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Abstract

In this paper a one-phase supercooled Stefan problem, with a nonlinear relation be-
tween the phase change temperature and front velocity, is analysed. The model with the
standard linear approximation, valid for small supercooling, is first examined asymptot-
ically. The nonlinear case is more difficult to analyse and only two simple asymptotic
results are found. Then, we apply an accurate heat balance integral method to make
further progress. Finally, we compare the results found against numerical solutions. The
results show that for large supercooling the linear model may be highly inaccurate and
even qualitatively incorrect. Similarly as the Stefan number β → 1+ the classic Neumann
solution which exists down to β = 1 is far from the linear and nonlinear supercooled
solutions and can significantly overpredict the solidification rate.

Keywords: Phase change; Stefan problem; kinetic undercooling; supercooling; heat
balance integral method; asymptotic solutions; similarity solutions

1 Introduction

Supercooled liquids can solidify much more rapidly than a non-supercooled liquid and
when rapid solidification occurs the liquid may not have time to form its usual crystalline
structure. Materials made from supercooled melts can therefore have markedly different
properties to the standard form of the material. A material formed from a supercooled
liquid, usually called a glassy or amorphous solid, can present greater corrosion resistance,
toughness, strength, hardness and elasticity than common materials: amorphous metal
alloys can be twice as strong and three times more elastic than steel. Such materials
are currently used in medicine, defence and aerospace equipment, electronics and sports
[1, 2, 3]. Recent advances in the production and use of amorphous solids provides the
motivation for this theoretical study on the solidification of a supercooled liquid.

Theoretical investigations of Stefan problems have focussed primarily on the situation
where the phase change temperature is constant. However, there are various applications
where this temperature changes from its standard value (the heterogenoeus nucleation
temperature) and may even vary with time. One method to reduce the freezing point is
to increase the ambient pressure. This method is exploited in the food industry, whereby
the sample is cooled well below the normal freezing temperature by applying a high
pressure. The pressure is then released and almost instantaneous freezing occurs. This
permits the freezing of certain products that normally spoil when frozen more slowly.
The technique is also used in cryopreservation [4]. Pressure may also vary due to surface
tension effects at a curved interface. Hence freezing fronts with high curvature may exhibit
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a variable phase change temperature. Another mechanism for varying the phase change
temperature occurs when a liquid is supercooled or undercooled (we will use both terms
in the following work), that is, the liquid is cooled below the heterogeneous nucleation
temperature. In this situation the liquid molecules have little energy which affects their
mobility and hence their ability to move to the solid interface [5, 6].

In this paper we focus on the final mechanism, where the liquid is supercooled. In
the standard Stefan problem the phase change temperature is specified as a constant, say
Tm, and the speed of the phase change front is related to the temperature gradient in the
surrounding phases. When modelling the solidification of a supercooled liquid, the phase
change temperature is unknown and so a further equation is required, which relates the
speed of the front to the degree of supercooling. If we denote the temperature at which the
phase change occurs as TI and s(t) as the position of the front then a typical form for the
relation between st and the degree of supercooling is shown in Figure 1. The left hand plot
represents the copper solidification process, the right hand plot represents salol (which
occurs at a slow rate and so provides relatively simple experiments). Both curves have the
same qualitative form. For a small degree of supercooling, i.e. for copper Tm − TI < 250
K, the speed of the front increases as the supercooling increases. This behaviour seems
physically sensible, the cooler the sample the more rapid the freezing. However, for larger
supercooling the process slows down as the molecules become more ’sluggish’ due to a
lack of energy. The maximum solidification rate for copper is around 2.9m/s, for salol it
is around 4.4 ×10−5m/s (making salol a more popular choice for experimental studies).
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Figure 1: Representation of the solidification speed of copper (left) and salol (right) as a
function of the supercooling. The solid line represents the full expression for st, the dashed
line the linear approximation.

Using a statistical mechanics argument, it is shown in Ashby & Jones [5, Chap. 6]
that the solidification rate may be approximated by

st =
d∆h

6~Tm
e
− q

kTI (Tm − TI) , (1)

where d is the molecular diameter, ~ the Planck constant, q the activation energy and k
the Boltzmann constant. The parameter ∆h is the latent heat per particle, calculated by
dividing the latent heat of fusion (Lm) by Avogadro’s number (NA). A linearised version
of equation (1) is often dealt with in the literature, [7, 8, 9, 10, 11],

TI(t) = Tm − φst , (2)

where φ = 6~Tme
q

kTm /(d∆h). This expression for φ provides one interpretation of the
usual kinetic undercooling coefficient described, for example, in [6, 7, 9]. The solid lines
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in Figure 1 were obtained by plotting equation (1) using the parameter values of Table 1,
the broken lines come from equation (2).

The classical Neumann solution to the Stefan problem with fixed boundary and con-
stant far field temperature requires setting φ = 0 in (2). With the Neumann solution
the interface velocity increases as the Stefan number β decreases: as β → 1+ the velocity
tends to infinity and the Neumann solution breaks down. In order to obtain solutions for
Stefan numbers β ≤ 1, numerous authors have adopted the linear profile, with φ 6= 0,
which removes the infinite boundary velocity. Incorporating the effects of the linear inter-
facial kinetics into the Stefan problem, by using (2), results in different solution behaviour
depending on the value of β: for β > 1 the velocity st ∝ t−1/2 (as occurs with the Neu-
mann solution), when β = 1 it changes to st ∝ t−1/3 and for β < 1, st is constant (and
the temperature is a travelling wave solution), see [6]. The short time solution given in
[7] has st constant at leading order with a first order correction of t1/2, valid for all β.

In the following work we will study the one-phase solidification process subject to
arbitrary supercooling and so employ equation (1) to determine the interface temperature
TI . In §3.2 we employ an asymptotic analysis to the linear supercooled model to reproduce
all the different behaviours mentioned above. In §3.3 we find a small time solution, valid
for all β, and a large time solution valid for β < 1. In §4 we describe an accurate Heat
Balance Integral Method (HBIM) and show how the resultant equations can reproduce
all the behaviours predicted for linear supercooling. Further, using this method we can
find the same range of behaviour for nonlinear supercooling at large times. In §5 we
present results for the asymptotic and HBIM models and compare them with a numerical
solution.

2 Mathematical Model

We consider a one-dimensional supercooled liquid initially occupying x ≥ 0, with solidifi-
cation starting at the point (x, t) = (0, 0). An appropriate one-phase Stefan problem is
then specified by

∂T

∂t
= αl

∂2T

∂x2
, s < x < ∞ (3)

T = TI(t) , ρlLmst = −kl
∂T

∂x
, at x = s (4)

T → T∞ , as x →∞ , (5)
T (x, 0) = T∞ , s(0) = 0 , (6)

where T∞ < Tm. The parameters αl, ρl, Lm, kl represent the thermal diffusivity, density,
latent heat and conductivity respectively. Typical parameter values are presented in
Table 1. The interface temperature is related to the interface velocity by equation (1).
The linearised version is given by (2) and setting φ = 0 in this equation brings us back to
the standard condition that the interface temperature takes the constant value Tm. Note,
the system (3)-(6) in fact loses energy. In [9] this issue is discussed in detail and an energy
conserving form is presented which is valid in the limit ks/kl → 0. However, this limit
is physically unrealistic and in [12] the reduction in the limit ks/kl → ∞ is determined.
Results there are shown for the two limiting cases, the basic reduction of (3)-(6) and
numerics for the full two-phase problem. It is shown that the reduction (3)-(6) gives a
reasonable approximation and is in fact more accurate than the energy conserving form
with ks/kl → 0. So, since (3)-(6) is the most common form we retain it for this paper.

The system (3)-(6) may be nondimensionalised with

T̂ =
T − Tm

∆T
, t̂ =

t

T , x̂ =
x

L
, ŝ =

s

L
, T̂I =

TI − Tm

∆T
, (7)

where T = L2/αl and L = φαl/∆T . The temperature scale is ∆T = Tm−T∞. The length-
scale is determined from equation (1), however if TI = Tm there is no natural length-scale
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Substance Tm (K) Lm (J/Kg) cl (J/Kg·K) ρl (kg/m3) kl (W/m·K) q (J) d (m)
(×103) (×105) (×103) (×103) (×10−20) (×10−9)

Copper 1.36 2.09 0.53 8.02 157.18 6.71 0.23
Salol 0.32 0.90 1.58 1.18 0.18 6.61 1.00

Table 1: Approximate thermodynamical parameter values for Cu and Salol, taken from
[5, 13, 14, 15].

and it must be left arbitrary. Dropping the hat notation the governing equations are now

∂T

∂t
=

∂2T

∂x2
, s < x < ∞ (8)

T = TI(t) , βst = −∂T

∂x
, at x = s (9)

T → −1 , as x →∞ (10)
T (x, 0) = −1 , s(0) = 0 , (11)

where β = Lm/(cl∆T ). The nondimensional interface temperature TI is determined from

st = −TI exp
(

QTI

P + TI

)
, (12)

where Q = q/(kTm) and P = Tm/∆T . The case of no supercooling is retrieved by setting
TI(t) = 0 in (9) and then (12) is not used, small supercooling requires ∆T to be small
such that P →∞ and the exponential term of (12) may be set to unity, then st = −TI(t).
Otherwise, the full expression in (12) is used to determine TI .

When TI(t) is not identically zero then we require an initial value (and also one for
st). Noting that T (x, 0) = −1 and TI(t) = T (s, t) then s(0) = 0 indicates that TI(0) =
T (0, 0) = −1. An initial (finite) value for st may then be found by substituting TI(0) = −1
into equation (12). The linearised version simply leads to st(0) = 1. In the case TI ≡ 0
then as t → 0 the discontinuity in temperature due to the conflicting conditions T (0, 0) =
0, T (x, 0) = −1 cannot be avoided. This indicates that the front velocity st = −Tx(s, t) is
infinite at t = 0 (this will become clear in subsequent sections).

Before proceeding further, it is convenient to immobilise the boundary by setting

y = x− s , T (x, t) = F (y, t) . (13)

Then the system (8)-(11) becomes

∂2F

∂y2
=

∂F

∂t
− st

∂F

∂y
, 0 < y < ∞ (14)

F = TI(t) , βst = −∂F

∂y
, at y = 0 (15)

F → −1 , as y →∞ (16)
F (y, 0) = −1 , s(0) = 0 . (17)

In the following we will analyse this system further.

3 Asymptotic analysis

Most exact solutions to Stefan problems, where they exist, can be obtained by similarity
methods. Hence, we begin by looking for similarity solutions to the system (14)-(17) and
so define

η =
y

tα
, F (y, t) = G(η) . (18)
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The governing equations (14)-(16) are now

G′′ = −
(
αηt2α−1 + tαst

)
G′ , 0 < η < ∞ (19)

G(0) = TI(t) , G|η→∞ → −1 , βtαst = −G′(0) , (20)

with s(0) = 0, and primes denote differentiation with respect to η. Denoting ν =
−G′(0)/β ≥ 0 we use the Stefan condition to eliminate tαst from (19) and so the model
becomes

G′′ = −
(
αηt2α−1 + ν

)
G′ , 0 < η < ∞ (21)

G(0) = TI(t) , G|η→∞ → −1 , tαst = ν , s(0) = 0 . (22)

Since G = G(η) this system is strictly only valid when the t dependence is removed from
the equations involving G. In (21) this is achieved by setting α = 0 or 1/2 but then we
must also take into account the boundary condition G(0) = TI(t).

3.1 No kinetic undercooling

The classical formulation for the one-phase supercooled Stefan problem with no kinetic
undercooling is obtained by setting TI(t) = 0. In this case we choose α = 1/2 and so the
governing equations (21)-(22) are now

G′′ = −
(η

2
+ ν

)
G′ , 0 < η < ∞ (23)

G(0) = 0 , t1/2st = ν , G|η→∞ → −1 . (24)

Integrating the Stefan condition gives s = 2ν
√

t and the solution for G is

G(η) = −1 +
erfc (η/2 + ν))

erfc (ν)
, s = 2ν

√
t . (25)

The definition of ν = −G′(0)/β then leads to the transcendental equation

β
√

πν erfc(ν)eν2
= 1 . (26)

In the original variables the solution is

T = −1 +
erfc (x/(2

√
t))

erfc (ν)
, s = 2ν

√
t , st =

ν√
t

, (27)

together with (26) this defines the well-known Neumann solution. The values of ν and
hence the velocity of the phase change front are therefore dependent on β = Lm/(cl∆T ).
As mentioned earlier, this solution has infinite velocity at t = 0 (since st ∝ 1/

√
t).

Equation (26) determines ν(β), it has a unique solution for β > 1 but when β ≤ 1 no
solution exists; as β → 1+, ν →∞ and the front velocity is ∞ for all time.

3.2 Linear kinetic undercooling

3.2.1 Small time solutions

As discussed in Section § 2, without kinetic undercooling the initial boundary temperature
is fixed, T (0, 0) = 0, thus forcing an initial infinite temperature gradient. With kinetic
undercooling T (0, 0) = TI(0) ≈ −1 permits a finite temperature gradient. This indicates
the need for different scalings at small times.

Let us now consider the governing equations (14)-(17). Noting that F (y, 0) = −1 we
look for a small time similarity solution close to F = −1 and so re-define the function
G(η) as

η =
y

t1/2
, F (y, t) = −1 + t1/2G(η) . (28)
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This transforms equations (14)-(17) into

G′′ =
1
2
G− η

2
G′ − t1/2stG

′ , 0 < η < ∞ (29)

−1 + t1/2G(0) = −st , βst = −G′(0) , G|η→∞ → 0 . (30)

The factor t1/2 in front of G(η) in (28) is chosen to balance the Stefan condition in (30)
and then it follows that s ∝ t. This leaves time in the governing equation (29) and the
boundary condition (30a): for this reason we make the small time substitution t = ετ ,
s = εr, where ε is an artificial small parameter [16, 17], to find

G′′ =
1
2
G− η

2
G′ − ε1/2τ1/2rτG

′ , 0 < η < ∞ (31)

−1 + ε1/2τ1/2G(0) = −rτ , rτ = ν , G|η→∞ → 0 . (32)

This form motivates a perturbation series with G(η) = G0(η) + O(ε1/2) and r(τ) =
r0(τ) + ε1/2r1(τ) +O(ε), i.e. the leading order form for G is independent of τ but this is
not necessarily true for r. The leading order problem is then

G′′
0 =

1
2
G0 − η

2
G′

0 , 0 < η < ∞ (33)

1 = r0τ , r0τ = ν , G0|η→∞ = 0 . (34)

Combining the first two boundary conditions in (34) shows that ν = 1 and this provides
the second boundary condition for G0, namely G′

0(0) = −β (since ν = −G′(0)/β). The
solution is then

G0(η) = β

[
2√
π

e−η2/4 − η erfc
(η

2

)]
, r0(τ) = τ . (35)

Although the self-similarity assumption in (28) does not permit us to solve for the tem-
perature at first order, equation (32a) indicates that

r1τ = −τ1/2G0(0) ⇒ r1 = −4βτ3/2

3
√

π
,

where we have used the value G0(0) = 2β/
√

π. Writing this solution back in the original
variables gives

T (x, t) ≈ −1 + β

[
2

√
t

π
exp

(
−(x− s)2

4t

)
− (x− s)erfc

(
x− s

2
√

t

)]
, (36)

s ≈ t

[
1− 4β

3
√

π

√
t

]
, st ≈ 1− 2β√

π

√
t . (37)

Recall that the temperature is accurate only to leading order whilst the position of the
front is accurate to first order. Note, we will see the condition st → 1 as t → 0 arising
below for various other cases.

3.2.2 Large time solutions

For sufficiently small times, the solution of the previous section holds for any value of β.
The large time solution, on the other hand, takes different forms depending on whether
β is greater, less than or equal to 1.
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Case β < 1: In this case we choose α = 0, in (18), and the governing equations
(21)-(22) reduce to

G′′ = −νG′ , 0 < η < ∞ (38)
G(0) = −st , G|η→∞ → −1 , st = ν , s(0) = 0 . (39)

Note, now η = y = x− s, which indicates a travelling wave solution. The travelling wave
formulation differs from the other forms of similarity solution. In general the similarity
transformation η = y/tα with α 6= 0 allows the far-field and initial conditions to be
combined, that is η → ∞ when x → ∞ or t → 0. When α = 0, the limit t → 0
requires s → 0 and since 0 ≤ x ≤ s the co-ordinate η = x − s → 0. So in this case
the initial condition must coincide with the left hand boundary condition. Since initially
the temperature is everywhere at T (x, t) = G(η) = −1, the condition G(0) = −st then
requires st = 1.

The Stefan condition integrates immediately to give s(t) = νt and this may be used
to remove the time dependence in the boundary condition G(0) = ν. Integrating the
governing equation (38) and applying the boundary conditions in (39) leads to

G = −1 + (1− ν)e−νη . (40)

To determine the value of ν we now use the above solution and the definition ν = −G′(0)/β
to show that ν = 1− β and hence

G = −1 + βe−η(1−β) , s = (1− β)t , (41)

which is obviously a travelling wave. Since the front propagates in the positive η direction,
st > 0, the solution is restricted to values β < 1.

The travelling wave solution describes a constant shape that propagates with time: the
temperature and temperature gradient are constant at the moving front G(0) = −1 + β,
Gη(0) = −β(1 − β). However, we noted above that for TI(t) 6= 0 the initial condition
is st(0) = 1 but here we have st(0) = 1 − β 6= 1: in other words, we do not satisfy the
initial condition. The travelling wave solution is commonly quoted as an exact solution
to Stefan problems but in this case it may only be considered as a large time solution
and this will become clear when we compare against the numerics. With this in mind we
should not apply s(0) = 0 and the results in the original variables are

T = −1 + βe−(1−β)(x−s) , s = (1− β)t + C0 , st = (1− β) . (42)

Case β > 1: For β > 1 we can make progress by applying a large time substitution
t = τ/ε to (21)-(22) but now with α = 1/2. The Stefan condition (22b) then implies
scaling s = r/ε1/2 and the governing equations are

G′′ = −
(
ν +

η

2

)
G′ , 0 < η < ∞ (43)

G(0) = −ε1/2rτ , τ1/2rτ = ν , G|η→∞ = −1 . (44)

Note, in the previous example we simply solved for G and then found we could not
apply the initial condition s(0) = 0, hence suggesting a large time solution. Here we
begin under the assumption of large time and so do not impose s(0) = 0. The Stefan
condition then immediately leads to r = 2ν

√
τ + c0, where c0 is an integration constant.

The small parameter in the boundary condition suggests a series solution G = G0 +
O(ε1/2). The leading order problem is then simply the α = 1/2 case without kinetic
undercooling (25)-(26) but the initial condition no longer applies. Viewed from another
angle we can interpret the no kinetic undercooling problem as a large time leading order
approximation to the kinetic undercooling problem. The first order problem has a time-
dependent boundary condition and so, as for the small time solution in Section § 3.2, only
the leading order problem is consistent with the current similarity transformation.

Writing the solution back in the original variables gives

T ≈ −1 +
erfc (x/(2

√
t)− C1)

erfc (ν)
, s ≈ 2ν

√
t + C1 , st ≈ ν√

t
. (45)
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Case β = 1: It is clear that this intermediate case cannot be found from the arguments
given above and the analysis turns out to be more delicate. We therefore study it in more
detail.

Instead of the similarity transformation given in (18) we define

η =
y

tα
, F (y, t) = G(η, t) . (46)

The governing equations (14)-(16) are now

∂2G

∂η2
= t2α ∂G

∂t
−

(
αηt2α−1 + tαst

)∂G

∂η
, 0 < η < ∞ (47)

G
∣∣
η=0

= −st , G|η→∞ → −1 , tαst = −∂G

∂η

∣∣∣∣
η=0

, (48)

again we do not impose s(0) = 0.
We apply a large time substitution

t =
τ

ε
, s =

r

εγ
, G(η, t) = H(η, τ) , (49)

to equations (47)-(48), for the moment leaving the exponents α, γ unknown. Then the
Stefan condition in (48) becomes

ταrτ = εα+γ−1 ∂H

∂η

∣∣∣∣
η=0

,

and so we must have γ = 1 − α for the front to move (at leading order). Hence, the
governing equations are

∂2H

∂η2
= τ2αε1−2α ∂H

∂τ
− (

αητ2α−1ε1−2α + ταrτ

) ∂H

∂η
, 0 < η < ∞ (50)

H
∣∣
η=0

= −εαrτ , H|η→∞ → −1 , ταrτ = −∂H

∂η

∣∣∣∣
η=0

. (51)

From examining (50) and (51a) it is clear that we require 0 < α < 1/2, in order that
ε1−2α, εα → 0 as ε → 0. We now introduce expansions

H(η, τ) = H0(η) + ε1−2ατ θH1(η) + . . . , r(τ) = r0(τ) + ε1−2αr1(τ) + . . . , (52)

where again θ is left unspecified. Substituting these expansions into (50)-(51) gives the
leading order problem

H ′′
0 (η) = −ν0H

′
0(η) , 0 < η < ∞ (53)

H0(0) = 0 , H0|η→∞ → −1 , ταr0τ = ν0 , (54)

where ν0 = −H ′
0(0). This has solution

H0(η) = −1 + e−ν0η , r0 =
ν0

1− α
τ1−α + c0 , β = 1 . (55)

Note, the definition of ν0 = −H ′
0(0) is automatically satisfied and provides no information.

We must then look to the higher order terms to determine ν0. Neglecting the leading order
terms in the boundary condition for H|η=0 leads to the balance ε1−2ατ θH1(0) = −εαr0τ .
To make the terms balance we choose α = 1/3. Thus the O(ε1/3) problem is

τ θH ′′
1 (η) = −η

3
τ−1/3H ′

0(η)− ν0τ
θH ′

1(η)− τ1/3r1τH
′
0(η) , 0 < η < ∞ (56)

τ θH1(0) = −r0τ , H1|η→∞ → 0 , τ1/3r1τ = −τ θH ′
1(0) . (57)
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To remove τ from the equations requires setting θ = −1/3. Thus (56)-(57) reduce to

H ′′
1 (η) = −η

3
H ′

0(η)− ν0H
′
1(η)− ν1H

′
0(η) , 0 < η < ∞ (58)

H1(0) = −ν0 , τ2/3r1τ = ν1 , H1|η→∞ → 0 , (59)

where ν1 = −H ′
1(0). The solution to this system is

H1 = − 1
6ν2

0

[
2 + 6ν2

0ν1η + 2ν0η + ν2
0η2

]
e−ν0η . (60)

Substituting for H1(0) into (59a) gives an equation to determine ν0

ν0 =
(

1
3

)1/3

. (61)

Finally we may write down the position of the moving front

r0 =
(

9
8

)1/3

τ2/3 + c0 . (62)

Note, the dependence r ∼ τ2/3 is quoted in [6, 7, 10, 11] (without the multiplicative
constant). Finally, in the original notation we have

T ≈ −1 + exp
(

x− s

(3t)1/3

)
, s ≈

(
9
8

)1/3

t2/3 + C2 , st ≈ (3t)−1/3 . (63)

3.3 Nonlinear kinetic undercooling

Theoretically, the Neumann solution holds for any β > 1. Adopting the linear approxima-
tion to the st(TI) relation permits the solution domain to be extended to include β ≤ 1.
Taking the values for Lm, cl for salol given in Table 1 indicates β → 1 as ∆T → 57K
and this is where the Neumann solution predicts the velocity tends to infinity. However,
if we look again at Figure 1b) it is clear that the velocity is in fact significantly below its
maximum value of 4.5× 10−5m/s. Further, the linear model is only valid for ∆T < 10K,
that is for β > 5.7. For copper a similar argument indicates the linear model holds for
β > 3.95. Consequently, for relatively large values of β neither the Neumann or linear
approximations will provide physically realistic solutions and we must deal with the full
nonlinear relation (12).

Key to the similarity solutions of the previous section was the ability to remove the
time dependence from the conditions at x = s(t). The nonlinear relation (12) makes this
a much more difficult task and so in this section we limit our analysis to small time and
travelling wave solutions. In the subsequent section we will then introduce an accurate
form of heat balance integral method which permits approximate solutions for further
cases.

3.3.1 Small time solutions

Using the previous definitions of η, G as given in Section § 3.2 we obtain equations (29)-
(30) with the only difference being that in the boundary condition (30a) we replace the
right hand side with TI . This relation is then used in equation (12) to give

st =
[
1− t1/2G(0)

]
exp

{
Q

[−1 + t1/2G(0)
]

P +
[−1 + t1/2G(0)

]
}

. (64)

We now make the small time substitution t = ετ , s = εr, and expand the exponential term
using a Taylor series expansion. This brings us to the leading order problem specified by
equations (33,34) but with the condition r0τ = 1 replaced by

r0τ = exp
(
− Q

P − 1

)
. (65)
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This has solution

G0 = β exp
(
− Q

P − 1

)[
2√
π

e−η2/4 − ηerfc
(η

2

)]
, r0 = τ exp

(
− Q

P − 1

)
. (66)

As before we cannot find G1 but can determine an expression for r1, namely

r1 = − exp
(
− 2Q

P − 1

)[
1− QP

(P − 1)2

]
τ3/2 4β

3
√

π
. (67)

Writing the solution back in the original variables leads to

T ≈ −1 + t1/2β exp
(
− Q

P − 1

)[
2√
π

e−
(x−s)2

4t −
(

x− s

t1/2

)
erfc

(
x− s

2t1/2

)]
, (68)

s ≈ exp
(
− Q

P − 1

)
t

{
1− exp

(
− Q

P − 1

) [
1− QP

(P − 1)2

]
4β

3
√

π
t1/2

}
, (69)

st ≈ exp
(
− Q

P − 1

){
1− exp

(
− Q

P − 1

)[
1− QP

(P − 1)2

]
2β√

π
t1/2

}
. (70)

3.3.2 Large time solutions

Case β < 1: The travelling wave analysis in Section § 3.2 easily translates to the
current problem. We find

G = −1 + (1 + TI)e−νη , (71)

where TI = β − 1. The wave speed ν, which varies with TI , follows from substituting
st = ν into equation (12)

ν = st = (1− β) exp
(

Q(β − 1)
P + β − 1

)
. (72)

The temperature in the original variables is

T = −1 + β exp(−ν(x− s)) , (73)

and the position and velocity of the freezing front are

s = (1− β) exp
(

Q(β − 1)
P + β − 1

)
t + C0 , st = (1− β) exp

(
Q(β − 1)
P + β − 1

)
. (74)

As in the linear case, the above travelling wave solution is restricted to values β < 1 and,
since it cannot satisfy the initial condition, should be considered a large time approxima-
tion.

4 Solution with the HBIM

The heat balance integral method (HBIM) introduced by Goodman [18] is a well-known
approximate method for solving Stefan problems. The basic idea behind the method is to
approximate the temperature profile, usually with a polynomial, over some distance δ(t)
known as the heat penetration depth. The heat equation is then integrated to determine a
simple ordinary differential equation for δ. The solution of this equation, coupled with the
Stefan condition then determines the temperature and position s(t). The popularity of the
HBIM is mainly due to its simplicity. However, in its original form there are a number of
drawbacks, primarily a lack of accuracy for certain problems but also the rather arbitrary
choice of approximating function, see [19] for a more detailed description of the method
and problems. Recently a number of variants of the HBIM have been developed which
address the issues and have led to simple solution methods that, over physically realistic
parameter ranges, have proved more accurate than second order perturbation solutions
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[20, 21, 22, 23]. For the current study we will use the HBIM to permit us to make further
analytical progress in the case of large supercooling.

For the one-phase semi-infinite problem with large supercooling the HBIM proceeds
as follows. For t > 0 the temperature decreases from T (s, t) = TI to −1 as x →∞. With
the HBIM the temperature profile is specified over a finite distance x ∈ [s, δ], where the
‘heat penetration depth’ δ is defined as the position beyond which the temperature rise is
negligible. This leads to the boundary conditions T (δ, t) = −1, Tx(δ, t) = 0 and δ(0) = 0.
The simplest polynomial profile satisfying these conditions, along with T (s, t) = TI(t), is
given by the function

T = −1 + (1 + TI)
(

δ − x

δ − s

)n

. (75)

In the original HBIM the value n = 2 was employed, although other values have been
used in later studies (often motivated by numerical solutions), see [19]. For now we leave
it unspecified. The heat balance integral is determined by integrating the heat equation
(8) over the spatial domain, leading to

d
dt

∫ δ

s
T dx− T

∣∣
x=δ

δt + T
∣∣
x=s

st = Tx

∣∣
x=δ

− Tx

∣∣
x=s

. (76)

Substituting the expression for T from (75) gives

d
dt

[
(TI − n)(δ − s)

n + 1

]
+ δt + TIst =

n(1 + TI)
δ − s

. (77)

This involves the unknowns, δ(t), s(t). A further equation comes from the Stefan condition

βst =
n(1 + TI)

δ − s
(78)

and the system is closed with equation (12). The exponent n is also unknown and this is
determined through Myers’ method, described in [22, 23]. If we define f(x, t) = Tt − Txx,
then the HBIM may be specified through the integral

∫ δ
s f dx = 0. The modification

suggested in [22, 23] was to choose n to minimise the least-squares error En =
∫ δ
s f2 dx.

This leads to significant improvements in the accuracy of the HBIM as well as providing
an error measure that does not require knowledge of an exact or numerical solution. For
certain problems, for example when the boundary conditions are time-dependent, n may
vary with time. To keep the method simple n is then set to its initial value, since this
is where the greatest error En usually occurs. A subsequent refinement to this method,
called the Combined Integral Method (CIM), was developed by Mitchell & Myers [21, 24]
which provides a more consistent way to deal with cases where n is time-dependent.

The standard HBIM is often criticized due to a lack of accuracy. To indicate the
accuracy of these new methods we point out that in [24] the CIM, second order large β
and leading order small β perturbation solutions are compared against the exact solution
for a two-phase supercooled Stefan problem. For β ∈ [0.012, 51.5] the CIM is the most
accurate method with a percentage error in the front velocity in the range [0.1, 0.4]%.
In the range β ∈ [1, 51.5] the error for the 2nd order perturbation varies almost linearly
between 100 and 0.4% (for β < 1 the error is off the graph). Over the whole range
plotted in [24, Fig. 5], β ∈ [10−4, 102], the CIM error is a decreasing function of β with
a maximum when β = 10−4 of around 0.44%. Given that the polynomial exponents only
depend on β we expect Myers’ method to be even more accurate than the CIM and so
in the following, for simplicity, we will restrict n to be independent of time and so use
Myers’ method.

4.1 Linear kinetic undercooling

For the case of linear kinetic undercooling, TI(t) = −st, and so we can use the Stefan
condition (78) to eliminate δ from (77) and so derive an equation depending solely on
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s(t). Assuming n is constant we obtain the second order ODE

stt =
(n + 1)βs3

t (1− β − st)
n(1− s2

t )
. (79)

Hence the HBIM has reduced the initial Stefan problem to one of solving a single ordinary
differential equation for s. This is obviously a much simpler prospect than solving the full
Stefan problem. Once s is known the interface temperature is determined by TI = −st,
δ is given by equation (77) and the temperature profile follows from (75). As discussed
earlier the initial conditions are s(0) = 0, st(0) = 1. Equation (79) is easily solved using
the Matlab routine ode15s. In this case, the error minimisation process leads to n ≈ 3.57.
The condition st(0) = 1 leads to an initial singularity in acceleration. Motivated by the
previous small time solution we assume a form st = 1 + Btα when t ¿ 1 which leads
to st = 1 −

√
β2(n + 1)/n t1/2 and hence s = t − (2/3)

√
β2(n + 1)/n t3/2. These forms

are then used as the initial conditions for the numerical calculation starting at some time
t = t0 ¿ 1.

Note, this is not the first time that an HBIM has been applied to kinetic undercooling
problems. Charach & Zaltzman [7] studied the linear case employing the error function
profile

T = −1 + (1 + TI)erfc
[
c(x− s)

]
, (80)

where c is an unknown time-dependent coefficient to be determined. This form was
motivated by the TI = 0 case of equation (27). The solutions obtained in this manner
exhibit the same large time behaviours discussed earlier although by comparing to the
numerical results we found this profile to be significantly less accurate than that using
Myers’ method. It also requires c to be determined and c(0) turns out to be infinite. For
these reasons we do not show this solution on any plots.

4.2 Nonlinear kinetic undercooling

For the case of large supercooling the appropriate expression for TI(t) is obtained from
equation (12). Eliminating δ from (77) by means of the Stefan condition (78) we obtain

2(1 + TI)
st

dTI

dt
− (1 + TI)2

s2
t

stt =
(n + 1)β(β − 1− TI)

n
st . (81)

The above equation suggests making the change of variable y = st, which leads to

dTI

dt
=

(1 + TI)
2y

dy

dt
+

(n + 1)β(β − 1− TI)y2

2n(1 + TI)
. (82)

A second equation can be obtained by taking the time derivative of (12)

dy

dt
= − exp

(
Q TI

P + TI

)[
1 +

QP TI

(P + TI)2

]
dTI

dt
. (83)

Equations (82) and (83), together with the definition y = st, constitute a system of three
nonlinear first order ODEs that can be easily solved with the Matlab routine ode15s. The
initial conditions for this system are TI(x, 0) = −1, y(0) = exp(−Q/(P −1)) and s(0) = 0.
Again, the exponent n is determined by minimizing En for t ≈ 0 giving n ≈ 3.61.

4.3 Asympotic analysis within the HBIM formulation

4.3.1 Linear kinetic undercooling

Applying a large time subsitution allows us to examine the solution behaviour analytically
and in particular make comparison with earlier solution forms. Firstly, we write t = τ/ε
and s = r/εγ and equation (79) becomes

ε2−γrττ =
(n + 1)βε3(1−γ)r3

τ (1− β − ε1−γrτ )
n(1− ε2(1−γ)r2

τ )
. (84)
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The obvious balance comes from setting 2 − γ = 3(1 − γ), which gives γ = 1/2, and so
(84) reduces to

rττ ≈ (n + 1)β(1− β)r3
τ

n
⇒ r−2

τ ≈ 2(n + 1)β(β − 1)τ
n

+ c0 . (85)

To ensure rτ > 0 requires β > 1. Since all solutions with β ≥ 1 have st → 0 (or equiva-
lently TI → 0) as t → 0 the constant c0 = 0. This indicates st ≈

√
n/(2(n + 1)β(β − 1)t)

and is consistent with the large time solution given in Section § 3.2 for β > 1.
A second balance comes from setting γ = 1 in (84). Then the right hand side is

dominant and so rτ = 1−β, giving st = 1−β (and so requiring β < 1). This is consistent
with the travelling wave solution, valid for β < 1, found in Section § 3.2.

A third reduction is obtained by first setting β = 1 in equation (84)

ε2−γrττ = −(n + 1)ε4(1−γ)r4
τ

n(1− ε2(1−γ)r2
τ )

. (86)

Then balancing both sides gives 2− γ = 4(1− γ), or γ = 2/3, leading to

rττ ≈ −(n + 1)r4
τ

n
⇒ rτ ≈

(
3(n + 1)τ

n

)−1/3

. (87)

Thus

st ≈
(

3(n + 1)t
n

)−1/3

⇒ s ≈
(

9n

8(n + 1)

)1/3

t2/3 . (88)

Again the constants of integration have been set to zero to achieve the appropriate be-
haviour as t → ∞. This is the behaviour predicted by the large time, β = 1 analysis of
Section § 3.2.

From the above we see that the HBIM formulation allows us to easily capture the
three forms of solution behaviour determined in § 3.2.2.

4.3.2 Nonlinear kinetic undercooling

As in the previous section we may make analytical progress in the large time limit by
setting t = τ/ε, s = r/εγ and also TI = εθU , where γ, θ ≥ 0. Equation (12) then becomes

ε1−γrτ = −εθU exp
(

Q εθU

P + εθU

)
. (89)

This equation clearly shows that for the front to move θ = 1− γ. Equation (81) becomes

ε
2(1 + ε1−γU)

rτ

dU

dτ
− εγ (1 + ε1−γU)2

r2
τ

rττ = ε1−γ (n + 1)β(β − 1− ε1−γU)
n

rτ . (90)

We note that the first term in (90) will never be dominant for any value of γ ∈ [0, 1]. So,
in fact,

−εγ (1 + ε1−γU)2

r2
τ

rττ ≈ ε1−γ (n + 1)β(β − 1− ε1−γU)
n

rτ , ∀ γ. (91)

Moreover, we realize that the exponential in (89) affects the leading order term only when
γ = 1, otherwise rτ = −U +O(ε1−γ), i.e. the linear case is retrieved, and so we find the
same balances as in the previous section. First, for γ = 1/2 (91) reduces to (85) valid
for β > 1 (st ∼ t−1/2). Second, setting β = 1, we find that γ = 2/3 and (91) reduces to
(88) (st ∼ t−1/3). Finally, for γ = 1 the right hand side of (91) is dominant and we find
U = TI = β − 1. Then st is described by the travelling wave solution (72) which requires
β < 1. There is also the possibility of setting γ = 0 but this implies TI = εU ¿ 1 which
is not consistent with the specification of large supercooling.
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4.3.3 Discussion

The equations obtained through the HBIM formulation for the linear case are easily anal-
ysed to determine the three time dependencies found at large times by previous authors.
In the nonlinear case the asymptotic analysis may no longer be applied, however the
HBIM formulation indicates the three same solution forms. When β ≥ 1, as t → ∞ the
velocity st → 0 and so TI → 0. Consequently we should expect the linear and nonlinear
cases to coincide. The numerics of the following section confirms this. When β < 1 the
value of st is constant and differs for the linear and nonlinear cases.

5 Results

We now present a set of results for the various scenarios discussed in §3 and §4. The
asymptotic and HBIM results are compared with a numerical scheme similar to that
developed by Mitchell & Vynnycky [25, 26]. This uses the Keller box scheme, which is
a second order accurate finite-difference method, and has been successfully applied to
several moving boundary problems. The boundary immobilisation transformation at the
end of §2, along with a small time analysis, ensures that the correct starting solution is
used in the numerical scheme. In all examples we use parameter values for copper, hence
Q ≈ 3.5811. The value of β and P depend on ∆T hence the plots with β = 0.7, 1, 1.5
correspond to P ≈ 2.417, 3.453, 5.179 respectively.

For clarity we present the results in three subsections: in the first we compare numerics,
HBIM and asymptotic solutions for the case of linear kinetic undercooling, then repeat
this for nonlinear undercooling, and finally we compare results obtained through the two
undercooling models and the classical Neumann solution.

5.1 Linear kinetic undercooling
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Figure 2: Linear kinetic undercooling with a) t ∈ [0, 0.1], b) t ∈ [0, 140]. The sets of
curves denote the numerical solution (solid line), HBIM (dashed) and small and large
time asymptotics (dash-dotted) results for the interface velocity when β = 1.

In Figure 2 we compare the results of the numerical solution (solid line), the HBIM
(dashed) defined by equation (79) and the small and large time asymptotics (dash-dot)
for the case β = 1. The value of the exponent used in the HBIM was n = 3.57 which
was determined by minimising the least-squares error. The left-hand figure shows the
solutions for t ∈ [0, 0.1]. In this range the numerical and HBIM solutions are virtually
indistinguishable whilst the small time asymptotic solution is only accurate for the very
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initial stage. The asymptotic solution does have a time restriction since the leading order
term must be significantly greater than the first order. In fact a more rigorous bound is
imposed by the restriction that st > 0 thus requiring t < π/(4β2) and so the smaller the
value of β the longer the solution is valid. The right hand figure shows a comparison of
the numerics, HBIM solution and large time asymptotics carried on until t = 140. Again
the HBIM is close to the numerics for all of the range. The large time asymptotic solution
improves as t increases and for t approximately greater than 80 becomes more accurate
than the HBIM.
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Figure 3: Linear kinetic undercooling with t ∈ [0, 100] and a) β = 0.7, b) β = 1.5. The
sets of curves denote the numerical solution (solid line), HBIM (dashed) and large time
asymptotics (dash-dotted) results for the interface velocity.

Figure 3 displays two sets of results demonstrating the two other forms of behaviour,
with β < 1 and β > 1. The left hand figure is for β = 0.7. For large times the solution is a
travelling wave. The large time asymptotic result is therefore a straight line corresponding
to the wave speed st = 1 − β = 0.3. As mentioned in §3.2.2, the travelling wave does
not match the initial conditions, which the HBIM and numerics correctly capture, and so
must be classified as a large time solution. Even at t = 100 the travelling wave speed is
around 3% below the numerical solution.

For β > 1 the large time asymptotic solution (at leading order) reduces to the no
kinetic undercooling (or Neumann) solution. The velocity is represented by (45c) and it
is shown in the right hand plot in Figure 3 for β = 1.5 together with numerical and HBIM
results (which again are virtually indistinguishable). At t = 100 the difference between
numerics and asymptotics is around 10%. However, if we increase β to 2 the error at
t = 100 reduces to 4%.

5.2 Nonlinear kinetic undercooling

In Figures 4, 5 we demonstrate different solution behaviours for the nonlinear kinetic
undercooling case. In contrast to the linear examples we do not have large time asymptotic
solutions for β ≤ 1 and only show HBIM and numerical solutions for those cases. The
HBIM solution is obtained by integrating (82)–(83) using Matlab routine ode15s.

The left hand plot in Figure 4 shows the small time behaviour with β = 1, when
t ∈ [0, 0.1]. Again the HBIM (with n = 3.57) appears to be very accurate, whilst the
asymptotic solution slowly loses accuracy. As before this is bounded by a time restriction,
t ¿ π/4β2 exp[2Q/(1−P )][1−QP/(P−1)2]2. Decreasing β would improve the accuracy of
the asymptotic solution. The HBIM solution has the initial value st = exp(−Q/(P − 1)),
which in this case gives st(0) ≈ 0.232. An important difference between this solution
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Figure 4: Nonlinear kinetic undercooling with a) t ∈ [0, 0.1], b) t ∈ [0, 100]. The sets of
curves denote the numerical solution (solid line), HBIM (dashed) and small time asymp-
totics (dash-dotted) results for the interface velocity when β = 1.

and the zero and linear undercooling cases is that the speed now increases with time.
Referring to Figure 1, this indicates that this value of Stefan number requires Tm − TI

such that we begin to the right of the peak in the st(∆T ) curve. As time proceeds and
TI approaches Tm we will move to the left and so observe an initial increase in st followed
by a decrease as we pass the peak. This behaviour is apparent in the right hand plot of
Figure 4, which shows the numerical and HBIM solution for t ∈ [0, 100]. For t ∈ [0, 5]
(approximately) st increases to a maximum of just above 0.28 and then slowly decreases
with the t−1/3 behaviour predicted in § 4.3.
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Figure 5: Nonlinear kinetic undercooling with a) β = 0.7, t ∈ [0, 100] and b) β = 1.5,
t ∈ [0, 40] . The sets of curves denote the numerical (solid line) HBIM (dashed) and, when
β = 0.7, asymptotic (dash-dot) solutions for the interface velocity.

Figure 5 displays results for β = 0.7, 1.5 for t ∈ [0, 300], [0, 40] respectively. The left
hand figure shows that the HBIM is always close to the numerical solution and that the
travelling wave result is only achieved after a very large time. Even after t = 300 the
large time asymptotic solution is 4% below the numerical solution. This approach to the
travelling wave is much slower than in the linear case. The HBIM and numerical results,
as in Figure 4, show an initial growth in st followed by a decrease for t > 30, again this
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may be attributed to starting from the right of the peak in the st(∆T ) graph and then
moving to the left, across the peak as t increases. The right hand figure contains the
HBIM and numerical solutions for β = 1.5. Obviously the curves are very close to each
other. The larger value of β indicates a lower value of ∆T than in the left hand plot
and this means the degree of undercooling is always such that we remain to the left of
the peak on the st(∆T ) graph. Consequently st is a decreasing function of time and, as
shown in § 4.3, st ∝ t−1/2.

At the end of § 4 it was mentioned that the two solution forms, with β ≥ 1, must
approach the linear kinetic undercooling forms since TI = −st → 0. Comparing Figures 2
and 4 shows the large time solutions for β = 1 do coincide, similarly with the results when
β = 1.5 shown in the right side of Figures 3 and 5. However, when β < 1 then TI = 1− β
does not approach Tm and so linear and nonlinear results for β = 0.7, shown in the left
side of Figures 3 and 5, have different limits, st = 0.3 and st ≈ 0.18 respectively.

5.3 Comparison of linear and nonlinear undercooling
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Figure 6: Comparison of velocities and temperatures (at t = 1) predicted by the nonlinear
(solid line), linear (dashed line) and Neumann (dot-dash) solutions for β = 1.1.

In Figure 6 we show plots of the velocity st for t ∈ [0, 100] and the temperature
T at t = 1 for the case β = 1.1. This β value was chosen to permit the inclusion of
the Neumann solution. On the plots the solid line represents the numerical solution of
the nonlinear problem, the dashed line that of the linear case and the dot-dash line the
Neumann solution.

The left hand plot shows the velocities st. The Neumann solution breaks down at
β = 1, however, it is clear from the curves that even for β = 1.1 it is far from the solutions
with undercooling. This indicates that, although the Neumann solution is accepted as
valid down to β = 1, it may be highly inaccurate and inappropriate for describing the
solidification of a supercooled liquid. The choice β = 1.1 means that we operate to the
left of the peak in the st(∆T ) graph, where the linear approximation is close to the
nonlinear curve. Consequently, the corresponding velocities shown on Figure 6 converge
quite rapidly. However, for small times the linear case has much higher velocities which
would result in a significantly higher prediction for s than when using the nonlinear
relation. Decreasing the value of β causes the st curves to diverge further.

The right hand plot shows the temperature profiles at t = 1 as a function of the fixed
boundary co-ordinate y = x−s. The Neumann solution (dash-dotted line) has a constant
temperature T = 0 at x = s for all times, while the nonlinear (solid) and linear (dashed)
solutions present a variable temperature at x = s that tends to 0 as time increases. The
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differences observed between the temperature profiles become smaller for larger times and
the solutions look almost the same at t = 100.

6 Conclusions

In this paper we have investigated the one-phase one-dimensional Stefan problem with a
nonlinear relation between the phase change temperature and solidification rate. In the
limits of zero and linear (small) supercooling we reproduced the asymptotic behaviour
found in previous studies. The asymptotics for the nonlinear regime proved more difficult
and then our analysis was limited to small time solutions for arbitrary Stefan number
and a travelling wave solution at large time (valid for β < 1). A recent extension to the
Heat Balance Integral Method was then applied to the system to reduce the problem to a
single ordinary differential equation for the case of linear supercooling and two ordinary
differential equations for the nonlinear case. Asymptotic techniques could then be applied
to the ordinary differential equations to reproduce the various asymptotic behaviours
found in the linear system. For the nonlinear system it turned out that the same behaviour
could be found at large times and, given the proximity of the HBIM solution to numerical
results we conclude that this reflects the behaviour of the full system.

Whilst asymptotic analysis is a popular method to analyse the solution form in various
limits it may only be valid over a very small range. In contrast the HBIM solution was very
close to the numerical solution and in general proved more accurate than the small and
large time asymptotics. In the nonlinear case, where the asymptotic solutions were not
available for all cases the HBIM equations could still be analysed to predict the solution
behaviour. This indicates that the new accurate version of the HBIM is a useful tool in
analysing this type of problem.

An interesting point concerns the Neumann solution. Although this solution exists
for supercooled fluids (such that β → 1+) it can be highly inaccurate. In our final set of
results we compared solutions for β = 1.1. The Neumann solution has st(0) = ∞, with
linear supercooling st(0) = 1 and with the nonlinear relation st(0) = e−Q/(P−1), which for
the current study on copper gave st(0) ≈ 0.278. For large times the linear and nonlinear
velocities converged (although the initial discrepancy may lead to a large difference in
the position of the front) whilst the Neumann solution had st approximately 50% higher
even at t = 100. Increasing the value of β caused the three solution sets to converge.
Perhaps the main conclusion of this study is that for practical purposes when attempting
to predict realistic solidification rates for β < 1 and even for values slightly greater than
unity the nonlinear relation should be employed. Even though the Neumann solution
exists it should not be trusted to predict solidification rates of supercooled liquids for
values of β close to unity.
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