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Abstract

A binary linear code C is a Zs-double cyclic code if the set of coordi-
nates can be partitioned into two subsets such that any cyclic shift of the
coordinates of both subsets leaves invariant the code. These codes can be
identified as submodules of the Zs[z]-module Zz[z]/(z" — 1) X Z2[z]/(x® —
1). We determine the structure of Zs-double cyclic codes giving the gen-
erator polynomials of these codes. The related polynomial representation
of Zz-double cyclic codes and its duals, and the relations between the
polynomial generators of these codes are studied.

1 Introduction

Let Zs be the ring of integers modulo 2. Let Z5 denote the set of all binary
vectors of length n. Any non-empty subset of Z3 is a binary code and a subgroup
of Z3 is called a binary linear code. In this paper we introduce a subfamily of
binary linear codes, called Zso-double cyclic codes, with the property that the
set of coordinates can be partitioned into two subsets, the first r coordinates
and the last s coordinates, such that any cyclic shift of the coordinates of both
subsets of a codeword is also a codeword.

Notice that if one of these sets of coordinates is empty, for example r = 0,
then we obtain a binary cyclic code of length s. So, binary cyclic codes are a
special class of Zs-double cyclic codes. Most of the theory of binary cyclic codes

*This work has been partially supported by the Spanish MEC grant TIN2013-40524-P and
by the Catalan grant 2014SGR691.


0001292
Cuadro de texto
This is the accepted versión of:  Borges, J., Fernández-Córdoba, C. and Ten Valls, R. “Z₂-double cyclic codes” in Proceedings of  IX Jornadas de Matemática Discreta y  Al- gorítmica (Tarragona, 7-9 de juliol de 2014)



can be found in [8]. Another special case is when r = s, where a Zy-double
cyclic code is permutation equivalent to a quasi-cyclic code of index 2 and even
length (see [8]).

In recent times, ZoZ4-additive codes have been studied (see [2], [5]). For
ZoZ.4-additive codes, the set of coordinates is partitioned into two subsets, the
first one of binary coordinates and the second one of quaternary coordinates.
The simultaneous cyclic shift of the subsets of coordinates of a codeword has
been defined in [1], that studies Z2Z4-additive cyclic codes and these codes can
be identified as Z4[z]-modules of a certain ring.

The aim of this paper is the study of the algebraic structure of Zs-double
cyclic codes and their dual codes. It is organized as follows. In Section 2, we
give the definition of Zs-double cyclic codes, we find the relation between some
canonical projections of these codes and binary cyclic codes and we present
the Zs[z]-module Zsa[z]/(z" — 1) X Zz[x]/(x® — 1), denoted by R, . In Section
3, we discuss about the algebraic structure of a Zs-double cyclic code and we
state some relations between its generators. In Section 4, we study the concept
of duality and, given a Zs-double cyclic code, we determine the generators of
the dual code in terms of the generators of the code. Finally, in Section 5,
we study the relations between the generator polynomials of a Zs-double cyclic
code and the generators of other families of cyclic codes, Z4-cyclic codes and
ZoZ.4-additive cyclic codes.

2 Zs-double cyclic codes

Let C be a binary code of length n. Let r and s be integers such that n = r +s.
We consider a partition of the set of the n coordinates into two subsets of r and
s coordinates, respectively, so that C' is a subset of Z§ x Z3.

Definition 2.1. Let C be a binary linear code of length n = r +s. The code C
is called Zo-double cyclic if

/ I / /
(U ULy ey Upay Upy | UG, U,y ey U o ) € C
implies
/ li / /
(Up—1, U0, ULy« - oy Up—2 | U q, UG, UL, - Us_o) € C.
Let u = (ug,u1,...,Ur—1 | uf,...,u,_1) be a codeword in C and i be an

integer, then we denote by

i) _ i ’
ul) = (Uotiy Uiiy - - o Ur—14i | Ugpgs s Ug_145)

the ith shift of u, where the subscripts are read modulo r and s, respectively.
Let C, be the canonical projection of C' on the first » coordinates and Cs on
the last s coordinates. The canonical projection is a linear map. Then, C,. and
C; are binary cyclic codes of length r and s, respectively. A code C' is called
separable if C is the direct product of C). and Cs.
There is a bijective map between Zj x Z5 and Zs[x]/(z" — 1) X Za[z]/(2* —1)
given by:

(U0, Uty .y U1 | Uy ooy y) > (U0 + T+ - A uprz” | uh 4 Ful_ 2.

We denote the image of the vector u by u(z).



Definition 2.2. Denote by R, s the ring Za[z]/(z" — 1) X Zgo[z]/(z* — 1). We
define the operation
*x 1 Zo[x] X Ry s — Ry s

as
A(@) * (p(z) | ¢(2)) = (A(@)p() | A(x)q(2)),
where A(z) € Za[z] and (p(z) | g(z)) € Ry 5.
The ring R, s with the external operation x is a Zs[z]-module. Let u(x) =
(u(z) | v/(x)) be an element of R, ;. Note that if we operate u(z) by = we get
rxu(r) =z * (u(z) | ()

= (uox 4+ Up_ox" "t Fup 12" | uhr -+ ul_grtT - ul2f)
= (Up_1 +upT + -+ Up_ox" | Ul FupT Ul gz,

Hence, z  u(z) is the image of the vector u(Y). Thus, the operation of u(zx) by
z in R, s corresponds to a shift of u. In general, 2% x u(z) = u((z) for all 4.

3 Algebraic structure and generators

In this section, we study submodules of R, ;. We describe the generators of
such submodules and state some properties. From now on, (S) will denote the
submodule generated by a subset S of R, ;.

Theorem 3.1. The Zs[z]-module R, s is a noetherian Zs[x]-module, and every
submodule N of R, s can be written as

N = ((b(z) [ 0), (¢(z) | a(z))),
where b(z),L(x) € Zalx]/(z" — 1) with b(z) | (z" — 1) and a(x) € Zz[x]/(x® — 1)
with a(x) | (x® — 1).
Proof. Let m, : Ry s — Zo[z]/(z" — 1) and 7 : R, s — Za[x]/(x* — 1) be the
canonical projections, let N be a submodule of R, ;.
As Zs[x]/(x® — 1) is noetherian then Ny = m4(NN) is finitely generated.
Define N' = {(p(x)|q(z)) € N | ¢(x) = 0}. It is easy to check that N" = .(N')
by (p(z) | 0) — p(z). Hence Zg[z]/(2" — 1) is noetherian, m,(N’) is finitely
generated and so is N'.
Let b(z) be a generator of m.(N'), then b(z) | (" — 1) and (b(z) | 0) is a
generator of N'. Let a(z) € Ny such that Ny = (a(z)), then a(z) | (z® — 1) and
there exists ¢(x) € Zo[z]/(2" — 1) such that ({(z) | a(z)) € N.

We claim that
N ={((b(z) | 0), (€(z) | a(x)))-

Let (p(x) | ¢(x)) € N, then q(x) = ms(p(x) | q(x)) € Ns. So, there exists
A(z) € Zz]x] such that g(z) = A(x)a(x). Now,

(p(z) | q(x)) = Ma) * (U(z) | a(z)) = (p(x) — Mz)é(z) | 0) € N'.
Then there exists p(x) € Zsa[x] such that (p(z) —A(z)l(x) | 0) = p(x)*(b(z) | 0).

Thus,

(p(2) [ q(2)) = p(z) % (b(x) | 0) + A(2) * (£(2) | al@)).
So, N is finitely generated by ((b(x) | 0),(¢(x) | a(x))) and then R, is a
noetherian Zs[z]-module. O

~—



From the previous results, it is clear that we can identify Zs-double cyclic
codes in Z} X Z3 as submodules of R, ;. So, any submodule of R, s is a Za-double
cyclic code. From now on, we will denote by C' indistinctly both the code and
the corresponding submodule.

Note that if C is a Zg-double cyclic code with C' = ((b(z) | 0), (¢(z) | a(z))),
then the canonical projections C,. and Cs are binary cyclic codes generated by
ged(b(x), £(x)) and a(z), respectively.

On the one hand, we have seen that R, s is a Zg[z]-module, and multiply
by x € Zs|z] is the right shift on the vector space Zj x Z5. On the other hand,
we have that Z5 x Z3 is a Zp-module, where the operations are addition and
multiplication by elements of Z.

So, our goal now is to find a set of generators for C' as a Zs-module. We
will denote the Zs-linear combinations of elements of a subset S C R, by
(hzo = {D2;Nisi | Ai € Zy,s; € S}, and we will call a set S a Zs-linear
independent set if the relation ) . A;s; = 0 implies that \;s; = 0 for all .

Proposition 3.2. Let C = ((b(x) | 0), (¢(x) | a(x))) be a Za-double cyclic code.
Define the sets

S1={(b() | 0), 2% (b(x) | 0),...,a"~4ECEDN 1w (b(2) | 0)},
Sa = {(l(x) | a(x)), 2 * (((2) | a(@)),...,a* 4B () | a(2))}.

Then, S1 U Sy forms a minimal generating set for C' as a Zo-module.

Proof. 1t is easy to check that the codewords of S; U S are Zs-linear indepen-
dent.

Let ¢(x) € C, such that c(z) = p1(z) * (b(z) | 0) + p2(z) * (¢(z) | a(x)). We
have to check that c(z) € (S1 U S3)z,.

If deg(pi () < 7 — deg(b(x)) — 1, then py(x)  (b(a
wise, using the division algorithm, we compute p;(z) =

deg(ri(x)) < r —deg(b(z)) — 1, so

) 10) € <S1>22 Other-
q1 ()% ) L 4 (2) with

'

zh©H®@)0)=(m@fﬁ&;+Wﬂ@>ﬂﬂ@l®=WNﬂﬂM@|®€<&mr

So, ¢(x) € (S1U Sa2)z, if pa(x) *x (U(x) | a(x)) € (S1 U S2)z,
If deg(pz(x)) < s — deg(a(x)) =1, then pa(x) * ((z) | a( ) € (S2)z,. If
not, using the division algorithm, consider ps(z) = qg(x)“; ;)1 + ro(x) where

deg(ra(z)) < s — deg(a(z)) — 1. Then,

¥ —1

@
—( (Yﬁ‘l)*w<> () + ra(a) * (£(2) | alz))
= | ga(x @ z) | alz ro(x z) | a(z)).

a

pxw*wunamnz(@@> +m@0*wunam»

On the one hand, r2(x) x (4(x) | a(x)) € (S2)z,. On the other hand,

(()”‘4) « (0(2) | () = (ga(e) = Le(@) | 0).

(z) a(x)
By PrOpOblthH 3.6, b(x) divides msf) £(z) and it follows straightforward that
(42(2) S5-4(w) | 0) € (S1)z,. Thus, ¢(x) € (S1U S2)z,. O




Proposition 3.3. Let C = ((b(x) | 0), ({(x) | a(x))) be a Za-double cyclic code.
Then, C is permutation equivalent to a binary linear code with generator matriz
of the form

I’r’fdeg(b(m)) Ay A2 0 0 0
G = O BK B Cl I)g O )
0 0 0 C: R Is—deg(a(ac))—n

where By is a square matriz of full rank and k = deg(b(z))—deg(ged(b(x), £(x))).

Proof. Let C be a Zs-double cyclic code with C' = ((b(z) | 0), (¢(z) | a(x))).
Then by Proposition 3.2, C is generated by the matrix whose rows are the
elements of the set S; U Ss.

Since r — deg(b(x)) and s — deg(a(x)) are the dimensions of the matrices
generated by the shifts of b(z) and a(x), respectively, the code C' is permutation
equivalent to a code with generator matrix of the form

<Irdeg<b<w>> Ao 0 )
0 B' | O I;_geg(a(x))

It is known that C, is a linear cyclic code generated by ged(b(x), £(x)), then
the submatrix B’ has rank x = deg(b(x)) — deg(ged(b(z), ¢(x))). Moreover, C,
is permutation equivalent to a linear code generated by the matrix

Ir—deg(b(m)) Al A2
0 B. B |,
0 0 0

with B, a full rank square matrix of size x X . Finally, applying the convenient
permutations and linear combinations, we have that C is permutation equivalent
to a linear code with generator matrix

Irfdcg(b(r)) A A 0 0 0
0 B. B |C, I, 0
0 0 0 Cy R Isfdeg(a(:z:))fl-c

O

Corollary 3.4. Let C = ((b(z) | 0),(4(z) | a(x))) be a Zs-double cyclic code.
Then, C is a binary linear code of dimension r + s — deg(b(z)) — deg(a(z)).

Proposition 3.5. Let C = ((b(x) | 0), ({(x) | a(x))) be a Za-double cyclic code.
Then, we can assume that deg(¢(x)) < deg(b(z)).

Proof. Suppose that deg(¢(x)) > deg(b(z)). Let i = deg(¢(x)) — deg(b(x)) and
let C’ be the code generated by

C" = {(b(x) | 0), (¢(z) + 2" x b(=) | a(x))).

On the one hand, deg(¢(z) + 2% x b(z)) < deg(¢(z)) and since the generators of
C’ belongs to C, we have that C' C C. On the other hand,

(U(x) | a(@)) = (£(z) + 2" xb(@) | a(2)) + 2" * (b(=) | 0).
Then, ((¢{(z) | a(z))) € C'" and hence C C C’. Thus, C = C". O



Proposition 3.6. Let C = ((b(x) | 0), ({(x) | a(x))) be a Za-double cyclic code.
Then, b(z) | %E(x)

Proof. Let 7 be the projective homomorphism of Zs[z]-modules defined by:

T c — Za[x]/(z* 1)
(p1(z) [ p2(z)) — p2()

It can be easily checked that ker(w) = ((b(x) | 0)).
o1

Now, consider wa(—;)l * (U(z) | a(z)) = (2(;) £(x) ] 0). So,
T ) | ale) € kex() = ((b(x) | )
Thus, b(x) | 2(—;)16(56) O

Corollary 3.7. Let C = {(
Then, b(z) | JZ:(*) ged(l(z),b

xT

EJ(J):)) | 0),(4(z) | a(x))) be a Zs-double cyclic code.

Proposition 3.8. Let C = ((b(x) | 0), ({(z) | a(z))) be a separable Za-double
cyclic code. Then, ¢(x) = 0.

4 Duality

Let C be a Za-double cyclic code and C* the dual code of C (see [7]). Taking
a vector v of C+, u-v =0 for all u in C. Since u belongs to C, we know that
ul=Y is also a codeword. So, u~Y.v =u-v(® =0 for all u from C, therefore
v is in C*+ and C* is also a Zy-double cyclic code. Consequently, we obtain
the following proposition.

Proposition 4.1. Let C be a Zs-double cyclic code. Then the dual code of C
is also a Zs-double cyclic code. We denote

Ot = {(b(x) | 0), (€(z) | a(x))),

),(Z(Sx) el)Zg[x]/(xT — 1) with b(z) | (2" — 1) and a(z) € Za[x]/(z® — 1)

where b(x
with a(x)

The reciprocal polynomial of a polynomial p(z) is 29°8®@)p(z=1) and is
denoted by p*(x). As in the theory of binary cyclic codes, reciprocal polynomials
have an important role in the duality (see [8]).

We denote the polynomial ZZ_OI 2% by 0,,(x). Using this notation we have
the following proposition.

Proposition 4.2. Let n,m € N. Then, " — 1 = (2™ — 1)0,,(z"™).

Proof. Tt is well know that y™ — 1 = (y — 1)0,,(y), replacing y by z™ the result
follows. O

From now on, m denotes the least common multiple of r and s.



Definition 4.3. Let u(z) = (u(z) | v/(z)) and v(z) = (v(z) | v'(x)) be elements
in R, s. We define the map

0: Ry s X Ry s — Zofz]/(z™ — 1),
such that

o(u(z),v(r)) =u(x)fm (z")z™ L des(v(@) g (1) 4
+ u’(x)ﬁg(xs)xmflfdeg(”,(x))v’*(a:) mod (z™ — 1).

The map o is linear in each of its arguments; i.e., if we fix the first entry
of the map invariant, while letting the second entry vary, then the result is a
linear map. Similarly, when fixing the second entry invariant. Then, the map o
is a bilinear map between Zs[z]-modules.

From now on, we denote o(u(z), v(x)) by u(z)ov(z). Note that u(z) o v(z)
belongs to Zs[z]/(x™ — 1).

Proposition 4.4. Let u and v be vectors in Z4 X Z5 with associated polynomials
u(z) = (u(z) | v(x)) and v(z) = (v(z) | v'(x)), respectively. Then, u is
orthogonal to v and all its shifts if and only if

u(z)ov(z) =0 mod (™ —1).

Proof. Let v(Y = (voyiv14i... Ur_144 | Vopi---Vs_14) be the ith shift of v.
Then,

r—1 s—1
u- vl =0 if and only if Z“j”j-m‘ + Z Uy Vg4 = 0.
=0 k=0

Let S; = Z;;(l) UjVj4; + Zz;é uﬁgvjﬁ_i. One can check that

r—1 r—1
u(z)ov(z) = g UjVjpnx™ | F
n=0 7=0
s—1 —1
Wi —t
-4 E g UV T
t=0 =
r—1r—1
n
UjVj4nT +
n=0 j=0
s—1s—1
/Wi 1—
UV T
t=0 k=0

Then, arranging the terms one obtains that

m—1
u(z)ov(z) = Z S;z™ 17" mod (2™ — 1).
i=0
Thus, u(z) o v(z) =0 if and only if S; =0for 0 <i<m—1. O



) | V'(x)) be ele-
"(z) orv'(z) equal
rv(x) equal 0, then

Lemma 4.5. Let u(z) = (u(z) | v/(z)) and v( ) = (v(z
ments in R, s such that ( Jov(z) =0 mod (z™ —1). Ifu
0, then u(z)v*(x) =0 mod (z" —1). Respectively, zfu(x) or
u'(x)v™*(x) =0 mod (z° —1).

Proof. Let u/(x) or v'(x) equal 0, then

u(z) o v(z) = u(z)fm (2™ 1798 C@)y (2) +0=0 mod (™ —1).

2

So,
() (7 )a AL (1) = ()™ 1),

for some p/ (x) € Zo[x]. Let p(z) = p'(2)xd8 @)+ hy Proposition 4.2,

u(@)a™v* (z) = p(a) (@ — 1),
u(z)v*(z) =0 mod (2" —1).
The same argument can be used to prove the other case. O

Proposition 4.6. Let C' = ((b(x) | 0), ({(x) | a(x))) be a Zo-double cyclic code.
Then,
|Cy| = 2r—deg(b(ac))+r€7 ICy| = 2S—deg(a(;v))’
|(CT)J‘| _ 2deg(b(m))fﬁi7 |(CS)J'| _ 2deg(a(gc))7

[(CF)p] = 2980 [(CF), | = 2teslelme

)

where k = deg(b(x)) — deg(ged(b(x), £(x))).

Corollary 4.7. Let C = ((b(x) | 0),({(x) | a(x))) be a Zz-double cyclic code
with dual code C+ = {(b(x) | 0), ({(x) | @(x))). Then,

deg(b(z)) = r— deg(ged(b(x), ().

Proof. Tt is easy to prove that (C,)* is a cyclic code generated by b(x), so
|(C)t] = %T*deg(b(“”)). Moreover, by Proposition 4.6, |(C,)*| = 2des(b(@)) =«
Thus, deg(b(x)) = r — deg(ged(b(z), £(x))). O

Corollary 4.8. Let C' = ((b(x) | 0),(é(x) | a(x))) be a Zz-double cyclic code
with dual code C+ = {(b(x) | 0), ({(x) | @(x))). Then,

deg(a(z)) = s—deg(a(z)) — deg(b(x)) + deg(ged(b(z), ().

Proof. Since C+ is a Zy-double cyclic code, (C1), is a cyclic code generated
by a(z), so |(C1)s] = 25798(@®) Moreover, by Proposition 4.6, |(C1),| =
odeg(a(@))+r

Thus, deg(a(x)) = s — deg(a(z)) — deg(b(z)) + deg(ged(b(x), £(x))). O

Proposition 4.9. Let C'= ((b(z) | 0), ({(z) | a(x))) be a Zz-double cyclic code.
Then, {(0 | &=L )) c ot

*(I

Proof. Since Cy is a binary cyclic code generated by (a(z)), then (Cs)* =
<§s(_zl)> Let v(z) = (v(x) | v'(z)) € C. Then, v'(z) € Cs and (0 | £ (_wl))ov(a:) =
0 mod (z™ — 1). Thus, ((0 | Z=L)) € C*. O

a*(x)




Corollary 4.10. Let C

3 U = ((b(x) | 0), (l(x) | a(x))) be a Zg double cyclic code
with C*+ = ((b(x) | 0), (£(=) |

() | (x
a(z))). Then, a(z) divides L
€

a*(z)"

Corollary 4.11. Let C = ((b(z) | 0), ({(x) | a(x))) be a ZLa-double cyclic code.
Let T ={(0| p(x)) € C+}. Then, T is generated by ((0 | & _1)>

o (@)
Proof. Let T = {(0 | p(x)) € C*}. By Proposition 4.9, we have that ((0 |
z°—1

a*(ac))> cT.

Since T, C (Cy)+ = (Z (—1)> for all (0| p(z)) € T we have that p(z) € (xj(_x1)>

Hence, there exists A(z) € Zy[x] such that p(z) = M) = *1 . Therefore, for all
(0| p(z)) € T we have that

¥ —1 x®—1

) = M) 0] T

So, TC (0] Z25b)). O

a*(z)

O] p(@)) = (0] A(z)

).

The previous propositions and corollaries will be helpful to determine the
relations between the generator polynomials of a Zs-double cyclic code and the
generator polynomials of its dual code.

Proposition 4.12. Let C' = ((b(z) | 0), (¢(z) | a(x))) be a Za-double cyclic code
and C = {(8(z) | 0), (£(x) | a(z)). Then,

- " —1

"0 e, 1@y
Proof. We have that (b(x) | 0) belongs to C*. Then,
(b(z) | 0)o (b(z) | 0) =0 mod (s — 1),
(£(z) [ a(z)) o (b(x) | 0) =0 mod (z™ —1).
Therefore, by Lemma 4.5,
b(z)b*(r) =0 mod (z" — 1),
b*(x) =0 mod (z" — 1).

xz) =0 mod (2" — 1), and there exist u(z) € Zs[z] such
() = p(z) (2" - 1).

(b(z), £(z)) and b*(x) divides (z" — 1), by Corollary 4.7, we
= r — deg(ged(b(x), ¢(x))). Then,

So, ged(b(z), £(z))B
that ged(b(z), £(x))
Moreover, since gc
have that deg(b(x)

~ Q.

N " —1
@) = @) @)

O

Proposition 4.13. Let C = ((b(z) | 0), (¢{(x) | a(x))) be a Zy-double cyclic code
and C+ = ((b(z) | 0), (¢(z) | a(z))). Then,

(2° — 1) ged(b(a). £(x))"

i) = T @ (@)




Proof. Consider the codeword

b(x) L(x) B b(x)
m*@(m) | @(x))—m*(b(x) 10)=(0| ma(m)).
Then,

(f() | @) 0 (0] — 2T 4(2)) =0 mod (2™ —1).

zed(b(2), (7))
Thus, by Lemma 4.5
N o R
) e oy =0 ™o )

. (@) (2)
a*(x)b*(x
a(r)———— = (2° — 1)u(x),

D gedlot), 2wy~
for some p(x) € Zylx]. It is known that a(x) is a divisor of #® — 1 and, by
Corollary 3.7, we have that % divides (z® — 1). By Corollary 4.8,
deg(a(z)) = s — deg(a(x)) — deg(b(x)) + deg(ged(b(z), £(2))), so

(z)

)

=deg | a(z —)b = deg((z® —
o=t (800 T ) =ee(a” - 1)
Hence, we obtain that p(z) =1 and

) (2= D ged(ble). )"

a*(x)b* (x)

O

Proposition 4.14. Let C = (( (z)]0), ( ( ) | a(x))) be a separable Zo-double
cyclic code. Then, C+ = (( — |O) (U= ) ))

Corollary 4.15. Let C be a sepamble Zo-double cyclic code. Then, C* is a
separable Zo-double cyclic code.

Proposition 4.16. Let C = ((b(z) | 0), (¢(z) | a(x))) be a non separable Zs-
double cyclic code and C*+ = ((b(z) | 0), ({(x) | a(z))). Then,
) = ey M),

for some A(z) € Zs[z].

Proof. Let ¢ € C+ with &(z) = (b(z) | 0) + (¢(x) | a(z)). Then
)

&(x) o (b(x) [ 0) =((b(x) | 0)) © (b(x) | 0) + (((=) | a(x))) o (b(x) | 0)
=0+ ((€(z) [ a(z))) o (b(z) | 0)
=0 mod (z™ —1).

So, by Lemma 4.5

and
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Corollary 4.17. Let C = ((b(x) | 0), (
cyclic code. Then, deg(A(z)) < deg(b(x
|

Proposition 4.18. Let C = ((b(x) | 0), ({(x) | a(x))) be a non separable Zo-
double cyclic code and C+ = ((b(x) | 0), ({(x) | a(x))). Let p(z) = m
and 0(x) = g(;)\( x). Then,

L(z) | a(x))) be a non separable Zy-double
)) — deg(ged(b(x), £(x)))-

(xmfl)ng*(b(‘r)vé(m)) m—deg(£(xz))—1 x* m—deg(a(z))—1\ __ m
b (@) (A(Ja)x deg(E(@)) =1 5% () 4 gm—desle(®) )—O mod (z"—1).

Thus,
(agam )11 g gmoseso)) 0 mod (el )
Proof. Let p(z) = ——*%)__ Computing ({(z) | a(x)) o ({(z) | a(z)) and

ged(b(z),£(z))
arranging properly we obtain that

(2™ — 1) ged” (b(x), £(x)) m—deg(£(x))—1 * m—deg(a(z))—1
) (A@ p (@) +x )
that is equal 0 mod (z™ — 1). Then,

(/\(:C)xmfdeg(f(m))flp*(x) + JCmfdeg(a(z))fl> =0 mod (xm _ 1)’ (1)
or

(A(x)xm—deg(é(m))flp*(m)_’_xm—deg(a(x))fl) —0 mod <%)‘ @)

m divides z™ — 1, clearly (1) implies (2). ]

Corollary 4.19. Let C = {(b(x) | 0), ({(x) | a(x))) be a non separable Za-double
cyclic code and C+ = {(b(x) | 0), ({(z) | a(x))). Let p(x) = m and

i(z) = f—@%)\(x) Then,

Since

)\((E) _ xm—deg(a(ac))+deg(€(93))(p*(x))_l mod (MM) .

Proof. Let p(z) = m. By Proposition 4.18,

(A(x)xm—deg(e(w))—lp*(l') + xm_deg(“(z))_l) =0 mod (W) :

Then,

AMa)a™ p* (z) = g™ des(e(@) +deg(t) 104 ( — (S)f( )))

On the one hand, we have that z™ = 1 mod (gcd T z) ) . On the other
hand, the great common divisor between p(x) and m is 1, then p*(z)

. . . b (2)
is an invertible element modulo (7@&(1)(%)76(7;))). Thus,

)\((E) _ xm—deg(a(aﬂ))+deg(€($))(p*(m))_l mod (W) .

11



We summarize the previous results in the next theorem.
Theorem 4.20. Let C = ((b(z) | 0), (¢(z) | a(x))) be a Zo-double cyclic code

and C+ = ((b(z) | 0),(U(z) | a(x))). Let p(z) = soqumigmy and l(z) =
if:—(_zl)\(x) Then,

)
7 z"—1
(@) = saanE @)

2. ax) = ELEAE @)

1.

=

3. l(x) = 2”:—(;%/\(93), where

B b (z)
M)z o* (1) = pm—deg(a(z)+deg(t(x)) 1104 (*)
(x)z™p* () ged™(b(x), U(x))

5 Relations between Z,-double cyclic codes and
other codes

In this section, we study how Zs-double cyclic codes are related with other
families of cyclic codes, say Zj4-cyclic codes and ZsZg4-additive cyclic codes.
Since these families of codes have part, or all the coordinates over Z4, then
their generator polynomials also have coefficients over the ring Z4. From now
on, the binary reduction of a polynomial p(z) € Z4[x] will be denoted by p(z).

Let p(z) be a divisor of 2™ — 1 in Zy[z] with n odd and let £ be a primitive
nth root of unity over Zy. The polynomial (p® p)(z) is defined as the divisor of
2™ — 1 in Zy[z] whose roots are the products £7¢7 such that ¢° and &7 are roots
of p(x).

Let u = (ug,...,up—1) be an element of Z} such that u; = @; + 2u; with
@i, ui € {0,1}. As in [6], the Gray map ¢ of Z} to Z3" is defined by

d(u) = (U -yl | To + UGy -y U1 + Ul ).
Let u(x) = a(x) + 2u’(z) be the polynomial representation of u € Z}. Then,
the polynomial version of the Gray map is ¢(u(z)) = (u(z) | a(z) +u'(z)). The
Nechaev permutation is the permutation 7 of Z2" with n odd defined by
T(V0, V15 - -+, V2n—1) = (Vr(0), Vr(1)s - - +» Vr(2n-1)),
where 7 is the permutation on {0,1,...,2n — 1} given by
(L,n+1)(3,n+3)...(2i+1,n+2i+1)...(n—22n—2).
Let v be the map of Z} into Z3" defined by ¢ = m¢, with n odd. The map v
is called the Nechaev-Gray map, [11]. We obtain the following theorem.

Theorem 5.1 ([11, Theorem 20]). Let C = (f(z)h(z) + 2f(z)) be a Z4-linear
cyclic code of odd length n and where f(x)h(x)g(xz) = ™ — 1. Let ¢ be the Gray
map and let Y the Nechaev-Gray map. The following properties are equivalent.

1. ged(f(2), (9 ® g)(x)) =1 in Zo[x];
2. ¢(C) is a binary linear code of length 2n;
3. ¥(C) is a binary linear cyclic code of length 2n generated by f(a:)ziz(x)

Using the last theorem, we can relate Zs-double cyclic codes to Zy-cyclic
codes and Z,Z4-additive cyclic codes.

12



5.1 Zs-double cyclic codes vs Z,-cyclic codes

From [9] and [7], it is known that a Z,-cyclic code C of length n is generated by a
single element f(z)h(x)+2f(x) € Zy[x]/(x™ — 1), where f(x)h(z)g(x) =2" -1
in Zy[x], and |C| = 4dee(9(z)) gdeg(h(=))

Let C be a Z4-cyclic code of length n, and w € ¢(C). The codeword w can

be written as (@g, ..., Un—1 |0 + UQ, .-, Un—1 + uh_1), for (ug,...,un—1) =
u = ¢ Y(w) € C. By definition of the Gray map, we have that w!) is
(an—la ft(), CIEaE aﬂ'n—Q I ﬂn—l + U;L—lv 1?60 + UE), sy ﬂn—2 + U;L—Q) = ¢(un—1; UQ, -y

Upn_2). Therefore, since C is Zy-cyclic, we have that for w € ¢(C), w(® € ¢(C).

In general, the Gray map image of a Z4-linear code is not linear. Hence,
we shall consider Zs-double cyclic codes as images of Z4-cyclic codes, C =
(f(z)h(x) 4+ 2f(x)), in the case that such a code C has linear image under the
Gray map; that is, when ged(f(x), (§®g)(z)) = 1 in Zo[z], by Theorem 5.1. Our
goal is to stablish a relation between the generator polynomial of the Z,-linear
cyclic code C and its Zo-double cyclic image, ¢(C).

Let C be a Z;[z]-module with ¢ = 2,4. Let ¢1,...,9: € C, then {(g1,...,9:)i
will denoted the Z;[z]-submodule of C generated by g1, ..., g;.

The following theorem is proved in [10, Theorem 8§].

Theorem 5.2. Let n be odd and let f(x),h(x),g(x) be in Zy[x] such that
f@)h(z)g(x) = «" — 1. Then (f(2)h(z) +2f(x))a = (f(2)h(x))2 + 2(f(2))2 if
and only if ged(F(z), (5 §)(x)) = 1 in Zlz].

Lemma 5.3. Let C be a quaternary linear code of type 274° such that ¢(C) is
a linear code. Let {u;}]_, be codewords of order two and {v; }‘;:1 codewords of

order four such that C = ({u;}]_ 1,{vj}§:1>4. Then,
$(C) = ({o(ui) 1 {6(vi)}=1: {6(2v5) }im1 ).

Proof. From [4, Lemma 3], it is known that if C is a quaternary linear code of
type 274° such that C = ({u;}]_;,{v;}5_,)4, then

(@(C))2 = ({D(wi)} oy, {6(v5) =1, {6(2v))} 51, {8(2V; % Ve hr<j<ezs)2,

where usv denote the component-wise product for any u, v € Z}. We know that
¢(C) is linear if and only if uxv € C for all u,v € C, [6]. Since ¢(C) is a binary
linear code, then {QVJ * vt}1<j<t<5 € C. Therefore, ({p(2v; * vi) hi<jct<s)2 C

o)}y {8(vi) = {6(2v))} = ). N

Theorem 5.4. Let C = (f(x)h(x) + 2f(x))} be a Zs-linear cyclic code of odd
length n, where f(z)h(z)g(x) = z™ — 1 and ged(f(z), (¢ ® §)(z)) = 1. Then,

$(C) = ((f(@)h(x) | 0), (f(z) | f(x)))e.

Proof. By Theorem 5.2, the generators of C are (f(x)h(z))2 and 2(f(z))2, both,

of order two. By Theorem 5.1, we have that ¢(C) is linear. Hence, by Lemma

5.3, it is easy to see that the generator polynomials of ¢(C) are ¢(f( Yh(z))

and ¢(2f( )). The corresponding images of the Gray map are ¢(f(z)h(z)) =

0 \){; Dh(z)) and 6(2(x)) = (f(z) | f(z)), s0 6(C) = (0 | F()h()), (F(x) |
x 2.

Therefore,

(C) = ((F(=)h(x) | 0), (f(2) | F(x)))2:
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5.2 Zs-double cyclic codes vs Z,Z,-additive cyclic codes

In recent times, ZoZ4-additive codes have been studied (see [2], [5]). A ZaZ4-
additive code C is a subgroup of Z§ x Zf . Since C is a subgroup of Z§ x fo , it is
also isomorphic to a commutative structure like ZJ x Z3 and it has |C| = 27720
codewords.

Let X (respectively Y) be the set of Zy (respectively Z4) coordinate posi-
tions, so | X| = o and |Y'| = 8. The set X corresponds to the first o coordinates
and Y corresponds to the last 8 coordinates. Call Cx (respectively Cy) the
punctured code of C by deleting the coordinates outside X (respectively Y).
Notice that Cy is a quaternary linear code and Cyx is a binary linear code.

A ZyZ4-additive code C C Z§ X Zf is called cyclic code if the set of co-
ordinates can be partitioned into two subsets, the set of Zy and the set of Zy4
coordinates, such that any cyclic shift of the coordinates of both subsets leaves
invariant the code. These codes can be identified as submodules of the Z4[x]-
module Zy[z]/(z® — 1) x Zy4[z]/(z® — 1). From [1] and [3], we know that if
C CZ§ x Zf is a ZoZ4-additive cyclic code, where 3 is an odd integer, then it

is of the form
C={(b(x) | 0), (£(z) | f(x)h(x) + 2f(x)))a
where f(2)h(z)g(z) = 2° —11in Zy[z], b(x), €(x) € Zo[z]/(2*—1) with b(x)|(z*—
1), deg(£(z)) < deg(b(x)), and b(x) divides zfﬁ( L/(z) (mod 2).
The extended Gray map ® and the ezzztended Nechaev-Gray map ¥ are the
maps from Z$ x Zf into Zg‘“ﬁ given by

(I)(U,V) = (uad)(v))v \I/(uvv) = (u,q/z(v)),

where u € Z§, v € fo , ¢ is the Gray map and ® is the Nechaev-Gray map.
Notice that if ¢(Cy) and ¢(Cy) are binary linear codes, then ®(C) and ¥(C)
are also binary linear codes.
The following proposition can be viewed as a corollary of Theorem 5.2.

Proposition 5.5. Let § be odd and let C C Z§ X Zf be a ZoZy-additive cyclic

code generated by {(b(x) | 0), (¢(x) | f(z)h(x)+2f(x)))4 such that f(x)h(x)g(x) =
2% — 1 in Zy[z]. Then, gcd(f( ), (g ® 9)(x)) = 1 in Zs[z] if and only if

C = ((b(x) | 0)2 + (&) | f(2)h(x)))2 +2((0 | f(2)))e.

Theorem 5.6. Let C = ((b(z) | 0), (¢(x) | f(x)h(x) +2f(z)))a C Z§ X Zf be a
Zo7.4-additive cyclic code, where 3 is an odd integer and f(z)h(x)g(z) = 2° —1.
Let U be the extended Nechaev-Gray map. If ged(f(x), (§®§)(z)) = 1 in Zy[z],
then W(C) is a Za-double cyclic code of length o + 28 generated by

U(C) = ((b(x) | 0), (¢(x) | F(x)*h(2)))2-

Proof. Let ged(f(z), (§® §)(z)) = 1. By Theorem 5.1, 1(Cy) is a binary linear
code, and then ¥(C) is also linear. By Proposition 5.5,

C = {(b(x) | 0))2 + (((x) | f(@)h(@)))2 + (0] 2f(x)))2-
Applying [5, Lemma 3], the extended version of Lemma 5.3, then the generator

polynomials of ®(C) are ®((b(x) | 0)), ®((£(z) | f(x)h(z))) and B((0 | 2f(x))).
The corresponding images of the extended Gray map are ®((b(z) | 0)) = (b(z) |

14



0]

fx

()))|,f<1(>(()l;(x) | f@)h(x))) = ((z) | 0| f(2)h(x)) and @((0 | 2f(x))) = (0 |

®(C) = ((b(z) | 01 0), (¢(z) | 0| f(x)h(x)), (0] f(z) | f(x)))2 € Z§ x Z§ x Z5.

By

[10, Corollary 7], we obtain immediately that

U(C) = 7 (C) = ((b(x) | 0), (4(x) | f(x)*h(2)))2 € Z5 x Z3°.
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