DYNAMICS OF SYMMETRIC HOLOMORPHIC MAPS ON PROJECTIVE SPACES

KOHEI UENO

Abstract

We consider complex dynamics of a critically finite holomorphic map from \mathbb{P}^k to \mathbb{P}^k, which has symmetries associated with the symmetric group S_{k+2} acting on \mathbb{P}^k, for each $k \geq 1$. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.

1. Introduction

For a finite group G acting on \mathbb{P}^k as projective transformations, we say that a rational map f on \mathbb{P}^k is G-equivariant if f commutes with each element of G. That is, $f \circ r = r \circ f$ for any $r \in G$, where \circ denotes the composition of maps. Doyle and McMullen [4] introduced the notion of equivariant functions on \mathbb{P}^1 to solve quintic equations. See also [11] for equivariant functions on \mathbb{P}^1. Crass [2] extended Doyle and McMullen’s algorithm to higher dimensions to solve sextic equations. Crass [3] found a good family of finite groups and equivariant maps for which one may say something about global dynamics. Crass [3] conjectured that the Fatou set of each map of this family consists of attractive basins of superattracting points. Although I do not know whether this family has relation to solving equations or not, our results will give affirmative answers for the conjectures in [3].

In Section 2 we shall explain an action of the symmetric group S_{k+2} on \mathbb{P}^k and properties of our S_{k+2}-equivariant map. In Sections 3 and 4 we shall show our results about the Fatou sets and hyperbolicity of our maps by using properties of our maps and Kobayashi metrics.

2000 Mathematics Subject Classification. Primary: 37F45; Secondary: 37C80.

Key words. Complex dynamics, symmetry, equivariant map, hyperbolicity, Axiom A.
2. \(S_{k+2} \)-equivariant maps

Crass [3] selected the symmetric group \(S_{k+2} \) as a finite group acting on \(P^k \) and found an \(S_{k+2} \)-equivariant map which is holomorphic and critically finite for each \(k \geq 1 \). We denote by \(C = C(f) \) the critical set of \(f \) and say that \(f \) is critically finite if each irreducible component of \(C(f) \) is periodic or preperiodic. More precisely, \(S_{k+2} \)-equivariant map \(g_{k+2} \) defined in Section 2.2 preserves each irreducible component of \(C(g_{k+2}) \), which is a projective hyperplane. The complement of \(C(g_{k+2}) \) is Kobayashi hyperbolic. Furthermore restrictions of \(g_{k+2} \) to invariant projective subspaces have the same properties as above. See Section 2.3 for details.

2.1. \(S_{k+2} \) acts on \(P^k \)

An action of the \((k+2)\)-th symmetric group \(S_{k+2} \) on \(P^k \) is induced by the permutation action of \(S_{k+2} \) on \(C^{k+2} \) for each \(k \geq 1 \). The transposition \((i, j)\) in \(S_{k+2} \) corresponds with the transposition \(u_i \leftrightarrow u_j \) on \(C^{k+2}_u \), which pointwise fixes the hyperplane \(\{ u_i = u_j \} = \{ u \in C^{k+2}_u \mid u_i = u_j \} \).

Here \(C^{k+2} = C^{k+2}_u = \{ u = (u_1, u_2, \ldots, u_{k+2}) \mid u_i \in C \text{ for } i = 1, \ldots, k+2 \} \).

The action of \(S_{k+2} \) preserves a hyperplane \(H \) in \(C^{k+2}_u \), which is identified with \(C^{k+1}_x \) by projection \(A: C^{k+2}_u \to C^{k+1}_x \),

\[
H = \left\{ \sum_{i=1}^{k+2} u_i = 0 \right\} \cong C^{k+1}_x \quad \text{and} \quad A = \begin{pmatrix} 1 & 0 & \ldots & 0 & -1 \\ 0 & 1 & \ldots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 & -1 \end{pmatrix}.
\]

Here \(C^{k+1} = C^{k+1}_x = \{ x = (x_1, x_2, \ldots, x_{k+1}) \mid x_i \in C \text{ for } i = 1, \ldots, k+1 \} \).

Thus the permutation action of \(S_{k+2} \) on \(C^{k+2}_u \) induces an action of \("S_{k+2}" \) on \(C^{k+1}_x \). Here \("S_{k+2}" \) is generated by the permutation action \(S_{k+1} \) on \(C^{k+1}_x \) and a \((k+1, k+1)\)-matrix \(T \) which corresponds to the transposition \((1, k+2)\) in \(S_{k+2} \),

\[
T = \begin{pmatrix} -1 & 0 & \ldots & 0 \\ -1 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & \ldots & 1 \end{pmatrix}.
\]

Hence the hyperplane corresponding to \(\{ u_i = u_j \} \) is \(\{ x_i = x_j \} \) for \(1 \leq i < j \leq k+1 \). The hyperplane corresponding to \(\{ u_i = u_{k+2} \} \) is \(\{ x_i = 0 \} \) for \(1 \leq i \leq k+1 \). Each element in \("S_{k+2}" \) which corresponds to some transposition in \(S_{k+2} \) pointwise fixes one of these hyperplanes in \(C^{k+1}_x \).
The action of “S_{k+2}” on \mathbb{C}^{k+1} projects naturally to the action of “S_{k+2}” on \mathbb{P}^k. These hyperplanes on \mathbb{C}^{k+1} projects naturally to projective hyperplanes on \mathbb{P}^k. Here $\mathbb{P}^k = \{x = [x_1 : x_2 : \ldots : x_{k+1}] \mid (x_1, x_2, \ldots, x_{k+1}) \in \mathbb{C}^{k+1} \setminus \{0\}\}$. Each element in the action of “S_{k+2}” on \mathbb{P}^k which corresponds to some transposition in S_{k+2} pointwise fixes one of these projective hyperplanes. We denote “S_{k+2}” also by S_{k+2} and call these projective hyperplanes transposition hyperplanes.

2.2. Existence of our maps.

One way to get S_{k+2}-equivariant maps on \mathbb{P}^k which are critically finite is to make S_{k+2}-equivariant maps whose critical sets coincide with the union of the transposition hyperplanes.

Theorem 1 ([3]). For each $k \geq 1$, g_{k+3} defined below is the unique S_{k+2}-equivariant holomorphic map of degree $k+3$ which is doubly critical on each transposition hyperplane.

$$g = g_{k+3} = [g_{k+3,1} : g_{k+3,2} : \ldots : g_{k+3,k+1}] : \mathbb{P}^k \to \mathbb{P}^k,$$

where $g_{k+3,l}(x) = x_l \sum_{s=0}^{k} (-1)^s \frac{s+1}{s+3} x_l^s A_{k-s}$, $A_0 = 1$,

and A_{k-s} is the elementary symmetric function of degree $k - s$ in \mathbb{C}^{k+1}.

Then the critical set of g coincides with the union of the transposition hyperplanes. Since g is S_{k+2}-equivariant and each transposition hyperplane is pointwise fixed by some element in S_{k+2}, g preserves each transposition hyperplane. In particular g is critically finite. Although Crass [3] used this explicit formula to prove Theorem 1, we shall only use properties of the S_{k+2}-equivariant maps described below.

2.3. Properties of our maps.

Let us look at properties of the S_{k+2}-equivariant map g on \mathbb{P}^k for a fixed k, which is proved in [3] and shall be used to prove our results. Let L^{k-1} denote one of the transposition hyperplanes, which is isomorphic to \mathbb{P}^{k-1}. Let L^m denote one of the intersections of $(k - m)$ or more distinct transposition hyperplanes which is isomorphic to \mathbb{P}^m for $m = 0, 1, \ldots, k - 1$.

First, let us look at properties of g itself. The critical set of g consists of the union of the transposition hyperplanes. By S_{k+2}-equivariance,
g preserves each transposition hyperplane. Furthermore the complement of the critical set of g is Kobayashi hyperbolic.

Next, let us look at properties of g restricted to \(L^m \) for \(m = 1, 2, \ldots, k - 1 \). Let us fix any \(m \). Since g preserves each \(L^m \), we can also consider the dynamics of g restricted to any \(L^m \). Each restricted map has the same properties as above. Let us fix any \(L^m \) and denote by \(g|_{L^m} \) the restricted map of g to the \(L^m \). The critical set of \(g|_{L^m} \) consists of the union of intersections of the \(L^m \) and another \(L^{k-1} \) which does not include the \(L^m \). We denote it by \(L^{m-1} \), which is an irreducible component of the critical set of \(g|_{L^m} \). By \(S_{k+2}\)-equivariance, \(g|_{L^m} \) preserves each irreducible component of the critical set of \(g|_{L^m} \). Furthermore the complement of the critical set of \(g|_{L^m} \) in \(L^m \) is Kobayashi hyperbolic.

Finally, let us look at a property of superattracting fixed points of g. The set of superattracting points, where the derivative of g vanishes for all directions, coincides with the set of \(L^0 \)’s.

Remark 1. For every \(k \geq 1 \) and every \(m, 1 \leq m \leq k \), a restricted map of \(g_{k+3} \) to any \(L^m \) is not conjugate to \(g_{m+3} \).

2.4. Examples for \(k = 1 \) and 2.

Let us see transposition hyperplanes of the \(S_3\)-equivariant function \(g_4 \) and the \(S_4\)-equivariant map \(g_5 \) to make clear what \(L^m \) is. In [3] one can find explicit formulas and figures of dynamics of \(S_{k+2}\)-equivariant maps in low-dimensions.

2.4.1. \(S_3\)-equivariant function \(g_4 \) in \(\mathbb{P}^1 \).

\[
g_3(x_1 : x_2) = [x_1^3(-x_1 + 2x_2) : x_2^3(2x_1 - x_2)]: \mathbb{P}^1 \to \mathbb{P}^1,
\]
\[
C(g_3) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_1 = x_2\} = \{0, 1, \infty\} \text{ in } \mathbb{P}^1.
\]
In this case “transposition hyperplanes” are points in \(\mathbb{P}^1 \) and \(L^0 \) denotes one of three superattracting fixed points of \(g_3 \).

2.4.2. \(S_4\)-equivariant map \(g_5 \) in \(\mathbb{P}^2 \).

\[
C(g_5) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\} \cup \{x_1 = x_2\} \cup \{x_2 = x_3\} \cup \{x_3 = x_1\} \text{ in } \mathbb{P}^2.
\]
In this case \(L^3 \) denotes one of six transposition hyperplanes in \(\mathbb{P}^2 \), which is an irreducible component of \(C(g_5) \). For example, let us fix a transposition hyperplane \(\{x_1 = 0\} \). Since \(g_5 \) preserves each transposition hyperplane, we can also consider the dynamics of \(g_5 \) restricted to \(\{x_1 = 0\} \).
We denote by \(g_5|_{\{x_1=0\}} \) the restricted map of \(g_5 \) to \(\{x_1 = 0\} \). The critical set of \(g_5|_{\{x_1=0\}} \) in \(\{x_1 = 0\} \cong \mathbb{P}^1 \) is
\[
C(g_5|_{\{x_1=0\}}) = \{[0 : 1 : 0], [0 : 0 : 1], [0 : 1 : 1]\}.
\]

When we use \(L^0 \) after we fix \(\{x_1 = 0\} \), \(L^0 \) denotes one of intersections of \(\{x_1 = 0\} \) and another transposition hyperplane, which is a superattracting fixed point of \(g_5|_{\{x_1=0\}} \) in \(\mathbb{P}^1 \). The set of superattracting fixed points of \(g_5 \) in \(\mathbb{P}^2 \) is
\[
\{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : 1 : 0], [1 : 0 : 1], [0 : 1 : 1]\}.
\]

In general \(L^0 \) denotes one of intersections of two or more transposition hyperplanes, which is a superattracting fixed point of \(g_5 \) in \(\mathbb{P}^2 \).

3. The Fatou sets of the \(S_{k+2} \)-equivariant maps

3.1. Definitions and preliminaries.

Let us recall theorems about critically finite holomorphic maps. Let \(f \) be a holomorphic map from \(\mathbb{P}^k \) to \(\mathbb{P}^k \). The Fatou set of \(f \) is defined to be the maximal open subset where the iterates \(\{f^n\}_{n \geq 0} \) is a normal family. The Julia set of \(f \) is defined to be the complement of the Fatou set of \(f \). Each connected component of the Fatou set is called a Fatou component. Let \(U \) be a Fatou component of \(f \). A holomorphic map \(h \) is said to be a limit map on \(U \) if there is a subsequence \(\{f^n\}_{n \geq 0} |_{U} \) which locally converges to \(h \) on \(U \). We say that a point \(q \) is a Fatou limit point if there is a limit map \(h \) on a Fatou component \(U \) such that \(q \in h(U) \). The set of all Fatou limit points is called the Fatou limit set. We define the \(\omega \)-limit set \(E(f) \) of the critical points by
\[
E(f) = \bigcap_{j=1}^{\infty} \bigcup_{n=j}^{\infty} f^n(C).
\]

Theorem 2 ([10, Proposition 5.1]). If \(f \) is a critically finite holomorphic map from \(\mathbb{P}^k \) to \(\mathbb{P}^k \), then the Fatou limit set is contained in the \(\omega \)-limit set \(E(f) \).

Let us recall the notion of Kobayashi metrics. Let \(M \) be a complex manifold and \(K_M(x, v) \) the Kobayashi quasimetric on \(M \),
\[
\inf\left\{|a| \mid \varphi : D \to M : \text{holomorphic}, \varphi(0) = x, D\varphi\left(a \frac{\partial}{\partial z}\right)_0 = v, a \in \mathbb{C}\right\}
\]
for \(x \in M, v \in T_x M, z \in D \), where \(D \) is the unit disk in \(\mathbb{C} \). We say that \(M \) is Kobayashi hyperbolic if \(K_M \) becomes a metric. Theorem 5 is a corollary of Theorem 3 and Theorem 4 for \(k = 1 \) and 2.
Theorem 3 (a basic result whose former statement can be found in [8, Corollary 14.5]). If f is a critically finite holomorphic function from \mathbb{P}^1 to \mathbb{P}^1, then the only Fatou components of f are attractive components of superattracting points. Moreover if the Fatou set is not empty, then the Fatou set has full measure in \mathbb{P}^1.

Theorem 4 ([5, theorem 7.7]). If f is a critically finite holomorphic map from \mathbb{P}^2 to \mathbb{P}^2 and the complement of $C(f)$ is Kobayashi hyperbolic, then the only Fatou components of f are attractive components of superattracting points.

3.2. Our first result.

Let us fix any k and $g = g_{k+3}$. For every m, $2 \leq m \leq k$, we can apply an argument in [5] to a restricted map of g to any L^m because every L^{m-1} is smooth and because every $L^m \setminus C(g|_{L^m})$ is Kobayashi hyperbolic. We shall use this argument in Lemma 1, which is used to prove Proposition 1.

Proposition 1. For any Fatou component U which is disjoint from $C(g)$, there exists an integer n such that $g^n(U)$ intersects with $C(g)$.

Proof: We suppose that $g^n(U)$ is disjoint from $C(g)$ for any n and derive a contradiction by using Lemma 1 and Remark 3 below. Take any point $x_0 \in U$. Since $E(g)$ coincides with $C(g)$, $g^n(x_0)$ accumulates to $C(g)$ as n tends to ∞ from Theorem 2. Since $C(g)$ is the union of the transposition hyperplanes, there exists a smallest integer m_1 such that $g^n(x_0)$ accumulates to some L^{m_1}. Let h_1 be a limit map on U such that $h_1(x_0)$ belongs to the L^{m_1}. From Lemma 1 below, the intersection of $h_1(U)$ and the L^{m_1} is an open set in the Fatou set of $g|_{L^{m_1}}$. We next consider the dynamics of $g|_{L^{m_1}}$. If there exists an integer n_2 such that $g^{n_2}(h_1(U) \cap L^{m_1})$ intersects with $C(g|_{L^{m_1}})$, then $g^{n_2}(h_1(U) \cap L^{m_1})$ intersects with some L^{m_1-1}. In this case we can consider the dynamics of $g|_{L^{m_1-1}}$. On the other hand, if there does not exist such n_2, then there exists an integer n_2 and a limit map h_2 on $h_1(U) \cap L^{m_2}$ such that the intersection of $h_2(h_1(U) \cap L^{m_2})$ and some L^{m_2} is an open set in the L^{m_2} from Remark 3 below. Thus it is contained in the Fatou set of $g|_{L^{m_2}}$. Here m_2 is smaller than m_1. In this case we can consider the dynamics of $g|_{L^{m_2}}$.

We continue the same argument above. These reductions finally come to some L^1 and we use Theorem 3. One can find a similar reduction argument in the proof of Theorem 5. Consequently $g^n(x_0)$ accumulates to some superattracting point L^0. So there exists an integer s such
that \(g^n \) sends \(U \) to the attractive Fatou component which contains the superattracting point \(L^0 \). Thus \(g^n(U) \) intersects with \(C(g) \), which is a contradiction. \(\square \)

Remark 2. Even if a Fatou component \(U \) intersects with some \(L^m \) and is disjoint from any \(L^{m-1} \), then the similar thing as above holds for the dynamics in the \(L^m \). In this case \(U \cap L^m \) is contained in the Fatou set of \(g|_{L^m} \) and there exists an integer \(n \) such that \(g^n(U \cap L^m) \) intersects with \(C(g|_{L^m}) \).

Lemma 1. For any Fatou component \(U \) which is disjoint from \(C(g) \) and any point \(x_0 \in U \), let \(h \) be a limit map on \(U \) such that \(h(x_0) \) belongs to some \(L^m \) and does not belong to any \(L^{m-1} \). If \(g^n(U) \) is disjoint from \(C(g) \) for every \(n \geq 1 \), then the intersection of \(h(U) \) and the \(L^m \) is an open set in the \(L^m \).

Proof: Let \(B \) be the complement of \(C(g) \). Since \(B \) is Kobayashi hyperbolic and \(B \) includes \(g^{-1}(B) \), \(g^{-1}(B) \) is Kobayashi hyperbolic, too. So we can use Kobayashi metrics \(K_B \) and \(K_{g^{-1}(B)} \). Since \(B \) includes \(g^{-1}(B) \),

\[
K_B(x,v) \leq K_{g^{-1}(B)}(x,v) \quad \text{for all } x \in g^{-1}(B), \quad v \in T_x\mathbb{P}^k.
\]

In addition, since \(g \) is an unbranched covering from \(g^{-1}(B) \) to \(B \),

\[
K_{g^{-1}(B)}(x,v) = K_B(g(x), Dg(v)) \quad \text{for all } x \in g^{-1}(B), \quad v \in T_x\mathbb{P}^k.
\]

From these two inequalities we have the following inequality

\[
K_B(x,v) \leq K_B(g(x), Dg(v)) \quad \text{for all } x \in g^{-1}(B), \quad v \in T_x\mathbb{P}^k.
\]

Since the same argument holds for any \(g^n \) from \(g^{-n}(B) \) to \(B \),

\[
K_B(x,v) \leq K_B(g^n(x), Dg^n(v)) \quad \text{for all } x \in g^{-n}(B), \quad v \in T_x\mathbb{P}^k.
\]

Since \(g^n \) is an unbranched covering from \(U \) to \(g^n(U) \) and \(B \) includes \(g^n(U) \) for every \(n \), a sequence \(\{K_B(g^n(x), Dg^n(v))\}_{n \geq 0} \) is bounded for all \(x \in U \), \(v \in T_x\mathbb{P}^k \). Hence we have the following inequality for any unit vectors \(v_n \) in \(T_{x_0} U \) with respect to the Fubini-Study metric in \(\mathbb{P}^k \),

\[
(1) \quad 0 < \inf_{|v|=1} K_B(x_0, v) \leq K_B(x_0, v_n) \leq K_B(g^n(x_0), Dg^n(x_0)v_n) < \infty.
\]

That is, the sequence \(\{K_B(g^n(x_0), Dg^n(x_0)v_n)\}_{n \geq 0} \) is bounded away from 0 and \(\infty \) uniformly.

We shall choose \(v_n \) so that \(Dg^n(x_0)v_n \) keeps parallel to the \(L^m \) and claim that \(Dh(x_0)v \neq 0 \) for any accumulation vector \(v \) of \(v_n \). Let \(h = \lim_{n \to \infty} g^n \) for simplicity. Let \(V \) be a neighborhood of \(h(x_0) \) and \(\psi \) a local coordinate on \(V \) so that \(\psi(h(x_0)) = 0 \) and \(\psi(L^m \cap V) \subset \{ y = (y_1, y_2, \ldots, y_k) \mid y_1 = \cdots = y_{k-m} = 0 \} \). In this chart there exists a
constant $r > 0$ such that a polydisk $P(0, 2r)$ does not intersect with any images of transposition hyperplanes which do not include the L^m. Since $\psi(g^n(x_0))$ converges to 0 as n tends to ∞, we may assume that $\psi(g^n(x_0))$ belongs to $P(0, r)$ for large n. Let $\{v_n\}_{n \geq 0}$ be unit vectors in $T_w P^k$ and $\{w_n\}_{n \geq 0}$ vectors in $T_{\psi(g^n(x_0))} C^k$ so that w_n keep parallel to $\psi(L^m)$ with a same direction and

$$Dg^n(x_0)v_n = |Dg^n(x_0)v_n| D\psi^{-1}(w_n).$$

So we may assume that the length of w_n is almost unit for large n. We define holomorphic maps φ_n from D to $P(0, 2r)$ as

$$\varphi_n(z) = \psi(g^n(x_0)) + rz v_n$$

for $z \in D$ and consider holomorphic maps $\psi^{-1} \circ \varphi_n$ from D to B for large n. Then

$$(\psi^{-1} \circ \varphi_n)(0) = g^n(x_0),$$

$$D(\psi^{-1} \circ \varphi_n) \left(\frac{|Dg^n(x_0)v_n|}{r} \frac{\partial}{\partial z} \right)_0 = Dg^n(x_0)v_n.$$

Suppose $Dh(x_0)v = 0$, then $Dg^n(x_0)v$ converges to 0 as n tends to ∞ and so does $Dg^n(x_0)v_n$. By the definition of Kobayashi metric we have that

$$K_B(g^n(x_0), Dg^n(x_0)v_n) \leq \frac{|Dg^n(x_0)v_n|}{r} \to 0$$

as $n \to \infty$.

Since this contradicts (1), we have $Dh(x_0)v \neq 0$. This holds for all directions which are parallel to $\psi(L^m)$. Consequently the intersection of $h(U)$ and the L^m is an open set in L^m.

Remark 3. The similar thing as above holds for the dynamics of any restricted map. Thus even if a Fatou component $g^n(U)$ intersects with $C(g)$ for some n, the same result as above holds. Because one can consider the dynamics in the L^m when $g^n(U)$ intersects with some L^m.

Theorem 5. For each $k \geq 1$, the Fatou set of the S_{k+2}-equivariant map g consists of attractive basins of superattracting fixed points which are intersections of k or more distinct transposition hyperplanes.

Proof: This theorem follows from Proposition 1 and Remark 2 immediately. Let us describe details. Take any Fatou component U. From Proposition 1 there exists an integer n_k such that $g^{n_k}(U)$ intersects with $C(g)$. Since $C(g)$ is the union of the transposition hyperplanes, $g^{n_k}(U)$ intersects with some L^{k-1}. By doing the same thing as above for the dynamics of g restricted to the L^{k-1}, there exists an integer n_{k-1} such that $g^{n_k+n_{k-1}}(U)$ intersects with some L^{k-2} from Remark 2. We
again do the same thing as above for the dynamics of g restricted to the L^{k-2}.

These reductions finally come to some L^1. That is, there exists integers n_{k-2}, \ldots, n_2 such that $g^{n_{k-2} + n_{k-3} + \cdots + n_2}(U)$ intersects with some L^1. From Theorem 3 there exists an integer n_1 such that $g^{n_1}(g^{n_{k-2} + n_{k-3} + \cdots + n_2}(U))$ contains some L^0. Hence $g^{n_{k-2} + n_{k-3} + \cdots + n_2}$ sends U to the attractive Fatou component which contains the superattracting fixed point L^0 in P^k.

4. Axiom A and the S_{k+2}-equivariant maps

4.1. Definitions and preliminaries.

Let us define hyperbolicity of non-invertible maps and the notion of Axiom A. See [6] for details. Let f be a holomorphic map from P^k to P^k and K a compact subset such that $f(K) = K$. Let \hat{K} be the set of histories in K and \hat{f} the induced homeomorphism on \hat{K}. We say that f is hyperbolic on K if there exists a continuous decomposition $T_{\hat{K}} = E^u + E^s$ of the tangent bundle such that $D\hat{f}(E^u_x) \subset E^u_{f(x)}$ and if there exists constants $c > 0$ and $\lambda > 1$ such that for every $n \geq 1$,

$$|D\hat{f}^n(v)| \geq c\lambda^n|v| \quad \text{for all } v \in E^u \quad \text{and}$$

$$|D\hat{f}^n(v)| \leq c^{-1}\lambda^{-n}|v| \quad \text{for all } v \in E^s.$$

Here $|\cdot|$ denotes the Fubini-Study metric on P^k. If a decomposition and inequalities above hold for f and K, then it also holds for \hat{f} and \hat{K}. In particular we say that f is expanding on K if f is hyperbolic on K with unstable dimension k. Let Ω be the non-wandering set of f, i.e., the set of points for any neighborhood U of which there exists an integer n such that $f^n(U)$ intersects with U. By definition, Ω is compact and $f(\Omega) = \Omega$. We say that f satisfies Axiom A if f is hyperbolic on Ω and periodic points are dense in Ω.

Let us introduce a theorem which deals with repelling part of dynamics. Let f be a holomorphic map from P^k to P^k. We define the k-th Julia set J_k of f to be the support of the measure with maximal entropy, in which repelling periodic points are dense. It is a fundamental fact that in dimension 1 the 1st Julia set J_1 coincides with the Julia set J. Let K be a compact subset such that $f(K) = K$. We say that K is a repeller if f is expanding on K.

Theorem 6 ([7]). Let f be a holomorphic map on \(P^k \) of degree at least 2 such that the \(\omega \)-limit set \(E(f) \) is pluripolar. Then any repeller for \(f \) intersects \(J_k \). In particular, \(J_k = \{ \text{repelling periodic points of } f \} \).

If \(f \) is critically finite, then \(E(f) \) is pluripolar. We need the following corollary to prove our second result.

Corollary 1 ([7]). Let \(f \) be the same as above. Suppose that \(J_k \) is a repeller. Then any repeller for \(f \) is a subset of \(J_k \).

4.2. Our second result.

Theorem 7. For each \(k \geq 1 \), the \(S_{k+2} \)-equivariant map \(g \) satisfies Axiom A.

Proof: We only need to consider the \(S_{k+2} \)-equivariant map \(g \) for a fixed \(k \), because argument for any \(k \) is similar as the following one. Let us show the statement above for a fixed \(k \) by induction. A restricted map of \(g \) to any \(L^1 \) satisfies Axiom A by using the theorem of critically finite functions (see [8, Theorem 19.1]). We only need to show that a restricted map of \(g \) to a fixed \(L^2 \) satisfies Axiom A. Then a restricted map of \(g \) to any \(L^m \), \(3 \leq m \leq k \), is similar as for a restricted map of \(g \) to the \(L^2 \). Let us denote \(g|_{L^2} \), \(\Omega(g|_{L^2}) \), and \(L^2 \) by \(g \), \(\Omega \), and \(P^2 \) for simplicity.

We want to show that \(g|_{L^2} \) is hyperbolic on \(\Omega(g|_{L^2}) \) by using Kobayashi metrics. If \(g \) is hyperbolic on \(\Omega \), then \(\Omega \) has a decomposition to \(S \),

\[
\Omega = S_0 \cup S_1 \cup S_2,
\]

where \(i = 0, 1, 2 \) indicate the unstable dimensions. Since \(C(g) \) attracts all nearby points, \(S_0 \) includes all the \(L^0 \)'s and \(S_1 \) includes all the Julia sets of \(g|_{L^1} \). We denote by \(J(g|_{L^1}) \) the Julia set of \(g|_{L^1} \). Then \(g \) is contracting in all directions at \(L^0 \) and is contracting in the normal direction and expanding in an \(L^1 \)-direction on \(J(g|_{L^1}) \). Let us consider a compact, completely invariant subset in \(P^2 \setminus C \),

\[
S = \{ x \in P^2 \mid \text{dist}(g^n(x), C) \to 0 \text{ as } n \to \infty \}.
\]

By definition, we have \(J_2 \subset S_2 \subset S \). If \(g \) is expanding on \(S \), then it follow that \(S_0 = \cup L^0 \), \(S_1 = \cup J(g|_{L^1}) \). Moreover \(J_2 = S_2 = S \) holds from Corollary 1 (see Remark 4 below). Since periodic points are dense in \(J(g|_{L^1}) \) and \(J_2 \), expansion of \(g \) on \(S \) implies Axiom A of \(g \).
Let us show that g is expanding on S. Because f is attracting on C and preserves C, there exists a neighborhood V of C such that V is relatively compact in $g^{-1}(V)$ and the complement of V is connected. We assume one of L^1’s to be the line at infinity of \mathbb{P}^2. By letting B be $\mathbb{P}^2 \setminus V$ and U one of connected components of $g^{-1}(\mathbb{P}^2 \setminus V)$, we have the following inclusion relations,

$$U \subset g^{-1}(B) \subset B \subset C^2 = \mathbb{P}^2 \setminus L^1.$$

Because B and U are in a local chart, there exists a constant $\rho < 1$ such that

$$K_B(x,v) \leq \rho K_U(x,v)$$

for all $x \in U, v \in T_xC^2$. In addition, since the map g from U to B is an unbranched covering,

$$K_U(x,v) = K_B(g(x), Dg(v))$$

for all $x \in U, v \in T_xC^2$. From these two inequalities we have the following inequality

$$K_B(x,v) \leq \rho^n K_B(g^n(x), Dg^n(v))$$

for all $x \in S, v \in T_xC^2$. Consequently we have the following inequality for $\lambda = \rho^{-1} > 1$,

$$K_B(g^n(x), Dg^n(v)) \geq \lambda^n K_B(x,v)$$

for all $x \in S, v \in T_xC^2$. Since $K_B(x,v)$ is upper semicontinuous and $|v|$ is continuous, $K_B(x,v)$ and $|v|$ may be different only by a constant factor. There exists $c > 0$ such that

$$|Dg^n(x)v| \geq c\lambda^n |v|$$

for all $x \in S, v \in T_xC^2$. Thus g is expanding on S and satisfies Axiom A.

Remark 4. Unlike the case when $k = 1$, it does not seem obvious that S being a repeller implies $J_k = S$ when $k \geq 2$.

Remark 5. From [1, Theorem 4.11] and [9], it follows that the Fatou set of the S_{k+2}-equivariant map g has full measure in \mathbb{P}^k for each $k \geq 1$.

Acknowledgements. I would like to thank Professor S. Ushiki and Doctor K. Maegawa for their useful advice. Particularly in order to obtain our second result, Maegawa’s suggestion to use Theorem 6 and Corollary 1 was helpful.
References

Graduate School of Human and Environmental Studies
Kyoto University
Yoshida-Nihonmatsu-cho, Sakyo-ku
Kyoto 606-8501
Japan
E-mail address: ueno@math.h.kyoto-u.ac.jp

Primera versió rebuda el 19 de juliol de 2006,
darrera versió rebuda el 8 de gener de 2007.