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Resumen del Proyecto 

 

Castellano: Se proponen dos métodos para resolver el problema de Secuencia de 

Aterrizaje de Aviones. En este problema el controlador debe asignar un tiempo de 

aterrizaje y una pista a cada avión que entran en el radar, minimizando los costes a la 

vez que se respetan un número de restricciones operacionales. Los costes asociados 

con los tiempos de aterrizaje de aviones varían según el tiempo de aterrizaje asignado.  

Las restricciones hacen referencia a la separación que tiene que haber entre aterrizajes 

consecutivos, separación que depende del tipo de avión, y a la ocupación de pista.  

Dado un número de aviones en un tiempo determinado, se proponen dos métodos 

basados en Algoritmos Evolutivos Multi-Objetivo (MOEAs). Se comparan los dos 

algoritmos y la calidad de las soluciones obtenidas.  

 

Catalán: Es proposen dos mètodes per resoldre el problema de seqüencia d’aterratges 

d’avions. En aquest problema, el controlador ha d’assignar un temps d’aterratge y una 

pista a cada avió que entra dins el rang del radar, minimitzant els costos i alhora 

respectant un nombre restriccions. Els costos associats amb els temps d’aterratge 

d’avions varien segons el temps d’aterratge assignat. Les restriccions fan referència a 

la separació que ha d’haver entre aterratges consecutius, separació que depèn dels tipus 

d’avió, i a l’ocupació de pista. Donat un nombre d’avions determinat, es proposen dos 

mètodes basat en Algoritmes Evolutius Multi-Objectiu (MOEAs). Es comparen els dos 

algoritmes i la qualitat de les solucions obtingudes.  

 

Inglés: Two approaches are described for solving the Aircraft Landing Scheduling 
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Problem. In this problem, the air traffic controller must assign a landing time for each 

aircraft which enters the radar range, and must attempt to minimize cost while 

considering a number of constrains and restrictions. The costs associated with aircraft 

landing times varying from the preferred landing time. The constrains are concerned 

with runway occupancy and the separation distance between two consecutive landing 

aircrafts, which depends on the type of aircraft. Given a certain number of aircrafts, 

two approaches are proposed based on Multi-Objective Evolutionay Algorithms 

(MOEAs). Both algorithms are compared and also the quality of the solutions.  
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1. Introducción  

1.1. Interés y motivación  

La capacidad  de los aeropuertos (y por tanto de pistas de aterrizaje y stands) se está 

convirtiendo cada vez más en un factor que limita la capacidad de cubrir la creciente demanda 

de vuelos.  Esto conlleva retrasos tanto en el tráfico aéreo como en el de tierra. Estos retrasos, 

para la mayoría de aeropuertos Europeos y de los Estados Unidos, representan de media 15 

minutos por avión. Como la construcción de nuevos aeropuertos no es una solución a corto 

plazo, se han realizado varias investigaciones  de cómo hacer un uso más eficiente de los 

recursos disponibles en el aeropuerto, en general, y de las pistas disponibles, respetando las 

restricciones de seguridad, en particular.  

Se ha demostrado que el problema de encontrar una secuencia de aterrizaje óptima, en el que se 

tenga en cuenta que la separación entre aterrizajes depende del tipo de avión, es un problema 

NP-hard; es decir, un problema que no tiene solución en un tiempo de computo polinomial.  

El objetivo de este proyecto es analizar el problema de secuencia de aterrizaje de aviones y 

proponer una metodología que permita obtener buenas soluciones, con un tiempo de 

computación razonable.  

1.2. Objetivos 

Este proyecto tiene doble finalidad:  

(i) Analizar el problema de optimización de secuencia de aterrizaje de aviones 

(Aircraft Landing Scheduling Problem – ALSP)  

(ii) Proponer una metodología que permita obtener un conjunto de soluciones  lo más 

adecuado posible.  

Estos objetivos se dividen en subobjetivos más específicos:  

(i) Descripción del entorno del problema. 

(ii) Revisión de trabajos existentes relacionados con el problema. 

(iii) Analizar los métodos existentes que tratan de dar solución al problema. 

(iv) Plantear un método de resolución del problema. 

(v) Analizar los resultados obtenidos.   

1.3. Novedad 

Para resolver el problema de secuencia de aterrizaje de aviones se han utilizado algoritmos 

basados en la eficiencia Pareto, el NSGA y NSGA-II. A diferencia de otros métodos utilizados 

para resolver el problema, el NSGA y NSGA-II resuelven el problema multi-objetivo planteado 
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en un tiempo computacional razonable, lo que permite obtener soluciones buenas y de forma 

rápida.   

1.4. Valor práctico 

Los beneficios del uso práctico de los algoritmos NSGA y NSGA-II para la resolución del 

problema de secuencia de aterrizaje son:   

- Bajo tiempo de ejecución de los algoritmos. 

- Consideración de múltiples objetivos. 

- Los tiempos de separación de seguridad vienen dados según el tipo de avión.  

- No ofrece una única solución, sino que ofrece un conjunto de soluciones válidas. 

1.5. Metodología i organización del proyecto  

Para analizar el problema, para después buscar una solución, es necesario documentarse sobre el 

entorno donde se produce el problema. En este caso, en el apartado “Aterrizaje de aviones” se 

explica el proceso de aterrizaje de aviones y sus implicaciones.  

Una vez estudiado el entorno se busca información sobre el problema a tratar y el estado de arte 

de éste. En el apartado “Planteamiento del problema”, se define el problema y se plantea de 

forma matemática.  

Cuando se tiene toda la información teórica necesaria del problema se aborda la parte más 

técnica en la que se analiza los métodos existentes que tratan de dar solución al problema 

planteado. Esta clasificación de métodos se realiza en el apartado “Taxonomía de métodos de 

secuencia de aterrizaje de aviones y software”.   

El problema que se trata es multi-objetivo, por lo que también es necesario analizar los métodos 

multi-objetivo existentes para luego desarrollar dos de ellos. Esto se realiza en los apartados 

“Análisis de métodos multi-objetivo existentes” y “Desarrollo de métodos de secuencia de 

aterrizaje”, respectivamente.  

Una vez implementado un modelo que resuelva el problema, se verifique y valide; se analizan 

los resultados, en el apartado “Experimentos numéricos y resultados”.  

Finalmente, se explican las conclusiones referentes a la resolución del problema.  
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2. Aterrizaje de aviones 

La capacidad de pista de un aeropuerto es impredecible y está sujeta a cambios durante las 

operaciones, principalmente por las condiciones temporales y de visibilidad. La capacidad de 

pista para aterrizaje depende de la categoría del avión y la secuencia de aterrizaje. Esto es 

debido a que la separación requerida entre aterrizajes consecutivos depende de la categoría de 

los aviones. La clasificación de aviones generalmente se basa su peso.  

Los aviones se aproximan al aeropuerto guiados por los controladores de aproximación en un 

intervalo de tiempo inferior a 30 minutos antes del aterrizaje. A partir de este momento, el 

controlador debe crear  una flujo de aviones hacia la pista. Debido al tiempo limitado disponible 

y la alta carga de trabajo de los controladores, difícilmente ningún cambio en la secuencia se 

puede hacer a esas alturas.  

El aterrizaje es la fase final de un vuelo, que se define como el proceso que realiza una aeronave 

que culmina con el contacto del aparato con la tierra.  A continuación se detallan los factores 

influyentes en el aterrizaje,  las etapas del aterrizaje y los agentes involucrados desde que el 

avión aterriza hasta que vuelve a partir.  

2.1.  Factores implicados en el aterrizaje 

En el aterrizaje hay tres factores influyentes que son: el factor tierra, el factor avión y el factor 

aire.  

El factor tierra consiste en: la comunicación con los controladores de tráfico aéreo (ATC) para 

reportarse y solicitar autorización de aterrizaje, tener un buen funcionamiento de las 

radioayudas ILS (Instrument Lansing System) y VOR (VHF Omnidirectional Radio Range) para 

dar soporte en el aterrizaje y el estado de la pista e iluminación.  

El factor avión, consiste en efectuar todo el procedimiento de maniobras necesarias para lograr 

una reducción en la velocidad bajando la potencia de los motores y accionando las superficies 

de control de hipersustentación: flaps y spoilers, las cuales provocarán que la fuerza 

de sustentación aumente, y las de profundidad: elevadores o timón de profundidad, para 

mantener un descenso controlado; tener los trenes de aterrizaje listos y seguir la orientación del 

ATC. 

El factor aire que hace referencia a las condiciones en las que el avión realizará su aproximación 

y aterrizaje.  

 

 

http://es.wikipedia.org/wiki/Sustentaci%C3%B3n
http://es.wikipedia.org/wiki/Elevador
http://es.wikipedia.org/wiki/Tim%C3%B3n_de_profundidad
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2.2. Etapas del aterrizaje 

En la maniobra de aterrizaje se distinguen cinco etapas:  

 

 

Ilustración 2.1. Fases del aterrizaje 

(1) Tramo base. En esta etapa se debe decidir a qué altitud y a qué distancia debe 

comenzar el descenso y en qué punto se debe virar para estar alineado con el eje de 

la pista. Estas decisiones influenciarán la calidad del aterrizaje.  

(2) Aproximación final. En esta etapa el avión desciende alineada con el eje de la pista. 

Tiene como objetivos facilitar el contacto con la pista que se realiza en el primer 

tercio de pista en la cual velocidad no suponga un riesgo de pérdida y  proporcione 

un mínimo de sustentación y velocidad respecto al suelo antes de contactar. 

(3) Tramo de recogida. En esta fase el avión hace la transición entre las fases de 

aproximación y aterrizaje. Comienza cuando el avión se encuentra entre 15 y 20 

pies por encima del suelo.  

(4) Aterrizaje. Este es el punto donde las ruedas toman contacto con la superficie de 

aterrizaje y donde todo el peso del avión se transfiere de las alas al tren de 

aterrizaje. 

(5) Carrera posterior. El aterrizaje no concluye hasta que el avión no se frene hasta la 

velocidad normal de rodadura, o hasta que se detenga totalmente en una zona de 

parada segura. 

2.3. Agentes involucrados en el aterrizaje 

En el proceso de aterrizaje del avión y su posterior salida hay tres agentes más, a parte del 

avión, involucrados: Controlador del tráfico aéreo, las ayudas al atraque, y el handling.  
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El Controlador de tráfico aéreo es aquella persona encargada de dirigir el tránsito de aeronaves 

en el espacio aéreo y los aeropuertos, de manera segura, ordenada y rápida. En particular, el 

controlador debe asignar un tiempo de aterrizaje y una pista, si hay más de una pista en uso. Su 

labor es complicada, debido al denso tránsito de aviones, a los posibles cambios meteorológicos 

y a otros imprevistos.  

Para mantener la seguridad, en cuanto a separación entre aviones, los ATC aplican normas 

dispuestas y recomendaciones entregadas por la Organización de Aviación Civil Internacional 

(OACI), Federal Aviation Administration (FAA) y demás autoridades aeronáuticas de cada país.  

Normalmente, el grupo de la torre de control lo constituyen personas especializadas en una tarea 

concreta; por ejemplo, el encargado del radar, el controlador de pistas de aterrizaje y despegue 

(Local Control), el controlador encargado de entregar autorizaciones a las aeronaves que salen 

bajo reglas de vuelo por instrumentos (Clearance Delivery), el controlador encargado de 

autorizaciones en Calles de Rodaje (TWY) y plataforma, (Ground Control) o el supervisor 

general. 

Desde que la aeronave abandona la pista hasta su posición de estacionamiento, su trayectoria se 

acomoda a lo prescrito desde la torre: salida rápida que debe utilizar, detenciones en cruces, 

accesos a rodaduras paralelas y plataformas designadas y posición final prescrita. A lo largo de 

este camino existe una señalización horizontal – marcas en el suelo, balizas y luces – y vertical, 

carteles. Sobre la plataforma de estacionamiento, además, las trayectorias de entrada a la 

posición, vienen señaladas en el pavimento mediante una línea sobre la que debe rodar el tren 

delantero.  En condiciones de baja visibilidad, señalización incompleta, menor conocimiento del 

campo de vuelo por la tripulación u otras causas, se utiliza el servicio de coche guía (followme), 

que recibe a la aeronave al final de la calle de salida y la conduce hasta la posición. La 

aproximación final a la posición de estacionamiento se realiza mediante servicio de señalero u 

otra alternativa como los sistemas de guía de atraque y los sistemas de ayuda a la guía en 

atraque.  Una vez la aeronave este en posición se detendrá y calzará.  

Una vez detenida y calzada la aeronave la asistencia en tierra (Ground Handling) prepara a esta 

para su posterior partida. La asistencia en tierra incluye todos los servicios de que es provista 

una aeronave desde que aterriza hasta su posterior partida. Los servicios ofrecidos se dividen en:  

- Servicio a cabina, incluye todos los servicios dirigidos a dar comodidad a los pasajeros 

en la cabina del avión así como de la limpieza de la cabina misma.  

- Catering, es el abastecimiento de alimentos y bebidas para los pasajeros y tripulación.  

- Servicio en rampa, son los servicios en la plataforma de operaciones de la aeronave y 

también los procesos necesarios para llevar a cabo la carga y descarga de correo, 

equipaje y demás mercancías a transportar.  

http://es.wikipedia.org/wiki/Administraci%C3%B3n_Federal_de_Aviaci%C3%B3n
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- Combustible, servicio de repostaje de combustible.  

- Servicios de mantenimiento e ingeniería, incluye todos procesos necesarios para 

asegurar y mantener la operatividad de las aeronaves. Por su naturaleza es uno de los 

procesos más delicados en el manejo de una aeronave. 

- Servicios de operaciones de campo, es la instancia que coordina a todos los servicios 

anteriores con el resto de la operación de la aerolínea en el aeropuerto.  

 

2.4. Costes asociados a los retrasos de los aviones 

Dentro de las operaciones que se llevan a cabo en el aeropuerto hay ciertas que son críticas, en 

este caso el aterrizaje y despegue de aviones es una de ellas debido a la limitación de la pista, 

que es el cuello de botella durante las operaciones del aeropuerto. Por ejemplo, el aeropuerto 

London Heathrow, uno de los más concurridos a nivel mundial, únicamente tiene dos pistas. 

Cuando el número de aviones aproximándose excede la capacidad del aeropuerto algunos de 

estos aviones no pueden aterrizar en el tiempo “exacto” previsto. Estos retrasos  afectan a 

compañías aéreas, pasajeros, aeropuerto, slots y compañías de handling.  

Aproximadamente el 35% de los retrasos se producen en las fases de pista de salida y entrada. 

El problema principal de los retrasos es la propagación de éstos que afecta a otros agentes del 

aeropuerto y a su actividad. Los factores principales causantes de retrasos son: la meteorología, 

la tripulación, el mantenimiento de los aviones, la congestión aérea, la navegación aérea, los 

propios pasajeros y las medidas de seguridad.  

De estos factores, la navegación aérea causa el 12% de los retrasos. Los retrasos provocados por 

la navegación aérea hacen referencia a todo aquello implicado en el aterrizaje y despegue de 

aviones que vienen regidos por las órdenes y autorizaciones de los controladores aéreos.  

Con los retrasos se asocian unos costes que afectan a los diferentes agentes que intervienen. Éste 

coste afecta económicamente a las compañías aéreas, pasajeros, aeropuertos y comunidades y 

también tiene un coste para las secciones de política, gestión y control de los aeropuertos.  

Para las compañías aéreas los costes derivados de los retrasos en las fases de despegue y 

aterrizaje es principalmente el desperdicio de fuel de cada avión que debe realizar en holding o 

el gasto de fuel al tener que volar más rápido que su velocidad económica.  

El tiempo de aterrizaje debe estar comprendido dentro de una predeterminada ventana temporal, 

limitada por un tiempo mínimo y un tiempo máximo de aterrizaje. Dichas ventanas temporales 

son diferentes para diferentes aviones. El tiempo mínimo representa el tiempo requerido si el 

http://es.wikipedia.org/wiki/Aeronave
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avión fuese a su máxima velocidad y el tiempo máximo representa la velocidad más económica 

a nivel de fuel dentro del máximo tiempo permitido.   

La velocidad económica de un avión, hace referencia a la velocidad de crucero, ésta varía 

dependiendo del tipo de avión. El tiempo “objetivo” de aterrizaje de una avión es el tiempo al 

que debería aterrizar si tuviera que aterrizar a velocidad de crucero. Si el ATC requiere que el 

avión disminuya, mantenga o acelere la velocidad, se incurrirá un coste. La Figura 2.1. 

representa la variación del coste de aterrizaje en la ventana temporal del avión.   

 

Gráfico 2.1. Variación en el coste de penalización para un avión según el tipo y cantidad de retraso 

 

Dependiendo de la cantidad de retraso, pueden darse casos en los que un número de pasajeros 

con un vuelo de conexión lo pierdan,  que la tripulación del avión tuviera que realizar otro  

vuelo y éste tiene que ser reprogramado, etc. No únicamente existen los costes de penalización 

sino que hay muchos otros posibles costes derivados de los retrasos como reprogramaciones de 

tripulación de tierra, pagos por tiempo extra a la tripulación, reprogramación de vuelos, costes 

de handling, etc.  Todos estos retrasos pueden propagarse a otros vuelos, pasajeros, compañías 

de handling y slots.  

Por lo tanto, resolver el problema de secuencia de aterrizaje (Aircraft Landing Scheduling 

Problem - ALSP),  es un problema de asignación a cada avión un tiempo de aterrizaje y pista 

óptimos de tal forma que se minimice el coste total ya que es un área importante para 

operaciones de tráfico aéreo.  

 

2.5.  Conclusiones 

Con el aumento del número de vuelos de las últimas décadas, y por ende enorme aumento de los 

pasajeros transportados cada día a nivel mundial, debe desarrollarse una coordinación para que 

los aviones puedan despegar y aterrizar en el número limitado de pistas de las que dispone el 

aeropuerto respetando las ventanas temporales y las distancias de seguridad de cada avión.  
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El aeropuerto emite un documento en el que se presentan las operaciones diarias previstas, 

suministrando las llegadas y salidas de los aviones durante el día. El problema reside en que los 

vuelos pueden estar sujetos a varios contratiempos y problemas imprevistos (fallos mecánicos, 

combustible contaminado o muchos otros posibles eventos) que pueden retrasar el vuelo u 

obligar a un vuelo  a tomar una ruta distinta o que deba realizar un aterrizaje de emergencia. Por 

lo tanto realizar programaciones con mucha antelación no tiene sentido ya que la volatilidad de 

ésta es elevada.   

Como solución se pueden utilizar los datos que proporciona el radar de control de tráfico aéreo.  

Al entrar en el rango del radar de control de tráfico aéreo del aeropuerto el avión solicita que se 

le asigne un tiempo de aterrizaje y una pista, en el caso de que el aeropuerto disponga de más de 

una pista. Por esta razón, es importante desarrollar herramientas que sean capaces de satisfacer 

las necesidades  

El problema de la secuencia de aterrizaje de aviones ALSP es complicado de resolver. Éste 

puede ser visto como un problema de Job Machine Scheduling con en el que los tiempo de 

procesado y la secuencia son dependientes. El Job Machine Scheduling es un problema 

clasificado como NP-hard,  de ahí que el problema del secuenciado de aterrizaje de aviones se 

considere NP-hard. El apartado “Taxonomía de Métodos de Secuencia de Aterrizaje de Aviones 

y Software” se centra en los métodos existentes utilizados para resolver este tipo de problemas.    
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3. Planteamiento del problema 

Al entrar en el rango del radar de control de tráfico de aéreo del aeropuerto el avión solicita que 

se le asigne un tiempo de aterrizaje y una pista, en el caso de que el aeropuerto disponga de más 

de una pista.  

El tiempo de aterrizaje que se le asigna debe estar comprendido dentro de una ventana temporal 

específica, limitada por un tiempo early de llegada, que representa el tiempo al que puede llegar 

el avión si va a su máxima velocidad; y por el tiempo latest de llegada, que representa el tiempo 

máximo al que puede llegar un avión si vuela a la velocidad más económica a nivel de fuel.  

Existe también la necesidad de imponer que entre dos aviones que aterrizan consecutivos se 

cumpla una distancia mínima de seguridad. Esta distancia dependerá del tipo de aviones que 

vayan a aterrizar.  

El problema consiste en secuenciar los aviones que entren en el alcance del radar de control de 

tráfico aéreo de manera que el tiempo de aterrizaje de los  aviones, en el mayor número de los 

casos posibles, esté comprendido dentro de la ventana temporal, y que el tiempo real de 

aterrizaje sea lo más próximo al tiempo programado de aterrizaje, teniendo en cuenta el 

cumplimiento de las restricciones de separación de seguridad entre los aviones.  

 

3.1. Notación  

A conjunto de aviones 

Ei tiempo mínimo de aterrizaje del avión   

Ti  tiempo programado de aterrizaje del avión   

Li     tiempo máximo de aterrizaje del avión   

R    número de pistas de aterrizaje 

Sij   separación entre aviones consecutivos si   aterriza antes que   en la misma pista.  

sij  separación entre aviones consecutivos si   aterriza antes que   en pistas diferentes.  

     representa la carga de trabajo en la pista más utilizada. 

     representa la carga de trabajo en la pista menos utilizada.  

xi    tiempo de aterrizaje del avión del avión   

ai tiempo de retraso del avión            ,esto es                   

bi   tiempo de adelantamiento del avión          , esto es                    

gi  coste de penalización si el avión   aterriza antes del tiempo programado         

hi  coste de penalización si el avión   aterriza después del tiempo programado         
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       medida de la carga de trabajo involucrada en aterrizar un avión i en una pista r. 

 

3.2. Suposiciones  

En este planteamiento supondremos que se trata de un caso estático en el que disponemos de 

toda la información de los vuelos, es decir, disponemos del número de aviones totales 

involucrados en el problema y éste no varía, y de los datos de cada avión: el tiempo early, el 

tiempo last,  el tiempo objetivo de aterrizaje y el tipo de avión.  

En este caso, consideraremos únicamente una pista.  

3.3. Funciones objetivo 

El problema se plantea como un problema multi-objetivo en el que se pretende optimizar más de 

una función objetivo. En este caso las funciones objetivo son:  

Minimizar el coste total de la desviación de los aviones. Como se ha mencionado anteriormente, 

cuando el tiempo de aterrizaje real de un avión no coincide con el  tiempo programado incurren 

costes. En este caso para cada avión se tiene en cuenta el tiempo de retraso y de adelantamiento 

y los costes respectivos (ya que el coste de retraso no es el mismo que en el caso que el avión 

llegue antes).  

                

   

   

 

Minimizar el tiempo total de llegada de los aviones. Al mismo tiempo se pretende que el tiempo 

total del proceso de aterrizaje de los aviones sea el mínimo posible, esto es, que el ultimo avión 

aterrice lo antes posible.  

        

   

   

 

Minimizar la diferencia de carga de trabajo en diferentes pistas. En este caso se trata de 

equilibrar la carga de trabajo de cada pista, para que no se produzca saturación por un lado y 

ociosidad por el otro, esta función es muy útil a la hora de equilibrar cargas de trabajo, pero en 

este caso no la aplicamos.  
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3.4. Restricciones 

Ventanas temporales. Asegurar que el tiempo de aterrizaje del avión está comprendido en los 

tiempos que conforman la ventana temporal.  

         

Relaciones de precedencia.  

                             

Separación entre aviones. Esta restricción asegura el cumplimiento de la separación de 

seguridad exigida entre el aterrizaje consecutivo de dos aviones.  En la Tabla 4.1. se representa 

los tiempos de separación (en segundos) entre aviones que aterrizan consecutivamente.  

 Avión siguiente 

1º avión a aterrizar Heavy Large Small 

Heavy  96 157 196 

Large 60 69 131 

Small 60 69 82 

Tabla 3.1. Tiempos mínimos de separación (en segundos) entre aterrizajes 

                              

Restricciones de pista. En el caso que el aeropuerto disponga de más de una pista, asegura que 

el avión aterriza únicamente en una pista.  Esta restricción contempla que si dos aviones 

consecutivos aterrizan en la misma pista, deben respetar las distancias de separación de 

seguridad. En el caso contrario, que dos aviones consecutivos aterricen en pistas diferentes, esta 

distancia de seguridad será 0.  

      

 

   

                    

Equilibrio de cargas de trabajo en las pistas. Asegura que la carga máxima de trabajo es como 

mínimo la carga de trabajo en la pista más utilizada y que la carga mínima es la carga de trabajo 

pista menos utilizada.  
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3.5. Conclusiones 

El Aircraft Landing Scheduling Problem se plantea como un problema multi-objetivo.  En este 

caso, las consideraciones que se tienen en cuenta son que únicamente se dispone de una pista y 

que el problema es estático. El planteamiento del problema tiene por funciones objetivos 

minimizar la desviación total entre el tiempo de aterrizaje y el tiempo objetivo de cada avión  y 

minimizar el tiempo de aterrizaje del último avión, cumpliendo con las restricciones de ventanas 

temporales de cada avión, las distancias de separación de seguridad entre aterrizajes 

consecutivos y la restricción de pista.   
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4. Taxonomía de Métodos de Secuencia de Aterrizaje de Aviones y 

Software  

El objetivo de esta sección es clasificar los métodos y software existentes destinados al 

aterrizaje de aviones y su programación. La clasificación se lleva a cabo mediante la taxonomía 

de dichos métodos, para analizar el avance y demostrar los inconvenientes de los enfoques 

existentes.  

La taxonomía de los métodos se lleva a cabo tres fases. Primero se realiza una  lista de la 

clasificación de los parámetros; segundo, se definen los posibles valores de cada parámetro y 

finalmente, se analizan los métodos descritos en publicaciones científicas sujetos a la 

clasificación de los parámetros anterior.  

4.1. Especificación de los parámetros de clasificación 

1. Tipo de problema de optimización 

1.1. Objetivo único (Single-Objective). La optimización se basa en único objetivo que 

también puede ser formulado como una suma ponderada de múltiples objetivos.   

1.2. Multi-objetivo. Optimización simultánea de más de un objetivo con la finalidad de 

encontrar un conjunto de soluciones (equilibrada)  

 

2. Tipo de funciones objetivo 

2.1. Minimizar el makespan (tiempo de aterrizaje del último avión) de la secuencia de 

aterrizaje. 

2.2. Minimizar el coste total de la desviación entre el tiempo de aterrizaje final de todos los 

aviones y su tiempo de aterrizaje estimado. 

2.3. Minimizar el tiempo total de la desviación de los aterrizajes de los aviones. 

2.4. Minimizar el retraso total de los aviones. 

 

3. Restricciones 

3.1. Uso de pista. Cada pista puede ser utilizada como máximo por un avión.  

3.2. Número de pistas de las que dispone el aeropuerto. 

3.3. Separación entre aviones. Hace referencia a las distancias y tiempos de seguridad que 

hay que dejar entre aviones a la hora de aterrizar, por razones aerodinámicas y de 

seguridad.  

3.4. Ventanas temporales de cada avión. A cada avión se le ha asignado un tiempo 

estimado de aterrizaje, pero existe un tiempo anterior Early Time of Arrival 

(suponiendo que el avión vaya a máxima velocidad) y un tiempo posterior de aterrizaje 



Optimización Multi-Objetivo de la Secuencia de Aterrizaje de Aviones  

 

- 24 - 
 

Latest Time of Arrival (determinado por la cantidad de combustible disponible o por el 

máximo retraso permitido para un avión).  

3.5. Precedencia entre aviones. Se considera la precedencia de aviones en las secuencias de 

aterrizaje. Una de las fuentes de esta restricción consiste en las diferentes rutas en las 

cuales el avión puede acceder al aeropuerto. 

3.6. Time Shifting. Existe una flexibilidad limitada en cuanto al tiempo de aterrizaje del 

avión, dentro de su ventana temporal, tanto hacia adelante como hacia atrás en relación 

al tiempo de aterrizaje estimado.  

3.7.  Asignación de pista.  Esta restricción es específica para problemas que se plantean con 

más de una pista de aterrizaje. Con ella se asegura que el avión aterriza en una única 

pista.  

 

4. Heurísticas utilizadas 

4.1. Control. Son heurísticas que se utilizan para asegurarse que los métodos que se 

implementan cumplen con las restricciones impuestas al problema.  

4.1.1. Force feasible. Fuerza que el tiempo de aterrizaje entre aviones sea al menos el 

mínimo tiempo permitido. Para ello, primero los aviones son ordenados, luego los 

primeros dos aviones se examinan y si existe un conflicto el resto de la secuencia 

se atrasa hasta que ya no existe conflicto. Se sigue con la siguiente pareja de 

aviones, y este proceso continúa  secuencialmente hasta que el tiempo de 

aterrizaje sea al menos el mínimo permitido.  

4.1.2. Squash. Esta heurística optimiza localmente la secuencia mientras mantiene el 

orden de caída. Si el tiempo entre aterrizajes de dos aviones es mayor que el 

tiempo mínimo requerido, seria innecesario atrasar el siguiente, por eso mover el 

siguiente avión hacia adelante disminuirá el coste.   

4.2. Proposal Generation Mechanism. Una vez se obtiene una secuencia de aterrizaje, ésta 

es enviada a un agente (avión) el cual evaluará dicha secuencia y reenviará un conjunto 

de aviones con los cuales se puede cambiar de pista. Si al intercambiar las pistas de 

aterrizaje de dos aviones el tiempo total de la secuencia de caída disminuye, entonces  

se procede a hacer el cambio.  

4.3. Negotiation Strategy. Las estrategias de negociación permiten seleccionar secuencias 

de aterrizaje dentro de un intervalo de propuestas proporcionadas por los agentes. 

 

5. Consideraciones 

5.1. Entorno estático, en el cual se ordenan un número fijo de aviones de los cuales se 

conoce toda la información de antemano.  
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5.2. Entorno dinámico, en el cual se incorporan nuevos aviones que entran en el sistema sin 

tener en cuenta aquellos que ya han aterrizado; es decir aquellos que ya han salido del 

sistema.  

 

6. Secuencias de permiso de aterrizaje 

6.1. First-come, First-served (FCFS). Este algoritmo determina la secuencia de aterrizaje 

del avión basándose en el orden del estimated time of arrival de cada avión.  

6.2. Constrained Position Shifting heuristic. Esta heurística evita que las posiciones finales 

de la secuencia de aterrizaje difiera del orden establecido por el FCFS no más de un 

número pre-especificado, llamado Maximum Position Shift (MPS). Es más, cuando el 

MPS es pequeño, se mantiene imparcial entre los aviones para no desviarse mucho de 

la secuencia FCFS. Relative Position Shifting (RPS) es una variante del MPS que tiene 

en cuenta la cercanía del avión a la pista cuando se especifica el MPS.   Esta heurística 

assume que el tiempo mínimo de aterrizaje debe ser menor que el tiempo estimado de 

aterrizaje.  

6.3. Non-dominated Average Ranking. Este método evalúa la bondad de una potencial 

secuencia de caída para cada uno de los objetivos y utiliza una estrategia de 

clasificación para elegir la secuencia más prometedora.  

6.4.  Heurística de construcción.  Heurística para la obtención de una solución inicial 

basada en la observación siguiente: Si se asume que el número de pistas  r >1 y que 

todos los aviones              son ordenados de manera ascendente, es decir 

                   . Para cada dos aviones ordenados   y      si           

       , entonces una secuencia de aterrizaje mejor, que no necesariamente optima, 

puede encontrarse  si se les asigna pistas de aterrizaje diferentes.  

 

 

7. Modelos de Optimización 

7.1. Job Shop Scheduling Model. Este modelo se basa , de manera general, en ordenar un 

conjunto de actividades a ser procesadas en un conjunto de máquinas tal como: 

- Cada actividad está compuesta por una secuencia predefinida de operaciones. 

- Cada trabajo debe ser precedido por algunas máquinas en un orden específico 

y no necesariamente en el mismo orden para todas las actividades. 

- Cada máquina puede procesar únicamente una actividad cada vez.  

Se considera que las pistas son las máquinas y que el aterrizaje de un avión es una 

operación de un trabajo (avión).  Se define un orden entre operaciones para cada 

trabajo; suponiendo eso, cuando las ventanas temporales de dos aviones están 

separadas, existe un orden entre ellos, de ahí la apariencia de un orden parcial de los 
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trabajos a nivel operacional. El objetivo es determinar la secuencia de aterrizaje de los 

aviones en unas determinadas pistas. Esta tarea consiste en asignar un tiempo de inicio 

para cada aterrizaje y adjudicar una pista respetando las restricciones de tiempo:  

- El tiempo mínimo y el tiempo máximo del aterrizaje. 

- Tiempo de separación entre aviones en una misma pista. 

- La secuencia de caída. 

7.2. Mixed Integer Programming Model (MIP). La programación lineal es un 

procedimiento o un algoritmo matemático mediante el cual se resuelve un problema 

indeterminado, formulado a través de un sistema de inecuaciones lineales, optimizando 

la función objetivo, también lineal. Un problema lineal mixto consiste en un modelo 

LP con algunas variables enteras.  

7.3. Dynamic Programming Model. Este modelo se basa en transformar un problema 

complejo en una secuencia de problemas más simples. Primero se resuelven los más 

sencillos que después servirán para resolver los más difíciles, hasta que todos estén 

resueltos. Este modelo no está restringido por ningún requerimiento de linealidad, 

convexidad ni continuidad.    

7.4. Network Model. En este modelo cada fase corresponde a una posición de un avión en la 

secuencia final de aterrizaje. Un nodo de una cierta fase de la red representa una sub-

secuencia de aviones. El nodo de inicio y el nodo final representan el inicio y el final 

del proceso de secuencia respectivamente. La finalidad es encontrar el camino más 

corto en la red, lo que se traduce en, encontrar la secuencia con el menor makespan.   

 

4.2. Recensión de los Trabajos Revisados Sujetos a la Clasificación de 

Parámetros  

Artículos de investigación de las últimas tres décadas han sido analizados sujetos a los 

parámetros de clasificación especificados. La Tabla 3.1.  resume los métodos revisados que más 

adelante son descritos con mayor detalle.    

 

     Parámetros 

 

 

Métodos 

1. Tipo de 

problema de 

optimización 

2. Tipo de 

funciones 

objetivo 

3. 

Restricciones 

4. 

Heurísticas 

utilizadas 

5. 

Consideraciones 

6. 

Secuencias 

de permiso 

de 

aterrizaje 

7. Modelo de 

optimización 

Linear 

Programming 

Based Tree 

1.1 2.2 3.3 

3.4 

3.5 

 5.1  7.2 

7.4 
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Genetic 

Algorithm 

1.1 2.2 3.2 

3.3 

3.4 
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1.1 2.3 3.3 

3.4 

3.5 

4.1.1 

4.1.2 

5.1 6.2 7.2 

Branch and 

Bound 

Algorithm 

1.1 2.3 3.2 

3.3 

3.4 

 5.1  7.2 

An any time 

Algorithm 

1.1 2.4 3.2 

3.3 

3.7 

 5.2   

Multi objective 

Neighborhood 

Search 

Differential 

Evolution 

1.2 2.1 

2.4 

3.3 

3.4 

3.5 

 5.1 6.2  

Semantic 

Agents 

Negotiation 

Mechanism 

1.2 2.1 

2.4 

 4.2 

4.3 

 6.3  

Dynamic 

programming 

on a Network 

Model 

1.1 2.1 3.3 

3.4 

3.5 

3.6 

  6.2 7.3 

7.4 

Hybrid meta-

heuristic 

1.1 2.2 3.3 

3.4 

3.7 

 5.1 6.4 7.2 

Tabla 4.1.  Clasificación de métodos de resolución del ALSP 

 

● Linear Programming Based Tree Search [1] 

Para resolver el problema, se ha planteado como un Displacement Problem. Este problema 

surge cuando se tiene que realizar una secuencia de decisiones y cada decisión sucesiva que 

se toma está relacionada con la decisión anterior. Se resuelve el problema estático original 

y se considera que esta solución es una solución factible (encontrada por algún algoritmo). 

Una vez obtenida esta solución factible, se considera que algo en el problema original 

cambia, un dato (relacionado con las funciones objetivo), o una nueva variable, o una 

nueva restricción. Ahora, entorno operacional es diferente a lo que se había asumido 

previamente al llegar a esas decisiones. Como resultado de este cambio de entorno, es 

necesario resolver el problema inicial, incorporando algunos cambios, pero con alguna 

restricción adicional (link) que haga referencia a la solución original (previa).  Para esto, se 

define una displacement function que cuantifica el efecto de desplazar cada variable de 

decisión del valor de solución previa (conocido) a su nuevo valor (actualmente 

desconocido). 

Se considera que el problema es dinámico (5.2) por lo cual el entorno operacional del 

problema va variando. El método busca optimizar una única función objetivo (1.1), se 
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busca minimizar el coste total de las desviaciones de los aviones (2.2). La función objetivo 

del problema, tiene en cuenta los costes de penalización tanto de los aterrizajes antes de 

hora, y los aterrizajes después del tiempo estimado de aterrizaje. Las restricciones que se 

contemplan son: la separación de seguridad entre aterrizajes de aviones (3.3), las ventanas 

temporales de cada avión (3.4) y la precedencia entre aviones (3.5). 

Para resolver el problema ALSP como un Displacement Problem se propone un algoritmo 

solución basado en programación linear mixta (7.2)  junto a una estrategia de búsqueda de 

árbol en un grafo (7.4).   

 

Descripción paso- a- paso del algoritmo: 

Notación: 

 P número de aviones a ser secuenciados; 

 i es el índice de un avión; 

 γ es el contador de iteraciones; 

 Xi es el tiempo de aterrizaje del avión i; 

 Ai is an appearance time of an aircraft at which it was first available to be assigned a 

landing time; 

 Zdisp es el coste acumulado del desplazamiento;  

 Zsol es el coste de la solución final en términos de función de coste asociada al ALS original 

(estático); 

 t* is a freeze time; any aircraft assigned a landing time within t* of the current time had its 

landing time (and runway) frozen; 

 F0(t) represents the set of aircraft that have not yet appeared by time t; 

 F1(t) represents the set of aircraft that have appeared by time t, but have not yet landed (or 

had their landing times frozen); 

 F2(t) represents the set of aircraft that have appeared by time t and have landed (or have 

had their landing times frozen); 

 gi es el coste de penalización (≥0) por unidad de tiempo por aterrizar antes del tiempo 

estimado Ti para el avión i.   

 hi es el coste de penalización (≥0) por unidad de tiempo por aterrizar después del tiempo 

estimado Ti para el avión i.  ... ; 

 λcost  es la importancia asociada al coste total de la solución Zsol 

 λdisp  es la importancia asociada al  coste total del desplazamiento; 

 λmax  es la importancia asociada al desplazamiento máximo Dmax; 

 Dmax  es el desplazamiento máximo... 

 

Algoritmo 1.  

(1) Se fijan los tiempos de aterrizaje  Xi= , i=1,…,P .  

(2) Sea: 

                        
                                      
                                      

(3) Se asigna γ = 0 y Zdisp = 0. Se fija el tiempo actual                      . Y se 

resuelve el problema ALSP estático original, incluyendo únicamente a los aviones en 

      . La solución a este problema estático son los tiempos iniciales de 

aterrizaje             . 

(4) Si hay aviones por aparecer            entonces ir al paso (5), sino            

todos los aviones han aparecido en tal caso ir al paso (6) . 

(5) Asignar γ = γ + 1. Avanzar el tiempo a                        y resolver el 

displacement problem involucrando únicamente a aquellos aviones en         

      , donde los aviones en       , están restringidos a aterrizar al tiempo      
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       y en la pista adecuada, como han sido establecido por la solución anterior. 

Añadir el componente de coste de desplazamiento 

                                 
            de esta solución a Zdisp e ir al paso  

(4). 

(6) Todos los aviones en         se estima que aterricen a los tiempos de aterrizaje (y en 

la pista correspondiente) como ha sido establecido por la última solución del 

desplazamiento. Computar                        
 
                   . 

 

 

● ACOGA (Ant Colony Optimization Genetic Algorithm) [ALSP basado en Job Shop 

scheduling problem [2] 

Para resolver el ALSP se propone un método híbrido, llamado ACOGA (Ant Colony 

Optimization Genetic Algorithm). Se considera que el problema es estático (5.1), de manera 

que el número de aviones con el que se trabaja es fijo desde el inicio. Para resolver el 

problema lo separa en dos actividades. La primera es obtener una población inicial y la 

segunda computar los tiempos de aterrizaje para un conjunto de aviones.  Este método está 

basado en un Job Shop Scheduling model (7.1) en el que se dividen los aterrizajes por 

grupos (de como mínimo 2 aviones consecutivos).  

ACOGA es un método de optimización con una única función objetivo (1.1). En este caso, 

la función objetivo a minimizar es el coste total de la desviación entre el tiempo de 

aterrizaje actual y el tiempo de aterrizaje estimado (2.2). Dicha función tiene en cuenta 

tanto el coste por adelantamiento como por retraso del tiempo de aterrizaje del avión 

respecto al tiempo estimado de aterrizaje. 

Las restricciones que contempla este método son el número de pistas las cuales dispone el 

aeropuerto (3.2), la separación entre aviones (3.3), las ventanas temporales de cada avión 

(3.4)  y la precedencia entre aviones (3.5).  

En este caso, no se aplica una estrategia de aterrizaje a la hora de definir una secuencia de 

aterrizaje, sino que se aplica el algoritmo Ant Colony Optimization (ACO). La población 

inicial  juega un papel importante a la hora de determinar la calidad de la solución final. La 

estrategia que utilizan para obtener la población inicial es generar una secuencia de 

aterrizaje y una asignación de pistas aplicando un ciclo del algoritmo ACO (descrito más 

adelante). Una vez construida la primera población, se computa el tiempo de aterrizaje de 

cada avión respetando las ventanas temporales y la separación entre aviones. El siguiente 

paso es aplicar un algoritmo genético para alterar la población inicial y llegar a una 

solución óptima.  
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Descripción paso- a- paso del algoritmo: 

Notación: 

 m  :  número de hormigas 

 Tabuk  es la lista de nodos visitados; 

 Candidatek: lista de nodos candidatos a ser visitados en orden, para respetar la relación de       

precedencia.  

 α , β  :  parámetros que controlan la importancia relativa de η y τ, donde η es la información 

de la heurística y τ es el rastro de feromona 

 q  :  variable aleatoria uniformemente distribuida entre [0,1] 

 q0  :  parámetro fijado entre 0 y 1 

 τij es el valor del rastro de las feromonas 

 τ0  :  valor inicial de los rastros de feromonas 

 ρ  :  coeficiente de vaporización 

 D : lista de nodos del grafo 

 

Algoritmo 2. ACO para la obtención de la población inicial 

(1) Sea: 

 Tabuk  =  D ,  

 Candidatek = primera operación de J  

 τ =τ0 

(2)  Para cada hormiga k= 1… m, inicializar       
(3) Mientras             ,  

(3.1)  de un nodo i, elegir el siguiente nodo    Tabuk de entre los nodos de Candidatek de 

auerdo con:  

  

 
 
 

 
                 

       
             

       
                                                     

  

 

    

 
 

 
 

                 
                              

 

                 
                              

  

(3.2) Insertar j en Tabuk. Actualizar la lista Candidatek y actualizar localmente los rastros 

de feromonas τij utilizando : 

                   

 Note: En el algoritmo previo, la información heurística (ηil)  depende de dos parámetros:  

 Tiempo de separación (Sil) or (sil) : generalmente,                  

       . De esta forma, los aviones que aterricen diferentes pistas serán 

más privilegiados que aquellos que aterricen en una misma pista. 

 |tai – taj| : los aviones cercanos en términos de tiempo objetivo son 

privilegiados para aterrizar los más cercano posible a su tiempo 

estimado de aterrizaje para asi reducir el coste de penalización.  

 

● Genetic Algorithm [3] 

El método se basa en un Problema Programación Lineal Mixto (7.2), con variables reales y 

enteras. Se considera que el problema es estático (5.1), de manera que el número de 

aviones con el que se trabaja es fijo desde el inicio.  

El problema está planteado con una única función objetivo (1.1), que consiste en minimizar  

la suma de la ponderación de las desviaciones de los aviones (2.3). Las restricciones que se 
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contemplan son: la separación entre aviones (3.3), las ventanas temporales de cada avión 

(3.4)  y la precedencia entre aviones (3.5).  

Este método utiliza un algoritmo genético que luego servirá para establecer el límite 

superior para la solución. En este problema, los genes son los aviones y el alelo es el 

tiempo de aterrizaje del avión. Por lo tanto, el cromosoma representará una tabla de aviones 

y su tiempo de aterrizaje propuesto. Esto constituye una secuencia de aterrizaje i, con una 

función fitness Fi. El algoritmo genético elige a dos padres según sean más aptos, y con 

ellos realiza un intercambio genético con el que obtiene dos hijos, en este caso un hijo es 

una secuencia de aterrizaje. Se puede dar el caso que las secuencias resultantes no cumplan 

las restricciones de las ventanas temporales de los aviones, ni la separación de seguridad 

que tiene que haber entre dos aterrizajes consecutivos. Estos dos factores hacen que surja la 

necesidad de heurísticas para procesar el resultado después del intercambio genético. Estas 

heurísticas son la Force feasible (4.1.1) y Squash (4.1.2).  

 

Descripción paso- a- paso del algoritmo: 

Notación: 

 p ,es la población; 

 Fi , función de idoneidad; 

 Si , secuencia de aterrizaje resultante después del crossover entre dos progenitores;  

 gi , es el gen que representa un avión; 

 ai, , es el alelo que representa el tiempo de aterrizaje del avión;  

 Pmut , es la probabilidad de ser mutado; 

 M, es la mutación que se aplica a una secuencia en la que se introducen nuevas 

características a una población, es este caso, se modificara el orden de aterrizaje de los 

aviones;  

 

Algoritmo 3 Algoritmo Genético 

(1) Se genera una p inicial de forma aleatoria.  

(2) Seleccionar dos padres según su Fi. Aquellos que tengan mayor Fi tendrán más posibilidad 

de ser seleccionados.  

(3) Se realiza la combinación y se aplican las heurísticas de Force feasible y Squash. Como 

resultado se obtiene    y     

(4) Según Pmut se le aplica M a    y    , aleatoriamente modificando el ai de gi. Si esta 

modificación ha beneficiado a la población aumenta la Fi asociada, en caso contrario 

disminuye.  

 

 

 

● Branch & Bound Algorithm [3] 

El método se basa en un modelo de Mixed Integer Programming (7.2). Se considera que el 

problema es estático (5.1), de manera que el número de aviones con el que se trabaja es fijo 

desde el inicio.  

El problema está planteado con una única función objetivo (1.1), que consiste en minimizar  

la suma de la ponderación de las desviaciones de los aviones (2.3). Las restricciones que se 
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contemplan son: la separación entre aviones (3.3), las ventanas temporales de cada avión 

(3.4)  y la precedencia entre aviones (3.5).  

El problema se resuelve mediante la combinación algoritmo Branch & Bound y del 

algoritmo genético, los cuales proporcionan una solución exacta del problema. El algoritmo 

Branch & Bound utiliza la solución proporcionada por el algoritmo genético y lo utiliza 

para establecer los límites superiores del problema. Para establecer los límites inferiores del 

problema, se utiliza el algoritmo simplex. Para buscar conflictos entre dos aviones en un 

nodo se utiliza una estrategia de búsqueda en profundidad.   

 

Descripción paso- a- paso del algoritmo: 

Notación: 

 X , es la solución, es decir, la secuencia de aterrizaje; 

   
 
, es el tiempo preferred del avión i;  

 Xi , representa un avión, i= 1,…,N;  

     , representa la restricción de precedencia entre aviones;  

 

Algoritmo 4. Branch & Bound 

Dada una solución X para un nodo K  

(1) Se ordenan los aviones Xi según su   
 
 

(2) Se comprueba que la restricción de tiempos de separación entre aviones se cumpla 

(2.1)  Si la restricción de cumple, se considera que X es una solución factible para el nodo 

K 

(2.2)  Sino, se coge la pareja (j,k) y se ramifica a partir de aquí asignando     1 o 0 (con 

esto se relaja la restricción de precedencia) 

 

 

 

● Genetic Algorithm (Standard Binary Algorithm and Seeding Approach) [4] 

Este método resuelve el ALSP  mediante dos algoritmos genéticos, los que luego serán 

comprados.. Se considera que el problema es dinámico (5.2), de manera que el número de 

aviones con el que se trabaja no está determinado, por lo tanto los constantes cambios 

debido a despegues y aterrizaje de aviones afectan a las restricciones.  

En este caso se optimiza una única función objetivo (1.1) que consiste en minimizar el 

retraso total de los aviones (2.4). Dicha función tiene en cuenta tanto el coste por 

adelantamiento como por retraso del tiempo de aterrizaje del avión respecto al tiempo 

estimado de aterrizaje y aplica una penalización. Las restricciones que contempla este 

método son el número de pistas las cuales dispone el aeropuerto (3.2), la separación entre 

aviones (3.3) y las ventanas temporales de cada avión (3.4) .  

Para resolver la secuencia de aterrizaje, se plantea el algoritmo genético estándar (Standard 

Binary Genetic Algorithm) y una variación de este. En el primero, cada problema en la 

secuencia requiere un nuevo cromosoma codificado que elimina los aviones que han 

aterrizado e incorpora los nuevos aviones que han llegado. La nueva programación se 

construye desde cero, partiendo desde una población inicial aleatoria. El segundo algoritmo 
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es una modificación, en la que se eliminan los aviones que han aterrizado y se actualizan 

los nuevos aviones, pero que, a diferencia de la primera, no construye una nueva 

programación partiendo de una población inicial aleatoria.  

 

Descripción paso- a- paso del algoritmo: 

Notación: 

 p , es la población que representa la secuencia de aterrizaje de los aviones,  

 gi son los aviones;  

 t  son los intervalos de tiempo, cada intervalo es de 3 minutos; 

 

Algoritmo 5.  Standard Algorithm 

(1) Se inicializa t. 

(2) Se inicializa p aleatoriamente.  

(3) Mientras t < 3. Seleccionar dos padres y aplicar las operaciones de intercambio genético y 

mutación e insertar a los nuevos hijos en la población.  

(4) Se utiliza la estrategia elitista en la que el 10% de los mejores de la generación anterior son 

copiados a la siguiente generación.  

 

Algoritmo 6.  “Seeding” Approach (modified)  

(1) Se fijan intervalos de t de 3 minutos 

(2) Si es el primer intervalo de 3 minutos, inicializar la población aleatoriamente. Sino 

población = población final del intervalo anterior.  

(3) Mientras t < 3. Seleccionar dos padres y aplicar las operaciones de intercambio genético y 

mutación e insertar a los nuevos hijos en la población.  

(4) Se utiliza la estrategia elitista en la que el 10% mejores de la generación anterior son 

copiados a la siguiente generación.  

 

● Multi-Objective Neighborhood Search Differential Evolution [5] 

Este método propone resolver el problema mediante algoritmos evolutivos, concretamente 

mediante el Neigborhood Search Differential Evolution. El problema se plantea de manera 

estática (5.1), por lo que se trabaja con un determinado número de aviones y se formula 

como un problema multi-objetivo (1.2)  en el que se minimiza el coste de la secuencia (2.1)  

y el retraso total de todos los aviones  (2.4).  

Tal y como se plantea el problema, está sujeto a 3 restricciones: todos los aviones deben 

aterrizar dentro de una ventana temporal especificada (3.4),  entre aterrizaje de dos aviones 

consecutivos se debe respetar una distancia de seguridad (3.3)  y la relación de precedencia 

entre aviones  que van por la misma ruta (3.5).  

El método plantea resolver el problema en dos fases. La primera fase en la que se busca 

una única secuencia de aterrizaje que garantice una buena compensación entre los dos 

objetivos, para la cual  se ha diseñado el método Non-dominated Average Ranking(NAR) 

(6.2). La segunda fase en la que la secuencia anteriormente obtenida se utiliza como input 

en el Multi-Objective Evolutionary Algorithm (MOEA) para buscar un conjunto de 

soluciones (non-dominated), donde se resuelve utilizando una versión  multi-objetivo del 

método  Neigborhood Search Differential Evolution.   
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Descripción paso- a- paso del algoritmo: 

Notación:  

 fri ,  regiones factible de la secuencia de aterrizaje en la que no se viola ninguna restricción, 

ni de ventanas temporales ni de separación de seguridad entre aviones; 

 TC, coste total de la secuencia de aterrizaje; 

 STA, tiempo de aterrizaje programado; 

 ETA, tiempo estimado de aterrizaje, es el tiempo en el que se estima tendría que aterrizar el 

avión; 

 Di , es el coste por unidad de tiempo por aterrizar después del ETAi para el avión i;  

 Ai , es el coste por unidad de tiempo por aterrizar antes del ETAi para el avión i; 

   , es la coste de penalización para un avión i que aterriza antes o después del ETAi , va en 

función de Di y Ai ; 

 OC, total de holding loops de todos los aviones. 

 AC, es la bondad de la secuencia en el coste total que se estima mediante una media de 20 

muestras aleatorias. 

 

Algoritmo 7. Non-Dominated Average Ranking 

 

(1) Enumerar todas las  secuencias de aterrizaje posibles basadas en la restricción de 

precedencia.  

(2) Para cada secuencia de aterrizaje posible, calcular las regiones factibles (denotadas por fri) 

de los tiempos estimados de aterrizaje para los aviones en la secuencia, basándose en las 

restricciones de las ventanas temporales y las separaciones entre aviones.  

(3) Para casa secuencia, calcular el total  OC. Esta cantidad expresa el total STA.  

(4) Para cada secuencia, obtener una x aleatoriamente escogida de entre todo el conjunto de  

fri , luego el coste total incurrido de esta x se calcula mediante:   

                 

 

   

 

          
            
                     

  

(5) Se clasifican las posibles secuencias por OC y AC, respectivamente, con el 1 siendo la 

mejor clasificación.  

(6) Se calcula una puntuación para cada secuencia no-dominada sumando las clasificaciones 

para OC y AC. (Es decir, si una secuencia es la 2ª mejor en cuanto a la clasificación y la 3ª 

mejor en cuanto a la clasificación AC, su puntuación será 2+3=5). Finalmente la secuencia 

con la mejor clasificación será utilizada como secuencia de aterrizaje, la cual será 

optimizada en la segunda fase.   

 

 

Notación: 

 P es la población; 

 A es la secuencia de aterrizaje ; 

 C es la población de niños;  

 t, contador de generaciones;   

 NP ,número de individuos de la población;  

 

Algoritmo 8. Multi-Objective Neihgborhood Search Differential Evolution 

Pasos principales:  

(1) Fijar                           . 

(2) Inicializar P con NP individuos,                    y establecer        
(3) Mientras       (i.e. número máximo de generaciones) 

(3.1) Generar NP individuos mutados                 mediante la siguiente 

ecuación:  
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Donde     es seleccionada aleatoriamente del archive, y     y    son 

aleatoriamente seleccionadas de P. N y δ denotan una variable Gaussiana 

aleatoria y una variable de Cauchy aleatoriamente, respectivamente.   

(3.2) Se utiliza el siguiente operador para el intercambio genético para generar NP 

hijos y actualizar C con estos nuevos hijos:  

       
                   

               
  

 

(3.3) Elegir a los individuos superiores de  P y C y hacer una nueva población de 

padres.  

For i=1 : NP 

(a) Si pi domina ci, ci es rechazada.  

(b) Si pi es dominada por ci , pi es reemplazada por ci y se actualiza el 

archivo A con  Archive-Updating*. 

(c) Si pi y ci son no-dominadas entre ellas, utilizar el Archive-

Updating*, para comparar ci con A la menos concurrida con A será 

la nueva pi. 

(3.4) Interrumpir el archive cuando el tamaño de A  exceda el máximo.  

(3.5) Establecer          . 

(4)  Los individuos no-dominados de A son las soluciones finales.  

 

 

*Archive-Updating: 

Si ci es dominado por algún miembro de  A, descartar ci 

Sino si ci domina un conjunto de miembros de A, eliminar esos miembros de  A y añadir 

ci a A 

Sino añadir ci to A 

 

 

● Semantic Agents Negotiation Mechanism (Genetic Algorithm and Negotiation Rules) [6] 

Este método propone resolver el problema mediante Semantic Agent Negotiation 

Mechanism basado en un sistema Multi-Agente. El problema se plantea de manera estática 

(5.1), por lo que se trabaja con un determinado número de aviones.  

El problema se formula como un problema multi-objetivo (1.2)  en el que se minimiza el 

coste de la secuencia (2.1) y la desviación de los aviones (2.4).  

Esta propuesta utiliza un algoritmo genético para establecer la secuencia de caída, y 

mediante las estrategias de Proposal Generation Mechanism (4.2) y Negotiation Strategies 

(4.3) optimizan esta secuencia.  

 

Descripción paso- a- paso del algoritmo: 

Notación: 

 S es la Negotiation Strategies, estrategia de negociación; 

 I  es el Proposal Generation Mechanism, mecanismo de generación de propuestas; 

 GA es el Algoritmo genético ; 

 A i  : agente avión, i   {1,…,N} 

 Ag ={A1, …, An, C} , es el conjunto de agentes avión y el agente control 

 V = <v1
p
,…, vn

p
 , vc

p
 > :  vi

p
 es la valoración del agente avión i para propuesta p.  

 R es la secuencia de aterrizaje 

 M=<Ag, GA, S, I, V, R> : tupla del modelo 
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Algoritmo 9. Semantic Agent Negotiation Mechanism 

(1) Ai utiliza el GA para obtener una secuencia. 

(2) Ai envía su secuencia a otros agentes avión y al agente control 

(3) Los agentes avión y control puntúan la secuencia según sus propios beneficios. Cuanto 

menor sea la desviación y el coste, mayor puntuación. 

(4) Calcular la nota para cada secuencia. Aquella con la mejor puntuación, será seleccionada 

como solución inicial.  

(5) La solución inicial no es adecuada para todos aviones. Los agentes avión utilizan Proposal 

Generation Mechanism I para crear una propuesta para la solución inicial.  

(6) Todos los aviones utilizan la Negotiation Strategies S para decidir qué propuesta será 

aceptada. V será utilizada en este paso.  

(7) Si las condiciones (ventanas temporales o suspensión de la negociación) no se satisfacen, 

volver a (5), sino guardar la secuencia en R, y devolver R.  

 

 

● Dynamic programming on a Network Model [7] 

Este artículo, plantea el problema ALSP como una modificación del  Shortest path on a 

Network (7.4) y lo resuelve mediante Dynamic Programming (7.3). El método da solución 

a un problema con una única función objetivo (1.1), que en este caso, se trata de la 

minimización del makespan (2.1). Las restricciones que se contemplan son la separación 

entre aviones (3.3), las ventanas temporales de cada avión (3.4), la precedencia entre 

aviones (3.5) y el número máximo de cambio de posiciones que se le puede aplicar a cada 

avión (3.6). 

En este método para establecer la secuencia inicial de permiso de aterrizaje se realiza 

mediante Constrained Position Shifting (6.2), de tal forma que el primer avión en entrar en 

el horizonte del aeropuerto, es el primero que aterriza, y después se busca una solución 

óptima mediante el algoritmo descrito a continuación.  

 

Descripción paso- a- paso del algoritmo: 

Notación: 

 j son los nodos de la red 

 p, son las fases del problema, es decir las posiciones;  

 T(s), tiempo mínimo en el que la secuencia entera puede comenzar; 

 T(t), tiempo mínimo en el que la secuencia puede ser completada;  

 l(s) tiempo máximo en el que la secuencia en el nodo s puede comenzar; 

 P(j), conjunto de nodos predecesores de j; 

 

Algoritmo 10. Procedimiento para calcular el mínimo makespan  

(1) Asignar T(s)  0, l(s)  0; 

(2) para cada          hacer 

  (3)para cada nodo j en fase p 
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● Hybrid meta-heuristic[8]  

Este método propone una solución al ALSP basada en un modelo de programación mixta 

(7.2).  El problema se plantea como estático (5.1).  

Trata de optimizar una única función objetivo (1.1),  minimizar el coste total de la 

desviación de los tiempos de aterrizaje de los aviones (2.2) sujeto a las restricciones de 

separación de seguridad entre aviones (3.3), las ventanas temporales de cada avión (3.4) y 

la restricción de asignación de pista (3.7) ya que el problema contempla varias pistas de 

aterrizaje y así se controla que un avión aterriza en una única pista.  

Este método utiliza una heurística de construcción (6.5) para encontrar una primera 

solución. Luego implementa una heurística Simulated Annealing(SA) que en combinación 

con las heurísticas de Variable Neighborhood Descendent (VND) y Variable 

Neighborhood Search (VNS) mejoran la solución inicial (las combinaciones son SA+VND 

y SA+VNS ). La idea principal de estas heurísticas es que un óptimo local relacionado  a 

una posible solución necesariamente no tiene que ser un óptimo local relacionado con otra 

solución. Para escapar de óptimos locales se cambia la estructura de la solución.  

 

Pasos de la heurística Simulated Annealing  

Notación:  

 x , solución inicial;  

 t, es un parámetro de control correspondiente a la temperatura en la analogía del recocido 

de acero; 

 

Algoritmo 11. Simulated Annealing 

(1) Construir una solución inicial x utilizando el Algoritmo de Construcción* 

(2) Seleccionar una temperatura inicial t0>0; 

(3) Repetir hasta que se cumpla la condición:  

(3.1) Aplicar algoritmo VND** / Algoritmo VNS*** para mejorar la solución x. 

(3.2) Criterio de aceptación:  

 Calcular:              donde x´ es la solución mejorada.  

 Si  <0, x:=x´; 

 Sino si                   entonces x:=x´; 

 Sino no aceptar la nueva solución x´; 

 Actualizar t; 

 

 

 

Notación: 

 r, es el conjunto de pistas con el que se trabaja;  

 m, número de pistas;  

 Ti ,  tiempo de aterrizaje de los aviones; 

 i, son los aviones;  

 n, número de aviones a ordenar; 

 S , secuencia de aterrizaje; 

 

Algoritmo 12.  Heurística Construcción* 

(1) r > 1 (r=1…m) 

i=1,…,n;  

(2) Ordenar todos los aviones Ti de manera ascendente, de forma que                     donde 
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(3) De S asignar el primer avión, i.e.   a la pista  r=1;  

(4) Para r=1:m y para todos los aviones     

(4.1) Para cada pareja de aviones    y      si                   asignar al avión      la pista r=r+1. 

Sino asignar a     y      la pista r=r. Actualizar S. 

(5) Realizar paso (4) hasta que     

 

 

 

**Pasos algoritmo VND  

Notación 

   , conjunto de estructuras esntorno (neihgborhood); 

  , número de estructuras (neihgborhood); 

  , es la solución inicial; 

 x´, es la posible solución encontrada;  

 

Algoritmo 13. VND** 

(1) Seleccionar un conjunto de estructuras entorno                  

(2) Encontrar una solución inicial x 

(3) Repetir hasta que no haya mejora 

(3.1) Asignar k:=1;  

(3.2) Repetir hasta que k=     

Exploración del “vecindario”: encontrar el mejor vecino x´ de x.            
Mover o no, si la solución x´ es mejor que x, asignar     y    , sino     
  

 

 

 

Notación: 

   , conjunto de estructuras entorno 

  , número de estructuras entorno 

  , es la solución inicial; 

 x´, es la posible solución encontrada;  

 

Algoritmo 14. VNS*** 

(1) Seleccionar un conjunto de estructuras entorno                 que serán utilizadas 

para la busqueda; 

(2) Encontrar una solución inicial x, y una condición de stop 

(3) Repetir hasta que se cumpla la condición de stop 

(3.1) Asignar k:=1;  

(3.2) Repetir hasta que k=     

- Shaking: generar un punto x´ aleatorio en el k-esimo 
 
entorno de             

- Búsqueda local: aplicar algún método de busquedalocal con x´como solucion 

inicial, denotar el óptimo local como   . 
- Mover o no: siel optimo local es mejorca que el original, moverse       , y 

continuar la búsqueda con N1 y k:=1; sino asignar k:=k+1.  

 

4.3. Software  

Existe un número de software disponible para dar soporte a la gestión de aviones en el 

aeropuerto. Estos sistemas incluyen, en parte, módulos para programar los aterrizajes y 

despegues. Los más utilizados son:  
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● COMPAS (en Frankfurt). Coge una heurística inicial para determinar la secuencia y 

aplica un procedimiento de enumeración designado a eliminar los conflictos de los 

tiempos de separación. 

● OASIS utiliza un procedimiento de búsqueda basado en A*. 

● CTAS (Dallas Fort Worth). Es el más extendido. Contiene dos módulos dirigidos al 

problema considerado de secuencia de aterrizaje de aviones.  

a)  Módulo de secuencia y programación, el cual:  

i) Secuencia el aterrizaje de aviones en una pista utilizando una heurística 

constructiva simple basada en la fusión de secuencias parciales 

ii) Programa utilizando la siguiente expresión: STA=max[STA of previous plane 

+ separation time, earliest posible landing time] 

b) Módulo de asignación de pista  

 

4.4. Conclusiones 

Aunque muchos artículos de investigación sobre el ALSP se han publicado durante las últimas  

tres décadas, no se han desarrollado métodos que hayan sido implementados. Las razones 

pueden residir en que los métodos puedan suavizar o descartar restricciones operacionales 

críticas, que los algoritmos necesiten tiempos de ejecución poco razonables, que estudien 

entornos estáticos en lugar de entornos dinámicos, que se ignoren los requisitos de varios 

stakeholders, o dependan de características de un aeropuerto especifico. Estudios existentes 

generalmente consideran algunas de las restricciones más comunes y obvias, mientras ignoran 

las restricciones operacionales que se pueden observar del trabajo diario de los controladores.  

Por consiguiente, se espera que se puedan encontrar soluciones  para que puedan ser usadas por 

los controladores aéreos. Ya que el problema es complejo (es un problema NP-hard) y requiere 

de requisitos de varios stakeholders, los métodos con heurísticas multi-objetivo parecen ser más 

apropiados que no aquellos métodos con un único objetivo, como la programación dinámica, 

que suelen resultar más exigentes desde un punto de vista computacional.  
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5. Análisis de los métodos de optimización Multi-objetivo existentes 

5.1.  Optimización Multi-Objetivo 

El proceso de optimizar simultáneamente un conjunto de funciones objetivo se llama 

Optimización Multi-Objetivo. Por lo general un problema Multi-Objetivo se define como:  

K  número de funciones objetivo 

J  número de restricciones desigualdad 

L  número de restricciones igualdad 

N  número de variables de decisión    

   vector de restricciones desigualdad 

   vector de restricciones igualdad 

      vector de variables de decisión 

   vector de funciones objetivo  

 

                                
  

                           

                

 

Generalmente, no hay una única solución global óptima para este tipo de problemas, sino un 

conjunto de soluciones alternativas. Estas soluciones son óptimas en el sentido de que en el 

espacio de búsqueda no hay mejores soluciones cuando se consideran todos los objetivos. Se las 

conoce como soluciones Pareto-óptimas.  

Un punto        es Pareto-óptimo si no existe otro punto,      de manera que      

                  
   para almenos una función. Es decir, un punto es Pareto-óptimo si no 

hay otro punto que mejore al menos una función objetivo sin detrimento de otra función 

objetivo.  

En optimización Multi-Objetivo se utiliza el concepto de dominación. Una solución     se dice 

que domina a otra solución      si se cumple que:  

(1) La solución      no es peor que      en todos los objetivos, esto es, 

    
         

                   

(2) La solución      es estrictamente mejor que      en al menos un objetivo, esto es,  
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Donde el operador   se utiliza entre dos soluciones   y   como      para denotar que la 

solución   es mejor que la   en un objetivo particular, y de forma similar      implica que la 

solución   es peor que la solución   en dicho objetivo.  

Existen tres relaciones de dominancia posibles entre dos soluciones      y     : (i) la solución 

     domina a        (ii)      es dominada por       (iii)      y      no se dominan entre ellas.  

Para un conjunto finito de soluciones dado P, si se realizan todas las comparaciones posibles 

entre soluciones emparejadas se obtienen cuales soluciones dominan a cuales soluciones y 

cuales soluciones son no-dominadas entre ellas. Al final, se obtiene un conjunto P’ de 

soluciones las cuales no son dominadas entre sí. Este conjunto tiene la propiedad de dominar a 

todas las demás soluciones que no pertenecen a dicho conjunto, es decir, las soluciones de este 

conjunto son las mejores comparadas al resto de soluciones. Este conjunto P’ se conoce como el 

conjunto Pareto-óptimo.  

5.2. Características de los métodos de optimización Multi-objetivos 

Los métodos capaces de resolver problemas de optimización multi-objetivo se representan 

mediante algoritmos multi-objetivos evolutivos (MOEAs) que presentan las siguientes ventajas[ 

[9]:  

a) evolucionar un conjunto de soluciones no dominadas en lugar de una única solución;  

b) independencia ante un problema con una estructura fuerte, como convexidad y 

discontinuidad de las funciones objetivo;  

c) habilidad para buscar un espacio de gran dimensión con diferentes rangos de variables 

de decisión;  

d) habilidad para codificar variables de decisión discretas y continuas;  

e) compatibilidad con técnicas de manejo de restricciones;  

5.2.1.  Técnicas para preservar la diversidad en el frente Pareto óptimo 

El problema de la convergencia  se basa en buscar maneras de mejorar la precisión de la 

aproximación del frente Pareto-óptimo y mantener su diversidad (Gráfica 5.1.). Esto puede ser 

resuelto con una clasificación basada en la asignación de bondad que requiere el uso de 

diferentes métricas como:  

a) Dominancia en profundidad que implica dividir la población en diferentes frentes para 

reflejar un frente de una solución determinada.  

b) Dominancia en ranking, calculada como el número de soluciones en las cuales una 

determinada solución es dominada. 

Formatat: Tipus de lletra: Cursiva
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c) Dominancia en contador que se calcula de acuerdo al número de soluciones que domina 

cierta solución.  

  

 

Gráfica 5.1. Convergencia del algoritmo del frente Pareto-óptimo 

Se considera un individuo    de la generación t dominado por   
   

 . Su posición en el ranking de 

individuos viene dada por:  

                
   

 

A todos los individuos no-dominados se les asigna rank 1 (Gráfica 5.2). Establece que el 

individuo etiquetado con el 3 en la figura es peor que el individuo etiquetado con el 2, ya que 

este último se encuentra en una región en la que la compensación entre funciones objetivos está 

peor descrita por los individuos restantes.  

 

 

            Gráfica 5.2 Clasificación soluciones Multi-Objetivo 

La dominancia en profundidad, permite evitar la deriva genética del algoritmo, el cambio en la 

frecuencia relativa con la cual los alelos ocurren en una población,  que aparece debido a errores 

estocásticos en el proceso de selección. La convergencia del algoritmo al frente Pareto-óptimo 

obtenido como resultado de aplicar dicho procedimiento se muestra en la Gráfica  5.2. 
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Los procesos de dominancia en ranking y profundidad permiten al algoritmo tratar de igual 

forma todas las soluciones no-dominadas, lo que conlleva a una mejor convergencia.  

5.2.2. Clasificación basada en asignación de bondad para mejorar la convergencia de 

los algoritmos.  

La cuestión de la preservación de la diversidad está estrechamente relacionada con la 

incorporación de información de la densidad en el proceso de selección. Las técnicas pueden ser 

clasificadas de acuerdo a las categorías de técnicas estimación de densidad estadísticas.  

Fitness sharing. Esta técnica promociona las soluciones de las regiones menos pobladas en el 

espacio de búsqueda (Gráfica 5.3.). Define el entorno de la solución i en términos de la sharing 

function        , la cual toma la distancia     a otra solución j como argumento. En la práctica, 

el tamaño del entorno llamado nicho se controla por la distancia         

Al principio, el recuento de soluciones del nicho localizadas en el mismo nicho se calcula como 

la suma de los valores de las sharing functions. Representa la densidad estimada para la 

solución i. Después, el shared fitness    de la solución i se calcula como el fitness dummy     

obtenido en el proceso de clasificación y disminuido proporcionalmente al recuento de 

soluciones del nicho que comparten en el mismo entorno:  

   
   

           

 

Donde la distancia normalizada entre dos soluciones     se mide utilizando el genotipo 

(distancia Hamming)  o fenotipo (distancia Euclidiana) de cualquiera de las dos soluciones, y la 

sharing function        :  

          
   

    

      
 

 

                

                                                   

  

Donde   es un factor de ajuste.  

Los inconvenientes de esta técnica incluyen la necesidad de especificar el tamaño del nicho 

      , así como el tiempo requerido para computar los valores de shared fitness.  
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Gráfica 5.3. Representación gráfica de la técnica de fitness sharing 

Grid-base niching. Esta técnica se basa en dividir el espacio objetivo en cuadrados y evaluar la 

densidad alrededor de una determinada solución contando el número de soluciones en el mismo 

cuadro de la cuadricula (Gráfica 5.4). Adicionalmente, el tamaño del nicho        se utiliza para 

determinar el tamaño del cuadro. Esta característica hace que esta técnica sea similar a la técnica 

de fitness sharing.  

 

Gráfica 5.4. Representación gráfica de la técnica Grid-base niching 

 

Clustering. Esta técnica categoriza las soluciones mediante las medias de la medida de las 

distancias Euclidianas entre ellas. Primero, a cada solución de una población se le asigna a un 

clúster separado. Después, se calcula la distancia Euclidiana entre todos los pares de soluciones. 

Finalmente, los clúster con las menores distancias se fusionan para formar un clúster mayor.  Se 

ha probado que esta técnica puede producir una amplia diversidad de frentes Pareto-óptimos, 

pero requiere un tiempo de ejecución adicional para formar los clústeres en cada iteración del 

algoritmo.  
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Crowding. Esta técnica mide la distancia normalizada entre dos soluciones cercanas a cada lado 

de la solución a lo largo de cada uno de las funciones objetivo. Estas distancias se resumen en el 

resultado de distancia crowding para una solución. Por lo tanto, una densidad se representa 

como la aglomeración de una región alrededor de una determinada solución (Gráfica 5.5). Si 

una solución proporciona el mejor valor conocida para cualquier función objetivo, entonces su 

distancia crowding se establecerá como infinito. Las soluciones con mayores distancias 

crowding indican regiones menos aglomeradas. Esta técnica es computacionalmente más rápida 

que las técnicas de fitness sharing y clustering, pero la diversidad del frente Pareto-óptimo por 

lo general es peor.  

 

Gráfica 5.5. Representación gráfica de la técnica crowding 

k-th nearest neighbour method. Este método representa la densidad como una función de 

cambio de distancias entre soluciones determinada entre sus vecinos más cercanos. De esta 

forma, las distancias de una solución determinada a otras soluciones de definen en el espacio 

objetivo, y se ordenan en orden descendente. El primer individuo de la lista contiene la distancia 

a la solución más cercana. Con el objetivo de mantener la diversidad del frente Pareto-óptimo, 

el valor k es predefinido. De esta forma, la densidad de una determinada solución se calcula 

como la inversa de la distancia k-ésima más un valor reciproco.   

5.2.3. Influencia de los mecanismos de selección en la convergencia de los algoritmos 

El mecanismo de selección en un algoritmo evolutivo multi-objetivo influye en el número de 

selecciones para emparejamiento y en el reemplazo para cada solución de acuerdo a su fitness. 

De hecho, controla la convergencia del algoritmo en el frente Pareto-óptimo. Generalmente, la 

selección se lleva a cabo en dos pasos, primero todas las soluciones se clasifican basándose en 

la relación de dominancia y luego esta clasificación se refina utilizando la técnica de nicho.  

Normalmente, los mecanismos de selección que se implementan son:  
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Selección fitness-proportionate. Este mecanismo utiliza el muestreo de la “rueda de la ruleta” de 

manera que el fitness de cada cromosoma es proporcional a una porción de la “rueda de la 

ruleta”, esto se traduce en que los cromosomas más aptos obtienen una sección mayor a aquellos 

que son menos aptos. Para seleccionar los cromosomas con mejor fitness para cruzar, la rueda se 

gira N veces, donde N es el tamaño de la población. En cada giro, se elige al individuo que 

tenga la sección en la que la ruleta se ha parado. Este mecanismo se tiende a combinar con la 

técnica de fitness sharing. Este tipo de selección causa una prematura convergencia  debido a 

que la presión selectiva de los mejores cromosomas de una determinada población es más alta 

que la presión de peores cromosomas. Esto da como resultado la búsqueda de un frente Pareto-

óptimo en una región local y puede llevar al estancamiento en la región que está lejos del 

verdadero frente.  

Selección binary tournament. Para seleccionar un progenitor se eligen de forma aleatoria dos 

soluciones de la población. Una vez obtenidas las soluciones, se genera un número aleatorio en 

el intervalo [0,1] para compararlo con un parámetro límite. Para seleccionar un progenitor para 

cruzar, se comparan los factores de las soluciones obtenidas de forma aleatoria, la comparación 

se realiza respecto al fitness  y la diversidad del entorno crowding. Aquella solución que tenga 

un mejor fitness se selecciona como progenitor, en el caso en el que el fitness sea igual para 

ambas soluciones, se compara el factor de diversidad del entorno. La selección binary 

tournament proporciona una mejor convergencia que la selección fitness-proportionate.  

5.2.4.  Mecanismos elitistas para conservar soluciones no dominadas 

Los mecanismos elitistas se utilizan para prevenir que se pierdan las soluciones no-dominadas. 

La forma en la cual se guardan las soluciones de una iteración a otra del algoritmo evolutivo se 

define mediante estrategias elitistas. Las estrategias utilizadas más comunes son:  

Estrategia de Selección       que combina poblaciones de padres de entre el mating pool para 

seleccionar la mejor combinación de soluciones de la población mixta. La desventaja de esta 

estrategia es que las soluciones no-dominadas nuevas no se pueden adaptar a la siguiente 

población en el caso que las soluciones hijo son dominadas por las soluciones padre.  

Estrategia de almacenamiento externo  donde las soluciones no-dominadas encontradas a lo 

largo del proceso de optimización se almacenan es una población secundaria llamada archivo 

externo para mejorar la distribución del frente Pareto-óptimo. El archivo externo se actualiza 

con nuevas soluciones que dominan las actuales. La gran desventaja de este mecanismo elitista 

es el continuo crecimiento de externo archivo. De hecho, puede reducir la presión selectiva y 

ralentizar la búsqueda, ya que las soluciones no-dominadas participan en el proceso de 

selección. Para enfrentarse a esta dificultad, los miembros del archivo se pueden comparar 
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respecto a la concurrencia de su entorno y aquellos localizados en un entorno más concurrido 

pueden ser eliminados del archivo externo.  

5.3. Análisis de los algoritmos Multi-Objetivos 

Los Algoritmos Evolutivos Multi-Objetivos (Tabla 5.1) comparten propiedades de adaptación 

mediante un proceso iterativo que acumula y amplifica el beneficio mediante prueba y error.  

 

 

 

Algoritmos Evolutivos Multi-

Objetivo 

Técnicas M
O

G
A

 

N
S

G
A

 

N
P

G
A

 

S
P

E
A

 

S
P

E
A

-I
I 

N
S

G
A

-I
I 

P
A

E
S

 

Mecanismos de 

asignación de fitness 

basados en el ranking 

Dominancia profundidad   x       x   

Dominancia contador       x x     

Dominancia ranking x   x x x   x 

Mecanismos de 

preservación de la 

diversidad 

Fitness sharing x x           

Grid-based niching     x       x 

Clustering       x       

Crowding           x   

k-th nearest neighbour method         x     

Mecanismo de selección 

Fitness-proportionate x x           

Binary tournament     x x x x x 

Mecanismos de elitismo 

No-elitista x x x         

Almacenamiento externo       x x   x 

(µ+λ)           x   

Tabla 5.1 Resumen de los algoritmos evolutivos más conocidos 

Las soluciones candidatas representan miembros de una población virtual que intentan 

sobrevivir en un entorno definido por las funciones objetivo específicas. En cada caso, el 

proceso evolutivo refina la capacidad adaptativa de la población de las soluciones candidatas en 

el entorno, generalmente utilizando representaciones de mecanismos evolutivos como 

combinación genética y mutación. 

5.3.1.  Multi-Objective Genetic Algorithm (MOGA) 

El algoritmo MOGA [10] fue uno de los primeros algoritmos evolutivos multi-objetivos 

introducido por Fonseca y Fleming. Este algoritmo es bastante similar al algoritmo genético 

debido a la selección de fitness-proportinate, un punto de crossover único y una mutación bit-

wise.  

En el MOGA se compara la población entera. A los individuos no-dominados se les asigna 

Rank =1 y a los demás individuos se les asigna un valor de Rank comparando la no-dominancia 

entre ellos de la siguiente manera: para un individuo se busca el número de individuos que lo 
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dominan de forma estricta. Luego, al final del proceso de clasificación, podría haber un número 

de puntos que tengan en mismo Rank, entonces el procedimiento de selección utiliza estos 

rankings para seleccionar o eliminar estos puntos del mating pool.  

5.3.2. Non-Dominated Sorting Genetic Algorithm (NSGA) 

El objetivo del algoritmo NSGA [11] es mejorar la capacidad de adaptabilidad de la población 

de las soluciones candidatas al frente Pareto limitadas por un conjunto de funciones objetivo. 

Asigna valores fitness respecto al frente no-dominado de una solución particular utilizando un 

procedimiento de asignación de fitness basado en la dominancia en profundidad.  

Antes de que se lleve a cabo la selección, la población es clasificada en base a la no-dominación 

de los individuos. Primero se identifican los individuos no-dominados presentes en la población. 

A continuación, todos estos individuos pasan a constituir el primer frente no-dominado de la 

población y se le asigna un valor de fitness dummy elevado, este mismo valor es asignado para 

que el potencial de todos los individuos no-dominados sea equitativo. Con tal de mantener la 

diversidad de  la población a los individuos se les aplica un método de sharing. Estos métodos 

de sharing realizan una selección utilizando valores de fitness degradados que se obtienen 

dividiendo el valor original de fitness de un individuo entre la cantidad proporcional al número 

de individuos a su alrededor.  Después estos individuos no-dominados son ignorados 

temporalmente para procesar el resto de la población de la misma manera para identificar los 

individuos para un segundo frente Pareto-óptimo. A este nuevo conjunto de puntos se les asigna 

un valor de fitness dummy inferior al valor del fitness del método sharing del frente anterior. 

Este proceso se continúa hasta que la población entera es clasificada en frentes diferentes.  

Esta población es reproducida de acuerdo a los valores de fitness dummy. Los individuos del 

primer frente, al tener el valor de fitness máximo, siempre tendrán más copias que el resto de 

poblaciones. Con esto se pretende buscar regiones no-dominadas por frentes Pareto-óptimos. 

Esto resulta en una rápida convergencia de la población hacia regiones no-dominadas y el 

sharing ayuda a que se distribuya sobre esta región.  

5.3.3.  Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 

El NSGA-II [12] es una versión del NSGA. El NSGA-II introduce mejoras en aquellos puntos 

débiles del NGSA que son:  

1) Complejidad computacional elevada de la ordenación de las soluciones no-dominadas. 

El algoritmo de ordenación no-dominado en el caso de poblaciones grandes es muy caro 

dado que la población necesita ser ordenada en cada iteración.  
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2) Falta de elitismo. Aplicar técnicas elitistas podría acelerar el rendimiento del algoritmo 

genético de manera significante además de ayudar a prevenir la perdida de soluciones 

buenas una vez estas han sido encontradas.   

3) Necesidad de especificar el parámetro de sharing       . Los mecanismos tradicionales 

para garantizar la diversidad en una población y obtener una amplia variedad de 

soluciones equivalentes dependen del concepto sharing. El mayor problema es que 

requiere la especificación del parámetro        y aunque se ha trabajado en la 

dinamización del tamaño de este parámetro, es preferible un mecanismo para la 

preservación de la diversidad sin parámetros.  

Con tal de ordenar una población de tamaño N de acuerdo al nivel de no-dominación, las 

soluciones de una misma población se comparan entre sí para identificar las soluciones no-

dominadas.  En este punto, se identifican los individuos del primer frente no-dominado, estas 

soluciones son temporalmente ignoradas para encontrar el segundo frente, y así sucesivamente. 

Primero para cada solución, se calculan dos identidades: (i)   , número de soluciones que 

dominan a la solución i; (ii)   , conjunto de soluciones en la que la solución i domina y se 

identifican aquellos puntos que tengan      y se incluyen en una lista   , que representa el 

frente actual. Para cada solución en el frente actual se visita cada miembro j en el conjunto    y 

se reduce su    una unidad. Si al hacer esto, algún miembro j       se añade a una nueva lista 

H. Cuando todos los miembros del actual frente han sido comparados, se declara a los miembros 

de la lista     como miembros del primer frente y se continúa el proceso con el nuevo frente H 

como frente actual.  

Para obtener una estimación de la densidad de las soluciones del entorno de un determinado 

punto de la población se coge la distancia media entre los dos puntos en cualquier lado del 

punto a lo largo de los objetivos. Esta cantidad           sirve como un estimador del tamaño del 

hipercubo más grande que cerca el punto i sin incluir ningún otro punto de la población.     

El procedimiento de comparación de la concurrencia se utiliza para garantizar la diversidad de 

las soluciones no-dominadas se El operador para comparar la concurrencia    guía el proceso 

de selección en las diferentes fases del algoritmo hacia un frente Pareto-óptimo uniformemente 

extendido. Se asume que cada individuo i en la población tiene dos atributos: (1) clasificación 

de no-dominancia       y (2) distancia local de concurrencia           con los que se define un 

orden parcial tal que:  
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Esto es, entre dos soluciones con diferente valor de ranking se prefiere el de menor valor. En 

caso contrario, si ambos puntos pertenecen al mismo frente, se prefiere aquel situado en la 

región menos concurrida.  

5.3.4.  Niched-Pareto Genetic Algorithm (NPGA) 

En el NPGA [13] dos candidatos para la selección son elegidos de forma aleatoria de la 

población y un conjunto de individuos también se elige de forma aleatoria para comparar la 

dominancia de los individuos. Los candidatos se comparan con cada individuo del conjunto. Si 

un candidato es dominado por el conjunto de comparación, y el otro no, el último es 

seleccionado para la reproducción. Si ninguno de los dos son dominados por el conjunto de 

comparación se implementa la técnica Grid-based niching.    

Este algoritmo utiliza el mecanismo de fitness sharing para distribuir la población a través de un 

número determinado de cimas (peaks), en el que cada región recibirá una fracción de la 

población dependiendo de la altura de la cima (peak’s height). Para obtener esta distribución, 

sharing pronostica la degradación del fitness individual de un objetivo    por el recuento de 

nichos (niche count)    calculada para un individuo. Esta degradación se obtiene dividiendo el 

fitness de un objetivo entre el recuento de nichos para encontrar el shared fitness:  

     
  
  

 

El recuento de nichos    es una estimación de la concurrencia del entorno (nicho) de un 

individuo i. Esta se calcula para todos los individuos de la población: 

              
   

 

Donde        es la distancia entre dos individuos y       es la función sharing. Normalmente 

se utiliza la función sharing triangular donde:  

       
   

 

      
            

                                

  

Aquí        es el radio del nicho, estimación de la separación mínima deseada o esperada entre 

soluciones ganadoras fijadas por el usuario. Individuos con una distancia menor a        se 

degradan el fitness entre sí ya que se encuentran en el mismo nicho. De esta forma la 

convergencia ocurre dentro de un mismo nicho, pero se evita la convergencia de la población 

entera.  
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5.3.5. Strength Pareto Evolutionary Algorithm (SPEA) 

El objetivo del SPEA [14] este algoritmo es localizar y mantener un frente de soluciones no 

dominadas,  en el mejor de los casos un conjunto de soluciones Pareto óptimas. Esto se 

consigue utilizando un proceso evolutivo para explorar el espacio de búsqueda, y un proceso de 

selección que utiliza una combinación del grado en el que una solución candidata es dominada y 

una estimación de densidad del frente Pareto como una asignación de fitness. Un archivo del 

conjunto no dominado se mantiene separado de la población de soluciones candidatas utilizadas 

en el proceso evolutivo, otorgando una especie de elitismo.  

El algoritmo SPEA utiliza una población regular y un archivo (conjunto externo). Empieza con 

una población inicial y un archivo vacío. Primero, todos los individuos no-dominados de la 

población se copian al archivo y los individuos dominados o duplicados se eliminan del archivo 

durante esta actualización del archivo. Si el tamaño del archivo actualizado excede un límite 

predefinido, se eliminan miembros del archivo utilizando una técnica de clustering que 

mantiene las características del frente no-dominado. Después, a los individuos de la población y 

del archivo se les asigna un valor de fitness    a cada solucion i del archivo externo y su fuerza 

   : 

    
  

    
 

Donde     es el número de soluciones dominadas por i en la población P y N su tamaño. En el 

siguiente paso, se evalúa el  fitness    para cualquier solución j en la población P como la suma 

de las fuerzas en el archivo externo (ExtA) que débilmente dominan j:  

         
           

 

La fase de selección para el cruce de la unión de la población y el archivo se selecciones 

mediante binary-tournaments. Por último, después de la combinación y mutación la población 

antigua es reemplazada por la nueva población hija resultante.  

Hay algunos puntos débiles en este algoritmo. En la asignación de fitness los individuos que son 

dominados por los mismos miembros tiene un valor de fitness idéntico. Esto implica que en el 

caso en el que archivo contiene un único individuo, todos los miembros de la población tendrán 

la misma clasificación independientemente de si se dominan entre ellos o no.  Como 

consecuencia, la presión selectiva disminuye sustancialmente y en este caso en particular el 

SPEA se comporta como un algoritmo de búsqueda aleatorio. Otro punto débil es la estimación 

de densidad, si varios individuos de la generación en curso son indiferentes, es decir no se 

dominan entre ellos, se puede obtener muy poca o no obtener información acerca del orden 
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parcial de las soluciones o en cuento a la relación de dominancia.  Por último, el truncamiento 

del archivo, ya que aunque la técnica de clustering es capaz de reducir el conjunto no-dominado 

sin destruir sus características, puede perder soluciones externas.  

 

5.3.6. Strength Pareto Evolutionary Algorithm II (SPEA-II) 

El algoritmo SPEA constituye la base para el algoritmo SPEA-II [15]. Este último fue diseñado 

para corregir los problemas del SPEA anteriormente mencionados. En contraste con el SPEA, el 

SPEA-II utiliza una estrategia de asignación de fitness que incorpora información de densidad. 

Además, el tamaño del archivo es fijo, es decir el archivo se completa con individuos no-

dominados. En cambio en el SPEA el tamaño del archivo varía con el tiempo. Además, la 

técnica clustering que se utiliza cuando el frente no-dominado excede el límite del archivo ha 

sido reemplazada por un método alternativo que tiene características similares.  

En el SPEA-II el valor de la fuerza se estima para la población y las soluciones del archivo 

externo. Luego, se calcula el fitness dummy como la suma de las fuerzas de las soluciones que 

dominan a la actual:  

         
              

 

A cada individuo i del archivo     y la población    se le asigna un valor de fuerza    , que 

respresenta el número de soluciones que dominan:  

                         

  Finalmente, añadiendo la densidad D(i) al fitness  aparente (raw  fitness) R(i) de la solución i  

se obtiene el fitness de i.  

         
                   

 

                 

La estimación de densidad se basa en el método del k-th nearest neighbour method, donde la 

densidad en cualquier punto es una función de la distancia a la k-ésima solución más cercana:  

     
 

  
   

 

Donde       , que es el tamaño de la muestra y   
  es la distancia a la k-ésima solución.  
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5.3.7. Pareto-Archived Evolutionary Strategy (PAES) 

Inicialmente PAES[16] se desarrolló como un método de búsqueda local para encontrar 

soluciones problema al del área de enrutamiento de telecomunicaciones. Más adelante se 

desarrolló para comprobar si podía encontrar soluciones para un planteamiento multi-objetivo 

del mismo problema.  

Este algoritmo lo componen tres partes: el generador de soluciones candidatas, la función de 

aceptación de soluciones candidatas y el archivo de soluciones no-dominadas. El generador de 

soluciones candidatas es similar a una mutación aleatoria mediante hillclimbing,  este mantiene 

una única solución y en cada iteración produce un único nuevo candidato mediante mutación 

aleatoria. Ya que el objetivo de la búsqueda multi-objetivo es encontrar una 

distribución/conjunto de soluciones, PAES necesita proporcionar un archivo de soluciones no 

dominadas para mantener un número limitado de soluciones cuando éstas son encontradas por el 

hillclimber. Este algoritmo para elegir entre una mutación y la última solución actual, utiliza el 

archivo, que proporciona una fuente natural y conveniente de la cual obtener conjuntos de 

comparativos.   

El PEAS utiliza un mecanismo de preservación de la diversidad basado en la división recursiva 

del espacio objetivo d-dimensional, el mecanismo de grid-based niching. Cuando cada solución 

es generada, se define su posición en la “cuadricula” del espacio objetivo. Asumiendo que el 

rango de espacio se define en cada objetivo, la localización requerida puede ser encontrada 

bisecando el rango de cada objetivo y buscar en que mitad reside la solución.  Esta recursiva 

subdivisión del espacio y asignación de localización se lleva a cabo mediante un método 

adaptativo que elimina la necesidad de un parámetro para el tamaño del nicho. Este método, 

calcula el rango del espacio objetivo de las soluciones actuales en el archivo y ajustando la 

“cuadricula” para que cubra todo el rango y luego las localizaciones de cada cuadrícula son 

recalculadas.  

En este algoritmo no es necesaria una fase de selección ya que únicamente hay una solución 

actual, por lo tanto toda la complejidad reside en la aceptación/rechazo de la solución mutada y 

en la actualización del archivo.  

5.4. Conclusiones  

De todos los métodos analizados en esta apartado, se han seleccionado los algoritmos NSGA y 

NSGA-II para lleva a cabo la demostración y posterior análisis de las capacidades técnicas de  

los algoritmos multi-objetivo evolutivos (MOEAs). Particularmente se ha seleccionado el 

NSGA.II ya que en la mayoría de los casos este algoritmo es capaz de encontrar un  conjunto se 

soluciones  y una mejor convergencia mejores de la solución aproximada del verdadero frente 
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Pareto-optimo comparado con los algoritmos PAES y SPEA. El NSGA también se ha 

seleccionado como primera versión del NSGA y así poder analizar las mejoras y diferencias 

entre ambas versiones.  
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6. Desarrollo de métodos multi-objetivo de secuencia de aterrizaje 

En esta sección se han desarrollado dos métodos, el NSGA y el NSGA-II explicados en la 

sección 5.  De cada algoritmo se presenta su diagrama de flujo, el pseudo-código propuesto y 

un ejemplo del funcionamiento del algoritmo.  

6.1. NSGA 

 

  

Ilustración 6.1. Diagrama de flujo NSGA 
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6.1.1. Pseudo-código NSGA  

Nomenclatura 

K número de funciones objetivo 

   tamaño de la población 

   población inicial 

    población de la generación g 

   Hijos 

     progenitores de ínice i 

        conjunto de individuos seleccionados para elegir progenitores 

   frentes de soluciones no-dominadas        donde   es el número de frentes no-

dominados de la generación  

   fitness de una solución 

   función objetivo  

  
    valor máximo de la funcion objetivo    encontrada hasta el momento durante la 

búsqueda  

  
    valor mínimo de la funcio objetivo    encontrada hasta el momento durante la búsqueda 

    distancia entre dos individuos en un mismo frente  

       distancia máxima permitida entre dos miembros para que pertenenzcan al mismo nicho 

  número de generación  

      número máximo de generaciones  

    número generado aleatoriamente que sirve para realizar la reproducción. El número 

pertenece al intervalo [0, longitud_cromosoma] 

        probabilidad de reproducción de un individuo 

     probabilidad de mutación de un individuo, en este caso se fija en el 1%.  

    tiempo aterrizaje del avión i 

 

Inicio  

     

Generar aleatoriamente una población     

 

 Mientras (      ) 

  Desviaciones (  ) 

Restricciones (  ) 

Funciones objetivo (  ) 

  Ordenación NoDominada (  ) 

Para cada (      ) hacer 

   Diversidad (  ) 
  Fin Para 

      

  Mientras (      ) 

   Seleccion (  )          

   Crossover (           (       
   Mutación                  

              

       
  Fin mientras  

         
Fin Mientras 

Codificación de cromosomas 

La representación fenotípica de un cromosoma es:  
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Cromosoma 1 
Avion1 Avion2 Avion3 ... AvionA 

  
    

    
     

  

Cromosoma 2 
Avion1 Avion2 Avion3 ... AvionA 

  
    

    
     

  

… … … … ... … 

Cromosoma N 
Avion1 Avion2 Avion3 ... AvionA 

  
    

    
     

  

Tabla 6.1. Representación fenotípica de los cromosomas 

Los cromosomas están formados por alelos, en este caso cada alelo representa un avión y el 

tiempo de aterrizaje estimado.  El tiempo de aterrizaje de cada avión viene dado en minutos, es 

decir, se convertirán las horas en minutos, empezando desde las 00:00 horas que serán 0 

minutos, y acumulativamente, por ejemplo, las 01:30 equivaldrán a 90minutos.  

Los tiempos de aterrizaje de cada avión se codifican de forma binaria, es decir, representar cada 

cromosoma como uan cadena binaria. A cada 1 o 0 se le llama gen. Por ejemplo, el decimal 4 se 

refiere a la cadena binaria 100, si se necesita codificar dos variables que tienen valores 

comprendidos entre [0,15], entonces un cromosoma debe contener suficientes genes para la 

codificación, en este caso se necesitarían 8 genes ya que 15 representa la cadena binaria 1111 y 

al tener dos variables el cromosoma quedaría 1111 1111.  

Póngase el caso que se tiene 3 aviones y para cada avión se debe definir su tiempo de inicio de 

aterrizaje. Si se codifica el tiempo entre 0 y 1440 minutos (1440 minutos = 24 horas) para cada 

avión se debería reservar 11 genes. En el caso de los 3 aviones, se necesitarían 33 genes por 

cromosoma, en el caso de 10 aviones se necesitarían 110 genes etc. Con esta codificación el 

algoritmo sería menos eficiente, porque necesitaría explorar muchas combinaciones de 0s y 1s. 

Por eso es importante encontrar una manera eficiente para codificar los tiempos de inicio de 

aterrizaje. En los algoritmos NSGA y NSGA-II que se detallan a continuación se utiliza el 

siguiente método:  

1) Primero se define una ventana temporal de 15 minutos. Por ejemplo, a las 12:00 se 

buscan los aviones que deberían llegar entre las 12:00 y las 12:15.  

2) Segundo, se codifican tiempos delta                 
para cada avión. Por ejemplo, 

tienen que aparecer 3 aviones, avión A1 a las 12:01, avión A2 a las 12:03 y avión A2 a 

las 12:03. El algoritmo busca los tiempos de aterrizaje de los 3 aviones: A1= 

12:01+   , A2=12:03+    y A3=12:03+   . Es decir, en lugar de codificar los tiempos 

de aterrizaje, se codifican los valores   que varían para cada avión, por ejemplo, entre el 

intervalo [0,30] minutos. En este caso, únicamente se debería reservar 5 genes para cada 
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avión. A modo de explicación, siguiendo con el ejemplo de los 3 aviones, un 

cromosoma podría ser el siguiente: 00001 01001 00011, que se refiere a: A1 empieza a 

aterrizar a 12:01+1=12:02,  A2 empieza a aterrizar a 12:03+9=12:12 y A3 a 

12:03+3=12:06. Una vez calculados los tiempos de aterrizaje para cada avión de cada 

cromosoma, se deberá comprobar el cumplimiento o incumplimiento de las 

restricciones especificadas en el apartado “Planteamiento del problema” y en el caso de 

no cumplirlas se penalizará al cromosoma.  

 

 Ordenación basada en no-dominancia 

 

Asignar                

Mientras (      ) 

      
Identificar soluciones no-dominadas en     y asignarles    

Asignar              

       
Fin Mientras 

Para (cada     ) 

 Asignar   = valor dummy |                     

Fin Para 

 

Diversidad 

 

Para (cada      ) 

 Calcular distancia     : 

          
   

   
   
  

         

 

  

 Calcular el sharing de cada frente calculando el valor de la función sharing : 

          
   

   

      
 
 
              

                                       

  

 

Calcular el contador del nicho basándose en las distancias anteriormente calculadas.  

            
    

 

 

Reajustar el fitness de cada solución x:  

    
  
   

 

Fin Para 

 

Selección por Torneo  
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        Elegir aleatoriamente   individuos (  ) 

Ordenar individuos según             
      mejor solución de         

        Elegir aleatoriamente   individuos (  ) 

Ordenar individuos según             
      mejor solución de          

Devolver  (         ) 

 

Crossover o reproducción 
La reproducción o crossover se realiza utilizando el método de cruce en un solo punto. 

Aleatoriamente se elige un punto en el cual se intercambiaran los alelos entre los dos 

progenitores.  La reproducción o crossover se aplica de acuerdo a la probabilidad de 

reproducción       . 

 

 

Progenitor1 
A1 A3 A2 A4 A6 A5 A7 

  
    

    
    

    
    

    
  

 

Progenitor2 
A1 A2 A3 A4 A7 A5 A6 

  
    

    
    

    
    

    
  

 

 

 

Hijo1 
A1 A3 A2 A4 A7 A5 A6 

  
    

    
    

    
    

    
  

 

 

Hijo2 
A1 A2 A3 A4 A6 A5 A7 

  
    

    
    

    
    

    
  

 

     

     
Generar número aleatorio   

Si (        ) hacer 

 Generar punto de cruce (   ) 

Intercambiar genes a partir de la posición    de     y            

Calcular(   ,    ) 

Devolver (       
Sino hacer 

 Devolver           
Fin Si 

 

Mutación 

El operador de mutación se aplica de manera individual a cada hijo. Consiste en la alteración 

aleatoria de cada gen componente del cromosoma de acuerdo a la probabilidad de mutación 

    . En este caso, la representación genotípica es binaria, por lo cual, si un gen tiene valor 0 

éste se cambia a 1 y viceversa.  

 

 

Punto de cruce     
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Hijo→ Cromosoma 1  0  1  0  0  1  0  0  1  0   

 

Hijo (mutado) → Cromosoma 1  0  1  0  1  1  0  0  1  0   

 

 

 

Para cada(       )  hacer 

 Generar número aleatorio   

Si        ) hacer 

  modificar     
 Fin Si 

Fin Para 

 

6.1.2. Cálculo paso a paso del algoritmo  NSGA 

A continuación se muestra una iteración del algoritmo NSGA para una población de 6. Los 

datos son:  

Llegadas    

 Tiempo 

Aparición 

Tiempo 

Objetivo 

Tipo avión 

a1 610 614 H 

a2 613 615 M 

a3 613 615 H 

a4 614 616 L 

Salidas    

a1_s 610  H 

a2_s 612  M 

Tabla 6.2. Datos cálculos de ejemplo del NSGA y NSGA-II 

Tamaño de la población = 6 cromosomas 

Generación aleatoria de la población    

Genotipo:  

 a1 a2 a3 a4 

cr1 00000 01001 01100 10000 

cr2 00110 01110 10011 11000 

cr3 01101 00110 11101 01110 

cr4 01101 00001 10111 11010 

cr5 10010 10100 10001 00100 

cr6 10111 01011 10101 11100 

Tabla 6.3. Población aleatoria codificada 

 Fenotipo (descodificación de la población). Se descodifican los tiempos obtenidos 

anteriormente para después sumarlo al tiempo de aterrizaje objetivo para obtener el 

tiempo de aterrizaje de cada avión.   

 

 

 

 

  

Gen mutado 
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 a1 a2 a3 a4 

cr1 0 9 12 16 

cr2 6 14 19 24 

cr3 13 6 29 14 

cr4 13 1 23 26 

cr5 18 20 25 4 

cr6 23 11 21 28 

Tabla 6.4. Población descodificada 

Tiempo aterrizaje:  

 a1 a2 a3 a4 

cr1 610 622 625 630 

cr2 616 627 632 638 

cr3 623 619 642 628 

cr4 623 614 636 640 

cr5 628 633 638 618 

cr6 633 624 634 642 

Tabla 6.5. Tiempos de aterrizaje 

 

Calcular las desviaciones temporales respecto al tiempo de aterrizaje objetivo de cada avión 

para cada cromosoma 

 a1 a2 a3 a4 

cr1 4 -7 -10 -14 

cr2 -2 -12 -17 -22 

cr3 -9 -4 -27 -12 

cr4 -9 1 -21 -24 

cr5 -14 -18 -23 -2 

cr6 -19 -9 -19 -26 

Tabla 6.6. Desviaciones temporales respecto al tiempo de aterrizaje objetivo 

  

Restricciones 

A continuación se comprueba si con los tiempos de aterrizaje calculado se cumplen las 

restricciones se separación y de ocupación de pista.  

Para comprobar que la se cumple la restricción de separación, primero se ordenan los aviones de 

cada cromosoma  por orden de aterrizaje, luego se calcula el tiempo al que deberían aterrizar los 

aviones consecutivos al primero, y por último se comprueba que el tiempo de aterrizaje sea 

igual o superior al tiempo teórico de aterrizaje de cada avión.  

Restricción de separación de seguridad:  
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 Ordenación del aterrizaje de los aviones:  

cr1 a1 a2 a3 a4 

cr2 a1 a2 a3 a4 

cr3 a2 a1 a4 a3 

cr4 a2 a1 a3 a4 

cr5 a4 a1 a2 a3 

cr6 a2 a1 a3 a4 

Tabla 6.7. Ordenación aviones según tiempo de aterrizaje 

Calcular el tiempo teórico al que tendría que aterrizar el siguiente avión con tal de 

cumplir con la restricción:  

 2º 3º 4º 

cr1 612,62 623 628,27 

cr2 612,62 628,00 635,27 

cr3 620 626,27 629 

cr4 615,00 624,6 639,27 

cr5 619 630,62 634 

cr6 625 634,6 637,27 

Tabla 6.8. Tiempo teórico de aterrizaje 

 Comprobación del cumplimiento o no de la restricción. La tabla siguiente muestra si 

entre aterrizajes se cumple la restricción, si el valor es 1 se cumple la restricción, en 

caso contrario, la restricción no se cumple.    

  1º-2º 2º-3º 3º-4º 

cr1 1 1 1 

cr2 1 1 1 

cr3 1 1 1 

cr4 1 1 1 

cr5 1 1 1 

cr6 1 -1 1 

Tabla 6.9. Cumplimiento / incumplimiento restricción separación 

Restricción de ocupación de pista: 

   

Ordenación de los aviones por uso de pista (se debe que tener en cuenta, que en este 

caso también hay dos aviones que quieren salir)  

 

C

al

c

ul

 1º 2º 3º 4º 5º 6º 

cr1 a1 as_1 as_2 a2 a3 a4 

cr2 as_1 as_2 a1 a2 a3 a4 

cr3 as_1 as_2 a2 a1 a4 a3 

cr4 as_1 as_2 a2 a1 a3 a4 

cr5 as_1 as_2 a4 a1 a2 a3 

cr6 as_1 as_2 a2 a1 a3 a4 

Tabla 6.10. Ordenación de los aviones según tiempo aterrizaje y despegue 
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ar el tiempo teórico de salida de pista de cada avión para que se cumpla de restricción 

de ocupación de pista: 

 

 

 

 

 

 

 

Comprob

ación del 

cumplimiento o no de la restricción. La tabla siguiente muestra si entre aterrizajes se 

cumple la restricción, si el valor es 1 se cumple la restricción, en caso contrario, la 

restricción no se cumple.    

Cálculo de las funciones objetivo 

 

A continuación se calcula el valor de cada función objetivo para cada cromosoma y se le asigna 

el fitness según el número de cromosomas que domine parcialmente. Las funciones objetivo 

son:  

 

F1 Minimización del coste total de la desviación temporal de los aterrizajes de los aviones 

F2 Minimización del tiempo total de operación  

 

 

 

 

 

 

 1º 2º 3º 4º 5º 6º 

cr1 610,92 610,63 612,72 622,83 625,00 630,83 

cr2 610,63 612,72 616,92 627,83 632,00 642,83 

cr3 610,63 612,72 619,83 625,00 628,75 633,92 

cr4 610,63 612,72 614,83 623,00 636,92 640,83 

cr5 610,63 612,72 618,75 628,00 633,83 638,92 

cr6 610,63 612,72 624,83 633,00 634,92 642,83 

Tabla 6.11. Tiempo teórico de salida de pista 

 1º-2º 2º-3º 3º-4º 4º-5º 5º-6º 

cr1 -1 1 1 1 1 

cr2 1 1 1 1 1 

cr3 1 1 -1 1 -1 

cr4 1 1 -1 1 1 

cr5 1 1 1 1 -1 

cr6 1 1 -1 1 1 

Tabla 6.12. Cumplimiento / incumplimiento restricción de ocupación de pista 
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La gráfica anterior representa los diferentes valores de cada cromosoma y los diferentes frentes. 

Una vez asignado el fitness a cada solución, se le aplica una penalización en el caso que se 

incumpla alguna restricción, por cada restricción que se incumpla se le resta una unidad al valor 

de fitness. 

 

 Penalización 

restricciones 

Fitness 

cr1 1 3 

cr2 0 3 

cr3 3 1 

cr4 1 1 

cr5 1 1 

cr6 2 1 

Tabla 6.14. Penalizaciones de las restricciones 

Diversidad 

 

Para cada frente se debe reajustar el fitness de cada solución según la distancia entre soluciones 

y el parámetro share, cuyo valor se debe fijar.  

 

             
 

Frente 1:  

 Únicamente hay dos soluciones, por lo tanto, el fitness de las soluciones no se modifica.  

 

 

 

 

 

 

 

 F1 F2 Fitness 

cr1 35 630 4 

cr2 53 638 3 

cr3 54 642 2 

cr4 55 640 2 

cr5 57 638 2 

cr6 73 642 1 

Tabla 6.13. Valores F1 , F2 y fitness  

Gráfica 6.1. Representación de F1, F2 y los diferentes frentes 
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Frente 2:  

 

         

cr3-cr4 0,52 0,45 

cr3-cr5 1,03 0,00 

cr3-cr6 1,00 0,00 

cr4-cr3 0,52 0,45 

cr4-cr5 0,51 0,47 

cr4-cr6 0,99 0,00 

cr5-cr3 1,03 0,00 

cr5-cr4 0,51 0,47 

cr5-cr6 1,26 0,00 

cr6-cr3 1,00 0,00 

cr6-cr4 0,99 0,00 

cr6-cr5 1,26 0,00 

Tabla 6.15. Distancia crowding y sharing 

 

Ajuste del fitness. Para cada cromosoma se ajusta el fitness en función del valor del contador de 

nicho, que es la suma del sharing calculada anteriormente por cromosoma.  

 nC shared fitness 

cr1 - 3 

cr2 - 3 

cr3 0,45 2,23141264 

cr4 0,92 1,08762835 

cr5 0,47 2,12185782 

cr6 - 1 

Tabla 6.16. Shared fitness 

Selección, reproducción y mutación  

Para cada progenitor se eligen dos cromosomas aleatorios de la población y de entre éstos se 

elige aquel que tenga un mayor fitness.  Para la reproducción de dos progenitores se genera un 

número aleatorio dentro del intervalo [0,1], si este valor es inferior a probabilidad de 

reproducción del cromosoma (          ) se realiza la reproducción obteniendo dos hijos , en 

caso contrario, los progenitores pasaran a formar parte dela población de hijos. En el caso de la 

mutación, se genera un número aleatorio y si es inferior a la probabilidad de mutación (     

    ) se modificará dicho gen. Este proceso se debe llevar a cabo hasta que el número de hijos 

sea igual al tamaño de la población.  

Selección 

Progenitor1 

 cr1 
 cr3 

Progenitor 2 

 cr2 
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 cr4 

 Reproducción  

  Punto de reproducción = 3 

          aplicar reproducción  

 

cr1 00000 01001 01100 10000 

cr2 00110 01110 10011 11100 

 

hijo_1 00010 01110 10011 11100 

hijo_2 00100 01001 01100 10000 

 Selección  

  Progenitor 3 

   cr4 

   cr2 
  Progenitor 4 

   cr3 
   cr5 

 Reproducción  

  Punto de reproducción = 16 

          no aplicar reproducción  

     

cr2 = hijo_3 00110 01110 10011 11100 

cr3= hijo_4 01111 00110 10100 01110 

   

                    (aplicar mutación al gen 1 del hijo_3) 

cr2 = hijo_3 10110 01110 10011 11100 

 

 Selección  

  Progenitor 5 

   cr1 
   cr3 

  Progenitor 6 

   cr5 

   cr4 

 Reproduccion  

  Punto de reproducción = 11 

         aplicar reproducción 

   

 

cr1 00000 01001 01100 10000 

cr5 10010 10100 10001 00100 

 

hijo_5 00000 01001 00001 00100 

hijo_6 10010 10100 11100 10000 
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Nueva población  

Se sustituye la población inicial por la población de hijos obtenida, y ésta pasa a ser la 

población inicial de la siguiente iteración. 

 a1 a2 a3 a4 

cr1_1 00000 01110 10011 11100 

cr1_2 00110 01001 01100 10000 

cr1_3 10110 01110 10011 11100 

cr1_4 01111 00110 10100 01100 

cr1_5 00000 01001 00001 00100 

cr1_6 10010 10100 11100 10000 

Tabla 6.17.Población final 
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6.2. NSGA-II 

 

Ilustración 6.2. Diagrama de flujo NSGA-II 

6.2.1. Pseudo-código NSGA-II 

   conjunto de soluciones no-dominadas 

   número de soluciones en el conjunto S 
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    operador de comparacion de distancias crowding 

    conjunto de soluciones dominadas por la solución   
     numero de soluciones que dominan a la solución   
   frente de soluciones no-dominadas 

     cumplimiento o incumplimiento de la restricción de distancia de seguridad entre dos 

aviones consecutivos que aterrizan. El valor 1 representa el cumplimiento de la 

restricción y el -1 el incumplimiento.   

      suma del tiempo de aterrizaje y tiempo de separación para cada avión  

      cumplimiento o incumplimiento de la restricción de ocupación de pista. El valor 1 

representa el cumplimiento de la restricción y el -1 el incumplimiento.   

       tiempo de ocupación de pista de cada avión.  

 

Inicio  

     

Generar aleatoriamente una población     

 Mientras (      ) 

              

  Restricciones (  ) 

  Funciones objetivo (  ) 

     Ordenación NoDominada (  ) 

         

      

  Mientras                hacer 

   distancia crowding (  ) 
                 

         
  Fin mientras 

 Ordenar      de forma descendiente mediante comparador crowding    

 Seleccion (    )          

  Crossover (           (       
  Mutación                 
                    

//añadir restricciones, funciones objetivo, ordenacion no-dominada y distancia 

crowding 

                              

         
Fin Mientras 

Fin  

Restricciones  

          

          

          

           
 

Ordenar aviones por tiempo aterrizaje (  ) 

Para cada (    ) 

Calcular (     ) 
Calcular (     ) 

 

Comprobar restricción de separación (    ,     ,   ) 
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Comprobar restricción de separación (     ,      ,   ) 

Fin para  

 

Funciones objetivo  
 

     
mientras  (                      ) 

Para cada (    ) 

  Calcular    

 Fin para 

       
fin mientras 

 

Ordenación basada en no-dominancia 

 

     

     
Mientras (   ) hacer 

    Soluciones no-dominadas ( ) 

        
        
       
Fin mientras 

 

Soluciones no-dominadas 

 

para cada (    ) 

 para cada (    ) 

  si (   ) entonces 

             
  Sino si  (   ) entonces 

             
  Fin Si 

 Fin Para 

 Si (     ) entonces 

            
 Fin si 

     

mientras (    ) 

     

 Para cada (    ) 
  Para cada (    ) 

             

   Si (     ) entonces 

         
Fin si 

  Fin para 

 Fin para 

       

      
Fin mientras 

 

Crowding distance 
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Inicializar distancia  

para cada(       ) hacer 

 inicializar distancia i 

fin para 

para cada (     ) hacer 

 ordenar de forma ascendente según el valor de     

asignar                  y                     

para cada (     hasta         ) hacer 

                                                  
Fin para 

fin para 

 

  
Comparador crowding 

 

El operado de comparación    guía en el proceso de selección en diferentes fases del algoritmo 

hacia la uniformidad de frente Pareto-óptimo.  Se asume que cada individuo    tiene dos 

atributos: 1) ranking no-dominancia        y 2) la distancia crowding            . El operador de 

comparación se define como:  

       si                 o                   y                            

 
 

6.2.2.  Cálculos manuales del algoritmo NSGA-II 

A continuación se muestra el funcionamiento de una iteración del algoritmo para una población 

pequeña. Los datos son los mismos que se han utilizado para la demostración del NSGA.  

Tamaño de la población       

Generación aleatoria de la población     

 Genotipo:  

 a1 a2 a3 a4 

cr1 00000 01001 01100 10000 

cr2 00110 01110 10011 11000 

cr3 01110 00111 11101 01110 

cr4 01101 00001 10111 11010 

cr5 10010 10100 10001 00100 

cr6 10111 01011 10101 11100 

Tabla 6.18. Genotipo población NSGA-II 

 Fenotipo:  

 a1 a2 a3 a4 

cr1 0 9 12 16 

cr2 6 14 19 24 

cr3 14 7 29 14 

cr4 13 1 23 26 

cr5 18 20 25 4 

cr6 23 11 21 28 

Tabla 6.19. Fenotipo población NSGA-II 
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 Tiempo de aterrizaje:  

  

 a1 a2 a3 a4 

cr1 610 622 625 630 

cr2 616 627 632 638 

cr3 624 620 642 628 

cr4 623 614 636 640 

cr5 628 633 638 618 

cr6 633 624 634 642 

Tabla 6.20. Tiempos de aterrizaje 

 

Calculas las desviaciones temporales del tiempo de aterrizaje de cada avión para cada 

cromosoma:  

 a1 a2 a3 a4 

cr1 4 -7 -10 -14 

cr2 -2 -12 -17 -22 

cr3 -10 -5 -27 -12 

cr4 -9 1 -21 -24 

cr5 -14 -18 -23 -2 

cr6 -19 -9 -19 -26 

Tabla 6.21. Desviaciones de tiempo respecto al tiempo de aterrizaje objetivo 

Restricciones 

Al igual que el algoritmo anterior, NSGA, se comprueba si los cromosomas obtenidos 

anteriormente cumplen o no las restricciones impuestas. Primero se ordenan los aviones de cada 

cromosoma según el tiempo de aterrizaje.  

 cr1 a1 a2 a3 a4 

cr2 a1 a2 a3 a4 

cr3 a2 a1 a4 a3 

cr4 a2 a1 a3 a4 

cr5 a4 a1 a2 a3 

cr6 a2 a1 a3 a4 

Tabla 6.22. Ordenación aviones según tiempo de aterrizaje 

Restricción de separación: 

Se calculan los tiempos de aterrizaje más el tiempo de separación de seguridad: 

 2º 3º 4º 

cr1 612,62 623 628,27 

cr2 618,62 628,00 635,27 

cr3 621 627,27 629 

cr4 615,00 624,6 639,27 

cr5 619 630,62 634 

cr6 625 634,6 637,27 

Tabla 6.23. Tiempo teórico de aterrizaje 
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La tabla de a continuación muestra si se cumple la restricción de separación entre el aterrizaje 

de dos aviones consecutivos.  

 

 

 

 

 

 

Restricción de ocupación de pista: 

La pista únicamente puede estar ocupada por un avión. Por lo cual, hay que comprobar que no 

aterrice ningún avión mientras la pista este ocupada. Para ello, calculamos en que momento 

abandonará la pista el avión y se comprueba que el tiempo de aterrizaje del siguiente avión sea 

igual o superior al de ocupación de pista. En este caso, añadimos dos aviones que quieren salir, 

los datos son los siguientes:  

Salidas Tiempo 

salida 

Tipo avión Tiempo 

pista (seg) 

a1_s 610 H 38 

a2_s 612 M 43 

 

Orden aviones 

 1º 2º 3º 4º 5º 6º 

cr1 a1 a1_s as_2 a2 a3 a4 

cr2 as_1 as_2 a1 a2 a3 a4 

cr3 as_1 as_2 a2 a1 a4 a3 

cr4 as_1 as_2 a2 a1 a3 a4 

cr5 as_1 as_2 a4 a1 a2 a3 

cr6 as_1 as_2 a2 a1 a3 a4 

Tabla 6.25.  Ordenación de los aviones según tiempo aterrizaje y despegue 

Tiempos salida de pista de cada avión:  

 1º 2º 3º 4º 5º 6º 

cr1 610,92 610,63 612,72 622,83 625,92 630,75 

cr2 610,63 612,72 616,92 627,83 632,92 642,75 

cr3 610,63 612,72 620,83 624,92 628,75 633,92 

cr4 610,63 612,72 614,83 623,92 636,92 640,75 

cr5 610,63 612,72 618,75 628,92 633,83 638,92 

cr6 610,63 612,72 624,83 633,92 634,92 642,75 

Tabla 6.26. Tiempo teórico de salida de pista 

 1º-2º 2º-3º 3º-4º 

cr1 1 1 1 

cr2 1 1 1 

cr3 1 1 1 

cr4 1 1 1 

cr5 1 1 1 

cr6 1 -1 1 

Tabla 6.24. Cumplimiento / incumplimiento restricción de separación 
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Se comprueba si se cumple la restricción o no:  

 1º-2º 2º-3º 3º-4º 4º-5º 5º-6º 

cr1 -1 1 1 1 1 

cr2 1 1 1 1 1 

cr3 1 1 -1 1 -1 

cr4 1 1 -1 1 1 

cr5 1 1 1 1 -1 

cr6 1 1 -1 1 1 

Tabla 6.27. Cumplimiento / incumplimiento restricción separación de pista 

Funciones objetivo 

F1 minimización del coste total de la desviación de tiempo  

F2 minimización del tiempo de aterrizaje del ultimo avión 

  

 

 

 

 

 

 

Soluciones no dominadas 

Una vez calculados los valores de las funciones objetivos se identifican las soluciones no-

dominadas y se identifican los diferentes frentes. El valor      de cada solución se reajusta 

según el número de restricciones que cada cromosoma incumpla y se identifican los diferentes 

frentes. 

        Nº 

restricciones 

incumplidas 

    Frente 

cr1 cr2, cr3,cr4,cr5,cr6 0 1 1 1 

cr2 cr4, cr2 1 0 1 1 

cr3 cr4,cr6 1 0 1 1 

cr4 cr6 3 0 3 2 

cr5 cr4,cr6 1 0 1 1 

cr6 - 5 1 6 3 

Tabla 6.29. Relación entre soluciones 

 F1 F2 

cr1 35 630 

cr2 53 638 

cr3 54 642 

cr4 55 640 

cr5 57 638 

cr6 73 642 

Tabla 6.28. Valores F1 y F2 

Gráfica 6.2. Representación F1, F2 y diferentes frentes 

Formatat: Tipus de lletra: (Per

defecte) Times New Roman, Negreta
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Para cada frente, si está formado por más de 2 cromosomas, se calcula la distancia crowding de 

las soluciones. Primero se normalizan los valores de las funciones objetivos y luego, se calcula 

la distancia. 

 F1 F2 

cr1 0,00 0,00 

cr2 0,47 0,67 

cr3 0,45 1,00 

cr4 0,53 0,83 

cr5 0,58 0,67 

cr6 1,00 1,00 

Tabla 6.30. Valores normalizados F1 y F2 

   
 Frente 1: 

 dF1 dF2 cd 

cr1 1 1 2 

cr2 0,13 1,00 1,13 

cr3 0,47 0,33 0,81 

cr5 0,53 1,00 1,53 

6.31. Distancia crowding 

  
Frente 2: una única solución  

Frente 3: una única solución 

 
Selección, reproducción y mutación 

 

Para la reproducción primero se seleccionan dos progenitores aleatoriamente y se escoge aquel 

que pertenezca al frente de menor valor, así se obtiene el primer progenitor, y se repite el mismo 

proceso para obtener el segundo progenitor. Una vez se obtiene la pareja, se genera un número 

aleatorio, si éste es menor a la probabilidad de reproducción, se reproduce la pareja y se 

obtienen dos hijos, en caso contrario, los progenitores se copian en la población de hijos. Para 

cada gen de cada hijo se genera un número aleatorio, si éste es inferior a la probabilidad de 

mutación del gen, éste se muta. El proceso de selección, reproducción y mutación se repite hasta 

que la población de hijos sea del mismo tamaño que la población inicial.  

 

Selección  

Progenitor 1 

 cr1 

 cr5 

Progenitor 2 

 cr2 

 cr3 

Reproducción  

Punto de reproducción = 11 
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        aplicar reproducción 

 

cr1 00000 01001 01100 10000 

cr2  00110 01110 10011 11000 

 

hijo_1 00000 01001 00011 11000 

hijo_2 10010 10100 11100 10000 

 

Selección  

Progenitor 3 

 cr5 

 cr2 

Progenitor 4 

 cr2 

 cr3 

Reproducción  

Punto de reproducción = 16 

       aplicar reproducción 

 

cr5 10010 10100 10001 00100 

cr3 01110 00111 10011 11000 

 

hijo_3 10010 10100 10001 01000 

hijo_4 01110 00111 10100 10100 

 

Selección  

Progenitor 5 

 cr6 

 cr4 

Progenitor 6 

 cr2 

 cr1 

Reproducción  

Punto de reproducción = 8 

       no aplicar reproducción 

 

cr4 = hijo_5 01101 00001 10111 11010 

cr1 = hijo_6 00000 01001 01100 10000 

 

 

                    (aplicar mutación al gen 3 del hijo_6) 

hijo_6 00100 01001 01100 10000 
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Fenotipo población Hijo 

 a1 a2 a3 a4 

hijo_1 0 9 3 24 

hijo_2 18 20 28 16 

hijo_3 18 20 17 8 

hijo_4 14 7 20 20 

hijo_5 13 1 23 26 

hijo_6 4 9 12 16 

Tabla 6.32. Fenotipo población Hijo 

Tiempo aterrizaje 

 

 a1 a2 a3 a4 

hijo_1 610 622 616 618 

hijo_2 628 633 641 630 

hijo_3 628 633 630 622 

hijo_4 624 620 633 634 

hijo_5 623 614 636 640 

hijo_6 614 622 625 630 

Tabla 6.33. Tiempos de aterrizaje 

  Calculo de las desviaciones temporales del aterrizaje de los aviones de cada cromosoma 

respecto su tiempo de aterrizaje objetivo 

 a1 a2 a3 a4 

hijo_1 4 -7 -1 -2 

hijo_2 -14 -18 -26 -14 

hijo_3 -14 -18 -15 -6 

hijo_4 -10 -5 -18 -18 

hijo_5 -9 1 -21 -24 

hijo_6 0 -7 -10 -14 

Tabla 6.34. Desviaciones de tiempo respecto al tiempo de aterrizaje objetivo 

Restricciones 

 Se comprueba si la nueva población de hijos obtenida cumple o no las restricciones. Primero se 

ordenan según el tiempo de aterrizaje los cromosomas y después se realiza la comprobación.  

 

hijo_1 a1 a3 a4 a2 

hijo_2 a1 a4 a2 a3 

hijo_3 a4 a1 a3 a2 

hijo_4 a2 a1 a3 a4 

hijo_5 a2 a1 a3 a4 

hijo_6 a1 a2 a3 a4 

Tabla 6.35. Ordenación aviones según tiempo aterrizaje 
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Restricción de seguridad: 

Se calcula el tiempo teórico mínimo el cual el siguiente avión debería realizar el aterrizaje de 

modo que la distancia de separación de seguridad se cumpla.  

 

 2º 3º 4º 

cr1 611,60 619,27 619,15 

cr2 631,27 631,15 634,00 

cr3 623,00 629,60 632,62 

cr4 621,00 627,60 636,27 

cr5 615,00 624,60 639,27 

cr6 616,62 623,00 628,27 

Tabla 6.36. Tiempo teórico de aterrizaje 

La tabla siguiente, muestra si la restricción se cumple o no, si el valor es 1 implica que la 

restricción se cumple, en caso contrario, el valor que aparece es el -1.  

 

 1º-2º 2º-3º 3º-4º 

hijo_1 1 -1 1 

hijo_2 -1 1 1 

hijo_3 1 1 1 

hijo_4 1 1 -1 

hijo_5 1 1 1 

hijo_6 1 1 1 

Tabla 6.37. Cumplimiento / incumplimiento restricción de separación 

 

Restricción de ocupación de pista: 

Primero se calcula el tiempo en que un avión abandona la pista, y se comprueba que la pista no 

esté ocupada por un avión en el momento en el que aterriza. En este caso, se debe tener en 

cuenta que tenemos dos aviones que tienen salida prevista para un determinado tiempo, por lo 

tanto también se debe comprobar que mientras uno de estos dos aviones ocupe pista para 

realizar el despegue, no haya ningún avión que aterrice hasta que el avión haya despegado.  

 

La ordenación de uso de pista teniendo en cuenta los aviones que despegan es la siguiente:  

 

 1º 2º 3º 4º 5º 6º 

hijo_1 as_1 a1 as_2 a3 a4 a2 

hijo_2 as_1 as_2 a1 a4 a2 a3 

hijo_3 as_1 as_2 a4 a1 a2 a3 

hijo_4 as_1 as_2 a2 a1 a4 a3 

hijo_5 as_1 as_2 a2 a1 a3 a4 

hijo_6 as_1 as_2 a2 a3 a1 a4 
Tabla 6.38.Ordenación aviones según tiempo de aterrizaje y despegue 
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Cálculo del tiempo en el que cada avión abandona la pista:  

 1º 2º 3º 4º 5º 6º 

hijo_1 610,63 610,92 612,72 616,92 618,75 622,83 

hijo_2 610,63 612,72 628,92 630,75 633,83 641,92 

hijo_3 610,63 612,72 622,75 628,92 630,92 633,83 

hijo_4 610,63 612,72 620,83 624,92 633,92 634,75 

hijo_5 610,63 612,72 614,83 623,92 636,92 640,75 

hijo_6 610,63 612,72 614,92 622,83 625,92 630,75 

Tabla 6.39. Tiempo teórico salida de pista 

 

La tabla siguiente, muestra si la restricción se cumple o no, si el valor es 1 implica que la 

restricción se cumple, en caso contrario, el valor que aparece es el -1.  

 

 1º-2º 2º-3º 3º-4º 4º-5º 5º-6º 

hijo_1 -1 1 1 1 1 

hijo_2 1 1 1 1 1 

hijo_3 1 1 1 1 1 

hijo_4 1 1 1 1 1 

hijo_5 1 1 1 1 1 

hijo_6 1 1 1 1 1 

Tabla 6.40. Cumplimiento / incumplimiento restricción ocupación de pista 

 

El NSGA-II a diferencia del NSGA utiliza un mecanismo de elitismo. Una vez comprobado el 

cumplimiento de las restricciones se combinan ambas poblaciones pertenecientes a la 

generación actual. A partir de este momento se utiliza la población combinada. Se calcula el 

valor de las funciones objetivos y se identifican las soluciones no-dominadas y los frentes 

pertenecientes a dicha población para finalmente seleccionar aquellos individuos que formaran 

la población inicial de la siguiente generación. La selección se realizara en base al valor del 

frente en el que se encuentren las soluciones  (partiendo de que en el frente 1 se encuentran las 

mejores soluciones y los siguientes contendrán peores soluciones).  
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Funciones objetivo de la población combinada 

 

 

 

 

 

 

 

 

 

 

Soluciones no dominadas 

Se identifican las soluciones no dominadas y los frentes de la población combinada.  

        Nº restricciones 

incumplidas 

    Frente 

cr1 cr2, cr3, cr4, cr5, cr6, h_2, h_3, 

h_4, h_5,  

1 1 2 2 

cr2 cr4, cr6, h_2, h_5 4 0 4 3 

cr3 cr6 4 0 4 3 

cr4 cr6, h_2 6 0 6 5 

cr5 cr6 4 0 4 3 

cr6 - 11 1 12 6 

h_1 cr1,cr2,cr3,cr4,cr5,cr6, h_2, h_3, 

h_4, h_5, h_6 

0 2 2 2 

h_2 cr6 7 1 8  

h_3 cr4, cr5, cr6, h_2, h_5 3 1 4 3 

h_4 cr2, cr3, cr4, cr5, cr6, h_2 3 1 4 3 

h_5 cr6 5 0 5 4 

h_6 cr2, cr3, cr4, cr5, cr6, h_2, h_3, 

h_4, h_5 

1 0 1 1 

Tabla 6.42. Relación entre soluciones  

 

Para cada frente se calcula la distancia crowding de las soluciones que lo componen. Para 

calcular dicha distancia primero deben normalizarse los valores de las funciones objetivo.  

 F1 F2 

cr1 35 630 

cr2 53 638 

cr3 54 642 

cr4 55 640 

cr5 57 638 

cr6 73 642 

h_1 14 622 

h_2 72 641 

h_3 53 633 

h_4 51 634 

h_5 55 640 

h_6 31 630 

Tabla 6.41. Valores F1 y F2 

620 

625 

630 

635 

640 

645 

0 20 40 60 80 

cr1 

cr2 

cr3 

cr4 

cr5 

cr6 

h_1 

h_2 

h_3 

Gráfica 6.3. Representación F1 y F2 
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 F1 F2 

cr1 0,36 0,40 

cr2 0,66 0,80 

cr3 0,64 1,00 

cr4 0,69 0,90 

cr5 0,73 0,80 

cr6 1,00 1,00 

h_1 0,00 0,00 

h_2 0,98 0,95 

h_3 0,66 0,55 

h_4 0,63 0,60 

h_5 0,69 0,90 

h_6 0,29 0,40 

Tabla 6.43. Valores normalizados F1 y F2 

Frente 1: una única solución  

Frente 2: una única solución  

Frente 3:  

 dF1 dF2 cd 

cr2 0,02 0,40 0,42 

cr3 0,03 0,20 0,23 

cr5 0,34 0,40 0,74 

h_3 0,07 0,60 0,67 

h_4 0,64 0,25 0,89 

Tabla 6.44. Distancias crowding 

 Frente 4: una única solución  

Frente 5: una única solución  

Frente 6: una única solución  

 

Al ordenar la población combinada según los frentes y la distancia crowding calculada la 

población queda de la siguiente manera: 

 ns cd 

h_6 1 0 

h_1 2 0 

cr1 2 0 

h_4 4 0,89 

cr5 4 0,74 

h_3 4 0,67 

cr2 4 0,42 

cr3 4 0,23 

h_5 5 0 

cr4 6 0 

h_2 8 0 

cr6 12 0 

Tabla 6.45. Población progenitores e hijos ordenada según los frentes y distancia crowding 
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Al inicio del algoritmo, se ha fijado el tamaño   de la población, por lo tanto, de la población 

combinada ordenada, se seleccionarán los mejores   cromosomas que formarán la población 

inicial para la siguiente iteración.  

 

Población inicial de la siguiente iteración 

 

cr1_1 (h_6) 00100 01001 01100 10000 

cr2_1 (h_1) 00000 01001 00011 11000 

cr3_1 (cr1) 00000 01001 01100 10000 

cr4_1 (h_4) 01110 00111 10100 10100 

cr5_1 (cr5) 10010 10100 10001 00100 

cr6_1 (h_3) 10010 10100 10001 01000 

Tabla 6.46. Población inicial siguiente generación 

6.3. Conclusiones 

Mediante el paso-a-paso de los dos algoritmos se puede apreciar las diferencias que existen 

entre el NSGA y el NSGA-II, siendo el segundo una versión mejorada. El hecho de que el 

NSGA-II utilice un método elitista permite comparar los cromosomas de población de 

progenitores y de la población de hijos, para después seleccionar los mejores, permitiendo 

conservar soluciones que eran potencialmente buenas. A diferencia del NSGA-II, el NSGA no 

aplica ningún método elitista y únicamente sustituye la población de progenitores por la 

población de hijos sin tener en cuenta si hay soluciones en la población de progenitores, 

haciendo que así se pierdan soluciones potencialmente buenas. Otra diferencia a destacar es el 

en NSGA hay que definir el parámetro         a criterio del usuario, dependiendo del valor que 

tome la solución variará.    
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7. Experimentos numéricos y resultados 

En esta sección se presentan los experimentos de análisis de los dos algoritmos llevados a cabo. 

Primero se presenta diseño del experimento y luego con los datos obtenidos se realiza un test 

ANOVA para comparar diferentes aspectos de los dos algoritmos propuestos con la herramienta 

Minitab. El output completo tanto del diseño del experimento como de los análisis estadísticos 

se encuentran en los anexos.  

7.1. Diseño del experimento  

Para ayudar a la hora de determinar cuál de los dos algoritmos es mejor para resolver el 

problema descrito, se realiza un diseño experimental. El primer paso es determinar los factores a 

analizar y sus niveles:  

 Niveles 

Factores  

Tipo de algoritmo NSGA NSGA-II 

Numero de generaciones 100 200 

Tamaño de la población 50 100 

Crossover rate 0,5 0,8 

Tabla 7.1. Factores para el diseño de experimento (DOE) 

A la hora de realizar el diseño del experimento se especifica que sea un diseño factorial, de dos 

niveles y con replica.  En este caso, el diseño cuenta con 4 factores con dos niveles cada uno, 

por lo tanto, hay que realizar un total de 160 pruebas en el orden establecido en RunOrder y con 

la configuración de factores establecida. La tabla 7.2. muestra parte del resultado del diseño de 

experimento a realizar. 

 

StdOrder RunOrder CenterPt Blocks Algorithm 
Num 

iterationes 

Population 

size 

Crossover 

rate 

        

68 1 1 1 NSGA-II 200 50 0,5 

112 2 1 1 NSGA-II 200 100 0,8 

158 3 1 1 NSGA-II 100 100 0,8 

130 4 1 1 NSGA-II 100 50 0,5 

117 5 1 1 NSGA 100 100 0,5 

75 6 1 1 NSGA 200 50 0,8 

56 7 1 1 NSGA-II 200 100 0,5 

49 8 1 1 NSGA 100 50 0,5 

35 9 1 1 NSGA 200 50 0,5 

128 10 1 1 NSGA-II 200 100 0,8 

141 11 1 1 NSGA 100 100 0,8 

72 12 1 1 NSGA-II 200 100 0,5 

107 13 1 1 NSGA 200 50 0,8 

109 14 1 1 NSGA 100 100 0,8 
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Tabla 7.2. Muestra del experimento a realizar 

 

Los conjuntos de datos con los que se van a realizar los análisis de resultados cumplen las 

especificaciones de los métodos estadísticos, que son:  

(i) Independencia de las observaciones 

(ii) Residuos siguen una distribución normal 

(iii)  Homogeneidad de las varianza   

7.2. Caso 1: análisis del tiempo de ejecución de los algoritmos NSGA y 

NSGA-II  

Una de las medidas de calidad a la hora de comparar dos algoritmos es el tiempo que tardan en 

obtener los resultados y la relevancia a que tienen los factores para las soluciones de los dos 

algoritmos.  La Tabla 7.3. muestra los resultados de la prueba t de Student, con estos resultados 

se puede determinar si los algoritmos tienen el mismo tiempo de ejecución o no.  Las hipótesis 

nula y alternativa son las siguientes:  

    La diferencia entre la media de tiempos de ejecución esntre NSGA y NSGA-II es 0. 

     La diferencia entra la media de tiempos de ejecución entre NSGA y NSGA-II es diferente a 

0 de forma significante.  

        

 

 

Paired T-Test and CI: Tiempo NSGA; Tiempo NSGA-II  

 

Paired T for Tiempo NSGA - Tiempo NSGA-II 

 

                 N   Mean  StDev  SE Mean 

Tiempo NSGA     80  98,78  76,48     8,55 

Tiempo NSGA-II  80  20,58  12,80     1,43 

Difference      80  78,20  63,80     7,13 

 

 

95% CI for mean difference: (64,00; 92,39) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 10,96  P-Value = 0,000 

 
Tabla 7.3. Resultados T-test para la comparación de tiempo de ejecución de los algoritmos 

Formatat: Inglés (Estados Unidos)

Formatat: Tipus de lletra: 12 pt,

(Asiàtica) Japonés (Japón), (Altres)

Inglés (Estados Unidos)

Formatat: Inglés (Estados Unidos)
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Gráfica 7.1. Histograma de las diferencias entre los tiempos de ejecución de los algoritmos NSGA y NSGA-II 

 

One-way ANOVA: NSGA; NSGA-II  
 
Source   DF      SS      MS      F      P 

Factor    1  244589  244589  81,36  0,000 

Error   158  474993    3006 

Total   159  719582 

 

S = 54,83   R-Sq = 33,99%   R-Sq(adj) = 33,57% 

 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level     N   Mean  StDev  -------+---------+---------+---------+-- 

NSGA     80  98,78  76,48                            (---*---) 

NSGA-II  80  20,58  12,80  (---*---) 

                           -------+---------+---------+---------+-- 

                                 30        60        90       120 

 

Pooled StDev = 54,83 

 

 

Grouping Information Using Tukey Method 

 

          N   Mean  Grouping 

NSGA     80  98,78  A 

NSGA-II  80  20,58    B 

 

Means that do not share a letter are significantly different. 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons 

 

Individual confidence level = 95,00% 

 

 

NSGA subtracted from: 

 

          Lower  Center   Upper  --+---------+---------+---------+------- 

NSGA-II  -95,32  -78,20  -61,07  (-----*-----) 

                                 --+---------+---------+---------+------- 

                                 -90       -60       -30         0 

 

Table 7.4.. One-Way ANOVA tiempo ejecución algoritmos 
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Gráfica 7.2. Residuos ANOVA tiempos de ejecución de los algoritmos 

Como se muestra en la tabla 7.3. se rechaza la hipótesis nula ya que el                

    , por lo que se concluye que los algoritmos son significativamente diferentes en cuanto a 

los tiempos de ejecución.  En la tabla 7.4.. mediante el método Tukey se comprueba que los dos 

algoritmos son diferentes ya que las medias no pertenecen al mismo grupo. También podemos 

concluir, que el NSGA-II tiene un tiempo medio de ejecución de 20,58 segundos frente a 98,78 

segundos del NSGA, es decir, el algoritmo NSGA-II es más rápido que el NSGA. La gráfica 

7.1. es el histograma de las diferencias entre tiempos de ejecución de los algoritmos, la forma 

que debería seguir es la de campana .  En la gráfica 7.2. se representan varias gráficas para los 

residuos, la gráfica Normality Probabilty demuestra que los residuos no siguen una distribución 

normal, esto puede deberse a la naturaleza de los datos, del histograma de la misma gráfica, se 

deduce que los datos asimétricos estadísticamente, aunque dibuja una campana, lo que indica 

que los residuos siguen una distribución normal.  

 

7.3. Caso 2: análisis del mejor conjunto de soluciones encontradas por los 

algoritmos NSGA y NSGA-II:  

La Tabla 7.5. muestra los resultados de la prueba t de Student para comparar la calidad de los 

frentes finales que proporciona cada algoritmo. Los p-valores de ambos test son inferiores a 

0,05 por lo que podemos concluir que existen diferencias significativas entre los frentes finales 

de cada algoritmo. Las gráficas 7.3. y 7.4. muestran la semejanza de las distribuciones a una 

distribución normal. La gráfica 7.3.  muestra un desplazamiento hacia el lado positivo de la 

gráfica (por encima de la media), lo que indica una alta asimétrica positiva, por lo que se 

produce una mayor concentración de datos en eje derecho de la gráfica. La gráfica 7.4. no 

presenta ningún tipo de desplazamiento respecto a la media, y se puede intuir la forma de 

campana de los resultados. 
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Paired T-Test and CI: F1 NSGA; F1 NSGA-II  
 
Paired T for F1 NSGA - F1 NSGA-II 

 

             N     Mean  StDev  SE Mean 

F1 NSGA     80  847,075  3,352    0,375 

F1 NSGA-II  80  847,812  2,497    0,279 

Difference  80   -0,738  2,833    0,317 

 

 

95% CI for mean difference: (-1,368; -0,107) 

T-Test of mean difference = 0 (vs not = 0): T-Value = -2,33  P-Value = 0,022 

 

Paired T-Test and CI: F2 NSGA; F2 NSGAII  
 
Paired T for F2 NSGA - F2 NSGAII 

 

             N    Mean  StDev  SE Mean 

F2 NSGA     80  59,614  6,610    0,739 

F2 NSGAII   80  42,369  4,234    0,473 

Difference  80  17,245  7,436    0,831 

 

 

95% CI for mean difference: (15,590; 18,900) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 20,74  P-Value = 0,000 

 

Tabla 7.5.Resultados T-test para la comparación de la calidad de los frentes 

7.3.1. One-Way ANOVA 

 

Otro aspecto determinante referente a los algoritmos presentados es el efecto de los factores en 

la solución. Para saber si los factores tienen afectan al resultado, se ha realizado un test One-

Way ANOVA para cada algoritmo, los resultados están resumidos en las tablas 7.6. y 7.7.  para 

el NSGA y 7.8.  y 7.9. para el NSGA-II. Las hipótesis nula y las alternativas son las siguientes:  

             el parámetro número de iteraciones no influye en el resultado  

Gráfica 7.3. y 7.4. Histogramas de diferencias de los algoritmos para F1 y F2 respectivamente 
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           : el parámetro tamaño de la población no influye en el resultado 

                el factor probabilidad de reproducción no influye en el resultado 

 

 

 
F1 F2 

DF SS MS F P DF SS MS F P 

Parámetros 
          

Número iteraciones 1 0,2 0,2 0,02 0,894 1 75,1 75,1 1,74 0,192 

Tamaño población 1 84,8 84,8 8,25 0,005 1 102,8 102,8 2,40 0,126 

Probabilidad de 

reproducción 
1 3,1 3,1 0,27 0,604 1 6,4 6,4 0,14 0,705 

Tabla 7.6. Análisis de los parámetros  principales del NSGA 

 

 

 F1 F2 

Niveles de los 

parámetros 

LS Mean  Grupos 

Homogéneos 

LS Mean Grupos 

homogéneos 

Numero iteraciones       

IT: 100 847,12 X  60,583 x  

IT: 200 847,02 X  58,645 x  

Tamaño población       

P: 50 848,10 X  60,747 x  

P: 100 846,04  x 58,480 x  

Probabilidad 

reproducción 

      

Prep: 0,5 847,27 X  58,896 x  

Prep: 0,8 846,88 X  59,331 x  

Tabla 7.7. Test comparación de rangos para los parámetros del algoritmo NSGA 

 

Las tablas 7.6. y 7.7. son un resumen del análisis ANOVA llevado a cabo para determinar la 

influencia de los parámetros sobre los resultado del NSGA. De ellas cabe destacas que el único 

parámetro que influye en el resultado del NSGA es, según los niveles definidos, el tamaño de la 

población, cuyo p-valor es 0,006, por lo tanto se rechaza la            . Estas conclusiones se 

corroboran en la tabla 7.7. en la que se muestra la media para cada nivel de cada factor, y si 

existe o no homogeneidad de grupo entre niveles. Al analizar los diferentes niveles de cada 

factor se puede determinar la influencia que tienen sobre los resultados.    
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F1 F2 

DF SS MS F P DF SS MS F P 

Parámetros 
          

Número iteraciones 1 0,03 0,03 0 0,948 1 50,6 50,6 2,89 0,093 

Tamaño población 1 45,22 45,22 7,89 0,006 1 438,6 438,6 35,01 0 

Probabilidad de 

reproducción 
1 1,37 1,37 0,22 0,642 1 19,5 19,5 1,09 0,3 

Tabla 7.8.. Análisis de los parámetros principales NSGA-II 

 F1 F2 

Niveles de los 

parámetros 

LS Mean  Grupos 

Homogéneos 

LS Mean Grupos 

homogéneos 

Numero iteraciones      

IT: 100 847,83 X  43,164 x  

IT: 200 847,79 X  41,574 x  

Tamaño población       

P: 50 848,56 X  60,747 x  

P: 100 846,06  x 58,480 x  

Probabilidad 

reproducción 

     

Prep: 0,5 847,68 X  59,896 x  

Prep: 0,8 847,94 X  59,331 x  

Tabla 7.9. Test comparación de rangos para los parámetros del algoritmo NSGA-II 

 

Las tablas 7.8. y 7.9. son un resumen del análisis ANOVA llevado a cabo para determinar la 

influencia de los parámetros sobre los resultado del NSGA-II.  De la tabla 7.8. se observa que el 

parámetro tamaño de la población es el único que influye  en el resultado del NSGA, según los 

niveles de los parámetros definidos. El tamaño de la población es el parámetro más relevante 

debido al valor del ratio F = 35,01, en comparación al ratio del número de iteraciones que es F = 

4,05 (referente a F2).  

 

7.3.2. MANOVA 

Para comprobar los resultados obtenidos se ha realiza un test MANOVA con el que también se 

comprobará si entre los factores existe interacción.  Los resultados del MANOVA se resumen 

en las tablas 7.10. y 7.11.  para el NSGA y el NSGA-II, respectivamente. Las hipótesis nula y 

las alternativas son las siguientes:  

    el factor no influye en la solución  

    el factor influye en la solución  
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 F1 F2 

 DF SS MS F P DF SS MS F P 

Parámetros           

n iteraciones 1 0,2 0,2 0,02 0,89 1 75,14 75,14 1,74 0,192 

tamaño población 1 84,84 84,84 7,98 0,006 1 102,83 102,83 2,38 0,127 

crossover 1 3,07 3,07 0,29 0,593 1 6,38 6,38 0,15 0,701 

Interacciones           

n iteraciones*tamaño 

poblacion 
1 11,81 11,81 1,11 0,295 1 1,98 1,98 0,5 0,831 

n 

iteraciones*crossover 
1 1,78 1,78 0,17 0,684 1 107,74 107,74 2,49 0,119 

tamaño 

población*crossover 
1 9,7 9,7 0,91 0,343 1 1,19 1,19 0,03 0,869 

error 73 776,03 10,63   73 3156,56 43,24   

total 79 887,44 
   

79 3451,86 
   

Tabla 7.10. Análisis de los parámetros  principales del NSGA 

 

 

La tablas 7.10. es un resumen del análisis MANOVA llevado a cabo para determinar la 

influencia de los parámetros sobre los resultado del NSGA. Las hipótesis nula y alternativa son: 

             el parámetro número de iteraciones no influye en el resultado  

           : el parámetro tamaño de la población no influye en el resultado 

                el factor probabilidad de reproducción no influye en el resultado 

 De la tabla 7.10. cabe destacar que el único parámetro que influye en el resultado del NSGA es, 

según los niveles definidos, el tamaño de la población, cuyo p-valor es 0,006, por lo tanto se 

rechaza la            . Este resultado coincide con los test llevado a cabo en el apartado anterior. 

En la tabla  7.7. se muestra la media para cada nivel de cada factor, y si existe o no 

homogeneidad de grupo entre niveles. Al analizar los diferentes niveles de cada factor se puede 

determinar la influencia que tienen sobre los resultados.  Otro hecho importante es que no existe 

interacción entre ninguno de los parámetros, el p-valor de los factores es superior a 0,05, por lo 

tanto, aceptamos la hipótesis nula de que existe no interacción entre los factores.   
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 F1 F2 

 DF SS MS F P DF SS MS F P 

Parámetros           

n iteraciones 1 0,027 0,027 0 0,946 1 50,57 50,57 4,5 0,037 

tamaño población 1 45,215 45,215 7,97 0,06 1 438,61 438,61 39,01 0 

crossover 1 1,37 1,37 0,24 0,625 1 19,45 19,45 1,73 0,192 

Interacciones           

n iteraciones & 

tamaño población 
1 19,169 19,169 3,38 0,07 1 0,23 0,23 0,02 0,885 

n iteraciones & 

crossover 
1 11,369 11,369 2 0,161 1 2,48 2,48 0,22 0,64 

tamaño población & 

crossover 
1 0,862 0,862 0,15 0,698 1 83,84 83,84 7,46 0,008 

error 73 414,398 10,63 
  

73 820,72 11,24 
  

total 79 492,409 
   

79 1415,91 
   

Tabla 7.11. Análisis de los parámetros principales NSGA-II 

 

La tablas 7.11. es  un resumen del análisis ANOVA llevado a cabo para determinar la influencia 

de los parámetros sobre los resultado del NSGA-II. Las hipótesis nula y alternativa son: 

             el parámetro número de iteraciones no influye en el resultado  

           : el parámetro tamaño de la población no influye en el resultado 

                el factor probabilidad de reproducción no influye en el resultado 

 De la tabla 7.11. destaca  que los parámetros número de iteraciones y tamaño de la población 

influyen  en el resultado del NSGA, según los niveles de los parámetros definidos. El tamaño de 

la población es el parámetro más relevante debido al valor del ratio F = 39,01, en comparación 

al ratio del número de iteraciones que es F = 4,05 (referente a F2).  En la tabla7. 9. podemos 

observar como para F2 los parámetros de número de iteraciones y tamaño de población 

pertenecen al mismo grupo, esto es debido a que los test que se han realizado para comparar los 

rangos de cada parámetro se realizan individualmente, a diferencia del MANOVA que se  ha 

realizado con todos los parámetro.   En la tabla 7.11. se observa que únicamente existe 

interacción entre los parámetros de tamaño de población y probabilidad de reproducción, el p-

valor de los factores es inferior a 0,05, por lo tanto, rechazamos la hipótesis nula de que no 

existe interacción entre los factores.   

 

 

Comentari [H1]: Should I mention it? 
I’m not sure about that statement. But the 
tables 7.2.4 and 7.2.6. are made with the 
one-way ANOVA for each objective 
function and I’ve read that this can cause 
an accumulation of errors. Is that right? 
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7.4. Conclusiones 

Los experimentos realizados para obtener los resultados fueron implementados en un 

procesador  Intel(R) Core(TM) i7-3610Q CPU 2.30GHz RAM 8.00Gb. Con dichos resultados 

se ha llevado a cabo un análisis estadístico de los diferentes parámetros involucrados en los 

algoritmos evolutivos NSGA y NSGA-II. Existe una diferencia significativa entre las medias de 

tiempo de ejecución de los algoritmos, siendo en NSGA-II más rápido, el NSGA tiene un 

tiempo de ejecución  medio de 98,78 segundos, frente a una media de 20,58 segundos del 

NSGA-II.  Al analizar la influencia de los diferentes parámetros a las soluciones, se concluye 

que para los niveles de los parámetros definidos, sobre las soluciones que proporciona el NSGA 

afecta el tamaño de la población, y sobre las soluciones del NSGA-II afecta la el número de 

iteraciones y el tamaño de la población.  
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8. Resultados y Conclusiones 

La limitación latente de los aeropuertos de absorber la creciente demanda de vuelos hace que se 

investiguen métodos para aprovechar de la manera más eficiente los recursos disponibles de 

éste. Uno de los factores más relevantes en cuanto a eficiencia es el uso de pista del aeropuerto 

y la coordinación de aterrizajes y despegues de aviones de forma segura. El problema secuencia 

de aterrizajes y despegues se conoce como Aircraft Landing Scheduling Problem, e intenta 

encontrar secuencias que satisfagan las necesidades de tráfico y cumpla con las restricciones de 

seguridad.  

En este proyecto se ha formulado el problema de secuencia de aterrizaje de aviones como un 

problema multi-objetivo que tiene por funciones objetivo minimizar la desviación total entre el 

tiempo de aterrizaje y el tiempo objetivo de los aviones y minimizar el tiempo de aterrizaje del 

utlimo avión. Se ha realizado un nuevo intento de resolverlo, utilizando algoritmos MOEAs 

(Multi-Objetive Evolutionary Algorithm). Para resolver el problema se ha revisado la literatura 

existente sobre los diferentes métodos de resolución así como los diferentes métodos de 

optimización de problemas multi-objetivo.  

De todos los métodos analizados para la resolución del problema multi-objetivo se han 

seleccionado los algoritmos NSGA y NSGA-II. El NSGA es capaz de encontrar un conjunto se 

soluciones  y una mejor convergencia mejores de la solución aproximada del verdadero frente 

Pareto-optimo comparado con los algoritmos PAES y SPEA. El NSGA también se ha 

seleccionado como primera versión del NSGA y así poder analizar las mejoras y diferencias 

entre ambas versiones.  

El paso-a-paso de los dos algoritmos permite ver las diferencias que existen entre el NSGA y el 

NSGA-II, siendo el segundo una versión mejorada del primero. La gran diferencia que existe 

entre un algoritmo y otro es que el NSGA-II aplica un método elitista que se aplica en el 

NSGA-II, ya que una vez obtenida la población de hijos, ésta se une con la población de 

progenitores para así seleccionar los mejores cromosomas evitando así la pérdida de soluciones 

potencialmente buenas. Otro factor importante a destacar es el hecho de que en el NSGA se 

tiene que definir el valor del parámetro        ya que dependiendo del valor que se le otorgue se 

obtendrán un conjunto de soluciones u otro.  

Finalmente se han realizado análisis estadísticos de los resultados de los algoritmos. Los 

experimentos realizados para obtener los resultados, tal como se ha referenciado, fueron 

implementados en un procesador  Intel(R) Core(TM) i7-3610Q CPU 2.30GHz RAM 8.00Gb. 

Con dichos resultados se ha llevado a cabo un análisis estadístico de los diferentes parámetros 

involucrados en los algoritmos evolutivos NSGA y NSGA-II. Existe una diferencia significativa 
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entre las medias de tiempo de ejecución de los algoritmos, siendo en NSGA-II más rápido, el 

NSGA tiene un tiempo de ejecución  medio de 98,78 segundos, frente a una media de 20,58 

segundos del NSGA-II.  Al analizar la influencia de los diferentes parámetros a las soluciones, 

se concluye que para los niveles de los parámetros definidos, sobre las soluciones que 

proporciona el NSGA afecta el tamaño de la población, y sobre las soluciones del NSGA-II 

afecta la el número de iteraciones y el tamaño de la población.  
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