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INTRODUCTION

The mammalian mitochondrial genome (mtDNA) is a small double-stranded molecule that is exclusively transmitted down the maternal line. The existence of a mixture of mutant and wild-type mtDNA
within the same organism is called heteroplasmy and, although not necessarily, this event can be associated with pathogenic effects. However, the exact mechanism of inheritance that controls the amount
of mutant mtDNA that is going to be transmitted from a mother to her offspring is still unknown. Therefore, understanding the biological basis of this uncertainty is one of the principal challenges facing
scientists in the field of mitochondrial genetics. In this review the main goal is to shed light on the factors responsible for inheritance through the different theories about when and how the mitochondrial
genetic bottleneck is produced and whether selection, random drift or both are influencing in the segregation patterns.
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DISCUSSION

v'More than 100 different types of pathological mutations in mtDNA have been described but
heteroplasmy itself can appear equally in healthy individuals. Only rates over 50-80% will show
phenotypic affectation.

v There are different levels of heteroplasmy among tissues produced by somatic mutations that
describe a non-randomly pattern of inheritance. This is influenced by selection at the level of organism
associated with the phenotypic affectation.

v'The inheritance of heteroplasmy can be explained by the bottleneck theory. A physical reduction of
units in the early oogenesis is evident but the bottleneck responsible for the genetic variance occurs
during folliculogenesis, when mutations that escape from purifying selection in early oogenesis are
rapidly segregated and exposed to selection at the level of organism.

v/200 is the approximate number of segregating units which are going to contribute to next
generation’s genetic variance.

vIn the transmission of heteroplasmy it is evident the action of random drift although selection acts
over pathogenic mutations. Below the threshold of 80% affectation mutations would be invisible to
selection and would segregate randomly.
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