

Degree	Type	Year	Semester
4313782 Cytogenetics and Reproductive Biology	OT	0	1

Contact

Name: Elena Ibáñez de Sans

Email: Elena.Ibanez@uab.cat

Use of languages

Principal working language: catalan (cat)

Other comments on languages

Some lectures will be in English

Teachers

Josep Nebot Cegarra

CARME Nogués Sanmiquel

Josep Santaló Pedro

Pere Jordi Fábregas Batlle

External teachers

Josep Maria Canals

Prerequisites

Intermediate-advanced English level is recommended. Some of the lectures will be in English.

Objectives and Contextualisation

This is a lecture-based compulsory module in the Reproductive Biology specialization of the master.

The objective of this module is to provide the students with a solid knowledge of preimplantational and postimplantational embryo development and fetal development in mammals, as well as of the processes of totipotency and cell differentiation that occur during development. This knowledge will allow the students to understand the basis of the pathologies associated with reproduction and of the assisted reproduction and cell therapy techniques. The module will also cover the main legal and ethical aspects related with the application of these technologies.

Skills

- Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.

- Continue the learning process, to a large extent autonomously.
- Design experiments, analyse data and interpret findings.
- Identify the ethical dilemmas and apply current laws governing the area of knowledge of the master's degree.
- Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
- Recognise the cellular and molecular bases of reproduction in mammals.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
- Use and manage bibliography or ICT resources in the master's programme, in one's first language and in English.

Learning outcomes

1. Apply current laws on reproductive and regenerative biology.
2. Communicate and justify conclusions clearly and unambiguously to both specialist and non-specialist audiences.
3. Continue the learning process, to a large extent autonomously.
4. Describe the bases of cell totipotency and differentiation processes.
5. Design experiments, analyse data and interpret findings.
6. Identify the cellular bases of normal and pathological embryonic and foetal development.
7. Identify the ethical dilemmas associated with research and clinical practice in reproductive and regenerative biology
8. Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
9. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
10. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
11. Use and manage bibliography or ICT resources in the master's programme, in one's first language and in English.

Content

Unit 1. Preimplantation embryo development. Zygote activation. Embryonic metabolism. Preimplantation gene expression. Embryo cleavage. Formation of the morula and the blastocyst. Hatching. Implantation.

Unit 2. Postimplantation embryo and fetal development in humans. Postimplantation embryo development: classification criteria according to Carnegie stages. Fetal development. Evolution and development. Development of nutritional and respiratory mechanisms during prenatal life. Morphogenetic mechanisms and consequences of their alterations.

Unit 3. Stem cells. Definition and types of stem cells. Culture and characterization of stem cells. Derivation methods. Differentiation. Applications. Ethical and legal issues.

Methodology

This a lecture-based module. Attendance to lectures is compulsory and will be monitored.

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			

Lectures	25.5	1.02	1, 4, 7, 6, 9, 2, 8, 10
Type: Autonomous			
Individual study	98.5	3.94	1, 4, 5, 7, 6, 9, 8, 3, 10, 11
Literature searching and reading	20	0.8	5, 6, 9, 8, 3, 10, 11

Evaluation

Evaluation will consist in a multiple-choice test for contents of Units 1 and 3 and a written test for contents of Unit 2 (90% of the final grade). In these tests, the knowledge, understanding and integration of the contents of each unit by the students will be evaluated.

Lecture attendance and participation will also be considered in the evaluation (10% of the final grade). Any absence should be properly justified by the student. Non-justified absences will affect the final grade as follows: 1 absence -0,5 points; 2 absences -1 point. If the number of non-justified absences is higher than 2, the student will not be able to pass the module.

To pass the module, the student must obtain a final grade of ≥ 5 points.

The student will receive the grade of "Non evaluable" only when the sum of the maximum possible grades of the evaluation activities taken by the student does not reach 5 points.

Evaluation activities

Title	Weighting	Hours	ECTS	Learning outcomes
Lecture attendance and participation	10%	0	0	1, 4, 5, 7, 6, 9, 2, 8, 3, 10, 11
Multiple-choice test Unit 1	30%	2	0.08	4, 5, 6, 9, 2, 8, 3, 10, 11
Multiple-choice test Unit 3	30%	2	0.08	1, 4, 5, 7, 6, 9, 2, 8, 3, 10, 11
Written test Unit 2	30%	2	0.08	4, 5, 6, 9, 2, 8, 3, 10, 11

Bibliography

Basic bibliography:

Carlson BM (2009). Embriología humana y Biología del desarrollo. 4^a edición. Elsevier Science.

Gilbert SF and Barresi MJF. Developmental Biology. 11th Edition. Sinauer Associates. USA. 2016.

Johnson MH (Eds.). Essential Reproduction. 7th Edition. Wiley-Blackwell. USA. 2013.

Knobil E and Neill JD(Eds.). Encyclopedia of Reproduction. Vol 1-4. Academic Press. San Diego (CA),USA. 1998.

Lanza R et al.(Eds.) Handbook of Stem Cells. Excerpts. Elsevier Academic Press. Amsterdam. 2004.

Lanza R et al.(Eds.) Handbook of Stem Cells. Vol 1 i 2. Elsevier Academic Press. Amsterdam. 2004.

Specific bibliography:

Research papers recommended in class