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Abstract

A binary linear code C is a Z2-double cyclic code if the set of coordi-
nates can be partitioned into two subsets such that any cyclic shift of the
coordinates of both subsets leaves invariant the code. These codes can be
identified as submodules of the Z2[x]-module Z2[x]/(xr−1)×Z2[x]/(xs−
1). We determine the structure of Z2-double cyclic codes giving the gen-
erator polynomials of these codes. The related polynomial representation
of Z2-double cyclic codes and its duals, and the relations between the
polynomial generators of these codes are studied.

1 Introduction

Let Z2 be the ring of integers modulo 2. Let Zn2 denote the set of all binary
vectors of length n. Any non-empty subset of Zn2 is a binary code and a subgroup
of Zn2 is called a binary linear code. In this paper we introduce a subfamily of
binary linear codes, called Z2-double cyclic codes, with the property that the
set of coordinates can be partitioned into two subsets, the first r coordinates
and the last s coordinates, such that any cyclic shift of the coordinates of both
subsets of a codeword is also a codeword.

Notice that if one of these sets of coordinates is empty, for example r = 0,
then we obtain a binary cyclic code of length s. So, binary cyclic codes are a
special class of Z2-double cyclic codes. Most of the theory of binary cyclic codes
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can be found in [8]. Another special case is when r = s, where a Z2-double
cyclic code is permutation equivalent to a quasi-cyclic code of index 2 and even
length (see [8]).

In recent times, Z2Z4-additive codes have been studied (see [2], [5]). For
Z2Z4-additive codes, the set of coordinates is partitioned into two subsets, the
first one of binary coordinates and the second one of quaternary coordinates.
The simultaneous cyclic shift of the subsets of coordinates of a codeword has
been defined in [1], that studies Z2Z4-additive cyclic codes and these codes can
be identified as Z4[x]-modules of a certain ring.

The aim of this paper is the study of the algebraic structure of Z2-double
cyclic codes and their dual codes. It is organized as follows. In Section 2, we
give the definition of Z2-double cyclic codes, we find the relation between some
canonical projections of these codes and binary cyclic codes and we present
the Z2[x]-module Z2[x]/(xr − 1) × Z2[x]/(xs − 1), denoted by Rr,s. In Section
3, we discuss about the algebraic structure of a Z2-double cyclic code and we
state some relations between its generators. In Section 4, we study the concept
of duality and, given a Z2-double cyclic code, we determine the generators of
the dual code in terms of the generators of the code. Finally, in Section 5,
we study the relations between the generator polynomials of a Z2-double cyclic
code and the generators of other families of cyclic codes, Z4-cyclic codes and
Z2Z4-additive cyclic codes.

2 Z2-double cyclic codes

Let C be a binary code of length n. Let r and s be integers such that n = r+ s.
We consider a partition of the set of the n coordinates into two subsets of r and
s coordinates, respectively, so that C is a subset of Zr2 × Zs2.

Definition 2.1. Let C be a binary linear code of length n = r+ s. The code C
is called Z2-double cyclic if

(u0, u1, . . . , ur−2, ur−1 | u′0, u′1, . . . , u′s−2, u
′
s−1) ∈ C

implies
(ur−1, u0, u1, . . . , ur−2 | u′s−1, u

′
0, u
′
1, . . . , u

′
s−2) ∈ C.

Let u = (u0, u1, . . . , ur−1 | u′0, . . . , u′s−1) be a codeword in C and i be an
integer, then we denote by

u(i) = (u0+i, u1+i, . . . , ur−1+i | u′0+i, . . . , u
′
s−1+i)

the ith shift of u, where the subscripts are read modulo r and s, respectively.
Let Cr be the canonical projection of C on the first r coordinates and Cs on

the last s coordinates. The canonical projection is a linear map. Then, Cr and
Cs are binary cyclic codes of length r and s, respectively. A code C is called
separable if C is the direct product of Cr and Cs.

There is a bijective map between Zr2×Zs2 and Z2[x]/(xr−1)×Z2[x]/(xs−1)
given by:

(u0, u1, . . . , ur−1 | u′0, . . . , u′s−1) 7→ (u0 + u1x+ · · ·+ ur−1x
r−1 | u′0 + · · ·+ u′s−1x

s−1).

We denote the image of the vector u by u(x).
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Definition 2.2. Denote by Rr,s the ring Z2[x]/(xr − 1) × Z2[x]/(xs − 1). We
define the operation

? : Z2[x]×Rr,s → Rr,s

as
λ(x) ? (p(x) | q(x)) = (λ(x)p(x) | λ(x)q(x)),

where λ(x) ∈ Z2[x] and (p(x) | q(x)) ∈ Rr,s.
The ring Rr,s with the external operation ? is a Z2[x]-module. Let u(x) =

(u(x) | u′(x)) be an element of Rr,s. Note that if we operate u(x) by x we get

x ? u(x) = x ? (u(x) | u′(x))

= (u0x+ · · ·+ ur−2x
r−1 + ur−1x

r | u′0x+ · · ·+ u′s−2x
s−1 + u′s−1x

s)

= (ur−1 + u0x+ · · ·+ ur−2x
r−1 | u′s−1 + u′0x+ · · ·+ u′s−2x

s−1).

Hence, x ? u(x) is the image of the vector u(1). Thus, the operation of u(x) by
x in Rr,s corresponds to a shift of u. In general, xi ? u(x) = u(i)(x) for all i.

3 Algebraic structure and generators

In this section, we study submodules of Rr,s. We describe the generators of
such submodules and state some properties. From now on, 〈S〉 will denote the
submodule generated by a subset S of Rr,s.

Theorem 3.1. The Z2[x]-module Rr,s is a noetherian Z2[x]-module, and every
submodule N of Rr,s can be written as

N = 〈(b(x) | 0), (`(x) | a(x))〉,

where b(x), `(x) ∈ Z2[x]/(xr − 1) with b(x) | (xr − 1) and a(x) ∈ Z2[x]/(xs − 1)
with a(x) | (xs − 1).

Proof. Let πr : Rr,s → Z2[x]/(xr − 1) and πs : Rr,s → Z2[x]/(xs − 1) be the
canonical projections, let N be a submodule of Rr,s.
As Z2[x]/(xs − 1) is noetherian then Ns = πs(N) is finitely generated.
Define N ′ = {(p(x)|q(x)) ∈ N | q(x) = 0}. It is easy to check that N ′ ∼= πr(N

′)
by (p(x) | 0) 7→ p(x). Hence Z2[x]/(xr − 1) is noetherian, πr(N

′) is finitely
generated and so is N ′.
Let b(x) be a generator of πr(N

′), then b(x) | (xr − 1) and (b(x) | 0) is a
generator of N ′. Let a(x) ∈ Ns such that Ns = 〈a(x)〉, then a(x) | (xs − 1) and
there exists `(x) ∈ Z2[x]/(xr − 1) such that (`(x) | a(x)) ∈ N.
We claim that

N = 〈(b(x) | 0), (`(x) | a(x))〉.
Let (p(x) | q(x)) ∈ N , then q(x) = πs(p(x) | q(x)) ∈ Ns. So, there exists
λ(x) ∈ Z2[x] such that q(x) = λ(x)a(x). Now,

(p(x) | q(x))− λ(x) ? (`(x) | a(x)) = (p(x)− λ(x)`(x) | 0) ∈ N ′.

Then there exists µ(x) ∈ Z2[x] such that (p(x)−λ(x)`(x) | 0) = µ(x)?(b(x) | 0).
Thus,

(p(x) | q(x)) = µ(x) ? (b(x) | 0) + λ(x) ? (`(x) | a(x)).

So, N is finitely generated by 〈(b(x) | 0), (`(x) | a(x))〉 and then Rr,s is a
noetherian Z2[x]-module.
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From the previous results, it is clear that we can identify Z2-double cyclic
codes in Zr2×Zs2 as submodules of Rr,s. So, any submodule of Rr,s is a Z2-double
cyclic code. From now on, we will denote by C indistinctly both the code and
the corresponding submodule.

Note that if C is a Z2-double cyclic code with C = 〈(b(x) | 0), (`(x) | a(x))〉,
then the canonical projections Cr and Cs are binary cyclic codes generated by
gcd(b(x), `(x)) and a(x), respectively.

On the one hand, we have seen that Rr,s is a Z2[x]-module, and multiply
by x ∈ Z2[x] is the right shift on the vector space Zr2 × Zs2. On the other hand,
we have that Zr2 × Zs2 is a Z2-module, where the operations are addition and
multiplication by elements of Z2.

So, our goal now is to find a set of generators for C as a Z2-module. We
will denote the Z2-linear combinations of elements of a subset S ⊆ Rr,s by
〈S〉Z2

= {
∑
i λisi | λi ∈ Z2, si ∈ S}, and we will call a set S a Z2-linear

independent set if the relation
∑
i λisi = 0 implies that λisi = 0 for all i.

Proposition 3.2. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Define the sets

S1 = {(b(x) | 0), x ? (b(x) | 0), . . . , xr−deg(b(x))−1 ? (b(x) | 0)},

S2 = {(`(x) | a(x)), x ? (`(x) | a(x)), . . . , xs−deg(a(x))−1 ? (`(x) | a(x))}.
Then, S1 ∪ S2 forms a minimal generating set for C as a Z2-module.

Proof. It is easy to check that the codewords of S1 ∪ S2 are Z2-linear indepen-
dent.

Let c(x) ∈ C, such that c(x) = p1(x) ? (b(x) | 0) + p2(x) ? (`(x) | a(x)). We
have to check that c(x) ∈ 〈S1 ∪ S2〉Z2 .

If deg(p1(x)) < r − deg(b(x)) − 1, then p1(x) ? (b(x) | 0) ∈ 〈S1〉Z2
. Other-

wise, using the division algorithm, we compute p1(x) = q1(x)x
r−1
b(x) + r1(x) with

deg(r1(x)) < r − deg(b(x))− 1, so

p1(x)?(b(x) | 0) =

(
q1(x)

xr − 1

b(x)
+ r1(x)

)
?(b(x) | 0) = r1(x)?(b(x) | 0) ∈ 〈S1〉Z2 .

So, c(x) ∈ 〈S1 ∪ S2〉Z2
if p2(x) ? (`(x) | a(x)) ∈ 〈S1 ∪ S2〉Z2

.
If deg(p2(x)) < s − deg(a(x)) − 1, then p2(x) ? (`(x) | a(x)) ∈ 〈S2〉Z2 . If

not, using the division algorithm, consider p2(x) = q2(x)x
s−1
a(x) + r2(x) where

deg(r2(x)) < s− deg(a(x))− 1. Then,

p2(x) ? (`(x) | a(x)) =

(
q2(x)

xs − 1

a(x)
+ r2(x)

)
? (`(x) | a(x))

=

(
q2(x)

xs − 1

a(x)

)
? (`(x) | a(x)) + r2(x) ? (`(x) | a(x)).

On the one hand, r2(x) ? (`(x) | a(x)) ∈ 〈S2〉Z2 . On the other hand,(
q2(x)

xs − 1

a(x)

)
? (`(x) | a(x)) = (q2(x)

xs − 1

a(x)
`(x) | 0).

By Proposition 3.6, b(x) divides xs−1
a(x) `(x) and it follows straightforward that

(q2(x)x
s−1
a(x) `(x) | 0) ∈ 〈S1〉Z2 . Thus, c(x) ∈ 〈S1 ∪ S2〉Z2 .
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Proposition 3.3. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Then, C is permutation equivalent to a binary linear code with generator matrix
of the form

G =

 Ir−deg(b(x)) A1 A2 0 0 0
0 Bκ B C1 Iκ 0
0 0 0 C2 R Is−deg(a(x))−κ

 ,

where Bκ is a square matrix of full rank and κ = deg(b(x))−deg(gcd(b(x), `(x))).

Proof. Let C be a Z2-double cyclic code with C = 〈(b(x) | 0), (`(x) | a(x))〉.
Then by Proposition 3.2, C is generated by the matrix whose rows are the
elements of the set S1 ∪ S2.

Since r − deg(b(x)) and s − deg(a(x)) are the dimensions of the matrices
generated by the shifts of b(x) and a(x), respectively, the code C is permutation
equivalent to a code with generator matrix of the form(

Ir−deg(b(x)) A′ 0 0
0 B′ C ′ Is−deg(a(x))

)
.

It is known that Cr is a linear cyclic code generated by gcd(b(x), `(x)), then
the submatrix B′ has rank κ = deg(b(x)) − deg(gcd(b(x), `(x))). Moreover, Cr
is permutation equivalent to a linear code generated by the matrix Ir−deg(b(x)) A1 A2

0 Bκ B
0 0 0

 ,

with Bκ a full rank square matrix of size κ×κ. Finally, applying the convenient
permutations and linear combinations, we have that C is permutation equivalent
to a linear code with generator matrix Ir−deg(b(x)) A1 A2 0 0 0

0 Bκ B C1 Iκ 0
0 0 0 C2 R Is−deg(a(x))−κ

 .

Corollary 3.4. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Then, C is a binary linear code of dimension r + s− deg(b(x))− deg(a(x)).

Proposition 3.5. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Then, we can assume that deg(`(x)) < deg(b(x)).

Proof. Suppose that deg(`(x)) ≥ deg(b(x)). Let i = deg(`(x)) − deg(b(x)) and
let C ′ be the code generated by

C ′ = 〈(b(x) | 0), (`(x) + xi ? b(x) | a(x))〉.

On the one hand, deg(`(x) + xi ? b(x)) < deg(`(x)) and since the generators of
C ′ belongs to C, we have that C ′ ⊆ C. On the other hand,

(`(x) | a(x)) = (`(x) + xi ? b(x) | a(x)) + xi ? (b(x) | 0).

Then, 〈(`(x) | a(x))〉 ⊆ C ′ and hence C ⊆ C ′. Thus, C = C ′.
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Proposition 3.6. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Then, b(x) | x

s−1
a(x) `(x).

Proof. Let π be the projective homomorphism of Z2[x]-modules defined by:

π : C −→ Z2[x]/(xs − 1)
(p1(x) | p2(x)) −→ p2(x)

It can be easily checked that ker(π) = 〈(b(x) | 0)〉.
Now, consider xs−1

a(x) ? (`(x) | a(x)) = (x
s−1
a(x) `(x) | 0). So,

xs − 1

a(x)
? (`(x) | a(x)) ∈ ker(π) = 〈(b(x) | 0)〉.

Thus, b(x) | x
s−1
a(x) `(x).

Corollary 3.7. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Then, b(x) | x

s−1
a(x) gcd(`(x), b(x)).

Proposition 3.8. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a separable Z2-double
cyclic code. Then, `(x) = 0.

4 Duality

Let C be a Z2-double cyclic code and C⊥ the dual code of C (see [7]). Taking
a vector v of C⊥, u · v = 0 for all u in C. Since u belongs to C, we know that
u(−1) is also a codeword. So, u(−1) · v = u · v(1) = 0 for all u from C, therefore
v(1) is in C⊥ and C⊥ is also a Z2-double cyclic code. Consequently, we obtain
the following proposition.

Proposition 4.1. Let C be a Z2-double cyclic code. Then the dual code of C
is also a Z2-double cyclic code. We denote

C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉,

where b̄(x), ¯̀(x) ∈ Z2[x]/(xr − 1) with b̄(x) | (xr − 1) and ā(x) ∈ Z2[x]/(xs − 1)
with ā(x) | (xs − 1).

The reciprocal polynomial of a polynomial p(x) is xdeg(p(x))p(x−1) and is
denoted by p∗(x). As in the theory of binary cyclic codes, reciprocal polynomials
have an important role in the duality (see [8]).

We denote the polynomial
∑m−1
i=0 xi by θm(x). Using this notation we have

the following proposition.

Proposition 4.2. Let n,m ∈ N. Then, xnm − 1 = (xn − 1)θm(xn).

Proof. It is well know that ym − 1 = (y − 1)θm(y), replacing y by xn the result
follows.

From now on, m denotes the least common multiple of r and s.

6



Definition 4.3. Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements
in Rr,s. We define the map

◦ : Rr,s ×Rr,s −→ Z2[x]/(xm − 1),

such that

◦(u(x),v(x)) =u(x)θm
r

(xr)xm−1−deg(v(x))v∗(x)+

+ u′(x)θm
s

(xs)xm−1−deg(v′(x))v′
∗
(x) mod (xm − 1).

The map ◦ is linear in each of its arguments; i.e., if we fix the first entry
of the map invariant, while letting the second entry vary, then the result is a
linear map. Similarly, when fixing the second entry invariant. Then, the map ◦
is a bilinear map between Z2[x]-modules.

From now on, we denote ◦(u(x),v(x)) by u(x) ◦v(x). Note that u(x) ◦v(x)
belongs to Z2[x]/(xm − 1).

Proposition 4.4. Let u and v be vectors in Zr2×Zs2 with associated polynomials
u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)), respectively. Then, u is
orthogonal to v and all its shifts if and only if

u(x) ◦ v(x) = 0 mod (xm − 1).

Proof. Let v(i) = (v0+iv1+i . . . vr−1+i | v′0+i . . . v
′
s−1+i) be the ith shift of v.

Then,

u · v(i) = 0 if and only if

r−1∑
j=0

ujvj+i +

s−1∑
k=0

u′kv
′
k+i = 0.

Let Si =
∑r−1
j=0 ujvj+i +

∑s−1
k=0 u

′
kv
′
k+i. One can check that

u(x) ◦ v(x) =

r−1∑
n=0

θm
r

(xr)

r−1∑
j=0

ujvj+nx
m−1−n

+ · · ·

· · ·+
s−1∑
t=0

[
θm
s

(xs)

s−1∑
k=0

u′kv
′
k+tx

m−1−t

]

= θm
r

(xr)

r−1∑
n=0

r−1∑
j=0

ujvj+nx
m−1−n

+ · · ·

· · ·+ θm
s

(xs)

[
s−1∑
t=0

s−1∑
k=0

u′kv
′
k+tx

m−1−t

]
.

Then, arranging the terms one obtains that

u(x) ◦ v(x) =

m−1∑
i=0

Six
m−1−i mod (xm − 1).

Thus, u(x) ◦ v(x) = 0 if and only if Si = 0 for 0 ≤ i ≤ m− 1.
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Lemma 4.5. Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be ele-
ments in Rr,s such that u(x) ◦ v(x) = 0 mod (xm − 1). If u′(x) or v′(x) equal
0, then u(x)v∗(x) = 0 mod (xr − 1). Respectively, if u(x) or v(x) equal 0, then
u′(x)v′∗(x) = 0 mod (xs − 1).

Proof. Let u′(x) or v′(x) equal 0, then

u(x) ◦ v(x) = u(x)θm
r

(xr)xm−1−deg(v(x))v∗(x) + 0 = 0 mod (xm − 1).

So,
u(x)θm

r
(xr)xm−1−deg(v(x))v∗(x) = µ′(x)(xm − 1),

for some µ′(x) ∈ Z2[x]. Let µ(x) = µ′(x)xdeg(v(x))+1, by Proposition 4.2,

u(x)xmv∗(x) = µ(x)(xr − 1),

u(x)v∗(x) = 0 mod (xr − 1).

The same argument can be used to prove the other case.

Proposition 4.6. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Then,

|Cr| = 2r−deg(b(x))+κ, |Cs| = 2s−deg(a(x)),

|(Cr)⊥| = 2deg(b(x))−κ, |(Cs)⊥| = 2deg(a(x)),

|(C⊥)r| = 2deg(b(x)), |(C⊥)s| = 2deg(a(x))+κ,

where κ = deg(b(x))− deg(gcd(b(x), `(x))).

Corollary 4.7. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code
with dual code C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Then,

deg(b̄(x)) = r − deg(gcd(b(x), `(x))).

Proof. It is easy to prove that (Cr)
⊥ is a cyclic code generated by b̄(x), so

|(Cr)⊥| = 2r−deg(b̄(x)). Moreover, by Proposition 4.6, |(Cr)⊥| = 2deg(b(x))−κ.
Thus, deg(b̄(x)) = r − deg(gcd(b(x), `(x))).

Corollary 4.8. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code
with dual code C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Then,

deg(ā(x)) = s− deg(a(x))− deg(b(x)) + deg(gcd(b(x), `(x))).

Proof. Since C⊥ is a Z2-double cyclic code, (C⊥)s is a cyclic code generated
by ā(x), so |(C⊥)s| = 2s−deg(ā(x)). Moreover, by Proposition 4.6, |(C⊥)s| =
2deg(a(x))+κ.
Thus, deg(ā(x)) = s− deg(a(x))− deg(b(x)) + deg(gcd(b(x), `(x))).

Proposition 4.9. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Then, 〈(0 | x

s−1
a∗(x) )〉 ⊆ C⊥.

Proof. Since Cs is a binary cyclic code generated by 〈a(x)〉, then (Cs)
⊥ =

〈 x
s−1
a∗(x) 〉. Let v(x) = (v(x) | v′(x)) ∈ C. Then, v′(x) ∈ Cs and (0 | x

s−1
a∗(x) )◦v(x) =

0 mod (xm − 1). Thus, 〈(0 | x
s−1
a∗(x) )〉 ⊆ C⊥.
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Corollary 4.10. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code
with C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Then, ā(x) divides xs−1

a∗(x) .

Corollary 4.11. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code.
Let T = {(0 | p(x)) ∈ C⊥}. Then, T is generated by 〈(0 | x

s−1
a∗(x) )〉.

Proof. Let T = {(0 | p(x)) ∈ C⊥}. By Proposition 4.9, we have that 〈(0 |
xs−1
a∗(x) )〉 ⊆ T .

Since Ts ⊆ (Cs)
⊥ = 〈 x

s−1
a∗(x) 〉, for all (0 | p(x)) ∈ T we have that p(x) ∈ 〈 x

s−1
a∗(x) 〉.

Hence, there exists λ(x) ∈ Z2[x] such that p(x) = λ(x) x
s−1
a∗(x) . Therefore, for all

(0 | p(x)) ∈ T we have that

(0 | p(x)) = (0 | λ(x)
xs − 1

a∗(x)
) = λ(x) ? (0 | x

s − 1

a∗(x)
).

So, T ⊆ 〈(0 | x
s−1
a∗(x) )〉.

The previous propositions and corollaries will be helpful to determine the
relations between the generator polynomials of a Z2-double cyclic code and the
generator polynomials of its dual code.

Proposition 4.12. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code
and C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Then,

b̄(x) =
xr − 1

gcd(b(x), `(x))∗
.

Proof. We have that (b̄(x) | 0) belongs to C⊥. Then,

(b(x) | 0) ◦ (b̄(x) | 0) =0 mod (xm − 1),

(`(x) | a(x)) ◦ (b̄(x) | 0) =0 mod (xm − 1).

Therefore, by Lemma 4.5,

b(x)b̄∗(x) =0 mod (xr − 1),

`(x)b̄∗(x) =0 mod (xr − 1).

So, gcd(b(x), `(x))b̄∗(x) = 0 mod (xr − 1), and there exist µ(x) ∈ Z2[x] such
that gcd(b(x), `(x))b̄∗(x) = µ(x)(xr − 1).
Moreover, since gcd(b(x), `(x)) and b̄∗(x) divides (xr − 1), by Corollary 4.7, we
have that deg(b̄(x)) = r − deg(gcd(b(x), `(x))). Then,

b̄∗(x) =
xr − 1

gcd(b(x), `(x))
.

Proposition 4.13. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code
and C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Then,

ā(x) =
(xs − 1) gcd(b(x), `(x))∗

a∗(x)b∗(x)
.
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Proof. Consider the codeword

b(x)

gcd(b(x), `(x))
?(`(x) | a(x))− `(x)

gcd(b(x), `(x))
?(b(x) | 0) = (0 | b(x)

gcd(b(x), `(x))
a(x)).

Then,

(¯̀(x) | ā(x)) ◦ (0 | b(x)

gcd(b(x), `(x))
a(x)) = 0 mod (xm − 1).

Thus, by Lemma 4.5

ā(x)
a∗(x)b∗(x)

gcd(b(x), `(x))∗
= 0 mod (xs − 1),

and

ā(x)
a∗(x)b∗(x)

gcd(b(x), `(x))∗
= (xs − 1)µ(x),

for some µ(x) ∈ Z2[x]. It is known that ā(x) is a divisor of xs − 1 and, by

Corollary 3.7, we have that a∗(x)b∗(x)
gcd(b(x),`(x))∗ divides (xs − 1). By Corollary 4.8,

deg(ā(x)) = s− deg(a(x))− deg(b(x)) + deg(gcd(b(x), `(x))), so

s = deg

(
ā(x)

a∗(x)b∗(x)

gcd(b(x), `(x))∗

)
= deg((xs − 1)).

Hence, we obtain that µ(x) = 1 and

ā(x) =
(xs − 1) gcd(b(x), `(x))∗

a∗(x)b∗(x)
.

Proposition 4.14. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a separable Z2-double
cyclic code. Then, C⊥ = 〈(x

r−1
b∗(x) | 0), (0 | x

s−1
a∗(x) )〉.

Corollary 4.15. Let C be a separable Z2-double cyclic code. Then, C⊥ is a
separable Z2-double cyclic code.

Proposition 4.16. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a non separable Z2-
double cyclic code and C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Then,

¯̀(x) =
xr − 1

b∗(x)
λ(x),

for some λ(x) ∈ Z2[x].

Proof. Let c̄ ∈ C⊥ with c̄(x) = (b̄(x) | 0) + (¯̀(x) | ā(x)). Then

c̄(x) ◦ (b(x) | 0) =((b̄(x) | 0)) ◦ (b(x) | 0) + ((¯̀(x) | ā(x))) ◦ (b(x) | 0)

=0 + ((¯̀(x) | ā(x))) ◦ (b(x) | 0)

=0 mod (xm − 1).

So, by Lemma 4.5
¯̀(x)b∗(x) = 0 mod (xr − 1)

and
¯̀(x) =

xr − 1

b∗(x)
λ(x).
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Corollary 4.17. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a non separable Z2-double
cyclic code. Then, deg(λ(x)) < deg(b(x))− deg(gcd(b(x), `(x))).

Proposition 4.18. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a non separable Z2-

double cyclic code and C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Let ρ(x) = `(x)
gcd(b(x),`(x))

and ¯̀(x) = xr−1
b∗(x)λ(x). Then,

(xm − 1) gcd∗(b(x), `(x))

b∗(x)

(
λ(x)xm−deg(`(x))−1ρ∗(x) + xm−deg(a(x))−1

)
= 0 mod (xm−1).

Thus,(
λ(x)xm−deg(`(x))−1ρ∗(x) + xm−deg(a(x))−1

)
= 0 mod

(
b∗(x)

gcd∗(b(x), `(x))

)
.

Proof. Let ρ(x) = `(x)
gcd(b(x),`(x)) . Computing (¯̀(x) | ā(x)) ◦ (`(x) | a(x)) and

arranging properly we obtain that

(xm − 1) gcd∗(b(x), `(x))

b∗(x)

(
λ(x)xm−deg(`(x))−1ρ∗(x) + xm−deg(a(x))−1

)
,

that is equal 0 mod (xm − 1). Then,(
λ(x)xm−deg(`(x))−1ρ∗(x) + xm−deg(a(x))−1

)
= 0 mod (xm − 1), (1)

or (
λ(x)xm−deg(`(x))−1ρ∗(x) + xm−deg(a(x))−1

)
= 0 mod

(
b∗(x)

gcd∗(b(x), `(x))

)
. (2)

Since b∗(x)
gcd∗(b(x),`(x)) divides xm − 1, clearly (1) implies (2).

Corollary 4.19. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a non separable Z2-double

cyclic code and C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Let ρ(x) = `(x)
gcd(b(x),`(x)) and

¯̀(x) = xr−1
b∗(x)λ(x). Then,

λ(x) = xm−deg(a(x))+deg(`(x))(ρ∗(x))−1 mod

(
b∗(x)

gcd∗(b(x), `(x))

)
.

Proof. Let ρ(x) = `(x)
gcd(b(x),`(x)) . By Proposition 4.18,(

λ(x)xm−deg(`(x))−1ρ∗(x) + xm−deg(a(x))−1
)

= 0 mod

(
b∗(x)

gcd∗(b(x), `(x))

)
.

Then,

λ(x)xmρ∗(x) = xm−deg(a(x))+deg(`(x)) mod

(
b∗(x)

gcd∗(b(x), `(x))

)
.

On the one hand, we have that xm = 1 mod
(

b∗(x)
gcd∗(b(x),`(x))

)
. On the other

hand, the great common divisor between ρ(x) and b(x)
gcd(b(x),`(x)) is 1, then ρ∗(x)

is an invertible element modulo
(

b∗(x)
gcd∗(b(x),`(x))

)
. Thus,

λ(x) = xm−deg(a(x))+deg(`(x))(ρ∗(x))−1 mod

(
b∗(x)

gcd∗(b(x), `(x))

)
.

11



We summarize the previous results in the next theorem.

Theorem 4.20. Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be a Z2-double cyclic code

and C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Let ρ(x) = `(x)
gcd(b(x),`(x)) and ¯̀(x) =

xr−1
b∗(x)λ(x). Then,

1. b̄(x) = xr−1
gcd(b(x),`(x))∗ ,

2. ā(x) = (xs−1) gcd(b(x),`(x))∗

a∗(x)b∗(x) ,

3. ¯̀(x) = xr−1
b∗(x)λ(x), where

λ(x)xmρ∗(x) = xm−deg(a(x))+deg(`(x)) mod

(
b∗(x)

gcd∗(b(x), `(x))

)
.

5 Relations between Z2-double cyclic codes and
other codes

In this section, we study how Z2-double cyclic codes are related with other
families of cyclic codes, say Z4-cyclic codes and Z2Z4-additive cyclic codes.
Since these families of codes have part, or all the coordinates over Z4, then
their generator polynomials also have coefficients over the ring Z4. From now
on, the binary reduction of a polynomial p(x) ∈ Z4[x] will be denoted by p̃(x).

Let p̃(x) be a divisor of xn − 1 in Z2[x] with n odd and let ξ be a primitive
nth root of unity over Z2. The polynomial (p̃⊗ p̃)(x) is defined as the divisor of
xn − 1 in Z2[x] whose roots are the products ξiξj such that ξi and ξj are roots
of p̃(x).

Let u = (u0, . . . , un−1) be an element of Zn4 such that ui = ũi + 2u′i with
ũi, u

′
i ∈ {0, 1}. As in [6], the Gray map φ of Zn4 to Z2n

2 is defined by

φ(u) = (u′0, . . . , u
′
n−1 | ũ0 + u′0, . . . , ũn−1 + u′n−1).

Let u(x) = ũ(x) + 2u′(x) be the polynomial representation of u ∈ Zn4 . Then,
the polynomial version of the Gray map is φ(u(x)) = (ũ(x) | ũ(x) +u′(x)). The
Nechaev permutation is the permutation π of Z2n

2 with n odd defined by

π(v0, v1, . . . , v2n−1) = (vτ(0), vτ(1), . . . , vτ(2n−1)),

where τ is the permutation on {0, 1, . . . , 2n− 1} given by

(1, n+ 1)(3, n+ 3) . . . (2i+ 1, n+ 2i+ 1) . . . (n− 2, 2n− 2).

Let ψ be the map of Zn4 into Z2n
2 defined by ψ = πφ, with n odd. The map ψ

is called the Nechaev-Gray map, [11]. We obtain the following theorem.

Theorem 5.1 ([11, Theorem 20]). Let C = 〈f(x)h(x) + 2f(x)〉 be a Z4-linear
cyclic code of odd length n and where f(x)h(x)g(x) = xn− 1. Let φ be the Gray
map and let ψ the Nechaev-Gray map. The following properties are equivalent.

1. gcd(f̃(x), (g̃ ⊗ g̃)(x)) = 1 in Z2[x];

2. φ(C) is a binary linear code of length 2n;

3. ψ(C) is a binary linear cyclic code of length 2n generated by f̃(x)2h̃(x).

Using the last theorem, we can relate Z2-double cyclic codes to Z4-cyclic
codes and Z2Z4-additive cyclic codes.
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5.1 Z2-double cyclic codes vs Z4-cyclic codes

From [9] and [7], it is known that a Z4-cyclic code C of length n is generated by a
single element f(x)h(x) + 2f(x) ∈ Z4[x]/(xn− 1), where f(x)h(x)g(x) = xn− 1
in Z4[x], and |C| = 4deg(g(x))2deg(h(x)).

Let C be a Z4-cyclic code of length n, and w ∈ φ(C). The codeword w can
be written as (ũ0, . . . , ũn−1 | ũ0 + u′0, . . . , ũn−1 + u′n−1), for (u0, . . . , un−1) =

u = φ−1(w) ∈ C. By definition of the Gray map, we have that w(1) is
(ũn−1, ũ0, . . . , ũn−2 | ũn−1 + u′n−1, ũ0 + u′0, . . . , ũn−2 + u′n−2) = φ(un−1, u0, . . . ,

un−2). Therefore, since C is Z4-cyclic, we have that for w ∈ φ(C), w(i) ∈ φ(C).
In general, the Gray map image of a Z4-linear code is not linear. Hence,

we shall consider Z2-double cyclic codes as images of Z4-cyclic codes, C =
〈f(x)h(x) + 2f(x)〉, in the case that such a code C has linear image under the
Gray map; that is, when gcd(f̃(x), (g̃⊗g̃)(x)) = 1 in Z2[x], by Theorem 5.1. Our
goal is to stablish a relation between the generator polynomial of the Z4-linear
cyclic code C and its Z2-double cyclic image, φ(C).

Let C be a Zi[x]-module with i = 2, 4. Let g1, . . . , gt ∈ C, then 〈g1, . . . , gt〉i
will denoted the Zi[x]-submodule of C generated by g1, . . . , gt.

The following theorem is proved in [10, Theorem 8].

Theorem 5.2. Let n be odd and let f(x), h(x), g(x) be in Z4[x] such that
f(x)h(x)g(x) = xn − 1. Then 〈f(x)h(x) + 2f(x)〉4 = 〈f̃(x)h̃(x)〉2 + 2〈f̃(x)〉2 if
and only if gcd(f̃(x), (g̃ ⊗ g̃)(x)) = 1 in Z2[x].

Lemma 5.3. Let C be a quaternary linear code of type 2γ4δ such that φ(C) is
a linear code. Let {ui}γi=1 be codewords of order two and {vj}δj=1 codewords of

order four such that C = 〈{ui}γi=1, {vj}δj=1〉4. Then,

φ(C) = 〈{φ(ui)}γi=1, {φ(vj)}δj=1, {φ(2vj)}δj=1〉2.

Proof. From [4, Lemma 3], it is known that if C is a quaternary linear code of
type 2γ4δ such that C = 〈{ui}γi=1, {vj}δj=1〉4, then

〈φ(C)〉2 = 〈{φ(ui)}γi=1, {φ(vj)}δj=1, {φ(2vj)}δj=1, {φ(2vj ∗ vt)}1≤j<t≤δ〉2,

where u∗v denote the component-wise product for any u,v ∈ Zn4 . We know that
φ(C) is linear if and only if u ∗ v ∈ C for all u,v ∈ C, [6]. Since φ(C) is a binary
linear code, then {2vj ∗ vt}1≤j<t≤δ ∈ C. Therefore, 〈{φ(2vj ∗ vt)}1≤j<t≤δ〉2 ⊆
〈{φ(ui)}γi=1, {φ(vj)}δj=1, {φ(2vj)}δj=1〉2.

Theorem 5.4. Let C = 〈f(x)h(x) + 2f(x)〉n4 be a Z4-linear cyclic code of odd
length n, where f(x)h(x)g(x) = xn − 1 and gcd(f̃(x), (g̃ ⊗ g̃)(x)) = 1. Then,

φ(C) = 〈(f̃(x)h̃(x) | 0), (f̃(x) | f̃(x))〉2.

Proof. By Theorem 5.2, the generators of C are 〈f̃(x)h̃(x)〉2 and 2〈f̃(x)〉2, both,
of order two. By Theorem 5.1, we have that φ(C) is linear. Hence, by Lemma
5.3, it is easy to see that the generator polynomials of φ(C) are φ(f̃(x)h̃(x))
and φ(2f̃(x)). The corresponding images of the Gray map are φ(f̃(x)h̃(x)) =
(0 | f̃(x)h̃(x)) and φ(2f̃(x)) = (f̃(x) | f̃(x)), so φ(C) = 〈(0 | f̃(x)h̃(x)), (f̃(x) |
f̃(x))〉2.

Therefore,
φ(C) = 〈(f̃(x)h̃(x) | 0), (f̃(x) | f̃(x))〉2.
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5.2 Z2-double cyclic codes vs Z2Z4-additive cyclic codes

In recent times, Z2Z4-additive codes have been studied (see [2], [5]). A Z2Z4-

additive code C is a subgroup of Zα2 ×Zβ4 . Since C is a subgroup of Zα2 ×Zβ4 , it is
also isomorphic to a commutative structure like Zγ2 ×Zδ4 and it has |C| = 2γ+2δ

codewords.
Let X (respectively Y ) be the set of Z2 (respectively Z4) coordinate posi-

tions, so |X| = α and |Y | = β. The set X corresponds to the first α coordinates
and Y corresponds to the last β coordinates. Call CX (respectively CY ) the
punctured code of C by deleting the coordinates outside X (respectively Y ).
Notice that CY is a quaternary linear code and CX is a binary linear code.

A Z2Z4-additive code C ⊆ Zα2 × Zβ4 is called cyclic code if the set of co-
ordinates can be partitioned into two subsets, the set of Z2 and the set of Z4

coordinates, such that any cyclic shift of the coordinates of both subsets leaves
invariant the code. These codes can be identified as submodules of the Z4[x]-
module Z2[x]/(xα − 1) × Z4[x]/(xβ − 1). From [1] and [3], we know that if

C ⊆ Zα2 × Zβ4 is a Z2Z4-additive cyclic code, where β is an odd integer, then it
is of the form

C = 〈(b(x) | 0), (`(x) | f(x)h(x) + 2f(x))〉4
where f(x)h(x)g(x) = xβ−1 in Z4[x], b(x), `(x) ∈ Z2[x]/(xα−1) with b(x)|(xα−
1), deg(`(x)) < deg(b(x)), and b(x) divides xβ−1

f(x) `(x) (mod 2).

The extended Gray map Φ and the extended Nechaev-Gray map Ψ are the
maps from Zα2 × Zβ4 into Zα+2β

2 given by

Φ(u,v) = (u, φ(v)), Ψ(u,v) = (u, ψ(v)),

where u ∈ Zα2 , v ∈ Zβ4 , φ is the Gray map and ψ is the Nechaev-Gray map.
Notice that if φ(CY ) and ψ(CY ) are binary linear codes, then Φ(C) and Ψ(C)

are also binary linear codes.
The following proposition can be viewed as a corollary of Theorem 5.2.

Proposition 5.5. Let β be odd and let C ⊆ Zα2 × Zβ4 be a Z2Z4-additive cyclic
code generated by 〈(b(x) | 0), (`(x) | f(x)h(x)+2f(x))〉4 such that f(x)h(x)g(x) =
xβ − 1 in Z4[x]. Then, gcd(f̃(x), (g̃ ⊗ g̃)(x)) = 1 in Z2[x] if and only if
C = 〈(b(x) | 0)〉2 + 〈(`(x) | f̃(x)h̃(x))〉2 + 2〈(0 | f̃(x))〉2.

Theorem 5.6. Let C = 〈(b(x) | 0), (`(x) | f(x)h(x) + 2f(x))〉4 ⊆ Zα2 × Zβ4 be a
Z2Z4-additive cyclic code, where β is an odd integer and f(x)h(x)g(x) = xβ−1.
Let Ψ be the extended Nechaev-Gray map. If gcd(f̃(x), (g̃⊗ g̃)(x)) = 1 in Z2[x],
then Ψ(C) is a Z2-double cyclic code of length α+ 2β generated by

Ψ(C) = 〈(b(x) | 0), (`(x) | f̃(x)2h̃(x))〉2.

Proof. Let gcd(f̃(x), (g̃⊗ g̃)(x)) = 1. By Theorem 5.1, ψ(CY ) is a binary linear
code, and then Ψ(C) is also linear. By Proposition 5.5,

C = 〈(b(x) | 0)〉2 + 〈(`(x) | f̃(x)h̃(x))〉2 + 〈(0 | 2f̃(x))〉2.

Applying [5, Lemma 3], the extended version of Lemma 5.3, then the generator
polynomials of Φ(C) are Φ((b(x) | 0)), Φ((`(x) | f̃(x)h̃(x))) and Φ((0 | 2f̃(x))).
The corresponding images of the extended Gray map are Φ((b(x) | 0)) = (b(x) |
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0 | 0), Φ((`(x) | f̃(x)h̃(x))) = (`(x) | 0 | f̃(x)h̃(x)) and Φ((0 | 2f̃(x))) = (0 |
f̃(x) | f̃(x)), so

Φ(C) = 〈(b(x) | 0 | 0), (`(x) | 0 | f̃(x)h̃(x)), (0 | f̃(x) | f̃(x))〉2 ⊆ Zα2 × Zβ2 × Zβ2 .

By [10, Corollary 7], we obtain immediately that

Ψ(C) = πΦ(C) = 〈(b(x) | 0), (`(x) | f̃(x)2h̃(x))〉2 ⊆ Zα2 × Z2β
2 .
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