

A *Yersinia pestis* vaccine development to ensure the safety of humankind

Gerard López Lacalle

Grau Microbiologia Universitat Autònoma de Barcelona

BACKGROUND

Although it is difficult to ascertain, it is estimated that throughout history have died over **200 million** people because of plague. That is because without an effective treatment, 50–60% of cases of bubonic plague are fatal, while untreated septicaemic and pneumonic plague are **invariably fatal**. [1]

Plague has been used as a weapon many times throughout history, like in 1347 when the Mongols catapulted bodies of infested people into Caffa or during the Second World War when Japan sent rice carrying *Yersinia pestis*.

Yet the most disturbing precedent is the antibiotic-resistant *Yersinia pestis* that the Russians tried to develop. [2]

Nowadays plague can be treated with **streptomycin** or **gentamicin** reducing mortality to only 1-5% of those infected. However, an efficient vaccine that develops protective immune response is lacked. [1][3]

That raises the question of what would happen if these antibiotics didn't work?

Figure 1. *Nicotiana benthamiana* infiltrated with the cultures of *Agrobacterium*



Figure 4. Survival of vaccinated Hartley guinea pigs to aerosolized *Y. pestis* [4].

OBJECTIVES

- Create a subcutaneous vaccine capable of inducing not only humoral but also cellular response.
- Try some different adjuvants and establish which one is the fittest for human vaccination.
- Use viral vectors for expression of recombinant F1 and V proteins in leaves of *N. benthamiana*, to prove that is a rapid, cheap and efficient expression system.
- Develop a vaccine that can protect humankind in case of a terrorist attack with an antibiotic-resistant *Yersinia pestis*.

WORKING PLAN

It has been decided to use a recently developed transfection technology that relies on *Agrobacterium* as an infective systemic agent that delivers deconstructed tobacco mosaic virus (TMV) viral replicons. This improved process is being used to simultaneously start transient gene amplification and high-level expression in all mature leaves of a plant. This technology, combines advantages of three biological systems: vector efficiency and efficient systemic DNA delivery of *Agrobacterium*, speed and expression of a plant RNA virus, as well as low production costs of a plant. [4]

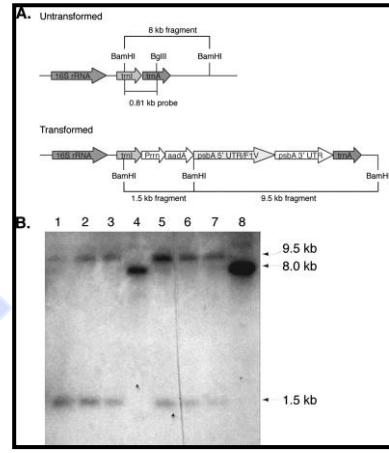
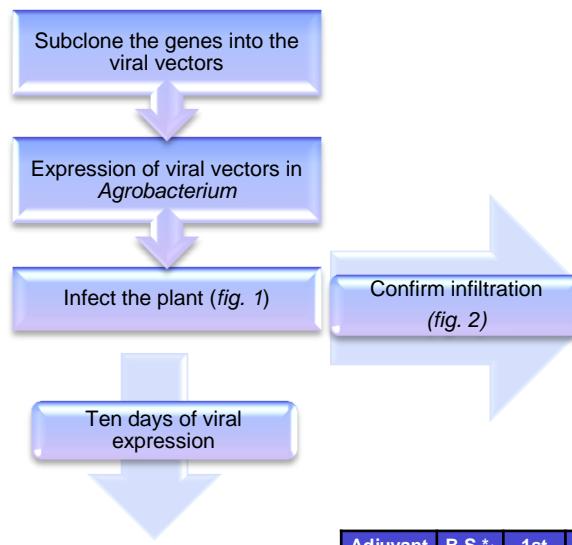



Figure 2.
A) Fragments of DNA from Untransformed and Transformed plants
B) Southern blot analysis of transgenic lines. Transformed with the integration (9.5kb). And without the integration (8kb) [5].

Adjuvant	B.S.* ₁	1st Shot	B.S.	2nd Shot	B.S.	3rd Shot	B.S.	Trial* ₂
Aluminum Hydroxide								
MF59	Day 0		Day 0	Day 15	Day 30	Day 45	Day 60	Day 75
QS-21	Before first dose							
IL-12								
Gram-negative flagellin								
No adjuvant								

Figure 3. Vaccines with the corresponding adjuvant will be administrated to 8 guinea pigs each.
*1: Blood sample
*2: Trial with lethal dose 50

EXPECTED RESULTS AND BENEFITS

- It can be expected that the control group will have fewer antibodies in serum and therefore it is also expected a higher rate of deaths.
- It is expected a lower response from Aluminium hydroxide.
- A high level of cellular response with IL-12, QS-21 and MF59 adjuvants.
- Better results than in other studies (fig. 4).
- Determine and optimize the best suited adjuvants for the vaccine.
- Identify flaws in the current system of vaccination
- Provide safety to population in case of a bioterrorist attack.

REFERENCES

- [1] D. T. Dennis, G. L. Campbell. *Harrison Principios de Medicina Interna* (17a edición). Peste y otras infecciones por *Yersinia*. McGraw-Hill Education. 2010. Cap. 152.
- [2] Kristina Hale. *Russian and American use of Yersinia pestis as a Biological Weapon*. [online] 2005.
- [3] J.D. Poland and D. T. Dennis. Plague Manual Epidemiology, Distribution, Surveillance and Control. February 1999. World Health Organization (WHO).
- [4] L. Santi, A. Giritch, C. J. Roy, S. Marillonnet, V. Klimiyuk, Y. Gleba, R. Webb, C. J. Arntzen, and H. S. Mason. PNAS. 2006. Vol. 103 no. 4 (861-866)
- [5] P. A. Arlen, M. Singleton, J. J. Adamovicz, Y. Ding, A. Semirogi, H. Daniell. Infection and Immunity. American Society for Microbiology. Aug. 2008. (p. 3640-3650)