Esquema anatómico del cristalino humano, 1,2. polo anterior. Lugar donde se observan las células epiteliales. 3. Región ecuatorial. 4,5. polo posterior. En el centro se observa el núcleo y alrededor de mismo las fibras del cristalino.
FIGURA 2

En este esquema se aprecia la relación que guardan las células epiteliales y la cápsula anterior y posterior del cristalino después de la cirugía de catarata y en ausencia de una lente intraocular. (Imagen del libro "Lens and cataract" Jaffe N. Horwitz J.)

FIGURA 3.

Después de la cirugía de catarata las células epiteliales tienen la tendencia de migrar (A) sobre la cápsula posterior del cristalino. Debido a sus características biológicas se agrupan entre sí (B) y después de migrar y proliferar forman las denominadas perlas de Elschnig (C). (Imagen de libro "Lens and cataract" Jaffe N. Horwitz J.)
FIGURA 4.

Imagen característica de fibrosis de la cápsula posterior.

FIGURA 5.

Fotografía de Perlas de Elschnig en una catarata secundaria.
FIGURA 6.

La aspiración de las células epiteliales del cristalino se realiza una vez que se ha emulsificado y aspirado el núcleo y la corteza del cristalino, mediante una cánula de aspiración y otra de irrigación, como se observa en las imágenes inferiores.

FIGURA 7.

Cirugía finalizada una vez que se ha realizado aspiración de las células epiteliales (pulido capsular) y colocado la lente intraocular.
BIBLIOGRAFÍA
ANATOMIA Y EMBRIOLOGIA DEL CRISTALINO.


BIBLIOGRAFÍA.

FISIOLOGIA Y BIOQUIMICA DEL CRISTALINO.
CIRUGÍA DE LA CATARATA.


BIBLIOGRAFÍA.

FISIOLOGÍA Y BIOQUÍMICA DEL CRISTALINO.
CIRUGÍA DE LA CATARATA.


44. Panerson JW: Effect of incubation medium electrolyte concentration on leas volume. Ophthalmic Res


71. Wilson RS. A new theory of human accommodation: cilio-zonular compression of


BIBLIOGRAFÍA
OPACIDAD DE LA CÁPSULA POSTERIOR DEL CRISTALINO


76. Li WC, Kuszak JR, Dunn K. Lens epithelial cell apoptosis appears to be a common cellular basis for noncongenital cataract development in human and animals.


