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Knowing ignorance is strength.
Ignoring knowledge is sickness.

Lao Tzu. Tao Te Ching.



Preface

The design of a controller is a procedure which requires acquiring and pro-
cessing information in order to obtain a satisfactory design. For example,
system identification requires experimental data, a model structure and an
identification algorithm. Thus a nominal model plus uncertainty bounds can
be identified (i.e. a model set) which is then used to design a controller.

It is widely recognized that if new information is added to the control de-
sign process, it is possible to improve the performance achieved by the designed
controller. In fact that is the rationale behind adaptive control schemes. Adap-
tive control schemes are characterized by adding new information for control
design purposes into the control design procedure with the aim of designing a
better performing controller.

In this thesis we tackle the control design problem from the information
point of view. In this way the problem of designing a controller is under-
stood as the problem of managing the information flow required to design a
proper controller (i.e. experimental data, system identification, fundamental
limitations, control design, etc.).

The main contributions of this thesis are:

I) The control problem (i.e. the controller design problem) is posed in
an information theoretic framework. Each element is endowed with an
information measure on the basis of uncertainty information theory. The
framework permits:

i) to dissect all the available information sources for the control prob-
lem. An exhaustive analysis on the information sources is con-
ducted which comprises not only well known elements such as ex-
perimental data but also not so well recognized elements such as a

v



priori model information (e.g. model order) and a priori controller
information (e.g. controller order). For example, apart from ex-
perimental data, it turns out that to increase the model order or
the controller complexity can have a dramatic influence on the fi-
nal designed controller, consequently they can also be regarded as
information sources to be taken into account.

ii) Information relations among the elements of the control problem are
established. In this way, for example, it is shown that an informa-
tion increase on the model set (i.e. a model uncertainty reduction)
comes necessarily by an information increase on the data set or on
the a priori model set or both. However this requirement is neces-
sary but no sufficient as the identification algorithm could not make
proper use of the extra available information. The relationships are
then useful to distinguish information sources and algorithm re-
quirements in order to increase the information of certain elements
belonging to the control problem.

The above information framework is derived by first defining the control
problem from a holistic approach. The approach is holistic as firstly
all the elements are considered and secondly the relations among these
elements are established. In this way both the elements of the control
problem and the relationships among the elements are established and
related with existing control theory areas. Secondly distinct definitions
of the information concept are reviewed on the basis of control theory.
As a conclusion it can be seen that although the information concept
plays a major role on the control theory, a complete information the-
oretic framework of control theory is still lacking. Finally distinct for-
malizations of the information concept are reviewed. The Uncertainty
Information Based approach is taken in order to endow the elements of
the holistic control problem with an information measure from which
the already stated contributions follow.

II) On the basis of the information theoretic formalization of the control
problem the following points are established:

i) The control design problem is considered as a problem of managing
the information flow. The information flow management point of
view permits to study and compare, under an unified framework,



distinct control design methodologies. For example, in one shot
designs (i.e. non adaptive) the data set is kept constant meanwhile
in classical adaptive control new data are periodically added to the
data set.

ii) A definition of adaptive control is given. The proposed definition
tries to amalgamate the concepts present in existing adaptive con-
trol definitions. Thus a system is considered adaptive if new infor-
mation is acquired and the control system is modified accordingly
in order to achieve some goal (e.g. improve performance, maintain
performance or minimize performance degradation).

iii) Iterative Control and Classical Adaptive Control are studied as
special cases of the general adaptive control approach under the
information theoretic framework of the control problem. For exam-
ple, the only information source that is modified on classical adap-
tive control is the data set. On the contrary on iterative control
schemes, apart of the data set, distinct model orders and controller
orders are obtained at each iteration depending on the model iden-
tification and controller design approach taken. However the most
important result of adaptive control and iterative control is the lack
of information monotonicity. In fact although the mentioned adap-
tive control approaches incorporate new information, it is also true
that already existing information is discarded. As a consequence
the information monotonicity property is lost. The benefits of a
monotonic information iterative control are shown by means of an
example of classical iterative control scheme. In the example the
open loop model discarded in the iterative control is used to design
a better performing controller.

III) A new validation algorithm is proposed. The algorithm named Control
Oriented Frequency Dependent Model Validation (COFDMV) is the fre-
quency domain counterpart of a time domain whiteness test. The main
contributions of the algorithm are:

i) The validation result is no longer a binary “validated/invalidated”
answer but more informative. In fact a model can be validated for
some frequency range but invalidated for other frequencies.



ii) The algorithm is control oriented in the sense that a model is not
validated by itself in open loop but in closed loop. Actually what
is validated is the performance of a model-controller pair .

iii) The validation procedure is suited for iterative control schemes in
general as it provides the following features that help to manage the
information flow of iterative schemes. First the algorithm is a guide
to design the next experimental input. In fact if a better model is
pursued around the frequency range where the former model was
invalidated, the input should contain a high energy content around
those frequencies. Secondly the algorithm helps to detect possible
undermodelling problems. Finally the validation procedure gives a
bound on the achievable controller bandwidth with the model at
hand.

The main articles on international conferences the thesis has generated are:

• P. Balaguer, R. Vilanova and R. Moreno. “The Control Problem: A
Framework for Holistic Design”. 14th IEEE Mediterranean Con-
ference on Control and Automation, 2006.

In this work the control problem is presented from a holistic point of
view. Moreover the information flow nature of the control problem is
introduced together with a proposal to manage the information flow.

• P. Balaguer and R. Vilanova. “Is Iterative Control Wasting In-
formation?”. 6th IEEE International Conference on Control and Au-
tomation, 2007.

The information properties of existing iterative control schemes are dis-
cussed and the problem of monotonicity is arisen. An example is pro-
vided in which it is shown that taking into account disregarded informa-
tion from an iterative scheme improves control performance for a wider
perturbation range.

• P. Balaguer and R. Vilanova. “Frequency Dependent Approach to
Model Validation”. 6th Asian Control Conference, 2006.

The paper presents de fundamentals of the frequency dependent model
validation algorithm



• P. Balaguer, R. Vilanova and R. Moreno. “Control Oriented Fre-
quency Dependent Model Validation”. International Control Con-
ference UK, 2006.

The paper endows the frequency dependent model validation approach
with control oriented issues. Residual generation structures are proposed
to provide the Control Oriented Frequency Dependent Model Validation
algorithm (COFDMV).

• P. Balaguer and R. Vilanova. “Quality Assessment of Models for
Iterative/Adaptive Control”. 45th IEEE Conference on Decision
and Control, 2006.

The COFDMV algorithm is presented as a suited tool for model valida-
tion on iterative/adaptive control schemes.

The following journal articles have been submitted to:

• P. Balaguer and R. Vilanova. “Information Characterization of
the Control Problem. Part I: The Framework”. International
Journal of General Systems. (submitted)

• P. Balaguer and R. Vilanova. “Information Characterization of
the Control Problem. Part II: Analysis of Adaptive Control
Schemes”. International Journal of General Systems. (submitted)

• P. Balaguer and R. Vilanova. “Model Validation on Adaptive Con-
trol: A Frequency Dependent Approach”. International Journal
of Control. (submitted)
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¡PRESENTE!

xi



A tots aquells que van fer possible les festes del poble: les històries de
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Contents

Preface v
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Chapter 1

Introduction

In this introductory chapter the problem to be considered throughout this thesis
is introduced and motivated. Roughly speaking the problem to be tackled is
the management of information for control design purposes. The problem is
described and a brief analysis of the solution is introduced. The chapter finishes
with an outline of the thesis.

1



2 Introduction

1.1 Problem Statement

1.1.1 High Performance Control Systems

Control systems are present nearly in all areas of industry and research. The
wide applicability of control is one of its major features. The fact that au-
tomatic control has become a widespread science is both an opportunity and
a drawback. Its popularity makes automatic control to be full of application
areas and intense research. Unfortunately automatic control is often hidden
by the technology and not recognized by itself (Bastin and Gevers, 1997).

Notwithstanding, automatic control is a fundamental pilar of the current
development state. The benefits of the current mass production system are
mainly due to three factors, the development of assembly line production sys-
tems, the mass markets and the energy sources management. All this devel-
opments are deeply related with automatic control

• Assembly line production system: automatic control systems assure the
repetibility of certain process variables (i.e. accuracy limits and toler-
ances), allowing assembly line production systems (i.e. mass production
systems).

• Mass markets: the development of mass market was due not to only the
mass production systems but to transportion evolution. Control systems
are responsible for the current transportation development levels (e.g.
aviation and shipping development levels).

• Energy management: the control systems applied to energy management
have been the responsible of achieving good efficiency rates of energy
production together with a broad distribution of energy for industrial
use.

In order to improve the benefits of control systems a better control perfor-
mance is pursued. Conceptually two are the advantages of improving perfor-
mance:

• Productivity increase.

• New products development.
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The first benefit is a quantitative improvement. The same result can be ob-
tained in a more economic way (i.e. increasing outputs and/or decreasing
inputs). On the other hand, the second advantage of a is qualitative nature.
A different product can be obtained by designing a higher performing control
systems (e.g. a chemical with a purity level of 99%).

Although the pursue of high performing control systems is desirable, the
idea by itself can be misleading. Firstly, the highest performance achievable
by any control system is limited by the plant to be controlled. In fact de-
lays, sensors quality, actuators power and other hardware properties limit the
achievable performance. Secondly any control design is a trade-off of compet-
ing factors, so high performance actually means a compromise of competing
factors. These are the reasons that make control systems a nontrivial task
and, even worse, a task with physical bounds that can not be crossed by any
control design.

High performance control system is not only related with control design
but it is a broader concept depending on:

• Plant Design.

• Controller Design.

• Maintenance.

Plant design is concerned with controller and actuator selection and allo-
cation, plant size (e.g. civil engineering) etc. We assume that the plant to be
controlled is given and we only focus on the Controller Design and Mainte-
nance steps. Controller design comprises all the theoretical aspects involved
on the model based control design (i.e. identification and control synthesis and
analysis). Maintenance is concerned with an already existing control system.
The procedure of maintenance in the present thesis is understood as a super-
vision system with two clear actions. First the system is monitored in order
to detect changes (e.g. performance degradation, plant changes detection).
Secondly actions are taken to achieve the goals based on the information at
hand (e.g. controller redesign, plant reidentification).

Consequently in this thesis a High Performance Control System (HPCS)
is defined as a system with High Performance Controller Design (HPCD) plus
Maintenance considerations. Hence

HPCS = HPCD + Maintenance (1.1)
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The above definition relates HPCS with information through two terms,
the HPCD and Maintenance. The main difference between both terms, as far
as information is regarded, is that whereas the HPCD step is static (i.e. only
information at hand is used) the Maintenance process is a dynamic one (i.e.
new information is considered).

1.1.2 Information and High Performance Control Systems

In this thesis we focus on the problem of achieving High Performance Control
Systems through the management of information. The idea is to manage
the information flow trough the Maintenance term in order to increase the
information available to the HPCD step, thus achieving HPCS. In this sense
the Maintenance term is an information flow manager of the control system.

The idea of adding new information in the control design problem in order
to improve performance is not new. It has been done since the 60’s with
the appearance of adaptive control (Harris and Billings, 1981) (Astrom and
Wittenmark, 1989). However as stated in (Ioannou and Sun, 1996) “the field of
adaptive control may easily appear to an outsider as a collection of unrelated
tricks and modifications”, being the most important reason that “the lack
of a conceptual framework for adaptive control has inhibited research in this
area and made it difficult to compare alternative designs” (Zames, 1998). It
follows that although the idea of introducing new information in the process
of designing a controller has been recognized since long time, the framework
in which carry out this process is still lacking.

In fact, even the term information when applied to control theory con-
text does not have a clear and unified definition. Not at least as in the case
of communication theory (Shannon, 1948). Notwithstanding the information
concept has been intimately joined with control theory in general through sev-
eral areas, for example adaptive control, robust identification, robust control,
fundamental limitations in control and networked control systems.

The deficiency on the role of information for control system design has been
pointed out in several reports (Witsenhausen, 1971) (Lewis et al., 1987) (Zames,
1998) (Touchette and Lloyd, 2004), For example in (Lewis et al., 1987) it is
stated: “Adaptive control is a promising approach to achieve performance ro-
bustness. Its present setting is limited: it makes use of the most structured
uncertainty in which the plant model has a known form, but unknown param-
eters”.
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Iterative identification and control schemes (Bitmead, 1993) (Albertos and
Sala, 2002) are more developed techniques for information management for
control design. The objective is equal to the classical adaptive control (Astrom
and Wittenmark, 1989), which is to improve the controller performance by
means of adding new information on the control design step. However the
information managed by iterative control approaches is much richer. For ex-
ample in the windsurfer approach the following information related questions
are pointed out (Lee et al., 1995):

• When can one redesign the controller and expand the bandwidth without
re-identifying?

• When should one re-identify?

• What does one want to identify in the re-identification process?

• How can an identified model be verified against the desired purpose?

• Will re-identification always lead to improved closed-loop performance?

The above considerations, which are not present on classical adaptive con-
trol schemes, can be casted in a more abstract information framework as fol-
lows:

• Is the model information at hand still valid?

• When should new information be added?

• What information is required?

• How can the information being validated?

• Is the lack of information limiting performance or there are any other
causes?

These questions aim towards the problem of managing the information on
the control design problem. Thus the problem is the management of the in-
formation flow in order to decide what information should be added, when it
should be added and the mechanism and procedures necessary to accomplish
the required tasks. Summing up, the problem to be tackled in this thesis is how



6 Introduction

to manage the information flow of the control problem in order to improve the
designed controller. This problem is both a fundamental one and very gen-
eral in nature. In this thesis we focus on two distinct aspects of the problem.
The first one, that is more conceptual, tackles the problem of formalizing the
framework in which study the information theoretic issues of the information
flow for control design. The second aspect of the problem to be considered is of
a more technical nature and deals with the development of a new model valida-
tion algorithm which provides guides to help in the information management
on iterative identification and control schemes.

1.2 Introduction to the Solution

The first goal of the thesis is to define the conceptual framework which links
the controller design problem with the information concept. The objective is
to provide a framework in which the problem of managing the information of
the control problem can be characterized, providing thus a baseline in which
distinct approaches can be compared. The analysis of the framework also
reveals necessary conditions among the elements in order to increase their
information content.

Secondly, at the light of the proposed framework, two adaptive schemes,
classical adaptive control and iterative control are compared. Their differences
and similarities are established together with their advantages and disadvan-
tages.

Finally, in a more technical context, a new validation procedure for iter-
ative identification and control schemes is designed. The new algorithm pro-
vides a validation procedure that is more informative than classical methods
which just provide a “validated/invalidated” result. The new validation algo-
rithm provides new guides in order to manage the information of the control
design problem.

1.2.1 A General Framework for Information and Control De-
sign

In this part it is established a theoretical framework for the information man-
agement for control design purposes. First the control problem is formalized
into its constitutive elements and relationships. It is shown how these elements
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and relationships can be related with existing control theory areas (e.g. model
validation, control design, performance monitoring, etc).

Once the elements and relationships of the control problem are established,
they are endowed with the information measure. The information measure is
based on the set size. It then follows that it is possible to analyze their infor-
mation relationships. For example it is possible to state necessary conditions
over the data set (e.g. experimental data) and the a priori model set (e.g.
model order) in order to increase the information of the model set (e.g. iden-
tified models family). The framework serves as a basis in which exhaustively
enumerate all the possible information sources of the control design problem.

1.2.2 Information Supervision of Adaptive Control Schemes

Once the information theoretic framework is established, it is used to analyze
how distinct adaptive schemes manage information. Thus classical adaptive
control and iterative control (i.e. windsurfer approach) are dissected under
the proposed framework. The similarities and differences clearly appear under
the proposed framework. This analysis of the information management aims
towards possible improvements on the way information is managed in the
analyzed schemes. It can be seen that both schemes manage information in a
distinct way. It can be concluded that iterative control takes into account more
information management aspects of the control design problem than classical
adaptive control. However it is showed that both, classical adaptive control
and iterative control do not possess the information monotonicity property,
that is, at each iteration step, information is lost.

1.2.3 Frequency Domain Model (In)Validation

A new model (in)validation algorithm is developed. The objective is to de-
rive a model (in)validation procedure which is more informative than classical
validation methods that just “validated/invalidate” a model. The algorithm
is suited for iterative identification and control schemes. It is a frequency do-
main counterpart of a time domain whiteness test. In fact it is the frequency
domain nature of the algorithm which provides a more insightful validation
procedure. The algorithm allows to validated a model for certain frequency
range, and invalidate the same model for other frequencies. This new avail-
able information is useful in several ways for managing the information flow.
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It helps to define the experimental input for future experiments in order to
obtain more informative data. It is useful also to select the model order to be
fitted by the data and to decide the maximum allowable controller bandwidth
with the model at hand. Thus the validation algorithm helps to manage the
information flow of the control problem.

1.3 Thesis Outline

The thesis contents are mainly restricted to include only original discussions
and contributions, so reviews are kept to a minimum. As a result this thesis is
not utterly self contained but reviews and bibliographical references are pro-
vided for the sake of clarity. The thesis is divided in three parts, the first one is
of a more conceptual nature meanwhile the second one is more technical. The
last one includes the conclusions, open research areas and publications. The
thesis outline together with a brief chapter content description is as follows:

Part I: Control and Information. On the first part the information the-
oretic framework is defined and the information relations of the control
problem analyzed. Next, an analysis of existing adaptive control schemes
(e.g. classical adaptive control and iterative control) are conducted on
the basis of the cited information framework.

Chapter 2: The chapter introduces the conceptualization of the control
problem by presenting the constitutive elements and their relations.
The elements and relations of the control problem are then dissected
and related with existing control theory areas.

Chapter 3: A review of the information concept applied to control the-
ory is conducted. The objective is to study in how many distinct
ways the information concept is applied to control theory. The
definition of the information concept to be used in the formaliza-
tion of the information theoretic framework for control design is
introduced.

Chapter 4: The information framework characterizing the control de-
sign problem is defined. The framework provides information rela-
tions among the elements in order to state the necessary require-
ments to increase the information of the elements. These relations
are formalized by means of mathematical theorems.
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Chapter 5: The task of managing the information flow for control de-
sign is associated with the concept of supervision. Adaptive control
is reviewed from a conceptual point of view and a new definition
developed. Finally classical adaptive control and iterative control
are analyzed and compared under the information framework pro-
posed.

Part II: Frequency Domain Model (In)Validation. The second part is
completely devoted to the derivation of the frequency domain model
(in)validation algorithm, its control oriented properties and application
examples.

Chapter 6: The classical validation procedures are reviewed and dis-
cussed regarding the requirements of general adaptive schemes. The
basis of the new validation algorithm, the Frequency Domain Model
(In)Validation (FDMV) algorithm, are presented.

Chapter 7: In this chapter the control oriented requirements for the
validation algorithm are presented. It is discussed how the FDMV
algorithm is endowed with the control oriented property. The Con-
trol Oriented Frequency Dependent Model (In)Validation algorithm
(COFDMV) is then developed.

Chapter 8: In this chapter application examples of the COFDMV al-
gorithms are presented and discussed.

Part III: Epilogue. In this part the thesis conclusions are established.

Chapter 9: Finally the contributions of the thesis are summarized and
the main conclusions together with future research areas are pointed
out. A list of publications generated by the thesis can also be found.
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Control and Information

11





Chapter 2

The Control Problem: A
Holistic Approach

In this chapter we introduce a mathematical formalization of the problem of
model based control design and maintenance. First we state the mathematical
elements of the control problem. The elements, defined on the basis of set
theory, are divided between a priori elements and a posteriori elements. The
a priori elements are the elements defined without the necessity of real data.
The a posteriori elements are the ones derived from real data either directly
or indirectly.

Once the elements are defined, it is possible to study their relationships.
The relationships are established formally and related with existing control
topics. The analysis of the relationships shows that these relationships can
be divided into two groups. The first gathers all the relationships responsible
for transforming existing elements into new ones. The second group comprises
all the relations that do not provide new elements but check consistency among
the existing ones.

13
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2.1 Introduction to the Control Problem

The objective of the control problem is to make a physical system behave in
a desired manner. The control problem is then a control engineering problem.
Control engineering can be divided into three points equally important in
order to achieve a satisfactory controlled system. These points are controller
design, controller implementation and controller maintenance. In what follows
we focus on the control problem related with controller design and controller
maintenance disregarding aspects concerning controller implementation (e.g.
real-time software and hardware issues).

Controller design requires solving a variety of issues, ranging from system
identification, model validation, control structure selection, assessing funda-
mental limitations in control and controller design among others. On the
other hand, controller maintenance is related with performance monitoring,
fault detection and isolation, system reidentification, controller redesign, etc.
Moreover the areas of knowledge related with control systems are broad (e.g.
mathematics, engineering, physics, etc). These facts make the control prob-
lem far for being trivial due to the broadness of questions involved and the
technical knowledge required to solve the presented issues. Thus the control
problem is a complex one.

Traditionally the complexity of the control problem has been overcome
tackling the problem from a reductionist point of view (Gevers, 2006). The
reductionist approach divides the main problem into more manageable sub-
problems which are solved separately. Thus the control problem is viewed
from distinct points of view from the control community. For example the
system identification community is concerned with algorithms for identifying
“good” models or/and accurate model error bounds. On the contrary the
control design community is concerned with the problem of controller design
on the basis of models and “appropriate” specifications.

Notwithstanding the benefits of the reductionist approach, that has given
expression to successful control designs, the reductionist approach suffers the
following limitations:

- The subdivision introduces assumptions over the working elements which
are usually accepted without discussion and/or can not be easily checked
with the elements belonging to other subproblems (Balaguer et al., 2006b).
This fact can limit the achievable solutions.
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- Recent advances and developments in identification for control (Gevers,
2002), robust identification (Chen and Gu, 2000) and iterative identifi-
cation and control (Albertos and Sala, 2002) have arisen the necessity
of tackling the identification and control design processes in an unified
approach.

- Issues arising from the interrelation between subproblems belonging to
the reductionist approach (e.g. fundamental limitations in control, mon-
itoring performance issues) are difficult to arise and consider during the
design.

- In order to design automatic supervisors, that is systems that automat-
ically perform one or several functions of the control design step (e.g.
identification, control design), high level issues must be considered. For
example, it is necessary to know the reason that is limiting the control
loop performance (e.g. fundamental limitations, bad controller design,
bad model accuracy) in order to take the appropriate correcting actions
(e.g. plant redesign, controller redesign, plant reidentification) (Balaguer
et al., 2006b).

It follows from the above difficulties that to formulate and answer higher
level questions regarding the control design problem, a holistic point of view
is necessary. This fact motivates to present a framework in which the control
problem is presented from a holistic point of view.

In this chapter we analyze the model based control design procedure. The
objective is to dissect both the elements and the relationships of the general
model based control problem. Admittedly a model is not strictly necessary
in order to design a proper controller. The literature shows approaches such
as the Iterative Feedback Tuning (IFT) (Hjalmarsson et al., 1998) in which
controllers are designed without any model requirements. However the use
of a model is more informative as for example, robust stability issues can be
considered (Safonov and Tsao, 1997).

2.2 Elements of the Control Problem

We refer as the elements of the control problem the mathematical entities
defined and used through the control design process. We group these mathe-
matical entities on the following sets:
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A A priori set. This is a set that comprises the tuple A = {AD , AM , AS , AK },
where:

AD A priori Data set.

AM A priori Model set.

AS A priori Specification set.

AK A priori Controller set.

D Data set.

G Model set.

S Specification set.

K Controller set.

DATA MODELS

SPECIFICATIONS

CONTROLLERS

A PRIORI

A

D
G

S

K

Figure 2.1: Elements of the Control Problem

The first difference among the sets introduced (see figure 2.1) is that
whereas the set A = {AD , AM , AS , AK } refers to a priori elements (i.e.
elements not based on any particular experiment result), the rest of the sets,
that is, {D, G, S, K} are the direct or indirect result of some experimental
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data, thus being defined as a posteriori elements1. Consequently the a priori
set is the responsible of defining the whole mathematical structure in which
the control problem is being tackled and possibly solved.

On the other hand, the a posteriori elements {D, G, S, K} are tangible
realizations of the mathematical environment described by the a priori set.
The a posteriori elements are divided in four sets in which the data set is the
origin of the rest of the sets, as in order to obtain any other a posteriori set,
data is mandatory. The division of the sets follows the conceptual formulation
of the control problem, that is, design a controller K for some given plant G

that fulfils some requirements S.

In the next paragraphs each set is described more thoroughly and we give
some examples of the assumptions normally taken over these sets.

A Priori Set

This set gathers all the a priori elements (i.e. elements that are not based on
data records). The a priori set is the responsible of defining the mathematical
structure that will be assumed by the a posteriori elements of the control
problem. In fact it is the a priori set which completely formalizes the control
problem to be solved. Its importance is crucial, as the same problem, can
be either solvable or unsolvable regarding the a priori set. For example the
problem with the following elements: AS =Zero Stationary Error, AM =First
Order LTI Plant, AK =PD Controller, is not solvable, although changing the
a priori set AK to be a PI Controller makes the solution achievable.

The a priori set is subdivided into four sets, AD , AM , AS and AK , re-
garding the a priori considerations taken over the data , the model family, the
specifications considered and the controller to be designed. These sets are:

AD A priori Data set. This set defines the mathematical characterization
of the data. The related mathematical issues are defined from practical
aspects such as:

– Sensors number and placement.

1A priori elements are the elements provided by the control engineer. On the other hand
the a posteriori elements are elements obtained through the analysis and manipulation of
collected data.
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– Sensor noise level. The sensors noise level can be characterized
either stochastically (e.g. gaussian noise) or deterministically (e.g.
unknown but bounded).

– Sensor linearity characteristics.

– Sensor quantization level.

The set defines the structure of the data set. For example, if there is
just one sensor, the data set is an array of reals (possible quantized)
numbers. If two sensors are present, then the data set is formed by two
data arrays. Moreover the set also defines all the possible outcomes of
any experiment. This information is normally set at the plant design
level and it is not changed as usually modifications implies hardware
manipulation.

AM A priori Model set. This set defines the mathematical characteristics
of the plant model considered. The plant model includes the nominal
model and the uncertainty description of the model (if any). Among
others, the set is mathematically defined on the basis of:

– Linear time invariant (LTI) models versus linear time variant (LTV)
models.

– Linear versus Nonlinear models.

– Parametric models versus non parametric.

– Model structure (e.g. ARX, ARMA).

– Model order (e.g. polynomial degree).

– Model uncertainty description (e.g. parametric, multiplicative, etc.).

This set is seldom changed during the overall control design process
if a reasonable description of the plant can be formalized within the
mathematical assumptions taken.

AS A priori Specification set. This set defines the manner performance is
assessed. The specifications are normally divided into stability specifi-
cations and performance specifications.

- Stability Specifications. The type of uncertainty against which the
system is robust (e.g. gain margin uncertainty, multiplicative un-
certainty, etc.) and the norm used to measure it (e.g. H∞ norm, l1
norm, gap metric, etc.).
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- Performance Specifications. The cost functions which measures the
performance (e.g. quadratic costs, etc).

AK A priori Controller set. This set establishes the mathematical definition
of the controller to be designed. The main considerations are:

- Controller Architecture (e.g. 1 D.O.F. Vs 2 D.O.F., Smith Predic-
tor, cascade configuration, internal model control, etc).

- Controller Order and Structure (e.g. PI, PID).

The importance of this set is that it defines, in mathematical terms, the
search space of the controller. If the solution to the control problem does
not lie inside the search space, it never will be found. On the other hand
it can be the case that no solution exists hence the problem is unsolvable
whatsoever search space is chosen.

Data Set

The data set D comprises all the measured variables from one or more exper-
iments. The data can come from an experiment, either in open loop or closed
loop, or from normal plant operation. It is clear that D ⊂ AD , namely, the
result of any experiment (or experiments combination) must be a subset of the
all possible experimental results given by the a priori data set. If the set D is
empty (e.g. no experimental data) we are dealing only with a priori elements.
All the a posteriori elements have their origin on this set.

Model Set

The model set G comprises the identified model family that are used to design
a controller (a singleton if just a nominal model without error bounds is iden-
tified). The model family is a subset of the model set defined in the a priori
information, thus G ⊂ AM . The set inclusion means that the model set is a
particularization, for some given data, of the a priori model set. The model
set is a posteriori set as data is mandatory to perform the identification. An
example of the a priori model set is the set formed by first order plus time de-
lay linear time invariant models (FOPTDLTI). On the other hand a posteriori
model set is a FOPTDLTI with time constant τ = 5, gain k = 10 and delay
d ∈ [0.5, 1].
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Specification Set

The specification set S is the set containing the values and/or limits of the
design specifications defined in the set AS . For example this set contains all
the specifications defined by a quadratic cost function which value is limited
by the amount α imposed by the designer. Again S ⊂ AS , thus this set
is a particularization for some performance level. An example of stability
specification is the gain margin (e.g. a gain margin of 0.5).

Controller Set

The controller set K is the set of all controllers that accomplishes the specifica-
tions defined in the above set S for all the plants on the model family G. These
controllers are a subset of all the controllers defined in the a priori information
(i.e. K ⊂ AK ). If no controller can be found to accomplish the requirement
then the controller set is empty, that is K = ∅. The most common a priori
controller set AK is the PID controller. The controller set is then defined by
all the values of KP , KI and KD which achieve the specifications.

2.3 Relationships Between Elements of the Control
Problem

The elements of the control problem already introduced are necessary to solve
the control problem but not sufficient. In fact some elements are the result
of manipulations and combinations of other elements. In this section we state
the relationships among the elements of the control problem in order to design
a controller. First we identify each one of the element relations and define
the relationship on the basis of function theory. Secondly it is shown how
each one of these relationships can be related to areas of control theory (e.g.
identification, control design, limitations in control, performance assessment,
etc).

In figure 2.2 the elements are plotted together with their relationships.
These relations are:

I Identification.

C Control Design.
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O Consistency.

V Model Validation.

L Limitations in Control.

M Monitoring.

DATA MODELS

SPECIFICATIONS

CONTROLLERS

A PRIORI

D

A

G

S

K

O

V

M

I

L

C

Figure 2.2: Relationships Among the Elements of the Control Problem

The five relations established can be divided into two groups regarding
their functionality. On the one hand we have the relations which objective is
to manipulate elements in order to derive new ones. To this group belongs
the Identification, I, and Control Design, C, functions. Indeed the objective
of identification is to manipulate data and the a priori model information in
order to obtain a model set. Similarly, the objective of control design is to
obtain a controller (or a family of controllers) derived from a model set G, a
specification set S and a priori controller set AK .

On the other hand the relationships Consistency, O, Model Validation,
V, Limitations in control, L, and Monitoring, M, are aimed towards validat-
ing the existing elements. The objective is to detect any possible mismatch
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between the elements. The consistency check, O, is a validation of the col-
lected data with the a priori data set. The Model Validation procedure, V,
is aimed at finding invalidation results between the model set identified and
the experimental data collected. Similarly, the Monitoring relation M is a
validation between the specification set and the actual achieved specifications
calculated from collected data. Finally the Limitations in Control relation, L,
is a consistency check between the established designer specifications and the
limitations imposed by the model set (e.g. right half plane zeroes and poles).

In the next paragraphs each relationship is established formally and de-
scribed on the basis of well established control topics.

Identification

The aim of the identification is to derive a model (and possibly error bounds)
for control design purposes. The identification is mathematically defined as an
application from the set of possible models given by the a priori information
AM and the set of data D to the set of possible models AM .

Definition 2.3.1 The identification function I : AM xD → AM is defined as

I(g, d) = {g ∈ AM |E(g) = d, ∀d ∈ D}
where E(g) = d is any operator relating the a priori information to the data.
(e.g. convolution operator y = G ∗ u).

♦

The topic of system identification has been of major importance for control
system design. The theory is well established and plenty of successful appli-
cations, however recently (last 15 years) fundamental issues regarding identi-
fication of models for controller design have modified the traditional point of
view (Gevers, 2006). The angular stone has been to consider the final use of the
model (e.g. prediction, control design) on the system identification process.
Indeed, as it was pointed in (Skelton, 1989), small model-plant mismatches can
lead to great different behaviors when both are operated in closed loop but
two different systems can behave quite similarly under feedback. The reason
is that under feedback some model errors are amplified whereas other model
errors are attenuated. Additionally, the concept of identifying the “real” plant
has proven to be bogus (Hjalmarsson, 2005) due to the following reasons:
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- The order of real systems is infinite.

- Data collected from plant are always finite.

- Data are always corrupted by noise.

The above considerations have directed intensive research in order to iden-
tify “good” models for control design purposes. This research can be classified
in two main points which are:

• Input experiment design. The fundamental importance of input exper-
iment design for system identification has been pointed out in (Ljung,
1999) (Soderstrom and Stoica, 1989). In (Bitmead et al., 1990) it is
shown that under undermodelling conditions the identified plant depends
on the input applied. Thus if a good model for control design purposes
is pursued, the problem of input experiment design arises. This problem
can be tackled by identifying the plant in a closed loop setting. The
advantage is that the same control loop weights the energy input that is
applied to the plant, thus providing more suited data for control design
purposes.

• Identification criterion. Once data is collected and a model structure is
chosen, it remains to fit the parameters of the model with the experi-
mental data. Several possibilities arise:

- Minimization of the discrepancy of a model and a plant. This is the
approach taken by classical open loop identification (Ljung, 1999).

- Minimization of the discrepancy of two controlled loops (Landau
and Zito, 2006a).

- Minimization of the model-plant discrepancy measured through a
control design cost function. This is the approach taken in iterative
identification and control design schemes (Albertos and Sala, 2002).

The input experiment design and the identification criterion entwine to-
gether arising the broader question of Open Loop Identification vs Closed
Loop Identification. The results mentioned above aims towards closed loop
identification, not to mention practical requirements such as identification of
unstable plants. Adaptation of classical prediction error methods to be ap-
plied in closed loop settings can be found in (Landau and Zito, 2006a). The



24 The Control Problem: A Holistic Approach

model error obtained is weighted by a function depending on the closed loop
sensitivity function S (e.g. S = (1+GH)−1), thus giving less error around the
frequencies of interest in which the S function is “big”.

Another completely different area of system identification that has cap-
tured intensive research has been the identification of model error bounds,
known also as robust identification or control oriented identification. The ori-
gin of this topic lies on the requirements of robust control design procedures of
not only a nominal model but also a model error bound. The robust identifi-
cation problem was posed originally in (Helmicki et al., 1991) receiving consid-
erably attention since then. Monographic publications are (Sanchez-Peña and
Sznaier, 1998) and (Chen and Gu, 2000). The approach taken was a worst
case deterministic approach, leading to controversial discussions between hard
bounds and soft bounds. However after a decade of intensive research the
real limitation of the procedures proposed was established. The robust identi-
fication methods where aimed towards identifying small uncertainty bounds,
disregarding completely quality issues on the nominal model used to design
the controller. This together with their inherent conservativeness due to the
worst case approach has limited its popularization.

Control Design

The cornerstone of the control problem lies on the controller design step. In
fact the problem is solved if a proper controller is designed and implemented.
The control design is mathematically defined as an application from a model
set G, a priori assumptions of the controller AK and the specification set
S to a controller AK . It is expected that the designed controller performs
accordingly with the specifications for the whole family of models G.

Definition 2.3.2 The control design function C : GxSxAK → AK is defined
as

C(g, s, k) = {k ∈ AK |F (g, k) = s,∀g ∈ G,∀s ∈ S}
where F (g, k) = s states that the closed loop of g and k accomplishes the
performance requirements.

♦

Normally the knowledge on the plant is limited to certain levels of accu-
racy and thus uncertainty is present. This arises the problem of robustness.
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A controller is robust if certain property (either stability or performance) is
accomplished for all the members of certain family (Doyle et al., 1992). This is
the manner in which the robust control design approach tackles the problem of
uncertainty. First the plant is modelled as a family of plants in which lies the
real plant. Next, a robust controller is designed. As the resulting controller is
robust, the real plant is satisfactorily controlled2.

The above discussion allows us to classify model based control design ap-
proaches in two main areas regarding the model characteristics considered:

• Classical design approaches. It comprises a wide range of different tech-
niques. However their common point is the lack of model uncertainty
consideraions during the design step.

• Robust design approach. In the 80’s a thorough investigation on ro-
bustness issues started. The objective was to explicitly take into ac-
count model uncertainty during the design step, which was found to
be the main drawback of the classical approach. In the seminal pa-
pers (Zames, 1981) and (Doyle and Stein, 1981) the idea of robust control
is suggested. The robust design approach is presented in (Zhou, 1998)
and (Sanchez-Peña and Sznaier, 1998).

Consistency

Consistency checks if the a priori information agrees with the experimental
data and vice versa. In fact the consistency check can serve either to dis-
regard wrong a priori information when proper data is used or to disregard
experimental procedures generating misleading data when truthful a priori
information is present.

Definition 2.3.3 We define the Consistency function O : A → AD as the
function that returns all the possible data generated by the a priori set.

♦

2It is necessary to mention that although the robust control design procedures produce
robust controllers, this fact does not mean that any other methods of controller design pro-
duces non robust controllers. Indeed other control design methodologies can produce robust
controllers too. The only difference is that the robustness requirement is not considered ex-
plicitly in the design whereas robust control design takes robustness issues in consideration.
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Definition 2.3.4 Given A , D and O, A and D are consistent if D ⊂ O(A )

♦

In words, the a priori set A and the a posteriori data set D are consistent
if the data set is a subset of all the possible data generated accordingly with
the a priori assumptions.

The consistency issue is not a topic by itself in the control theory literature.
However it can be related with fault tolerant control and fault detection is-
sues. Fault tolerant control (Isermann, 1997) deals with the design of systems
tolerant to faults (i.e. non allowed deviation of a characteristic or parameter
of a system), leading to a system that can cope with faults. To this end, fault
detection (Blanke et al., 2003) is a mandatory step. The fault detection step
is a consistency check between current acquired data and a priori information.
It should be noted however that fault detection includes changes on plant (e.g.
time varying parameters). Thus plant variations are considered a type of fault.
On the other hand the problem of plant variations can also be tackled from
an identification point of view in the paragraph on model validation.

We expose the utility of consistency by means of a simple example.

Example 2.3.1 The a priori information about a SISO plant states that we
are dealing with a first order system. However experimental data shows an
oscillatory behavior of the output. Hence inconsistency is present.

△

Limitations

The fact that the implementation of a controller can change the dynamic be-
havior of a system tends to mask the fundamental limitations of any physical
system (e.g. system power is limited, delays are unavoidable, etc.). A con-
trol system can not be pushed further than its fundamental limitations (Seron
et al., 1997). Control designs based on specifications aiming at higher per-
formances than those allowed by the physical limitations are a certain fail-
ure. Thus in order to avoid stating impossible designs, the compatibility
between the designer proposed specifications and the plant allowable speci-
fications must be checked.
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Definition 2.3.5 We define the Limitation function L : G → AS as the
function that returns the allowable performance values imposed by the models
family G.

♦

Definition 2.3.6 A control design problem based on the models family G is
feasible for some S if S ⊂ L(G)

♦

Thus the fundamental limitations requires that the set of desired specifi-
cations is a subset of the achievable specifications.

Limitations on control literature appeared at the same time as control the-
ory (see for example (Bode, 1945) (Horowitz, 1963)). The limitations are due
to plant structure (e.g. RHP poles and zeroes, delays) and actuator limita-
tions (e.g. saturations, rate limitations, etc.). In (Skogestad and Postleth-
waite, 1996) a good introduction to fundamental limitations is presented.

Model Validation

Once a model has been identified it remains to check its validity for the in-
tended use. The term model validation is widely accepted although it is mis-
leading. Admittedly, as stated in (Popper, 1958), the scientific method can
only invalidate existing theories. Thus a model can only be invalidated never
validated. This is so because further data could invalidate an existing vali-
dated model by former data sets. In what follows the terms model validation
and model invalidation will be used indistinctly, however a model can only be
invalidated.

There are certain identification algorithms that guarantees the identified
plant is validated (e.g. interpolatory algorithms (Chen and Gu, 2000)). How-
ever this is not the general case, hence the necessity of the validation step.

Definition 2.3.7 We define the Validation function V : G → AD as the
function that returns all the possible data generated by the models family G.

♦

Definition 2.3.8 A models family G is validated against certain data set D

if D ⊂ V(G)
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♦

In words a model is validated if the data at hand is a subset of all the
possible data that the model set can generate.

Model validation is highly related with the assumptions taken during the
model identification step, thus it is discussed in the bibliography of model
identification. See (Ljung, 1999) (Soderstrom and Stoica, 1989) for validation
of classical models and (Chen and Gu, 2000) for validation of robust identified
models.

Monitoring

The final objective of a control system is to achieve certain performance speci-
fications. If they are fulfilled then the problem is solved and no further actions
are needed. In order to assess performance a monitoring process over the data
coming from the controlled loop is necessary.

Definition 2.3.9 We define the Monitoring function M : D → AS as the
function that returns the performance index measured from the data set D.

♦

Definition 2.3.10 A control system is under performance specifications S if
M(D) ⊂ S

♦

If the specifications calculated from data are a subset of the desired spec-
ifications, the control system is performing as expected.

The monitoring process includes different issues. First the definition of
the parameters in which the performance is based. In (Qin, 1998) (Harris et
al., 1999) a review of performance monitoring techniques is presented. They
are based on the comparison of the current performance with the performance
provided by a minimum variance controller. On the other hand, once a param-
eter for monitoring performance has been chosen, it is necessary to determine
on the basis of the calculated parameter, if the system is under performance.
This is not an easy task as normally we are dealing with variables defined on
an stochastic framework. The use of hypothesis test and control charts have
been presented as suited tools to manage the decision task. See for exam-
ple (Balaguer and Vilanova, 2006c) (Balaguer and Vilanova, 2006d).



Sec. 2.4. Summary 29

2.4 Summary

In this chapter an abstract study of the control problem from a holistic point
of view has been conducted. The control problem has been divided between
its elements and their relationships.

The elements have been divided in two subgroups regarding its dependence
with data. On the one hand the a priori elements which are fixed by the
control engineer and thus independent of future data. On the other hand data
are mandatory in order to obtain the a posteriori elements. The objective
of the a priori elements is to set the mathematical framework in which the
problem is tackled and solved. On the contrary the a posteriori elements are
the formalization inside the abstract framework for some data set which gives
a tangible solution.

Once the elements are established, it is possible to define their relation-
ships. The relationships among the elements are classified through existing
control areas. Regarding the objective of the relationship it is possible to
classify the relationships between the ones that transform current elements
of the control problem into new ones and the ones which check consistency
among these elements. It is worth nothing that any relation is an application
requiring both, a priori elements and a posteriori elements. This implies the
necessity of both elements in order to solve the problem.

As a result a framework is presented in which elements and relationships
of the control problem which are normally hidden by the technicalities of the
techniques used, come to the surface. This is useful in several ways:

• First the scheme provides a framework in which compare distinct con-
trol design approaches regarding the nature of the elements used, their
allowed modifications and relationships taken.

• Secondly the scheme helps to envisage new ways to manage the elements
and their relationships, helping in the design of new relations or adding
new features to existing relations (e.g. iterative control).

• Finally the proposed scheme is of interest in control education in order
to first establish the difference between the mathematical assumptions
and the real data and their importance in order to solve the control prob-
lem. Secondly it presents the elements explicitly, stating the degrees of
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freedom in any design. The framework also presents, in an organized
manner, the existing control topics in a context that helps its presenta-
tion, localization and understanding.



Chapter 3

Information and Control

The objective of this chapter is twofold, on the one hand to introduce the rela-
tionship between information and control and on the other hand to define the
information theory approach used to define the information theoretic frame-
work for control design introduced in the next chapter.

First it is presented how the information concept entwines several aspects
of the control problem. In fact information is the basic concept on control
theory which arises at signal and at system level. The distinct aspects of
information on control theory are reviewed and finally the problem is focused
on the interplay of information on the procedure of designing a controller

Secondly distinct formalizations of information are presented. Information
is a term with different assumptions, definitions and meanings. We review the
existing scientific approaches to the concept of information and present the
Uncertainty Based Information theory as the one considered to formalize the
problem of designing high performance controllers.

31
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3.1 Information and Control Theory

The relation between information and control systems is an important and
complex issue. Admittedly the goal of any feedback control system is to gain
certainty on the system behavior under an uncertain environment by measur-
ing some system variable. In (Newton et al., 1957) one of the characteristics
that a feedback system must have is:

“(1), the action of the system on the output is determined, in part, by the
value of the output”.

Additionally, regarding the justification of feedback, (Newton et al., 1957)
states:

“The three major reasons for employing feedback control are: (1) The
process or actuator which supplies the output may have signal transmission
characteristics that make open-loop operation very difficult. (2) With feedback
the precision of control can be made to depend largely upon the equipment
used to measure the output and to compare it with its ideal value. This fact
may enable accurate control to be achieved in spite of inaccuracies and variable
characteristics in the actuator or process. (3) The effect of disturbances on
the output may be suppressed by employing feedback, thereby obviating the
need to elaborate disturbance compensators that would be needed with open
loop control.”

On the above discussions we can relate the term information (or its ab-
sence) within different contexts. First feedback, in opposition to open loop
schemes, requires extra information by measuring the output. Secondly, it is
introduced the “signal transmission characteristics”. This problem of charac-
terizing the channel transmission characteristics was solved by the celebrated
“A Mathematical Theory of Communication” (Shannon, 1948), which formed
the basis on information theory during nearly forty years. Finally it appears
the problem of lack of information in the systems itself “inaccuracies and vari-
able characteristics in the actuator or process” or uncertainty due to unknown
signals “effect of disturbances”. Hence we can conclude that first, the term
information is in the very basis of control systems and, secondly, it is a concept
that appears through distinct aspects such as, channel transmission, feedback
theory and uncertainty on signals and systems.

Despite the fundamental importance of information on control systems,
a complete information-theoretic framework for control systems is still lack-
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ing (Zames, 1998) (Touchette and Lloyd, 2004).

Nonetheless information concepts have enriched control theory through
several well established control theories as Adaptive Control (Astrom and Wit-
tenmark, 1989), Robust Control (Doyle et al., 1992), Fundamental Limitations
in Control (Skogestad and Postlethwaite, 1996) and Networked Control Sys-
tems (Goodwin et al., 2006). A brief description of the relation of each theory
with information is presented.

• Adaptive Control. The main idea of adaptive control is to use the sensed
output not only to calculate the control action but to modify the law
responsible of calculating the control action. As a result information
coming from the feedback is added to the controller itself, modifying its
parameters. This is accomplished by the recursive identification of the
plant parameters and modifying the controller parameters either directly
or indirectly.

• Robust Control. The robust control paradigm was born as an answer
to the problem of model uncertainty. In fact theoretical designs based
on existing controllers failed when experimentally tested due to model
error issues. The goal of robust control is to relate by means of some un-
certainty measure, the plant uncertainty with stability and performance
specifications. It is the first time that an information measure (e.g. a
metric in H∞, l1, etc.) is used to establish a relation with either stability
or performance margins.

• Fundamental Limitations in control. It is known that certain plant prop-
erties impose limitations on the achievable performance by any con-
troller. Structural aspects such as time delays, input saturations, right
half plane (RHP) poles and RHP zeros impose limitations on the band-
width. For example a RHP pole requires a minimum amount of band-
width in order to stabilize a system. On the other hand, RHP zeros and
time delays impose a bound on the maximum bandwidth allowable. The
plant is experimentally impossible to control if the bandwidth required
for stabilization is greater than the allowable bandwidth of RHP zeros
and delays. The fundamental limitations in control is a very important
aspect that, if not taken into account properly, can lead to stating control
problems with no feasible solution.



34 Information and Control

• Networked Control Systems. Traditionally control theory has assumed
that controllers and plants communicate in an ideal manner. However
with the technological developments of distributed control systems new
issues relating communication and control has arisen. These issues are
related with the effects of quantization and delays that exists in any real
transmission channel. In fact they are related with information rates
transmitted through the channels and the required information in order
to achieve certain performance level.

The above information and control topics can be classified in two main
groups. Firstly techniques that deal with information deficiencies at the plant
level. Secondly topics that study transmission of information on the control
problem. Adaptive control and robust control belong to the first group. In
fact both are techniques to cope with uncertainty, although the solution they
provide to the problem of lack of information is of different nature. On the
one hand adaptive control tries to continuously capture information in order
to reduce uncertainty. On the other hand, robust control tries to measure un-
certainty and relate it with the pursued objective, in order to design a properly
controller. Conversely fundamental limitations in control and networked con-
trol systems deal with information transmission at the signal level and how
the limitations affects the overall performance.

On the rest of this thesis we focus on information concepts related with
plant uncertainty, hence related to the adaptive and the robust control paradigm.
Consequently the information-theoretic approach is aimed towards studying
the information flow for control design purposes covering classical issues as
model identification and controller design plus additional issues as information
monitoring, fundamental limitations in control, model validation and consis-
tency of a priori information. Our problem is how to manage information
sources to design high performance controllers.

Summing up the concepts presented in this section are:

• Information plays a fundamental role in control theory.

• Information, as far as control theory is concerned, is a multiple con-
cept. For example the information rate transmitted through the feed-
back channel, the lack of information (i.e. uncertainty) of a model, etc.

• We focus on information for designing high performing controllers.
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• The main point that aims our study is that of adding new information
and that the new information produces beneficial results.

3.2 What Is Information?

The concept of Information is a broad and elusive one. It is used for a wide
variety of meanings and formalized within distinct theories. The objective of
this section is first to review the existing scientific approaches to the concept
of information and secondly to establish the meaning of the term information
that is being used throughout this thesis.

The concept of information has been investigated under distinct concep-
tual frameworks as Computational Complexity (Kolmogorov, 1965) (Chaitin,
1987), Uncertainty Based Information (Klir and Wierman, 1999) (Klir, 2006),
Logic (Devlin, 1991) and Systems Organization (Stonier, 1990). For each one
of the proposed theories, information is defined in distinct terms. For exam-
ple the computational complexity paradigm measures the information of an
object by the length of the shortest possible program to define the object. On
the other hand, uncertainty based information measures information as the
capacity of reducing uncertainty whereas the systems organization approach
to information views information as a property to organize a system.

In what follows we focus on Uncertainty Based Information as this is the
conceptualization of information adopted in this thesis. Uncertainty Based
Information theory considers uncertainty as a result of some information de-
ficiency. Consequently certain amount of information can reduce uncertainty,
thus implying that the amount of information gained can be measured by the
reduction of uncertainty. Inside this framework uncertainty and information
have an inverse relationship, thus

Information = Uncertainty−1 (3.1)

The Uncertainty Based Information theory presented can be formalized
under several mathematical frameworks. One of the main results of the Un-
certainty Based Information Theory has been to establish the multidimension-
ality of the uncertainty concept. In fact, distinct types of uncertainty exists.
For example, under classical set theory, uncertainty is related with the size
(number of elements) of a set. On the other hand, the mathematical theory of
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communication, which is also an uncertainty based information theory, char-
acterizes uncertainty on the basis of probability theory. Thus uncertainty can
have a very different nature.

We formalize uncertainty on the basis of Classical Set theory. Thus uncer-
tainty is related with the set’s size. The bigger the set the more uncertain.
This type of uncertainty is referred as nonspecificity (Klir and Wierman, 1999).
Notwithstanding, in the information theoretic framework presented in the next
chapter the information of some sets follows an inverse relation, that is the
bigger the set the more informative the set. The rationale behind this choice
will be clear in the next chapter, however consider that, as far as the a priori
model set is considered, the bigger the set (e.g. the higher model order) the
more informative the a priori model set (e.g. more representation capacity).
The main idea is that information is measured through a set size.

The increase of information (reduction of uncertainty) is pursued for the
benefit it can provide. In fact it is debatable that a more detailed model is
more informative, for control design purposes, if it does not help to improve
the designed performance controller. This arise the distinction between the
terms Information and Information Value. As defined in (Sheridan, 1995), the
term Information refers to the reduction of uncertainty whereas Information
Value refers to what can be gained by the uncertainty reduction. Thus the
concepts of Information and Relevant Information can be defined as:

Information = Reduction of Uncertainty (3.2)

Relevant Information = Information that Improves Performance (3.3)

We analyze the general control problem on the basis of existing information
theory (i.e. Uncertainty Based Information theory) and arise the question of
how information should be managed inside the uncertainty based framework
in order to achieve high performance controllers.

The interplay of uncertainty and control systems is normally viewed as
a negative unavoidable limitation. Indeed uncertainty is the result of some
information deficiency. In control problems information deficiencies can arise
due to:
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• Incompleteness. The information at hand to solve the control problem
is always incomplete. For instance, data are always finite, data contain
some frequency components whereas other frequency ranges must be
absent.

• Imprecision. Imprecision of information is another difficulty. For exam-
ple data is normally corrupted by noise. As a result, even the informa-
tion is complete (e.g. the whole frequencies of interest are captured),
this information is imprecise.

• Contradiction. This lack of information is of special interest in the con-
trol problem as it is a warning of inconsistency (e.g. a model that is
not validate). This can be a sign that the mathematical machinery is of
limited capacity in order to capture the complexity of the problem.

These facts can limit the achievable performance of the control system1.

Nonetheless uncertainty also plays a beneficial role on the control design
problem. The positive aspect is due to complexity issues. Although it would
be possible to obtain models which are a perfect representations of reality
the mathematical framework required to manage these models would be too
complex to be useful. It is possible to reduce the problem complexity by
increasing the problem uncertainty (e.g. modelling a nonlinear plant as a liner
system plus additive uncertainty). Thus it can be concluded that uncertainty
is a two faced coin. Uncertainty can limit the achievable performance but,
at the same time, uncertainty can transform complex problems into tractable
ones.

To sum up the term information used throughout this thesis means in-
formation on the sense of Uncertainty-Information Theory, with the following
properties:

• Classical Set theory description of uncertainty.

• Information = Uncertainty−1

1It is not sure that the limits of performance of a control system are a consequence of
plant uncertainty. It could be possible that the limitations on the control design follow
their fundamental limitations. In that case it is arguable that a reduction of uncertainty
could improve the performance. As an example imagine a first order plant with a delay of
10 minutes and a time constant of one second. Which is the benefit of reducing the time
constant uncertainty by 1% on the overall performance?
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• Information for control design purposes.



Chapter 4

Information Characterization
of the Control Problem

In this chapter we endow the framework of the general control problem with the
information measure by using the Uncertainty based Information theory. The
approach gives insight on two important aspects for control design. First we
determine exhaustively the information sources available to accomplish a suc-
cessful control design. Secondly we study the relations between the information
elements by deriving inclusion relations that must be fulfilled in order to assure
an information increase. It is shown however that the inclusion relations are
not sufficient and other aspects must be considered

39
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4.1 Introduction

In Chapter 2, a framework to analyze the model based control problem has
been present. The framework is divided in elements and relationships among
these elements.

In the present chapter our aim is to endow the cited elements and relations
with an information measure. To this end, the Uncertainty Information The-
ory is used to define the information capability of the elements and relations.
The information definition hinges on the two main goals of the model based
control problem. On the one hand to derive the smallest possible model set, as
the smaller the model set the more informative the set. On the other hand, to
design a controller. In this case the bigger the controller set the better. This
fact is trivial in the case of the solvability of the control problem. In fact, if
the problem is solvable the controller set has at lest one element: the designed
controller. Conversely if the problem is not solvable the controller set is empty.
Moreover, the “bigger” the controller set can imply benefits from a controller
robustness point of view (i.e. robustness properties on the control loop due to
controller uncertainty). For example imagine that the proportional controller
that solves the control problem is the one with the gain value equal to K0, and
that any deviation for this value violates the specifications. From a practical
point of view the problem is not solvable. On the other hand if the controller
set is defined by a gain comprised between [Kmin, Kmax], the controller is more
likely to be solvable1.

The benefits of characterizing the elements and relations with an informa-
tion measure are:

• First we are able to enumerate all the possible information sources from
which the control problem can beneficiate. We can classify the informa-
tion sources in three groups regarding their nature. These are:

– Data Set: Information coming from experimental data.

– A Priori Set: Mathematical framework in which the control problem
is posed.

1This discussion has nothing to do with the fact that the design algorithm returns just a
single controller. We mean the set of all controllers that solve the control problem, regardless
the ability to find any of them. Therefore this is related to the sensibility of the solution
with respect to the problem posed.
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– Algorithms: Transformations of the elements (e.g. identification).

• Once an information measure is provided, it is possible to analyze the
relations among the elements. Necessary conditions over the elements
for information increase are stated. Moreover it is seen that to obtain
also sufficiency conditions, the algorithms for identification and control
design must possess certain properties.

4.2 Information and Identification

The goal of system identification could be understood, from a naive point of
view, as identifying a mathematical model that represents the plant perfectly.
This is however neither possible nor desirable. It is not possible due to fun-
damental limitations (e.g. signal to noise ratio, finite number of samples).
It is not desirable because model complexity must be kept tractable to meet
the level of current control design algorithms (e.g. LTI) when identifying real
plants (e.g. non-lineal, time varying, infinite order).

Notwithstanding the identified model must capture the behavior of the
real plant within some accuracy degree. This is accomplished by identifying
not a nominal model but a family of models, that is a model set. For control
design purposes, it is desirable that the model set be as fitted as possible. In
the limit case the model set would consist in just one model, the real plant.

Following the Uncertainty Based Information theory we define the infor-
mation relation between model sets as follows:

Definition 4.2.1 A model set Gi is more informative than Gj if and only if
(iff)

Gi ⊂ Gj and Gi 6= ∅
♦

In words, the definition states that the lesser the elements of a model set the
more informative the set. Additionally the set must consist of at least one
element apart from the empty element (i.e. must be distinct than the empty
set).

Recalling the definition of identification (i.e. I : AM xD → AM ), the
increase of information on the model set can be pursued by modifying the
following variables:



42 Information Characterization of the Control Problem

• The identification algorithm, I.

• The data set, D.

• The a priori model set, AM .

The first variable, the identification algorithm, is a relationship of the
elements of the control problem whereas the other two variables, the data
set and the a priori model set, are elements of the control problem. In what
follows, we analyze the mentioned variables and their properties in order to
increase the information on the model set.

4.2.1 Identification Algorithm

For the sake of readability it is worth to remind that the result of the identifi-
cation algorithm is a model set, so we can write the following equality relation,
G = I(D, AM ).

Definition 4.2.2 For a given data set D and a priori model set AM , the
identification algorithm Ii is more informative than the algorithm Ij iff

Ii(D, AM ) ⊂ Ij(D, AM )

and
Ii(D, AM ) 6= ∅

♦

Definition 4.2.2 states that, for the same domain (i.e. elements D and AM )
if the model set resulting from algorithm Ii is smaller than the one resulting
from algorithm Ij , then the algorithm Ii is more informative than algorithm
Ij . It can be said that the algorithm that makes a better use of the same
original information providing a smaller model set is more informative.

We however do not pursue longer in this thesis the possibility of gaining
information through the identification algorithm. The main reason is that
existing algorithms normally give the smallest possible set achievable with the
current data and a priori model set assumptions, as they are formulated on the
basis of some optimal problem, so no advantage can be foreseen by modifying
the algorithm. Moreover the identification algorithm is very dependent on
the a priori assumptions on the model set and data set. As a result the
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modification of the identification algorithm normally implies the modification
of other elements (e.g. a priori model set, a priori data set, etc.) which can
be not desirable.

4.2.2 Data Set

Definition 4.2.3 For a given algorithm I and a priori model set AM , the
data set Di is more informative than the data set Dj iff

I(Di, AM ) ⊂ I(Dj , AM )

and
I(Di, AM ) 6= ∅

♦

It should be noted that the measure of information content of a data set is
performed through the identification algorithm and keeping the a priori model
set constant. Under this framework, the more informative data are the data
that provides the smallest model set.

A necessary condition for a data set Di to be more informative than the
data set Dj , is that the data set Dj must be included in the data set Di,
namely the more informative the data set, the “bigger” the data set (e.g.
more samples, more experiments, etc).

Theorem 4.2.1 If I(Di, AM ) ⊂ I(Dj , AM ) then Dj ⊂ Di

�

Proof: First of all assume that the data set D can be divided in distinct sets
indexed by n (e.g. the index n can be the experiment number or the sample
number). Given the data set D the smallest model set obtainable is given by
the intersection of all the identifications performed with the given data set (e.g.
the intersection of all the models identified with the experiments belonging to
D), that is G =

⋂N
n=0 I(Dn, AM ).

Given the data set Dj , assume that the optimal model set obtained is Gjo

which by the above discussion it turns out to be equal to
⋂Ni

n=0 I(Dn, AM ).

If a new data set Di provides a better model set Gio that is

Gio ⊂ Gjo
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This implies that
Di
⋂

n=0

I(Dn, AM ) ⊂
Dj
⋂

n=0

I(Dn, AM )

The inclusion operator means that the left hand side must content more set
intersections in order to be smaller, then

Dj
⋂

n=0

I(Dn, AM )

Di
⋂

m=Dj+1

I(Dm, AM ) ⊂
Dj
⋂

n=0

I(Dn, AM )

As a result the set Di contains elements that do not belong to the set Dj

thus

Dj ⊂ Di

�

Example 4.2.1 In this example we consider the well known Least Squares
Identification Method (LSM) which is a particular case of the Prediction Er-
ror Identification framework (Ljung, 1999). The method is based on finding
the parameter vector θ̂ of the model ŷ(t|θ) = G(θ)u(t) which minimizes the
prediction error ǫ(t, θ) = y(t)− ŷ(t|θ). This is accomplished by minimizing the
function

VN (θ) =
1

N

N
∑

t=1

ǫ2(t, θ) (4.1)

where N is the number of data samples. It can be proven that, asymptotically
(no bias error), the parameters converge to the optimum limit θ∗.

We consider the parameter error variable given by θ̂N − θ∗, it turns out to
be a normally distributed variable N(0, 1

N P ). Thus the standard deviation of

the error variable θ̂N − θ∗ is proportional to the 1√
N

, that is θ̂N − θ∗ ∝ 1√
N

.

Thus it follows that if we have a data sets D1 with N1 samples then the estimate
θ̂N1

− θ∗ ∝ 1√
N1

. If we want a smaller parameter variation, that is a smaller

parameter set it follows that θ̂N2
− θ∗ ∝ 1√

N2
, thus N2 must be bigger than N1.
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However the condition of Dj ⊂ Di is not sufficient to guarantee the increase
of information as it depends on the algorithm and data properties. This fact
conducts us to the following theorem that is proven false by means of a coun-
terexample.

Theorem 4.2.2 The converse of theorem 4.2.1, that is

Dj ⊂ Di −→ I(Di, AM ) ⊂ I(Dj , AM )

is, in general, not true.

Proof: The condition of data set increase is not sufficient for a model family
reduction mainly for two reasons. First the algorithm must make use of the
extra data. Secondly the extra data can contain data coming from a failure
situation (e.g. plant variations, sensor and/or actuator failures, etc) or being
not persistently exciting data, then although the new data set contains data
that does not belong to the former data set, the data is not helpful in order
to reduce the model set.

�

Example 4.2.2 Assume that the model to be identified is a straight line (i.e.
y = m ∗ x + b). The data set consists of coordinate pais (i.e. (xi, yi), for
i = 1..N). The proposed algorithm takes the first sample (x1, y1) and second
sample (x2, y2) and calculates the parameters m and b by solving the linear
equations system, that is:

∣

∣

∣

∣

m
b

∣

∣

∣

∣

=

∣

∣

∣

∣

x1 1
x2 1

∣

∣

∣

∣

−1 ∣

∣

∣

∣

y1

y2

∣

∣

∣

∣

The identification is solvable whenever the number of data samples N is
equal or bigger than 2. However although we take more samples, the new ac-
quired information is not used by the algorithm. It follows that an increase on
the data set does not imply an increase on model information. The limitation
lies on the capability of the identification algorithm in making use of the ex-
tended data set. In fact the algorithm not even provides an error measure of
the estimates.
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Example 4.2.3 Consider a static system which gain K1 is to be identified.
The samples are measured with a sensor affected by Gaussian noise N(0,σ2).
As a result the identified gain K1 is also a Gaussian variable with distribution
N(K̄1,σ

2).

Now assume that the system gain is not time invariant and that at some
time instant “tk” the system gain abruptly changes its value to K2 and more
data samples are acquired so the data set increases. However the data set is
now composed by two distinct random variables, K1 and K2. If the gain is now
estimated from this “bigger” set, Kest equals the sum of two random variables,
K1 and K2, hence the distribution of Kest results to be N(K̄1 + K̄2,2σ2). As a
result, not only the size of model set has increased by a factor of two (e.g. 2σ2)
but also we can not guarantee that the real gain value belongs to the model set.

This example shows the necessity of using proper data for the identification
procedure. That means to use data free of failures of any kind.

Summarizing, a necessary condition for increasing the model set informa-
tion is that of increasing the data set. On the other hand an increase of the
data set does not necessarily mean the increase of model set information. The
reason is that the algorithm must be able to take advantage of the new in-
corporated data and that the new data must be generated under no failure
situations.

4.2.3 A Priori Model Set

Definition 4.2.4 For a given algorithm I and data set D, the a priori model
set AM i is more informative than the a priori model set AM j iff

I(D, AM i) ⊂ I(D, AM j)

and
I(D, AM i) 6= ∅

♦

Again, the measure of information content of the a priori model set is per-
formed through the identification algorithm and keeping the other parameters
constant. Under this framework, the more informative a priori model set is
the one that provides the smallest model set.



Sec. 4.2. Information and Identification 47

A necessary condition for a priori model set AM i to be more informative
than the a priori model set AM j , is that the a priori model set AM j must be
included in the a priori model set AM i, namely the more informative the a
priori model set, the “bigger” (in terms of elements) the a priori model set.

Theorem 4.2.3 If I(D, AM i) ⊂ I(D, AM j) then AM j ⊂ AM i

�

Proof: (by contradiction). Assume that AM i ⊆ AM j . By hypothesis we
know that I(D, AM i) ⊂ I(D, AM j), which for short we can write as Gi ⊂ Gj .

If AM i = AM j implies that Gi = Gj which is a contradiction.

Consider now that AM i ⊂ AM j and that the optimum a priori model set
(i.e. the one that produces the smallest model set) AM o belongs to AM i,
that is AM o ∈ AM i. This however implies also that AM o ∈ AM j which is a
contradiction with the assumption of the model set Gi being optimal. Thus

AM j ⊂ AM i

�

However the condition AM j ⊂ AM i is not sufficient to guarantee the in-
crease of information as it again depends on the algorithm characteristics.
This fact conducts us to the following theorem.

Theorem 4.2.4 The converse of theorem 4.2.3, that is

AM j ⊂ AM i −→ I(D, AM i) ⊂ I(D, AM j)

is, in general, not true.

Proof: Think, for example in the trade-off of bias-variance error on the
identification prediction error method (Ljung, 1999). If the model is overpa-
rameterized the model set increases due to variance errors.

�
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In this section we have studied the influence of the a priori model set on
the model set information. We can understand the a priori model set as a
mathematical capacity of representation. A necessary condition for increasing
the information of the model set is increasing the a priori model set, that is
increasing the capacity of representation. On the other hand an increase of
the a priori model set does not necessarily mean an increase of model set infor-
mation as the problem of parsimony can limit the benefits of increasing the a
priori model set if there is already enough degree of freedom to mathematically
capture the plant.

4.3 Information and Control Design

The objective of the control design is to provide a controller or a family of
controllers, defined by the controller set K, that achieves the specifications
level defined by the set S over the whole model set G. The controller set K

is normally a singleton (i.e. a unique controller) as it is implemented only
one controller. However the controller set size is somehow related with con-
troller robustness issues (that is tolerance to controller implementations im-
precisions). Qualitatively, the more robust the controller (in the sense of con-
troller uncertainty), the bigger the controller set. Thus the control problem is
solvable whenever K 6= ∅.

Definition 4.3.1 A controller set Ki is more informative than Kj iff

Kj ⊂ Ki

♦

Definition1 4.3.1 introduces the informativeness concept of a controller set
K by the set size. We pursue the biggest controller set as possible. First
because this implies solvability of the problem and secondly, as discussed, due
to robustness issues. We can conclude that for a given control problem, the
greater the number of controllers that solve the problem the better.

Recalling the definition of control design (i.e. C : GxSxAK → AK ), the
information increase of the controller set can be pursued by modifying the
following variables:

• The control design algorithm, C.



Sec. 4.3. Information and Control Design 49

• The model set, G.

• The specifications set, S.

• The a priori controller set, AK .

The first variable, the identification algorithm, is a relationship of the
elements of the control problem whereas the other three variables, the model
set, the specification set and the a priori controller set are elements of the
control problem. We analyze these variables and their properties in order to
increase the size of the controller set.

4.3.1 Control Design Algorithm

The result of the control design algorithm is the controller set so we can write
the following equality relation, K = C : GxSxAK → AK .

Definition 4.3.2 For a given model set G, specifications set S and a priori
controller set AK , the control design algorithm Ci is more informative than
the algorithm Cj iff

Cj(G, S, AK ) ⊂ Ci(G, S, AK )

♦

Definition 4.3.2 states that, for the same domain (i.e. elements G, S and
AK ) if the controller set resulting from algorithm Ci is bigger than the one
resulting from algorithm Cj then the algorithm Ci is more informative than Cj .
It can be said that the algorithm that make a better use of the same original
information providing a bigger controller set is more informative.

We however do not pursue longer in this thesis the possibility of design-
ing a bigger controller set through the design algorithm as normally design
algorithms just return one controller (i.e. a singleton), thus Definition 4.3.2.

4.3.2 Model Set

Definition 4.3.3 For a given design algorithm C, a specifications set S and a
priori controller set AK , the model set Gi is more informative than the model
set Gj iff

C(Gj , S, AK ) ⊂ C(Gi, S, AK )
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♦

It should be noted that the measure of information content of a model set
is performed through the control design algorithm and keeping the domain
constant (i.e. C, S and AK ). In words, the most informative model set is the
one that provides the biggest controller set.

A necessary consequence for a model set Gi to be more informative than
the model set Gj , from a control design point of view, is that the model set
Gi must be included in the model set Gj , namely the more informative the
model set, the “smaller” (in terms of elements) the model set, which agrees
with Definition 4.2.1.

Theorem 4.3.1 If C(Gj , S, AK ) ⊂ C(Gi, S, AK ) then Gi ⊂ Gj

�

Proof: (by contradiction) By hypothesis C(Gj , S, AK ) ⊂ C(Gi, S, AK ),
which for short let rewrite as Kj ⊂ Ki. The set K is the set of all controllers
which achieve the specifications level S over all the model family G. Assume
that Gj ⊆ Gi.

If Gj = Gi that implies Kj = Ki, a contradiction.

If Gj ⊂ Gi, all the controllers Ki achieve S not only over Gi but also Gj .
Then it follows that Kj ⊂ Ki what is a contradiction, thus

Gi ⊂ Gj

�

However the condition of Gi ⊂ Gj is not sufficient to guarantee the increase
of controller set information as it depends on the algorithm characteristics and
the relevancy of model set to the control design purposes. This fact conducts
us to the following theorem:

Theorem 4.3.2 The converse of theorem 4.3.1, that is

Gi ⊂ Gj −→ C(Gj , S, AK ) ⊂ C(Gi, S, AK )

is, in general, not true.
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Proof: The decrease of models could be irrelevant from a control point of
view (i.e. easy to control models, not limiting achievable performance).

�

As a conclusion a necessary property for an increase of the controller set
is a decrease of the model set. However a model set reduction is not sufficient
to guarantee the increase on the controller set.

4.3.3 Specification Set

We define the information content of the specifications set S in the same way
that the information content of the model set G.

Definition 4.3.4 The specification set Si is more informative than the spec-
ification set Sj iff

Si ⊂ Sj

♦

The rationale behind this definition is that, the smaller the specifications
set the higher the performance level, as other lower performance levels are
rejected and thus not included in the new specifications set. Normally this
set is fixed by the designer. However, regarding the information content on
the whole control problem, the specifications set could be managed as a new
control variable. The information of the specification set could be understood
as an information level required in order to solve the control problem.

The relations between controller set information and the specifications set
information is given by the following two theorems.

Theorem 4.3.3 If C(G, Si, AK ) ⊂ C(G, Sj , AK ) then Si ⊂ Sj

�

In words, if the controller set diminishes then the specifications level in-
crease.

Proof: (by contradiction). Assume that C(G, Si, AK ) ⊂ C(G, Sj , AK ), for
short, Ki ⊂ Kj . Assume also that Sj ⊆ Si.

If Sj = Si then Ki = Kj , a contradiction.
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If Sj ⊂ Si that would imply that Kj gives better performance that Ki,
which is a contradiction with the assumption that Ki ⊂ Kj , thus

Si ⊂ Sj

�

However the condition of Si ⊂ Sj is not sufficient to guarantee the decrease
of controller set information as it depends on the relevancy of model set for
control design purposes. This fact conducts us to the following theorem.

Theorem 4.3.4 The converse of theorem 4.3.3, that is

Si ⊂ Sj −→ C(G, Si, AK ) ⊂ C(G, Sj , AK )

is, in general, not true.

Proof: The condition it is not sufficient as the increase of performance
demanded could be provided by the whole existing controller set.

�

4.3.4 A Priori Controller Set

Definition 4.3.5 For a given algorithm C, model set G and specifications
set S, the a priori controller set AK i is more informative than the a priori
controller set AK j iff

C(G, S, AK j) ⊂ C(G, S, AK i)

.
♦

Measuring again the information content through the control design algo-
rithm, the more informative a priori controller set is the one that provides the
biggest controller set.

A necessary condition for a priori controller set AK i to be more informative
than the a priori model set AM j , is that the a priori model set AM j must be
included in the a priori model set AM i, namely the more informative the a
priori controller set, the “bigger” (in terms of elements) the a priori controller
set.
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Theorem 4.3.5 If C(G, S, AK i) ⊂ C(G, S, AK j) then AK i ⊂ AK j

�

Proof: (by contradiction). Assume that C(G, S, AK i) ⊂ C(G, S, AK j), for
short, Ki ⊂ Kj . Assume also that AK j ⊆ AK i.

If AK j = AK i then Ki = Kj , a contradiction.

If AK j ⊂ AK i that would imply that AK i has more representation ca-
pacity than AK j , which is a contradiction with the assumption that Ki ⊂ Kj ,
thus

AK i ⊂ AK j

�

However the condition of AK i ⊂ AK j is not sufficient to guarantee the
increase of information as it again depends on the algorithm characteristics.
This fact conducts us to the following theorem.

Theorem 4.3.6 The converse of theorem 4.3.5, that is

AK i ⊂ AK j −→ C(G, S, AK i) ⊂ C(G, S, AK j)

is, in general, not true.

Proof: The condition is no sufficient as the extra representation capacity
and secondly the extra representation capacity could not be useful for finding
a better controller set. For example a PID controller does not offer advantages
over a PI if we are only interested in steady state error.

�

4.4 Summary

In this chapter we have seen the possible sources of information available to
the control problem and the relations of these information elements in order
to obtain better performing control systems.

We have seen that it is possible to reduce the models family by increasing
the data set and the a priori model set. Of course the identification algorithm
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should make use of the extra information in order to be the goal achievable.
Moreover the new data should be free of failures of any type.

Regarding the controller design, we have seen that the bigger the controller
set that achieve the required specifications over a model set the better. It is
possible to increase the controller set by diminishing the model set and by
increasing the mathematical representation of the a priori controller set. The
specifications set is a designer variable. However if the controller set diminishes
the specification level increases.

On the contrary a sufficiency condition for uncertainty reduction must
come from increasing the sets and taking advantage of the new information
by means of algorithm capabilities. In table 4.4 we present a summary of the
information sources of the control problem and the necessity conditions for
information increase of the element sets.
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Information Element i more informative than j Necessity

G Gi ⊂ Gj Dj ⊂ Di

AM j ⊂ AM i

Gi ⊂ Gj

K Kj ⊂ Ki Si ⊂ Sj

AK j ⊂ AK i

Design
S Si ⊂ Sj Parameter

Table 4.1: Summary table of Information elements and relations.
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Chapter 5

Information Supervision of
Adaptive Control Schemes

In this chapter the information framework presented in the previous chapter is
used for analyzing existing adaptive control schemes. The objective is to study
the information flow of adaptive schemes in order to compare and discuss
problems and solutions of the approaches. The chapter covers the following
sections:

• First the term supervisor is defined as an entity that manages the infor-
mation flow in order to accomplish some goal.

• The existing adaptive control definitions are reviewed from literature and
a new definition that comprises all the particularities of the adaptive
control term is established.

• Two adaptive control procedures, the “Model Reference Adaptive control”
and the “Windsurfer approach” to iterative control, are analyzed regard-
ing their information flow management. The comparison is accomplished
under the information framework proposed in Chapter 4. Thus, it is
possible to compare the approaches and to relate well know problems and
possible improvements with the way information is managed.

57
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5.1 Information Flow Management: Supervisors

In Chapter 2, the control problem has been defined on the basis of its consti-
tutive elements and relationships. Additionally the scheme has been endowed
with an information measure that allows to establish and analyze information
relations among the elements. However the conceived framework is a static one
in the sense that no indications are given on how to process the information.

In fact the control design problem is a problem of managing the information
flow. For example, first data is acquired and on the basis of some a priori model
set, a nominal model is identified. Hence with the identified model a controller
is designed and a solution proposed. The following considerations are in use:

• First we can identify an information flow. The first step is to acquire
data and the controller is designed after a model is identified. There is
a causality relation between information elements.

• The information relations considered are a designer choice. For exam-
ple on the previous example there are no considerations about model
validation, model uncertainty bounds, fundamental limitations, etc.

• The steps can be repeated and/or modified. Accordingly, even if the
same actions are taken into account, the same process can be repeated
several times (e.g. adaptive control) producing a distinct information
flow management.

• Information can be stored for further use or just disregarded.

As a result of the above considerations, it is clear that the control design
problem is a process in which the information elements stated in the framework
of Chapter 4 must be managed in some way, resulting in an “information flow
management”.

In (Balaguer et al., 2006b) the control problem is presented as a prob-
lem of managing the information flow. The information flow is divided in
hierarchical blocks. The main contribution regarding the information flow
management is that the information management should be watertight in the
sense that information processed in one block should be validated before the
information is delivered to other blocks. A more detailed discussion can be
found in (Balaguer et al., 2006b).
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The issue of managing the information flow on the control problem has been
tackled by the control community of distinct areas, such as adaptive control,
fault tolerant control and intelligent control among others. The common con-
cept gathered by the mentioned approaches is the concept of supervisor. The
supervisor is the entity that manages the information flow in order to achieve
certain goal. For example:

• “Fault Tolerant Control”. The finality of fault tolerant control (Blanke
et al., 2003) is to design control systems that are able to cope with
failures by maintaining the system functionality under abnormal con-
ditions. This is accomplished by first detecting and isolating the fail-
ures. On the basis of this information the supervisor generates a diag-
nosis and correcting actions are taken (e.g. controller reconfiguration,
change operation point, etc.). This is summarized in the following words
from (Isermann, 1997), “supervisory functions serve to indicate undesired
or unpermitted process states, and to take appropriate actions in order
to maintain the operation and to avoid damage or accidents.”

• “Adaptive Control”. Adaptive control, that is discussed in detail in the
next Section, has the objective of continuously adding new information,
normally through new data, in order to improve the designed controller.
The information flow on adaptive control schemes is controlled by a
supervisor that, in general is quite simple performing the following ac-
tions (Balaguer et al., 2006b): a new plant is identified constantly. As
soon as the new plant is available, the controller is redesigned and ap-
plied to the closed loop. More developed adaptation schemes exists,
for example iterative identification and control schemes, in which the
supervisor takes into account further issues.

• “Probabilistic Robust Control”. The objective of probabilistic robust
control is to implement control systems with several controllers, each
one having a distinct instability risk. This way high performance can
be achieved with a high risk controller. However in order to minimize
the instability risk a supervisor is designed in such a way that when a
instability is detected, the supervisor changes the operating controller to
one with a lower risk level. In (Horn et al., 2005) a probabilistic robust
control is proposed for the control of a helicopter rotorcraft.
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• “Multimodels”. In the multimodels approach, distinct models are eval-
uated at the same time in order to decide which one is the most suited
representation of the plant. Then it is possible to select the most ap-
propriated controller. A supervisor is then necessary to decide which
model is the most suited and accordingly to select and implement the
corresponding controller.

The supervisor concept has been presented by means of several application
areas. It is possible to abstract the main features of a supervisory scheme.
The supervisor is a set of rules that take actions (e.g. controller redesign,
controller change, etc) on the basis of some index (e.g. performance index,
model validation result, etc). Thus, the supervisor can be seen as the manager
of the information flow. For example, the supervisor decides, after a model
invalidation result, that a new model must be identified. Consequently in
what follows we consider that the information flow management of the control
problem is performed by a supervisor. Thus the properties of the information
flow management are the properties imposed by the designed supervisor.

5.2 Adaptive Control

5.2.1 Definition of Adaptive Control

Adaptive control emerged in the 50’s and since then it has been an important
topic in control theory with intensive research. Notwithstanding the huge
amount of research on adaptive control, a clear definition is still controversial.
Indeed the definition of adaptive control was controversial even at the very
beginning of the discipline (Harris and Billings, 1981).

“The lack of a conceptual framework for adaptive control has restrained
research in this area and it has made difficult to compare alternative de-
signs (Zames, 1998)”. In fact a lot of effort has been made in order to avoid a
“bag of tricks” type exposition of adaptive control (Ioannou and Sun, 1996).

In what follows we present a definition of adaptive control which abstracts
the main features gathered on the existing adaptive control definitions. In
order to accomplish the objective we start reviewing the distinct adaptive
control definitions:
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• (Margolis and Leondes, 1959): An adaptive control system is defined
as a feedback control system intelligent enough to adjust its characteris-
tics in a changing environment so as to operate in an optimum manner
according to some specified criterion.

• (Bellman and Kabala, 1959): An adaptive control is one that when faced
with uncertain processes, its controller learns to improve its performance
through the observation of the outputs of the process, hence as the process
unfolds additional information becomes available and improved decisions
become possible.

• (Zadeh, 1963): The system A is adaptive with respect to a family of
time functions Sγ and a set of acceptable performance W if it performs
acceptably well with every source in the family Sγ.

• (Truxal, 1963): An adaptive system is one defined from an adaptive point
of view.

• (Eveleigh, 1967): An adaptive system is a system which is provided with
a means of continuously monitoring its own performance in relation to a
given figure of merit or optimal condition and a means of modifying its
own parameters by a closed-loop action so as to approach this optimum.

• (Gell-Mann, 1995): A system is complex adaptive if it acquires informa-
tion about its environment and the interactions between the environment
and the system, identifies regularities and condense this regularities in
models and interacts with the real world in base of the learned scheme.

• (Zames, 1998): A system is adaptive if its performance is better than the
best possible based on a priori information.

In table 5.1 the main features of the reviewed definitions are presented in
an organized manner. Despite the variety of adaptive system definitions, it can
be seen that whereas some definitions focus on the mechanism by which the
adaptation is performed, others focus on the results provided by the adapta-
tion. For example definition (Eveleigh, 1967) focuses on the mechanism (e.g.
monitoring and parameters variation), definition (Zadeh, 1963) is based on
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performance issues and does not mention any mechanism1.

As far as the mechanism of adaptive control is concerned the following
actions are considered:

• Monitoring: Monitoring is the action of checking some variable of inter-
est.

• Parameters change: It is the action of changing the parameters of the
system (e.g. controller parameters).

• Supervisor: An intelligent system that decides to take some action.

• New info: New information of the environment that is made available to
the system (e.g. a new measure).

• Learn: The act of modifying the system on the basis of some acquired
information.

The supervisor should be understood as the system that take actions over
the mechanisms above mentioned (e.g. change the controller parameters on the
basis of some monitored variable). It is worth to remark the difference between
the mechanisms named New info and Learn. New info refers to simply acquire
information but the system is not modified. On the other hand the Learn
procedure implies a change on the system (e.g. a new controller) on the basis
of the new acquired information.

The definitions enumerated in table 5.1 are aimed to solve problems by
acquiring and processing new information. However the nature of the problem
to be solved is of very different kind:

• Performance Maintenance. The objective is to keep some optimum per-
formance level in spite of a changing environment. Definitions (Eveleigh,
1967), (Margolis and Leondes, 1959) and (Zadeh, 1963) belong to this
problem.

• Performance Improvement. Performance improvement is possible if new
system information is made available to the control system. Definitions
(Bellman and Kabala, 1959) and (Zames, 1998) refer to this problem.

1In fact definition (Zadeh, 1963) is the definition of robust performance defined on the
robust control theory which is not considered a type of adaptive control but a distinct manner
of tackling the problem of uncertainty (Landau, 1999).
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Mechanism Behavior

Definition Monitoring Parameters Supervisor Add new Learn Performance Performance
change Info. Maintenance Improvement

Eveleigh x x x

Margolis x x x

Bellman x x x

Zadeh x

Zames x x

Gell-Mann x x

Table 5.1: Features of Adaptive System Definitions.

The following definitions of the features regarding adaptation mechanism are in order:

• Monitoring: Monitoring is the action of checking some variable of interest.

• Parameters change: It is the action of changing the parameters of the system.

• Supervisor: An intelligent system that decides to take some action.

• New info: New information of the environment that is made available to the system (e.g. a new
measure).

• Learn: The act of modifying the system on the basis of some acquired information.
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In our conceptualization of adaptive control, we focus on the fact that in
order to have an adaptive system the following actions are required:

• Acquiring information. The mechanisms related with the action of ac-
quiring information comprises the Monitoring and Add new Info.

• Modifying the own system (e.g. parameters, structure, etc) on the basis
of the new acquired information. This is accomplished by the mecha-
nisms Parameters change and Learn.

• The system modifications allow the system to perform better than without
modifications. This includes both, the performance maintenance over a
changing environment and the performance improvement.

At this stage it is worth to state that adaptive control does not have any to
do with time varying systems or with nonlinear systems but with uncertainty.
In fact the above proposed scheme is a consequence of a lack of information
as the first step of the schemes is to add new information. The lack of in-
formation is not caused only by an environment information deficiency (e.g.
signal spectrum has no relevant content over some frequency range) but by
a system representation fault (e.g. linear model for representing a nonlinear
plant). In fact a linear model can capture accurately the nonlinear behavior
only around some restricted neighborhood point. If the set point is changed
the linear model is modified.

The second point of interest of adaptive control is the information super-
vision. In fact the above enumerated actions must be managed by means of
some entity, the supervisor.

5.2.2 Supervision of Adaptive Control

The adaptive control actions mentioned above must be managed by a supervi-
sor. The supervisor goal is to take the appropriate actions in order to improve
system performance by acquiring new information by, for example, performing
a new experiment. In this sense, as stated on the first section of the chapter,
a supervisor is a logic that manages the control problem information flow.

The rationale behind the supervisor actions is that the acquired informa-
tion helps to improve system performance. However it is not the general case
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that new information is useful. For example recall the concepts of Neutrality,
Separability and Certainty Equivalence from stochastic control systems:

• Neutrality (Feldbaum, 1965). A stochastic control system is neutral if
the rate of reduction of uncertainty about the states X is independent
of the control u.

• Separability (Joseph and Tou, 1961). A stochastic control problem is
separable if the only information which needs to be transmitted in order
to calculate the control action is a point estimate of the current state,
no information about accuracy being required.

• Certainty Equivalence (Simon, 1956). A separable problem is certainty-
equivalent when the form of the control law is identical with that of the
function specifying the optimal control law for an equivalent determin-
istic problem (i.e. a problem having no uncertainties about the state
X).

The structural property of neutrality deternines that the information of
the state is independent of the input. The main implication is that there is
no reason to introduce any probing action (e.g. input experiment) in order to
increase the rate of uncertainty reduction of the system states.

The Separability property indicates that the optimal control law does not
depend on the uncertainty. Thus the parameters to be transmitted to the
controller are just the state estimates, no its uncertainty.

The Certainty Equivalence property is a stronger property than separabil-
ity. It refers to separable problems and states that the form of the optimal
control law equals the control law of the equivalent deterministic problem (i.e.
no uncertainty of the state). It follows that the control law can be designed
without consider stochastic effects.

Sufficient conditions on systems for being neutral, separable and certain-
equivalent can be found in (Harris and Billings, 1981). Linearity is an essential
requirement in all the above conditions. Additionally the uncertainty consid-
ered is only stochastic (i.e. Gaussian noise). Notwithstanding supervisors that
manage adaptive control schemes can indeed improve the system performance
as:
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• The problem of system identification (Ljung, 1999) is highly dependent
on the experimental data used for data generation. Thus probing not
only can improve the identified model but it is a necessity (e.g. persis-
tently exciting signal).

• As stated in (Harris and Billings, 1981): “It follows that adaptive control,
which is an approach to non-linear problems, is concerned with problems
which do not satisfy the known sufficient conditions for neutrality, sepa-
rability or certainty equivalence and which are very unlikely to enjoy any
of the three properties.”

It then follows that the supervision of adaptive systems can indeed improve
the overall system performance. The idea is that if more information relevant
for control purposes is added, then better controllers can be designed.

5.3 Information Flow Analysis of Adaptive Control
Schemes

In this section two paradigms of adaptive control (following the adaptive con-
trol definition given in the preceding section) the classical adaptive control
and iterative control are studied under the information framework presented
in Chapter 4. The objective is to show the particularities of each one of the
proposed schemes regarding its information flow management properties and
how the analysis permits to detect limitations and improvements of the ap-
proaches.

5.3.1 Classical Adaptive Control

We refer to classical adaptive control as the adaptive control approach pre-
sented in (Astrom and Wittenmark, 1989). We focus our analysis to the model
reference adaptive system (MRAS). The principal features of the scheme are:

• The performance of the system is specified by a model.

• The controller parameters are changed based on the error between the
outputs of the system and the reference model.
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In what follows, the classical adaptive control is analyzed on the basis of
the information framework developed in Chapter 4. Thus the first step is to
identify and define the elements of the control problem on the MRAC.

The data set D is composed by data acquired from closed loop operation
with a variable controller in the loop. The data, together with certain model
order and structure defined in the set AM , is used to identify a single LTI
model G as the certainty equivalence principle is assumed (i.e. no model
undermodelling). The closed loop specifications S are defined by the reference
model taken from the set of all possible reference models AS . Finally the
controller K with the structure defined in AK is designed by calculation of
the controller parameters which depend on the output error. In table 5.2 a
summary of the elements characterization is presented.

ELEMENT ASSUMPTIONS

D (Data Set) Closed loop data, variable controller.

AM (A Priori Model Set) LTI Model.

G (Model Set) Singleton. No uncertainty.

AS (A Priori Specification Set) Model Reference.

S (Specification) CL Reference Model

AK (A Priori Controller Set) LTI Controllers.

K (Controller Set) Parameters depend on error signal.

Table 5.2: MRAC Elements.

Once the elements of the MRAC are defined, we discuss the relationships
considered among them. The relations considered are just the identification I
and the control design algorithm C. The rest of relationships are not consid-
ered. The identification algorithm is a recursive least square that whenever a
new sample is acquired, a new model is identified. The control design is based
on the calculation of the controller parameters which depend on the output
error. In table 5.3 the MRAC relationships are summarized.

Finally, once the elements and the relationships are established it remains
to discuss their supervision, that is how the elements and relations (i.e. in-
formation) are managed. The supervision of the elements and relations in
the MRAC is simple. As stated in (Astrom and Wittenmark, 1989): “In an
adaptive system it is assumed that the regulator parameters are adjusted all
the time”. This implies that whenever a new sample is acquired a new model
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RELATIONSHIP CONSIDERED?

I (Identification) Recursive LSM

C (Controller Design) Parameters depend on error signal

O (Consistency) No

V (Model Validation) No

L (Limitations) No

M (Monitoring) No

Table 5.3: MRAC Relationships.

is identified by the recursive algorithm. Thus a new output error can be calcu-
lated and the controller parameters modified accordingly. There are no other
considerations taken.

The way that information is managed in the MRAC adaptive control in
particular, and in the classical adaptive control in general, leads to the follow-
ing problems:

• Stability Issues.

• Limited use of information sources.

• Limited management of information.

which are discussed in the next paragraphs.

Stability Issues

The stability problems of adaptive control have been recognized since the
beginning of the field. However their causes were not recognized after some
time. In (Anderson, 2005) a review on the instability causes is conducted:

• Bursting. Bursting is a phenomenon that shows transient instability. It
is caused by deficient model identification due to the lack of persistently
exciting signals. However due to unstable behavior signals become rich
enough to identify a good model and the instability disappears.
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• Process interaction. On adaptive systems there are distinct processes
running in parallel. On the one hand the controlled plant and on the
other hand the identification loop. If both processes have comparable
time scales then interactions appear than can drive the system to insta-
bility.

It can be concluded from the adaptive control instability problems (Anderson,
2005) that the source is a misuse of information. For example a model is iden-
tified with data not informative enough (i.e. bursting problem). Another
problem of information misuse is due to the interaction between system iden-
tification and the closed loop system. In this case the information coming from
closed loop data is affected by the controller designed on the basis of the new
data. As a result an interaction between both processes appears which can
lead to instability. The framework we propose helps to tackle these questions
relating them with information flow management.

Limited use of information sources

In adaptive schemes, the new information introduced in the controller design
information flow is limited to new experimental data. Thus it would be benefi-
cial to increase the information sources in order to achieve a more satisfactory
controller design. For example in (Lewis et al., 1987) it is stated: “Adaptive
control is a promising approach to achieve performance robustness. Its present
setting is limited: it makes use of the most structured uncertainty in which the
plant model has a known form, but unknown parameters”.

This leaves room to improve the information sources on adaptive control
schemes. In (Balaguer et al., 2006b) the following improvement is proposed:
“The only new information introduced in the information flow loop is through
new experimental data. This leaves room to improve the a priori information
by checking the consistency and validating new models identified with different
models order and structure”.

The idea is to increase the a priori information content on the model set so
the model can be improved not only through parameters reidentification but
also by adapting the model order.
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Limited management of information

In adaptive control schemes the only relations taken into account are the model
identification step and the controller design step. The rest of relationships are
just disregarded as can be seen from table 5.3. As a consequence the identified
parameters are blindly replaced as soon as they are calculated. However due to
the noise effect the parameters changes can be no significant. Thus although
a new model has been identified, it could already belong to the models family
identified in a former step, thus the following design step is meaningless as no
new information is actually present.

In (Balaguer et al., 2006b) it is proposed to identify not only a nominal
model but also model error bounds. Thus it is possible to validate each new
model in such a way that if the new model belongs to the already existing
model set then no new information is present and the controller design and
updating step is not performed. In this way the controller is not modified on
the basis of non informative models.

5.3.2 Iterative Control

Iterative control is an adaptive control design scheme in the sense that i) new
information is added to the control design procedure that ii) modifies the
control system (i.e. controller) in such a way that iii) better performance level
is achieved. Nonetheless the way these actions are supervised is different than
in the classical adaptive control supervision introduced above.

The iterative control procedure is as follows:

1. An experiment in closed loop (i.e. controller Ki−1 operating) is per-
formed at step i and data set Di is acquired.

2. On the basis of the new data set Di a new model is identified Gi. It
is assumed that the new model Gi is more accurate, for control design
purposes, than the former model Gi−1.

3. On the basis of the new model Gi a new controller Ki is designed. The
controller is applied to the loop and the procedure is repeated until some
stoping condition is achieved, for example certain performance level.

Iterative control is based on two main concepts:
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• If at each iteration a “better” model can be identified, a “better” con-
troller can be designed (i.e. exploiting new information).

• The procedure is supervised by the control designer, with a constant
controller in the loop, which prevents from unnoticed problems as in
adaptive control (i.e. managing the information flow more safely).

Distinct iterative identification and control approaches have been pro-
posed. In what follows we enumerate them and describe the identification
and control design techniques taken. The iterative control design schemes
are (Bitmead, 1993):

• The Delft School (Schrama, 1992): Coprime factor identification meth-
ods (Hansen et al., 1989) together with H∞ control design (Zhou, 1998)
are used.

• Windsurfer approach (Albertos and Sala, 2002): Coprime factor identifi-
cation methods (Hansen et al., 1989) are joined with the Internal Model
Control (IMC) design approach (Morari and Zafirou, 1990).

• Zangstuff (Zang et al., 1995): Least Square Identification (Ljung, 1999)
is used with LQG control (Bitmead et al., 1990) providing a quadratic
approach.

In order to perform the analysis of the iterative control approach on the
basis of the information framework of Chapter 4 a specific scheme must be
chosen, as distinct elements and relations are considered in each one of the
presented schemes. As a result we focus on the Windsurfer approach (Albertos
and Sala, 2002) and its extensions (Lee et al., 1995).

Regarding the elements of the control problem, the data set D is composed
by data acquired from closed loop operation with a constant controller on
the loop. The data, together with certain model order and structure defined
in AM , is used to identify a single LTI model G. It is worth to mention
that the Hansen’s identification method (Hansen et al., 1989) can lead to a
model order explosion as stated in page 154 (Albertos and Sala, 2002) thus a
model reduction step can be necessary. The key point here is that if no model
reduction is done, the model order, and thus the a priori model information
AM is defined by the algorithm and the iterations performed.
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The a priori specifications set AS is defined by the closed loop bandwidth
λ. Then at each step i the specification set S is the value of the closed loop
bandwidth λi.

Finally the controller K with the structure defined in AK is designed by
the Internal Model Control (IMC) approach (Morari and Zafirou, 1990). In
table 5.4 a summary of the elements characterization is presented.

ELEMENT ASSUMPTIONS

D (Data Set) Closed loop data, constant controller.

AM (A Priori Model Set) LTI Model, variable order.

G (Model Set) Singleton. No uncertainty.

AS (A Priori Specification Set) Closed loop Bandwidth.

S (Specification) λi

AK (A Priori Controller Set) LTI Controllers.

K (Controller Set) Parameters depend on model and λi.

Table 5.4: Windsurfer Iterative Control Elements.

Once the elements of the Windsurfer Iterative Control are defined, we dis-
cuss the relationships among them. The relations considered are the identifica-
tion I, the control design C, the model validation V, assessment of fundamental
limitations L and performance monitoring M.

The identification I is performed through a closed loop identification al-
gorithm via the fractional representation (Hansen et al., 1989). The novelty
of the method is to restate the closed loop identification method as an open
loop one, hence solving the well known difficulties of closed loop identifica-
tion (Ljung, 1999).

The control design step C is performed by the Internal Model Control
(IMC) approach (Morari and Zafirou, 1990). In this way first an H2 optimal
controller is designed on the basis of the model at hand. Next, the optimal
controller is extended with a low pass filter in order to account for robustness
and implementation issues. The low pass filter bandwidth is the value fixed
by the specification of the closed loop bandwidth, that is λi.

Regarding the validation step V, it is performed in two distinct ways.
First a classical cross-correlation validation method is applied (Soderstrom
and Stoica, 1989). Secondly the spectrum of the residual is compared with
the spectrum of the noise. In fact if both spectrums are similar then the
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model is validated as there is no useful information on the residual spectrum.
However if the spectrum of the residual is larger than the spectrum of the
noise at some frequency band, then the model is invalidated. Moreover this
indicates that the data is rich enough in order to attempt a new identification.
To sum up the validation procedure is done by joining a classical validation
procedure together with a visual comparison of the residual spectrum and the
noise spectrum.

The fundamental limitations relation L is assessed through the knowledge
of the unstable zeros of the existing model. In (Lee et al., 1995) it is seen that
it is not possible to improve the model if RHP zeroes exist. This imposes a
bound on the achievable closed loop bandwidth.

Finally the Monitoring action M is performed at the end of each iteration
(i.e. experiment). It is the result of the monitoring action together with
the assessed fundamental limitations and control objectives what decides to
stop the iterative procedure or to perform a new iteration. In table 5.5 the
Windsurfer relations are summarized.

RELATIONSHIP CONSIDERED?

I (Identification) Hansen Method

C (Controller Design) IMC

O (Consistency) No

V (Model Validation) Yes

L (Limitations) Yes

M (Monitoring) Yes

Table 5.5: Windsurfer Iterative Control Relationships.

However some problems of iterative control regarding the information man-
agement are:

• Necessity for Iterative Control (Boling and Makila, 1998).

• Information misuse (Balaguer and Vilanova, 2007).

Necessity for Iterative Control

In (Schrama, 1992) the iterative control is presented as a necessity for achieving
high performance control. The technical procedure presented belongs to the
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above named “Delft School”. The claimed necessity for iterative control is
criticized in (Boling and Makila, 1998), where it is concluded the following:

“Thus this examples (it refers to (Schrama, 1992)) in the form presented
in several conferences and published in the archival literature, can neither be
used as an argument for the inadequacy of open-loop identification nor for the
need of closed-loop iterations.”

To our understanding, the key point lies on the problem statement that
reads (Boling and Makila, 1998):

“It is assumed that the plant frequency response has been determined exactly
from experimental data at a given set of frequencies Ω.”

The assumption establishes that during the whole controller design process
the data set is both constant and noiseless. Under this assumption, and from
an information point of view, the issue of open-loop vs closed-loop identifi-
cation is meaningless as the data set can not be further improved. Moreover
assuming that the other information sources (e.g. the a priori model set, the
identification algorithm, etc.) are equally informative, the obtainable result
does not depend on iterative schemes. The fundamental issue is that if no
new information is added at each iteration then the iterative solution is just
a matter of choice as the same result could be obtained by suitable one-shot
procedure.

However, without the assumption of perfect data knowledge, iterative
schemes provide information benefits:

• The frequency information content can be different at each iteration,
thus at each step new data information can be acquired.

• The selection of the information elements (e.g. model order) can be
better chosen taking into account the information amount of the problem
at each step.

Thus the potential of iterative identification and control schemes lies on
the capacity of acquiring new information at each step and the feasibility of
managing the current information.

Information misuse

We have seen how Iterative Control (i.e. Windsurfer approach) manages the
information of the control problem on the basis of the information theoretic
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framework. It can be seen that iterative control is much richer than adaptive
control regarding the elements and relationships considered. For example, the
controller order of adaptive control is fixed meanwhile the controller order of
an iterative scheme can be variable.

Notwithstanding the more developed scheme for information management
of iterative control, it still remains to consider if the information management
is optimal in some sense. We tackle the problem by analyzing how the in-
formation quantity of the elements of the control problem evolves during the
iterative process.

We introduce the concept of information monotonicity on iterative iden-
tification and control schemes. Roughly speaking, an iterative identification
and control scheme is monotonic if, at each iteration, the information content
of the elements is greater or, at least, equal than the information content of
the elements at former iterations.

In order to define the concept of information monotonicity we first recall
the mathematical concept of monotonicity over sequences.

Definition 5.3.1 (Monotonic Sequence) A sequence {an} such that ai+1 ≥
ai for every i ≥ 1, is a monotonic increasing sequence.

♦

We assume that at each time step n we have certain amount of information
of the control problem, say In. This amount of information is the informa-
tion content of the elements of the control problem introduced in Chapter 4.
Recalling that the information elements of the control problem are the sets
{A , D, G, S, K} the amount of information of the control problem at step n is
In = {An, Dn, Gn, Sn, Kn}. The information content of the control problem is
hence monotonic if at each time step i, the information content of the control
problem at step i + 1, that is Ii+1, is equal or “greater” than the information
content of the control problem at time step i. It however remains to define
the order relation between information elements. It is defined as follows:

Definition 5.3.2 (Information relation) The control problem information
element Ii+1 = {Ai+1, Di+1, Gi+1, Si+1, Ki+1} is equally or more informative
than the control problem information element Ii = {Ai, Di, Gi, Si, Ki}, that is
Ii+1 � Ii iff the following set inclusion follows:
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Di+1 ⊇ Di

Ai+1 ⊇ Ai

Gi+1 ⊆ Gi

Si+1 ⊆ Si

Ki+1 ⊇ Ki

♦

Remark 5.3.1 The inclusion set requirements introduced in definition 5.3.2
must be accomplished for all the elements. For example if the information
element Ii+1 increases the data set Di+1 but decrease the a priori information
set Ai+1 with respect to the information element Ii, the concept of information
increase of the control problem is lost. However it is true that the data set has
increased and that the a priori information set has decreased.

♦

Following the above discussion we introduce now the definition of informa-
tion monotonicity of the control problem as follows:

Definition 5.3.3 (Monotonic Information) The control problem informa-
tion sequence {In} such that Ii+1 � Ii for every i ≥ 1 is a monotonic control
problem information sequence.

♦

Remark 5.3.2 It follows from the above definitions that in order to have a
monotonic increase of information of the control problem at each time step, the
information content of all the elements of the control problem must increase or
at least remain constant. In this way, classical one shot non adaptive design
methods are monotonic as, although no new information is introduced in the
design, no already taken information is lost.

♦

As a result of definition 5.3.3, the question of information monotonicity in
iterative control schemes arises. In (Balaguer and Vilanova, 2007) it is shown
that, in general, iterative identification and control schemes are not informa-
tion monotonic. In fact, at each new iteration step, former data, models and
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controllers are disregarded and the whole control design process starts again
on the basis of the a priori information and the new experimental data set.
Thus former already taken information is just disregarded so the whole process
does not manages information in a monotonic manner.

In what follows the example taken from (Balaguer and Vilanova, 2007) is
presented. The example shows that it is possible to increase the performance
(i.e. disturbance rejection) for a wider class of disturbances if former informa-
tion (i.e. former model) produced by the iterative procedure is used to design
the current controller. Moreover in the example it is envisaged a methodology
to incorporate former information on the controller.

Example 5.3.1 Zang’s Example

In (Zang et al., 1995) an iterative identification and control scheme is theo-
retically posed and a numerical example given. The setup of the example is as
follows: the true plant is chosen to be of the form

yt = P (z)ut + H(z)et (5.1)

with

z−1 − 1.2z−2 − 0.3z−3 (5.2)

P (z) =
+0.156z−4 + 0.0845z−5

1 − 1.25z−1 + 0.4575z−2 + 0.0279z−3
(5.3)

−0.0491z−4 + 0.0077z−5 (5.4)

H(z) =
2

1 + 0.6121z−1
(5.5)

P (z) is a fifth-order stable non-minimum phase with a single delay. et is
white noise of unit variance. The procedure commences identifying a model of
the plant in open loop P̂0. The model order to be identified is assumed to be
third order. The presented iterative control approach is then applied six times
arriving at the final model P̂6 used to design the definitive controller C6.

P̂6(z) =
1.6066z−1 − 0.9120z−2 − 1.4404z−3

1 − 0.3139z−1 − 0.6349z−2 + 0.4839z−3
(5.6)
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Figure 5.1: Zang’s Example Control Structure

0.038 + 0.1895z−1 − 0.0335z−2 (5.7)

C6(z) =
−0.1078z−3 − 0.0171z−4 − 0.0090z−5

10.7149z−10.4911z−2 − 0.4222z−3
(5.8)

−0.0952z−4 − 0.0313z−5 + 0.0001z−6 (5.9)

In figure 5.1 the control structure applied at iteration 6 is shown. The
quadratic cost J is calculated as follows:

J =
1

N

N
∑

t=1

(y2
y + λ2u2

t ) (5.10)

where the squared weight λ2 is equal to 0.1. The quadratic cost value achieved
by the last designed controller C6 is shown in table 5.6 (upper left square).

Information Recovery

Now we show the procedure to incorporate former disregarded information of
the iterative procedure. We begin with the information of the open loop model
P̂0 and the model identified in the last operation P̂6. Note that we disregard the
intermediate models. This is not a problem to convey the idea as the difference
among the models P̂1, P̂2, . . . , P̂6 is just quantitative as all of them are aimed to
capture accurately the same frequency range. The major difference is between
the open loop model P̂0 and the closed loop one P̂6.
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Figure 5.2: Augmented Controller and Zang’s experimental conditions

For the open loop model P̂0 we design a LQG controller C for the same
quadratic cost as in 5.10. The designed controller C is:

C(z) =
−0.1749z−1 + 0.07712z−2 − 0.009421z−3

1 + 0.3821z−1 − 0.181z−2 − 0.07137z−3
(5.11)

The next step is to joint the existing controllers C and C6. This is done by
augmenting each controller with a band-pass filter (e.g. Butterworth filter). In
the present case, as we are only interested in two frequency bands (i.e. low fre-
quency and high frequency), the controller C is multiplied by a low pass filter in
order to allow the low frequencies to be processed by the controller C, whereas
the controller C6 (which is accurate for higher frequencies) is augmented with
a high pass filter. Both filters are fourth order and have a cut frequency equal
to 1 rad/seg. The final controller is formed by connecting in parallel the two
original controllers extended with the filters. See figure 5.2.

In order to compare the performance of the original controller C6 with the
augmented version Ce two different experimental conditions have been pre-
pared. First both controllers are simulated with the original perturbation pro-
posed in (Zang et al., 1995) and described in the first section of the example.
In what follows we refer to this setup as Zang’s Perturbation (see figure 5.2).
The performance cost index is shown in table 5.6. As can be seen the cost
difference between the controller C6 and the controller Ce is relatively small.
A second experimental setup (see figure 5.3) has been consider by adding to
the Zang’s Perturbation a step perturbation at the output. As shown in ta-
ble 5.6 in this setting there is a clear cost reduction by the fact of applying the
augmented controller Ce.
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Figure 5.3: Augmented Controller, Zang’s experimental conditions plus step
disturbance

Table 5.6: Performance cost achieved by simulation

Controller Zang’s Perturbation Zang’s perturbation + Step

C6 6.44 26.38

Ce 6.48 18.75

Deeper insight into the results presented can be gained by analyzing the
Sensitivity functions plotted in figure 5.4. First the Sensitivity function of the
C6 Zang’s original controller (i.e. SC6), secondly the Sensitivity function of
the controller C designed on the basis of the open loop model (i.e. SC) and
finally the Sensitivity of the augmented controller (i.e. SCe). As can be seen
at low frequencies the Sensitivity function of the augmented controller SCe is
equal to the Sensitivity function of the controller SC designed on the basis of
an open loop model. It can be seen that gives better perturbation attenuation
at low frequencies than the Sensitivity function of the original controller SC6

provided by Zang. On the other hand, for higher frequencies the Sensitivity
function of the augmented controller SCe is equal to the Sensitivity function
of the Zang’s controller SC6, thus performing well for the high frequency dis-
turbance. Thus the controller Ce is able to capture the benefits of the two
separate controllers C and C6. However the resulting controller Ce is with no
exemption subjected to the fundamental limitations on the Sensitivity function
known as the waterbed effect or Bode’s integral. In fact from figure 5.4 it can
be seen that the Sensitivity function SCe has a low disturbance attenuation
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range around 0.25 rad/sec as a result of pushing down the Sensitivity function
at low frequencies.
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Figure 5.4: Comparison of Sensitivity Functions

Results Discussion

The example shows that it is possible to improve performance for a wider class
of perturbation by taking advantage of already existing information, which is
accurate for different frequency ranges. We acknowledge that the controllers
comparison is not fair as a new perturbation not present in (Zang et al., 1995)
has been added (i.e. the step disturbance at the output).2 However both con-
trollers design have the same model and data information for the controller
design step.

We have proven that taking into account former (already existing) informa-
tion can help the design of controllers that perform better in front of a wider
range of perturbations. Of course the new designed controller is under the
rules of the fundamental limitations in control so the designed controller is a
compromise. Notwithstanding it can be seen that the new augmented controller
Ce performs equally well as the original Zang’s C6 controller for the Zang’s
Perturbation (table 5.6).

2however we consider that the new perturbation is far beyond of being artificial.
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5.4 Conclusions

In this chapter the concept of supervisor is presented as an entity that manages
the information flow in order to achieve certain objectives. Next the concept
of adaptive control has been reviewed and a new definition which amalgamates
former definitions is given. Thus an adaptive system is one that performs the
following actions by means of a supervisor:

• “Acquiring information”. The mechanisms related with the action of
acquiring information comprises the Monitoring and Add new Info.

• “Modifying the own system (e.g. parameters, structure, etc) on the
basis of the new acquired information”. This are accomplished by the
mechanisms Parameters change and Learn.

• “The system modifications allow the system to perform better than with-
out modifications”. This includes both, the performance maintenance
over a changing environment and the performance improvement.

Once the concept of adaptive control is generally defined and related with
the concept of information supervisor, the classical adaptive control and iter-
ative control schemes are compared on the basis of the information framework
introduced in Chapter 4. The result on the comparison shows that:

• Both classical adaptive control and iterative control are adaptive con-
trol schemes in the sense of the general definition of adaptive control
introduced above.

• Iterative control schemes have a more developed way of supervising infor-
mation than classical adaptive control. For example, the model order of
iterative schemes is not necessarily fixed as occurs on classical adaptive
control.

Furthermore the results of information analysis of classical adaptive control
and iterative control are:

• Problems, limitations and possible improvements of classical adaptive
control are related with information issues as follows:
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– Stability issues of adaptive control can be explained through in-
formation deficiencies. For example the bursting phenomenon of
classical adaptive control is related to a lack of information content
if the data set (i.e. no persistently exciting signal).

– Classical adaptive control makes a limited use of the information
sources. In fact new information is added only through the data set.
However the a priori information set is not modified. The control
design process is then limited to a fixed model order and a fixed
controller order.

– The information supervisor actions of classical adaptive control are
only the identification procedure and the control design procedure.
Other actions such as model validation, assessment of fundamental
limitations, etc. are not considered. In order to improve the in-
formation management of classical adaptive control it is proposed
first to identify not only a nominal model but an error bound and
secondly to validate each new identified model against the existing
model set. Then if the new identified model belongs to the existing
model set no actions are necessary as no new information has been
gained through the new identified model.

• The relation of iterative control with information concepts results in:

– The necessity of iterative control schemes is discussed on the basis
of controversial discussion on this issue arisen in the bibliography.
The rationale behind iterative control schemes in particular and
adaptive control schemes in general is the capacity of adding new
information. If a control problem is posed with all the relevant in-
formation for control at hand, then adaptive control is meaningless.
The power of adaptive control is to add possible useful information
for control that was not know beforehand.

– The information management on iterative control is not monotonic.
That means that although at each iteration new information is ac-
quired, former information can be disregarded. In this sense it is
shown by means of an example that if former information is used
for control design, better performance levels can be achieved.
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Part II

Frequency Domain Model
(In)Validation

85





Chapter 6

Frequency Domain Model
(In)Validation

A new (in)validation algorithm is developed in this chapter. The (in)validation
procedure is designed to overcome the problems of classical model validation
approaches and to provide required features for information management on
iterative identification and control schemes

The main idea of the algorithm is to translate the residual from the time
domain to the frequency domain and apply the frequency counterpart of the
whiteness test. The output of the algorithm results to be more informative than
the binary answers of “Validated/Invalidated” given by classical approaches.
The algorithm provides, with a probability measure, frequency ranges for which
the model is (in)validated.

87
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6.1 Introduction

In order to have confidence in a model, it is necessary to validate it. Dif-
ferent model validation approaches exist. Their difference is based upon the
assumptions on plant and models. Classical validation methods (based on
classical model identification (Ljung, 1999) (Soderstrom and Stoica, 1989))
rely on statistical uncertainty assumptions due to stochastic noise only. On
the other hand, control oriented identification methods (Chen and Gu, 2000)
(i.e. H∞ identification, stochastic embedding, set membership identification,
etc.) lead to validation assumptions based on bounded noise and bounded
model undermodelling.

However in all cases above mentioned the output of the validation process is
a binary result either “validated” or “invalidated”. This leads to the following
problems (Balaguer and Vilanova, 2006b) (Balaguer and Vilanova, 2006e):

• Models are neither good nor bad. Normally models are good at cap-
turing low frequency behaviour but their accuracy degrades at higher
frequencies.

• This gives no insight into why the model is not useful for the intended
use.

• No insight on the way the model should/could be improved.

• In iterative identification and control approaches, a low order model is
fitted to capture the frequency range of interest for control. Hence under-
modelling is always present, which makes it difficult to apply traditional
model validation schemes, as stated in (Ljung, 1994).

These arguments question the suitability of classical validation approaches
in general, and for Iterative Control schemes in particular. In fact the in-
formation flow management of the control problem elements requires more
information than just a validated/invalidate test.

In order to solve the above problems, we present a new (in)validation1

1Although bibliography refers as model validation this is a misleading concept. In fact as
discussed in (Popper, 1958) a model can not be validated but just invalidated, as future data
could invalidate it. This is a fundamental limitation of the scientific method. However in
what follows we use the terms model validation and model invalidation indistinctly keeping
in mind that a model can just be invalidated.
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procedure that (in)validates the model in the frequency domain. This permits
us to ascertain at which frequency ranges the model is not invalidated. Thus
the validation answer is no longer a binary result but frequency dependent.

6.2 Classical Model Validation

The problem of assessing the validity of an identified model has been tra-
ditionally linked with the problem of model order selection. The classical
model validation literature (Soderstrom and Stoica, 1989) (Ljung, 1994) has
approached the problem in two ways:

• Use of plots and common sense.

• Use of statistical tests on the residuals (i.e. the difference between the
real output and the model output).

The first approach is basically based on the comparison of the data with
the model output. If both are similar then the model can be considered a
good one. However there are two unavoidable reasons that prevent the model
output to fit data perfectly: the modelling errors and perturbations.

The second approach is to apply a hypothesis test over the residual. A
hypothesis test is a statement about a random variable. This statement is
expressed by means of two hypothesis H0 and H1. H0 is called the null hy-
pothesis and H1 is the alternative hypothesis. In order to decide the validity of
either the null hypothesis H0 or the alternative hypothesis H1, an estimation
of a population parameter (e.g. mean or variance) is computed from a popu-
lation sample and it is compared against the assumed population parameters.
These population parameters are random variables too with certain mean and
variance. If it is likely that the computed statistic is inside the population pa-
rameters distribution then H0 is accepted, otherwise H0 is rejected in favour
of H1. As a result, two errors are possible: to reject H0 when it is true, that
is a false alarm (type I error or α error), or to fail to reject H0 when H0 is
false (type II error or β error).

The null hypothesis (i.e. H0) taken on the model validation test is the
hypothesis on the residual, which follows from the assumptions on the distur-
bance. The more common assumptions over the residual are (Soderstrom and
Stoica, 1989):
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h1 ξ(t) is a zero mean white noise.

h2 ξ(t) has a symmetric distribution.

h3 ξ(t) is independent of past inputs Eξ(t)u(τ) = 0, t > τ .

h4 ξ(t) is independent of all inputs Eξ(t)u(τ) = 0,∀t, τ .

The above assumptions lead to check two main properties, the whiteness
of the residuals (i.e. h1, h2) and the cross-correlation between residuals ξ(t)
and control actions u(t) (i.e. h3, h4).

Hence classical validation tests can be classified as follows

• Whiteness Test.

- Autocorrelation test. (h1)

- Testing changes of sign. (h1 and h2)

• Independence between residuals and inputs.

- Cross-correlation test of past inputs. (h3) or (h3 and h1)

- Cross-correlation test of all inputs. (h4) or (h4 and h1)

The rationale of the tests is to detect causes of variation on the residual
distinct than the ones assumed. For example if the residual is assumed to
be white noise and the test shows that the whiteness statistical hypothesis is
violated then we assume that there is a distinct cause causing the mismatch.
The cause is a model error. The same example can be explained from a system
identification perspective. On recursive least squares identification method,
the residual can be interpreted as the direction through the parameters are
modified. If the residual is white then there is no clear direction to follow (i.e.
erratic movement). On the other hand, if the residual is not white there is the
possibility of using the residuals to modify the parameters in a profitable way.

The result of the statistical tests above reviewed is a binary one. In fact
the test either validates or invalidates the model. No further information is
provided by the test. As a result, two important drawbacks are:

• There is no information on important model aspects such as (Balaguer
and Vilanova, 2006b):
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– The reasons why the model is invalidate.

– How to improve the model.

– The model usefulness degree.

• In iterative identification and control schemes undermodelling is nor-
mally present (Balaguer and Vilanova, 2006e). In fact as stated in (Ljung,
1994): “For such a model (a model simpler that the one that minimizes
the total error) typically the bias error is the dominating contribution
to the total error. Consequently, such models would normally be falsified
during model validation. These are then reduced complexity models”.

Thus, as a conclusion, although the theory of classical validation methods
is well developed and plenty of successful applications, it has limitations when
a more informative validation procedure is required, as for example in iterative
identification and control approaches.

6.3 Frequency Dependent Model (In)Validation

The main objective of the new proposed algorithm is to validate a model on
the frequency domain. To this end a time domain validation procedure based
on testing the residual whiteness is modified to achieve the pursued objec-
tives (Balaguer and Vilanova, 2006a). The idea is as follows. It is assumed
that if the residual is white noise the model is validated because the residual
contains no further useful information that could be used to improve the model
accuracy. Moreover it implies that there are no unmodelled dynamics as the
uncertainty is due only to measurement noise. This test is usually performed
in the time domain by testing the residual autocorrelation, the number of sign
changes, etc. (Ljung, 1999).

The translation of the time domain whiteness test to the frequency domain
is performed through two steps. Firstly we translate the time domain residual
to the frequency domain by its Discrete Fourier Series. Secondly, the statis-
tical properties of the spectrum of a white noise signal are calculated. The
objective is to test if the spectrum calculated from the residual has properties
of a white noise. As a result, one unique test in the time domain has been
translated to N different tests in the frequency domain. We check if the kth

frequency component of the spectrum has the properties of a typical frequency
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component of a white noise. In case of an affirmative answer, we have no rea-
son to believe that the model is invalidated on that frequency component. On
the other hand, if there are certain frequency components which clearly do
not behave accordingly to the statistical properties of white noise then it is
likely that at this frequency range there is an important mismatch between the
model and the plant. As a result the model is invalidated for that frequency
range.

6.3.1 Whiteness Test on the Frequency Domain

In this section the statistical time domain properties of a white noise are
translated to the frequency domain. This is accomplished by means of two
theorems. The first one is an intermediate result that is used by the second
theorem which describes the frequency domain distribution of the spectrum
of a white noise.

Theorem 6.3.1 Let ξ(n) be a sequence of independent identically distributed
(IID) samples of normal distribution N(µξ, σ

2
ξ ). If we express the Fourier coef-

ficients by its real and imaginary part, that is ξk = Rk+jIk = 1
N

∑N−1
n=0 ξ(n)e−jΩ0kn,

then the real part Rk is a random variable normally distributed (Rk ∈ N(µRk
, σ2

Rk
))

with mean µRk
and variance σ2

Rk
given by

µRk
= µξ

1

N

N−1
∑

n=0

cos(Ω0kn)

σ2
Rk

= σ2
ξ

1

N2

N−1
∑

n=0

cos2(Ω0kn) (6.1)

Similarly the Imaginary part Ik is a random variable normally distributed
Ik ∈ N(µIk

, σ2
Ik

) with mean µIk
and variance σ2

Ik
given by

µIk
= µξ

1

N

N−1
∑

n=0

sin(Ω0kn)

σ2
Ik

= σ2
ξ

1

N2

N−1
∑

n=0

sin2(Ω0kn) (6.2)
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�

Proof: The Discrete Fourier coefficients ξk of a discrete time signal ξ(n) is
given by

ξk =
1

N

N−1
∑

n=0

ξ(n)e−jΩ0kn (6.3)

where Ω0 = 2π
N is the fundamental frequency in rad/sample. Decomposing

the equation (6.3) into its real part and its imaginary part gives

ξk =
1

N

N−1
∑

n=0

ξ(n)e−jΩ0kn

=
1

N

N−1
∑

n=0

ξ(n)(cos(Ω0kn) − j sin(Ω0kn))

=
1

N

N−1
∑

n=0

ξ(n) cos(Ω0kn) − j
1

N

N−1
∑

n=0

ξ(n) sin(Ω0kn)

= Rk − jIk

where the second equality comes from Euler’s identity. Hence the real and
imaginary parts are linear combinations of normally distributed random vari-
ables

Rk =
1

N

N−1
∑

n=0

ξ(n) cos(Ω0kn) (6.4)

Ik =
1

N

N−1
∑

n=0

ξ(n) sin(Ω0kn) (6.5)

As a result, it follows that Rk and Ik are also normally distributed ran-
dom variables. The distribution parameters for the stochastic variable Rk are
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calculated as follows (see, for example, (Box et al., 1978), page 87)

µRk
= µξ

1

N

N−1
∑

n=0

cos(Ω0kn)

σ2
Rk

= σ2
ξn

1

N2

N−1
∑

n=0

cos2(Ω0kn) (6.6)

The same reasoning is applicable to the imaginary part Ik.

�

Remark 6.3.1 µRk
is equal to zero for k ∈ {1, 2, ..., N − 1} and µR0

equals
the mean value of the residual (i.e. µR0

= µξ). µIk
is always equal to zero for

k ∈ {0, 1, 2, ..., N − 1}
♦

Theorem 6.3.2 The normalized squared gain M2
k defined as

M2
k =

(

Rk − µRk

σRk

)2

+

(

Ik − µIk

σIk

)2

(6.7)

has a χ2 distribution of 2 degrees of freedom if Rk and Ik are independent.

�

Proof: By definition the sum of “” independent squared random normal
variables N(0, 1) has a χ2 distribution of r degrees of freedom. Due to the

normalization of Rk and Ik, it follows that
Rk−µRk

σRk

∈ N(0, 1) and
Ik−µIk

σIk

∈
N(0, 1).

�

6.3.2 Procedure

The frequency domain model invalidation procedure is as follows

1. Calculate the residual as the difference of the real output and the model
estimated output (ξ(n) = y(n) − ŷ(n)).
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2. Calculate the Discrete Fourier coefficients of the residual (ξk)

3. Decompose each frequency component on its real part and imaginary
part (ξk = Rk + jIk).

4. Calculate the distribution parameters of the Real and Imaginary part of
the residual spectrum (i.e. µRk

, µIk
, σRk

, σIk
).

5. Calculate the normalized magnitude spectrum as follows

M2
k =

(

Rk − µRk

σRk

)2

+

(

Ik − µIk

σIk

)2

(6.8)

6. Perform an hypothesis test over the normalized magnitude spectrum
calculated.

0 5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

0 5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

0 5 10 15 20 25 30
0

5

10

15

R
k

I k
M

2 k

Frequency(rad/s)

Figure 6.1: White noise example

The above steps are materialized in the following example. A realization
of a normally distributed random variable of zero mean and unity variance
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is performed with 500 samples. The Discrete Fourier coefficients of the real-
ization are calculated and decomposed into its real and imaginary parts (i.e.
Rk, Ik). The values of Rk and Ik are shown in figure 6.1. They follow a nor-
mal variable distribution with parameters given by equations (6.1)-(6.2) (i.e.
Rk ∈ N(µRk

= 0, σ2
Rk

= 0.001) and Ik ∈ N(µIk
= 0, σ2

Ik
= 0.001)). On fig-

ure 6.1 the realizations of Rk and Ik are plotted together with the 3 sigma
limits of their distribution (i.e. the 99.73% of the samples fall between the
plotted limits). It can be seen that all the points fall inside this range.

Finally the normalized magnitude spectrum is calculated following equa-
tion (6.8). The magnitude spectrum can be seen in figure 6.1 together with the
99.5% confidence limit of the χ2

2 distribution (i.e. the 99.5% of the samples fall
between 0 and 10.6). All the magnitude frequency components remain below
of the confidence limit so there are no reasons to invalidate the model. The
whiteness test has passed.

Remark 6.3.2 Two important variables of the residual ξ(n) which have a
fundamental influence on the validation test are the sample time Ts of the
residual and the total number of samples N of the residual. The sample time Ts

imposes the maximum frequency component that can be tested by the algorithm.
By the Nyquist theorem the maximum frequency is Ωmax = π

Ts
rad/sec. On

the other hand the number of samples N of the residual provides the resolution
of the validation test, as the frequency range is divided in multiples of the
fundamental frequency given by Ω0 = 2π

N . Thus the greater the N, the smaller
the fundamental frequency and the higher the validation test resolution.

♦

6.3.3 Hypothesis Test

The hypothesis test is the last step of the presented procedure, where the
decision of validation/invalidation of certain frequency component is taken.
An hypothesis test is a statement expressed by means of two hypothesis H0

and H1. H0 is called the null hypothesis and H1 is the alternative hypothesis.
The hypothesis test to be applied in our procedure is:

H0 : M2
k ∈ χ2

2

H1 : M2
k /∈ χ2

2 (6.9)
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The hypothesis H0 states that the normalized modulus M2
k of the kth frequency

component is χ2
2 distributed. On the other hand the hypothesis H1 states

that the normalized modulus M2
k of the kth frequency component is not χ2

2

distributed.

Remark 6.3.3 The hypothesis test stated in (6.9) is applied to each frequency
component, from 0 rad/sec up to the Nyquist frequency (i.e. π/Ts, where Ts
is the sample time).

♦

In order to decide the validity of either the null hypothesis H0 or the
alternative hypothesis H1, M2

k is computed. If it is “likely” that the value of
M2

k lies inside the χ2
2 distribution then H0 is accepted, otherwise H0 is rejected

in favor of H1. As a result, two errors are possible: to reject H0 when it is
true, that is a false alarm (type I error or α error), or to fail to reject H0 when
H0 is false (type II error or β error).

The term “likely” introduced above is defined by the user by choosing the
confidence limit. For example, if the confidence limit is chosen to be 10.6 then
the 99.5% of the samples fall inside the limits. This confidence limit sets the
type I error. Following the example presented in section 6.3.2 the type I error
was of 0.5%, that is the 0.5% of the samples of a χ2

2 should be greater than
10.6 in normal conditions. The type II error is more difficult to be calculated
as it depends on the actual distribution followed by M2

k .

The hypothesis test is then simply a check that any magnitude of the
normalized spectrum is less than the test limit. If the value is greater than
the test limit then the model results invalidate for that frequency.

6.4 Conclusions

In this chapter a new (in)validation procedure in the frequency domain has
been presented. The main features of the algorithm are:

• The procedure permits to validate or invalidate models over certain fre-
quency ranges.

• The procedure is the translation of a time domain residual whiteness
test to a frequency dependent residual whiteness test.
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• The validation/invalidation step is based on a hypothesis test applied to
each frequency component. This determines if certain frequency com-
ponents have an unusual content that discards the model validity for
this frequency value. The acceptance/rejection decision of the frequency
component validity comes with a probability measure.

The new validation procedure is aimed to overcome some well known lim-
itations of classical validation procedures. The advantage of the new algo-
rithm hinges on its frequency dependent information in order to decide the
model validation. Thus a more informative answer is given that just a “vali-
dated/invalidated” result.



Chapter 7

Control Oriented
(In)Validation

Once the frequency domain model validation procedure has been presented, in
this chapter the control oriented properties of the algorithm are discussed. In
order to obtain a meaningful model validation for control design purposes, the
frequency domain algorithm is endowed with the control oriented property by
means of generating the residuals through a suited structure.

Once the frequency domain model validation has been provided with the
control oriented property the control oriented frequency dependent model val-
idation (COFDMV) is analyzed regarding their properties for managing the
information flow on iterative control schemes.

99
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7.1 Introduction

Model validation theory is aimed towards checking the model usefulness for
some intended use. Thus the model validation procedure should take into
account the model use, for example control design or prediction purposes.

In fact, it is recognized in (Skelton, 1989) that arbitrary small model errors
in open loop can lead to bad closed loop performance. On the other hand
large open loop modelling errors do not necessarily lead to bad closed loop
performance. As a result the model accuracy should be checked in such a
way that the intended model use is taken into account in the model validation
procedure.

An important aspect in the validation procedure to take into account the
intended model use are the validation conditions. In fact validation from open
loop data can provide a different result than validation with closed loop data.
Furthermore it is completely different to validate an open loop model than to
compare two closed loops, the one with the model and the real one. In (Gevers
et al., 1999) a closed loop validation procedure is presented aimed at validating
a model for control design purposes. An open loop model is validated by
comparing two closed loops, the real one and the closed loop with the open
loop model. One of the main results is that “the same model may fail to
be validated with open-loop data, while it is validated by data collected in
closed loop”. This result points out the importance of the information that is
being validated. This is accomplished by means of setting the experimental
conditions from which data are generated.

In conclusion a model is neither good nor bad by itself but regarding its
intended use. In order to consider the model intended use in the validation
procedure the conditions for data generation must be considered. In the fol-
lowing section we discuss how the new model validation procedure introduced
in the preceding Chapter 6 is endowed with the control oriented property.

7.2 Control Oriented Validation

Once the fundamentals of the frequency dependent (in)validation algorithm
are presented, it remains to assess the information that is being (in)validated in
order to take into account control oriented aspects as discussed in the preceding
section. In our case the model is pursued for control design purposes so the
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information that is being (in)validated should be relevant for control design
purposes.

In the following subsections different structures are proposed in order to
compute the residuals and it is shown that they have considerable importance
on the actual information that is (in)validated (Balaguer et al., 2006a). The
residual statistical properties are reviewed as the residuals must be statistically
white under perfect model matching in order to apply the proposed algorithm.

7.2.1 Open Loop Validation

A model is validated in open loop when no control loop is present in the
validation procedure. The output of the model is compared with the output
of the plant when both are affected by the same input which it is not generated
by feedback. The structure used to validate the model is shown in figure 7.1.

r -

P

P̂

y

ŷ

ξOLd

Figure 7.1: Open Loop Model Validation

The residual is given by the following expression

ξOL = d + (P − P̂ )r (7.1)

where P represents the plant, P̂ is the model being validated, d is the process
disturbance and r the input. As a result of r being produced in open loop, it
follows that, in general, the signals r and d are not correlated.

The open loop residual ξOL given by equation 7.1 is analyzed under distinct
model plant mismatch conditions. The residual ξOL is just the noise d if the
model and the plant are equal (i.e. P̂ = P ), thus no error modelling is present.
As a result the residual has the same stochastic properties than the noise
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because ξOL = d. On the other hand if there exists a discrepancy between the
model and the plant, the term ((P − P̂ )r) appears in the residual. Now the
stochastic properties are no longer equal to the disturbance d but affected by
the term (P − P̂ )r.

Finally it should be remarked that the model-plant error which will be
detected when P̂ 6= P (i.e. error model present) is highly dependent on the
reference signal r. In fact in the trivial case that r = 0 no model error can
be detected. The signal r should contain a high energy content around those
frequencies which are interesting for validation in order to obtain a meaningful
validation result. Nothing can be said about model errors around frequencies
which have not been excited by r on the validation procedure. This fact
remarks the importance on the input selection for model validation purposes.

7.2.2 Closed Loop Validation: Unstable Models

When a model for control design purposes is validated, the residuals (either
ξCLu or ξu

CLu) are normally generated accordingly to figure 7.2 (Landau and
Zito, 2006b). The residual ξCLu represents the error between two controlled
loops instead that the error between a model and a plant. Thus the open
loop model error is not assessed by the model-plant mismatch but by how the
model error affects the controlled loop.

r
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K

K

P

P̂

yu

ŷ
û

ξu

CLu ξCLu

d

Figure 7.2: Closed Loop Model Validation for Unstable Plants

The residuals generated at the output ξCLu (at the input ξu
CLu) by means



Sec. 7.2. Control Oriented Validation 103

of the structure shown in figure 7.2 are:

ξCLu = Sd + KSŜ(P − P̂ )r (7.2)

ξu
CLu = −KSd − KKSŜ(P − P̂ )r (7.3)

The residual given by equation 7.2 (7.3) in case of perfect model (i.e. P̂ =
P ) is ξCLu = Sd (ξu

CLu = −KSd). In this case the stochastic properties of the
residual ξCLu (ξu

CLu) are no longer the ones of the disturbance d. For example
if the disturbance d is assumed white, the residual ξCLu (ξu

CLu) is always
autocorrelated as it is filtered by the sensitivity function S (KS) independently
of the model-plant mismatch.

If there exists a model plant mismatch the new residual term KSŜ(P −
P̂ )r (KKSŜ(P − P̂ )r) arises. Again, the impact of the term in the residual
depends on the reference r. However the model plant error is weighted by KSŜ
(KKSŜ) thus giving more importance to the frequencies where the Sensitivity
function has a high value, that is around the crossover frequency. Thus the
model errors are evaluated taking into account the closed loop.

The preceding discussion establishes two important facts:

• The residual generated in closed loop is suited for model validation for
control design purposes. Even unstable models can be validated as far
as the closed loop is stable.

• The residual generated is no longer equal to the disturbance d under
perfect model plant fit. This fact prevents the residual to be used in a
whiteness test of any kind.

As a result, although the control oriented nature of the residuals generated
following diagram 7.2 is advantageous in front of the open loop counterpart, the
auto-correlation of the produced residual ξCLu (ξu

CLu) prevents from applying
any whiteness test. Accordingly the residuals thus generated are not suited
to be used by the FDMV as the validation algorithm is based on a whiteness
test in the frequency domain. In the next section a new structure is proposed
in order to obtain control oriented residuals suited to be used by a whiteness
test.
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7.2.3 Closed Loop Validation: Stable Models

In this section a new structure for residual generation is introduced. The main
benefit is that the residual generated is white under perfect mode plant match
and it is control oriented. The proposed structure to validate stable models
in closed loop is shown in figure 7.3.
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K P

P̂

yu

ŷ

ξCLsd

Figure 7.3: Closed Loop Model Validation for Stable Plants

The residual generated is

ξCLs =
S

Ŝ
d + KS(P − P̂ )r (7.4)

If the model and the plant are equal (i.e. P̂ = P ) then the real sensitivity
function S = (1 + GK)−1 and the estimated sensitivity function Ŝ = (1 +
ĜK)−1) are equal, so the first term of equation 7.4 yields the noise d. Moreover
the second term, under the same perfect model-plant matching assumption, is
zero. Hence in this case the residuals are again the noise d, having both the
same stochastic properties.

If there exist a discrepancy between the model and the plant then the di-
vision between S and Ŝ is no longer unity but a transfer function resulting
from the noise d filtered by S/Ŝ (i.e. autocorrelated). Additionally the sec-
ond term of equation 7.4 gives a signal proportional to the model-plant error
weighted by the control sensitivity function KS thus giving more emphasis
on errors around the frequencies where the sensitivity function is high (i.e.
control oriented).

Consequently the residuals generated accordingly the structure shown in 7.3
have the same properties than the disturbance in the case of perfect model
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plant matching and are control oriented. Thus if the disturbance is white it
is possible to apply any whiteness test over the residuals (i.e. FDMV). The
only drawback of the structure presented in 7.3 is that it is not feasible for
unstable models, as the model P̂ is operated in open loop.

7.3 Model Validation on Iterative/Adaptive Schemes

The objective assumed by classical model validation approaches is to ascertain
the validity of the model. Consequently if a model is validated there are no
reasons to doubt of the suitability of the data set D, the a priori model infor-
mation set AM and the identification algorithm I. As discussed in Chapter 2,
model validation does not produce any new element of the control problem.
The only relationships which transform existing elements into new ones are
the identification and the control design. The mission of the rest of the rela-
tionships (e.g. model validation) are to check the validity among the elements.

Notwithstanding the model validation procedure plays a more active role
on adaptive schemes. The requirement of adding periodically new informa-
tion arises new requirements on the validation procedure beyond that the
“validated/invalidated” answer. The new requirements are:

• Is it possible to improve an existing model? Is the data informative
enough to attempt a new identification?

• How can the model be improved? Is the model order/structure rich
enough to capture the interesting features of the plant?

• How authoritative can be the controller designed on the basis of the new
model? Which is the validity frequency range of the model?

The above requirements for iterative control can not be provided by the
classical model validation approaches above introduced because:

• No indication on the possibility to improve an existing model. This
problem is tackled in (Lee et al., 1995) by the use of classical validation
methods (i.e. crosscorrelation test) together with the visual comparison
of two power spectrum.
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• In iterative identification and control approaches a low order model is
fitted to capture the frequency range of interest for control. Hence un-
dermodelling is always present. This fact makes it difficult to apply
traditional model validation schemes as the output of the validation pro-
cedure is a binary answer (i.e. validated/no validated) (Ljung, 1994).

• No indication on how to improve the model on the next iteration (i.e.
model order selection and/or input experiment design).

• No indication on the model validity range for control design (i.e. con-
troller bandwidth selection).

These limitations arise the need for a more informative validation pro-
cedure. In fact, the windsurfer approach to iterative control (see for exam-
ple (Albertos and Sala, 2002)), is enhanced with some new features introduced
in (Lee et al., 1995). Regarding model validation, two complementary vali-
dation methods are applied, a time domain method and a frequency domain
method. The time domain validation is a classical cross-correlation test be-
tween the residual and the filtered input. In fact no whiteness test could
be applied to the residual as they are generated following the structure of
figure 7.2. The frequency domain method for model validation is based on
comparing two power spectrum, the noise spectrum and the residual spec-
trum. When the residual spectrum is larger than the noise spectrum for some
frequency range, that means that the error cause is the undermodelling. Thus
the model is invalidated for that frequency range. Moreover the spectrum
comparison reveals frequency bands where high signal-to-noise ratio is present
and thus the data is suited to attempt a new identification procedure, at least
for some frequency band. The frequency domain information is obtained by
visual comparison of both spectrums.

The Control Oriented Frequency Dependent Model Validation algorithm
(COFDMV), that is the frequency domain validation procedure presented in
the preceding Chaptertogether with the residual generated by the structure
presented in figure 7.3, is of interest in iterative identification and control
schemes in general. The benefits of the COFDMV for the iterative identifica-
tion and control schemes hinge on the frequency domain information produced
by the algorithm and its control oriented nature. The COFDMV has the fol-
lowing features:
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• The validation algorithm permits to distinguish between the lack of in-
formation shown by imprecision due to noise and imprecision due to
undermodelling. Moreover the undermodelling severity can be assessed
in the frequency domain by the spectrum magnitude.

• The lack of information due to incompleteness can be also managed.
In fact, if the algorithm does not invalidate a model, it can be used
in order to design a higher bandwidth controller. However the new pair
model controller can be invalidated in the next step. Then the algorithm
indicates for what frequency range the current model is not valid and
more information about the system behavior around those frequencies
should be acquired.

Experiment i

Identification

Frequency

Validation

Control Design

i = i + 1

Input

Design
Model Order Selection

Bandwidth Selection

Figure 7.4: Guided actions by the COFDMV on iterative identification and
control schemes

The above information analysis permits to take the actions presented
schematically in figure 7.4. These are:

• Designing the input experiment for the next identification step. It is well
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known that the identified model quality is strongly dependent on the
experimental input applied to generate the data (Ljung, 1999) (Bitmead
et al., 1990). The experiment should contain high energy components
on the frequency range where the model is being invalidated if a new
identification aimed at improving the model at that frequency range is
pursued. Furthermore the COFDMV indicates for what frequency bands
the data contains meaningful information.

• Detecting model undermodelling and/or choosing model order. A higher
order model can be fitted when the current model is being invalidated.
It can be done even inside the current iteration step without the need of
performing a new experiment.

• Selecting the controller bandwidth on the controller design step. If the
COFDMV algorithm does not invalidate a model then it is feasible to
increase the model bandwidth. However the model could be invalidated
for the new designed controller. On the other hand if a model is invali-
dated at some frequency then, it is not sensible to increase the controller
bandwidth. If a higher bandwidth is desired further actions should be
performed (e.g. a new model identification).

7.4 Conclusions

In this chapter we have pointed out the importance of the final intended use
of the model when a validation is performed. The frequency dependent model
validation algorithm proposed is control oriented because the residuals are gen-
erated in a suitable way. Three distinct structures for generating the residuals
have been presented. In particular the structure plot on figure 7.3 generates
residuals which are firstly control oriented and secondly suited to be tested by
any whiteness test.

Finally the control oriented frequency dependent model validation algo-
rithm has been discussed on the basis of the iterative control. First the fre-
quency validation proposed on the windsurfer approach has been presented.
Compared with the COFDMV we can extract that the main feature of the
validation algorithm to be useful for iterative control hinges on the frequency
domain nature of the information produced. However the main advantage
of the COFDMV is that provides a qualitative assessment on the frequency
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validation/invalidation question by means of a probability measure. It fol-
lows that the benefits of the COFDMV for iterative control are the better
management of information flow of the control problem by:

• Designing the experimental input in order to obtain a informative data
set for some frequency band of interest (the band for what the model is
not validated).

• Increasing the model order.

• Selecting the allowable controller bandwidth with the model at hand.
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Chapter 8

Application Examples

The usefulness of the new frequency domain model validation approach is pre-
sented by means of three examples. The first one is a classical open loop
model validation. It shows the test when a model is invalidated. Moreover the
importance of the reference signal on model validation is stressed. Next the
COFDMV algorithm is applied to existing iterative identification and control
procedures. Thus at each step a new model is available, it is validated regarding
the current loop controller.

111
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8.1 Open Loop FDMV

The proposed validation procedure in the frequency domain is applied to a
stable plant in open loop (see figure 8.1).

r -

G

Ĝ

y

ŷ

ξOLd

Figure 8.1: Open Loop Model Validation Structure

The real plant G and the model Ĝ chosen to approximate it are:

G =
10

(s + 1)(s + 10)
, Ĝ =

1

(s + 1)

The Bode diagram comparing the real plant with the model is shown in fig-
ure 8.2.
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The experimental setup is as follows, the reference input r is a train of
sinusoids up to frequency 3 rad/sec, of amplitude A = 5. The perturbation
d is assumed to be white noise with σ=1. After the experiment the FMVD
algorithm is applied to the residuals ξOL, which are sampled at 1 second (i.e.
Ts = 1 sec). The selected sample time gives a Nyquist frequency around 3
rad/sec. The validation procedure results can be seen in figure 8.3. The model
Ĝ shows no invalidation signs up to 1.4 rad/sec. However for higher frequencies
the hypothesis test fails to validate the model. As a conclusion we can state
that, for the input applied, the model is correct for frequencies below to 1.4
rad/sec. It is worth to mention that although between 1.7 rad/sec and 2.3
rad/sec there are no spikes out of the confidence limit, a deeper examination
reveals that several consecutive spikes are abnormally high to belong a χ2

2

distribution. In order to detect this situations further probabilities should be
checked (e.g. the probability that two consecutive points of a χ2

2 distribution
be higher than some given value, etc.).
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Conclusions

As a conclusion, the model Ĝ can be accepted as a good approximation of
the plant G up to frequency 1.4 rad/sec. For higher frequencies the mismatch
between model and plant is present up to the input bandwidth (i.e. 3 rad/sec).
It should be mention that the result is input dependent. For example, for
a lower amplitude of the signal r no invalidation is detected. However the
results obtained up to now can serve as a guideline to design new input signals
with suitable frequency contents for new identification steps (e.g. high energy
around the frequencies were a significant error exists, that is between 1.4
rad/sec and 3 rad/sec).
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8.2 Iterative Control COFDMV

8.2.1 Example 1

The present example is the application of the proposed frequency domain
model validation to an Iterative Control Design. As baseline we take the
Iterative Control Design example presented in (Albertos and Sala, 2002) page
126, where a stable plant with high-frequency resonant modes is controlled
by successive plant identification (e.g. step response) and the subsequent
controller design (e.g. model matching and cancellation controller). We apply
to the successive models and controllers given in (Albertos and Sala, 2002)
our frequency domain model validation procedure. Furthermore we use the
structure shown in figure 8.4 to generate the residuals in a control oriented
way.

r

-

-
K G

Ĝ

yu

ŷ

ξCLsd

Figure 8.4: Closed Loop Model Validation for Stable Plants

The plant G(s) to be controlled is:

G(s) =
106(s + 1000)

(s2 + 0.002s + 10002)(s2 + 0.1s + 502)(s + 0.1)(s + 0.2)
(8.1)

The experimental setup is as follows. First a model of the plant Ĝ is
obtained by a step response identification. For this model successive controllers
K are designed by imposing more stringent reference models M . When the
closed loop step response is unsatisfactory, a new model is identified and the
controller design steps are repeated. The measurement noise d is white noise
with σ = 10−2. The reference input r is a train of sinusoids up to frequency
200 rad/sec.
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Figure 8.5: Bode Plot

First Iteration

The first identified model and the model reference used for controller design
are:

Ĝ0 =
20

(1 + 7.4s)2
, M01 =

0.52

(s + 0.5)2

The bode plot of the real plant G and the first model Ĝ0 is shown in figure 8.5.
The frequency domain validation is applied, giving a positive validation result,
as can be seen in the first plot of figure 8.6.

Second Iteration

In the example the model Ĝ0 is kept as a valid one and the performance is
pushed forward by a new, more stringent, reference model:

Ĝ0 =
20

(1 + 7.4s)2
, M02 =

32

(s + 3)2
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Figure 8.6: Normalized Magnitude Spectrum and Confidence Limits

The validation test invalidates the model for frequencies around 50 rad/sec
(see plot 2 of figure 8.6). This is due to the non modelled resonance peak as
can be seen in the bode diagram of figure 8.5.

Third Iteration

A new controller is designed after pushing even further the desired reference
model:

Ĝ0 =
20

(1 + 7.4s)2
, M03 =

52

(s + 5)2
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The invalidation of the model for frequencies around 50 rad/sec for this con-
troller is evident (plot 3 of figure 8.6). The new controller yields an unstable
closed loop.

Fourth Iteration

In (Albertos and Sala, 2002) a new model plant is identified due to the unac-
ceptable closed loop behaviour for the controller designed with the reference
model M03. The new identified plant captures the first resonance peak of the
plant.

Ĝ1 = Ĝ0
0.012 + 502

(s + 0.01 + 50i)(s + 0.01 − 50i)
,

M11 =
54

(s + 5)4

The model validation result shows that now, the model is validated for all the
frequency range covered by the input (plot 4 of figure 8.6).

Conclusions

In this example the proposed COFDMV algorithm has been presented to an
already developed example of iterative identification and control example. Al-
though the validation algorithm has not been used to modify any of the deci-
sions taken on the example, it is clear from the validation plots of figure 8.6
that the algorithm detects the model frequency range that is not an accurate
plant representation. At the first iteration, the pair controller-model is not in-
validated. However for the second iteration it can be seen that the same model
has problems in order to capture the plant behavior at around 50 rad/sec (i.e.
the first resonant peak) due to the new more demanding controller designed.
At this iteration no actions are taken although the model is clearly invalidated
for the mentioned frequency range. On the third step the model is also in-
validated around the frequency of 50 rad/sec but the normalized magnitude
spectrum is one order of magnitude greater due to an even more demanding
controller. Finally the model order is augmented with the resonant peak and
this new model together with the last designed controller is not invalidated.
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8.2.2 Example 2

This example deals also with the application of the COFDMV algorithm to
iterative control. As a baseline we take the example of (Gunnarsson and
Hjalmarsson, 1994). Now it is studied the performance of the COFDMV
under distinct model order conditions. In order to accomplish the goal three
independent iterative experiments are performed. First the whole iterative
procedure is performed assuming a first order model of the plant. Secondly
the same iterative procedure is repeated but now considering a second order
model. Finally the iterative procedure is performed starting with a first order
model but its order is increased when necessary. In the example it is shown not
only the effect of the model undermodelling but the effect of a wrong model
identification due to the use of feedback data (i.e. closed loop identification).

The plant to be controlled G(s) is assumed to be third order:

G(s) =
2

(s + 1)

229

(s2 + 30s + 229)
(8.2)

The control objective is to make the closed loop to behave as a desired
reference model, thus the controller specification is set by the model reference
bandwidth wB. The controller design is performed through pole placement.

When a first order model of the plant is assumed, the reference model
selected is:

G(s) =
a

(s + a)
(8.3)

which imposes a bandwidth wB = a. The designed controller is discrete
and designed by pole placement, thus the closed loop discrete poles are placed
at z = e−Tsa. The sample time is Ts = 0.04sec.

If a second order model is assumed then the reference model is given by:

G(s) =
a2

(s + a)2
(8.4)

which has a bandwidth of wB = a
√√

2 − 1. The rest of required poles are
placed at wB = a. As a result the discrete poles are placed at z = e−TswB .

The experimental layout is presented in figure 8.7. The reference r is
white noise with variance σ2 = 1. The reference r is filtered through a second
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order Butterworth filter with bandwidth equal to wB (i.e. the closed loop
bandwidth selected for the current iteration), which gives the signal r′. The
disturbance v is assumed to be white noise with variance σ2 = 0.1. The plant
is G, the current identified model is Ĝi and the current controller is Ki. The
simulation is performed in discrete time.

r r′
u v ξ

y
F Ki G

Ĝi
-

-

Figure 8.7: Experiment layout

The iterative procedure is as follows. At each iteration i, a new model Ĝi

is identified using output error models. The new controller Ki is designed on
the basis of the new identified model Ĝi and the chosen closed loop bandwidth
is wBi = wBi−1 +1, that is the former closed loop bandwidth wBi−1 increased
in 1 rad/sec.

First order model

In the first experiment we assume a first order model of the plant. As a result
the first order reference model is accordingly selected. The desired closed loop
bandwidth starts with the value of wB = 1 rad/sec and it is increased in 1
rad/sec at each new iteration. The validation results from the COFDMV are
presented in figure 8.8.

The first pair model-controller, Ĝ1(z)-K1(z) is considered to be validated
despite three frequency components cross the confidence limit. The rationale
of this decision lies in two facts:

• The number of frequency components k is equal to 625. The false alarm
(type I error) is equal to 0.5%. Thus it follows that from a realization of
625 samples following a χ2

2 distribution it is normal that approximately
3 of the samples fall outside the limit.
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• The invalidating spikes do not show a pattern or a frequency range in
which the model is not accurate.

On the other hand, the second pair model-controller Ĝ2(z)-K2(z) clearly
shows that a higher number of spikes, and of higher magnitude, are invalidating
the model between 5 rad/sec and 10 rad/sec.

The third pair model-controller Ĝ3(z)-K3(z) shows the same behavior al-
though the spikes magnitude doubles the former one. Moreover it appears a
D.C. Fourier coefficient (i.e. a spike at frequency 0 rad/sec).

Finally the pair model-controller Ĝ4(z)-K4(z) is invalidated and the spikes
size are increased one order of magnitude. Following with the same framework
provides an unstable controller for higher bandwidths wB.
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Figure 8.8: Validation first order model
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Second order model

In the second experiment the assumed model order is second order. It is
expected that the undermodelling problems are alleviated. Again, the desired
closed loop bandwidth starts with the value of wB = 1 rad/sec and it is
increased in 1 rad/sec at each new iteration. The validation results from the
COFDMV for this experiment are presented in figure 8.9.

The first pair model-controller, Ĝ1(z)-K1(z) is validated as the same dis-
cussion of the preceding section applies here.

Surprisingly, the second pair model-controller Ĝ2(z)-K2(z) not only is in-
validated but also shows a worse invalidation picture that its first order coun-
terpart (see figure 8.8). In fact the spikes are greater and the frequency range
of invalidation affects not only low frequencies (i.e. 5 rad/sec) but medium
frequencies (i.e. 18 rad/sec). The cause is the well known problem of model
identification from closed loop data (Ljung, 1999).

The third pair model-controller Ĝ3(z)-K3(z) although shows invalidation
signs around 5-10 rad/sec the spikes magnitude is not dramatic. The same
result is obtained for the fourth pair model-controller Ĝ4(z)-K4(z) although
the spikes magnitude and the invalidation frequency range is increased slightly.
However in both cases the invalidation results for bandwidth wB = 3 rad/sec
and wB = 4 rad/sec are much better than with a first order model.

Variable order model

Finally the same procedure is repeated starting with a first order model and in-
creasing the order to a second order one when the first invalidation is achieved.
In figure 8.10 the validation tests are shown. The first pair model-controller
that results invalidated is the second one Ĝ2(z)-K2(z) (i.e. first order model
plus desired bandwidth wB = 2 rad/sec). Then the third model to be iden-
tified is selected to be second order. As shown in 8.10 the third pair model-
controller Ĝ3(z)-K3(z) can be considered validated. The third and fourth
pairs model-controller behave similarly than the ones discussed in the preced-
ing section where a second model order was chosen.
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Figure 8.9: Validation second order model

Conclusions

In this example we have applied the COFDMV algorithm to an iterative identi-
fication and control schemes considering distinct undermodelling degrees. The
COFDMV is a suitable tool to detect the undermodelling problems. Moreover
it is possible to detect also “bad” models due to other problem sources such
as lack of identification capacity due to closed loop data.

The example also points out the dependence of the necessary model order
with the closed loop specifications, showing the fact that increasing the model
order does not necessary implies and increase of the model accuracy. Then
the algorithm helps to decide when to increase the model order.
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Chapter 9

Conclusions and Perspectives

9.1 Contributions and Conclusions

The thesis presents the following contributions:

• The control problem has been formalized within the information theoretic
framework. The goal has been accomplished by:

– Defining the control problem from a holistic point of view. That
means that the problem has been defined taking in consideration
all the possible constitutive elements and their relationships. As
a result the elements have been dissected and their relationships
related with existing control theory areas.

– Reviewing the information approaches to control theory. It is con-
cluded that although the information concept is a fundamental one
on control theory, it is by no means a well defined concept.

The formalization is based on very general assumptions. The advan-
tage of this approach lies in the generality of the results. In fact the
results are independent of the algorithm or the mathematical charac-
terization of the problem (e.g. linear vs non-linear models). In order
to derive more detailed relations, lower level mathematical assumptions
are required. The proposed framework forms the conceptual basis and
provides guidelines in which derive these schemes.

127
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• On the basis of the information formalization of the control problem, re-
lations between the information content of the elements are established.
Thus theorems are proved that show necessary conditions for an informa-
tion increase of certain element on the basis of the information variation
of other elements. These conditions are fundamental ones affecting any
algorithm and any mathematical formalization of the control problem.

• The concept of adaptive control is reviewed and a new definition that
amalgamates all the concepts is presented. It serves to present the basis
of adaptive control which is i) acquiring information, ii) modifying the
system on the basis of the new information iii) the modification presents
a beneficial result over the unchanged system. The definition is general
and it does not rely on any technicalities.

• Two formalizations of adaptive control, classical adaptive control and
iterative control are studied under the proposed information theoretic
framework. It serves to compare their similarities and differences. Thus
the information theoretic framework proposed is useful for comparing
distinct adaptive schemes as it provides a baseline for comparison. It
follows from the results that iterative control manages the information
to be used in the control design procedure in a much richer way. In
fact more questions and validation tests are performed before new in-
formation is acquired and used to modify the system. On the contrary
classical adaptive control manages information in a more restricted way
as no questions about the quality or necessity of information are arisen.
However it is seen that neither classical adaptive control nor iterative
control manage the information in a monotonic way. That means that
although both schemes are able to incorporate new information to the
problem, former information is discarded, so at each time step there is
no guarantee that the information amount increases.

• A new model validation algorithm COFDMV is developed. The novelty of
the algorithm is that it goes further than just a “validated/invalidated”
result as the model validation is frequency dependent, thus a model is
neither validated nor invalidated but the model frequency ranges validity.
Moreover the algorithm helps on the management of information in the
control problem by i) designing the experimental energy content in order
to obtain a good model where the current one is invalidated, ii) helping
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in the selection of the model order, iii) deciding the expected controller
bandwidth that a model can tolerate.

The algorithm, due to its control oriented nature, results to be suited
for iterative control schemes in which i) during the whole process several
models are identified and ii) the models always suffer from undermod-
elling.

9.2 Open Research Areas

• The study of the control design problem by means of information con-
cepts it is by no means closed. The information approach can give answer
to really important questions for control theoreticians and control prac-
titioners. In order to answer questions such as i) when it is necessary to
perform an new identification, ii) what are the benefits expected for the
new identification, etc., it is necessary to apply the presented framework
together with more lower level assumptions. Thus the general abstractly
presented concepts can be posed in a more detailed way assuming more
mathematical formalizations and assumptions. It is expected that posing
the presented abstract framework in a more specific basis will provide
more detailed answers regarding the information flow management.

• One of the results of the thesis has been to notice the lack of information
monotonicity of adaptive control schemes in general. It is interesting the
problem of designing an adaptive control scheme which is monotonic.
The implications of monotonicity of information over the performance
of the scheme should be addressed in order to ascertain the necessity of
information monotonicity.

In this thesis a methodology to obtain a monotonic information itera-
tive identification and control procedure has been envisaged. The idea
is to form the controller joining in parallel distinct controllers which
have been designed from models which are good for distinct frequency
ranges. In order to minimize the interaction among controllers, these are
augmented with appropriate band-pass filters. The idea is that each par-
ticular controller feeds back only those frequencies for which the model
that was used for its design is good. The effect of the filters on the
overall controller is currently under investigation.
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• The Control Oriented Frequency Dependent Control Algorithm is suited
only for stable models due to the structure used to generate the residual.
The extension of the COFDMV for unstable plant models would provide
a greater applicability. Currently two possible ways of accomplishing this
point are under investigation. The first approach tries to whiten a resid-
ual which has been generated by a white noise filtered by a system. The
idea is to be able to transform the residual in order to be tractable by
the current COFDMV algorithm. The second approach is more involved
and tries to developed a new frequency dependent model validation al-
gorithm by translating to the frequency domain a cross-correlation time
domain model validation test. In this case the whiteness of the residual
is no longer required.

9.3 Publications

The main articles on international conferences the thesis has generated are:

• P. Balaguer, R. Vilanova and R. Moreno. “The Control Problem: A
Framework for Holistic Design”. 14th IEEE Mediterranean Con-
ference on Control and Automation, 2006.

• P. Balaguer and R. Vilanova. “Is Iterative Control Wasting In-
formation?”. 6th IEEE International Conference on Control and Au-
tomation, 2007.

• P. Balaguer and R. Vilanova. “Frequency Dependent Approach to
Model Validation”. 6th Asian Control Conference, 2006.

• P. Balaguer, R. Vilanova and R. Moreno. “Control Oriented Fre-
quency Dependent Model Validation”. International Control Con-
ference UK, 2006.

• P. Balaguer and R. Vilanova. “Quality Assessment of Models for
Iterative/Adaptive Control”. 45th IEEE Conference on Decision
and Control, 2006.

The thesis also has generated the following journal papers:
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• P. Balaguer and R. Vilanova. “Information Characterization of
the Control Problem. Part I: The Framework”. International
Journal of General Systems, 2007. (submitted)

• P. Balaguer and R. Vilanova. “Information Characterization of
the Control Problem. Part II: Analysis of Adaptive Control
Schemes”. International Journal of General Systems, 2007. (submit-
ted)

• P. Balaguer and R. Vilanova. “Model Validation on Adaptive Con-
trol: A Frequency Dependent Approach”. International Journal
of Control, 2007. (submitted)
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