A STABILITY RESULT
ON MUCKENHOUPT’S WEIGHTS

JUHA KINNUNEN

Abstract

We prove that Muckenhoupt’s A_1-weights satisfy a reverse Hölder inequality with an explicit and asymptotically sharp estimate for the exponent. As a by-product we get a new characterization of A_1-weights.

1. Introduction and statement of results

Muckenhoupt’s weights are important tools in harmonic analysis, partial differential equations and quasiconformal mappings. The self-improving property of Muckenhoupt’s weights is probably one of the most useful results in the field. The surprising fact that the weights are more regular than they seem to be a priori was observed already by Muckenhoupt [16]. The same phenomenon was studied by Gehring in [6] where he introduced the concept of reverse Hölder inequalities and proved that they improve themselves. Later Coifman and Fefferman [3] showed that Muckenhoupt’s weights are exactly those weights which satisfy a reverse Hölder inequality. Since then reverse Hölder inequalities have had a vast number of applications in modern analysis. An excellent source for all the mentioned results and other properties of Muckenhoupt’s weights is the monograph [7].

We are interested in a stability question related to Muckenhoupt’s A_1-class and reverse Hölder inequalities. Suppose that $w : \mathbb{R}^n \to [0, \infty]$ is a locally integrable function satisfying Muckenhoupt’s A_1-condition,

\begin{equation}
\frac{1}{|B|} \int_B w(x) \, dx \leq c_w \text{ess inf}_{x \in B} w(x),
\end{equation}

Keywords. Muckenhoupt weight, reverse Hölder inequality.
for all balls $B \subset \mathbb{R}^n$ with the constant $c_w \geq 1$ independent of the ball B. Here $|B|$ is the volume of B. If w belongs to Muckenhoupt’s class A_1, we denote $w \in A_1$; the smallest constant c_w for which (1.1) holds is called the A_1-constant of w.

Condition (1.1) can be expressed in terms of the Hardy-Littlewood maximal function, defined by

$$
\mathcal{M}w(x) = \sup_B \frac{1}{|B|} \int_B w(y) \, dy,
$$

where the supremum is over all balls $B \subset \mathbb{R}^n$ containing the point x. It is easy to see [7, p. 389] that (1.1) is equivalent to the requirement that

$$
\mathcal{M}w(x) \leq c_w w(x)
$$

almost everywhere with exactly the same c_w as in (1.1).

It is clear that (1.1) imposes a serious restriction on the function. If the A_1-constant is one, then

$$
0 \leq \frac{1}{|B|} \int_B \left(w(y) - \operatorname{ess inf}_{x \in B} w(x) \right) \, dy \leq \operatorname{ess inf}_{x \in B} w(x) - \operatorname{ess inf}_{x \in B} w(x) = 0
$$

and hence w is constant. We are interested in the regularity of A_1-weights as the constant tends to one. It is well-known that A_1-weights satisfy the reverse Hölder inequality

$$
(1.2) \quad \left(\frac{1}{|B|} \int_B w(x)^p \, dx \right)^{1/p} \leq c \frac{1}{|B|} \int_B w(x) \, dx,
$$

for some $p > 1$ and c independent of the ball B. Using (1.2) and (1.1) we see that $w^p \in A_1$ and w is locally integrable to power p. The question is: how large can p be? If the A_1-constant is one, then the weight is essentially bounded and it seems reasonable to expect that the degree of the local integrability increases as the A_1-constant tends to one. Questions related to the stability of reverse Hölder inequalities have obtained considerable attention in the last two decades, see [1], [2], [9], [11], [12], [13], [14], [15], [17], [18], [19], [20] and [21].

Our contribution is twofold. First, we present a new and a simple method which gives an explicit and asymptotically optimal bound for p. Second, our proof leads to a new characterization of A_1-weights (Corollary 2.11) which may be of independent interest.

Now we are ready to present our main result.
1.3. Theorem. If \(w \in A_1 \) with the constant \(c_w \), then there is a constant \(\nu \) depending only on the dimension such that \(w \) satisfies the reverse Hölder inequality (1.2) whenever
\[
1 \leq p < 1 + \frac{\nu}{c_w - 1}.
\]

In the one-dimensional case we may take \(\nu = 1 \) in (1.4), see [2] and [11], but our proof generally yields a small \(\nu \). Our method also allows us to replace balls in the \(A_1 \)-condition by cubes. Observe that the bound (1.4) for the local integrability of the weight is arbitrarily large provided \(c_w \) is close enough to one.

We remark that using factorization results of [10] and [4], our method gives similar estimates for Muckenhoupt’s \(A_p \)-weights as well. In the one-dimensional case this has been studied by Neugebauer [17].

2. Characterization of \(A_1 \)-weights

We begin by showing that every \(A_1 \)-weight can be approximated by smooth \(A_1 \)-weights.

2.1. Lemma. Suppose that \(w \in A_1 \) with the constant \(c_w \) and let \(\varphi \in C^\infty_0(\mathbb{R}^n) \), \(\varphi \geq 0 \) with \(\int_{\mathbb{R}^n} \varphi \, dx = 1 \). Then \(w \ast \varphi \in A_1 \) with the constant \(c_w \).

Proof: A direct calculation gives
\[
\frac{1}{B(x,r)} \int_{B(x,r)} w \ast \varphi(y) \, dy = \frac{1}{B(x,r)} \int_{B(x,r)} \int_{\mathbb{R}^n} w(y-z) \varphi(z) \, dz \, dy
\]
\[
= \int_{\mathbb{R}^n} \varphi(z) \frac{1}{B(x-z,r)} \int_{B(x-z,r)} w(y) \, dy \, dz
\]
\[
\leq c_w \int_{\mathbb{R}^n} \varphi(z) \, \text{ess inf}_{y \in B(x-z,r)} \, w(y) \, dz
\]
\[
= c_w \int_{\mathbb{R}^n} \varphi(z) \, \text{ess inf}_{y \in B(x,r)} \, w(y-z) \, dz
\]
\[
\leq c_w \, \text{ess inf}_{y \in B(x,r)} \int_{\mathbb{R}^n} w(y-z) \varphi(z) \, dz
\]
\[
= c_w \, \text{ess inf}_{y \in B(x,r)} w \ast \varphi(y).
\]

This completes the proof. \(\blacksquare \)

We record a well-known covering theorem.
2.3. BESICOVITCH’S COVERING THEOREM. Suppose that E is a bounded subset of \mathbb{R}^n and that \mathcal{B} is a collection of balls such that each point of E is a center of some ball in \mathcal{B}. Then there exists an integer $N \geq 2$ (depending only on the dimension) and subcollections $\mathcal{B}_1, \ldots, \mathcal{B}_N \subset \mathcal{B}$ of at most countably many balls such that the balls $B_{i,j}$, $j = 1, 2, \ldots,$ in each family \mathcal{B}_i, $i = 1, 2, \ldots, N$, are pairwise disjoint and

$$E \subset \bigcup_{i=1}^{N} \bigcup_{j=1}^{\infty} B_{i,j}.$$

For the proof of Besicovitch’s covering Theorem we refer to [5, Theorem 1.1]. Some estimates for the constant N are obtained in [8].

Now we show that A_1-weights satisfy a reverse Chebyshev inequality. This observation is a crucial ingredient in the proof of Theorem 1.3. For short we denote

$$E_\lambda = \{x \in \mathbb{R}^n : w(x) > \lambda\}, \quad \lambda > 0,$$

throughout the paper.

2.4. Lemma. Let $B \subset \mathbb{R}^n$ be a ball and suppose that $w : \mathbb{R}^n \to [0, \infty]$ is an A_1-weight with the constant c_w. Then there is a constant η, depending only on the dimension, so that

$$(2.5) \quad \int_{E_\lambda \cap B} w(x) \, dx \leq (c_w + \eta(c_w - 1)) \lambda |E_\lambda \cap B|,$$

whenever $\text{ess inf}_{x \in B} w(x) \leq \lambda < \infty$.

Proof: Fix a ball $B \subset \mathbb{R}^n$. Suppose first that w is a continuous A_1-weight with the constant c_w and that $\lambda \geq \text{inf}_{x \in B} w(x)$. Then E_λ is open and for every $x \in E_\lambda$ we take the ball $B(x, r_x)$ where r_x is the distance from x to the boundary of E_λ. Let $\mathcal{B} = \{B(x, r_x) : x \in E_\lambda \cap B\}$. The radii of the balls in \mathcal{B} are bounded, because $\overline{B} \setminus E_\lambda \neq \emptyset$. By Besicovitch’s covering Theorem, there are families $\mathcal{B}_i = \{B_{i,j} : j = 1, 2, \ldots\}$, $i = 1, 2, \ldots, N$, of countably many balls, chosen from \mathcal{B}, such that

$$E_\lambda \cap B = \bigcup_{i=1}^{N} \bigcup_{j=1}^{\infty} B_{i,j} \cap B$$

and the balls in every \mathcal{B}_i, $i = 1, 2, \ldots, N$, are pairwise disjoint. We denote the union of the pairwise disjoint balls by

$$E_\lambda^{\equiv} = \bigcup_{j=1}^{\infty} B_{i,j}, \quad i = 1, 2, \ldots, N.$$
The balls $B_{i,j}$ touch the boundary of E_λ and, since w is continuous, using the A_1-condition we get

$$
(2.6) \quad \frac{1}{|B_{i,j}|} \int_{B_{i,j}} w(x) \, dx \leq c \inf_{x \in B_{i,j}} w(x) \leq c \lambda,
$$

$$
i = 1, 2, \ldots, N, \; j = 1, 2, \ldots
$$

The balls $B_{i,j}$ are not, in general, contained in B, but there is a constant $\gamma > 0$, depending only on the dimension, so that

$$
|B_{i,j} \setminus B| \leq \gamma |B_{i,j} \cap B|, \quad i = 1, 2, \ldots, N, \; j = 1, 2, \ldots
$$

To see this, let $B_{i,j}$ be the ball $B(x, r_x) \subset E_\lambda$ with $x \in E_\lambda \cap B$. Then by geometry, there is a ball $B(y, r_x/2) \subset B(x, r_x) \cap B$. This gives us the estimate

$$
|B(x, r_x) \setminus B| \leq |B(x, r_x)| = 2^n |B(y, r_x/2)| \leq 2^n |B(x, r_x) \cap B|.
$$

Hence we may take $\gamma = 2^n$.

By observing that $w(x) > \lambda$ for every $x \in B_{i,j}$ and recalling (2.6) we see that

$$
\int_{B_{i,j} \cap B} w(x) \, dx \leq c_w \lambda |B_{i,j} \cap B| + c_w |B_{i,j} \setminus B| - \int_{B_{i,j} \setminus B} w(x) \, dx
$$

$$
\leq c_w \lambda |B_{i,j} \cap B| + (c_w - 1) \lambda |B_{i,j} \setminus B|
$$

$$
\leq (c_w + \gamma (c_w - 1)) \lambda |B_{i,j} \cap B|,
$$

$$
i = 1, 2, \ldots, N, \; j = 1, 2, \ldots
$$

Since the balls in each $B_i, i = 1, 2, \ldots, N,$ are pairwise disjoint, we arrive at

$$
(2.7) \quad \int_{E_\lambda \setminus B} w(x) \, dx = \sum_{j=1}^{\infty} \int_{B_{i,j} \cap B} w(x) \, dx
$$

$$
\leq (c_w + \gamma (c_w - 1)) \lambda |E_\lambda \cap B|, \quad i = 1, 2, \ldots, N.
$$

Let μ be a measure. Then we use the elementary inequality

$$
(2.8) \quad \mu(E_\lambda \cap B) = \sum_{i=1}^{N} \mu(E_i \cap B) - \sum_{k=2}^{N} \mu(F_k \cap B),
$$
where

\[F^k_\lambda = \bigcup_{\{i_1, \ldots, i_k\} \subset \{1, \ldots, N\}} (E^{i_1}_\lambda \cap \cdots \cap E^{i_k}_\lambda), \quad k = 2, 3, \ldots, N. \]

A simple computation using (2.8), (2.7) and the fact that \(w(x) > \lambda \) in \(F^k_\lambda \cap B, k = 2, \ldots, N \), gives

\[
\int_{E_\lambda \cap B} w(x) \, dx = \sum_{i=1}^N \int_{E^i_\lambda \cap B} w(x) \, dx - \sum_{k=2}^N \int_{F^k_\lambda \cap B} w(x) \, dx
\]

\[
\leq (c_w + \gamma(c_w - 1)) \sum_{i=1}^N |E^i_\lambda \cap B| - \lambda \sum_{k=2}^N |F^k_\lambda \cap B|
\]

(2.9)

\[
= (c_w + \gamma(c_w - 1)) \lambda |E_\lambda \cap B| + \lambda (1 + \gamma)(c_w - 1) \sum_{k=2}^N |F^k_\lambda \cap B|
\]

\[
\leq (c_w + \gamma(c_w - 1)) \lambda |E_\lambda \cap B| + (N-1)(1 + \gamma)(c_w - 1) \lambda |E_\lambda \cap B|
\]

\[
= (c_w + \eta(c_w - 1)) \lambda |E_\lambda \cap B|,
\]

where \(\eta = N \gamma + N - 1 \) and \(\lambda \geq \inf_{x \in B} w(x) \).

The general case follows from a standard approximation argument using Lemma 2.1. Suppose that \(w \in A_1 \) with the constant \(c_w \). Let \(\varphi \in C^\infty_0(\mathbb{R}^n), \varphi \geq 0 \) with \(\int_{\mathbb{R}^n} \varphi \, dx = 1 \). We define \(w_\varepsilon = w * \varphi_\varepsilon \), where \(\varphi_\varepsilon(x) = \varepsilon^{-n} \varphi(x/\varepsilon) \) and \(\varepsilon > 0 \). Lemma 2.1 shows that \(w_\varepsilon \) is a continuous \(A_1 \)-weight with the constant \(c_w \) for every \(\varepsilon > 0 \). Using (2.9) we see that

\[
\int_{\{w_\varepsilon > \lambda\} \cap B} w_\varepsilon(x) \, dx \leq (c_w + \eta(c_w - 1)) \lambda \inf_{x \in B} w_\varepsilon(x) \leq \lambda < \infty.
\]

Letting \(\varepsilon \to 0 \) we obtain (2.5). This completes the proof.

2.10. Remark. (1) Observe that the constant on the right side of (2.5) tends to one as \(c_w \) tends to one. On the other hand, it blows up as \(c_w \) increases.

(2) We also remark that inequalities of type (2.5) appear already in the proof of Theorem 4 in [3]. However, their approach does not seem to give the correct behaviour as \(c_w \) tends to one.

We observe that (2.5) gives a characterization of \(A_1 \)-weights.
2.11. Corollary. Suppose that \(w : \mathbb{R}^n \rightarrow [0, \infty] \) is a measurable function. Then \(w \in A_1 \) if and only if there is a constant \(c \), independent of the ball \(B \), so that

\[
\int_{E_\lambda \cap B} w(x) \, dx \leq c \lambda |E_\lambda \cap B|, \quad \text{ess inf}_{x \in B} w(x) \leq \lambda < \infty,
\]

for every ball \(B \subset \mathbb{R}^n \).

Proof: Lemma 2.4 shows that every \(A_1 \)-weight satisfies (2.12).

To see the reverse implication suppose that (2.12) holds and let \(B \) be a ball in \(\mathbb{R}^n \). Then

\[
\int_B w(x) \, dx = \int_{B \setminus E_\lambda} w(x) \, dx + \int_{E_\lambda \cap B} w(x) \, dx \\
\leq \lambda |B \setminus E_\lambda| + c \lambda |B \cap E_\lambda| \\
\leq c \lambda |B|, \quad \text{ess inf}_{x \in B} w(x) \leq \lambda < \infty.
\]

By inserting \(\lambda = \text{ess inf}_{x \in B} w(x) \) we get

\[
\frac{1}{|B|} \int_B w(x) \, dx \leq c \text{ess inf}_{x \in B} w(x),
\]

where the constant is independent of the ball and hence \(w \in A_1 \). \(\blacksquare \)

2.13. Remark. In the one-dimensional case we may take the constant in (2.12) equal to the \(A_1 \)-constant of \(w \), see [11].

Lemma 2.4 shows that \(w \) satisfies the assumptions of the following sharp version Muckenhoupt’s Lemma 4 in [16]. See also Lemma 2 in [2]. The proof of the following lemma can be found in [11], but we present it here for the sake of completeness.

2.14. Lemma. Suppose that \(w : \mathbb{R}^n \rightarrow [0, \infty] \) is a measurable function and let \(B \subset \mathbb{R}^n \) be a ball. If there are \(\alpha \geq 0 \) and \(c > 1 \) such that

\[
\int_{E_\alpha \cap B} w(x) \, dx \leq c \lambda |E_\alpha \cap B|, \quad \alpha \leq \lambda < \infty,
\]

then for every \(p, 1 < p < c/(c - 1) \), we have

\[
\int_{E_\alpha \cap B} w(x)^p \, dx \leq \frac{c}{c - p(c - 1)} \alpha^p |E_\alpha \cap B|.
\]
Proof: Let $\beta > \alpha$ and denote $w_\beta = \min(w, \beta)$. Then

$$\int_{\{w_\beta > \lambda\} \cap B} w(x) \, dx \leq c \lambda \{w_\beta > \lambda\} \cap B, \quad \alpha \leq \lambda < \infty.$$

We multiply both sides by λ^{p-2} and integrate from α to ∞. This implies

$$\int_\alpha^{\infty} \lambda^{p-2} \int_{\{w_\beta > \lambda\} \cap B} w(x) \, dx \, d\lambda \leq c \int_\alpha^{\infty} \lambda^{p-1} \{w_\beta > \lambda\} \cap B \, d\lambda.$$

Then we use the equality

$$(2.17) \quad \int_{E_\alpha \cap B} w(x)^p \, d\mu = p \int_\alpha^{\infty} \lambda^{p-1} \mu(E_\lambda \cap B) \, d\lambda + \alpha^p \mu(E_\alpha \cap B),$$

where $0 < p < \infty$, with μ replaced by $w \, d\mu$ and p replaced by $p - 1$, to get

$$\int_{E_\alpha \cap B} w_\beta(x)^p \, dx \leq \int_{E_\alpha \cap B} w_\beta(x)^p - 1 w(x) \, dx$$

$$= (p - 1) \int_\alpha^{\infty} \lambda^{p-2} \int_{\{w_\beta > \lambda\} \cap B} w(x) \, dx \, d\lambda + \alpha^{p-1} \int_{E_\alpha \cap B} w(x) \, dx$$

$$\leq c(p - 1) \int_\alpha^{\infty} \lambda^{p-1} \{w_\beta > \lambda\} \cap B \, d\lambda + c \alpha^p |E_\alpha \cap B|.$$

Next we estimate the first integral on the right side using (2.17) and find

$$\int_\alpha^{\infty} \lambda^{p-1} \{w_\beta > \lambda\} \, d\lambda \leq \frac{1}{p} \left(\int_{E_\alpha \cap B} w_\beta(x)^p \, dx - \alpha^p |E_\alpha \cap B| \right).$$

Hence we obtain

$$\int_{E_\alpha \cap B} w_\beta(x)^p \, dx \leq \frac{c(p - 1)}{p} \int_{E_\alpha \cap B} w_\beta(x)^p \, dx + \frac{c}{p} \alpha^p |E_\alpha \cap B|.$$

Choosing $p > 1$ such that $c(p - 1)/p < 1$ and using the fact that all terms in the previous inequality are finite, we conclude

$$\int_{E_\alpha \cap B} w_\beta(x)^p \, dx \leq \frac{c}{c - p(c - 1)} \alpha^p |E_\alpha \cap B|.$$

Finally, as $\beta \to \infty$, the monotone convergence theorem gives (2.16). This proves the lemma.

2.18. Remark. Both the bound for p and the constant in (2.16) are the best possible as is easily seen by taking B to be the unit ball and $w : \mathbb{R}^n \to [0, \infty]$, $w(x) = |x|^{n/(c - 1)}$.

3. Proof of Theorem 1.3

Let B be a ball in \mathbb{R}^n and suppose that $w \in \mathcal{A}_1$ with the constant c_w. Using (2.5) we see that

$$\int_{E_\lambda \cap B} w(x) \, dx \leq (c_w + \eta(c_w - 1)) \lambda |E_\lambda \cap B|, \quad \text{ess inf}_{x \in B} w(x) \leq \lambda < \infty,$$

where η is the constant given by Lemma 2.4. This shows that w fulfills the assumptions of Lemma 2.14 and from (2.16) we conclude that

$$\int_B w(x)^p \, dx = \int_{B \setminus E_\alpha} w(x)^p \, dx + \int_{B \cap E_\alpha} w(x)^p \, dx$$

$$\leq \alpha^p |B \setminus E_\alpha| + c \alpha^p |B \cap E_\alpha|$$

$$\leq c \alpha^p |B|,$$

whenever $\text{ess inf}_{x \in B} w(x) \leq \alpha < \infty$ and

$$1 \leq p < 1 + \frac{1}{(\eta + 1)(c_w - 1)}.$$

In particular, we get

$$\left(\frac{1}{|B|} \int_B w(x)^p \, dx \right)^{1/p} \leq c \frac{1}{|B|} \int_B w(x) \, dx.$$

The constant c does not depend on B and hence we may repeat the same reasoning in every ball B and we see that w satisfies the reverse Hölder inequality for every $p > 1$ such that (1.4) holds if we take $\nu = (\eta + 1)^{-1}$. This completes the proof of Theorem 1.3. □

Acknowledgements. I would like to thank Michael Korey for making valuable comments on early versions of this paper.

References

Department of Mathematics
P.O.Box 4
University of Helsinki
FIN-00014
FINLAND

e-mail: Juha.Kinnunen@Helsinki.Fi

Primera versió rebuda el 17 de febrer de 1997,
darrera versió rebuda el 20 de maig de 1997