) 3y + 2x + 7 = 0; (d) 2x − 3y − 7 = 0

I.A.13. x2 + y2 + 2x − 8y + 8 = 0; C = (2, 0), r = 4; C = (2,−1), r = 4

I.A.14. (a) 2y = 3x2 − x ; (b) y = 2x2 − 6x + 4

I.A.15. (a) x ≥ 0, excepte x =
√
2; (b) x = a + kπ amb k enter i 0 < a < π/2; (c) Tot x

excepte [−2,−1]; (d) |x | ≥
√
2

I.A.16. (a) exp(3x log 7 + log 5
n ); (b) 100.197t ; (c) log(0.9768t)0.4343; (d) log10(74.5x)3.322

I.A.17. N = 4119.23 x/(3.077 + x)

I.A.18. N = 12000 x/(12.346 + x)

I.A.19. M = 13.321P−0.798

I.A.20. P = 520.766 exp(0.9041 u)

I.A.21. T (t) = 2333 + 87 sin(0.111π + (2πt/365))

I.A.22.
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I.A.23. (a) −∞; (b) 0; (c) 0; (d) −∞; (e) 0; (f) −∞; (g) 0; (h) 0; (i) e2

I.A.24. 0.567143

I.B.1. S = 2.3

I.B.2. d = 0.143

I.B.3. 47.27 dies.

I.B.4. 292.4◦ K

I.B.5. V = 23.1 km/h.

I.B.6. 28

I.B.7. 1464 km2.

I.B.8. 0.903

I.B.9. t = 181T−1.37

I.B.10. 8.13%

I.B.11. La vida mitjana de A serà 1.6 vegades superior a la de B

I.B.12. N∞ = 500; M∞ = 100

I.B.13. a, 0.

I.B.14. h∞ = 132

I.B.15. N = 423

I.B.16. N = 595

I.B.17. 26.3× 106 tones.

I.B.18. 93 kg.
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I.B.19. La concentració de H3O+ al suc de llimona és 5 vegades més gran que al
vinagre.

I.B.20. Mi= 329.627 Hz, Sol=391.995 Hz.

I.B.21. 1.26

I.B.22. 2.83, 4, 5.66. 1.77 punts.

I.B.23. 104 anys

I.B.24. Aquest exercici té moltes solucions possibles. Per exemple, podem usar una
funció de Monod o una funció exponencial:

I =
10x

1 + x
, I = 10(1− 2−x)

La diferència entre aquestes dues funcions es pot veure en la gràfica següent (l’ex-
ponencial està dibuixada en color vermell). Possiblement, la solució millor és l’expo-
nencial.

I.B.25. Donem 1 punt per cada resposta correcta. Això ens dóna una nota n que va
de zero a un nombre molt gran T . Volem convertir n en una nota final N que vagi de
0 a 10. Podem fer-ho amb una funció exponencial o amb una funció de Monod. També
ho podríem fer amb una funció lineal entre 0 i T , però aquesta no és la millor opció
(per què?). Possiblement, la solució millor és l’exponencial. En tot cas, necessitem
prendre una decisió. Per exemple, podem fixar el valor de n que correspon al 5.

I.B.26. T (t) = 17.9 + 9.3 sin(π(t − 17)/26)

I.B.27.
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II. La derivada

II.A.1. (a) 42x6 − 8x3 + 2; (b) 40(x5 + 5x − 8)39(5x4 + 5): (c) e3x(3x2 − 7x + 3);

(d) (−2x4 + 4x3 − 2x2 + 13x − 4)/(x2 − x + 5)2; (e) 2x2+1x log(2)− (x log(3))−1;

(f ) (6x − 7)/2
√
3x2 − 7x − 2; (g) −x2 + 4x + 1

3(x − 2)2/3(x2 + 1)4/3
;

(h) ex(log(x) + 1/x); (i) ex(arcsin(x)− (1− x2)−1/2)(arcsin(x))−2; (j) 0;

(k) −(2
√

arccos(x)(1− x2))−1; (l) 1/ tan(x); (m) (arctan(x)(1 + x2))−1;

(n) e−x

(
1

x + 1
− log(x + 1)

)
; (o) 2 arctan(x)

1 + x2
+ 0.172x−0.828;

(p) 3π

2

√
x arccos(x2)− 2xπ

√
x3

1− x4
.

II.A.2. (a) 2e−rN2
(−rNK − 2rN2 + 1); (b) 4π

L
T cos

(
2π

L
T 2

)
;

(c) αPα−1Lβ ; (d) 2V T − µ cos(T )

2
√

V T 2 − µ sin(T )
; (e) S

K + S2

(
u

u + 1
+ log(u + 1)

)
;

(f ) − her−t

K + 1
.

II.A.3. (c) r = 1 i r = −2.

II.A.4. (a) −x/y ; (b) (2x + y)/(1− x); (c) y/(3y2 − x);

(d) 2x2y3 + 4xy2 + 2y − 1

−x2 − 2x3y2 − 4x2y − 2x
.

II.A.5. (a) 1 + 2x + 4x2; (b) 1 + x + x2

2 ; (c) 1− nx +
n(n + 1)

2
x2;

(d) 1− π

2
+ 2x ; 1− π

2
+
π2

8
+ (2− π)x + 2x2.

II.A.6. b = π/2, P = (0,π/2).

II.A.7. (a) 6%; (b) 0.67%; (c) 1.6%; (d) 6%.

II.A.8. (a) No té ni màxim ni mínim. (b) No té ni màxim ni mínim. (c) Té un mínim a
x = 0; no té màxim. (d) Té màxim i mínim a x = 0. (e) Mínim a x = 0, màxim a x = 2.
(f ) Mínim a x = 0 i màxim a x = e − 1.
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II.A.9. (a) Convexa arreu; creixent per x > 1/3, decreixent per x < 1/3. (b) Convexa
per x > 0, còncava per x < 0; creixent per |x | > 2, decreixent per |x | < 2. (c) Definida
per x > 0. Còncava arreu; creixent per x < 2/5, decreixent per x > 2/5. Si entenem
x2/3 =

3
√

x2, també podem definir la funció per x ≤ 0. Aleshores, la funció és decreixent
per x < 0, convexa si 0 < −0.2 i còncava si −0.2 < x < 0. (d) Convexa per x > −3,
còncava per x < −3; creixent per x > −2, decreixent per x < −2. (e) Definida per
x 6= 0. Convexa per x > 0, còncava per x < 0; creixent per x > 1, decreixent per x < 1.
(f ) Definida per |x | > 1. Còncava arreu; creixent per x > 1, decreixent per x < −1.
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II.A.10. P = (log(k)/r ,K/2). L(x) = (rK/4)x + (K/4)(2− log(k)).

II.A.11. y = 2x/(x2 − x + 1)

II.A.12. y = 1/3

II.B.1. A partir dels 10 anys.

II.B.2. N = 50, 50%.

II.B.3. A les 13:23, aproximadament.

II.B.4. 29%

II.B.5. 67, aproximadament. 34, aproximadament.

II.B.6. 4714, 2357, 11.8%

II.B.7. Disminueix acceleradament.

II.B.8. Augmenta acceleradament

II.B.9. Cp = 1
2(1 + x − x2 − x3). Cmax = 16/27 = 59.3%

II.B.10. λ = 0.84, Cp = 37.3%.

II.B.11. La quantitat òptima d’adob ve donada per x = (
√
αpg pn − pn)/βpn. De fet,

amb els valors concrets del problema, obtenim x = 14.25 que dóna una despesa de
33.68 e/ha, mentre que el rendiment extra és de 33.56 e/ha. En conclusió, en aquestes
circumstàncies és millor no adobar.

II.B.12. 73.23× 106 kg/any2.

II.B.13. 10.8 km3/any.

II.B.14. 26124 milions de GB per any2.

II.B.15. r = 2k .

II.B.16. 2.805

II.B.17. 3.5049 + 0.2238u2.

II.B.18. ∆ = 2504(T + 237.3)−2 exp(17.27T/(T + 237.3)). 1.706± 0.110.

II.B.19. 0.23± 0.03.

II.B.20. Desaccelerat.

II.B.21. Desaccelerada (la disminució).

II.B.22. I M = 0.

II.B.23. És sempre una funció decreixent, que tendeix a zero quan N →∞.

II.B.24. Si b = 1, la taxa de creixement és constant. Si b > 1, la taxa creix. Si b < 1,
la taxa decreix desacceleradament. En tots els casos, si b 6= 1, la taxa de creixement
té acceleració positiva.
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II.B.25. t = eb−1/c .

II.B.26. El valor màxim és α/eβ. Hi ha un punt d’inflexió a P = 2/β. La funció és
còncava per P < 2/β i convexa per P > 2/β.

II.B.27. La velocitat creix per N < k i decreix per N > k . La densitat quan la velocitat
és màxima és N = k .

II.B.28. Logística.

III. La integral

III.A.1. (a) −2/(9x3) +C ; (b) −10
√
5− x +C ; (c) log(ex +1)+C ; (d) 3 log(x2 +4)+C ;

(e) −(1/2) log | cos(2x)|+ C ; (f ) (1/4) sin2(2x) + C .

III.A.2. (a) (1/4)x4 log(x)−(1/16)x4+C ; (b) x arcsin(x)+
√
1− x2+C ; (c) −e−2x(x2/2+

3x +3)+C ; (d) (ex/2)(sin(x)+ cos(x))+C ; (e) (1/2)(x2 arctan(x)+ arctan(x)− x)+C ;
(f ) −(ex − 3)−1 + C .

III.A.3. (a) −9 log |x−2|+11 log |x−3|+C ; (b) log(x2+x+1)+C ; (c) −(1/2) arctan(x)+
(1/4) log |(x − 1)/(x + 1)|+ C ; (d) (1/3) log |(x − 1)/(x + 2)|+ C .

III.A.4. (a) 4/3; (b) 10; (c) 0.6482; (d) 1/2; (e) 64/3; (f ) 92/3.

III.A.5. 1/2.

III.A.6. a = 18.

III.B.1. (1/t1) log(B(t1)/B(0)).

III.B.2. a

C =

∫ ∞
0

εq dt =

∫ ∞
0

εq

q′
q′ dt = −

∫ ∞
0

1

p
q′ dt = −

∫ 0

q0

1

p
dq =

∫ 1

p0

1

p
dp.

C = 13.8.

III.B.3. 0.27

III.B.4. y = x43.48. I = 0.955.

III.B.5. 342.44

III.B.6. 22.03◦ C .

III.B.7. T = A
a

√
2h0/g .

III.B.8. 379.6 Wh. Per obtenir aquest resultat hem de calcular∫ t1

t0

cos(Z ) dt

on t0 i t1 són l’hora de la sortida/posta del sol. És millor fer un canvi de variables:∫ −ω0

ω0

cos(Z )
dt

dω
dω

on ara cos(Z ) = 0 per ω = ±ω0. Tenim λ ≈ 0.739723, n = 52, δ ≈ −0.195936,
a = sinλ sin δ ≈ −0.131234, b = cosλ cos δ ≈ 0.724522, ω0 = arccos(−a/b) ≈ 1.388659.
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III.B.9. 2333.9 TWh

III.B.10. pe = 2.45, qe = 1.45, C S = 1.82, PS = 1.05.

III.B.11. 12.96 l/m2

IV. Equacions diferencials

IV.A.1. (a) y = sin(t)− t cos(t) + k ;
(b) y = t2 + k ;
(c) y = −1/(4t + k);
(d) y = k exp(t2/2);
(e) y = 100/(1 + k exp(−50t)), y = 0;
(f ) y = (et + k)/(et − k), y = −1;
(g) y = −1/(sin(t) + k), y = 0;
(h) y = ±2/

√
1 + k exp(−8t), y = 0.

IV.A.2. (a) y = −
√

4− (t3/3);
(b) y = −3 exp(−1− cos(t));
(c) y = (1/2) log(4t4 − 3);
(d) y = −

√
1− 2t .

IV.A.3. y = K exp
(
log(y(0)/K ) e−rt

)
, y = K .

IV.A.4. y = (t + k)3, y = 0. Les dues funcions y = 0 i y = t3 són solucions amb
les condicions inicials y(0) = 0. La contradicció aparent amb el teorema d’unicitat de
solucions prové del fet que la funció y2/3 no és diferenciable per y = 0. Això dóna
lloc a infinites solucions que no estan contemplades a la fórmula y = (t + k)3 i que
s’obtenen «enganxant» funcions d’aquestes amb valors diversos de k , amb un tros de
la funció constant y = 0.

IV.A.5. Els equilibris són y = 0 (inestable) i y = 2 (estable). Les solucions són y = 0
i y = 2/(1 + k exp(−2t)).

IV.A.6. Els equilibris són y = 5 (inestable) i y = 1 (estable). La solució particular és
y = 5(1− exp(4(t − 1)))/(5− exp(4(t − 1))).

IV.A.7. Els equilibris són y = 4 (inestable) i y = 0 (estable). La solució particular és
y = 4(1− exp(2t − 2))2.

IV.A.8. Els equilibris són y = 3 (inestable) i y = −2 (estable).
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IV.A.9. y = k exp(−2x/3).

IV.B.1. P ′ = kP(N − P). A les 3:36.

IV.B.2. (a) x ′ = k(a − x)(b − x). (b) Si a 6= b, la solució és x = ab(1 − exp(kt/(a −
b)))/(b − a exp(kt/(a − b))). Si a = b, la solució és x = a2kt/(akt + 1). (c) x =
at/(t + 20).

IV.B.3. 62 dies.

IV.B.4. 640 dies.

IV.B.5. 4.65%.

IV.B.6. 71.3 anys.

IV.B.7. (a) 3.23× 106 kg. (b) 1.55 anys.

IV.B.8. El 19%.

IV.B.9. 2400 peixos.

IV.B.10. El llindar d’extinció és N = 49.

IV.B.11. 9 dies.
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V. Vectors i matrius

V.A.1. (a)

 4 2 −2
2 1 −1
−2 −1 1

; (b) (6); (c)
(
−29/3 −7/3
−62 16

)
; (d)

 29 7
134 58
62 22

;

(e)

 15/2 1 5/2
3/4 1 −1/4
197/4 7 69/4

; (f )
(
3k (3k − (−1)k)/2
0 (−1)k

)

V.A.2. (a)
(
−5/3 −2
−2/3 −1

)
; (b)

(
7 5
−50 −36

)
; (c)

(
1/13 −6/13
0 1

)
.

V.A.3. (x , y) = (1, 3).

V.A.4. −i− 2j− k.

V.A.5. A: (1, 0), λ = 3; (1,−2), λ = −1. B : (1, 1), λ = 2. C : (1,−
√
2), λ = −

√
2 − 2;

(1,
√
2), λ =

√
2− 2. K : cap. L: (2,−1), λ = 1; (1,−1), λ = −1. M : cap.

V.A.6. (1/
√
14, 2/

√
14, 3/

√
14).

V.A.7.
√
29,
√
41,
√
46. 69.63◦, 62.26◦, 48.10◦.

V.A.8.
(

0.9272 0.3746
−0.3746 0.9272

)
. 0.0899i+ 4.4935j.

V.A.9. 3,
√
11, 45.29◦.

V.A.10. 2x + 3y − 2z = 7.

V.A.11. (x , y , z) = (1,−1, 3) + r(1, 5,−4). 5x − y = 6, 4x + z = 7.

V.A.12. x + 5y − 4z = 6.

V.B.1. C s’assembla més a B que a A.

V.B.2.

V.B.3.

V.B.4.

 0 0 35000
3× 10−5 0.706 0

0 0.071 1

.

V.B.5.

 0 0 8
0.25 0 0
0 0.5 0

.

V.B.6. L =

 0.7 0 0.1
0.02 0.8 0
0 0.05 0.95

.

V.B.7. 100 a la zona A i 140 a la zona B .

V.B.8. r = 1.27. h = 28.6%.
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V.B.9. En la proporció 34:14:13.

V.B.10.
(
0.85 0
0.05 1

)(
B
A

)
=

(
B ′

A′

)
. 1/3.

VI. Funcions de diverses variables

VI.A.1. (a)
(
−x(x2 + y2)−3/2,−y(x2 + y2)−3/2

)
; (b)

(
2 r2

r2 + s2
+ log

(
r2 + s2

)
,

2 rs

r2 + s2

)
;

(c)
( √

t

x2t + 1
,

x

2 (x2t + 1)
√

t

)
; (d) (cos (α) cos (β) , − sin (α) sin (β)).

VI.A.2. (a) −5; (b)
√
5/5.

VI.A.3. 52/
√
35.

VI.A.4.
−−−→
(0, 1).

VI.A.5. (a)
(
12x2 − 6y3 −18xy2

−18xy2 −18x2y

)
;

(b)

−
2y

(x + y)3
x − y

(x + y)3
x − y

(x + y)3
2x

(x + y)3

;

(c)

−
9

(3x + 5y)2
− 15

(3x + 5y)2

− 15

(3x + 5y)2
− 25

(3x + 5y)2

.

VI.A.6. (a) z = −8x − 2y ; (b) z = 1 + 2x + 2y ; (c)
√
5 z = 4x + 1.

VI.A.7. (a) z = 1
2 + 1

2x + 2y ; (b) z = (π2/4)y .

VI.A.8. z = x + 2y . x + 2y = 0.3 ≈ 0.295520206661340 · · · = sin(x + 2y).

VI.A.9. (a) (4, 2) mínim local, (4/3, 2/3) punt de sella; (b) (0, 0) mínim local; (c) (1, 3/2)
màxim local; (d) no en té.

VI.A.10. (a) (0, 0) i (2,−2), punt de sella; (2, 0) mínim; (0,−2) màxim. (b) Màxim
pendent en la direcció −→i +

−→
j ; pendent zero en la direcció ±(−→i −−→j ).

VI.A.11. Màxim 20 al punt (3, 0) i mínim −5 al punt (−2, 0).

VI.A.12. Màxim 4 als punts (±1, 0) i mínim −9 als punts (0,±1).

VI.A.13. (a) 15t4 exp(3t5); (b) 2 sin(t) cos(t)− 3 cos2(t) + 3 sin2(t); (c) 3t2 + 3t−2 + 4 si
t > 0, 3t2 + 3t−2 − 4 si t < 0.

VI.A.14.
(

1

tan(t)
+

s

1 + st
,

t

1 + st
− tan(s)

)
.

VI.B.1. P = 1, N = 2.
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VI.B.2.

VI.B.3. El mínim és H = 1 quan hi ha una única espècie present i el màxim és H = 3
quan les tres espècies són igualment abundants.

VI.B.4.
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VI.B.5. T baixa 0.88 graus per minut.

VI.B.6. P és funció creixent de a, N i T i funció decreixent de T0.

VI.B.7. v és funció creixent de h, ψ i ξ i funció decreixent de µ.

VI.B.8. Baixa 2.68 graus per cada cent metres.

VI.B.9. −0.4 graus per hora.
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3D, 176

AA, 7
abs(), 8
abstrusegoose, xii
acceleració, 78, 94, 101, 116
ADN, 32, 67
allaus, 90, 243
al.lometria, 26, 68, 87, 92, 118
amplitud, 36
angle, 12, 98
angle entre dos plans, 177
angles d’un triangle, 177
aplicació ortogonal, 193, 194
aplicacions lineals, 193
append(), 63
aproximació lineal, 90, 91, 113, 117, 232,

233, 241
aproximació quadràtica, 93
arc-cosinus, 13
arc-sinus, 13
arc-tangent, 13, 40
àrea, 123, 127, 128, 141
arrel enèsima, 4
arrodoniment, 3
asímptota horitzontal, 102, 104
asímptota obliqua, 105, 107
asímptota vertical, 104, 155
asímptotes, 105
aspect_ratio, 21, 38, 108, 222
assume(), 140

baricentre, 184
bicing, 202, 207
biodiversitat, 31, 67, 68, 238
biomassa, 17
Brasil, x, 50, 82, 115

càlcul de primitives, 134
canvi de variable, 137, 141
capacitat del medi, 58, 59
carotenoides, 181
charpoly(), 197
circle(), 14

circumferència, 11, 87, 93
clústers, 181
clo, 218
clustering, 180
CO2 a l’atmosfera, 16, 50, 80, 82, 118
coeficient de potència, 116
color, 38, 219
combinacions lineals, 172
completació de quadrats, 12
comportament a llarg termini, 39, 104, 204
composició de funcions, 19, 84
concavitat, 101, 105, 107, 114
condicions inicials, 147
conductància, 243
consum de formatge, 116
consumer surplus, 126, 144
contaminació d’un llac, 157
contaminació d’una conca fluvial, 148
continuïtat, 42, 219
control biològic de plagues, 95, 118
convexitat, 101, 105, 107, 114
coordenades d’un vector, 172
corba d’oferta, 125, 144
corba de demanda, 118, 125, 144
corba de Lorenz, 124
corba logística, 79, 114, 115, 154
corbes de nivell, 222, 227, 230
cos(), 7
cosinus, 13
creixement, 50, 100, 105, 114
creixement continu, 52, 54
creixement discret, 52, 53
creixement exponencial, 53, 54, 146, 151,

162, 166
creixement exponencial discret, 54, 199
creixement logístic, 59, 78, 146, 153, 162,

166
cursa d’armaments, 203

data mining, 182
decreixement, 50, 100, 105, 114
def, 63
densitat de plantació, 35
depredador, 95, 139, 243

261
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depredador i presa, 24
derivació implícita, 87
derivada, 50, 74, 97, 100, 113, 129
derivada d’un producte, 80
derivada d’un quocient, 82
derivada de la funció inversa, 87
derivada direccional, 228, 241
derivades de les funcions elementals, 88
derivades parcials, 228
derivades parcials creuades, 229
derivades parcials segones, 229
derivades successives, 78
desacceleració, 101, 110, 116
desforestació, 82
desolve(), 160
desviació típica, 183
determinant, 191
diferencial, 127, 137
diff(), 79, 88, 160, 231, 234
difusió d’un rumor, 149, 168
dimensió, 173
diminishing returns, 102, 110
dir, 45
direcció de màxim pendent, 230
discontinuïtat, 43
discret, 52
distància, 11, 112, 174
distància d’un punt a un pla, 178
distància entre dues rectes, 178
distribució de Weibull, 67
distribució exponencial, 139
divisió per zero, 4
domini de definició, 18, 98, 104, 219, 236,

238

e, 28
el.lipse, 11
edgecolor, 14
efecte Allee, 163, 166, 169
eigenvalues(), 197
eigenvectors_right(), 197, 208
elasticitat de substitució, 216
ellipse(), 14
emigració, 162, 163, 166
energia eòlica, 143
energia solar, 143
epidemiologia, 116
equació d’un pla, 176

equació d’una recta, 176
equació de Gompertz, 167, 169
equació de Penman-Monteith, 117, 218
equació de Solow-Swan, 148
equació diferencial, 78, 113, 114, 146
equació diferencial de primer ordre, 147
equació diferencial de segon ordre, 147
equació diferencial ordinària, 146
equació paramètrica, 176
equacions autònomes, 153
equacions separables, 153
equilibri estable/inestable, 164
equilibris, 162, 167
error, 92
error relatiu, 92
escala cromàtica, 70
escala logarítmica, 33
escala ordinària, 33
escala semilogarítmica, 34
escalfament global, 16
espai de n dimensions, 173, 178
espai de tres dimensions, 176
espècie invasora, 86
esperança de vida, 139
estabilitat, 167
estandardització, 182
estoc, 83
evaporació, 115, 117, 218
exclude, 21
extensió d’una epidèmia, 149
extrems, 114
extrems globals, 96, 107, 242
extrems locals, 107, 184, 236, 241
extrems relatius, 96

facecolor, 14
factor(), 27
Fagus Sylvatica, 87
FAO, 117, 218
fase, 37
fill, 14
find_root(), 8
floor(), 8
fotografia, 32, 70, 217
freqüència, 32, 37, 70
funció, 16
funció CES, 216, 242
funció logística, 115
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funcions còncaves, 101
funcions constants, 23, 77
funcions contínues, 43
funcions convexes, 101
funcions creixents, 100
funcions d’oferta, 17, 125
funcions d’una variable, 18
funcions d’utilitat, 32
funcions de Cobb-Douglas, 16, 148
funcions de demanda, 17, 83, 125
funcions de diverses variables, 216
funcions de Holling, 25, 69, 109, 114
funcions de Michaelis-Menten, 24
funcions de Monod, 24, 39, 67, 75, 77, 83,

86, 102, 104, 109, 116
funcions de producció, 16, 216, 242
funcions decreixents, 100
funcions derivables, 75
funcions elementals, 23
funcions empíriques, 20, 69, 114
funcions exponencials, 28, 40, 75
funcions integrables, 128
funcions inverses, 19
funcions lineals, 23, 40, 77, 90
funcions logarítmiques, 30, 40
funcions no derivables, 75
funcions periòdiques, 36
funcions polinòmiques, 23, 40
funcions potencials, 26, 40
funcions quadràtiques, 23
funcions racionals, 24, 40, 135, 141
funcions sinusoïdals, 36, 95
funcions trigonomètriques, 40
funcions trigonomètriques inverses, 13
function(), 88, 160

garnatxa, 180
generadors eòlics, 32, 70, 116
gràfica d’una funció, 19, 91, 104
gradient, 229, 241
gradient(), 231
growth rate, 51

Halmos, xii
hipèrbola, 11, 111
hiperplans, 178
homotècia, 193, 195

identity_matrix, 192

implicit_plot(), 14, 222, 225
indeterminació, 46
índex de Gini, 124
índex de Richter, 32
índex de rosada, 68
índex de Shannon, 31, 67, 238, 242
índex de Simpson, 242
índex Dow Jones, 173, 217
índex humidex, 68
índex Nasdaq, 217
infinit, 2, 39, 41, 76
Infinity, 45
ingrés marginal, 118
integració per parts, 138, 141
integral, 126, 129
integral(), 132, 140
integral divergent, 139
integrals impròpies, 138
interval, 4
isoquantes, 242
ivar, 160

k-means, 184, 211

limit(), 45
límit, 39, 74, 219
límits d’integració, 126, 137
límits finits, 41
límits laterals, 41
linestyle, 14
llac de Banyoles, 70
llei d’acció de masses, 23, 149, 168
llei de Betz, 116
llei de Fechner, 32
llei de Hack, 68
llei de Kleiber, 26
llei de l’oferta i la demanda, 17
llei de Moore, 55
llei de refredament de Newton, 61, 148
llindar d’extinció, 169
lloguer de cotxes, 212
lluminositat, 70
logaritme, 30
logaritme natural, 30
logaritme neperià, 30
loglog, 35
longitud d’un vector, 174

màquina expenedora, 18
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màxims i mínims, 96
mandarines, 181
mapa meteorològic, 217, 222
mapa topogràfic, 222
matriu, 188, 204
matriu de Leslie, 199, 200, 204, 205
matriu de mobilitat social, 201, 204, 205
matriu hessiana, 229, 237, 239, 241
matriu inversa, 190
matriu quadrada, 188
matrix(), 192, 197, 207
màxims i mínims, 95, 236
menys infinit, 39
més gran que/més petit que, 4
mesura d’angles, 174
metabolisme, 243
metapoblació, 163, 169
mitjana, 183
mitjana d’una funció, 123, 127
model de Beverton-Holt, 62, 71, 83
model de Hassell, 62
model de Holling, 24, 243
model de Jukes-Cantor, 32, 67
model de Levins, 163, 169
model de Lotka-Volterra, 149
model de Nakatsugawa et al., 36
model de Richardson, 203
model de Ricker, 62, 71, 119
model de Voellmy, 90, 243
model de von Bertalanffy, 61, 100, 117, 148
model logístic, 58, 71, 110, 168
model SIR d’epidèmies, 150
model SIS d’epidèmies, 150
modelitzar, x
models depredador-presa, 149
mòdul d’un vector, 174
molla, 148
moviment harmònic, 36
multiplicació de matrius, 188

N(), 7
Napier, 30
Newton, 129, 148
nombres decimals, 2
nombres enters, 2
nombres negatius, 4
nombres positius, 4
nombres reals, 2

norm(), 175
norma d’un vector, 174
notació científica, 3
noves tecnologies, xi
nutrients essencials, 217

O2 dissolt a l’aigua, 216
octava, 32
Oncorhynchus nerka, 63
ones, 36
ONU, 95
oo, 45, 140
operacions aritmètiques, 4
optimització, 109, 236
ordre, 4

paràbola, 77
parametric_plot(), 14
part entera, 5, 8, 42, 43
peix escorpí, 212
pendent, 10, 13, 76, 90, 226
pèndol, 148
pèrdua de calor a les canonades, 218
perpendicularitat, 174
pesca sostenible, 95, 110, 115, 163, 169
petjada carbònica, 80, 81
pH, 31, 69
π, 28
pla tangent, 232, 233, 236, 241
plaques solars, 124, 143
plot(), 14, 21, 22, 35, 38, 108
plot3d(), 219, 225
població, 90, 91, 95
point(), 63
polinomi característic, 195
pol.lució atmosfèrica, 32
potència, 4
power laws, 26
precisió, 92, 114
pressió de vapor, 117
primitiva, 146
primitives d’una funció, 130, 131
primitives immediates, 134
primitives trivials, 134
procés adiabàtic, 86
procés iteratiu, 44, 184
producer surplus, 126, 144
producte de matrius, 188
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producte escalar, 174, 233
productivitat, 216
propagació d’errors, 92
propietat de Bolzano, 44
Puigmal, 143, 226
punt d’inflexió, 102, 105, 110, 111
punt de sella, 237, 239, 241
punts crítics, 98, 100, 105, 109, 237
punts de discontinuïtat, 104
punts interiors, 98, 236

quantitat de neu, 115

radian, 12
radioteràpia, 159
ratolí, 139, 140, 169, 238, 242
RDF, 198
reclutament, 83
recta, 10
recta tangent, 76, 114, 232
reflexió, 194, 195
regla de l’Hôpital, 49
regla de la cadena, 84, 233, 242
relació qualitat-preu, 70
rendiment d’un conreu, 109, 242
reset(), 140
rhs(), 112
ring, 27, 112
r.kmeans(), 186
roots(), 27, 112
rotació, 194, 195
round(), 8, 21
RR, 8

salmó, 63
scale, 35
segona derivada, 78
semilogy, 35
senglars, 168
sin(), 8
sinus, 13
sistema d’equacions lineals, 194
solució general, 147, 167
solució particular, 147, 151, 154, 167
solve(), 7, 88, 112
sqrt(), 7
subespais, 178
suma de matrius, 188
superfície, 123

superfície corporal, 218, 234
superfície foliar, 17, 92, 93
supply curve, 17

tangent, 13
taula de doble entrada, 221
taxa de creixement, 50, 51, 56, 57, 91, 116,

205
taylor(), 94, 234
temperatura d’equilibri tèrmic, 218
temperatura de sensació, 16, 18, 21, 68, 90,

216, 221, 222, 243
temperatura de supervivència, 243
temperatura de xafogor, 68, 243
teorema de Pitàgores, 11, 13, 174
teorema de Rolle, 99
teorema fonamental del càlcul, 129, 131
teoremes de valor mig, 98
text(), 186
thickness, 14, 108
ticks, 22
tip speed ratio, 116
tractament biològic de les plagues, 110
transformacions lineals, 193
treball, 123
trigonometria, 13
TSR, 116

Vallter, 226
valor absolut, 5, 8, 76, 98
valor propi, 194, 195, 204, 237
valor propi dominant, 205
valors extrems, 95, 96, 105
var(), 8, 35, 160
vector, 172, 182, 193, 199, 204
vector(), 175, 197
vector director, 176
vector gradient, 229
vector propi, 194, 195, 204
velocitat, 51, 94
velocitat d’un riu, 131
velocitat instantània, 74
velocitat mitjana, 51, 74
vi, 211
view(), 7, 88, 234
voltor comú, 183
volum de l’esfera, 86

wind chill, 16, 18, 21, 68, 90, 216
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ymax, 21
ymin, 21
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