Improving the Quality of Food From Farm

Code: 43032
ECTS Credits: 15

<table>
<thead>
<tr>
<th>Degree</th>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4313796 Quality of Food of Animal Origin</td>
<td>OB</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Contact

Name: Susana María Martín Orue
Email: Susana.Martin@uab.cat

Teachers

Ana Cristina Barroeta Lajusticia
Gerardo Caja López
Ramón Casals Costa
Alfred Ferret Quesada
María José Milán Sendra
Jesús Piedrafita Arilla
Josepa Plaixats Boixadera
Roser Sala Pallarés
Xavier Such Martí
José Francisco Pérez Hernández
Jordi Bartolomé Filella
Sergio Calsamiglia Blancafort

Use of languages

Principal working language: english (eng)

Prerequisites

Students should have basic knowledge about different livestock production systems and know basic vocabulary of the area. In case they had not previously studied related subjects, students will be provided with literature to enable autonomous learning.

It will be highly recommended having knowledge of English and Spanish that allow students to follow different activities.

Objectives and Contextualisation

This module aims to make students aware of the possible ways to improve the quality of animal products from farm. In particular, the module will examine the impact of factors such as nutrition, management, genetics and animal welfare on the nutritional, technological and organoleptic quality of different products.

Students also will be introduced to the different strategies and production systems, aimed to obtain specific products to meet consumer demands, such as food with functional properties or food obtained by traditional production systems, ecological and/or respectful to animal welfare.
Finally, how to obtain safe consumer products will be another objective of the master. Control of the raw materials used in animal feed, good hygiene practices at farm level, as well as different strategies that allow traceability from origin, will be considered.

Skills

- Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.
- Continue the learning process, to a large extent autonomously.
- Define the main production systems that differentiate between animal products.
- Design, organise and execute projects related to this field of study, working alone or in a unidisciplinary or multidisciplinary team, displaying a critical sense and creativity, and the ability to analyse, synthesise and interpret information.
- Identify risks to food safety stemming from the feeding and handling of animals.
- Identify the possible effects of animals' food, handling, welfare and genetics on the nutritional, organoleptic and technological characteristics of animal products.
- Search for information using the appropriate channels and use this information to solve problems in the work context.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Learning outcomes

1. Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.
2. Continue the learning process, to a large extent autonomously.
3. Design strategies to improve particular characteristics of quality in animal products and define their economic implications.
5. Identify regional, national and international regulations.
6. Identify scientifically sound information sources.
7. Identify the necessary requirements (laws, rules, handling instructions or others) for obtaining a differentiated animal product within a particular livestock farming project.
8. Implement a programme of best practices for hygiene on a livestock farm.
9. Make proposals for addressing specific practical problems.
10. Present work done in seminars, leading the discussion of problem areas.
11. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
12. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Content

Introduction to the module (1 h) (English)

Objectives, activities, calendar, evaluation.

Unit I. Improving the quality by improving farm management, animal genetic and nutrition.

Theory

Introduction to the Unit (2h)(Spanish/English)

1. Milk.
1.1. Milk quantity and milk quality. (1h) (English)

Production cycles according to dairy species. Quality oriented production systems. Origin of milk components. Relationship between milk components and possibilities of change.

1.2. Variation of milk quality I: Intrinsic. (1h) (English)

1.3. Variation of milk quality II: Extrinsic. (1h) (English)

1.4. Variation of milk quality III: Nutrition. (1h) (English)

1.5. Intramammary infections and milk quality. (1h) (English)

2. Meat

2.1. Meat quality traits of interest in animal production. (1 h) (Spanish)

2.2. Carcass and meat quality genomics. (1 h) (English)

Genomics of the malignant hyperthermia syndrome in pigs. Genomics of the muscular hypertrophy and the calpain/calpastatin system in beef cattle. The callypige gene in sheep.

2.3. Meat quality modification through animal nutrition. (2 h) (Spanish)

Fetal programming and skeletal muscle structure. Feeding and fatty acid content. Increasing the CLA content and the PUFA:SFA ratio, and decreasing the n-6:n-3 ratio of the meat.

2.4. Livestock handling and transport can affect carcasses and meat quality. (2 h) (Spanish)

Castration and meat quality. Pre-slaughter handling of livestock in relation to meat quality: fasting, transport and lairage.

3. Eggs

3.1. Update of egg quality concepts and consumer preferences. (1h) (English)

Egg quality parameters. Guidelines for producers and grading stations. Trends and current European consumer preferences relative to egg and egg products.

3.2. Egg quality through the formation process. (1h) (English)

Key points of the egg formation process and the impact on egg quality aspects, in particular shell and internal egg defects.

3.3. Factors affecting egg quality. (2h) (English)
Modification of external and internal shell-egg quality according to different factors: Genetics and selected strains. Housing system and management on the farm. Nutritional and feeding factors. Handling, transport and storage post-farm. Repercussion on egg products.

4. Farmed fish.

4.1. Implication of muscle growth and muscle structure in fish flesh quality. (1 h) (English)

4.2. Nutritional and feeding factors on flesh quality. (1 h) (English)

Diet composition and feeding regime; alternative lipid and protein sources; pigmentation.

4.3. Management factors on flesh quality. (1 h) (English)

Pre-slaughter fasting, handling and transport; slaughter methods.

4.4. Genetics and selective breeding on flesh quality. (1 h) (English)

Practicals and Seminars

Lab Sessions (2 h + 2 h).

Evaluation of different quality parameters of animal products obtained from different breeding systems. Analysis of the effects of management, nutrition or genetics.

Case studies (8 h seminars).

The students will work on teams to solve practical cases on the analysis and design of breeding programs addressed to improve quality in a particular animal product.

Visits (3 h).

Visits to milk farm (with installations for the collection and treatment of milk) and/or slaughter house/boning hall/retail room/processing plant.

Unit II. Animal products with defined quality properties

Theory

5. Traditional Mediterranean Animal Production Systems (MAPS) and geographical indications. (4 h) (English/ Spanish).

Commercialization of animal products. Different schemes for geographical indications (protected designation of origin (PDO), protected geographical indication (PGI)), different breeds or species, production system, feeding practices... Practical examples for a variety of PDO or PGI products (lamb meats, beef, birds, rabbits, milk, cheese, fish... etc).

6. Organic production systems. (4 h) (English)

From traditional to intensive production and from intensive to organic production. Basic principles of organic production. Organic vs. conventional production.

Organic livestock systems. Organic aquaculture.

Current status of organic livestock and fish farming. Some examples.

7. Gameproducts. (1 h) (English)
Game species (wild boar, deer, roe deer, fallow deer, chamois, ibex, mouflon, etc.). Small game species (hare, rabbit, duck, quail, partridge, thrush, pheasant, etc.). Game production systems (private hunting, social preserves, wildlife refuges, game reserves, hunting grounds, etc.).

8. Animal-welfare friendly products

How consumers perceive it and how consumer perception relates to the scientific definition of animal welfare (2 h) (English)

8.2. Examples of animal welfare friendly products in pig and poultry production.

From scientific assessment of welfare to market opportunities (2 h) (English)

9. Functional Foods

9.1. CLA-enriched milk. (1h) (English)

How to get naturally enriched milk throughout feeding strategies.

9.2. Milk bioactive peptides. (1 h) (English)

Occurrence and physiological effects of bioactive peptides in milk.

9.3. Feeding strategies to modify lipid composition of eggs and poultry. (2h) (English)

PUFA, W-3 and W-6 Enrichment.

Antioxidant fortified eggs.

Practicals and Seminars

Lab Sessions (2 h).

Comparison of defined quality parameters between conventional and functional foods of animal origin (fortified egg, milk or meat).

Case studies (8h seminars).

The students will work on teams to solve practical cases on the definition of a new PDO, GPI products or alternatively applying the basic principles of organic production to a conventional farm.

Visits (3 h).

Visit to an organic farm.

Unit III. Consumer product safety

Theory

Introduction to the unit. (1 h) (Spanish)

10. Animal Feed Control.

10.1. Production, self-control and traceability of forages and raw materials. (1h)(English)

10.2. GMOs in the UE and in the world. (1h) (English)

10.3. Possible risks in animal feeds. (2h) (English).
10.4. The use of industrial by-products as feed. (1 h) (English)

11. Good animal husbandry practices.

11.1. Basics in any good management program: The feed, the animals, the farm, wastes and residues, biosecurity and records. (2h) (English)

11.2. European regulations. An example: Salmonella control Plans in Farms. (1h) (English)

12. Identification and traceability processes

12.1 Traceability.

Concept and regulations. Quality and traceability. Elements of a traceability scheme. Ascending and descending traceability. Traceability auditing. Hazard analysis and critical control points (HACCP). (1h) (English)

History. Identification systems. Natural (biomarkers) and artificial identification traits (marks). ICAR guidelines for animal identification. Ear tags. Retinal imaging. Molecular fingerprinting. (1h) (English)

12.3. Electronic animal identification.

Antecedents. Bases of radiofrequency and technology systems. ISO standards. Transponder types: injectable, ear tag, bolus and other devices. Transceivers. Retention, readability and reading efficiency. (1h) (English)

12.4. Implementation of farm to fork traceability schemes

Tracing lots vs. individual animals. Tracing mixed products. Use of tracers. Identification and traceability implementation costs. (1h) (English)

12.5. Traceability of animal derived products

Traceability of liquid products. Milk traceability and the letter Q system. Honey traceability. Egg traceability. Meat traceability. Fish traceability. (1h) (English)

Practicals and Seminars

Practicals (2 h).

In field application of different electronic identification systems of livestock.

Case studies (8 h seminars).

The students will work on teams to perform Hazard Analysis and Critical Control Points (HACCP) at different stages of the food chain (feed mills, dairy farms, slaughter house...etc)

Visits (3 h).

Visit to a Feed Mill.

Methodology

The centre of the learning process is student’s work. Students learn by working, it’s the teacher’s mission to help them in this task. (1) Providing them with information or showing them sources where they can get it and
(2) guiding them so that the learning process can be performed effectively. Following this ideas, and according to the objectives of this module, the development of this course is based on the next methodology and activities.

1. **Working methods based on participative lectures.**

The student acquires the expertise of the course by attending lectures and complementing it with self-study of the topics explained. The lectures are intended as an essentially one-way method of transmission of knowledge from teacher to student although student participation will be also encouraged during the lecturers.

2. **Methods Oriented to Discussion and/ or to Team work.**

It’s intended that through team or group work the student adopts an active role in the learning process. Cooperative learning increases student’s motivation, it strengthens attitudes of involvement and initiative, improves the level of understanding, the degree of dominance of concepts and procedures and makes a positive social relationship.

Different group work activities are included in this module.

2.1 Case studies.

2.2 Classroom practices.

2.3 Laboratory practices

2.4 Seminars

2.5 Lecture / oral presentation of work.

2.6 Participation in complementary activities (visits).

3. **Autonomous work**

Autonomous work is mainly a student-centred methodology, although teachers have also a significant role on this process. The aim is to help students develop skills to set learning objectives, choose between different ways of learning, set their own pace, plan and organize their work, discover and solve problems, make decisions and evaluate their own progress. Independent learning promotes various transversal competences and becomes an indispensable teaching method.

Within this course different autonomous work activities arise.

3.1 Writing reports.

3.2 Problem solving.

3.3 Self-study.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementary activities (external visits)</td>
<td>9</td>
<td>0.36</td>
<td>9, 11, 12</td>
</tr>
<tr>
<td>Lab Sessions</td>
<td>8</td>
<td>0.32</td>
<td>9, 11, 12</td>
</tr>
<tr>
<td>Participative Master Class</td>
<td>53</td>
<td>2.12</td>
<td>12</td>
</tr>
</tbody>
</table>
Evaluation

In order to assess student's progress, different activities and assessment methodologies are established:

Attendance and active participation in class (5%):

Active attendance in classes will be assessed by the teacher. Optionally teachers can provide some questionnaires in order to encourage participation.

Attendance at tutorials (5%):

During tutorials teachers will evaluate the abilities for independent work of each student.

Attendance at Complementary Activities (5 % each visit x 3 visits, 15 % total):

During the visits, they may raise small exercises or questionnaires that must be completed by students and, along with participation in the activity will be evaluated.

Accomplishment of practices (5 % each visit x 3 visits, 15 % total):

Some exercises that will also be evaluated may be established during practices.

Delivery reports and oral defence of Case Studies (20% each Teaching Units x 3 units, 60%):

Case studies are required to be solved in group and presented at seminars. They will tree different case studies for the different Units (I, II and III). The submitted report, presentation and public defence in seminars and teamwork facility, will be taken into account.

Evaluation activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance and active implication in classes.</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Attendance to complementary activities (external visits)</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>9, 11, 12</td>
</tr>
<tr>
<td>Attendance to Lab Sessions</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>9, 11, 12</td>
</tr>
<tr>
<td>Tutorials</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>6, 2</td>
</tr>
<tr>
<td>Writing reports and public defence of Case Studies Unit I.</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>6, 3, 4, 9, 10, 11, 1, 12</td>
</tr>
<tr>
<td>Writing reports and public defence of Case Studies Unit II.</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>6, 4, 9, 7, 10, 11, 1, 12</td>
</tr>
</tbody>
</table>
Bibliography

Electronics Books (CAB eBooks)

Accesibles desde la UAB:

Rabbit production.
McNitt, J. I., Lukefahr, S. D., Cheeke, P. R., Patton, N. M.
2013 CABI (H ISBN 9781780640129)

Dairy herd health.
Editor(s): Green, M.
2012 CABI (H ISBN 9781845939977)

Veterinary treatment of sheep and goats.
Editor(s): Duncanson, G. R.
2012 CABI (H ISBN 9781780640037)

Alternative systems for poultry: health, welfare and productivity.
Editor(s): Sandilands, V., Hocking, P.
2012 CABI (H ISBN 9781845938246)

Goat meat production and quality.
Editor(s): Mahgoub, O., Kadim, I., Webb, E.
2012 CABI (H ISBN 9781845938499)

Nutrition and feeding of organic cattle.
Editor(s): Blair, R.
2011 CABI (H ISBN 9781845937584)

Enzymes in farm animal nutrition.
Editor(s): Bedford, M. R., Partridge, G. G.
2010 CABI (H ISBN 9781845936747)

Zoonotic pathogens in the food chain.
Editor(s): Krause, D. O., Hendrick, S.
2011 CABI (H ISBN 9781845936815)
Mastitis control in dairy herds.
Editor(s): Blowey, R. Edmondson, P.
2010 CABI (H ISBN 9781845935504)

Finfish aquaculture diversification.
Editor(s): François, N. Le Jobling, M. Carter, C.Blier, P.
2010 CABI (H ISBN 9781845934941)

Biology of breeding poultry
Editor(s): Hocking, P.
2009 CABI (H ISBN 9781845933753)

The economics of animal health and production.
Editor(s): Rushton, J.
2008 CABI (H ISBN 9781845931940)

Nutrition and feeding of organic poultry.
Editor(s): Blair, R.
2008 CABI (H ISBN 9781845934064)

Long distance transport and welfare of farm animals.
Editor(s): Appleby, M. C. Cussen, V. Garcés, L. Lambert, L. A. Turner, J.
2008 CABI (H ISBN 9781845934033)

Dietary supplements for the health and quality of cultured fish.
Editor(s): Nakagawa, H. Sato, M. Gatlin, D. M., III
2007 CABI (H ISBN 9781845931995)

Nutrition and feeding of organic pigs.
Editor(s): Blair, R.
2007 CABI (H ISBN 9781845931919)

Integrated food safety and veterinary public health.
Editor(s): Buncic, S.
2006 CABI (H ISBN 9780851999081)

Muscle development of livestock animals: physiology, genetics and meat quality.
Editor(s): Pas, M. F. W. te Everts, M. E. Haagsman, H. P.
2004 CABI (H ISBN 9780851998114)
The encyclopedia of farm animal nutrition.

Editor(s): Fuller, M. F.

2004 CABI (H ISBN 9780851993690)

Animal health and welfare in organic agriculture.

Editor(s): Vaarst, M. Roderick, S. Lund, V. Lockeretz, W.

2004 CABI (H ISBN 9780851996684)

Growth of farm animals.

Editor(s): Lawrence, T. L. J. Fowler, V. R.

2002 CABI (H ISBN 9780851994840)

Salmonella in domestic animals.

Editor(s): Wray, C. Wray, A.

2000 CABI (H ISBN 9780851992617)

Meat science: an introductory text.

Author(s): Warriss, P. D.

1999 CABI (H ISBN 9780851994246)

Other books

http://www.juntadeandalucia.es/agriculturaypesca/portal/export/sites/default/comun/galerias/galeriaDescargas/ca

Miguel Arilla, Jordi Pont, Rafael Rocabanza, Ana Servent. 2011. Control y vigilancia del aprovechamiento de los recursos cinegéticos y piscícolas (MF0085_3). Ediciones GPS - Madrid

Links

Link for Dirección General de Agricultura y Desarrollo Rural de la Comisión Europea.

http://ec.europa.eu/agriculture/

Link for la Agencia Europea de Seguridad Alimentaria

http://www.efsaeuropa.eu/

Link for Area de Ganadería de la página del Ministerio de Agricultura, Alimentación y Medio Ambiente.

FEDNA"Normas FEDNA para la Formulación de Piensos Compuestos”. 2003. Ed. FEDNA.

Asociacion española de ciencia avícola

www.wpsa-aeca.com

Instituto del huevo

Web page for egg productos from Ministerio de Agricultura, Alimentación y Medio Ambiente

http://www.huevo.org.es/