SOLVABLE GROUPS WITH MANY BFC-SUBGROUPS

O. D. ARTEMOVYCH

Abstract

We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Černikov group or has an infinite properly descending chain of non-BFC subgroups.

0. Introduction

In a series of papers Belyaev-Sesekin [2], Belyaev [3], Bruno-Phillips [4], [5], Kuzucuoglu-Phillips [12], Leinen-Puglisi [13], Asar [1], Leinen [14] have obtained the results on minimal non-FC groups. In particular, in [2] are characterized the minimal non-BFC groups, i.e. the non-BFC groups in which every proper subgroup is BFC. Recall that a group G is called a BFC-group if there is a positive integer d such that no element of G has more than d conjugates. Due to the well known result of B. H. Neumann (see e.g. [16, Theorem 4.35]) the BFC-groups are precisely the groups with the finite commutator subgroups.

We say that a group G satisfies the minimal condition on non-BFC subgroups (for short Min-BFC) if for every properly descending series $\{G_n \mid n \in \mathbb{N}\}$ of subgroups of G there exists a number $n_0 \in \mathbb{N}$ such that G_n is a BFC-group for every integer $n \geq n_0$ and a group G satisfies maximal condition on non-BFC subgroups (for short Max-BFC) if there exists no infinite properly ascending series of non-BFC subgroups in G. Every minimal non-BFC group satisfies Min-BFC and Max-BFC.

S. Franciosi, F. de Giovanni and Ya. P. Sysak [11] have investigated the locally graded groups with the minimal condition on non-FC subgroups. In this paper we characterize the solvable groups satisfying Max-BFC and Min-BFC, respectively. Namely, we prove the two following theorems.

2000 Mathematics Subject Classification. 20E15, 20F16, 20F24.

Key words. BFC-group, minimal non-BFC group, maximal condition, minimal condition, solvable group.
Theorem 1. A solvable group G satisfies Max-BFC if and only if it is of one of the following types:

(i) G is a BFC-group;

(ii) $G = BU$ is a finitely generated group, where B is a proper torsion normal subgroup of G, U its polycyclic subgroup and $B(x)$ is either a BFC-subgroup or a finitely generated subgroup for every element x of U;

(iii) $G = DU$ is a locally nilpotent-by-finite group with the torsion commutator subgroup G', where D is a normal divisible abelian p-subgroup, U is a polycyclic subgroup, and if (u) acts non-trivially on D for an element u of U, then D is an indecomposable injective $\mathbb{Q}(u)$-module and $A(u)$ is a BFC-subgroup for every proper submodule A of a $\mathbb{Z}(u)$-module D with the action induced by the conjugation of u on D.

Theorem 2. Let the group G have a descending series whose factors are finite or abelian. If G satisfies the minimal condition on non-BFC subgroups, then it is a BFC-group or a Černikov group.

Throughout this paper p is a prime. For a group G, $Z(G)$ will always denote the centre of G, $G', G'', \ldots, G^{(n)}$ the terms of derived series of G, $\tau(G)$ the set of all torsion elements of G, $G^p = \langle g^p \mid g \in G \rangle$. In the sequel we will use the following notation:

- \mathbb{Q} the rational number field;
- \mathbb{F}_p the finite field with p elements;
- \mathbb{Q}_p the additive group of all rational numbers whose denominators are p-numbers;
- \mathbb{Z} the additive group of all rational integers;
- \mathbb{C}_p^∞ the quasicyclic p-group;
- $R(x)$ the group ring of a cyclic group $\langle x \rangle$ over a commutative ring R.

We will also use other standard terminology from [10] and [16].

1. Solvable groups with Max-BFC

In this section we study the solvable groups with the maximal condition on non-BFC subgroups.
Lemma 1.1. Let G be a group satisfying Max-BFC and H its subgroup. Then:

(i) H satisfies Max-BFC;
(ii) if H is normal in G, then the quotient group G/H satisfies Max-BFC;
(iii) if H is a normal non-BFC subgroup of G, then G/H satisfies the maximal condition on subgroups.

Proof: Is immediate. \hfill \square

Lemma 1.2. Let G be a group which satisfies Max-BFC. If G contains a normal abelian subgroup N with the quasicyclic quotient group G/N, then G is a nilpotent group.

Proof: We prove this lemma by the same arguments as in the proof of Lemma 2.3 from [2]. Since G/N is a quasicyclic p-group for some prime p,

$$G/N = \bigcup_{n=1}^{\infty} \langle \pi_n \rangle,$$

where $\pi_n^p = \pi_{n-1}$, $\pi_0 = N$. Put $A_n = \langle N, a_n \rangle$. Then $A_n \triangleleft G$, $A_n' \triangleleft G$ and by Lemma 1.1(iii) A_n is a BFC-subgroup. Hence $A_n' \leq Z(G)$ and consequently

$$G' = \bigcup_{n=1}^{\infty} A_n' \leq Z(G),$$

as desired. \hfill \square

Lemma 1.3. If G is a Černikov group with Max-BFC, then it is a BFC-group or the quotient group G/G' is finite.

Proof: Assume that the quotient group $G' = G/G'$ is infinite and G is not a BFC-group. Then by Theorem 21.3 of [10] $G' \cong D \times F$ is a direct product of the non-trivial divisible part D and a reducible subgroup F. Let D and F be the inverse images of D and F in G, respectively. By Corollary 2.2 of [2] $G' = D'F'$. Since G is not a BFC-group, F' is a finite group. It is clear that $D \cong \mathbb{C}_p^\infty$ for some prime p and G has a normal BFC-subgroup N with $G/N \cong \mathbb{C}_p^\infty$. By Theorem 1.16 of [7] $G = NZ(G)$ and so $G' = N'$, a contradiction with our assumption. The lemma is proved. \hfill \square

Proposition 1.4. If a group G satisfies Max-BFC, then it is a BFC-group or the quotient group G/G' is finitely generated.
Proof: As it is well known \(\mathcal{G} = G/G' = \mathcal{D} \times \mathcal{S} \) is a direct product of the divisible part \(\mathcal{D} = D/G' \) and a reducible subgroup \(\mathcal{S} = S/G' \).

(1) First, let \(\mathcal{D} \) be a non-trivial subgroup. Then \(\mathcal{S} \) and \(\mathcal{G}' \) are the BFC-subgroups. It is clear that \(\mathcal{G} \) is a BFC-group or \(\mathcal{D} \) is a quasicyclic group. We suppose that \(\mathcal{D} \cong \mathbb{Z}_{p^\infty} \). Let \(\mathcal{P} = F/G' \) be a \(p \)-basic subgroup of \(\mathcal{S} \). If \(\mathcal{P} \neq \mathcal{S} \), then \(\mathcal{G}/\mathcal{P} \) is a direct product of a quasicyclic \(p \)-subgroup and an infinite \(p \)-divisible abelian subgroup. By Lemma 2.2 of [2] and Lemma 1.1 \(G \) is a BFC-group.

Assume that \(\mathcal{F} = \mathcal{S} \). Then by Lemma 26.1 and Proposition 27.1 from [10] \(\mathcal{G}/\mathcal{F}' = D^* \times F^* \) is a direct product of a quasicyclic \(p \)-subgroup \(D^* \) and a \(p \)-subgroup \(F^* \) of exponent \(p \). Lemma 2.2 of [2] implies \(\mathcal{G}' = D'S' \). If \(\mathcal{F} \) is not a finitely generated subgroup, then in view of Lemma 1.1 \(D \) and \(G \) are the BFC-groups. Therefore we assume that \(\mathcal{F} \) is a finitely generated subgroup. Since \(F \) is a BFC-subgroup, \(|G':D'| < \infty \). By Lemma 1.2 \(D/G' \) is an infinite and \(D/D' \) is a Černikov group. This yields that \(D \) is a Černikov group. By Lemmas 1.1 and 1.3 \(D \) is a BFC-group and as a consequence \(G \) is the ones.

(2) Now let the divisible part \(\mathcal{D} \) is trivial. If \(\mathcal{F} = \mathcal{S} \), then the quotient group \(\mathcal{G}/\mathcal{F}' \) is finitely generated or \(\mathcal{G}/\mathcal{F}' \) is a direct product of infinitely many cyclic subgroups of order \(p \) in which case \(G \) is a BFC-group.

Therefore we assume that \(\mathcal{F} \neq \mathcal{S} \). If \(\mathcal{F} \) is not finitely generated, in the same manner as above we can prove that \(G \) is a BFC-group.

Let \(\mathcal{F} \) be a finitely generated subgroup.

(a) Assume that the quotient group \(\mathcal{G}_1 = \mathcal{G}/\mathcal{F} \) is non-torsion. Then there exists a subgroup \(\mathcal{F}_0 \) such that \(\mathcal{F} \leq \mathcal{F}_0 \leq \mathcal{G} \) and \(\mathcal{G}/\mathcal{F}_0 \) is torsion-free. As noted in [6] (see also [7, Chapter 2, §6]) \(\mathcal{G}/\mathcal{F}_0 \) contains a subgroup \(\mathcal{T}/\mathcal{T}_0 \) isomorphic to \(\mathbb{Z}_p \). If \(\mathcal{Z}/\mathcal{F}_0 \) is a subgroup of \(\mathcal{T}/\mathcal{T}_0 \), then \(\mathcal{T}/\mathcal{Z} \) is a quasicyclic \(p \)-group, and it follows that \(G \) has a normal BFC-subgroup \(X \) with \(G/X \cong \mathbb{Z}_{p^\infty} \). By Lemma 1.2 \(G_0 = G/XF^p \) is a nilpotent group and so by Lemma 26.1 and Proposition 27.1 from [10] \(G_0/G_0' = F_1 \times K_1 \) is a direct product of a finite \(p \)-subgroup \(F_1 \) and an infinite \(p \)-divisible abelian subgroup \(K_1 \). Let \(K_0 \) be an inverse image of \(K_1 \) in \(G_0 \). From what is proved above it follows that \(K_0 \) has a normal subgroup \(K^* \) with \(K_0/K^* \cong \mathbb{Z}_{p^\infty} \). If \(K^* \neq (K^*)^p \), then Theorem 1.16 of [7] yields that \(K_0/(K^*)^p = \mathcal{X} \times \mathcal{Y} \) is a direct product of a quasicyclic \(p \)-subgroup \(\mathcal{X} \) and some divisible \(p \)-subgroup \(\mathcal{Y} \). Since \(\mathcal{Y} \) is a non-trivial subgroup, it is infinite. Consequently \(G \) is a BFC-group. Therefore we suppose that \(K^* = (K^*)^p \). As above we can prove that \(K^* \) contains a \(G \)-invariant subgroup \(L \) with \(K^*/L \cong \mathbb{Z}_{p^\infty} \). Hence \(K_0/L \cong \mathbb{Z}_{p^\infty} \times \mathbb{Z}_{p^\infty} \) and so \(G \) is a BFC-group.
(b) Let \(G_1 = \overline{G}/\overline{F} \) be an infinite torsion \(p' \)-group. Then without loss of generality we can assume that \(G_1 \) is an infinite \(q \)-group for some prime \(q \) different from \(p \). By \(B \) we denote a basic subgroup of \(G_1 \). If \(B = G_1 \), then the quotient group \(G/G' \) is finitely generated or \(B \) is an infinitely generated subgroup in which case \(G \) is a BFC-group.

Let \(B \neq G_1 \). If \(B \) is not a finitely generated subgroup, then Lemma 26.1 and Proposition 27.1 of [10] give that \(G_1/B' \cong \overline{B} \times C_{q\infty} \), where \(\overline{B} \) is an infinite abelian \(q \)-subgroup of exponent \(q \), and this yields that \(G \) is a BFC-group. Therefore we assume that \(B \) is a finitely generated subgroup. Then without loss of generality let \(B = 1 \) and \(G_1 \cong C_{q\infty} \). We would like to prove that the commutator subgroup \(G' \) is torsion. Since the subgroup \(G'' \) is finite, without restricting of generality let \(G'' = 1 \). But then \(\overline{F} = F/\tau(G') \) is an abelian subgroup of \(\overline{G} = G/\tau(G') \) and from \(G_1 \cong \overline{G}/\overline{F} \) it follows that \(\overline{G} \) is an abelian group. This means that \(G' \) is a torsion subgroup. By Lemma 1.2 \(G/F' \) is a nilpotent group and it has the torsion commutator subgroup. So Corollary 3.3 of [2] yields that \(G/F' \) is a torsion group. Hence \(G \) is a torsion group and \(G \cong C_{q\infty} \times M \), where \(M \) is a finite subgroup, a contradiction with our assumption.

(c) Finally, if \(G_1 = \overline{G}/\overline{F} \) is a torsion group and it has a non-trivial \(p \)-subgroup, then without loss of generality we can assume that \(G_1 \) is a quasicyclic \(p \)-group. As in the line (b) this gives that \(G \) is a BFC-group. The proposition is proved.

Lemma 1.5. Let \(G = B \langle x \rangle \) be a product of a normal abelian torsion-free subgroup \(B \) and a cyclic subgroup \(\langle x \rangle \). If \(G \) satisfies Max-BFC, then it is either an abelian group or a polycyclic group.

Proof: If \(F \) is any finitely generated subgroup of \(B \), then \(\langle F, x \rangle \) is a polycyclic subgroup in \(G \) and \(\langle F, x \rangle = A(x) \) for some \(G \)-invariant subgroup \(A \) of \(B \). Assume that the quotient group \(G/A \) is not finitely generated. Then \(A(x) \) is a BFC-subgroup in view of Lemma 1.1 and consequently it is abelian. Therefore a non-polycyclic group \(G \) is abelian, as desired.

Lemma 1.6. If \(G \) is a solvable group satisfying Max-BFC, then one of the following conditions holds:

(i) \(G = BU \) is a finitely generated group, where \(B \) is a proper torsion normal subgroup of \(G \), \(U \) its polycyclic subgroup and \(B \langle x \rangle \) is either a BFC-subgroup or a finitely generated subgroup for every element \(x \) of \(U \);

(ii) \(G \) is a BFC-group;
(iii) \(G = DV \) is a product of a normal divisible abelian \(p \)-subgroup \(D \) and a polycyclic subgroup \(V \).

Proof: Suppose that \(G \) is not a BFC-group. Let \(n \) be the derived length of \(G \). Then there exists an integer \(k \) such that \(G^{(k-1)} \) is not a BFC-group, but \(G^{(k)} \) is a BFC-group, where \(1 \leq k \leq n - 1 \) and \(G^{(0)} = G \). Proposition 1.4 implies that \(G^{(k-1)} = G^{(k)}U \) for some polycyclic subgroup \(U \). By Lemma 1.5 \(\overline{U} \leq G^{(k-1)} \), where \(\overline{G^{(k-1)}} = G^{(k-1)}/\tau(G^{(k)}) = G^{(k-1)}/\tau(U) \), and so \(\overline{U} = G^{(k-1)} \). This means that \(G^{(k-1)} = \tau(G^{(k)})U \). We denote \(\tau(G^{(k)}) \) by \(B \).

(a) First we assume that \(G \) is not a finitely generated group. Clearly that there is an element \(u \) of \(U \) such that \(H_1 = G^{(k)}\langle u \rangle \) is a non-BFC group. We would like to prove that \(H = B\langle u \rangle \) is the ones. Indeed, if \(H \) is a BFC-group, then the quotient group \(H_1/HG^{(k+1)} \) is a nilpotent group and by Theorem 2.26 of [10] and Proposition 1.4 it is finitely generated. But then \(H_1 \) (and consequently \(G \)) is also a finitely generated group, a contradiction. Hence \(H \) is a non-BFC group.

(1) Assume that \(B \) is an abelian \(\pi \)-subgroup for some set \(\pi \) of primes. If \(B = B_1 \times B_2 \) is a direct product of an infinite \(\pi_1 \)-subgroup \(B_1 \) and an infinite \(\pi_2 \)-subgroup \(B_2 \), where \(\pi_1 \) and \(\pi_2 \) are the disjoint subsets of \(\pi \) such that \(\pi = \pi_1 \cup \pi_2 \), then it is not difficulty to prove that \(H \) is a BFC-group, a contradiction. Thus \(\pi \) is a finite set and \(B = P \times S \), where \(P \) is an infinite \(p \)-subgroup for some prime \(p \in \pi \) and \(S \) is a finite \(p' \)-subgroup. Moreover \(P\langle u \rangle \) is a non-BFC group.

(2) If \(B \) is not necessary an abelian subgroup, then from the line (1) it follows that \(B/T \) is a divisible abelian \(p \)-group for some finite \(H \)-invariant subgroup \(T \). By Theorem 1.16 of [7] there exists a divisible abelian \(p \)-subgroup \(D \) of \(B \) such that \(D \leq Z(B) \) and \(B = DT \). Thus \(G = DV \), where \(V \) is a polycyclic subgroup.

(b) Now let \(G \) be a finitely generated group. Then \(G = BU \) for some polycyclic subgroup \(U \). Suppose that \(B(x) \) is not a BFC-group for some \(x \in U \). If \(B(x) \) is not finitely generated, then, as in the line (1) and (2), we can prove that \(B(x) = D_1V_1 \), where \(D_1 \) is a normal divisible \(p \)-subgroup, \(V_1 \) is a polycyclic subgroup and \(D_1 \leq B \). By Theorem of [2] \(B(x) \) contains a proper non-BFC subgroup \(K \). Since \(D_1K = D_1K/(D_1 \cap K) = D_1K \) and \(D_1 \) is a non-trivial divisible \(p \)-subgroup, we conclude that \(D_1K \) (and consequently \(G \)) contains an infinite properly ascending series of type

\[K < K_1 < \cdots < K_n < \cdots , \]
Groups with Many BFC-Subgroups

a contradiction. This means that $B(x)$ is a finitely generated subgroup. The lemma is proved.

Example 1.7. If $G = A \rtimes \langle t \rangle$, where $\langle t \rangle$ is an infinite cyclic subgroup, $A \cong \mathbb{C}_p^\infty$ and $a^t = a^{1+p} (a \in A)$, then G satisfies Max-BFC.

If D is a commutative Dedekind domain, A right D-module, Spec(D) the set of non-trivial prime ideals of D and $P \in$ Spec(D), then

$A_P = \{a \in A \mid aP^n = \{0\}$ for some positive integer $n = n(a) \in \mathbb{N}\}

is said to be the P-component of A, and A is said to be a D-torsion module if

$A = \{a \in A \mid Ann(a) \neq \{0\}\}.$

Lemma 1.8. Let $G = A \rtimes \langle x \rangle$ be a semidirect product of a normal abelian subgroup A of exponent p and an infinite cyclic subgroup $\langle x \rangle$. If G satisfies Max-BFC, then it is either a finitely generated group or a BFC-group.

Proof: It is clear that A is a right $\mathbb{F}_p(x)$-module with the action determined by the conjugation of x on A. Assume that G is not neither a finitely generated group nor a BFC-group. Then A is a $\mathbb{F}_p(x)$-torsion module and by Proposition 2.4 of [8, §8.2]

$A = \bigoplus_{P \in$Spec$(\mathbb{F}_p(x))} A_P$

is a module direct sum of its P-component A_P. Without loss of generality we can suppose that $|A : A_Q| < \infty$ for some $Q \in$ Spec($\mathbb{F}_p(x)$). Let B be a basic submodule of A_Q. By our hypothesis $B = A_Q$. Since B can be written as a direct product of two infinite G-invariant subgroup of infinite index, we obtain that $B \rtimes \langle x \rangle$ (and consequently G) is a BFC-group, a contradiction. The lemma is proved.

Proposition 1.9. If G is a non-“finitely generated” non-BFC soluble group satisfying Max-BFC, then:

(1) G is a locally nilpotent-by-finite group;
(2) $G = BU$ is a product of a normal divisible abelian p-subgroup B and a polycyclic subgroup U;
(3) $B \langle u \rangle$ is a BFC-subgroup for an element $u \in U$ if and only if $u \in C_U(B)$;
(4) if $B \langle u \rangle$ is a non-BFC subgroup for some element $u \in U$, then $[B, \langle u \rangle] = B$;

(5) if $B\langle u \rangle$ is a non-BFC subgroup for some element $u \in U$, then B is an indecomposable injective $Q\langle u \rangle$-module;

(6) if $B\langle u \rangle$ is a non-BFC subgroup for some $u \in U$, then $A\langle u \rangle$ is a BFC-subgroup for every proper $Z\langle u \rangle$-submodule A of B, where the action is induced by the conjugation of u on B;

(7) G contains a normal subgroup H of finite index in which every non-BFC subgroup is subnormal;

(8) G' is a torsion subgroup of G.

Proof: (1) Is obvious.

(2) Follows from Lemma 1.6.

(3) Assume that $H = B\langle u \rangle$ is a BFC-subgroup for some element $u \in U$. If u has a finite order, then $H/H'\langle u \rangle$ is a divisible group and by Theorem 1.16 of [7] $H = Z(H)H'\langle u \rangle$. Consequently $Z(H)$ is a subgroup of finite index in H and H is an abelian group.

Let u be an element of infinite order. Since the subgroup $H'\langle u^s \rangle$ and the quotient group $B\langle u^s \rangle/(H'\langle u^s \rangle)'$ are nilpotent for some integer s, $B\langle u^s \rangle$ is a nilpotent group by Hall theorem [16, Theorem 2.27]. But then $B\langle u^s \rangle$ is an abelian group and therefore as proved above $H/(Z(H)\cap \langle u \rangle)$ is abelian. This yields that H is an abelian group.

(4) If $B\langle u \rangle$ is a non-BFC subgroup for some element u of U and $[B, \langle u \rangle] \neq B$, then $T = [B, \langle u \rangle]\langle u \rangle$ is a BFC-subgroup. Since $B\langle u \rangle/T'$ is a nilpotent group, it is abelian, a contradiction.

(5) It is clear that B is a right $Q\langle u \rangle$-module with the action induced by the conjugation of u on B. Furthermore, B is a divisible $Q\langle u \rangle$-module and therefore it is injective (see e.g. [11, Theorem 5.28]). By Theorem 2.5 of [15] B has a decomposition as a module direct sum of indecomposable injective $Q\langle u \rangle$-submodules. Since $B\langle u \rangle$ satisfies Max-BFC, B is an indecomposable module.

(6) Let $B\langle u \rangle$ be a non-BFC group and A a proper submodule of a right $Z\langle u \rangle$-module B, where the action is induced by the conjugation of u on B. By F we denote a basic subgroup of A. If $A = F$, then $A\langle u \rangle$ is either a polycyclic group or a BFC-group in view of Lemmas 1.8 and 1.5. Therefore we assume that $F \neq A$. Since B is an indecomposable $Q\langle u \rangle$-module, we conclude that F is an infinite group. But then A/A^p is also infinite and so $A\langle u \rangle/A^p$ is a BFC-group by Lemma 1.8. This yields that $A\langle u \rangle$ is the ones.
(7) If V is a nilpotent subgroup of finite index in U and K is any non-BFC subgroup of DV, then $D \leq K$. Hence K is a subnormal subgroup of DV.

(8) Is obvious. The proposition is proved.

Proof of Theorem 1: (\Rightarrow) Follows from Proposition 1.9.

(\Leftarrow) Suppose that K is a non-BFC subgroup of a non-BFC group G.

Let G be a group of type (ii) and $BK = BK/B(B \cap K) = B \rtimes K$. Since BK is a finitely generated subgroup, $S = (B \cap S) \rtimes K$, where S is a subgroup of BK which contains K, and BK satisfies the maximal condition on normal subgroups by Theorem 5.34 of [10], we conclude that every properly ascending series of type $K \leq K_1 \leq \cdots < K_n \leq \cdots$ is finite. This means that BK (and consequently G) satisfies Max-BFC.

If G is a group of type (iii), then it is clear that $K = (K \cap D)F$, where $F = \langle u_1, \ldots, u_t \rangle$ is some finitely generated subgroup. Assume that $K_i = (K \cap D)\langle u_i \rangle$ has the finite commutator subgroup K_i' for all i ($1 \leq i \leq t$). Since the subgroup (K_1', \ldots, K_t') is a finitely generated and $(K_1', \ldots, K_t', F) = K_0 F$ for some finite F-invariant subgroup $K_0 \leq K \cap D$, $(K/K_0)' = (FK_0/K_0)'$ is a finite subgroup and therefore K is a BFC-subgroup, a contradiction. Hence $(K \cap D)\langle u \rangle$ is non-BFC subgroup for some $u \in F$ and by our hypothesis $D = K \cap D \leq K$. The theorem is proved.

Corollary 1.10. A solvable group G satisfies Max-BFC if and only if it is of one of the following types:

(i) G is a BFC-group;

(ii) $G = BU$ is a finitely generated group, where B is a proper torsion normal subgroup of G, U its polycyclic subgroup and $B\langle x \rangle$ is either a BFC-subgroup or a finitely generated subgroup for every element $x \in U$;

(iii) $G = DU$ is a product of a normal divisible abelian p-subgroup D and a polycyclic subgroup U with $D \leq \bigcap \{H \mid H $ is a non-BFC subgroup of $G\}$.

2. Groups with Min-BFC

In this section we prove that a group which have a descending series with abelian or finite factors and satisfying Min-BFC is either a BFC-group or a Černikov group.

Lemma 2.1. If G is a non-perfect group in which every proper normal subgroup is a BFC-subgroup, then G is a BFC-group or $G = G'(x)$, where $x^{p^n} \in G'$ for some prime p and some positive integer n.
Proof: By Theorem 21.3 of [10] \(G = G' \times S \) is a direct product of the divisible part \(D \) and a reducible subgroup \(S \). Let \(B \) be a \(p \)-basic subgroup of \(S \). If \(B \) is not a finitely generated subgroup, then by Lemma 26.1 and Proposition 27.1 of [10] \(S/B = B_1 \times S_1 \) is a direct product of an infinite abelian subgroup \(B_1 \) of exponent \(p \) and a \(p \)-divisible subgroup \(S_1 \). By Corollary 2.1 of [2] \(G \) is a BFC-group.

Let \(B \) be a finitely generated subgroup. If \(D \) is a non-trivial subgroup or \(B = S \), then Lemma 26.1, Proposition 27.1 of [10] and Lemma 2.2 of [2] yield that \(G \) is a BFC-group. Finally, from \(B = S \) and \(D = 1 \) in view of Corollary 2.1 of [2] it follows that \(G \) is a BFC-group or \(G/G' \) is a cyclic \(p \)-group for some prime \(p \), as desired.

Proof of Theorem 2: Suppose that \(G \) is neither a BFC-group nor a Černikov group. Since \(G \) satisfies Min-BFC, we may invoke [9, Theorem 2.2] and obtain in this way that \(G \) is an FC-group. Choose

\[G = G_0 \geq G_1 \geq \cdots \geq G_n \]

such that every \(G_i \) is not a BFC-subgroup (\(i = 0, \ldots, k - 1 \)), while every proper normal subgroup of \(G_n \) is a BFC-group. Since \(G \) has a descending series whose factors are finite or abelian, there exists a normal subgroup \(N \) in \(G_n \) such that \(G_n/N \) is finite or abelian. From Lemma 2.1, the quotient \(G_n/N \) is finite in both cases. Hence there exists a finite subset \(F \) of \(G_n \) such that \(G_n = NF \), and every element in \(G_n \) is of the form \(hf \) for suitable \(h \in N \), \(f \in F \). However, since \(G \) is an FC-group, every \(f \in F \) has just finitely many conjugates in \(G_n \). And for \(h \in N \) the number of conjugates of \(h \) in \(G_n \) is bounded by \(|G_n : N||N : C_N(h)| \) (note that \(N \) is a BFC-group). Hence \(G_n \) itself becomes a BFC-group. This contradiction shows that \(G \) must be a BFC-group or a Černikov group.

Acknowledgements. I am grateful to the referee whose remarks helped me to improve the exposition of this paper.

References

Groups with Many BFC-Subgroups

Department of Algebra and Topology
Faculty of Mechanics and Mathematics
Ivan Franko National University of Lviv
University St 1
79000 Lviv
Ukraine

E-mail address: topos@prima.franko.lviv.ua

Primera versió rebuda el 18 de novembre de 1999,
darrera versió rebuda el 17 de maig de 2000.