Abstract

A ring is said to be strongly right bounded if every nonzero right ideal contains a nonzero ideal. In this paper strongly right bounded rings are characterized, conditions are determined which ensure that the split-null (or trivial) extension of a ring is strongly right bounded, and we characterize strongly right bounded right quasi-continuous split-null extensions of a left faithful ideal over a semiprime ring. This last result partially generalizes a result of C. Faith concerning split-null extensions of commutative FPF rings.

Examples of strongly right bounded rings are: right duo rings (e.g., commutative rings and strongly regular rings) [8], [18] and [26]; right subdirectly irreducible rings [9] and [10]; right valuation rings which are not subdirectly irreducible [24, p. 216]; and bounded principal ideal domains [20, p. 41]. In [13, p. 364] an example of a strongly left bounded right primitive ring is given. In [16, p. 5.3] an example of a strongly right bounded right self-injective ring which is not left selfinjective is presented. Strongly right bounded rings play a fundamental role in the theory of FPF rings (e.g., a strongly right bounded right selfinjective ring is right FPF and the basic ring of a semiperfect right FPF ring is strongly right bounded [16]). In fact, according to [17, p. 310], C. Faith has conjectured that a right FPF ring is Morita equivalent to a strongly right bounded ring.

All rings are associative, R denotes a ring with unity and M will always be a unital (R, R)-bimodule. The split-null (or trivial extension) $S(R, M)$ of M by R is the ring formed from the Cartesian product $R \times M$ with component-wise addition and with multiplication given by $(a, m)(b, k) = (ab, ak + mb)$ (cf., [12], [15], and [22]). Annihilators will be symbolized as $t_A(X) = \{a \in A | aX = 0\}$ and $r_A(X) = \{a \in A | Xa = 0\}$. A (ring) direct summand of R will mean a right ideal generated by a (central) idempotent. From [16], R is right FPF if every finitely generated faithful right R-module generates the category $\text{mod-}R$. From [3], R is right quasi-FPF if, whenever a faithful right R-module is a direct sum of finitely many cyclic modules, then it is a generator for $\text{mod-}R$. A ring R is (quasi-) Baer (cf., [7] and [23]) if the right annihilator of every
(ideal) nonempty subset of R is a direct summand of R. Semiprime right FPF rings are quasi-Baer [11, p. 168]. From [6] a ring is right CS if every right ideal is essential in a direct summand. From [21], R is right quasi-continuous (also known as π-injective [19]) if it is right CS and if P and Q are direct summands of R such that $P \cap Q = 0$, then $P \oplus Q$ is a direct summand of R. Note that if R is right CS and every idempotent is central, then R is right quasi-continuous. Thus in [14, p. 83] Faith has shown that every commutative FPF ring is quasi-continuous. R satisfies the intersection left annihilator sum property, ILAS, if whenever X and Y are right ideals such that $X \cap Y = 0$, then $I_R(X)R + I_R(Y)R = R$ (e.g., right uniform rings, right selfinjective rings [25, p. 275], and right quasi-FPF rings [3, Lemma 1]).

Proposition 1. The following conditions are equivalent:

(i) R is a strongly right bounded ring.

(ii) If xR is a faithful cyclic module, then $rR(x) = 0$.

(iii) R is directly finite and every faithful cyclic module is isomorphic to R.

Proof:

(i) \Rightarrow (ii). If $rR(x) \neq 0$, then there exists a nonzero ideal $Y \subseteq rR(x)$. Hence $xRY = 0$. Contradiction!

(ii) \Rightarrow (iii). Assume $R = X \oplus S$ where X and S are right ideals and S is isomorphic to R. Hence R/X is faithful. Therefore, $X = 0$. Consequently, R is directly finite. Clearly every faithful cyclic module is isomorphic to R.

(iii) \Rightarrow (i). Let X be a right ideal containing no nonzero ideals. Then R/X is isomorphic to R. Hence $R = X \oplus S$ where S is a right ideal. Since R is directly finite, $X = 0$. Consequently, R is strongly right bounded.

Lemma 2. Let R be a strongly right bounded ring.

(i) Every nonzero right ideal is an essential extension of an ideal of R.

(ii) R is right nonsingular if and only if R is semiprime if and only if R is reduced (i.e., R has no nonzero nilpotent elements).

Proof: Part (i) is in [16, Note 1.3D]. Part (ii) is in [4, Proposition 1].

Proposition 3. Let R be a strongly right bounded ring. Then the following conditions are equivalent:

(i) R is quasi-Baer.

(ii) R is semiprime right quasi-continuous.

(iii) R is semiprime right quasi-FPF.

Proof: This result follows from [2, Proposition 1.2], [3, Propositions 4 and 6], and Lemma 2.

The following notation will be used: if $V \subseteq S(R, M)$, then V_1 and V_2 are the sets of first and second components of V, respectively.
Lemma 4.

(i) If V is a right ideal of $S(R, M)$, then V_1 is a right ideal of R, V_2 is a right R–submodule of M, and $\{0\} \times V_1 M$ is a right $S(R, M)$–submodule of V.

(ii) If W is a right ideal of R and K is a right R–submodule of M such that $WM \subseteq K$, then $W \times K$ is a right ideal of $S(R, M)$.

(iii) Let $V \subseteq S(R, M)$. Then $[I_R(V_1) \cap I_R(V_2)] \times I_M(V_1) \subseteq I_S(R,M)(V)$.

(iv) The right ideal $\{0\} \times M$ is right essential in $S(R, M)$ if and only if M is left faithful (i.e., $I_R(M) = 0$).

(v) If V and W are right ideals of $S(R, M)$ such that $V \cap W = 0$, then $V_1 M \cap W_1 M = 0$.

(vi) Let $S(R, M)$ be strongly right bounded where M is an ideal of R. Then R is strongly right bounded and if $I_R(M) \neq 0$, then $I_R(M) \cap I_R(M) \neq 0$.

(vii) Let M be a module such that whenever $A \cap B = 0$, then $AM \cap BM = 0$ where A and B are right ideals of R (e.g., M is an ideal). If $S(R, M)$ satisfies the ILAS condition, then R satisfies the ILAS condition.

(viii) Let M be an ideal of R. Then $S(R, M)$ is right uniform if and only if R is right uniform and M is left faithful.

Proof:

(i) Clearly V_1 is a right ideal of R and V_2 is a right R–submodule of M. Let $w \in V_1$ and $m \in M$. There exists $k \in V_2$ such that $(w, k) \in V$. Then $(w, k)(0, m) = (0, wm) \in V$. Thus $\{0\} \times V_1 M$ is a right $S(R, M)$–submodule of V.

(ii) and (iii) are straightforward.

(iv) Suppose $\{0\} \times M$ is right essential in $S(R, M)$ and $0 \neq t \in I_R(M)$. There exists $(w, m) \in S(R, M)$ such that $0 \neq \langle t, 0 \rangle (w, m) \in \{0\} \times M$. Contradiction! Hence M is left faithful. Conversely, let $(w, m) \in S(R, M)$. If $w = 0$, we are finished. So assume $w \neq 0$. There exists $k \in M$ such that $0 \neq (w, m)(0, k) = (0, wk) \in \{0\} \times M$. Hence $\{0\} \times M$ is right essential in $S(R, M)$.

(v) Assume $wm = wk \in V_1 M \cap W_1 M$ where $v \in V_1$, $w \in W_1$, and $m, k \in M$. There exists $x \in V_2$ and $y \in W_2$ such that $(v, x) \in V$ and $(w, y) \in W$. Consider $(v, x)(0, m) = (0, vm) = (0, wk) = (w, y)(0, k) \in V \cap W = 0$. Therefore, $V_1 M \cap W_1 M = 0$.

(vi) Let Y be a nonzero right ideal of R. There exists an ideal J of $S(R, M)$ such that J is essential in $Y \times YM$. Since J_1 and J_2 cannot both be zero, Y contains a nonzero ideal. Hence R is strongly right bounded. If $I_R(M) \neq 0$, then there exists a nonzero ideal $H \subseteq I_R(M) \times \{0\}$. Hence H_1 is a nonzero ideal of R and $(\{0\} \times M)H = \{0\} \times MH_1 \subseteq H$. Therefore, $0 \neq H_1 \subseteq I_R(M) \cap I_R(M)$.

(vii) Let A and B be right ideals of R such that $A \cap B = 0$. Let $A^* = A \times AM$ and $B^* = B \times BM$. Hence $A^* \cap B^* = 0$. Now $I_{S(R, M)}(A^*) = I_R(A) \times I_M(A)$ and $I_{S(R, M)}(B^*) = I_R(B) \times I_M(B)$. Consequently, $I_R(A)R +
\[l_R(B)R = R. \]

(viii) Assume \(S(R, M) \) is right uniform and let \(Y \) be a nonzero right ideal of \(R \). By part (iv) \(M \) is left faithful. Let \(0 \neq w \in R \). There exists \((t, m) \in S(R, M)\) such that \(0 \neq (w, 0)(t, m) = (wt, w\cdot m) \in Y \times YM \). Therefore, \(R \) is right uniform. Conversely, let \(V \) be a nonzero right ideal of \(S(R, M) \) and \(0 \neq (t, m) \in S(R, M) \). By part (iv) \(0 \neq V \cap (\{0\} \times M) = \{0\} \times V_2 \) is essential in \(V \). If \(t \neq 0 \), there exists \(y \in R \) such that \(0 \neq ty \in V_2 \). Since \(M \) is left faithful, there exists \(k \in M \) such that \(0 \neq tyk \in V_2 \). Thus \(0 \neq (t, m)(0, yk) = (0, tyk) \in \{0\} \times V_2 \). If \(t = 0 \), then \(m \neq 0 \) and there exists \(q \in R \) such that \(0 \neq mq \in V_2 \). Thus \(0 \neq (t, m)(q, 0) = (0, mq) \in \{0\} \times V_2 \). Consequently, in all cases \(\{0\} \times V_2 \) is right essential in \(S(R, M) \). Therefore, \(S(R, M) \) is right uniform.

We note that if \(R \) is commutative and \(M \) is an ideal of \(R \), then \(S(R, M) \) is commutative. However, in Example 9 we shall provide a strongly right bounded ring \(T_1 \) and an ideal \((T, 0)\) such that \(S(T_1, (T, 0)) \) is not strongly right bounded. Also in [9, Example 2.2] the ring \(R \) is a strongly right bounded ring; however, from Lemma 4 (vi), \(S(R, R(z_1, 0)R) \) is not strongly right bounded. Thus it is natural to investigate conditions on \(R \) and \(M \) which insure that \(S(R, M) \) is strongly right bounded. We say \(M \) is a strongly right bounded module if every nonzero right \(R \)-submodule contains a nonzero \((R, R)\)-bisubmodule of \(M \).

Theorem 5. Let \(R \) be a strongly right bounded ring. If either of the following conditions is satisfied, then \(S(R, M) \) is a strongly right bounded ring.

(i) \(M \) is a strongly right bounded module such that \(l_R(M) \) contains no nonzero nilpotent ideals of \(R \) and \(l_R(M) \subseteq r_R(M) \).

(ii) \(M \) is an ideal of \(R \) such that \(l_R(M) \cap M = 0 \).

Proof: Let \(V \) be a nonzero right ideal of \(S(R, M) \). If \(V_1 = 0 \) or \(V \cap (\{0\} \times M) \neq 0 \), then there exists a nonzero \((R, R)\)-bisubmodule \(K \subseteq V_2 \) such that \(\{0\} \times K \subseteq V \) is an ideal of \(S(R, M) \). So assume \(V_1 \neq 0 \) and \(V \cap (\{0\} \times M) \neq 0 \). Let \(D \) be a nonzero ideal of \(R \) such that \(D \subseteq V_1 \). Note that with either condition (i) or (ii), \(V_1 M = 0 = MV_1 \). If condition (i) is satisfied, then \(V^2 = V^2_1 \times \{0\} \neq 0 \). Hence \(D \times \{0\} \subseteq V \) is a nonzero ideal of \(S(R, M) \). Now assume condition (ii) is satisfied. If \(V_2 = 0 \), then \(D \times \{0\} \subseteq V \) is a nonzero ideal of \(S(R, M) \). If \(V_2 \neq 0 \), then \(V_2 \times \{0\} \neq 0 \). But \(V(M \times \{0\}) = \{0\} \times V_2 M \subseteq V \cap (\{0\} \times M) = 0 \). Contradiction! Therefore, in all cases \(V \) contains a nonzero ideal of \(S(R, M) \). Consequently, \(S(R, M) \) is strongly right bounded.

We note that when \(M \) is an ideal of \(R \), then \(S(R, M) \) is isomorphic to a subring of \(T_2(R) \) (i.e., the \(2 \times 2 \) lower triangular matrix ring over \(R \)). However, from [4, Proposition 10], \(T_n(R) \) is never strongly right bounded for \(n > 1 \).

Corollary 6. Let \(M \) be an ideal of \(R \). Then \(S(R, M) \) is strongly right bounded right uniform if and only if \(R \) is strongly right bounded right uniform and \(M \) is left faithful.
Proof: This result follows from Theorem 5 and Lemma 4 (viii).

Thus, if R is a strongly right bounded domain and M is any ideal of R, then $S(R, M)$ is a strongly right bounded right uniform ring. The ring $H[x]$ where H denotes the real quaternions provides an example of a strongly bounded domain which is neither left nor right duo.

Proposition 7. Let M be a left faithful ideal of R. Then the following equivalences are true:

(i) Every ideal of R is right essential in a (ring) direct summand of R if and only if every ideal of $S(R, M)$ is right essential in a (ring) direct summand of $S(R, M)$.

(ii) Every right ideal is right essential in a ring direct summand of R if and only if the same is true for $S(R, M)$.

Proof:

(i) Let S denote $S(R, M)$ and assume every ideal of R is right essential in a direct summand of R. Let Y be an ideal of S and $V = Y \cap \{0\} \times M$. By Lemma 4 (iv), V is right essential in Y, $V = \{0\} \times V_2$, and V_2 is an ideal of R. Hence there exists a (central) idempotent $e \in R$ such that V_2 is right essential in eR. Consider $(e, 0)S$. Let $(x, m) \in S$, then $(e, 0)(x, m) = (ex, em)$. Suppose $0 \neq (ex, em)$. If $ex \neq 0$, then there exists $t \in R$ such that $0 \neq ext \in V_2$. Hence $0 \neq (ex, em)(0, t) = (0, ext) \in V$. If $ex = 0$, then there exists $w \in R$ such that $0 \neq emw \in V_2$. Hence $0 \neq (ex, em)(w, 0) = (0, emw) \in V$. Therefore, in all cases, V is right essential in $(e, 0)S$. Hence Y is right essential in $(e, 0)S$. Consequently, every ideal of $S(R, M)$ is right essential in a (ring) direct summand of $S(R, M)$.

Conversely, suppose every ideal of S is right essential in a (ring) direct summand of S. Let K be an ideal of R. Then there exists a (central) idempotent $(e, m) \in S$ such that $\{0\} \times KM$ is right essential in $(e, m)S$. Note that $eme = 0$. Hence (e, m) is central in S if and only if e is central in R and $M = 0$. Now $\{0\} \times KM \subseteq (e, m)(\{0\} \times M) \subseteq (e, m)S$. Hence KM is right essential in eM and eM is right essential in eR because M is left faithful in R. Since K is an ideal and KM is right essential in K, then K is right essential in eR.

(ii) This part is proved in a manner similar to that of part (i).

In [15] Faith characterizes when $S(R, M)$ is $\mathcal{F}PF$ where R is commutative and M is faithful. He poses this characterization as an open problem when R is noncommutative. The following result partially generalizes Faith's result.

Corollary 8. Let R be a semiprime or a right nonsingular ring and M be a left faithful ideal of R. Then the following conditions are equivalent:

(i) R is strongly right bounded and right quasi-continuous.
(ii) $S(R, M)$ is strongly right bounded and right quasi-continuous.
(iii) $S(R, M)$ is strongly right bounded and right quasi-FPF.

Proof:

(i) \rightarrow (ii) By Lemma 2, R is reduced. Hence every idempotent of R is central. Thus every idempotent of $S(R, M)$ is central. By Theorem 5 and Proposition 7, $S(R, M)$ is strongly right bounded and right quasi-continuous.

(ii) \rightarrow (iii) By Lemma 4 (vi) and Lemma 2, R is reduced. Hence every idempotent of $S(R, M)$ is central. By [3, Proposition 6], $S(R, M)$ is right quasi-FPF.

(iii) \rightarrow (i) By Lemma 4 (vi) and Lemma 2, R is reduced strongly right bounded ring. By Lemma 4 (vi¡), R satisfies the ILAS condition. From [1, Lemma 2.2] and Proposition 3, R is right quasi-continuous.

When R is quasi-Baer strongly right bounded and M is a left faithful ideal of R, the sequence of embeddings

$$R \rightarrow S(R, M) \rightarrow T_2(R)$$

is interesting in that $S(R, M)$ is strongly right bounded (and right quasi-continuous) but not quasi-Baer (cf., Proposition 3) and $T_2(R)$ is quasi-Baer [23] but not strongly right bounded. ■

The following example is a special case of a general procedure indicated in [5].

Example 9. Let I denote the ring of integers and T the semigroup ring of A over I_2 (i.e., integers modulo 2) where A is the semigroup on the set \{a, b\} satisfying the relation $xy = y$ for $x, y \in A$. Thus $T = \{0, a, b, a + b\}$. Let T_1 denote the Dorroh extension of T (i.e., the ring with unity formed from $T \times I$ with componentwise addition and with multiplication given by $(x, k)(y, n) = (xy + nx + ky, kn)$). T_1 has the following properties:

(i) The set of nilpotent elements of T_1, $N(T_1) = \{(0,0), (a + b,0)\}$, is the Jacobson radical and equals the right socle of T_1.

(ii) Every nonzero right ideal of T_1 contains either $N(T_1)$ or a nonzero ideal of the form $(0, 2ki) = \{(0, 2ki) \in T_1 | k$ is a fixed integer and $i \in I\}$. Therefore, T_1 is strongly right bounded.

(iii) T_1 is not right duo since $(a, 1)T_1$ is not an ideal.

(iv) T_1 is not strongly left bounded.

(v) T_1 does not satisfy the ILAS condition since $l_{T_1}(N(T_1)) + l_{T_1}((a + b, 2)T_1)T_1 \neq T_1$. However if $\{X_i\}$ is a nonempty set of ideals of T_1 such that $\cap X_i = 0$ then $R = \sum l_{T_1}(X_i)$, Thus T_1 satisfies the ILAS condition defined in [1].

(vi) T_1 is not right CS, since $(a + b, 2)T_1$ is not essential in a direct summand. However, every ideal is right essential in a direct summand of T_1.

(vii) $S(I, N(T_1))$ (i.e., split-null extension) is ring isomorphic to the subring $(0, I) + N(T_1)$ of T_1. $S(I, N(T_1))$ provides an example for Theorem 5 (i).

(viii) $S(T_1, (0, k2I))$ provides an example for Theorem 5 (ii).

(ix) $S(T_1, (T, 0))$ is an example of a split-null extension of a strongly right bounded ring which is not strongly right bounded (cf. Theorem 5). To see this observe $((a, 1), (0, 0))S(T_1, (T, 0)) = \{(ka, k), (0, 0)\} | k \in I$ contains no nonzero ideals since $((b, 0), (0, 0))((ka, k), (0, 0)) = ((k(a + b), 0), (0, 0))$.

References

19. V.K. GOEL, S.K. JAIN, π-injective modules and rings whose cyclics are π-injective, Comm. Algebra 6 (1978), 59–73.

1980 Mathematics Subject Classifications: 16A15

Department of Mathematics
University of Southwestern Louisiana
Lafayette, LA 70504
U.S.A.

Rebut el 12 d'Octubre de 1988