

Genetically Modified Animals

Code: 100903
ECTS Credits: 6

Degree	Type	Year	Semester
2500252 Biochemistry	OT	4	0

Contact

Name: Maria Fátima Bosch Tubert

Email: Fatima.Bosch@uab.cat

Use of languages

Principal working language: catalan (cat)

Some groups entirely in English: No

Some groups entirely in Catalan: Yes

Some groups entirely in Spanish: No

Teachers

Pedro José Otaegui Goya

Anna Maria Pujol Altarriba

Virginia Areba Haurigot Mendoça

Prerequisites

There are no prerequisites to attend this course. However, to facilitate the student's understanding of the subject matter and the achievement of the learning goals proposed, it is advisable that the student has previous knowledge on Cellular Biology, Genetics, Molecular Biology and Recombinant DNA technology.

It is also advisable that the students have basic knowledge of English, so that they can use the information sources of the field, which are mostly in this language.

Objectives and Contextualisation

The objective of the subject "Transgenic animals" is to provide the students with up-to-date knowledge in transgenesis and related technologies. Thus, the content of the subject will cover the following topics: Description and classification of transgenic animal models; Study of the different methodologies employed to obtain transgenic animal models of different species, and technologies that allow the overexpression of genes or the blockage or modification of endogenous genes, either ubiquitously or in a tissue-specific and/or inducible manner; Establishment and management of transgenic animal colonies; Cryopreservation of embryos and sperm, IVF, Health rederivation, Ethical aspects related to the generation and utilization of transgenic animals; Legislation on the use of laboratory animals; Application of animal transgenesis to the fields of biomedicine, biotechnology and livestock breeding.

Skills

- Analyse and explain normal physiological processes and alterations in them on the molecular scale, using the scientific method.

- Apply general laboratory security and operational standards and specific regulations for the manipulation of different biological systems.
- Apply the principal techniques used in biological systems: methods of separation and characterisation of biomolecules, cell cultures, DNA and recombinant protein techniques, immunological techniques, microscopy techniques, etc.
- Collaborate with other work colleagues.
- Combine research and the generation of knowledge with problem-solving in one's own field, showing sensibility to ethical and social questions.
- Integrate scientific and technological knowledge.
- Interpret experimental results and identify consistent and inconsistent elements.
- Make an oral, written and visual presentation of ones work to a professional or non-professional audience in English and understand the language and proposals of other specialists.
- Read specialised texts both in English and ones own language.
- Show a capacity for leadership.
- Show initiative and an entrepreneurial spirit.
- Stay abreast of new knowledge of the structure, organisation, expression, regulation and evolution of genes in living beings.
- Take responsibility for one's own learning after receiving general instructions.
- Think in an integrated manner and approach problems from different perspectives.
- Use ICT for communication, information searching, data processing and calculations.

Learning outcomes

1. Apply general laboratory security and operational standards and specific regulations for the manipulation of different biological systems.
2. Collaborate with other work colleagues.
3. Combine research and the generation of knowledge with problem-solving in one's own field, showing sensibility to ethical and social questions.
4. Describe and explain the nature of a transgenic animal and the different types of transgenics.
5. Describe the applications of animal transgenesis in the field of biomedicine, biotechnology and livestock farming.
6. Explain the characteristics of the different types of vectors used for gene transfer.
7. Identify the different methodologies used to obtain transgenic animals, of different species, that allow the overexpression, blockage or modification of endogenous genes, whether ubiquitous, tissue-specific and/or inducible.
8. Interpret experimental results and identify consistent and inconsistent elements.
9. Make an oral, written and visual presentation of ones work to a professional or non-professional audience in English and understand the language and proposals of other specialists.
10. Read specialised texts both in English and ones own language.
11. Show a capacity for leadership.
12. Show initiative and an entrepreneurial spirit.
13. Take responsibility for one's own learning after receiving general instructions.
14. Think in an integrated manner and approach problems from different perspectives.
15. Use ICT for communication, information searching, data processing and calculations.

Content

Knowledge on the following topics will be imparted during the **theoretical classes**:

TOPIC 1

Introduction to the technologies used for animal genetic engineering. Transgenic animals: definition and classification. Advantages of the mouse as an animal model in biomedicine.

TOPIC 2

Generation of transgenic animals by transgene addition. Preparation of DNA constructs or transgenes. Collection of embryos. Microinjection of DNA into the pronucleus of 1-cell embryos. Transfer of engineered embryos to receptor females. Genotyping of genetically engineered animals. Integration and vertical transmission of the transgene. Mosaic animals. Transgene expression and phenotype.

TOPIC 3

Design and production of chimeric genes/transgenes: promoters, inducible systems, insulators, enhancers. Analysis of transgene expression in vitro: technologies for the introduction of exogenous DNA to cultured cells. Transient and stable transfections. BACs and YACs.

TOPIC 4

Generation of transgenic livestock. Introduction of new traits of interest for livestock breeding. Biotechnological applications. Production of proteins with pharmaceutical interest in the mammary gland. Transgenic animals for xenotransplantation.

TOPIC 5

Generation of transgenic animals using viral vectors (lentivirus). Generation of transgenic animals from sperm.

TOPIC 6

Targeted mutagenesis in animals through Embryonic Stem cells (ES cells): definition of ES cells, properties, obtainment and culture. Reprogramming and Induced Pluripotent Stem cells (iPS cells).

TOPIC 7

Generation of Knockout / Knockin mice by Gene targeting in ES cells. Design of recombination vectors. Homologous recombination. Selection of recombined ES clones.

TOPIC 8

Generation of mouse chimeras by injection of recombinant ES cells in blastocysts, injection/aggregation of 8-cell embryos, injection/ aggregation of tetraploid embryos. Homozygous and heterozygous Knockout / Knockin animals. Applications.

TOPIC 9

Conditional Knockout / Knockin animals: Recombinases systems (Cre-LoxP, FLP-Frt). Tissue-specific Knockout / Knockin animals. Inducible Knockout / Knockin animals; inducible systems, transcriptional and post-transcriptional control. Advantages and limitations. Applications.

TOPIC 10

Gene Trap for random mutagenesis. Technology and vectors for Gene Trap. Applications.

TOPIC 11

Use of transposons for obtaining transgenic animals.

New technologies: Generation of Knockout / Knockin animals through genome editing using Zinc Finger Nucleases, TALENs or CRISPR-Cas9. Advantages and limitations. Applications.

TOPIC 12

Generation of clonal animals: Nuclear transfer. Technological aspects and biological implications of nuclear transfer. Reprogramming. Applications. Advantages for the obtainment of transgenic livestock. Therapeutic cloning.

TOPIC 13

Establishment and maintenance of genetically modified mouse and rat colonies. Nomenclature. Phenotype: alterations arising due to transgenesis technology, environmental factors or genetic background.

TOPIC 14

Technologies to support the establishment and the management of colonies of genetically modified animals: Cryopreservation of embryos and sperm. In vitro fertilization (IVF). Health rederivation. [\[VH3\]](#) Ovary transfer.

TOPIC 15

Housing and handling of transgenic animals. Current legislation on animal genetic engineering and use of laboratory animals.

TOPIC 16

Ethical aspects. Ethics committees on animal experimentation. Social Impact. Intellectual property.

TOPIC 17

Large International consortia on mouse mutagenesis. Large-scale phenotyping centres: "Mouse Clinics".

TOPIC 18

Obtainment of transgenic fish. Applications in Biotechnology.

TOPIC 19

Use of transgenic animal models for the study of diseases (I): Diabetes mellitus. Obesity. Use of transgenic animal models for the development of new gene therapy products for these diseases.

TOPIC 20

Use of transgenic animal models for the study of diseases (II): Cancer. Study of oncogenic and anti-oncogenic genes in transgenic animals.

TOPIC 21

Use of transgenic animal models for the study of diseases (III): Models of inherited diseases.

TOPIC 22

Use of transgenic animal models in neurosciences. Use of transgenic animal models in the field of immunology.

The laboratory practice classes will cover the design of different types of transgenic animals and Knockout / Knockin mutants, the establishment and maintenance of colonies of transgenic mice and the genotypic analysis of the genetically engineered animals. Students will also carry out several techniques as part of the phenotypic analysis of genetically engineered mice. Using a transgenic mouse model, an in vivo phenotyping study will be performed.

Content of the laboratory practice classes:

- Generation of transgenic and Knockout / Knockin animals. Videos.
- Design of transgenes, gene targeting recombination vectors and components of the CRISPR/Cas9 system.
- Handling and in vitro culture of pre-implantational embryos.
- Genotype analysis. Establishment of colonies of transgenic animal and Knockout / Knockin mutants.
- Phenotype analysis. Histopathology, necropsy and in vivo studies.

Methodology

The subject "Transgenic Animals" consists of theory and laboratory classes, and tutored oral presentations of relevant literature. The formative activities of the subject are complementary.

Theoretical classes

The contents of the theoretical classes will be imparted by a Professor in a series of master classes supported by audio-visual material. The slides used by each professor in each class will be available to the students through the subject's Campus Virtual/Moodle. These master classes will constitute the main form of transfer of theoretical contents. Students are advised to periodically consult the books and links suggested in the Bibliography section of this document and at the Campus Virtual/Moodle to consolidate and clarify, if necessary, the contents explained in class.

Laboratory practice classes

The laboratory practice classes have been designed to help students get familiarized with the methodologies used to produce transgenic animals, establish animal colonies, genotype genetically engineered animals, and design and perform different phenotypic analyses in these animal models. We expect that, during these laboratory practice classes, students will be able to experience a "real world" situation in which they need to design an experiment, obtain a genetically engineered animal model and study *in vivo* their phenotype. We would like students to experience the excitement associated to the research that uses the technology of animal transgenesis.

The laboratory practice classes are composed of 3 sessions of 4 h each (from 3PM to 7PM), during which students will work in groups of 2-3 people under the supervision of an experienced professor. The date assigned to each laboratory practice group will be published in the subject's Campus Virtual/Moodle with sufficient anticipation.

Attendance to laboratory practice classes is mandatory.

By the end of the laboratory practice classes, students will need to have answered a questionnaire. Both the laboratory practice guide and the questionnaire will be available through the Campus Virtual/Moodle. Students must bring their own lab coat, a waterproof marker and the Laboratory Practice Guide to each laboratory practice class.

Oral presentations of selected papers

Students will analyse and discuss in an oral presentation in front of the whole class a selected scientific publication on animal transgenesis, published in a recognized international scientific journal. To this end, students will pair with a fellow classmate. During the process of analysis of the paper's content and preparation of the oral presentation, students will be tutored by researchers with experience in the field of animal transgenesis. Students will have 10 minutes for the oral presentation, equally divided amongst the members of the group, plus 5 minutes for questions (total of 15 minutes). The objective of this evaluating activity is that students get used -under the supervision of a tutor- to the process of searching, reading and understanding of scientific literature, and if necessary, develop a critical view on the figures, tables and results described in the publication. On the other hand, with this activity students will increase their knowledge of the current applications of the animal transgenesis technologies.

Tutoring

The oral presentations of selected papers will be tutored. In addition, upon request from the students, individualized tutoring will be available throughout the course. The objective of this sessions will be to help the student resolve doubts and review basic concepts and to provide them with advice on sources of information and the best way to discuss scientific results in public.

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			
Oral presentations	8	0.32	15, 2, 4, 5, 6, 7, 8, 10, 14, 9, 13, 11, 12
Practical lessons	12	0.48	1, 2, 4, 6, 7, 8, 14, 3, 13, 12
Theoretical lessons	35	1.4	15, 4, 5, 6, 7, 10, 3
Type: Supervised			
Tutorials	5	0.2	15, 10, 9
Type: Autonomous			
Individual study time	74	2.96	15, 4, 5, 6, 7, 10, 14, 13
Oral presentations	10	0.4	15, 2, 4, 5, 6, 7, 8, 10, 14, 3, 9, 13, 12

Evaluation

To pass the course, students must achieve a final score of 5 points (over a total of 10 points) and must attend the laboratory practice classes. The programmed evaluating activities are:

Final examination

Will account for 90% of the final score. Assessment will consist in a written examination, under the format of a True or False Test, on topics explained during the theoretical classes and laboratory practice classes.

There will be a Second Change/Recovery Exam, under the same format than the original exam, for those students that have not passed the exam at the first opportunity.

To approve the course, attendance to laboratory practice classes is mandatory.

Oral presentations of selected papers

Will account for 10% of the final score. Students will be evaluated individually, both on their performance during the oral presentation of the selected paper and on the audio-visual material that they have prepared to support their group presentation.

Students will be deemed Non-Qualifiable if the number of evaluating activities in which he participates is less than 50% of those proposed in this guide.

Evaluation activities

Title	Weighting	Hours	ECTS	Learning outcomes
Exam of theoretical and practical lessons	90%	6	0.24	1, 4, 5, 6, 7, 8, 14, 3
Oral presentations	10%	0	0	15, 2, 4, 5, 6, 7, 8, 10, 3, 9, 13, 11, 12

Bibliography

Bibliography:

- Transgenic animals. Generation and use. L.M. Houdebine. Harwood Academic Publishers 1997.
- Mouse Genetics and Transgenics. A practical approach. Edited by: I.J. Jackson and C.M. Abbott. Oxford University Press. 2000. (www.oup.co.uk/PAS)
- Gene Targeting. A practical approach. Edited by: A.L. Joyner. Oxford University Press. 2000. (www.oup.co.uk/PAS)
- Manipulating the Mouse Embryo. A laboratory manual. (3rd Edition) Edited by: Andras Nagy et al. Cold Spring Harbor Laboratory Press. 2003.
- Transgenesis Techniques. Principles and Protocols. Edited by: Alan R. Clarke. Humana Press. 2002. (2nd Edition).
- Gene Knock-out Protocols. Edited by: Martin J. Tymms and Ismail Kola. Humana Press. 2001.
- Embryonic Stem Cells. Methods and Protocols. Edited by: Kursad Turksen. Humana Press. 2002.
- Human Molecular Genetics 2. T. Strachan i A.P. Read. John Wiley & Sons, Inc., Publication. 1999.
- Advanced Protocols for Animal Transgenesis. An ISTT Manual. Shirley Pease & Tomas L. Saunders (Editors). Springer. 2011.

Interesting webs:

<http://www.transtechsociety.org/>

<http://www.knockoutmouse.org/>

<http://www.emmanet.org/>