

Environmental Risk Assessment of the pharmaceutical diclofenac: an approach to potential impacts in aquatic systems

Alba Llovet Martin

Introduction

Pharmaceuticals are emerging pollutants, these compounds are found in the environment in the ng/L- μ g/L, and therefore they have been undetectable until now with modern analytical techniques (Santos et al., 2010).

Diclofenac is a widely used pharmaceutical that was reported as the causal agent of outbreaks in populations of three species of vultures (*Gyps bengalensis*, *Gyps indicus*, and *Gyps tenuirostris*), that have declined by more than 97 % and are now classified as critically endangered. This example might will be the worst ever case of poisoning of wildlife by a chemical (Sumpter, 2010). Since this discovery, an increasing body of research has investigated the ecotoxicological effects of diclofenac on non-target organisms, and has mainly focused on acute effects on aquatic organisms. However pharmaceuticals are expected to produce effects after chronic exposure at low concentrations (Halling-Sørensen et al., 1998).

Aims

1. Assessing the risks of diclofenac in the aquatic environment
2. Finding out the best management options to avoid the risk

Characterization of exposure

- Drug use: about 940 tons are estimated to be consumed globally on an annual basis (Zhang et al., 2008)

Behaviour in the environment:

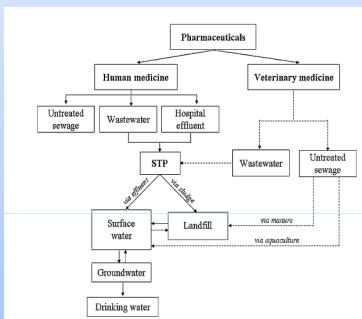


Figure 3. Possible pathways of pharmaceuticals in the environment. Source: Santos et al. (2010)

- The most direct entry of diclofenac to aquatic environments is through discharges of sewage treatment plants (STPs) effluents
- Removal rates in STPs are highly variable (between 0-80%) (Iskra, 2008)
- The two major sinks identified for diclofenac are photodegradation and biodegradation

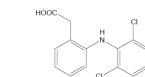


Figure 1. Molecular structure of diclofenac
Source: Jisika (2008)

Methodology

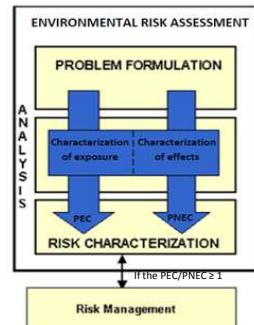


Figure 2. Risk assessment framework for the aquatic environment of pharmaceuticals.

Source: modified from Webb (2001)

Characterization of effects

- Acute effects:

Compound	Test-species	Test-type	Ecotoxicity data
Diclofenac	Bird, vulture	LOAEL, dietary intake, renal failure	0.007 mg/kg
	<i>Microbacter</i> (bacteria)	EC ₅₀ , 30 min	11.45 μ g/L
	<i>Microbacter</i> (bacteria)	EC ₅₀ , ToxAlert, 15 min	13.5 mg/L
	<i>Microbacter</i> (bacteria)	EC ₅₀ , Microtox	13.7 mg/L
	<i>Paracoccus denitrificans</i> (bacteria)	NOEC, 96 h, growth	10 μ g/L
	<i>S. capricornutum</i> (green algae)		
	<i>Pseudodictyotaella subcapitata</i> = <i>S. capricornutum</i> (green algae)	LOEC, 96 h, growth	20 mg/L
	<i>Daphnia magna</i> (water flea)	EC ₅₀ , 48 h	224.3 mg/L
	<i>Ceriodaphnia dubia</i> (crustacean)	EC ₅₀ , 48 h	22.7 mg/L
	<i>Ceriodaphnia dubia</i> (crustacean)	NOEC, 7 days, reproduction	1.0 mg/L
	<i>Ceriodaphnia dubia</i> (crustacean)	LOEC, 7 days, reproduction	2.0 mg/L
	<i>Bracon hebetor</i> (insect)	EC ₅₀ , 48 h, reproduction	12.5 mg/L
	<i>Brachycompsa calyciflorus</i> (rotifer)	LOEC, 48 h, reproduction	25 mg/L
	<i>Danio rerio</i> (zebrafish)	NOEC, 10 days, ELS	4 mg/L
	<i>Danio rerio</i> (zebrafish)	LOEC, 0 days, ELS	3 mg/L
	<i>Dicentrarchus labrax</i> (green algae)	EC ₅₀ , 72 h, (sodium salt)	72 mg/L
	<i>Daphnia magna</i>	EC ₅₀ , 48 h, (sodium salt)	68 mg/L
	<i>Lemna minor</i> (aquatic vascular plant)	EC ₅₀ , 7 days, growth	7.5 mg/L

Table 1. Acute ecotoxicity data for diclofenac. Source: modified from Carlson et al. (2006)

- Chronic effects: cytological alterations in *Oncorhynchus mykiss* at 1g/L diclofenac = LOEC

	Liver	Kidney	Gills
Diclofenac	++ (collapse of cellular compartmentation, glycogen reduction, membrane material, dilation and vesiculation of ER, increased amount of macrophages)	+++ (glomerulonephritis with thickened basal lamina, shortening of podocytes and retraction from basal lamina, necrosis of endothelial cells, hyaline droplet degeneration)	+++ (cellular lifting, pillar cell necrosis, hyperplasia and hypertrophy of chloride cells)

Table 2. Chronic effects tested in liver, kidney, and gills (++= heavy reactions and/or destruction of organ; ++= strong reaction
Source: Triebkorn et al. (2004)

Risk characterization

PEC (μ g/L)	MEC (μ g/L)	PNEC (μ g/L)	PEC/PNEC
0.05	0.08-1.4	0.01	5

Table 3. values obtained for PEC, MEC, PNEC and risk quotient
Source: own elaboration from data obtained from Santos et al. (2010)

A risk is expected because
PEC/PNEC > 1

Management

Depuration in water treatment plants:

Advanced oxidation processes by means of combining different highly oxidizing agents, such as H_2O_2 /ozone or UV/ozone, can provide the best removal rate for diclofenac (99,9%).

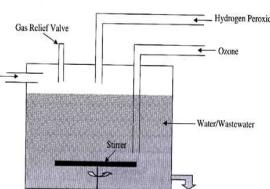


Figure 4. Design of an advanced oxidation process reactor.
Source: Ijembra (2008)

Legislation:

Article 16 of the Water Framework Directive requires the European Commission to identify priority substances among those presenting significant risk to the aquatic environment, and to set EU Environmental Quality Standards (EQS). An orange arrow points from this text to the following text.

Diclofenac was proposed to be added to the priority list, but Members of European Parliament rejected the purpose of establish an EQS for pharmaceuticals

Conclusions

- Environmentally relevant concentrations of diclofenac are able to impair the normal physiology of fishes. In addition, mixture with other pharmaceuticals and toxicity of metabolites and transformation products of diclofenac is recommended to make a more fiable ERA.
- To ensure an appropriate management of the risk of diclofenac, policies more respectful with environment and advanced treatment in STPs should be carried out.

References:

Carlsson C., Johansson A-K., Alvan G., Bergman K., and Kühler T. 2006. Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. *Science of the Total Environment*, Vol.364, pp.67- 87.; Halling-Sørensen B., Nors Nielsen S., Lanzyk P.F., Ingerslev F., Holten Litzhoff H.C. and, Jorgensen S.E. 1998. Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment - A Review. *Chemosphere*, Vol. 36, N° 2, pp. 357-393.; Ijembra, P.K. 2008. Chapter 5: Technologies for removing PPCPs. In: Ijembra P.K. (Editor). *Pharma-ecology: The Occurrence and Fate of Pharmaceuticals and Personal Care Products in the Environment*. New Jersey: John Wiley & Sons.; Jisika M. 2008. Fate of the pharmaceutical diclofenac in the aquatic environment. *Biogeochemistry and Pollutant Dynamics*, Vol. 21: pp. 1-16.; Santos L. H.M.L.M., Araújo A., Fachin A., Pena A., Derleu-Matos C., and Montenegro M.C.B.S.M. 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. *Journal of Hazardous Materials*, Vol. 175, pp.45-95.; Sumpter J. P. 2010. Chapter 2: Pharmaceuticals in the Environment: Moving from Problem to a Solution. In: Kümmerer K. and Hempel M. (Editors). *Green and Sustainable Pharmacy*. Heidelberg, Germany : Springer-Verlag.; Triebkorn R., Casper H., Heyd A., Eikemeier R., Köhler H.R., and Schwager J. 2004. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II. Cytological effects in liver kidney gills and intestine of rainbow trout (*Oncorhynchus mykiss*). *Aquatic Toxicology*, Vol.68, pp. 151-166.; Zhang Y., Geilen S., and Gal C. 2001. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. *Chemosphere*, Vol. 73, pp.1151-1161.; Webb S. 2001. Chapter 24: A data-based perspective on the environmental risk assessment of human pharmaceuticals I—collation of available ecotoxicity data and chapter 25: II—aquatic risk characterisation. In: Kümmerer K., (Editor). *Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks*. 1st ed. Heidelberg, Germany : Springer-Verlag.