Linear Networks 2015 - 2016

<table>
<thead>
<tr>
<th>Degree</th>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4313797 Telecommunication Engineering</td>
<td>OB</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Contact
Name: Jose Lopez Vicario
Email: Jose.Vicario@uab.cat

Prerequisites
A background in microwave engineering is recommended.

Objectives and Contextualisation

Objectives
The aim of this module is to provide the ability to design components for communications, with particular emphasis on synthesis of linear components, from the mathematical definition of the response to a circuital network, lumped element based, which has the desired response. Different technologies connected to the network synthesis approach will be analyzed. Examples and exercises will be implemented for better understanding of the content.

Skills

• Capacity for working in interdisciplinary teams
• Capacity to design communications components such as routers, commuters, concentrators, emitters and receivers in different bandwidths.
• Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent
• Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study
• Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously

Learning outcomes
1. Capacity for working in interdisciplinary teams
2. Choice of the most appropriate technology for subsequent design in terms of performance and bandwidth.
3. Design linear devices at different bandwidth frequencies
4. Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent

Use of languages
Principal working language: english (eng)
5. Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study.
6. Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously.
7. Synthesis devices with linear responses at different bandwidth frequencies.

Content

Introduction.
Mathematical synthesis of the transfer function.
Network synthesis - Circuit approach.
Coupling matrix synthesis.
Reconfiguration techniques.
Technology and design techniques.

Methodology

Content

Introduction.
Mathematical synthesis of the transfer function.
Network synthesis - Circuit approach.
Coupling matrix synthesis.
Reconfiguration techniques.
Technology and design techniques.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Directed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>7</td>
<td>0.28</td>
<td>1, 3, 2, 5, 6, 4, 7</td>
</tr>
<tr>
<td>Lab</td>
<td>12</td>
<td>0.48</td>
<td>1, 3, 2, 5, 6, 4, 7</td>
</tr>
<tr>
<td>Theory classes</td>
<td>26</td>
<td>1.04</td>
<td>3, 2, 7</td>
</tr>
<tr>
<td>Type: Supervised</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>15</td>
<td>0.6</td>
<td>5, 6, 4</td>
</tr>
<tr>
<td>Type: Autonomous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab and exercises preparation</td>
<td>17.5</td>
<td>0.7</td>
<td>3, 2, 5, 4, 7</td>
</tr>
<tr>
<td>Study</td>
<td>65</td>
<td>2.6</td>
<td>3, 2, 5, 4, 7</td>
</tr>
</tbody>
</table>

Evaluation

Evaluation
Lab (20%)
Student's ability to solve practical problems will be assessed taking into account submitted reports, autonomy in problems resolution during lab sessions, ability to work as a team with other students and diligence.

Exercises (20%)
Exercises solved by the student during classes will be evaluated. Teamwork will be assessed in exercises solved within a student group. Exercises will be evaluated along the course assessing the acquired abilities.

Presentation (20%)
A presentation will be prepared in groups and presented at the end of the course.

Test (30%)
A final test will be done at the end of the term including the contents of the subject.

Attendance and Participation (10%)
The attendance to classes and different activities along the course will be a part of the evaluation. Autonomous work and participation in the proposed activities will also determine a part of final marks.

Final grade = Lab*0.2 + Exercises*0.2 + Presentation*0.2 + Test*0.3 + Attendance*0.1

In the case that the student does not participate in any of the activities presented above, his qualification will be "No qualification".

Evaluation activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance and Participation</td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Exercises</td>
<td>20%</td>
<td>2</td>
<td>0.08</td>
<td>3, 2, 7</td>
</tr>
<tr>
<td>Lab</td>
<td>20%</td>
<td>3</td>
<td>0.12</td>
<td>1, 3, 2, 5, 6, 4, 7</td>
</tr>
<tr>
<td>Presentation</td>
<td>20%</td>
<td>0.5</td>
<td>0.02</td>
<td>6</td>
</tr>
<tr>
<td>Test</td>
<td>30%</td>
<td>2</td>
<td>0.08</td>
<td>1, 3, 2, 5, 6, 4, 7</td>
</tr>
</tbody>
</table>

Bibliography

