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Resumen del Proyecto

Castellano: Se proponen dos métodos para resolver el problema de Secuencia de
Aterrizaje de Aviones. En este problema el controlador debe asignar un tiempo de
aterrizaje y una pista a cada avion que entran en el radar, minimizando los costes a la
vez que se respetan un numero de restricciones operacionales. Los costes asociados
con los tiempos de aterrizaje de aviones varian segun el tiempo de aterrizaje asignado.
Las restricciones hacen referencia a la separacion que tiene que haber entre aterrizajes
consecutivos, separacion que depende del tipo de avién, y a la ocupacion de pista.
Dado un nimero de aviones en un tiempo determinado, se proponen dos métodos
basados en Algoritmos Evolutivos Multi-Objetivo (MOEAS). Se comparan los dos

algoritmos y la calidad de las soluciones obtenidas.

Catalan: Es proposen dos métodes per resoldre el problema de seqiiencia d’aterratges
d’avions. En aquest problema, el controlador ha d’assignar un temps d’aterratge y una
pista a cada avidé que entra dins el rang del radar, minimitzant els costos i alhora
respectant un nombre restriccions. Els costos associats amb els temps d’aterratge
d’avions varien segons el temps d’aterratge assignat. Les restriccions fan referéncia a
la separacié que ha d’haver entre aterratges consecutius, separacio que depen dels tipus
d’avio, 1 a ’ocupacié de pista. Donat un nombre d’avions determinat, es proposen dos
métodes basat en Algoritmes Evolutius Multi-Objectiu (MOEAS). Es comparen els dos

algoritmes i la qualitat de les solucions obtingudes.

Inglés: Two approaches are described for solving the Aircraft Landing Scheduling
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Problem. In this problem, the air traffic controller must assign a landing time for each
aircraft which enters the radar range, and must attempt to minimize cost while
considering a number of constrains and restrictions. The costs associated with aircraft
landing times varying from the preferred landing time. The constrains are concerned
with runway occupancy and the separation distance between two consecutive landing
aircrafts, which depends on the type of aircraft. Given a certain number of aircrafts,
two approaches are proposed based on Multi-Objective Evolutionay Algorithms

(MOEAS). Both algorithms are compared and also the quality of the solutions.
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1. Introduccion

1.1.  Interés y motivacion

La capacidad de los aeropuertos (y por tanto de pistas de aterrizaje y stands) se esta
convirtiendo cada vez mas en un factor que limita la capacidad de cubrir la creciente demanda
de vuelos. Esto conlleva retrasos tanto en el trafico aéreo como en el de tierra. Estos retrasos,
para la mayoria de aeropuertos Europeos y de los Estados Unidos, representan de media 15
minutos por avion. Como la construccion de nuevos aeropuertos no es una solucion a corto
plazo, se han realizado varias investigaciones de como hacer un uso méas eficiente de los
recursos disponibles en el aeropuerto, en general, y de las pistas disponibles, respetando las
restricciones de seguridad, en particular.

Se ha demostrado que el problema de encontrar una secuencia de aterrizaje 6ptima, en el que se
tenga en cuenta que la separacion entre aterrizajes depende del tipo de avion, es un problema
NP-hard; es decir, un problema que no tiene solucion en un tiempo de computo polinomial.

El objetivo de este proyecto es analizar el problema de secuencia de aterrizaje de aviones y
proponer una metodologia que permita obtener buenas soluciones, con un tiempo de

computacion razonable.
1.2.  Objetivos

Este proyecto tiene doble finalidad:
(i) Analizar el problema de optimizacion de secuencia de aterrizaje de aviones
(Aircraft Landing Scheduling Problem — ALSP)
(i) Proponer una metodologia que permita obtener un conjunto de soluciones lo méas
adecuado posible.
Estos objetivos se dividen en subobjetivos mas especificos:
(i) Descripcion del entorno del problema.
(i) Revision de trabajos existentes relacionados con el problema.
(ili)  Analizar los métodos existentes que tratan de dar solucion al problema.
(iv) Plantear un método de resolucidn del problema.
(V) Analizar los resultados obtenidos.

1.3.  Novedad

Para resolver el problema de secuencia de aterrizaje de aviones se han utilizado algoritmos
basados en la eficiencia Pareto, el NSGA y NSGA-II. A diferencia de otros métodos utilizados

para resolver el problema, el NSGA y NSGA-II resuelven el problema multi-objetivo planteado
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en un tiempo computacional razonable, lo que permite obtener soluciones buenas y de forma

rapida.

1.4, Valor practico

Los beneficios del uso practico de los algoritmos NSGA y NSGA-II para la resolucion del
problema de secuencia de aterrizaje son:

- Bajo tiempo de ejecucion de los algoritmos.

- Consideracion de multiples objetivos.

- Los tiempos de separacion de seguridad vienen dados segun el tipo de avion.

- No ofrece una Unica solucidn, sino que ofrece un conjunto de soluciones validas.

1.5. Metodologia i organizacion del proyecto

Para analizar el problema, para después buscar una solucion, es necesario documentarse sobre el
entorno donde se produce el problema. En este caso, en el apartado “Aterrizaje de aviones” se
explica el proceso de aterrizaje de aviones y sus implicaciones.

Una vez estudiado el entorno se busca informacién sobre el problema a tratar y el estado de arte
de éste. En el apartado “Planteamiento del problema”, se define el problema y se plantea de
forma matematica.

Cuando se tiene toda la informacién tedrica necesaria del problema se aborda la parte mas
técnica en la que se analiza los métodos existentes que tratan de dar solucion al problema
planteado. Esta clasificacion de métodos se realiza en el apartado “Taxonomia de métodos de
secuencia de aterrizaje de aviones y software”.

El problema que se trata es multi-objetivo, por lo que también es necesario analizar los métodos
multi-objetivo existentes para luego desarrollar dos de ellos. Esto se realiza en los apartados
“Analisis de métodos multi-objetivo existentes” y “Desarrollo de métodos de secuencia de
aterrizaje”, respectivamente.

Una vez implementado un modelo que resuelva el problema, se verifique y valide; se analizan
los resultados, en el apartado “Experimentos numéricos y resultados”.

Finalmente, se explican las conclusiones referentes a la resolucion del problema.

-12 -
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2. Aterrizaje de aviones

La capacidad de pista de un aeropuerto es impredecible y esta sujeta a cambios durante las
operaciones, principalmente por las condiciones temporales y de visibilidad. La capacidad de
pista para aterrizaje depende de la categoria del avién y la secuencia de aterrizaje. Esto es
debido a que la separacion requerida entre aterrizajes consecutivos depende de la categoria de

los aviones. La clasificacion de aviones generalmente se basa su peso.

Los aviones se aproximan al aeropuerto guiados por los controladores de aproximacion en un
intervalo de tiempo inferior a 30 minutos antes del aterrizaje. A partir de este momento, el
controlador debe crear una flujo de aviones hacia la pista. Debido al tiempo limitado disponible
y la alta carga de trabajo de los controladores, dificilmente ninglin cambio en la secuencia se

puede hacer a esas alturas.

El aterrizaje es la fase final de un vuelo, que se define como el proceso que realiza una aeronave
que culmina con el contacto del aparato con la tierra. A continuacion se detallan los factores
influyentes en el aterrizaje, las etapas del aterrizaje y los agentes involucrados desde que el

avion aterriza hasta que vuelve a partir.

2.1.  Factores implicados en el aterrizaje

En el aterrizaje hay tres factores influyentes que son: el factor tierra, el factor avion y el factor

aire.

El factor tierra consiste en: la comunicacion con los controladores de trafico aéreo (ATC) para
reportarse y solicitar autorizacion de aterrizaje, tener un buen funcionamiento de las
radioayudas ILS (Instrument Lansing System) y VOR (VHF Omnidirectional Radio Range) para

dar soporte en el aterrizaje y el estado de la pista e iluminacion.

El factor avion, consiste en efectuar todo el procedimiento de maniobras necesarias para lograr
una reduccién en la velocidad bajando la potencia de los motores y accionando las superficies
de control de hipersustentacion: flaps y spoilers, las cuales provocaran que la fuerza
de sustentacion aumente, y las de profundidad: elevadores otimon de profundidad, para
mantener un descenso controlado; tener los trenes de aterrizaje listos y seguir la orientacion del
ATC.

El factor aire que hace referencia a las condiciones en las que el avién realizara su aproximacion

y aterrizaje.

-13-
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2.2. Etapas del aterrizaje

En la maniobra de aterrizaje se distinguen cinco etapas:

\VIENTO (5)
/ | Carr&r‘afur

= (4)
.' Aterrlza]e

é}?gg Recnglda
Tra mo base \

Ap rmﬂmac final

llustracion 2.1. Fases del aterrizaje

(1) Tramo base. En esta etapa se debe decidir a qué altitud y a qué distancia debe
comenzar el descenso y en qué punto se debe virar para estar alineado con el eje de
la pista. Estas decisiones influenciaran la calidad del aterrizaje.

(2) Aproximacion final. En esta etapa el avidn desciende alineada con el eje de la pista.
Tiene como objetivos facilitar el contacto con la pista que se realiza en el primer
tercio de pista en la cual velocidad no suponga un riesgo de pérdida y proporcione
un minimo de sustentacion y velocidad respecto al suelo antes de contactar.

(3) Tramo de recogida. En esta fase el avién hace la transicion entre las fases de
aproximacion y aterrizaje. Comienza cuando el avién se encuentra entre 15 y 20
pies por encima del suelo.

(4) Aterrizaje. Este es el punto donde las ruedas toman contacto con la superficie de
aterrizaje y donde todo el peso del avion se transfiere de las alas al tren de
aterrizaje.

(5) Carrera posterior. El aterrizaje no concluye hasta que el avion no se frene hasta la
velocidad normal de rodadura, o hasta que se detenga totalmente en una zona de

parada segura.

2.3.  Agentes involucrados en el aterrizaje

En el proceso de aterrizaje del avion y su posterior salida hay tres agentes mas, a parte del
avion, involucrados: Controlador del trafico aéreo, las ayudas al atraque, y el handling.

-14 -
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El Controlador de trafico aéreo es aquella persona encargada de dirigir el transito de aeronaves
en el espacio aéreo y los aeropuertos, de manera segura, ordenada y rapida. En particular, el
controlador debe asignar un tiempo de aterrizaje y una pista, si hay mas de una pista en uso. Su
labor es complicada, debido al denso transito de aviones, a los posibles cambios meteorol6gicos

y a otros imprevistos.

Para mantener la seguridad, en cuanto a separacion entre aviones, los ATC aplican normas
dispuestas y recomendaciones entregadas por la Organizacién de Aviacion Civil Internacional

(OACI), Federal Aviation Administration (FAA) y demas autoridades aeronduticas de cada pais.

Normalmente, el grupo de la torre de control lo constituyen personas especializadas en una tarea
concreta; por ejemplo, el encargado del radar, el controlador de pistas de aterrizaje y despegue
(Local Control), el controlador encargado de entregar autorizaciones a las aeronaves que salen
bajo reglas de vuelo por instrumentos (Clearance Delivery), el controlador encargado de
autorizaciones en Calles de Rodaje (TWY) y plataforma, (Ground Control) o el supervisor

general.

Desde que la aeronave abandona la pista hasta su posicion de estacionamiento, su trayectoria se
acomoda a lo prescrito desde la torre: salida rapida que debe utilizar, detenciones en cruces,
accesos a rodaduras paralelas y plataformas designadas y posicion final prescrita. A lo largo de
este camino existe una sefializacion horizontal — marcas en el suelo, balizas y luces — y vertical,
carteles. Sobre la plataforma de estacionamiento, ademas, las trayectorias de entrada a la
posicidn, vienen sefialadas en el pavimento mediante una linea sobre la que debe rodar el tren
delantero. En condiciones de baja visibilidad, sefializacion incompleta, menor conocimiento del
campo de vuelo por la tripulacién u otras causas, se utiliza el servicio de coche guia (followme),
que recibe a la aeronave al final de la calle de salida y la conduce hasta la posicion. La
aproximacion final a la posicién de estacionamiento se realiza mediante servicio de sefialero u
otra alternativa como los sistemas de guia de atraque y los sistemas de ayuda a la guia en

atraque. Una vez la aeronave este en posicion se detendra y calzara.

Una vez detenida y calzada la aeronave la asistencia en tierra (Ground Handling) prepara a esta
para su posterior partida. La asistencia en tierra incluye todos los servicios de que es provista

una aeronave desde que aterriza hasta su posterior partida. Los servicios ofrecidos se dividen en:

- Servicio a cabina, incluye todos los servicios dirigidos a dar comodidad a los pasajeros
en la cabina del avién asi como de la limpieza de la cabina misma.

- Catering, es el abastecimiento de alimentos y bebidas para los pasajeros y tripulacion.

- Servicio en rampa, son los servicios en la plataforma de operaciones de la aeronave y
también los procesos necesarios para llevar a cabo la carga y descarga de correo,

equipaje y demas mercancias a transportar.
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- Combustible, servicio de repostaje de combustible.

- Servicios de mantenimiento e ingenieria, incluye todos procesos necesarios para
asegurar y mantener la operatividad de las aeronaves. Por su naturaleza es uno de los
procesos mas delicados en el manejo de una aeronave.

- Servicios de operaciones de campo, es la instancia que coordina a todos los servicios

anteriores con el resto de la operacion de la aerolinea en el aeropuerto.

2.4. Costes asociados a los retrasos de los aviones

Dentro de las operaciones que se llevan a cabo en el aeropuerto hay ciertas que son criticas, en
este caso el aterrizaje y despegue de aviones es una de ellas debido a la limitacién de la pista,
que es el cuello de botella durante las operaciones del aeropuerto. Por ejemplo, el aeropuerto
London Heathrow, uno de los méas concurridos a nivel mundial, Gnicamente tiene dos pistas.
Cuando el nimero de aviones aproximandose excede la capacidad del aeropuerto algunos de
estos aviones no pueden aterrizar en el tiempo “exacto” previsto. Estos retrasos afectan a

compafiias aéreas, pasajeros, aeropuerto, slots y compafiias de handling.

Aproximadamente el 35% de los retrasos se producen en las fases de pista de salida y entrada.
El problema principal de los retrasos es la propagacion de éstos que afecta a otros agentes del
aeropuerto y a su actividad. Los factores principales causantes de retrasos son: la meteorologia,
la tripulacion, el mantenimiento de los aviones, la congestion aérea, la navegacion aérea, los

propios pasajeros Yy las medidas de seguridad.

De estos factores, la navegacion aérea causa el 12% de los retrasos. Los retrasos provocados por
la navegacion aérea hacen referencia a todo aquello implicado en el aterrizaje y despegue de

aviones que vienen regidos por las 6rdenes y autorizaciones de los controladores aéreos.

Con los retrasos se asocian unos costes que afectan a los diferentes agentes que intervienen. Este
coste afecta econémicamente a las compafiias aéreas, pasajeros, aeropuertos y comunidades y

también tiene un coste para las secciones de politica, gestion y control de los aeropuertos.

Para las compafiias aéreas los costes derivados de los retrasos en las fases de despegue y
aterrizaje es principalmente el desperdicio de fuel de cada avion que debe realizar en holding o

el gasto de fuel al tener que volar mas rapido que su velocidad economica.

El tiempo de aterrizaje debe estar comprendido dentro de una predeterminada ventana temporal,
limitada por un tiempo minimo y un tiempo méaximo de aterrizaje. Dichas ventanas temporales

son diferentes para diferentes aviones. El tiempo minimo representa el tiempo requerido si el
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avion fuese a su maxima velocidad y el tiempo maximo representa la velocidad mas econémica

a nivel de fuel dentro del maximo tiempo permitido.

La velocidad econémica de un avion, hace referencia a la velocidad de crucero, ésta varia
dependiendo del tipo de avién. El tiempo “objetivo” de aterrizaje de una avion es el tiempo al
que deberia aterrizar si tuviera que aterrizar a velocidad de crucero. Si el ATC requiere que el
avion disminuya, mantenga o acelere la velocidad, se incurrira un coste. La Figura 2.1.

representa la variacion del coste de aterrizaje en la ventana temporal del avion.

Cost

Earliest Target Latest Time

Gréfico 2.1. Variacion en el coste de penalizacion para un avion segln el tipo y cantidad de retraso

Dependiendo de la cantidad de retraso, pueden darse casos en los que un nimero de pasajeros
con un vuelo de conexidn lo pierdan, que la tripulacion del avion tuviera que realizar otro
vuelo y éste tiene que ser reprogramado, etc. No Unicamente existen los costes de penalizacion
sino que hay muchos otros posibles costes derivados de los retrasos como reprogramaciones de
tripulacion de tierra, pagos por tiempo extra a la tripulacion, reprogramacion de vuelos, costes
de handling, etc. Todos estos retrasos pueden propagarse a otros vuelos, pasajeros, compafiias

de handling y slots.

Por lo tanto, resolver el problema de secuencia de aterrizaje (Aircraft Landing Scheduling
Problem - ALSP), es un problema de asignacion a cada avion un tiempo de aterrizaje y pista
Optimos de tal forma que se minimice el coste total ya que es un area importante para

operaciones de trafico aéreo.

2.5. Conclusiones

Con el aumento del nimero de vuelos de las Gltimas décadas, y por ende enorme aumento de los
pasajeros transportados cada dia a nivel mundial, debe desarrollarse una coordinacion para que
los aviones puedan despegar y aterrizar en el nimero limitado de pistas de las que dispone el

aeropuerto respetando las ventanas temporales y las distancias de seguridad de cada avién.
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El aeropuerto emite un documento en el que se presentan las operaciones diarias previstas,
suministrando las llegadas y salidas de los aviones durante el dia. EI problema reside en que los
vuelos pueden estar sujetos a varios contratiempos y problemas imprevistos (fallos mecanicos,
combustible contaminado o muchos otros posibles eventos) que pueden retrasar el vuelo u
obligar a un vuelo atomar una ruta distinta o que deba realizar un aterrizaje de emergencia. Por
lo tanto realizar programaciones con mucha antelacion no tiene sentido ya que la volatilidad de

ésta es elevada.

Como solucion se pueden utilizar los datos que proporciona el radar de control de trafico aéreo.
Al entrar en el rango del radar de control de trafico aéreo del aeropuerto el avion solicita que se
le asigne un tiempo de aterrizaje y una pista, en el caso de que el aeropuerto disponga de mas de
una pista. Por esta razén, es importante desarrollar herramientas que sean capaces de satisfacer

las necesidades

El problema de la secuencia de aterrizaje de aviones ALSP es complicado de resolver. Este
puede ser visto como un problema de Job Machine Scheduling con en el que los tiempo de
procesado y la secuencia son dependientes. EI Job Machine Scheduling es un problema
clasificado como NP-hard, de ahi que el problema del secuenciado de aterrizaje de aviones se
considere NP-hard. El apartado “Taxonomia de Métodos de Secuencia de Aterrizaje de Aviones

y Software” se centra en los métodos existentes utilizados para resolver este tipo de problemas.
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3. Planteamiento del problema

Al entrar en el rango del radar de control de trafico de aéreo del aeropuerto el avion solicita que
se le asigne un tiempo de aterrizaje y una pista, en el caso de que el aeropuerto disponga de mas

de una pista.

El tiempo de aterrizaje que se le asigna debe estar comprendido dentro de una ventana temporal
especifica, limitada por un tiempo early de llegada, que representa el tiempo al que puede llegar
el avidn si va a su maxima velocidad; y por el tiempo latest de llegada, que representa el tiempo

maximo al que puede llegar un avion si vuela a la velocidad mas econémica a nivel de fuel.

Existe también la necesidad de imponer que entre dos aviones que aterrizan consecutivos se
cumpla una distancia minima de seguridad. Esta distancia dependera del tipo de aviones que

vayan a aterrizar.

El problema consiste en secuenciar los aviones que entren en el alcance del radar de control de
trafico aéreo de manera que el tiempo de aterrizaje de los aviones, en el mayor nimero de los
casos posibles, esté comprendido dentro de la ventana temporal, y que el tiempo real de
aterrizaje sea lo mas proximo al tiempo programado de aterrizaje, teniendo en cuenta el

cumplimiento de las restricciones de separacion de seguridad entre los aviones.

3.1. Notacion

A conjunto de aviones

E; tiempo minimo de aterrizaje del avion i

T tiempo programado de aterrizaje del avion i

L tiempo méaximo de aterrizaje del avion i

R numero de pistas de aterrizaje

Sij separacion entre aviones consecutivos si i aterriza antes que j en la misma pista.
Sij separacion entre aviones consecutivos si i aterriza antes que j en pistas diferentes.

Zmax Fepresenta la carga de trabajo en la pista més utilizada.

Zmin representa la carga de trabajo en la pista menos utilizada.

Xi tiempo de aterrizaje del avién del avién i

a tiempo de retraso del avion i (x; > T;) ,estoes a; = max [0, x; — T;]

b; tiempo de adelantamiento del avion i (x; < T;), estoes b; = max [0, T; — x;]

i coste de penalizacion si el avion i aterriza antes del tiempo programado (x; < T;)

h; coste de penalizacion si el avion i aterriza después del tiempo programado (x; > T;)

yii = {1 si i anterriza antes que j
Y 10 caso contrario
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v = { 1, iyjaterrizan en la misma pista
Y 0, caso contrario

ne = {1, siel aviéon i aterrizaenlapistar (r =1..R)
o, caso contrario
wi =0 medida de la carga de trabajo involucrada en aterrizar un avion i en una pista r.

3.2.  Suposiciones

En este planteamiento supondremos que se trata de un caso estatico en el que disponemos de
toda la informacion de los vuelos, es decir, disponemos del nimero de aviones totales
involucrados en el problema y éste no varia, y de los datos de cada avion: el tiempo early, el

tiempo last, el tiempo objetivo de aterrizaje y el tipo de avion.
En este caso, consideraremos Gnicamente una pista.

3.3.  Funciones objetivo

El problema se plantea como un problema multi-objetivo en el que se pretende optimizar mas de

una funcién objetivo. En este caso las funciones objetivo son:

Minimizar el coste total de la desviacion de los aviones. Como se ha mencionado anteriormente,
cuando el tiempo de aterrizaje real de un avion no coincide con el tiempo programado incurren
costes. En este caso para cada avion se tiene en cuenta el tiempo de retraso y de adelantamiento
y los costes respectivos (ya que el coste de retraso no es el mismo que en el caso que el avion
llegue antes).

14|

Min = Z(aihi + bigi)

i=1
Minimizar el tiempo total de llegada de los aviones. Al mismo tiempo se pretende que el tiempo

total del proceso de aterrizaje de los aviones sea el minimo posible, esto es, que el ultimo avién

aterrice lo antes posible.

14|

Min = in

i=1
Minimizar la diferencia de carga de trabajo en diferentes pistas. En este caso se trata de
equilibrar la carga de trabajo de cada pista, para que no se produzca saturacion por un lado y
ociosidad por el otro, esta funcidn es muy Util a la hora de equilibrar cargas de trabajo, pero en

este caso no la aplicamos.
Min Zmax - Zmin
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3.4. Restricciones

Ventanas temporales. Asegurar que el tiempo de aterrizaje del avién esta comprendido en los

tiempos que conforman la ventana temporal.
Ei<x;<L;
Relaciones de precedencia.
yijtyi=1 ijed j>i

Separacion entre aviones. Esta restriccion asegura el cumplimiento de la separacion de
seguridad exigida entre el aterrizaje consecutivo de dos aviones. En la Tabla 4.1. se representa

los tiempos de separacién (en segundos) entre aviones que aterrizan consecutivamente.

Avidn siguiente
1° avion a aterrizar Heavy Large Small
Heavy 96 157 196
Large 60 69 131
Small 60 69 82

Tabla 3.1. Tiempos minimos de separacion (en segundos) entre aterrizajes

Xjyi; = %;Yij + Sijvij + si;(1 — yij)
Restricciones de pista. En el caso que el aeropuerto disponga de mas de una pista, asegura que
el avion aterriza Unicamente en una pista. Esta restriccion contempla que si dos aviones
consecutivos aterrizan en la misma pista, deben respetar las distancias de separacion de
seguridad. En el caso contrario, que dos aviones consecutivos aterricen en pistas diferentes, esta

distancia de seguridad sera 0.

R
Znir=1 r=1..R,i=1..]4]
r=1

Equilibrio de cargas de trabajo en las pistas. Asegura que la carga maxima de trabajo es como
minimo la carga de trabajo en la pista mas utilizada y que la carga minima es la carga de trabajo

pista menos utilizada.

14]

Zmax = Zwirnir,r =1..R
i=1

|A]
Zmin < Zi:1 WirNjy
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3.5.  Conclusiones

El Aircraft Landing Scheduling Problem se plantea como un problema multi-objetivo. En este
caso, las consideraciones que se tienen en cuenta son que Unicamente se dispone de una pista y
que el problema es estatico. El planteamiento del problema tiene por funciones objetivos
minimizar la desviacion total entre el tiempo de aterrizaje y el tiempo objetivo de cada avion y
minimizar el tiempo de aterrizaje del Gltimo avién, cumpliendo con las restricciones de ventanas
temporales de cada avion, las distancias de separacién de seguridad entre aterrizajes

consecutivos Y la restriccion de pista.
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4. Taxonomia de Métodos de Secuencia de Aterrizaje de Avionesy
Software

El objetivo de esta seccion es clasificar los métodos y software existentes destinados al
aterrizaje de aviones y su programacion. La clasificacion se lleva a cabo mediante la taxonomia
de dichos métodos, para analizar el avance y demostrar los inconvenientes de los enfoques

existentes.

La taxonomia de los métodos se lleva a cabo tres fases. Primero se realiza una lista de la
clasificacion de los pardmetros; segundo, se definen los posibles valores de cada parametro y
finalmente, se analizan los métodos descritos en publicaciones cientificas sujetos a la

clasificacion de los parametros anterior.

4.1.  Especificacion de los pardmetros de clasificacion

1. Tipo de problema de optimizacién
1.1. Objetivo Unico (Single-Objective). La optimizacion se basa en Unico objetivo que
también puede ser formulado como una suma ponderada de maltiples objetivos.
1.2. Multi-objetivo. Optimizacién simultanea de mas de un objetivo con la finalidad de

encontrar un conjunto de soluciones (equilibrada)

2. Tipo de funciones objetivo
2.1.Minimizar el makespan (tiempo de aterrizaje del Gltimo avion) de la secuencia de
aterrizaje.
2.2.Minimizar el coste total de la desviacion entre el tiempo de aterrizaje final de todos los
aviones y su tiempo de aterrizaje estimado.
2.3.Minimizar el tiempo total de la desviacion de los aterrizajes de los aviones.

2.4. Minimizar el retraso total de los aviones.

3. Restricciones

3.1.Uso de pista. Cada pista puede ser utilizada como maximo por un avion.

3.2.Numero de pistas de las que dispone el aeropuerto.

3.3.Separacion entre aviones. Hace referencia a las distancias y tiempos de seguridad que
hay que dejar entre aviones a la hora de aterrizar, por razones aerodindmicas y de
seguridad.

3.4.Ventanas temporales de cada avion. A cada avion se le ha asignado un tiempo
estimado de aterrizaje, pero existe un tiempo anterior Early Time of Arrival

(suponiendo que el avion vaya a méaxima velocidad) y un tiempo posterior de aterrizaje
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Latest Time of Arrival (determinado por la cantidad de combustible disponible o por el
mé&ximo retraso permitido para un avion).

3.5. Precedencia entre aviones. Se considera la precedencia de aviones en las secuencias de
aterrizaje. Una de las fuentes de esta restriccion consiste en las diferentes rutas en las
cuales el avion puede acceder al aeropuerto.

3.6. Time Shifting. Existe una flexibilidad limitada en cuanto al tiempo de aterrizaje del
avion, dentro de su ventana temporal, tanto hacia adelante como hacia atras en relacion
al tiempo de aterrizaje estimado.

3.7. Asignacidn de pista. Esta restriccion es especifica para problemas que se plantean con
mas de una pista de aterrizaje. Con ella se asegura que el avion aterriza en una Unica

pista.

Heuristicas utilizadas
4.1. Control. Son heuristicas que se utilizan para asegurarse que los métodos que se
implementan cumplen con las restricciones impuestas al problema.
4.1.1.Force feasible. Fuerza que el tiempo de aterrizaje entre aviones sea al menos el
minimo tiempo permitido. Para ello, primero los aviones son ordenados, luego los
primeros dos aviones se examinan y si existe un conflicto el resto de la secuencia
se atrasa hasta que ya no existe conflicto. Se sigue con la siguiente pareja de
aviones, y este proceso continla secuencialmente hasta que el tiempo de
aterrizaje sea al menos el minimo permitido.
4.1.2.Squash. Esta heuristica optimiza localmente la secuencia mientras mantiene el
orden de caida. Si el tiempo entre aterrizajes de dos aviones es mayor que el
tiempo minimo requerido, seria innecesario atrasar el siguiente, por eso mover el
siguiente avion hacia adelante disminuird el coste.
4.2.Proposal Generation Mechanism. Una vez se obtiene una secuencia de aterrizaje, ésta
es enviada a un agente (avion) el cual evaluara dicha secuencia y reenviard un conjunto
de aviones con los cuales se puede cambiar de pista. Si al intercambiar las pistas de
aterrizaje de dos aviones el tiempo total de la secuencia de caida disminuye, entonces
se procede a hacer el cambio.
4.3.Negotiation Strategy. Las estrategias de negociacién permiten seleccionar secuencias

de aterrizaje dentro de un intervalo de propuestas proporcionadas por los agentes.
Consideraciones

5.1.Entorno estatico, en el cual se ordenan un nimero fijo de aviones de los cuales se

conoce toda la informacion de antemano.
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5.2. Entorno dindmico, en el cual se incorporan nuevos aviones que entran en el sistema sin
tener en cuenta aquellos que ya han aterrizado; es decir aquellos que ya han salido del

sistema.

6. Secuencias de permiso de aterrizaje

7.

6.1. First-come, First-served (FCFS). Este algoritmo determina la secuencia de aterrizaje
del avion baséndose en el orden del estimated time of arrival de cada avién.

6.2. Constrained Position Shifting heuristic. Esta heuristica evita que las posiciones finales
de la secuencia de aterrizaje difiera del orden establecido por el FCFS no mas de un
ntmero pre-especificado, llamado Maximum Position Shift (MPS). Es mas, cuando el
MPS es pequefio, se mantiene imparcial entre los aviones para no desviarse mucho de
la secuencia FCFS. Relative Position Shifting (RPS) es una variante del MPS que tiene
en cuenta la cercania del avion a la pista cuando se especifica el MPS. Esta heuristica
assume que el tiempo minimo de aterrizaje debe ser menor que el tiempo estimado de
aterrizaje.

6.3.Non-dominated Average Ranking. Este método evalGa la bondad de una potencial
secuencia de caida para cada uno de los objetivos y utiliza una estrategia de
clasificacion para elegir la secuencia mas prometedora.

6.4. Heuristica de construccién. Heuristica para la obtencién de una solucion inicial
basada en la observacion siguiente: Si se asume que el nimero de pistas r >1 y que
todos los aviones T;(i =1,..,n) son ordenados de manera ascendente, es decir
T;, <T,, <--T;_, <T; . Paracada dos aviones ordenados i,y iy si T;

N

<Ty +

k+1

ininsyr ENtONCES UNA secuencia de aterrizaje mejor, que no necesariamente optima,

puede encontrarse si se les asigna pistas de aterrizaje diferentes.

Modelos de Optimizacion
7.1.Job Shop Scheduling Model. Este modelo se basa , de manera general, en ordenar un
conjunto de actividades a ser procesadas en un conjunto de maquinas tal como:
- Cada actividad estd compuesta por una secuencia predefinida de operaciones.
- Cada trabajo debe ser precedido por algunas maquinas en un orden especifico
y no necesariamente en el mismo orden para todas las actividades.
- Cada maquina puede procesar Unicamente una actividad cada vez.
Se considera que las pistas son las maquinas y que el aterrizaje de un avién es una
operacién de un trabajo (avion). Se define un orden entre operaciones para cada
trabajo; suponiendo eso, cuando las ventanas temporales de dos aviones estan

separadas, existe un orden entre ellos, de ahi la apariencia de un orden parcial de los
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trabajos a nivel operacional. El objetivo es determinar la secuencia de aterrizaje de los
aviones en unas determinadas pistas. Esta tarea consiste en asignar un tiempo de inicio
para cada aterrizaje y adjudicar una pista respetando las restricciones de tiempo:
- Eltiempo minimo y el tiempo méaximo del aterrizaje.
- Tiempo de separacidn entre aviones en una misma pista.
- Lasecuencia de caida.
7.2.Mixed lineal es un

Integer Programming Model (MIP).

procedimiento o un algoritmo matematico mediante el cual se resuelve un problema

La programacion

indeterminado, formulado a través de un sistema de inecuaciones lineales, optimizando
la funcion objetivo, también lineal. Un problema lineal mixto consiste en un modelo
LP con algunas variables enteras.

7.3.Dynamic Programming Model. Este modelo se basa en transformar un problema
complejo en una secuencia de problemas mas simples. Primero se resuelven los mas
sencillos que después serviran para resolver los mas dificiles, hasta que todos estén
resueltos. Este modelo no estd restringido por ningun requerimiento de linealidad,
convexidad ni continuidad.

7.4.Network Model. En este modelo cada fase corresponde a una posicion de un avién en la
secuencia final de aterrizaje. Un nodo de una cierta fase de la red representa una sub-
secuencia de aviones. El nodo de inicio y el nodo final representan el inicio y el final
del proceso de secuencia respectivamente. La finalidad es encontrar el camino mas

corto en la red, lo que se traduce en, encontrar la secuencia con el menor makespan.

4.2.  Recension de los Trabajos Revisados Sujetos a la Clasificacion de

Parédmetros
Articulos de investigacion de las Gltimas tres décadas han sido analizados sujetos a los
parametros de clasificacion especificados. La Tabla 3.1. resume los métodos revisados que mas

adelante son descritos con mayor detalle.

Parametros 1. Tipo de | 2. Tipo de | 3. 4. 5. 6. 7. Modelo de
problema de | funciones | Restricciones | Heuristicas | Consideraciones | Secuencias | optimizacién
optimizacion objetivo utilizadas de permiso

de

aterrizaje
Métodos
Linear 1.1 2.2 3.3 5.1 7.2
Programming 34 7.4
Based Tree 3.5
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Search
Ant Colony | 1.1 2.2 3.2 5.2 7.1
Optimization 3.3
Genetic 34
Algorithm 3.5
Genetic 11 2.3 3.3 411 5.1 6.2 7.2
Algorithm 3.4 4.1.2

3.5
Branch and | 1.1 2.3 3.2 51 7.2
Bound 3.3
Algorithm 3.4
An any time | 1.1 2.4 3.2 5.2
Algorithm 3.3

3.7
Multi objective | 1.2 2.1 33 51 6.2
Neighborhood 2.4 3.4
Search 35
Differential
Evolution
Semantic 1.2 2.1 4.2 6.3
Agents 24 4.3
Negotiation
Mechanism
Dynamic 1.1 2.1 33 6.2 7.3
programming 34 74
on a Network 35
Model 3.6
Hybrid meta- | 1.1 2.2 3.3 5.1 6.4 7.2
heuristic 34

3.7

Tabla 4.1. Clasificacion de métodos de resolucion del ALSP
e Linear Programming Based Tree Search [1]

Para resolver el problema, se ha planteado como un Displacement Problem. Este problema
surge cuando se tiene que realizar una secuencia de decisiones y cada decision sucesiva que
se toma esta relacionada con la decisién anterior. Se resuelve el problema estatico original
y se considera que esta solucion es una solucién factible (encontrada por algun algoritmo).
Una vez obtenida esta solucion factible, se considera que algo en el problema original
cambia, un dato (relacionado con las funciones objetivo), o una nueva variable, o una
nueva restriccion. Ahora, entorno operacional es diferente a lo que se habia asumido
previamente al llegar a esas decisiones. Como resultado de este cambio de entorno, es
necesario resolver el problema inicial, incorporando algunos cambios, pero con alguna
restriccion adicional (link) que haga referencia a la solucion original (previa). Para esto, se
define una displacement function que cuantifica el efecto de desplazar cada variable de
decision del valor de solucion previa (conocido) a su nuevo valor (actualmente
desconocido).

Se considera que el problema es dindmico (5.2) por lo cual el entorno operacional del

problema va variando. ElI método busca optimizar una Unica funcién objetivo (1.1), se
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busca minimizar el coste total de las desviaciones de los aviones (2.2). La funcion objetivo

del problema, tiene en cuenta los costes de penalizacion tanto de los aterrizajes antes de

hora, y los aterrizajes después del tiempo estimado de aterrizaje. Las restricciones que se

contemplan son: la separacion de seguridad entre aterrizajes de aviones (3.3), las ventanas

temporales de cada avidn (3.4) y la precedencia entre aviones (3.5).

Para resolver el problema ALSP como un Displacement Problem se propone un algoritmo

solucién basado en programacién linear mixta (7.2) junto a una estrategia de blisqueda de

arbol en un grafo (7.4).

Descripcion paso- a- paso del algoritmo:

Notacion:

P nimero de aviones a ser secuenciados;

i es el indice de un avion;

y es el contador de iteraciones;

X; es el tiempo de aterrizaje del avion i;

A; is an appearance time of an aircraft at which it was first available to be assigned a
landing time;

Zisp €5 €l coste acumulado del desplazamiento;

Zso €5 el coste de la solucion final en términos de funcion de coste asociada al ALS original
(estatico);

t* is a freeze time; any aircraft assigned a landing time within t* of the current time had its
landing time (and runway) frozen;

Fo(t) represents the set of aircraft that have not yet appeared by time t;

F1(t) represents the set of aircraft that have appeared by time t, but have not yet landed (or
had their landing times frozen);

F,(t) represents the set of aircraft that have appeared by time t and have landed (or have
had their landing times frozen);

gi es el coste de penalizacion (>0) por unidad de tiempo por aterrizar antes del tiempo
estimado T; para el avion i.

hi es el coste de penalizacion (>0) por unidad de tiempo por aterrizar después del tiempo
estimado T; para el avion i. ... ;

Acost €5 la importancia asociada al coste total de la solucion Zg,

Adgisp €S la importancia asociada al coste total del desplazamiento;

Amax €S la importancia asociada al desplazamiento maximo Dya;

Dmax €s el desplazamiento maximo...

Algoritmo 1.

(1) Sefijan los tiempos de aterrizaje Xj=o, i=1,...,P.
(2) Sea:

Fo(t) =[il4; =t i=1,..,P]
F (t) =[i|l4; <tand X; > (t+t*),i=1,..,P]
F,@) =il4; <tand X; < (t+t*),i=1,..,P]

(3) Seasignay =0y Zgs = 0. Se fija el tiempo actual t, = min[4;|i=1,..,P]. Y se

O
®)

resuelve el problema ALSP estatico original, incluyendo Gnicamente a los aviones en
F;(ty). La solucion a este problema estatico son los tiempos iniciales de
aterrizaje X;Vi € F,(ty).

Si hay aviones por aparecer |F,(t,)| = 1 entonces ir al paso (5), sino |F,(t,)| =0
todos los aviones han aparecido en tal caso ir al paso (6) .

Asignar y = y + 1. Avanzar el tiempo a t, = min[4; | i € Fy(t, — 1)] y resolver el
displacement problem involucrando Gnicamente a aquellos aviones en F,(t,) U
F,(t,), donde los aviones en F,(t,), estan restringidos a aterrizar al tiempo X;Vi €
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Fi(t,) y en la pista adecuada, como han sido establecido por la solucion anterior.
Afadir el componente de coste de desplazamiento
(Adisp ZiEFl(ty)nFl(ty—l) p:iD; (X' E) + AmaxDmax) de esta solucion a ZdiSD eiral paso
4).

(6) Sl'czdos los aviones en F; (t,) se estima que aterricen a los tiempos de aterrizaje (y en
la pista correspondiente) como ha sido establecido por la Gltima solucion del
desplazamiento. Computar Z,,, = Y5, (g; max[0, T; — X;] + h; max[0,T; — X;]).

ACOGA (Ant Colony Optimization Genetic Algorithm) [ALSP basado en Job Shop
scheduling problem [2]

Para resolver el ALSP se propone un método hibrido, llamado ACOGA (Ant Colony
Optimization Genetic Algorithm). Se considera que el problema es estatico (5.1), de manera
que el nimero de aviones con el que se trabaja es fijo desde el inicio. Para resolver el
problema lo separa en dos actividades. La primera es obtener una poblacion inicial y la
segunda computar los tiempos de aterrizaje para un conjunto de aviones. Este método esta
basado en un Job Shop Scheduling model (7.1) en el que se dividen los aterrizajes por
grupos (de como minimo 2 aviones consecutivos).

ACOGA es un método de optimizacion con una Unica funcién objetivo (1.1). En este caso,
la funcion objetivo a minimizar es el coste total de la desviacion entre el tiempo de
aterrizaje actual y el tiempo de aterrizaje estimado (2.2). Dicha funcion tiene en cuenta
tanto el coste por adelantamiento como por retraso del tiempo de aterrizaje del avion
respecto al tiempo estimado de aterrizaje.

Las restricciones que contempla este método son el nimero de pistas las cuales dispone el
aeropuerto (3.2), la separacion entre aviones (3.3), las ventanas temporales de cada avion
(3.4) y la precedencia entre aviones (3.5).

En este caso, no se aplica una estrategia de aterrizaje a la hora de definir una secuencia de
aterrizaje, sino que se aplica el algoritmo Ant Colony Optimization (ACO). La poblacion
inicial juega un papel importante a la hora de determinar la calidad de la solucién final. La
estrategia que utilizan para obtener la poblacion inicial es generar una secuencia de
aterrizaje y una asignacion de pistas aplicando un ciclo del algoritmo ACO (descrito mas
adelante). Una vez construida la primera poblacion, se computa el tiempo de aterrizaje de
cada avion respetando las ventanas temporales y la separacion entre aviones. El siguiente
paso es aplicar un algoritmo genético para alterar la poblacion inicial y llegar a una

solucion éptima.
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Descripcién paso- a- paso del algoritmo:
Notacion:

e m : numero de hormigas

e Tabu, es la lista de nodos visitados;

e Candidate,: lista de nodos candidatos a ser visitados en orden, para respetar la relacion de
precedencia.

e «a,f : parametros que controlan la importancia relativa de n y 7, donde 1 es la informacion
de la heuristica y 7 es el rastro de feromona

e ( : variable aleatoria uniformemente distribuida entre [0,1]

e (o : pardmetro fijadoentreOy 1

e 7;es el valor del rastro de las feromonas

e 1 : valor inicial de los rastros de feromonas

e p : coeficiente de vaporizacion

e D : lista de nodos del grafo

Algoritmo 2. ACO para la obtencién de la poblacion inicial

(1) Sea:
e Tabu, =D,
e Candidate, = primera operacion de J
e T-7

(2) Paracada hormiga k= 1... m, inicializar i « D.

(3) Mientras Candidate;, # 0,
(3.1) de un nodo i, elegir el siguiente nodo j ¢ Tabu, de entre los nodos de Candidate, de
auerdo con:

arg max[(ta)*(n )?] siq < qo

-
Il
————

£ Tabu,
J.siq < qo (escogida aleatoriamente entre Candidate,
! if iand lonth
) (@, —tal < S +1 if i and | on the same runway
it — 1

(ta —tars)+ 1 if i and l on diferent runway
1~ tagl * sy

(3.2) Insertar j en Tabuy. Actualizar la lista Candidatey y actualizar localmente los rastros
de feromonas z;; utilizando :
7;; = (1 — pDti; + plrg
Note: En el algoritmo previo, la informacién heuristica (s;) depende de dos parametros:
= Tiempo de separacién (S;) or (sy) : generalmente, s; < Sy (Vi,l =
1,...,N). De esta forma, los aviones que aterricen diferentes pistas seran
mas privilegiados que aquellos que aterricen en una misma pista.
= |taj — ta| : los aviones cercanos en términos de tiempo objetivo son
privilegiados para aterrizar los mas cercano posible a su tiempo
estimado de aterrizaje para asi reducir el coste de penalizacion.

Genetic Algorithm [3]

El método se basa en un Problema Programacién Lineal Mixto (7.2), con variables reales y
enteras. Se considera que el problema es estatico (5.1), de manera que el nimero de
aviones con el que se trabaja es fijo desde el inicio.

El problema esta planteado con una Unica funcién objetivo (1.1), que consiste en minimizar

la suma de la ponderacién de las desviaciones de los aviones (2.3). Las restricciones que se
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contemplan son: la separacion entre aviones (3.3), las ventanas temporales de cada avion
(3.4) y la precedencia entre aviones (3.5).

Este método utiliza un algoritmo genético que luego servira para establecer el limite
superior para la solucion. En este problema, los genes son los aviones y el alelo es el
tiempo de aterrizaje del avidn. Por lo tanto, el cromosoma representara una tabla de aviones
y su tiempo de aterrizaje propuesto. Esto constituye una secuencia de aterrizaje i, con una
funcién fitness F;. El algoritmo genético elige a dos padres seglin sean mas aptos, y con
ellos realiza un intercambio genético con el que obtiene dos hijos, en este caso un hijo es
una secuencia de aterrizaje. Se puede dar el caso que las secuencias resultantes no cumplan
las restricciones de las ventanas temporales de los aviones, ni la separacién de seguridad
que tiene que haber entre dos aterrizajes consecutivos. Estos dos factores hacen que surja la
necesidad de heuristicas para procesar el resultado después del intercambio genético. Estas

heuristicas son la Force feasible (4.1.1) y Squash (4.1.2).

Descripcion paso- a- paso del algoritmo:
Notacién:

e p,es lapoblacion;

e F;, funcién de idoneidad;

e S;, secuencia de aterrizaje resultante después del crossover entre dos progenitores;

e @i, eselgen que representa un avion;

e 3a;,eselalelo que representa el tiempo de aterrizaje del avion;

e  Puu, es laprobabilidad de ser mutado;

e M, es la mutacién que se aplica a una secuencia en la que se introducen nuevas
caracteristicas a una poblacion, es este caso, se modificara el orden de aterrizaje de los
aviones;

Algoritmo 3 Algoritmo Genético

(1) Se genera una p inicial de forma aleatoria.

(2) Seleccionar dos padres segun su F;. Aquellos que tengan mayor F; tendran mas posibilidad
de ser seleccionados.

(3) Se realiza la combinacién y se aplican las heuristicas de Force feasible y Squash. Como
resultado se obtiene S; y S;,

(4) Segin Pp, se le aplica M a S; y S;,, aleatoriamente modificando el & de gi. Si esta
modificacion ha beneficiado a la poblaciéon aumenta la F; asociada, en caso contrario
disminuye.

Branch & Bound Algorithm [3]

El método se basa en un modelo de Mixed Integer Programming (7.2). Se considera que el
problema es estatico (5.1), de manera que el nimero de aviones con el que se trabaja es fijo
desde el inicio.

El problema esta planteado con una Unica funcién objetivo (1.1), que consiste en minimizar

la suma de la ponderacién de las desviaciones de los aviones (2.3). Las restricciones que se
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contemplan son: la separacion entre aviones (3.3), las ventanas temporales de cada avion
(3.4) y la precedencia entre aviones (3.5).

El problema se resuelve mediante la combinacion algoritmo Branch & Bound y del
algoritmo genético, los cuales proporcionan una solucién exacta del problema. El algoritmo
Branch & Bound utiliza la solucién proporcionada por el algoritmo genético y lo utiliza
para establecer los limites superiores del problema. Para establecer los limites inferiores del
problema, se utiliza el algoritmo simplex. Para buscar conflictos entre dos aviones en un

nodo se utiliza una estrategia de blsqueda en profundidad.

Descripcion paso- a- paso del algoritmo:
Notacion:

e X, eslasolucion, es decir, la secuencia de aterrizaje;

e P eseltiempo preferred del avion i;

e X, representa un avion, i= 1,...,N;

e §j , representa la restriccion de precedencia entre aviones;

Algoritmo 4. Branch & Bound

Dada una solucion X para un nodo K
(1) Se ordenan los aviones X; segin su ¢?
(2) Se comprueba que la restriccion de tiempos de separacion entre aviones se cumpla
(2.1) Si la restriccion de cumple, se considera que X es una solucion factible para el nodo
K
(2.2) Sino, se coge la pareja (j,k) y se ramifica a partir de aqui asignando &;, 1 0 0 (con
esto se relaja la restriccion de precedencia)

Genetic Algorithm (Standard Binary Algorithm and Seeding Approach) [4]

Este método resuelve el ALSP mediante dos algoritmos genéticos, los que luego seran
comprados.. Se considera que el problema es dindmico (5.2), de manera que el nimero de
aviones con el que se trabaja no estd determinado, por lo tanto los constantes cambios
debido a despegues v aterrizaje de aviones afectan a las restricciones.

En este caso se optimiza una Unica funcion objetivo (1.1) que consiste en minimizar el
retraso total de los aviones (2.4). Dicha funcion tiene en cuenta tanto el coste por
adelantamiento como por retraso del tiempo de aterrizaje del avion respecto al tiempo
estimado de aterrizaje y aplica una penalizacion. Las restricciones que contempla este
método son el nimero de pistas las cuales dispone el aeropuerto (3.2), la separacién entre
aviones (3.3) y las ventanas temporales de cada avion (3.4) .

Para resolver la secuencia de aterrizaje, se plantea el algoritmo genético estandar (Standard
Binary Genetic Algorithm) y una variacion de este. En el primero, cada problema en la
secuencia requiere un nuevo cromosoma codificado que elimina los aviones que han
aterrizado e incorpora los nuevos aviones que han llegado. La nueva programacion se

construye desde cero, partiendo desde una poblacion inicial aleatoria. EI segundo algoritmo
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es una modificacion, en la que se eliminan los aviones que han aterrizado y se actualizan
los nuevos aviones, pero que, a diferencia de la primera, no construye una nueva

programacion partiendo de una poblacién inicial aleatoria.

Descripcién paso- a- paso del algoritmo:
Notacion:

e p,eslapoblacion que representa la secuencia de aterrizaje de los aviones,
e g;son los aviones;
e t son los intervalos de tiempo, cada intervalo es de 3 minutos;

Algoritmo 5. Standard Algorithm

(1) Seinicializat.
(2) Seinicializa p aleatoriamente.

(3) Mientras t < 3. Seleccionar dos padres y aplicar las operaciones de intercambio genético y

mutacion e insertar a los nuevos hijos en la poblacién.

(4) Se utiliza la estrategia elitista en la que el 10% de los mejores de la generacion anterior son

copiados a la siguiente generacion.

Algoritmo 6. “Seeding” Approach (modified)

(1) Sefijan intervalos de t de 3 minutos

(2) Si es el primer intervalo de 3 minutos, inicializar la poblacion aleatoriamente. Sino
poblacion = poblacion final del intervalo anterior.

(3) Mientras t < 3. Seleccionar dos padres y aplicar las operaciones de intercambio genético y
mutacion e insertar a los nuevos hijos en la poblacion.

(4) Se utiliza la estrategia elitista en la que el 10% mejores de la generacién anterior son
copiados a la siguiente generacién.

Multi-Objective Neighborhood Search Differential Evolution [5]

Este método propone resolver el problema mediante algoritmos evolutivos, concretamente
mediante el Neigborhood Search Differential Evolution. El problema se plantea de manera
estéatica (5.1), por lo que se trabaja con un determinado ndmero de aviones y se formula
como un problema multi-objetivo (1.2) en el que se minimiza el coste de la secuencia (2.1)
y el retraso total de todos los aviones (2.4).

Tal y como se plantea el problema, esta sujeto a 3 restricciones: todos los aviones deben
aterrizar dentro de una ventana temporal especificada (3.4), entre aterrizaje de dos aviones
consecutivos se debe respetar una distancia de seguridad (3.3) y la relacién de precedencia
entre aviones que van por la misma ruta (3.5).

El método plantea resolver el problema en dos fases. La primera fase en la que se busca
una Unica secuencia de aterrizaje que garantice una buena compensacion entre los dos
objetivos, para la cual se ha disefiado el método Non-dominated Average Ranking(NAR)
(6.2). La segunda fase en la que la secuencia anteriormente obtenida se utiliza como input
en el Multi-Objective Evolutionary Algorithm (MOEA) para buscar un conjunto de
soluciones (non-dominated), donde se resuelve utilizando una version multi-objetivo del

método Neigborhood Search Differential Evolution.
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Descripcién paso- a- paso del algoritmo:

Notacion:

fr;, regiones factible de la secuencia de aterrizaje en la que no se viola ninguna restriccion,
ni de ventanas temporales ni de separacion de seguridad entre aviones;

TC, coste total de la secuencia de aterrizaje;

STA, tiempo de aterrizaje programado;

ETA, tiempo estimado de aterrizaje, es el tiempo en el que se estima tendria que aterrizar el
avion;

D;, es el coste por unidad de tiempo por aterrizar después del ETAI para el avion i;

A; , es el coste por unidad de tiempo por aterrizar antes del ETAI para el avion i;

&;, es la coste de penalizacion para un avion i que aterriza antes o después del ETAI , va en
funcionde Dy A; ;

OC, total de holding loops de todos los aviones.

AC, es la bondad de la secuencia en el coste total que se estima mediante una media de 20
muestras aleatorias.

Algoritmo 7. Non-Dominated Average Ranking

()
@

3
)

®)
(6)

Enumerar todas las secuencias de aterrizaje posibles basadas en la restriccion de
precedencia.

Para cada secuencia de aterrizaje posible, calcular las regiones factibles (denotadas por fr;)
de los tiempos estimados de aterrizaje para los aviones en la secuencia, basandose en las
restricciones de las ventanas temporales y las separaciones entre aviones.

Para casa secuencia, calcular el total OC. Esta cantidad expresa el total STA.

Para cada secuencia, obtener una x aleatoriamente escogida de entre todo el conjunto de
fr; , luego el coste total incurrido de esta x se calcula mediante:

N
TC = Z(STAi _ ETA)S,
i=1
D;,  STA; = ETA;

where 0; = {Ai, STA; < ETA;
Se clasifican las posibles secuencias por OC y AC, respectivamente, con el 1 siendo la
mejor clasificacion.
Se calcula una puntuacién para cada secuencia no-dominada sumando las clasificaciones
para OC y AC. (Es decir, si una secuencia es la 22 mejor en cuanto a la clasificacion y la 32
mejor en cuanto a la clasificacién AC, su puntuacién serd 2+3=5). Finalmente la secuencia
con la mejor clasificacion serd utilizada como secuencia de aterrizaje, la cual sera
optimizada en la segunda fase.

Notacion:
e Pes lapoblacion;
e Aces lasecuencia de aterrizaje ;
e Ceslapoblacion de nifios;
e t, contador de generaciones;

NP ,nimero de individuos de la poblacion;

Algoritmo 8. Multi-Objective Neihgborhood Search Differential Evolution

Pasos principales:
(1) FijarP = ¢, A =¢, C = ¢, t = 0.
(2) Inicializar P con NP individuos, P = {p,,p,, ..., pyp} Y €Stablecer A = P.
(3) Mientras t < t,,q(i.e. nNUmero maximo de generaciones)
(3.1) Generar NP individuos mutados {v;,v,,..,vyp } mMediante la siguiente
ecuacion:
B (xi, — Xi,) - N(0.5,0.3), ifU(0,1) < 0.5
Vi Xy {(xi2 —Xj,) " 6, otherwise
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Donde x;, es seleccionada aleatoriamente del archive, y x;, y x;son
aleatoriamente seleccionadas de P. N y & denotan una variable Gaussiana
aleatoria y una variable de Cauchy aleatoriamente, respectivamente.

(3.2)  Se utiliza el siguiente operador para el intercambio genético para generar NP
hijos y actualizar C con estos nuevos hijos:

~ v, ifU(01) <CR
u@® = {0 ,
x; (), otherwise
(3.3)  Elegir a los individuos superiores de Py C y hacer una nueva poblacion de
padres.
Fori=1:NP

(a) Sip;domina c;, ¢; es rechazada.
(b) Si p; es dominada por ¢; , p; es reemplazada por ¢; y se actualiza el
archivo A con Archive-Updating™.
(c) Si pi y ¢ son no-dominadas entre ellas, utilizar el Archive-
Updating*, para comparar ¢; con A la menos concurrida con A sera
la nueva p;.
(3.4) Interrumpir el archive cuando el tamafio de A exceda el maximo.
(3.5)  Establecert =t + 1.
(4) Los individuos no-dominados de A son las soluciones finales.

*Archive-Updating:
Si ¢; es dominado por algiin miembro de A, descartar c;
Sino si ¢; domina un conjunto de miembros de A, eliminar esos miembros de A y afiadir
ciaA
Sino afiadir ¢c;to A

Semantic Agents Negotiation Mechanism (Genetic Algorithm and Negotiation Rules) [6]

Este método propone resolver el problema mediante Semantic Agent Negotiation

Mechanism basado en un sistema Multi-Agente. El problema se plantea de manera estatica

(5.1), por lo que se trabaja con un determinado nimero de aviones.

El problema se formula como un problema multi-objetivo (1.2) en el que se minimiza el

coste de la secuencia (2.1) y la desviacion de los aviones (2.4).

Esta propuesta utiliza un algoritmo genético para establecer la secuencia de caida, y

mediante las estrategias de Proposal Generation Mechanism (4.2) y Negotiation Strategies

(4.3) optimizan esta secuencia.

Descripcion paso- a- paso del algoritmo:

Notacion:
e Ses la Negotiation Strategies, estrategia de negociacion;
e | esel Proposal Generation Mechanism, mecanismo de generacion de propuestas;
e GAes el Algoritmo genético ;

A'i :agenteavion, i€ {1,...,N}

Ag ={A,, ..., An, C}, es el conjunto de agentes avion y el agente control
V=<v/’,...,v/", v." > v es la valoracion del agente avidn i para propuesta p.
R es la secuencia de aterrizaje

M=<Ag, GA, S, |, V, R>: tupla del modelo
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Algoritmo 9. Semantic Agent Negotiation Mechanism

(1) Ai utiliza el GA para obtener una secuencia.

(2) Ai envia su secuencia a otros agentes avion y al agente control

(3) Los agentes avion y control puntian la secuencia segin sus propios beneficios. Cuanto
menor sea la desviacion y el coste, mayor puntuacion.

(4) Calcular la nota para cada secuencia. Aquella con la mejor puntuacion, sera seleccionada
como solucidn inicial.

(5) La solucidn inicial no es adecuada para todos aviones. Los agentes avion utilizan Proposal
Generation Mechanism | para crear una propuesta para la solucion inicial.

(6) Todos los aviones utilizan la Negotiation Strategies S para decidir qué propuesta sera
aceptada. V serd utilizada en este paso.

(7) Si las condiciones (ventanas temporales o suspension de la negociacion) no se satisfacen,
volver a (5), sino guardar la secuencia en R, y devolver R.

Dynamic programming on a Network Model [7]

Este articulo, plantea el problema ALSP como una modificacion del Shortest path on a
Network (7.4) y lo resuelve mediante Dynamic Programming (7.3). El método da solucion
a un problema con una Unica funcion objetivo (1.1), que en este caso, se trata de la
minimizacion del makespan (2.1). Las restricciones que se contemplan son la separacion
entre aviones (3.3), las ventanas temporales de cada avion (3.4), la precedencia entre
aviones (3.5) y el nimero maximo de cambio de posiciones que se le puede aplicar a cada
avion (3.6).

En este método para establecer la secuencia inicial de permiso de aterrizaje se realiza
mediante Constrained Position Shifting (6.2), de tal forma que el primer avién en entrar en
el horizonte del aeropuerto, es el primero que aterriza, y después se busca una solucion

Optima mediante el algoritmo descrito a continuacion.

Descripcién paso- a- paso del algoritmo:
Notacion:

j son los nodos de la red

p, son las fases del problema, es decir las posiciones;

T(s), tiempo minimo en el que la secuencia entera puede comenzar;

T(t), tiempo minimo en el que la secuencia puede ser completada;

I(s) tiempo méaximo en el que la secuencia en el nodo s puede comenzar;
P(j), conjunto de nodos predecesores de j;

Algoritmo 10. Procedimiento para calcular el minimo makespan

(1) Asignar T(s) € 0, I(s) € 0;
(2) paracadap =1,...,n hacer
(3)para cada nodo j en fase p

T(j) = max {e()), miniep(jy.c<in (TE) + dij)}
pred(j) = arg minep(jy.cy<icny (T + dij)

T(@®) = minepgyey<iyT @)
Pred(t) = arg miniep(jy.cpy<ipyT ()
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e Hybrid meta-heuristic[8]

Este método propone una solucién al ALSP basada en un modelo de programacion mixta
(7.2). El problema se plantea como estético (5.1).

Trata de optimizar una Unica funcién objetivo (1.1), minimizar el coste total de la
desviacion de los tiempos de aterrizaje de los aviones (2.2) sujeto a las restricciones de
separacion de seguridad entre aviones (3.3), las ventanas temporales de cada avion (3.4) y
la restriccion de asignacién de pista (3.7) ya que el problema contempla varias pistas de
aterrizaje y asi se controla que un avion aterriza en una Unica pista.

Este método utiliza una heuristica de construccién (6.5) para encontrar una primera
solucion. Luego implementa una heuristica Simulated Annealing(SA) que en combinacion
con las heuristicas de Variable Neighborhood Descendent (VND) vy Variable
Neighborhood Search (VNS) mejoran la solucién inicial (las combinaciones son SA+VND
y SA+VNS ). La idea principal de estas heuristicas es que un 6ptimo local relacionado a
una posible solucion necesariamente no tiene que ser un 6ptimo local relacionado con otra

solucion. Para escapar de 6ptimos locales se cambia la estructura de la solucion.

Pasos de la heuristica Simulated Annealing
Notacion:
e X, solucion inicial;
e t, es un pardmetro de control correspondiente a la temperatura en la analogia del recocido
de acero;

Algoritmo 11. Simulated Annealing

(1) Construir una solucién inicial x utilizando el Algoritmo de Construccion*
(2) Seleccionar una temperatura inicial t;>0;
(3) Repetir hasta que se cumpla la condicion:
(3.1) Aplicar algoritmo VND** / Algoritmo VNS*** para mejorar la solucion x.
(3.2) Criterio de aceptacion:
Calcular: A= f(x") — f(x) donde x” es la solucién mejorada.
Si A<O0, x:=X";
Sino si random(0,1) < e2/t, entonces x:=X";
Sino no aceptar la nueva solucion x’;
Actualizar t;

Notacion:

r, es el conjunto de pistas con el que se trabaja;
m, ndmero de pistas;

T;, tiempo de aterrizaje de los aviones;

i, son los aviones;

n, ndmero de aviones a ordenar;

S, secuencia de aterrizaje;

Algoritmo 12. Heuristica Construccion*

1) r>1(@=1...m)
i=1,....n;
(2) Ordenar todos los aviones T; de manera ascendente, de forma que S = {i, i, ..., i,_1,i,} donde
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T, <T,<- T, <T
(3) De S asignar el primer avioén, i.e. i;a la pista r=1;
(4) Parar=1:my paratodos los aviones i € S
(4.1) Para cada pareja de aviones iy Y ixyq Si Ty, < Ty + 5,4, asignar al avion i, la pista r=r+1.
Sino asignar a iy Y iy la pista r=r. Actualizar S.
(5) Realizar paso (4) hastaque S = @

**Pasos algoritmo VND
Notacion
e N, conjunto de estructuras esntorno (neihgborhood);
ek, nimero de estructuras (neihgborhood);
e x,eslasolucion inicial;
e X, es laposible solucion encontrada;

Algoritmo 13. VND**

(1) Seleccionar un conjunto de estructuras entorno Ny, k = 1,2, ..., kpmax
(2) Encontrar una solucién inicial x
(3) Repetir hasta que no haya mejora
(3.1) Asignar k:=1;
(3.2) Repetir hasta que k=k,, 4
Exploracion del “vecindario”: encontrar el mejor vecino X” de X. (x” € Ny (x))
Mover 0 no, si la solucion xX” es mejor que x, asignar x = xy k =1, sino k := k +
1

Notacion:
e N, conjunto de estructuras entorno
ek, nimero de estructuras entorno
e x,eslasolucion inicial;
e X, es laposible solucién encontrada;

Algoritmo 14. VNS***

(1) Seleccionar un conjunto de estructuras entorno Ny, k = 1,2, ..., k;qx que serén utilizadas
para la busqueda;
(2) Encontrar una solucién inicial x, y una condicién de stop
(3) Repetir hasta que se cumpla la condicién de stop
(3.1) Asignar k:=1;
(3.2) Repetir hasta que k=k, 4
- Shaking: generar un punto x” aleatorio en el k-esimo entorno de x(x” € N, (x))
- Busqueda local: aplicar algin método de busquedalocal con x"como solucion
inicial, denotar el 6ptimo local como x.
- Mover o no: siel optimo local es mejorca que el original, moverse (x = x), y
continuar la bisqueda con N; y k:=1; sino asignar k:=k+1.

4.3. Software

Existe un nimero de software disponible para dar soporte a la gestion de aviones en el
aeropuerto. Estos sistemas incluyen, en parte, modulos para programar los aterrizajes y

despegues. Los mas utilizados son:
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e COMPAS (en Frankfurt). Coge una heuristica inicial para determinar la secuencia y
aplica un procedimiento de enumeracién designado a eliminar los conflictos de los
tiempos de separacion.

e OASIS utiliza un procedimiento de busqueda basado en A*.

e CTAS (Dallas Fort Worth). Es el mas extendido. Contiene dos médulos dirigidos al
problema considerado de secuencia de aterrizaje de aviones.

a) Maddulo de secuencia y programacion, el cual:
i) Secuencia el aterrizaje de aviones en una pista utilizando una heuristica
constructiva simple basada en la fusion de secuencias parciales
ii) Programa utilizando la siguiente expresion: STA=max[STA of previous plane
+ separation time, earliest posible landing time]

b) Moddulo de asignacion de pista

4.4,  Conclusiones

Aungue muchos articulos de investigacion sobre el ALSP se han publicado durante las Gltimas
tres décadas, no se han desarrollado métodos que hayan sido implementados. Las razones
pueden residir en que los métodos puedan suavizar o descartar restricciones operacionales
criticas, que los algoritmos necesiten tiempos de ejecucion poco razonables, que estudien
entornos estaticos en lugar de entornos dindmicos, que se ignoren los requisitos de varios
stakeholders, o dependan de caracteristicas de un aeropuerto especifico. Estudios existentes
generalmente consideran algunas de las restricciones mas comunes y obvias, mientras ignoran

las restricciones operacionales que se pueden observar del trabajo diario de los controladores.

Por consiguiente, se espera que se puedan encontrar soluciones para que puedan ser usadas por
los controladores aéreos. Ya que el problema es complejo (es un problema NP-hard) y requiere
de requisitos de varios stakeholders, los métodos con heuristicas multi-objetivo parecen ser mas
apropiados que no aquellos métodos con un Unico objetivo, como la programacion dinamica,

que suelen resultar mas exigentes desde un punto de vista computacional.
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5. Andlisis de los métodos de optimizacién Multi-objetivo existentes
5.1.  Optimizacion Multi-Objetivo

El proceso de optimizar simultineamente un conjunto de funciones objetivo se llama

Optimizacion Multi-Objetivo. Por lo general un problema Multi-Objetivo se define como:

K ntmero de funciones objetivo

J ntmero de restricciones desigualdad
L numero de restricciones igualdad

N ntmero de variables de decision x;
g vector de restricciones desigualdad
h vector de restricciones igualdad

x € X vector de variables de decision

F vector de funciones objetivo

Minimize F(x) = [F(x),Fy, ..., Fx (x)]"
subjectto gj(x) <0,j=12..]

() =0, [=12..L

Generalmente, no hay una Unica solucién global 6ptima para este tipo de problemas, sino un
conjunto de soluciones alternativas. Estas soluciones son Optimas en el sentido de que en el
espacio de bisqueda no hay mejores soluciones cuando se consideran todos los objetivos. Se las

conoce como soluciones Pareto-6ptimas.

Un punto x* € X es Pareto-6ptimo si no existe otro punto, x € X ,de manera que F(x) <
F(x*),y F;(x) < F;(x*) para almenos una funcion. Es decir, un punto es Pareto-dptimo si no
hay otro punto que mejore al menos una funcidn objetivo sin detrimento de otra funcion
objetivo.

En optimizacion Multi-Objetivo se utiliza el concepto de dominacion. Una solucion x(Mse dice

que domina a otra solucién x® si se cumple que:

(1) Lasolucion x™ no es peor que x®) en todos los objetivos, esto es,
F(xM) e F(x@) vi=12,..,K
(2) La solucion x™ es estrictamente mejor que x en al menos un objetivo, esto es,

Fi(xW) < F(x®) para al menosuna t€ {1,2,...,K}
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Donde el operador < se utiliza entre dos soluciones i y j como i < j para denotar que la
solucion i es mejor que la j en un objetivo particular, y de forma similar i © j implica que la

solucion i es peor que la solucion j en dicho objetivo.

Existen tres relaciones de dominancia posibles entre dos soluciones x(® y x®: (i) la solucién

x@ dominaa x®, (ii) x( es dominada por x®, (iii) x y x® no se dominan entre ellas.

Para un conjunto finito de soluciones dado P, si se realizan todas las comparaciones posibles
entre soluciones emparejadas se obtienen cuales soluciones dominan a cuales soluciones y
cuales soluciones son no-dominadas entre ellas. Al final, se obtiene un conjunto P’ de
soluciones las cuales no son dominadas entre si. Este conjunto tiene la propiedad de dominar a
todas las demés soluciones que no pertenecen a dicho conjunto, es decir, las soluciones de este
conjunto son las mejores comparadas al resto de soluciones. Este conjunto P’ se conoce como el

conjunto Pareto-6ptimo.

5.2.  Caracteristicas de los métodos de optimizacion Multi-objetivos

Los métodos capaces de resolver problemas de optimizacion multi-objetivo se representan
mediante algoritmos multi-objetivos evolutivos (MOEAS) que presentan las siguientes ventajas|

[9]:

a) evolucionar un conjunto de soluciones no dominadas en lugar de una Unica solucidn;

b) independencia ante un problema con una estructura fuerte, como convexidad y
discontinuidad de las funciones objetivo;

¢) habilidad para buscar un espacio de gran dimension con diferentes rangos de variables
de decision;

d) habilidad para codificar variables de decisién discretas y continuas;

e) compatibilidad con técnicas de manejo de restricciones;

5.2.1. Técnicas para preservar la diversidad en el frente Pareto 6ptimo

El problema de la convergencia se basa en buscar maneras de mejorar la precision de la
aproximacion del frente Pareto-0ptimo y mantener su diversidad (Grafica 5.1.). Esto puede ser
resuelto con una clasificacion basada en la asignacion de bondad que requiere el uso de

diferentes métricas como:

a) Dominancia en profundidad que implica dividir la poblacion en diferentes frentes para
reflejar un frente de una solucion determinada.
b) Dominancia en ranking, calculada como el nimero de soluciones en las cuales una

determinada solucion es dominada.
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¢) Dominancia en contador que se calcula de acuerdo al nimero de soluciones que domina
cierta solucion.

= 1M

<= LAY h

Gréfica 5.1. Convergencia del algoritmo del frente Pareto-6ptimo

Se considera un individuo x; de la generacion t dominado por pi(t) . Su posicion en el ranking de

individuos viene dada por:

rank (x;,t) =1+ pi(t)
A todos los individuos no-dominados se les asigna rank 1 (Gréafica 5.2). Establece que el
individuo etiquetado con el 3 en la figura es peor que el individuo etiquetado con el 2, ya que
este Ultimo se encuentra en una region en la que la compensacion entre funciones objetivos esta

peor descrita por los individuos restantes.

f2

fi
Gréfica 5.2 Clasificacion soluciones Multi-Objetivo

La dominancia en profundidad, permite evitar la deriva genética del algoritmo, el cambio en la
frecuencia relativa con la cual los alelos ocurren en una poblacion, que aparece debido a errores
estocasticos en el proceso de seleccion. La convergencia del algoritmo al frente Pareto-6ptimo

obtenido como resultado de aplicar dicho procedimiento se muestra en la Grafica 5.2.

-42-



Optimizacién Multi-Objetivo de la Secuencia de Aterrizaje de Aviones

Los procesos de dominancia en ranking y profundidad permiten al algoritmo tratar de igual

forma todas las soluciones no-dominadas, lo que conlleva a una mejor convergencia.

5.2.2. Clasificacion basada en asignacion de bondad para mejorar la convergencia de

los algoritmos.
La cuestion de la preservacion de la diversidad esta estrechamente relacionada con la
incorporacién de informacién de la densidad en el proceso de seleccion. Las técnicas pueden ser

clasificadas de acuerdo a las categorias de técnicas estimacion de densidad estadisticas.

Fitness sharing. Esta técnica promociona las soluciones de las regiones menos pobladas en el
espacio de busqueda (Gréfica 5.3.). Define el entorno de la solucidn i en términos de la sharing
function sh(d;;), la cual toma la distancia d;; a otra solucion j como argumento. En la practica,

el tamafio del entorno llamado nicho se controla por la distancia o, gre-

Al principio, el recuento de soluciones del nicho localizadas en el mismo nicho se calcula como
la suma de los valores de las sharing functions. Representa la densidad estimada para la
solucion i. Después, el shared fitness 1; de la solucién i se calcula como el fitness dummy v';
obtenido en el proceso de clasificacion y disminuido proporcionalmente al recuento de

soluciones del nicho que comparten en el mismo entorno:

Y’

Vi Yjeish(dij)

Donde la distancia normalizada entre dos soluciones d;; se mide utilizando el genotipo
(distancia Hamming) o fenotipo (distancia Euclidiana) de cualquiera de las dos soluciones, y la

sharing function sh(d;;):

a
1- dij sid;; < o

Sh(dij) ={ Osnare ’ ij share
0, caso contrario

Donde « es un factor de ajuste.
Los inconvenientes de esta técnica incluyen la necesidad de especificar el tamafio del nicho

Oshare» 85 cOMo el tiempo requerido para computar los valores de shared fitness.
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Gréfica 5.3. Representacion gréafica de la técnica de fitness sharing

Grid-base niching. Esta técnica se basa en dividir el espacio objetivo en cuadrados y evaluar la
densidad alrededor de una determinada solucion contando el nimero de soluciones en el mismo
cuadro de la cuadricula (Grafica 5.4). Adicionalmente, el tamafio del nicho a4 S€ utiliza para
determinar el tamafio del cuadro. Esta caracteristica hace que esta técnica sea similar a la técnica

de fitness sharing.

5 D i : :
e b e 2 olutions in

i : E ; the same square
LN E E E
. : ;
£ : . :
3 AR N |
v i i i ®
<-max _f]'

Gréfica 5.4. Representacion gréfica de la técnica Grid-base niching

Clustering. Esta técnica categoriza las soluciones mediante las medias de la medida de las
distancias Euclidianas entre ellas. Primero, a cada solucién de una poblacion se le asigna a un
cluster separado. Después, se calcula la distancia Euclidiana entre todos los pares de soluciones.
Finalmente, los cluster con las menores distancias se fusionan para formar un clister mayor. Se
ha probado que esta técnica puede producir una amplia diversidad de frentes Pareto-6ptimos,
pero requiere un tiempo de ejecucion adicional para formar los clisteres en cada iteracion del

algoritmo.
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Crowding. Esta técnica mide la distancia normalizada entre dos soluciones cercanas a cada lado
de la solucion a lo largo de cada uno de las funciones objetivo. Estas distancias se resumen en el
resultado de distancia crowding para una solucién. Por lo tanto, una densidad se representa
como la aglomeracion de una region alrededor de una determinada solucion (Gréfica 5.5). Si
una solucién proporciona el mejor valor conocida para cualquier funcién objetivo, entonces su
distancia crowding se establecera como infinito. Las soluciones con mayores distancias
crowding indican regiones menos aglomeradas. Esta técnica es computacionalmente mas rapida
que las técnicas de fitness sharing y clustering, pero la diversidad del frente Pareto-6ptimo por

lo general es peor.

“=min
®

- Mg J|I"‘!

Gréfica 5.5. Representacion gréfica de la técnica crowding

k-th nearest neighbour method. Este método representa la densidad como una funcion de

cambio de distancias entre soluciones determinada entre sus vecinos mas cercanos. De esta
forma, las distancias de una solucién determinada a otras soluciones de definen en el espacio
objetivo, y se ordenan en orden descendente. El primer individuo de la lista contiene la distancia
a la solucion mas cercana. Con el objetivo de mantener la diversidad del frente Pareto-6ptimo,
el valor k es predefinido. De esta forma, la densidad de una determinada solucién se calcula

como la inversa de la distancia k-ésima méas un valor reciproco.

5.2.3. Influencia de los mecanismos de seleccién en la convergencia de los algoritmos

El mecanismo de seleccién en un algoritmo evolutivo multi-objetivo influye en el ndmero de
selecciones para emparejamiento y en el reemplazo para cada solucion de acuerdo a su fitness.
De hecho, controla la convergencia del algoritmo en el frente Pareto-Optimo. Generalmente, la
seleccion se lleva a cabo en dos pasos, primero todas las soluciones se clasifican basandose en

la relacién de dominancia y luego esta clasificacion se refina utilizando la técnica de nicho.

Normalmente, los mecanismos de seleccion que se implementan son:
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Seleccion fitness-proportionate. Este mecanismo utiliza el muestreo de la “rueda de la ruleta” de
manera que el fitness de cada cromosoma es proporcional a una porcion de la “rueda de la
ruleta”, esto se traduce en que los cromosomas mas aptos obtienen una seccién mayor a aquellos
que son menos aptos. Para seleccionar los cromosomas con mejor fitness para cruzar, la rueda se
gira N veces, donde N es el tamafio de la poblacién. En cada giro, se elige al individuo que
tenga la seccion en la que la ruleta se ha parado. Este mecanismo se tiende a combinar con la
técnica de fitness sharing. Este tipo de seleccién causa una prematura convergencia debido a
que la presion selectiva de los mejores cromosomas de una determinada poblacion es mas alta
que la presion de peores cromosomas. Esto da como resultado la bisqueda de un frente Pareto-
optimo en una regién local y puede llevar al estancamiento en la region que esta lejos del

verdadero frente.

Seleccion binary tournament. Para seleccionar un progenitor se eligen de forma aleatoria dos
soluciones de la poblacidn. Una vez obtenidas las soluciones, se genera un nimero aleatorio en
el intervalo [0,1] para compararlo con un parametro limite. Para seleccionar un progenitor para
cruzar, se comparan los factores de las soluciones obtenidas de forma aleatoria, la comparacion
se realiza respecto al fitness y la diversidad del entorno crowding. Aquella solucién que tenga
un mejor fitness se selecciona como progenitor, en el caso en el que el fitness sea igual para
ambas soluciones, se compara el factor de diversidad del entorno. La seleccion binary

tournament proporciona una mejor convergencia que la seleccion fitness-proportionate.

5.2.4. Mecanismos elitistas para conservar soluciones no dominadas

Los mecanismos elitistas se utilizan para prevenir que se pierdan las soluciones no-dominadas.
La forma en la cual se guardan las soluciones de una iteracion a otra del algoritmo evolutivo se

define mediante estrategias elitistas. Las estrategias utilizadas mas comunes son:

Estrategia de Seleccion (u 4+ A) que combina poblaciones de padres de entre el mating pool para
seleccionar la mejor combinacién de soluciones de la poblacion mixta. La desventaja de esta
estrategia es que las soluciones no-dominadas nuevas no se pueden adaptar a la siguiente

poblacién en el caso que las soluciones hijo son dominadas por las soluciones padre.

Estrategia de almacenamiento externo donde las soluciones no-dominadas encontradas a lo

largo del proceso de optimizacion se almacenan es una poblacion secundaria llamada archivo
externo para mejorar la distribucion del frente Pareto-6ptimo. El archivo externo se actualiza
con nuevas soluciones que dominan las actuales. La gran desventaja de este mecanismo elitista
es el continuo crecimiento de externo archivo. De hecho, puede reducir la presion selectiva y
ralentizar la blsqueda, ya que las soluciones no-dominadas participan en el proceso de
seleccion. Para enfrentarse a esta dificultad, los miembros del archivo se pueden comparar
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respecto a la concurrencia de su entorno y aquellos localizados en un entorno mas concurrido
pueden ser eliminados del archivo externo.
5.3.  Analisis de los algoritmos Multi-Objetivos
Los Algoritmos Evolutivos Multi-Objetivos (Tabla 5.1) comparten propiedades de adaptacién

mediante un proceso iterativo que acumula y amplifica el beneficio mediante prueba y error.

Algoritmos Evolutivos Multi-

Objetivo
< T | 4
- IR IR
Técnicas S| z|1Z1%51%5| =z 8
Mecanismos de | Dominancia profundidad X X
asignacion de  fitness | Dominancia contador X |X
basados en el ranking Dominancia ranking X X X
Fitness sharing X X
Mecanismos de | Grid-based niching X X
preservacion de la| Clustering X
diversidad Crowding X
k-th nearest neighbour method X
Fitness-proportionate X |X
Mecanismo de selecciéon | Binary tournament X X X |X X
No-elitista X X |X
Mecanismos de elitismo | Almacenamiento externo X X X
(ut1) X

Tabla 5.1 Resumen de los algoritmos evolutivos mas conocidos

Las soluciones candidatas representan miembros de una poblacién virtual que intentan
sobrevivir en un entorno definido por las funciones objetivo especificas. En cada caso, el
proceso evolutivo refina la capacidad adaptativa de la poblacion de las soluciones candidatas en
el entorno, generalmente utilizando representaciones de mecanismos evolutivos como

combinacion genética y mutacion.

5.3.1.  Multi-Objective Genetic Algorithm (MOGA)

El algoritmo MOGA [10] fue uno de los primeros algoritmos evolutivos multi-objetivos
introducido por Fonseca y Fleming. Este algoritmo es bastante similar al algoritmo genético
debido a la seleccion de fitness-proportinate, un punto de crossover Unico y una mutacion bit-

wise.

En el MOGA se compara la poblacién entera. A los individuos no-dominados se les asigna
Rank =1y a los demas individuos se les asigna un valor de Rank comparando la no-dominancia

entre ellos de la siguiente manera: para un individuo se busca el nimero de individuos que lo
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dominan de forma estricta. Luego, al final del proceso de clasificacion, podria haber un nimero
de puntos que tengan en mismo Rank, entonces el procedimiento de seleccion utiliza estos

rankings para seleccionar o eliminar estos puntos del mating pool.

5.3.2.  Non-Dominated Sorting Genetic Algorithm (NSGA)

El objetivo del algoritmo NSGA [11] es mejorar la capacidad de adaptabilidad de la poblacion
de las soluciones candidatas al frente Pareto limitadas por un conjunto de funciones objetivo.
Asigna valores fitness respecto al frente no-dominado de una solucion particular utilizando un

procedimiento de asignacion de fitness basado en la dominancia en profundidad.

Antes de que se lleve a cabo la seleccidn, la poblacidn es clasificada en base a la no-dominacion
de los individuos. Primero se identifican los individuos no-dominados presentes en la poblacion.
A continuacién, todos estos individuos pasan a constituir el primer frente no-dominado de la
poblacion y se le asigna un valor de fitness dummy elevado, este mismo valor es asignado para
que el potencial de todos los individuos no-dominados sea equitativo. Con tal de mantener la
diversidad de la poblacion a los individuos se les aplica un método de sharing. Estos métodos
de sharing realizan una seleccién utilizando valores de fitness degradados que se obtienen
dividiendo el valor original de fitness de un individuo entre la cantidad proporcional al nimero
de individuos a su alrededor. Después estos individuos no-dominados son ignorados
temporalmente para procesar el resto de la poblacién de la misma manera para identificar los
individuos para un segundo frente Pareto-Optimo. A este nuevo conjunto de puntos se les asigna
un valor de fitness dummy inferior al valor del fitness del método sharing del frente anterior.

Este proceso se continda hasta que la poblacién entera es clasificada en frentes diferentes.

Esta poblacion es reproducida de acuerdo a los valores de fitness dummy. Los individuos del
primer frente, al tener el valor de fitness maximo, siempre tendran mas copias que el resto de
poblaciones. Con esto se pretende buscar regiones no-dominadas por frentes Pareto-6ptimos.
Esto resulta en una rapida convergencia de la poblacion hacia regiones no-dominadas y el

sharing ayuda a que se distribuya sobre esta region.

5.3.3.  Non-Dominated Sorting Genetic Algorithm 11 (NSGA-II)

El NSGA-II [12] es una version del NSGA. EI NSGA-II introduce mejoras en aquellos puntos
débiles del NGSA que son:

1) Complejidad computacional elevada de la ordenacion de las soluciones no-dominadas.
El algoritmo de ordenacion no-dominado en el caso de poblaciones grandes es muy caro

dado que la poblacidn necesita ser ordenada en cada iteracion.
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2) Falta de elitismo. Aplicar técnicas elitistas podria acelerar el rendimiento del algoritmo
genético de manera significante ademas de ayudar a prevenir la perdida de soluciones
buenas una vez estas han sido encontradas.

3) Necesidad de especificar el pardmetro de sharing ogp,4.-.. LOS mecanismos tradicionales
para garantizar la diversidad en una poblacion y obtener una amplia variedad de
soluciones equivalentes dependen del concepto sharing. EI mayor problema es que
requiere la especificacion del pardmetro ogpqre Y aunque se ha trabajado en la
dinamizacion del tamafio de este pardmetro, es preferible un mecanismo para la

preservacion de la diversidad sin parametros.

Con tal de ordenar una poblacién de tamafio N de acuerdo al nivel de no-dominacién, las
soluciones de una misma poblacidn se comparan entre si para identificar las soluciones no-
dominadas. En este punto, se identifican los individuos del primer frente no-dominado, estas
soluciones son temporalmente ignoradas para encontrar el segundo frente, y asi sucesivamente.
Primero para cada solucién, se calculan dos identidades: (i) n;, nimero de soluciones que
dominan a la solucioén i; (ii) S;, conjunto de soluciones en la que la solucion i domina y se
identifican aquellos puntos que tengan n; = 0 y se incluyen en una lista F;, que representa el
frente actual. Para cada solucion en el frente actual se visita cada miembro j en el conjunto S; y
se reduce su n; una unidad. Si al hacer esto, algin miembro j n; = 0 se afiade a una nueva lista
H. Cuando todos los miembros del actual frente han sido comparados, se declara a los miembros
de la lista F; como miembros del primer frente y se continda el proceso con el nuevo frente H

como frente actual.

Para obtener una estimacion de la densidad de las soluciones del entorno de un determinado
punto de la poblacién se coge la distancia media entre los dos puntos en cualquier lado del
punto a lo largo de los objetivos. Esta cantidad i ;;¢qnce Sirve como un estimador del tamafio del

hipercubo méas grande que cerca el punto i sin incluir ningln otro punto de la poblacion.

El procedimiento de comparacion de la concurrencia se utiliza para garantizar la diversidad de
las soluciones no-dominadas se El operador para comparar la concurrencia =,, guia el proceso
de seleccion en las diferentes fases del algoritmo hacia un frente Pareto-0ptimo uniformemente
extendido. Se asume que cada individuo i en la poblacién tiene dos atributos: (1) clasificacion
de no-dominancia i,4,, Y (2) distancia local de concurrencia i ;stqnce €ON 10s que se define un

orden parcial tal que:

l 2n] St (lrank < ]rank) 0 Sllygnk = Jrank Y ldistance = Jdistance
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Esto es, entre dos soluciones con diferente valor de ranking se prefiere el de menor valor. En
caso contrario, si ambos puntos pertenecen al mismo frente, se prefiere aquel situado en la

regién menos concurrida.

5.3.4. Niched-Pareto Genetic Algorithm (NPGA)

En el NPGA [13] dos candidatos para la seleccion son elegidos de forma aleatoria de la
poblacion y un conjunto de individuos también se elige de forma aleatoria para comparar la
dominancia de los individuos. Los candidatos se comparan con cada individuo del conjunto. Si
un candidato es dominado por el conjunto de comparacion, y el otro no, el Gltimo es
seleccionado para la reproduccion. Si ninguno de los dos son dominados por el conjunto de

comparacion se implementa la técnica Grid-based niching.

Este algoritmo utiliza el mecanismo de fitness sharing para distribuir la poblacion a través de un
nimero determinado de cimas (peaks), en el que cada region recibira una fraccion de la
poblacién dependiendo de la altura de la cima (peak’s height). Para obtener esta distribucion,
sharing pronostica la degradacién del fitness individual de un objetivo F; por el recuento de
nichos (niche count) m; calculada para un individuo. Esta degradacién se obtiene dividiendo el

fitness de un objetivo entre el recuento de nichos para encontrar el shared fitness:

El recuento de nichos m; es una estimacién de la concurrencia del entorno (nicho) de un

individuo i. Esta se calcula para todos los individuos de la poblacién:

m; = Shld[i, 1]

JEP

Donde dJi, j] es la distancia entre dos individuos y Sh[d] es la funcidn sharing. Normalmente

se utiliza la funcion sharing triangular donde:

1-—

Sh[d] — , d< Oshare

Oshare

0, a> Oshare

AQqui g4pqre €5 €l radio del nicho, estimacion de la separacion minima deseada o esperada entre
soluciones ganadoras fijadas por el usuario. Individuos con una distancia menor a og4re S€
degradan el fitness entre si ya que se encuentran en el mismo nicho. De esta forma la
convergencia ocurre dentro de un mismo nicho, pero se evita la convergencia de la poblacion

entera.
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5.3.5. Strength Pareto Evolutionary Algorithm (SPEA)

El objetivo del SPEA [14] este algoritmo es localizar y mantener un frente de soluciones no
dominadas, en el mejor de los casos un conjunto de soluciones Pareto éptimas. Esto se
consigue utilizando un proceso evolutivo para explorar el espacio de busqueda, y un proceso de
seleccion que utiliza una combinacion del grado en el que una solucion candidata es dominada y
una estimacion de densidad del frente Pareto como una asignacién de fitness. Un archivo del
conjunto no dominado se mantiene separado de la poblacién de soluciones candidatas utilizadas

en el proceso evolutivo, otorgando una especie de elitismo.

El algoritmo SPEA utiliza una poblacion regular y un archivo (conjunto externo). Empieza con
una poblacion inicial y un archivo vacio. Primero, todos los individuos no-dominados de la
poblacion se copian al archivo y los individuos dominados o duplicados se eliminan del archivo
durante esta actualizacion del archivo. Si el tamafio del archivo actualizado excede un limite
predefinido, se eliminan miembros del archivo utilizando una técnica de clustering que
mantiene las caracteristicas del frente no-dominado. Después, a los individuos de la poblacion y
del archivo se les asigna un valor de fitness v; a cada solucion i del archivo externo y su fuerza
St;:

n;
N+1'

Sti =

Donde n; es el nimero de soluciones dominadas por i en la poblacién P y N su tamafio. En el
siguiente paso, se evalla el fitness i; para cualquier solucion j en la poblacion P como la suma

de las fuerzas en el archivo externo (ExtA) que débilmente dominan j:

lnbi =1 + Z Sti
iEEXtA i)

La fase de seleccion para el cruce de la unién de la poblacion y el archivo se selecciones
mediante binary-tournaments. Por Gltimo, después de la combinacién y mutacion la poblacion

antigua es reemplazada por la nueva poblacion hija resultante.

Hay algunos puntos débiles en este algoritmo. En la asignacién de fitness los individuos que son
dominados por los mismos miembros tiene un valor de fitness idéntico. Esto implica que en el
caso en el que archivo contiene un Unico individuo, todos los miembros de la poblacion tendran
la misma clasificacion independientemente de si se dominan entre ellos o no. Como
consecuencia, la presién selectiva disminuye sustancialmente y en este caso en particular el
SPEA se comporta como un algoritmo de blsqueda aleatorio. Otro punto débil es la estimacion
de densidad, si varios individuos de la generacion en curso son indiferentes, es decir no se

dominan entre ellos, se puede obtener muy poca o0 no obtener informacion acerca del orden
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parcial de las soluciones o en cuento a la relacion de dominancia. Por Ultimo, el truncamiento
del archivo, ya que aunque la técnica de clustering es capaz de reducir el conjunto no-dominado

sin destruir sus caracteristicas, puede perder soluciones externas.

5.3.6. Strength Pareto Evolutionary Algorithm Il (SPEA-I1I1)

El algoritmo SPEA constituye la base para el algoritmo SPEA-II [15]. Este dltimo fue disefiado
para corregir los problemas del SPEA anteriormente mencionados. En contraste con el SPEA, el
SPEA-II utiliza una estrategia de asignacion de fitness que incorpora informacion de densidad.
Ademas, el tamafio del archivo es fijo, es decir el archivo se completa con individuos no-
dominados. En cambio en el SPEA el tamafio del archivo varia con el tiempo. Ademas, la
técnica clustering que se utiliza cuando el frente no-dominado excede el limite del archivo ha

sido reemplazada por un método alternativo que tiene caracteristicas similares.

En el SPEA-II el valor de la fuerza se estima para la poblacion y las soluciones del archivo
externo. Luego, se calcula el fithess dummy como la suma de las fuerzas de las soluciones que

dominan a la actual:

ll)i =1 + Z Sti
iEExtAU P,ixj

A cada individuo i del archivo P, y la poblacion P, se le asigna un valor de fuerza st;, que

respresenta el nimero de soluciones que dominan:
st = |{jlj € Pe+ P Ai >}

Finalmente, afiadiendo la densidad D(i) al fitness aparente (raw fitness) R(i) de la solucion i

se obtiene el fitness de i.

R() = Z st;

iEP+Py, j>i
fitness = R(i) + D()

La estimacion de densidad se basa en el método del k-th nearest neighbour method, donde la

densidad en cualquier punto es una funcién de la distancia a la k-ésima solucion mas cercana:

D) =
@ ok +2

L

Donde k = VN + N, que es el tamafio de la muestra y o es la distancia a la k-ésima solucion.
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5.3.7. Pareto-Archived Evolutionary Strategy (PAES)

Inicialmente PAES[16] se desarroll6 como un método de bulsqueda local para encontrar
soluciones problema al del area de enrutamiento de telecomunicaciones. Mas adelante se
desarroll6 para comprobar si podia encontrar soluciones para un planteamiento multi-objetivo

del mismo problema.

Este algoritmo lo componen tres partes: el generador de soluciones candidatas, la funcion de
aceptacion de soluciones candidatas y el archivo de soluciones no-dominadas. El generador de
soluciones candidatas es similar a una mutacion aleatoria mediante hillclimbing, este mantiene
una unica solucion y en cada iteracion produce un Unico nuevo candidato mediante mutacion
aleatoria. Ya que el objetivo de la blsqueda multi-objetivo es encontrar una
distribucion/conjunto de soluciones, PAES necesita proporcionar un archivo de soluciones no
dominadas para mantener un ndmero limitado de soluciones cuando éstas son encontradas por el
hillclimber. Este algoritmo para elegir entre una mutacion y la dltima solucion actual, utiliza el
archivo, que proporciona una fuente natural y conveniente de la cual obtener conjuntos de

comparativos.

El PEAS utiliza un mecanismo de preservacion de la diversidad basado en la divisién recursiva
del espacio objetivo d-dimensional, el mecanismo de grid-based niching. Cuando cada solucién
es generada, se define su posicion en la “cuadricula” del espacio objetivo. Asumiendo que el
rango de espacio se define en cada objetivo, la localizacion requerida puede ser encontrada
bisecando el rango de cada objetivo y buscar en que mitad reside la solucion. Esta recursiva
subdivision del espacio y asignacion de localizacion se lleva a cabo mediante un método
adaptativo que elimina la necesidad de un pardmetro para el tamafio del nicho. Este método,
calcula el rango del espacio objetivo de las soluciones actuales en el archivo y ajustando la
“cuadricula” para que cubra todo el rango y luego las localizaciones de cada cuadricula son
recalculadas.

En este algoritmo no es necesaria una fase de seleccion ya que Unicamente hay una solucién
actual, por lo tanto toda la complejidad reside en la aceptacion/rechazo de la solucién mutada y

en la actualizacién del archivo.

54. Conclusiones

De todos los métodos analizados en esta apartado, se han seleccionado los algoritmos NSGA y
NSGA-II para lleva a cabo la demostracién y posterior analisis de las capacidades técnicas de
los algoritmos multi-objetivo evolutivos (MOEASs). Particularmente se ha seleccionado el
NSGA.11 ya que en la mayoria de los casos este algoritmo es capaz de encontrar un conjunto se

soluciones y una mejor convergencia mejores de la solucién aproximada del verdadero frente
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Pareto-optimo comparado con los algoritmos PAES y SPEA. EI NSGA también se ha
seleccionado como primera version del NSGA y asi poder analizar las mejoras y diferencias

entre ambas versiones.
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6. Desarrollo de métodos multi-objetivo de secuencia de aterrizaje

En esta secciéon se han desarrollado dos métodos, el NSGA y el NSGA-II explicados en la

seccion 5. De cada algoritmo se presenta su diagrama de flujo, el pseudo-cédigo propuesto y
un ejemplo del funcionamiento del algoritmo.

Inicializar poblacién
gen=0

6.1. NSGA

|
"

Calcular Fenotipo
(descodificar Genotipo)

l

Calcular tiempos de
aterrizaje de cada avién
para cada cromosoma

]

Calcular las desviaciones
de tiempo entre el tiempo
de aterrizaje y el tiempo
objetivo

'

Comprobar el cumplimiento
de las restricciones (separacion
entre aterrizajes consecutivos
y ocupacién de plsta)

]

Calcular el valor de
1as funciones objetivo
para cada cromosoma

no Identificarlos

&
clasificada? no-dominados

l

si
Seleccion por torneo

Asignar valor
dummy de fitness
Crossover o l
reproduccion (en
gase al valo'r Aplicar fitness
dumy) sharingen el
frente actual

[ ] :

frente = frente +1

Sustituir la poblacién

de progenitores por
la poblacién Hijos (poblacién
iniclal siguiente generacion)

gen = gen+1 gen < genhax

no

lustracion 6.1. Diagrama de flujo NSGA 55
55 -



6.1.

Optimizacién Multi-Objetivo de la Secuencia de Aterrizaje de Aviones

1. Pseudo-cédigo NSGA

Nomenclatura

K

Pr _op
F;

fx
Zk

Z]r(nax

Z]v(mn
dyy

Oshare
9

Imax
nr

Pcross

Pmut
t;

Inicio

ntmero de funciones objetivo
tamafio de la poblacion
poblacion inicial
poblacion de la generacion g
Hijos
progenitores de inice i
conjunto de individuos seleccionados para elegir progenitores
frentes de soluciones no-dominadas i = 1..n donde n es el nimero de frentes no-
dominados de la generacion
fitness de una solucion
funcion objetivo
valor méximo de la funcion objetivo z, encontrada hasta el momento durante la
bisqueda
valor minimo de la funcio objetivo z; encontrada hasta el momento durante la bisqueda
distancia entre dos individuos en un mismo frente
distancia maxima permitida entre dos miembros para que pertenenzcan al mismo nicho
nimero de generacion
nimero maximo de generaciones
nimero generado aleatoriamente que sirve para realizar la reproduccion. ElI nimero
pertenece al intervalo [0, longitud_cromosoma]
probabilidad de reproduccion de un individuo
probabilidad de mutacién de un individuo, en este caso se fija en el 1%.
tiempo aterrizaje del avion i

g=0
Generar aleatoriamente una poblacion F,

Mientras (9 < gmax)

Desviaciones (F,)

Restricciones (F;)

Funciones objetivo (F)

Ordenacion NoDominada ()

Para cada (F; € F, ) hacer
Diversidad (F;)

Fin Para

j=0

Mientras (|[H| < np)
Seleccion (Fy)> Pry, Pr;
Crossover (Pry , Pry) =2 (Hy, Hy)
Mutacion (Hy, Hy) 2 (Hy, Hy)

Hy,Hy = Pyyy
j=j+1
Fin mientras
g=g+1

Fin Mientras

Codificacion de cromosomas

La representacion fenotipica de un cromosoma es:
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Avionl Avion2 Avion3 AvVionA

Cromosoma 1
ti ti td ti
Avionl Avion2 Avion3 AvionA

Cromosoma 2
tf t3 t ty
Avionl Avion2 Avion3 AvVionA

Cromosoma N
ty ty ty ty

Tabla 6.1. Representacion fenotipica de los cromosomas

Los cromosomas estan formados por alelos, en este caso cada alelo representa un avion y el
tiempo de aterrizaje estimado. El tiempo de aterrizaje de cada avion viene dado en minutos, es
decir, se convertirdn las horas en minutos, empezando desde las 00:00 horas que seran O
minutos, y acumulativamente, por ejemplo, las 01:30 equivaldran a 90minutos.

Los tiempos de aterrizaje de cada avion se codifican de forma binaria, es decir, representar cada
cromosoma como uan cadena binaria. A cada 1 o 0 se le Ilama gen. Por ejemplo, el decimal 4 se
refiere a la cadena binaria 100, si se necesita codificar dos variables que tienen valores
comprendidos entre [0,15], entonces un cromosoma debe contener suficientes genes para la
codificacion, en este caso se necesitarian 8 genes ya que 15 representa la cadena binaria 1111 y
al tener dos variables el cromosoma quedaria 1111 1111.

Pdngase el caso que se tiene 3 aviones y para cada avion se debe definir su tiempo de inicio de
aterrizaje. Si se codifica el tiempo entre 0 y 1440 minutos (1440 minutos = 24 horas) para cada
avion se deberia reservar 11 genes. En el caso de los 3 aviones, se necesitarian 33 genes por
cromosoma, en el caso de 10 aviones se necesitarian 110 genes etc. Con esta codificaciéon el
algoritmo seria menos eficiente, porque necesitaria explorar muchas combinaciones de 0s y 1s.
Por eso es importante encontrar una manera eficiente para codificar los tiempos de inicio de
aterrizaje. En los algoritmos NSGA y NSGA-II que se detallan a continuacion se utiliza el
siguiente método:

1) Primero se define una ventana temporal de 15 minutos. Por ejemplo, a las 12:00 se
buscan los aviones que deberian llegar entre las 12:00 y las 12:15.

2) Segundo, se codifican tiempos delta 6cmmosomaavi0nxpara cada avion. Por ejemplo,
tienen que aparecer 3 aviones, avion Al a las 12:01, avion A2 a las 12:03 y avion A2 a
las 12:03. El algoritmo busca los tiempos de aterrizaje de los 3 aviones: Al=
12:01+6,,, A2=12:03+8,, y A3=12:03+8,;. Es decir, en lugar de codificar los tiempos
de aterrizaje, se codifican los valores § que varian para cada avion, por ejemplo, entre el

intervalo [0,30] minutos. En este caso, Unicamente se deberia reservar 5 genes para cada
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avion. A modo de explicacion, siguiendo con el ejemplo de los 3 aviones, un
cromosoma podria ser el siguiente: 00001 01001 00011, que se refiere a: Al empieza a
aterrizar a 12:01+1=12:02, A2 empieza a aterrizar a 12:03+9=12:12 y A3 a
12:03+3=12:06. Una vez calculados los tiempos de aterrizaje para cada avion de cada
cromosoma, se deberd comprobar el cumplimiento o incumplimiento de las
restricciones especificadas en el apartado “Planteamiento del problema” y en el caso de

no cumplirlas se penalizara al cromosoma.

Ordenacion basada en no-dominancia

Asignar

i=1 TR =P

Mientras ( TP, # @)
Fi = l

Identificar soluciones no-dominadas en TF, y asignarles F;

Asignar TR, = TR, — F;

i=i+1

Fin Mientras
Para (cada x € Fy)

Asignar f,=valordummy |f, € F; > f, €F, > > f, €EF,
Fin Para

Diversidad

Para (cada x,y € F)
Calcular distancia d.,

d"yzjz DINC e
X,YEF; &= keK

Calcular el sharing de cada frente calculando el valor de la funcién sharing :

dyy

2 .
Sh(dxy) = {1 - (Ushare) » St de < Oshare
0,

caso contrario

Calcular el contador del nicho basandose en las distancias anteriormente calculadas.

ney, = Z sh(dyy)
YEF;

Reajustar el fitness de cada solucién x:

Fin Para

_ S

ney

f'y

Seleccién por Torneo

PT1:®
PT‘2=(Z)
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Pr _op = Elegir aleatoriamente n individuos (F,)
Ordenar individuos segun f,, (Pr _op)

Pr; = mejor solucion de Pr _op

Pr _op = Elegir aleatoriamente n individuos (F,)
Ordenar individuos segun f,, (Pr _op)

Pr, = mejor solucion de Pr _op

Devolver (Pryy Pry)

Crossover o reproduccion

La reproduccion o crossover se realiza utilizando el método de cruce en un solo punto.
Aleatoriamente se elige un punto en el cual se intercambiaran los alelos entre los dos
progenitores. La reproduccién o crossover se aplica de acuerdo a la probabilidad de

reproduccion Py .

/I Punto de cruce nr

Al A3 A2 A4 A6 A5 A7

Progenitorl
’ d [ d [ d ]l dldldl4d

Al A2 A3 Ad A7 A5 A6

Progenitor2

tf t t3 t3 t3 t§ t7

Hiiol Al A3 A2 A4 A7 A5 A6
: d | g [ 4 [ & [ & | & | &
Hiio2 Al A2 A3 A4 A6 A5 A7
il I N Y 0 A -
Pry
PTZ

Generar nimero aleatorio r
Si (r < peross) hacer
Generar punto de cruce ( nr)
Intercambiar genes a partir de la posicion nr de Pry y Pr, > Hy, H,

Calcular(fy,, fu,)

Devolver (Hy, H,)
Sino hacer

Devolver (Pry, Pry)
Fin Si
Mutacion
El operador de mutacion se aplica de manera individual a cada hijo. Consiste en la alteracion
aleatoria de cada gen componente del cromosoma de acuerdo a la probabilidad de mutacion
Pmut- EN €ste caso, la representacion genotipica es binaria, por lo cual, si un gen tiene valor 0

éste se cambia a 1 y viceversa.
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Gen mutado

Hijo— [ Cromosoma [10100%0010 |

Hijo (mutado) — [ Cromosoma [1010110010 ]

Para cada( x; € H;) hacer
Generar nimero aleatorio r
Si (r < pyue) hacer
modificar t;
Fin Si
Fin Para

6.1.2. Calculo paso a paso del algoritmo NSGA

A continuacion se muestra una iteracion del algoritmo NSGA para una poblacién de 6. Los
datos son:

Llegadas
Tiempo Tiempo Tipo avién
Aparicién | Objetivo

al 610 614 H

a2 613 615 M

a3 613 615 H

a4 614 616 L

Salidas

al s 610 H

a2 s 612 M

Tabla 6.2. Datos célculos de ejemplo del NSGA y NSGA-II

Tamafio de la poblacion = 6 cromosomas
Generaci6n aleatoria de la poblacion P,

Genotipo:
al a2 a3 a4
crl 00000 01001 01100 10000
cr2 00110 01110 10011 11000
cr3 01101 00110 11101 01110
crd 01101 00001 10111 11010
crb5 10010 10100 10001 00100
cré 10111 01011 10101 11100

Tabla 6.3. Poblacion aleatoria codificada

Fenotipo (descodificacién de la poblacion). Se descodifican los tiempos obtenidos
anteriormente para después sumarlo al tiempo de aterrizaje objetivo para obtener el
tiempo de aterrizaje de cada avion.
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al a2 a3 a4
crl 0 9 12 16
cr2 6 14 19 24
cr3 13 6 29 14
crd 13 1 23 26
cr5 18 20 25 4
cré 23 11 21 28

Tabla 6.4. Poblacién descodificada
Tiempo aterrizaje:

al a2 a3 a4
crl 610 622 625 630
cr2 616 627 632 638
cr3 623 619 642 628
crd 623 614 636 640
crb 628 633 638 618
cré 633 624 634 642

Tabla 6.5. Tiempos de aterrizaje

Calcular las desviaciones temporales respecto al tiempo de aterrizaje objetivo de cada avién

para cada cromosoma

al a2 a3 a4
crl 4 -7 -10 -14
cr2 -2 -12 -17 -22
cr3 -9 -4 -27 -12
crd -9 1 -21 -24
crb -14 -18 -23 -2
cré -19 -9 -19 -26

Tabla 6.6. Desviaciones temporales respecto al tiempo de aterrizaje objetivo

Restricciones

A continuacion se comprueba si con los tiempos de aterrizaje calculado se cumplen las

restricciones se separacion y de ocupacion de pista.

Para comprobar que la se cumple la restriccion de separacion, primero se ordenan los aviones de
cada cromosoma por orden de aterrizaje, luego se calcula el tiempo al que deberian aterrizar los
aviones consecutivos al primero, y por ultimo se comprueba que el tiempo de aterrizaje sea

igual o superior al tiempo tedrico de aterrizaje de cada avion.

Restriccion de separacion de seguridad:
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Ordenacion del aterrizaje de los aviones:

crl al a2 a3 a4
cr2 al a2 a3 ad
cr3 a2 al ad a3
crd a2 al a3 a4
crb ad al a2 a3
cré a2 al a3 ad

Tabla 6.7. Ordenacidon aviones seglin tiempo de aterrizaje

Calcular el tiempo teérico al que tendria que aterrizar el siguiente avién con tal de
cumplir con la restriccion:

2° 3° 40
crl 612,62 623 628,27
cr2 612,62 628,00 635,27
cr3 620 626,27 629
cr4 615,00 624,6 639,27
cr5 619 630,62 634
cré 625 634,6 637,27

Tabla 6.8. Tiempo tedrico de aterrizaje

Comprobacion del cumplimiento o no de la restriccién. La tabla siguiente muestra si
entre aterrizajes se cumple la restriccion, si el valor es 1 se cumple la restriccion, en
caso contrario, la restriccion no se cumple.

10-20 20-30 30-4°
crl 1 1 1
cr2 1 1 1
cr3 1 1 1
crd 1 1 1
cr5 1 1 1
cré 1 -1 1

Tabla 6.9. Cumplimiento / incumplimiento restriccién separacion

Restriccion de ocupacion de pista:

Ordenacién de los aviones por uso de pista (se debe que tener en cuenta, que en este
caso también hay dos aviones que quieren salir)

10 2 [o] 30 40 50 60

crl al as_1 as_2 a2 a3 a4

¢ cr2 as 1 as_2 al a2 a3 ad
al [er3 as 1 as 2 a2 al ad a3
c |cr4 as_1 as_2 a2 al a3 a4
ul | crd as_1 as_2 a4 al a2 a3
cré as 1 as_2 a2 al a3 ad

Tabla 6.10. Ordenacidn de los aviones segun tiempo aterrizaje y despegue
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ar el tiempo tedrico de salida de pista de cada avion para que se cumpla de restriccion

de ocupacion de pista:

Comprob Tabla 6.12. Cumplimiento / incumplimiento restriccion de ocupacion de pista

acion del

1° 20 3° 40 50 6°
crl 610,92 610,63 612,72 622,83 625,00 630,83
cr2 610,63 612,72 616,92 627,83 632,00 642,83
cr3 610,63 612,72 619,83 625,00 628,75 633,92
crd 610,63 612,72 614,83 623,00 636,92 640,83
crb 610,63 612,72 618,75 628,00 633,83 638,92
cré 610,63 612,72 624,83 633,00 634,92 642,83
Tabla 6.11. Tiempo tedrico de salida de pista
10-20 20-3° 30-4° 40-50 50-6°

crl -1 1 1 1 1

cr2 1 1 1 1 1

cr3 1 1 -1 1 -1

crd 1 1 -1 1 1

cr5 1 1 1 1 -1

cré 1 1 -1 1 1

cumplimiento o no de la restriccion. La tabla siguiente muestra si entre aterrizajes se

cumple la restriccién, si el valor es 1 se cumple la restriccion, en caso contrario, la

restriccion no se cumple.

Célculo de las funciones objetivo

A continuacién se calcula el valor de cada funcién objetivo para cada cromosoma y se le asigna

el fitness segun el nimero de cromosomas que domine parcialmente. Las funciones objetivo

son:

F1 Minimizacion del coste total de la desviacion temporal de los aterrizajes de los aviones

F2 Minimizacion del tiempo total de operacion
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F1 | F2 Fitness 644 |
crl |35 |630 |4 542 \t k’
&40 7
cr2 |53 |638 3 R\\ #crl
638
cr3 |54 |6d2 |2 N sae \ \ Merz
TH A
crd |55 [640 |2 634 \\ acrs
or5 |57 638 |2 632 \ . erd
o6 |73 642 |1 630 % e
528 o @cro
Tabla 6.13. Valores F1 , F2 y fitness 0 20 40 &0 B0
Fi

Gréfica 6.1. Representacion de F1, F2 y los diferentes frentes

La gréfica anterior representa los diferentes valores de cada cromosoma y los diferentes frentes.
Una vez asignado el fitness a cada solucion, se le aplica una penalizacion en el caso que se

incumpla alguna restriccion, por cada restriccion que se incumpla se le resta una unidad al valor

de fitness.
Penalizacion | Fitness
restricciones
crl 1 3
cr2 0 3
cr3 3 1
crd 1 1
cr5 1 1
cré 2 1
Tabla 6.14. Penalizaciones de las restricciones
Diversidad

Para cada frente se debe reajustar el fitness de cada solucién segun la distancia entre soluciones

y el parametro share, cuyo valor se debe fijar.

Oshare = 0,7

Frente 1:
Unicamente hay dos soluciones, por lo tanto, el fitness de las soluciones no se modifica.
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Frente 2:
dy, sh,
cr3-cr4 0,52 0,45
cr3-cr5 1,03 0,00
cr3-cr6 1,00 0,00
crd-cr3 0,52 0,45
cr4-cr5 0,51 0,47
cra-cr6 0,99 0,00
crb5-cr3 1,03 0,00
crb-crd 0,51 0,47
cr5-cré 1,26 0,00
cré-cr3 1,00 0,00
cré-cr4 0,99 0,00
cré-crs 1,26 0,00

Tabla 6.15. Distancia crowding y sharing

Ajuste del fitness. Para cada cromosoma se ajusta el fitness en funcién del valor del contador de

nicho, que es la suma del sharing calculada anteriormente por cromosoma.

nC shared fitness
crl - 3
cr2 - 3
cr3 0,45 2,23141264
crd 0,92 1,08762835
crb 0,47 2,12185782
cré - 1

Seleccidn, reproduccién y mutacién

Tabla 6.16. Shared fitness

Para cada progenitor se eligen dos cromosomas aleatorios de la poblacién y de entre éstos se

elige aquel que tenga un mayor fitness. Para la reproduccion de dos progenitores se genera un

nimero aleatorio dentro del intervalo [0,1], si este valor es inferior a probabilidad de

reproduccion del cromosoma (P.,ss = 0,8) se realiza la reproduccion obteniendo dos hijos , en

caso contrario, los progenitores pasaran a formar parte dela poblacién de hijos. En el caso de la

mutacion, se genera un nimero aleatorio y si es inferior a la probabilidad de mutacion (P, =

0,01) se modificara dicho gen. Este proceso se debe llevar a cabo hasta que el nimero de hijos

sea igual al tamafio de la poblacion.

Seleccion
Progenitorl
crl
cr3
Progenitor 2
cr2

-65-



Optimizacién Multi-Objetivo de la Secuencia de Aterrizaje de Aviones

crd
Reproduccion
Punto de reproduccion = 3
p = 0,56 > aplicar reproduccion

crl 000po 01001 01100 10000
cr2 00110 01110 10011 11100
hijo_1 00010 01110 10011 11100
hijo_2 00100 01001 01100 10000
Seleccién
Progenitor 3
crd
cr2
Progenitor 4
cr3
cr5

Reproduccion
Punto de reproduccion = 16
p = 0.87 = no aplicar reproduccion

cr2 = hijo_3 00110 01110 10011 11100

cr3=hijo_4 01111 00110 10100 01110

Hijo_3; = Py = 0,007 (aplicar mutacion al gen 1 del hijo_3)

cr2 = hijo_3 | 10110 01110 10011 11100

Seleccion
Progenitor 5
crl
cr3
Progenitor 6
crb
cr4
Reproduccion
Punto de reproduccion = 11
p = 0.2 > aplicar reproduccién

crl 00000 01001 01100 10000
crd 10010 10100 10001 00100
hijo_5 00000 01001 00001 00100
hijo_6 10010 10100 11100 10000
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Nueva poblacién

Se sustituye la poblacion inicial por la poblacion de hijos obtenida, y ésta pasa a ser la
poblacion inicial de la siguiente iteracion.

al a2 a3 a4
crl 1 00000 01110 10011 11100
crl 2 00110 01001 01100 10000
crl 3 10110 01110 10011 11100
crl 4 01111 00110 10100 01100
crl 5 00000 01001 00001 00100
crl 6 10010 10100 11100 10000
Tabla 6.17.Poblacién final
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NSGA-II

Inicializar poblacién

gen=0

|

l

¢ Tiempos de aterrizaje
descodficados?

Calcular Fenotipo

(descodificar Genotipo)

)

Calcular tiempos de
aterrizaje de cada avién

para cada cromosoma

l no Identificar los
Calcular las desviaciones ¢ Poblacién y
de tiempo entre el tiempo clasificada? i dorinadie
de aterrizaje y el tiempo

objetivo ‘
l si
Calcular de la
densidad crowding

Comprobar el cumplimiento
de las restricciones (separacién
entre aterrizajes consecutivos
¥ ocupacién de pista)

Seleccién per tomeo

l

Calcular el valor de
las funciones objetivo
para cada cromosoma

poblacion combinada =
combinar hijos y
progenitores

n
9 ¢ Tiempos de aterrizaje
descodficados?

6.2.1.

si

para cada solucién

!

Ordenar individuos de
forma descendente
segun la distancia
crowding

no Identificar los
?
clasificada fno-connados
si l
Poblacion = N mejores Calcular de la
soluciones de la densidad crowding
poblacion combinada para cada solucién
y
n=gen+1 Ordenar individuos de
i
segun |a distancia
crowding

llustracion 6.2. Diagrama de flujo NSGA-II

Pseudo-codigo NSGA-II

conjunto de soluciones no-dominadas
ntmero de soluciones en el conjunto S

-68-



Optimizacién Multi-Objetivo de la Secuencia de Aterrizaje de Aviones

<n operador de comparacion de distancias crowding

M; conjunto de soluciones dominadas por la solucién i
ns; numero de soluciones que dominan a la solucion i
G frente de soluciones no-dominadas

Rsep cumplimiento o incumplimiento de la restriccion de distancia de seguridad entre dos
aviones consecutivos que aterrizan. El valor 1 representa el cumplimiento de la
restriccion y el -1 el incumplimiento.

Tsep suma del tiempo de aterrizaje y tiempo de separacion para cada avion

Rocup cumplimiento o incumplimiento de la restriccion de ocupacion de pista. El valor 1
representa el cumplimiento de la restriccion y el -1 el incumplimiento.

Tocup tiempo de ocupacion de pista de cada avidn.

Inicio
g=0
Generar aleatoriamente una poblacion P,
Mientras (9 < Gmax)
Ry=P,UH,
Restricciones (Ry)
Funciones objetivo (R,)
F = Ordenacion NoDominada (R,)
Pyy1 = )
i=0
Mientras |Py.4| + |F;| < N, hacer
distancia crowding (F;)
Pyy1 =Py U Fy
i=i+1
Fin mientras
Ordenar P, de forma descendiente mediante comparador crowding <,
Seleccion (Py4q)=> Pry, Pry
Crossover (Pry , Pry) = (Hq, Hy)
Mutacion (Hy, Hy) = (Hq, Hy)
Pyi1 = Pgy1 U (Hy, Hy)
/lafiadir restricciones, funciones objetivo, ordenacion no-dominada y distancia
crowding
Pgy1 = Pge1 U Fi[1: (N — |Pg+1|]
g=g+1
Fin Mientras
Fin

Restricciones

Rsep = @
Tsep = @
Rocup = @
Tocup = @

Ordenar aviones por tiempo aterrizaje (Rg)
Para cada (x € R)

Calcular (Tsep)

Calcular (Tocup)

Comprobar restriccion de separacion (Rsep, Tsep, Rg)
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Comprobar restriccion de separacion (Rocup, Tocup, Ry)
Fin para

Funciones objetivo
i=1

mientras (i < n_funciones_objetivo)
Para cada (x € R)

Calcular z,
Fin para
i=i+1

fin mientras
Ordenacion basada en no-dominancia

F=0
i=1
Mientras (R # 0) hacer
F; =Soluciones no-dominadas (R)
R=R-F
F=FUF,
i=i+1
Fin mientras

Soluciones no-dominadas

para cada (x € R)
paracada (y € R)
si (x < y) entonces
M, = M, U {y}
Sino si (x > y) entonces
ns, =ns, +1
Fin Si
Fin Para
Si (ns, = 0) entonces
Fi = Fi U {x}
Finsi
i=0
mientras (F; # @)
G=0
Para cada (x € F;)
Para cada (y € M,,)
ns, =ns, — 1
Si (ns, = 0) entonces
G=GU{y}
Fin si
Fin para
Fin para
i=i+1
Fi =G
Fin mientras

Crowding distance

L=5]
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Inicializar distancia

paracada(i € 1...1) hacer
inicializar distancia i

fin para

para cada (j € 1 ...K) hacer
ordenar de forma ascendente segun el valor de z;
asignar S[1]. distancia = 'y S[ng;].distancia = oo
para cada (j = 2 hasta j = ny; — 1) hacer
S[i].distancia = S[i].distancia + (S[i + 1].j — S[i — 1].))
Fin para

fin para

Comparador crowding

El operado de comparacion <,, guia en el proceso de seleccidon en diferentes fases del algoritmo
hacia la uniformidad de frente Pareto-6ptimo. Se asume que cada individuo S; tiene dos

atributos: 1) ranking no-dominancia S; .y 2) la distancia crowding S .. El operador de

ldistancia

comparacion se define como:

Si <n Sj sI (Sirank < Sjrank) 0 ((Sirank = Sjrank)) y (Sidistancia > deistancia))

6.2.2. Céalculos manuales del algoritmo NSGA-I1

A continuacién se muestra el funcionamiento de una iteracion del algoritmo para una poblacién
pequefia. Los datos son los mismos que se han utilizado para la demostracion del NSGA.

Tamafio de la poblacion P = 6
Generacion aleatoria de la poblacién P,

Genotipo:
al a2 a3 a4
crl 00000 01001 01100 10000
cr2 00110 01110 10011 11000
cr3 01110 00111 11101 01110
crd 01101 00001 10111 11010
crb 10010 10100 10001 00100
cré 10111 01011 10101 11100
Tabla 6.18. Genotipo poblacién NSGA-II
Fenotipo:
al a2 a3 a4
crl 0 9 12 16
cr2 6 14 19 24
cr3 14 7 29 14
crd 13 1 23 26
cr5 18 20 25 4
cré 23 11 21 28

Tabla 6.19. Fenotipo poblacion NSGA-11
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Tiempo de aterrizaje:

al a2 a3 a4
crl 610 622 625 630
cr2 616 627 632 638
cr3 624 620 642 628
crd 623 614 636 640
crb 628 633 638 618
cré 633 624 634 642

Tabla 6.20. Tiempos de aterrizaje

Calculas las desviaciones temporales del tiempo de aterrizaje de cada avion para cada
cromosoma:

al a2 a3 a4
crl 4 -7 -10 -14
cr2 -2 -12 -17 -22
cr3 -10 -5 -27 -12
crd -9 1 -21 -24
cr5 -14 -18 -23 -2
cré -19 -9 -19 -26

Tabla 6.21. Desviaciones de tiempo respecto al tiempo de aterrizaje objetivo
Restricciones
Al igual que el algoritmo anterior, NSGA, se comprueba si los cromosomas obtenidos

anteriormente cumplen o no las restricciones impuestas. Primero se ordenan los aviones de cada

cromosoma segun el tiempo de aterrizaje.

crl al a2 a3 a4
cr2 al a2 a3 ad
cr3 a2 al ad a3
crd a2 al a3 ad
crb a4 al a2 a3
cré a2 al a3 a4

Tabla 6.22. Ordenacion aviones segun tiempo de aterrizaje

Restriccion de separacion:

Se calculan los tiempos de aterrizaje mas el tiempo de separacion de seguridad:

20 30 40
crl 612,62 623 628,27
cr2 618,62 628,00 635,27
cr3 621 627,27 629
cr4 615,00 624,6 639,27
cr5 619 630,62 634
cr6 625 634,6 637,27

Tabla 6.23. Tiempo tedrico de aterrizaje
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La tabla de a continuacion muestra si se cumple la restriccion de separacion entre el aterrizaje

de dos aviones consecutivos.

10-20 20-30 30-4°
crl 1 1 1
cr2 1 1 1
cr3 1 1 1
crd 1 1 1
crb 1 1 1
cré 1 -1 1

Tabla 6.24. Cumplimiento / incumplimiento restriccion de separacion

Restriccion de ocupacion de pista:

La pista Unicamente puede estar ocupada por un avion. Por lo cual, hay que comprobar que no
aterrice ningln avidn mientras la pista este ocupada. Para ello, calculamos en que momento
abandonara la pista el avion y se comprueba que el tiempo de aterrizaje del siguiente avién sea
igual o superior al de ocupacion de pista. En este caso, afiadimos dos aviones que quieren salir,
los datos son los siguientes:

Salidas Tiempo | Tipo avion | Tiempo
salida pista (seg)

al s 610 H 38

a2_s 612 M 43
Orden aviones

1° 20 3° 40 50 6°

crl al al s as_2 a2 a3 a4
cr2 as 1 as 2 al a2 a3 a4
cr3 as_1 as_2 a2 al a4 a3
crd as 1 as 2 a2 al a3 a4
cr5 as_1 as_2 a4 al a2 a3
cré as 1 as 2 a2 al a3 a4

Tabla 6.25. Ordenacion de los aviones segin tiempo aterrizaje y despegue

Tiempos salida de pista de cada avion:

1° 2° 3° 40 5° 6°
crl 610,92 610,63 612,72 622,83 625,92 630,75
cr2 610,63 612,72 616,92 627,83 632,92 642,75
cr3 610,63 612,72 620,83 624,92 628,75 633,92
cr4 610,63 612,72 614,83 623,92 636,92 640,75
cr5 610,63 612,72 618,75 628,92 633,83 638,92
cré 610,63 612,72 624,83 633,92 634,92 642,75

Tabla 6.26. Tiempo tedrico de salida de pista
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Se comprueba si se cumple la restriccion o no:

10_20 20_30 30_40 40_50 50_60

crl -1 1 1 1 1
cr2 1 1 1 1 1
cr3 1 1 -1 1 -1
crd 1 1 -1 1 1
cr5 1 1 1 1 -1
cré 1 1 -1 1 1

Tabla 6.27. Cumplimiento / incumplimiento restriccion separacion de pista

Funciones objetivo

Optimizacién Multi-Objetivo de la Secuencia de Aterrizaje de Aviones

F1 minimizacion del coste total de la desviacion de tiempo

F2 minimizacién del tiempo de aterrizaje del ultimo avion

A

F1 F2
crl 35 630
cr2 53 638
cr3 54 642
cr4 55 640
crb 57 638
cré 73 642

Soluciones no dominadas

Tabla 6.28. Valores F1y F2

Formatat: Tipus de lletra: (Per
defecte) Times New Roman, Negreta
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Gréfica 6.2. Representacion F1, F2 y diferentes frentes

Una vez calculados los valores de las funciones objetivos se identifican las soluciones no-

dominadas y se identifican los diferentes frentes. El valor ns, de cada solucion se reajusta

segun el nimero de restricciones que cada cromosoma incumpla y se identifican los diferentes

frentes.
M, ns, | N° ns, Frente
restricciones
incumplidas
crl cr2, cr3,cré,cr5,cré 0 1 1 1
cr2 cra, cr2 1 0 1 1
cr3 crd,cré 1 0 1 1
crd cré 3 0 3 2
cr5 cra,cré 1 0 1 1
cré - 5 1 6 3

Tabla 6.29. Relacion entre soluciones

-74 -



Optimizacién Multi-Objetivo de la Secuencia de Aterrizaje de Aviones

Para cada frente, si estd formado por mas de 2 cromosomas, se calcula la distancia crowding de

las soluciones. Primero se normalizan los valores de las funciones objetivos y luego, se calcula

la distancia.
F1 F2
crl 0,00 0,00
cr2 0,47 0,67
cr3 0,45 1,00
crd 0,53 0,83
crb 0,58 0,67
cré 1,00 1,00
Tabla 6.30. Valores normalizados F1 y F2
Frente 1:
dF1 drF2 cd
crl 1 1 2
cr2 0,13 1,00 1,13
cr3 0,47 0,33 0,81
crb 0,53 1,00 1,53

6.31. Distancia crowding

Frente 2: una Unica solucion

Frente 3: una Unica solucion

Seleccidn, reproduccién y mutacién

Para la reproduccion primero se seleccionan dos progenitores aleatoriamente y se escoge aquel
que pertenezca al frente de menor valor, asi se obtiene el primer progenitor, y se repite el mismo
proceso para obtener el segundo progenitor. Una vez se obtiene la pareja, se genera un nimero
aleatorio, si éste es menor a la probabilidad de reproduccidn, se reproduce la pareja y se
obtienen dos hijos, en caso contrario, los progenitores se copian en la poblacién de hijos. Para
cada gen de cada hijo se genera un nimero aleatorio, si éste es inferior a la probabilidad de
mutacion del gen, éste se muta. El proceso de seleccidn, reproduccion y mutacién se repite hasta

que la poblacion de hijos sea del mismo tamafio que la poblacion inicial.

Seleccion
Progenitor 1
crl
cr5
Progenitor 2
cr2
cr3
Reproduccion
Punto de reproduccion = 11
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p = 0,62 - aplicar reproduccion

crl 00000 01001 011q0 10000
cr2 00110 01110 10011 11000
hijo_1 00000 01001 00011 11000
hijo_2 10010 10100 11100 10000
Seleccion
Progenitor 3
cr5
cr2
Progenitor 4
cr2
cr3
Reproduccion
Punto de reproduccién = 16
p = 0,3 > aplicar reproduccion
cr5 10010 10100 10001 0p100
cr3 01110 00111 10011 11000
hijo_3 10010 10100 10001 01000
hijo_4 01110 00111 10100 10100
Seleccion
Progenitor 5
cré
crd
Progenitor 6
cr2
crl
Reproduccion
Punto de reproduccién = 8
p = 0,8 = no aplicar reproduccion
cr4 =hijo 5 | 01101 00001 10111 11010
crl=hijo_6 | 00000 01001 01100 10000
Hijo_635 > P, = 0,007 (aplicar mutacion al gen 3 del hijo_6)
| hijo6  ]00100 | 01001 | 01100 | 10000 |
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Fenotipo poblacién Hijo

al a2 a3 a4
hijo_1 0 9 3 24
hijo_2 18 20 28 16
hijo_3 18 20 17 8
hijo_4 14 7 20 20
hijo_5 13 1 23 26
hijo_6 4 9 12 16

Tabla 6.32. Fenotipo poblacion Hijo

Tiempo aterrizaje

al a2 a3 ad
hijo_1 610 622 616 618
hijo_2 628 633 641 630
hijo_3 628 633 630 622
hijo_4 624 620 633 634
hijo_5 623 614 636 640
hijo_6 614 622 625 630

Tabla 6.33. Tiempos de aterrizaje

Calculo de las desviaciones temporales del aterrizaje de los aviones de cada cromosoma

respecto su tiempo de aterrizaje objetivo

al a2 a3 a4
hijo_1 4 -7 -1 -2
hijo_2 -14 -18 -26 -14
hijo_3 -14 -18 -15 -6
hijo_4 -10 -5 -18 -18
hijo_5 -9 1 -21 -24
hijo_6 0 -7 -10 -14

Tabla 6.34. Desviaciones de tiempo respecto al tiempo de aterrizaje objetivo
Restricciones
Se comprueba si la nueva poblacion de hijos obtenida cumple o no las restricciones. Primero se

ordenan segun el tiempo de aterrizaje los cromosomas y después se realiza la comprobacion.

hijo_1 al a3 a4 a2
hijo_2 al a4 a2 a3
hijo_3 a4 al a3 a2
hijo_4 a2 al a3 a4
hijo_5 a2 al a3 ad
hijo_6 al a2 a3 a4

Tabla 6.35. Ordenacidn aviones segun tiempo aterrizaje
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Restriccion de seguridad:
Se calcula el tiempo tedrico minimo el cual el siguiente avidn deberia realizar el aterrizaje de

modo que la distancia de separacién de seguridad se cumpla.

La tabla siguiente,

20 30 40
crl 611,60 619,27 619,15
cr2 631,27 631,15 634,00
cr3 623,00 629,60 632,62
crd 621,00 627,60 636,27
cr5 615,00 624,60 639,27
cré 616,62 623,00 628,27

Tabla 6.36. Tiempo tedrico de aterrizaje

restriccion se cumple, en caso contrario, el valor que aparece es el -1.

Restriccion de ocupacion de pista:

10-20 20-30 3040
hijo_1 1 1 1
hijo_2 1 1 1
hijo_3 1 1 1
hijo_4 1 1 1
hijo_5 1 1 1
hijo_6 1 1 1

Tabla 6.37. Cumplimiento / incumplimiento restriccion de separacion

muestra si la restriccion se cumple o no, si el valor es 1 implica que la

Primero se calcula el tiempo en que un avion abandona la pista, y se comprueba que la pista no

esté ocupada por un avion en el momento en el que aterriza. En este caso, se debe tener en

cuenta que tenemos dos aviones que tienen salida prevista para un determinado tiempo, por lo

tanto también se debe comprobar que mientras uno de estos dos aviones ocupe pista para

realizar el despegue, no haya ningin avién que aterrice hasta que el avion haya despegado.

La ordenacion de uso de pista teniendo en cuenta los aviones que despegan es la siguiente:

1° 20 3° 40 50 6°
hijo_1 as_1 al as_2 a3 a4 a2
hijo_2 as 1 as 2 al ad a2 a3
hijo_3 as_1 as_2 ad al a2 a3
hijo 4 as 1 as 2 a2 al a4 a3
hijo_5 as_1 as_2 a2 al a3 ad
hijo 6 as 1 as 2 a2 a3 al a4

~ Tabla 6.38.0rdenacion aviones segun tiempo de aterrizaje y despegue
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Calculo del tiempo en el que cada avion abandona la pista:

1° 2° 3° 40 50 6°
hijo_1 610,63 610,92 612,72 616,92 618,75 622,83
hijo_2 610,63 612,72 628,92 630,75 633,83 641,92
hijo_3 610,63 612,72 622,75 628,92 630,92 633,83
hijo_4 610,63 612,72 620,83 624,92 633,92 634,75
hijo_5 610,63 612,72 614,83 623,92 636,92 640,75
hijo_6 610,63 612,72 614,92 622,83 625,92 630,75

Tabla 6.39. Tiempo tedrico salida de pista

La tabla siguiente, muestra si la restriccion se cumple o no, si el valor es 1 implica que la

restriccion se cumple, en caso contrario, el valor que aparece es el -1.

1020 20-3° 3040 4050 50-6°
hijo_1 1 1 1 1 1
hijo_2 1 1 1 1 1
hijo_3 1 1 1 1 1
hijo_4 1 1 1 1 1
hijo_5 1 1 1 1 1
hijo_6 1 1 1 1 1

Tabla 6.40. Cumplimiento / incumplimiento restriccion ocupacion de pista

El NSGA-I1I a diferencia del NSGA utiliza un mecanismo de elitismo. Una vez comprobado el
cumplimiento de las restricciones se combinan ambas poblaciones pertenecientes a la
generacion actual. A partir de este momento se utiliza la poblacién combinada. Se calcula el
valor de las funciones objetivos y se identifican las soluciones no-dominadas y los frentes
pertenecientes a dicha poblacion para finalmente seleccionar aquellos individuos que formaran
la poblacion inicial de la siguiente generacién. La seleccidn se realizara en base al valor del
frente en el que se encuentren las soluciones (partiendo de que en el frente 1 se encuentran las

mejores soluciones y los siguientes contendran peores soluciones).
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jetivo de la poblacién combinada

F1 F2 a5
crl 35 630
cr2 53 638 A ° ¢crl
cr3 54 642 640 = mcr2
crd 55 640 mx Acr3
cr5 57 638 635 ° Yera
cré 73 642
h 1 14 622 630 - - X®
h 2 72 641 ®cré
h_3 53 633 625 +h_1
h 4 51 634 n -h 2
h 5 55 640 620 Y Y Y ‘ h 3
h_6 31 630 0 20 40 60 80 -

Tabla 6.41. Valores F1y F2 Gréfica 6.3. Representacion F1y F2
Soluciones no dominadas
Se identifican las soluciones no dominadas y los frentes de la poblacién combinada.
M, ns, | N° restricciones | ns, | Frente
incumplidas

crl cr2, cr3, crd, cr5, ¢cr6, h 2, h 3, | 1 1 2 2

h 4,h 5,
cr2 crd, cr6,h 2, h 5 4 0 4 3
cr3 cré 4 0 4 3
crd cré, h 2 6 0 6 5
cr5 cré 4 0 4 3
cré - 11 1 12 6
h_1 crl,cr2,cr3,crd,cr5,.cr6, h 2, h 3, | 0 2 2 2

h 4,h5h6
h 2 cré 7 1 8
h_3 crd, cr5,cr6,h_2,h_5 3 1 4 3
h_4 cr2, cr3, cr4, cr5, cré, h_2 3 1 4 3
h 5 cré 5 0 5 4
h_6 cr2, cr3, crd, cr5,¢cr6, h 2, h 3, | 1 0 1 1

h4,h5

Tabla 6.42. Relacién entre soluciones

Para cada frente se calcula la distancia crowding de las soluciones que lo componen. Para

calcular dicha distancia primero deben normalizarse los valores de las funciones objetivo.
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F1 F2
crl 0,36 0,40
cr2 0,66 0,80
cr3 0,64 1,00
crd 0,69 0,90
cr5 0,73 0,80
cré 1,00 1,00
h 1 0,00 0,00
h 2 0,98 0,95
h_3 0,66 0,55
h 4 0,63 0,60
h 5 0,69 0,90
h 6 0,29 0,40

_Tabla 6.43. Valores normalizados F1y F2

Frente 1: una Unica solucion

Frente 2: una Unica solucion

Frente 3:

dF1 dF2 cd
cr2 0,02 0,40 0,42
cr3 0,03 0,20 0,23
cr5 0,34 0,40 0,74
h_3 0,07 0,60 0,67
h_4 0,64 0,25 0,89

Tabla 6.44. Distancias crowding

Frente 4: una Unica solucion

Frente 5: una Unica solucion

Frente 6: una Unica solucion

Tabla 6.45. Poblacion progenitores e hijos ordenada segun los frentes y distancia crowding

poblacion queda de la siguiente manera:

ns cd
h_6 1 0
h 1 2 0
crl 2 0
h_4 4 0,89
crb 4 0,74
h 3 4 0,67
cr2 4 0,42
cr3 4 0,23
h 5 5 0
crd 6 0
h 2 8 0
cré 12 0

Al ordenar la poblacion combinada segin los frentes y la distancia crowding calculada la
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Al inicio del algoritmo, se ha fijado el tamafio n de la poblacion, por lo tanto, de la poblacién

combinada ordenada, se seleccionaran los mejores n cromosomas que formaran la poblacion

inicial para la siguiente iteracion.

Poblacidn inicial de la siguiente iteracién

crl_1(h_6) | 00100 01001 01100 10000
cr2_1 (h_1) | 00000 01001 00011 11000
cr3_1(crl) | 00000 01001 01100 10000
crd_1(h_4) | 01110 00111 10100 10100
cr5_1 (cr5) | 10010 10100 10001 00100
cré_1 (h_3) | 10010 10100 10001 01000

6.3. Conclusiones

Tabla 6.46. Poblacion inicial siguiente generacion

Mediante el paso-a-paso de los dos algoritmos se puede apreciar las diferencias que existen

entre el NSGA y el NSGA-II, siendo el segundo una versién mejorada. El hecho de que el

NSGA-II utilice un método elitista permite comparar los cromosomas de poblacién de

progenitores y de la poblacion de hijos, para después seleccionar los mejores, permitiendo

conservar soluciones que eran potencialmente buenas. A diferencia del NSGA-II, el NSGA no

aplica ningiin método elitista y Unicamente sustituye la poblaciéon de progenitores por la

poblacion de hijos sin tener en cuenta si hay soluciones en la poblacion de progenitores,

haciendo que asi se pierdan soluciones potencialmente buenas. Otra diferencia a destacar es el

en NSGA hay que definir el pardmetro o, a criterio del usuario, dependiendo del valor que

tome la solucioén variara.
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7. Experimentos numéricos y resultados

En esta seccidn se presentan los experimentos de andlisis de los dos algoritmos llevados a cabo.
Primero se presenta disefio del experimento y luego con los datos obtenidos se realiza un test
ANOVA para comparar diferentes aspectos de los dos algoritmos propuestos con la herramienta
Minitab. EIl output completo tanto del disefio del experimento como de los andlisis estadisticos

se encuentran en los anexos.
7.1.  Disefio del experimento

Para ayudar a la hora de determinar cual de los dos algoritmos es mejor para resolver el
problema descrito, se realiza un disefio experimental. EI primer paso es determinar los factores a

analizar y sus niveles:

Niveles
Factores
Tipo de algoritmo NSGA NSGA-II
Numero de generaciones 100 200
Tamafio de la poblacion 50 100
Crossover rate 0,5 0,8

Tabla 7.1. Factores para el disefio de experimento (DOE)

A la hora de realizar el disefio del experimento se especifica que sea un disefio factorial, de dos
niveles y con replica. En este caso, el disefio cuenta con 4 factores con dos niveles cada uno,
por lo tanto, hay que realizar un total de 160 pruebas en el orden establecido en RunOrder y con
la configuracion de factores establecida. La tabla 7.2. muestra parte del resultado del disefio de

experimento a realizar.

. Num Population | Crossover
StdOrder | RunOrder | CenterPt | Blocks | Algorithm iterationes size rate

68 1 1 1| NSGA-II 200 50 0,5
112 2 1 1| NSGA-II 200 100 0,8
158 3 1 1| NSGA-II 100 100 0,8
130 4 1 1| NSGA-II 100 50 0,5
117 5 1 1| NSGA 100 100 0,5
75 6 1 1| NSGA 200 50 0,8
56 7 1 1| NSGA-II 200 100 0,5
49 8 1 1| NSGA 100 50 0,5
35 9 1 1| NSGA 200 50 0,5
128 10 1 1| NSGA-II 200 100 0,8
141 11 1 1| NSGA 100 100 0,8
72 12 1 1| NSGA-II 200 100 0,5
107 13 1 1| NSGA 200 50 0,8
109 14 1 1| NSGA 100 100 0,8
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Tabla 7.2. Muestra del experimento a realizar

Los conjuntos de datos con los que se van a realizar los analisis de resultados cumplen las

especificaciones de los métodos estadisticos, que son:

(i) Independencia de las observaciones
(i) Residuos siguen una distribucion normal

(iii) Homogeneidad de las varianza

7.2.  Caso 1: andlisis del tiempo de ejecucién de los algoritmos NSGA y
NSGA-II

Una de las medidas de calidad a la hora de comparar dos algoritmos es el tiempo que tardan en

obtener los resultados y la relevancia a que tienen los factores para las soluciones de los dos

algoritmos. La Tabla 7.3. muestra los resultados de la prueba t de Student, con estos resultados

se puede determinar si los algoritmos tienen el mismo tiempo de ejecucion o no. Las hip6tesis

nula y alternativa son las siguientes:

H,: La diferencia entre la media de tiempos de ejecucion esntre NSGA y NSGA-I1 es 0.

Hy,: Ladiferencia entra la media de tiempos de ejecucion entre NSGA y NSGA-II es diferente a
0 de forma significante.

a = 0.05

[Paired T-Test and CI: Tiempo NSGA; Tiempo NSGA-II,

JPaired T for Tiempo NSGA - Tiempo NSGA-II

N Mean StDev SE Mean

Tiempo NSGA 80 98,78 76,48 8,55
Tiempo NSGA-II 80 20,58 12,80 1,43
Difference 80 78,20 63,80 7,13

95% CI for mean difference: (64,00; 92,39)
T-Test of mean difference = 0 (vs not = 0): T-Value = 10,96 P-Value = 0,000

Tabla 7.3. Resultados T-test para la comparacion de tiempo de ejecucion de los algoritmos
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Histogram of Differences
(with Ho and 95% t-confidence interval for the mean)
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Gréfica 7.1. Histograma de las diferencias entre los tiempos de ejecucion de los algoritmos NSGA y NSGA-11

One-way ANOVA: NSGA; NSGA-II

Source DF SS MS F P
Factor 1 244589 244589 81,36 0,000
Error 158 474993 3006

Total 159 719582

S = 54,83 R-Sq = 33,99% R-Sq(adj) = 33,57%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev ------- to——————— o ————— S .
NSGA 80 98,78 76,48 (———*——=)
NSGA-II 80 20,58 12,80 (---*---)
————— o o ——— fomm - +--
30 60 90 120

Pooled StDev = 54,83

Grouping Information Using Tukey Method
N Mean Grouping

NSGA 80 98,78 A

NSGA-II 80 20,58 B

Means that do not share a letter are significantly different.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons

o

Individual confidence level = 95,00%

NSGA subtracted from:

Lower Center Upper ——4+----—----- o B fmm
NSGA-II -95,32 -78,20 -61,07 (----- oo )
s Fmm Fom Fmm—————
-90 -60 -30 0

Table 7.4.. One-Way ANOVA tiempo ejecucion algoritmos
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Residual Plots for NSGA; NSGA-IT
Normal Probability Plot Versus Fits
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Gréfica 7.2. Residuos ANOVA tiempos de ejecucion de los algoritmos

Como se muestra en la tabla 7.3. se rechaza la hip6tesis nula ya que el p — valor = 0,00 < a =
0.05, por lo que se concluye que los algoritmos son significativamente diferentes en cuanto a
los tiempos de ejecucion. En la tabla 7.4.. mediante el método Tukey se comprueba que los dos
algoritmos son diferentes ya que las medias no pertenecen al mismo grupo. También podemos
concluir, que el NSGA-II tiene un tiempo medio de ejecucion de 20,58 segundos frente a 98,78
segundos del NSGA, es decir, el algoritmo NSGA-1I es mas rapido que el NSGA. La grafica
7.1. es el histograma de las diferencias entre tiempos de ejecucion de los algoritmos, la forma
que deberia seguir es la de campana . En la grafica 7.2. se representan varias graficas para los
residuos, la grafica Normality Probabilty demuestra que los residuos no siguen una distribucion
normal, esto puede deberse a la naturaleza de los datos, del histograma de la misma grafica, se
deduce que los datos asimétricos estadisticamente, aunque dibuja una campana, lo que indica

que los residuos siguen una distribucion normal.

7.3.  Caso 2: analisis del mejor conjunto de soluciones encontradas por los
algoritmos NSGA y NSGA-I1:

La Tabla 7.5. muestra los resultados de la prueba t de Student para comparar la calidad de los
frentes finales que proporciona cada algoritmo. Los p-valores de ambos test son inferiores a
0,05 por lo que podemos concluir que existen diferencias significativas entre los frentes finales
de cada algoritmo. Las graficas 7.3. y 7.4. muestran la semejanza de las distribuciones a una
distribucion normal. La grafica 7.3. muestra un desplazamiento hacia el lado positivo de la
grafica (por encima de la media), lo que indica una alta asimétrica positiva, por lo que se
produce una mayor concentracion de datos en eje derecho de la gréafica. La gréafica 7.4. no
presenta ningln tipo de desplazamiento respecto a la media, y se puede intuir la forma de

campana de los resultados.
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Paired T-Test and Cl: F1 NSGA; F1 NSGA-II

Paired T for F1 NSGA - F1 NSGA-II

N Mean StDev SE Mean
F1l NSGA 80 847,075 3,352 0,375
F1l NSGA-II 80 847,812 2,497 0,279
Difference 80 -0,738 2,833 0,317

95% CI for mean difference: (-1,368; -0,107)
T-Test of mean difference = 0 (vs not = 0): T-Value = -2,33 P-Value = 0,022

Paired T-Test and Cl: F2 NSGA; F2 NSGAII

Paired T for F2 NSGA - F2 NSGAII

N Mean StDev SE Mean
F2 NSGA 80 59,614 6,610 0,739
F2 NSGAII 80 42,369 4,234 0,473
Difference 80 17,245 7,436 0,831

95% CI for mean difference: (15,590; 18,900)
T-Test of mean difference = 0 (vs not = 0): T-Value = 20,74 P-Value = 0,000

Tabla 7.5.Resultados T-test para la comparacion de la calidad de los frentes

Frequency

Histogram of Differences Histogram of Differences
(with Ho and 95% t-confidence interval for the mean) (with Ho and 95% t-confidence interval for the mean)
15,0
164
12,5
10,0 — 124
)
7.5 £
g o
g
5,0 i
44
- ___1___L__7
0,0 . 0 =
X X
S @ ——
Ho Ho
-6 -4 -2 0 2 4 6 8 8 16 24 32
Differences Differences

Grafica 7.3. y 7.4. Histogramas de diferencias de los algoritmos para F1y F2 respectivamente

7.3.1. One-Way ANOVA

Otro aspecto determinante referente a los algoritmos presentados es el efecto de los factores en
la solucion. Para saber si los factores tienen afectan al resultado, se ha realizado un test One-
Way ANOVA para cada algoritmo, los resultados estan resumidos en las tablas 7.6. y 7.7. para
el NSGA 'y 7.8. y 7.9. para el NSGA-II. Las hip6tesis nula y las alternativas son las siguientes:

: el pardametro nimero de iteraciones no influye en el resultado

Oiteracion
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H, . el pardmetro tamafio de la poblacion no influye en el resultado
poblacion

: el factor probabilidad de reproduccién no influye en el resultado

Orepro duccion

F1 F2

DF| ss [ ms | F | P |DF| ss [ Mms | F | P

Parametros

Numero iteraciones | 1 0,2 0,2 0,02 {0894 1] 1 75,1 75,1 1,74 | 0,192

Tamafio poblacion 1 848 | 84,8 | 8251|0005 1 | 1028 | 102,8 | 2,40 | 0,126

Probablllda_dlde 1 3.1 31 | 027 |0604] 1 6,4 6,4 | 0,14 | 0,705
reproduccion

Tabla 7.6. Andlisis de los pardmetros principales del NSGA

F1 F2
Niveles de los LS Mean | Grupos LS Mean | Grupos
parametros Homogéneos homogéneos
Numero iteraciones
IT: 100 847,12 X 60,583 X
IT: 200 847,02 X 58,645 X
Tamafio poblacion
P: 50 848,10 X 60,747 X
P: 100 846,04 X 58,480 X
Probabilidad
reproduccion
Prep: 0,5 847,27 X 58,896 X
Prep: 0,8 846,88 X 59,331 X

Tabla 7.7. Test comparacion de rangos para los parametros del algoritmo NSGA

Las tablas 7.6. y 7.7. son un resumen del analisis ANOVA llevado a cabo para determinar la
influencia de los parametros sobre los resultado del NSGA. De ellas cabe destacas que el Gnico
parametro que influye en el resultado del NSGA es, segun los niveles definidos, el tamafio de la

poblacion, cuyo p-valor es 0,006, por lo tanto se rechaza la Hy . Estas conclusiones se
poblacion

corroboran en la tabla 7.7. en la que se muestra la media para cada nivel de cada factor, y si
existe 0 no homogeneidad de grupo entre niveles. Al analizar los diferentes niveles de cada

factor se puede determinar la influencia que tienen sobre los resultados.
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F1 F2
DF| ss [ Ms [ F | P |DF| ss [ Ms | F | P
Parametros
NuUmero iteraciones 1 0,03 0,03 0 0,948 1 50,6 50,6 2,89 | 0,093
Tamafio poblacién 1 | 4522|4522 | 7,89 | 0,006 ] 1 | 438,6 | 438,6 | 35,01 0
Probabilidadde ;| 4 57 | 137 | 925 | 06a2| 1 | 195 | 195 | 1,09 | 03
reproduccion
Tabla 7.8.. Anélisis de los parametros principales NSGA-I1
F1 F2
Niveles de los LS Mean | Grupos LS Mean | Grupos
pardmetros Homogéneos homogéneos
Numero iteraciones
IT: 100 847,83 X 43,164 X
IT: 200 847,79 X 41,574 X
Tamafio poblacion
P: 50 848,56 X 60,747 X
P: 100 846,06 X 58,480 X
Probabilidad
reproduccion
Prep: 0,5 847,68 X 59,896 X
Prep: 0,8 847,94 X 59,331 X

Tabla 7.9. Test comparacién de rangos para los parametros del algoritmo NSGA-I1

Las tablas 7.8. y 7.9. son un resumen del analisis ANOVA llevado a cabo para determinar la
influencia de los pardmetros sobre los resultado del NSGA-II. De la tabla 7.8. se observa que el
parametro tamafio de la poblacidn es el dnico que influye en el resultado del NSGA, segun los
niveles de los parametros definidos. El tamafio de la poblacion es el parametro mas relevante
debido al valor del ratio F = 35,01, en comparacion al ratio del nimero de iteraciones que es F =
4,05 (referente a F2).

7.3.2. MANOVA

Para comprobar los resultados obtenidos se ha realiza un test MANOVA con el que también se
comprobara si entre los factores existe interaccion. Los resultados del MANOVA se resumen
en las tablas 7.10. y 7.11. para el NSGA y el NSGA-II, respectivamente. Las hipétesis nula y

las alternativas son las siguientes:
H,: el factor no influye en la solucién

Hy: el factor influye en la solucion
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F1 F2

DF| ss [ mMs | F | P |[DF|] ss [ MS | F [ P
Parametros
n iteraciones 1 0,2 0,2 |0,02]| 089 7514 | 7514 | 1,74 | 0,192
tamarfio poblacion 1 84,84 | 84,84 | 7,98 | 0,006 102,83 | 102,83 | 2,38 | 0,127
crossover 3,07 3,07 |0,29 | 0,593 6,38 6,38 | 0,15 | 0,701
Interacciones
- ———-
niteraciones™amano 4 | 4381 | 1181 | 111 |0205| 1 | 198 | 198 | 05 |0831
poblacion
no. « 1 1,78 1,78 | 0,17 | 0684 | 1 | 107,74 | 107,74 | 2,49 | 0,119
Iteraciones*crossover
tamano 1| 97 97 [091(0343| 1 | 119 | 1,19 | 0,03 | 0,869
poblacion*crossover
error 73 | 776,03 | 10,63 73 | 3156,56 | 43,24
total 79 | 887,44 79 | 3451,86

Tabla 7.10. Andlisis de los parametros principales del NSGA

La tablas 7.10. es un resumen del analisis MANOVA llevado a cabo para determinar la
influencia de los parametros sobre los resultado del NSGA. Las hipdtesis nula y alternativa son:

: el pardmetro ndmero de iteraciones no influye en el resultado

Oiteracion

H, . el pardmetro tamafio de la poblacidn no influye en el resultado
poblacion

: el factor probabilidad de reproduccion no influye en el resultado

Orepro duccion”

De la tabla 7.10. cabe destacar que el Gnico parametro que influye en el resultado del NSGA es,
segln los niveles definidos, el tamafio de la poblacién, cuyo p-valor es 0,006, por lo tanto se

rechaza la Ho o piacion- EStE resultado coincide con los test llevado a cabo en el apartado anterior.

En la tabla 7.7. se muestra la media para cada nivel de cada factor, y si existe 0 no
homogeneidad de grupo entre niveles. Al analizar los diferentes niveles de cada factor se puede
determinar la influencia que tienen sobre los resultados. Otro hecho importante es que no existe
interaccion entre ninguno de los parametros, el p-valor de los factores es superior a 0,05, por lo

tanto, aceptamos la hipétesis nula de que existe no interaccion entre los factores.
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F1 F2

DF| ss | ms | F|] P |DF| ss [ ms | F | P
Parametros
N iteraciones 1] 0027 | 0027 | o |o9a6| 1 | 5057 | 5057 | 45 |0037
tamafio poblacién 1 | 45215 |45215|7.97 | 006 | 1 | 43861 |438613901| O
crossover 1 | 137 | 137 |024|0625| 1 | 1945 | 1945 | 1,73 | 0,192
Interacciones
n iteraciones & 1 | 19169 |19.169 |338| 007 | 1 023 | 023 | 002 | 0885
tamafio poblacion
n iteraciones & 1| 11,369 |11369| 2 |o161| 1 248 | 248 | 022 | 064
crossover
tamafio poblacion & |\ | a5, | o620 [ 045 | 0608 | 1 | 8384 | 8384 | 746 | 0,008
crossover
error 73 | 414398 | 10,63 73 | 82072 | 11,24
total 79 | 492,409 79 | 141591

Tabla 7.11. Anélisis de los pardmetros principales NSGA-II

La tablas 7.11. es un resumen del analisis ANOVA llevado a cabo para determinar la influencia
de los parametros sobre los resultado del NSGA-II. Las hipdtesis nula y alternativa son:
Ho,,,, 0cion: €1 Parametro nimero de iteraciones no influye en el resultado

H, el pardmetro tamafio de la poblacidn no influye en el resultado
poblacion

: el factor probabilidad de reproduccién no influye en el resultado

Orepro duccion

De la tabla 7.11. destaca que los parametros nimero de iteraciones y tamafio de la poblacion
influyen en el resultado del NSGA, segun los niveles de los parametros definidos. El tamafio de
la poblacién es el pardmetro mas relevante debido al valor del ratio F = 39,01, en comparacién
al ratio del nimero de iteraciones que es F = 4,05 (referente a F2). ] En la tabla7. 9. podemos
observar como para F2 los pardmetros de ndmero de iteraciones y tamafio de poblacion
pertenecen al mismo grupo, esto es debido a que los test que se han realizado para comparar los
rangos de cada pardmetro se realizan individualmente, a diferencia del MANOVA que se ha
realizado con todos los pardmetro. | En la tabla 7.11. se observa que Gnicamente existe
interaccion entre los parametros de tamafio de poblacién y probabilidad de reproduccion, el p-
valor de los factores es inferior a 0,05, por lo tanto, rechazamos la hipétesis nula de que no

existe interaccion entre los factores.
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7.4. Conclusiones

Los experimentos realizados para obtener los resultados fueron implementados en un
procesador Intel(R) Core(TM) i7-3610Q CPU 2.30GHz RAM 8.00Gb. Con dichos resultados
se ha llevado a cabo un analisis estadistico de los diferentes parametros involucrados en los
algoritmos evolutivos NSGA y NSGA-I11. Existe una diferencia significativa entre las medias de
tiempo de ejecucion de los algoritmos, siendo en NSGA-II mas rapido, el NSGA tiene un
tiempo de ejecucion medio de 98,78 segundos, frente a una media de 20,58 segundos del
NSGA-II. Al analizar la influencia de los diferentes parametros a las soluciones, se concluye
que para los niveles de los pardmetros definidos, sobre las soluciones que proporciona el NSGA
afecta el tamafio de la poblacion, y sobre las soluciones del NSGA-II afecta la el nimero de

iteraciones y el tamafio de la poblacion.
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8. Resultados y Conclusiones

La limitacion latente de los aeropuertos de absorber la creciente demanda de vuelos hace que se
investiguen métodos para aprovechar de la manera més eficiente los recursos disponibles de
éste. Uno de los factores mas relevantes en cuanto a eficiencia es el uso de pista del aeropuerto
y la coordinacion de aterrizajes y despegues de aviones de forma segura. EI problema secuencia
de aterrizajes y despegues se conoce como Aircraft Landing Scheduling Problem, e intenta
encontrar secuencias que satisfagan las necesidades de trafico y cumpla con las restricciones de

seguridad.

En este proyecto se ha formulado el problema de secuencia de aterrizaje de aviones como un
problema multi-objetivo que tiene por funciones objetivo minimizar la desviacién total entre el
tiempo de aterrizaje y el tiempo objetivo de los aviones y minimizar el tiempo de aterrizaje del
utlimo avién. Se ha realizado un nuevo intento de resolverlo, utilizando algoritmos MOEAs
(Multi-Objetive Evolutionary Algorithm). Para resolver el problema se ha revisado la literatura
existente sobre los diferentes métodos de resolucion asi como los diferentes métodos de

optimizacién de problemas multi-objetivo.

De todos los métodos analizados para la resolucion del problema multi-objetivo se han
seleccionado los algoritmos NSGA y NSGA-II. EI NSGA es capaz de encontrar un conjunto se
soluciones y una mejor convergencia mejores de la solucién aproximada del verdadero frente
Pareto-optimo comparado con los algoritmos PAES y SPEA. EI NSGA también se ha
seleccionado como primera version del NSGA y asi poder analizar las mejoras y diferencias

entre ambas versiones.

El paso-a-paso de los dos algoritmos permite ver las diferencias que existen entre el NSGA y el
NSGA-II, siendo el segundo una versién mejorada del primero. La gran diferencia que existe
entre un algoritmo y otro es que el NSGA-II aplica un método elitista que se aplica en el
NSGA-II, ya que una vez obtenida la poblacién de hijos, ésta se une con la poblacion de
progenitores para asi seleccionar los mejores cromosomas evitando asi la pérdida de soluciones
potencialmente buenas. Otro factor importante a destacar es el hecho de que en el NSGA se
tiene que definir el valor del parametro o, Ya que dependiendo del valor que se le otorgue se

obtendran un conjunto de soluciones u otro.

Finalmente se han realizado analisis estadisticos de los resultados de los algoritmos. Los
experimentos realizados para obtener los resultados, tal como se ha referenciado, fueron
implementados en un procesador Intel(R) Core(TM) i7-3610Q CPU 2.30GHz RAM 8.00Gb.
Con dichos resultados se ha llevado a cabo un analisis estadistico de los diferentes parametros

involucrados en los algoritmos evolutivos NSGA y NSGA-II. Existe una diferencia significativa

-93-



Optimizacién Multi-Objetivo de la Secuencia de Aterrizaje de Aviones

entre las medias de tiempo de ejecucion de los algoritmos, siendo en NSGA-II mas rapido, el
NSGA tiene un tiempo de ejecucion medio de 98,78 segundos, frente a una media de 20,58
segundos del NSGA-II. Al analizar la influencia de los diferentes parametros a las soluciones,
se concluye que para los niveles de los pardmetros definidos, sobre las soluciones que
proporciona el NSGA afecta el tamafio de la poblacidn, y sobre las soluciones del NSGA-II

afecta la el nimero de iteraciones y el tamafio de la poblacion.
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