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1. Introduccio

L' Estadistica és una ciéncia que principalment vol extreure informacié fiable de les
dades 1, entre altres coses, modelar els fenomens quotidians que ens envolten. Amb
aquesta idea al cap, la motivacié d' aquest treball es estudiar el comportament dels
ciclons tropicals. Un primer treball orientat en aquesta direccidé és "Disipacion y
Energia de los Ciclones Tropicales: Ajustes y Test de Bondad de Ajuste” de Oliver
Planes, escrit al 2012. En el nostre cas, pero, aprofundirem més 1' analisi estadistic
de les dades.

D'igual manera que en aquest primer treball citat, utilitzarem unes bases de dades
que contenen informacié sobre ciclons del Atlantic 1 del Pacific mesurada des de
I' inici de cada un dels ciclons registrats fins a la seva extincid, en intervals de sis
hores i1 entendrem cada cicl6 com un experiment aleatori. La primera part del
treball consistira, doncs, en la manipulacié 1 depuracié d' aquestes dues bases de
dades, tot aquest procés es pot trobar detallat al segon apartat d' aquest treball.

Per altra banda, I’ analisi de dades observades en diferents moments del temps, és
a dir, de séries temporals, comporta nous problemes pel que fa tant a la
modelitzacié estadistica com a 1’ inferéncia. La obvia correlacié introduida pel
mostreig de punts consecutius en el temps pot restringir severament 1’ aplicabilitat
de molts metodes estadistics convencionals que sovint depenen de 1’ hipotesi
d’ observacions independents 1 idénticament distribuides.

L’ objectiu principal d' aquest treball, doncs, es divideix en dues parts. En primer
lloc, es realitzara 1' analisi de les séries del nimero de ciclons registrats anualment
1 mensualment tant a I' Atlantic com al Pacific, tal com podem veure al tercer
apartat d' aquest treball. Intentarem, d' aquesta manera, trobar patrons o
estructures en aquestes séries a tal de poder entendre aquest fenomen atmosféric, i
concretament, la seva aparicié. Per altra banda, en meteorologia es coneixen tres
indexs que defineixen la forca o intensitat dels ciclons, aquests s' anomenen PDI,
IEI 1 OEIL. El quart apartat d' aquest treball consisteix en 1' estudi a fons
d' aquests, estudiant primerament la correlacié entre ells, seguit de 1' estimacié de
la seva funcié de densitat, aplicant un métode que podriem anomenar naive 1
aplicant el métode Kernel, el que ens permetra estimar els parametres que
defineixen la llei de potencies, i per ultim, aplicarem un test de bondat d' ajust per
a provar si aquests indexs podrien seguir una distribucié de Pareto.

Pel dltim cal aclarir que el software utilitzat per a la manipulacié de les dades
abans esmentades ha estat R a la versi6 2.12.2. A 1' annex, apartat A7, podem
trobar tota la sintaxis utilitzada per a dur a terme aquest treball.



2. Introduccio de les dades

Per a la realitzaci6 d' aquest treball s' utilitzen dues bases de dades que ens
proporcionen el "Regional and Mesoscale Meteorology Branch (RAMMB)", o més
concretament el "National Hurricane Center (NHC)", 1 que podem trobar al segiient
enllag,

http://rammb.cira.colostate.edu/research/tropical cyclones/tc_extended best track
dataset/

En aquestes bases de dades trobem informaci6 sobre tempestes tropicals
localitzades a 1' ocea Atlantic i al nord Pacific. Concretament tenim les seglients
variables en el mateix ordre en el que les introduim:

* Numero d' identificacid

* Nom de la tempesta

e Mes, dia, hora, any (la informacid
d' aquestes quatre ultimes variables

es troba en una de sola)
» Latitud (deg N)

velocitat en direccié nord-est, sud-est,
sud-oest, nord-oest (nm)
* Radi des del centre de la tempesta
fins a trobar vents de 64 kt de
velocitat en direccié nord-est, sud-est,
sud-oest, nord-oest (nm)

* Longitud (deg W) e Codi del tipus de tempesta, on

» Velocitat maxima del vent (kt) s' utilitza aquest simbol * per a un

» Pressié central minima (hPa) sistema tropical (depressié tropical,

e El radi de la velocitat maxima del tempesta tropical o huraca), W per

vent (nm) onades tropicals, D per pertorbacions
 El diametre de I' ull (nm) tropicals, S per tempestes
* Pressié de 1' isobara més llunyana subtropicals, ~E  per tempestes
(hPa) extratropicals 1 L per a residual de

baixes pressions
¢ Distancia a la massa de terra més

*Radi de 1' isobara més llunyana (nm)
» Radi des del centre de la tempesta
fins a trobar vents de 34 kt de
velocitat en direccié nord-est, sud-est,

propera (km), on la illa Trinitat és la
menor area considerada terra, en

sud-oest, nord-oest (nm) aquesta mesura, valors negatius

e Radi des del centre de la tempesta
fins a trobar vents de 50 kt de

indiquen que la tempesta es troba
sobre terra.

Per a les bases de dades en estudi, cada una de les linies fa referéncia a informacid
sobre les variables anteriors d' una tempesta concreta reportada en una
determinada hora. Es important remarcar que la base de dades de ciclons de 1' ocea
Atlantic recull informacié entre els anys 1988 1 2011, pero la del nord Pacific recull
informaci6 tan sols entre 2001 1 2011. En total, comptem amb 14384 observacions,
on 10222 fan referéncia a 1’ Atlantic, amb 147 ciclons diferents mesurats, 1 4162 fan
referéncia al Pacific, amb 96 ciclons diferents. Tenim, per tant, registrats en total,
243 ciclons diferents.


http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_extended_best_track_dataset/
http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_extended_best_track_dataset/

Per ultim indicar que el valor numeéric -99 que apareix a la base de dades en
qualsevol de les variables indica que 1' estimaci6 del valor d' aquella variable no va
ser possible 1, s' entén, per tant, com una dada faltant.

2.1 Conceptes rellevants sobre ciclons

Ja que les nostres dades tracten de tempestes tropicals, pot ser util comentar
breument algunes idees interessants sobre aquest tema.

Comencem aclarint que, quan parlem de tempestes tropicals, ens referim a
qualsevol pertorbacié de I’ atmosfera, especialment afectant a la seva superficie,
que tenen com a resultat, generalment, forts vents 1 precipitacions abundants. El
terme tropical, fa referéncia tant a la regié geografica on s’ originen aquestes
tempestes, que acostuma a ser als tropics, com a la seva formacid, que acostuma a
ser en masses d’ aire maritimes tropicals. Per altra banda, anomenarem sistema a
un conjunt especific de condicions climatologiques, que tenen en compte el
moviment del vent al atmosfera.

Tenint aquests dos conceptes al cap podem definir un ciclé tropical com un
sistema tempestds caracteritzat per una baixa pressié al centre, seguit per una
disposicié en espiral de tempestes eléctriques. Els ciclons tropicals es creen gracies
a I’ evaporaci6 intensa de la superficie del mar, 1’ aire calent 1 humit s’ inestabilitza,
generant fortes corrents ascendents que donen lloc a una rapida condensacié del
vapor d’ aigua, que provoquen fortes precipitacions i vents huracanats que giren al
voltant del centre del cicl6. La caracteristica que els diferencia de la resta de ciclons
és que per a qualsevol altura atmosférica, el centre dels ciclons tropicals és més
calent que els seus voltants.

Mechanism of Tropical Cyclone Formation

Outflow

A,

Descending AirJ
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Grafic 1: Formacié dels ciclons.
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Depenent de la seva localitzacié 1 la seva for¢a, un cicld tropical pot classificar-se
com un huraca o un tifé si els vents maxims a terra sén d' almenys 33 m/s, una
tempesta tropical si son almenys de 17 m/s, o una depressié tropical si son de
menys de 17 m/s.

Per altra banda hi ha altres fenomens meteorologics que es troben registrats en la
nostra base de dades 1 seria interessant descriure'ls breument.

e Onada tropical: Area allargada de baixa pressié que causa nuvolositat 1
turmentes 1 que pot conduir a la formacié de ciclons tropicals.

e Pertorbacié tropical: Un sistema de vents ciclonics situats a les regions
tropicals, de menor intensitat que un ciclé tropical.

e Tempestes subtropicals: Tempestes localitzades a les zones tropicals o
subtropicals, tenen la caracteristica de ser menys intenses que les tempestes
tropicals. Les tempestes subtropicals també poden conduir a la formacié de
ciclons tropicals.

e Tempestes extratropicals: Son sistemes de baixa pressié amb fronts freds,
calids 1 oclusos! associats. Per altra banda, aquestes tempestes presenten la
seva velocitat maxima a uns 12 quilometres de terra a diferéncia de les
tempestes tropicals. Es curidés, pero, que acostuma a passar que una
tempesta tropical es transformi en una tempesta extratropical 1 a
I"inrevés.

2.2 Manipulaci6 de la base de dades

En aquest apartat explicarem, de manera general, tots els passos que van ser
necessaris per a preparar la base de dades final amb la que treballarem.

El primer pas va ser obtenir quatre variables independents que ens indiquin
I' hora, el dia, el mes 1 1' any en que es va originar la tempesta tropical. Per a
aconseguir-ho, es van importar les dues bases de dades a Excel i en el procés
d' importacié es va indicar que es separés 1' informacié que contenia la variable en
quatre de diferents, que evidentment, anomenem hora, dia, mes 1 any
respectivament.

Un cop aconseguit aixo, es van importar les dues bases de dades a 1' R, que com ja
hem mencionat préviament, sera el programa que utilitzarem per a dur a terme
aquest treball. Tot seguit introduim una nova variable a cada una de les bases de
dades que s' anomenara localitzacié 1 ens indicara si la tempesta tropical s' ha
originat al Pacific o a 1' Atlantic. Gracies a aquest dltim pas, podem unir les dues
bases de dades en una de sola sense perdre la capacitat de poder diferenciar els
ciclons segons la seva localitzacié.

1 Un front oclis es forma on un front calid mobil més lent és seguit per un front fred amb desplagcament més rapid.
El front fred atrapa al front calid i l'empeny cap amunt. Els dos fronts continuen movent-se un darrera l'altre, i
linia entre ells és el front oclds.
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Tot seguit, es van escollir les variables que es creien rellevants per a I' estudi 1 es
va obtenir una subbase de dades. Aquestes variables van ser: ID, nom, mes, dia,
hora, any, velocitat maxima del vent, radi de la velocitat maxima del vent, radi de
I' isobar més proper, tipus 1 localitzaci6. Amb aquesta base de dades realitzarem
I' analisi de les séries temporals del nimero de ciclons anuals 1 mensuals, ja que
per a realitzar-lo les dades faltants no sén un problema i, d' aquesta manera no
perdem informacid.

A continuacié es va realitzar un estudi de dades faltants, primerament de les
variables de la base de dades obtinguda fins ara, 1 després d' aquestes mateixes
variables perd per cada un dels ciclons independentment, ja que, a 1' ultima part
d' aquest treball estudiarem, com ja hem comentat préviament, tres indexs
associats a 1' intensitat dels ciclons 1 que definirem a partir de les variables de la
base de dades, 1 no sera, per tant, adient, que un ciclé presenti un percentatge molt
elevat de dades faltants per a alguna de les seves variables.

Al realitzar 1I' analisi de dades faltants sobre les variables observades per cada
ciclé, veiem que en molts casos presenten un percentatge de missings massa elevat.
El que es va fer llavors va ser eliminar tots aquells ciclons que presenten per a
qualsevol de les seves variables un percentatge de dades faltants superior al 30%.
Aquesta mesura va suposar passar a treballar amb 149 ciclons diferents, tenint,
inicialment, 243.

Per altra banda, gracies a 1' estudi de dades faltats realitzat sobre la base de dades
sencera, després de 1' eliminacid dels ciclons amb massa dades faltants, es va veure
que les Uniques variables que presentaven dades faltants eren les que mesuraven
el radi de la velocitat maxima del vent, amb un 18.47%, 1 el radi de I' isobar més
proper, amb un 18.34%. En aquest cas, el percentatge de missings es va considerar
acceptable 1 no es van eliminar més observacions.

Finalment es va procedir a estimar les dades faltants que encara presenta la nostra
base de dades utilitzant la funcié d' R na.spline(), que expliquem detalladament en
el segiient subapartat.

Per ultim obtenim la velocitat maxima del vent, el radi de la velocitat maxima del
vent 1 el radi de 1' isobar més proper, en les unitat del sistema internacional
(metres 1 segons), ja que sera necessari tenir-ho en aquestes unitats per a calcular
els indexs que s’ exposen en I’ apartat 4 d’ aquest treball. Per fer-ho, multipliquem
el valor actual de la velocitat maxima de vent per 0.514, ja que un knot equival a
0.514 m/s, 1 multipliquem el valor actual del radi de la velocitat maxima del vent i
del radi de I’ isobar més proper per 1852, ja que una milla nautica equival a 1852
metres.

Tots els passos anteriors ens porten a construir la base de dades que finalment
utilitzarem per al nostre analisi, que consta de 11 variables 1 8554 observacions.



Podem observar les primeres observacions que es troben a la nostra base de dades
a la taula seglient,

Nom Mes | Dia | Hora | Any V. R. V. R. 1s0. Tipus
max max

EP0101 | ADOLPH | 5 25 18 | 2001 | 12.86 | 106607.6 | 860878.4 | Sistema | Pacific

tropical

EP0101 | ADOLPH | 5 26 0 2001 | 15.43 | 111120 333360 | Sistema | Pacific

tropical

EP0101 | ADOLPH | 5 26 6 2001 | 15.43 | 111120 166680 | Sistema | Pacific

tropical

EP0101 | ADOLPH | 5 26 12 | 2001 | 15.43 | 111120 166680 | Sistema | Pacific

tropical

EP0101 | ADOLPH | 5 26 18 | 2001 18 111120 166680 | Sistema | Pacific

tropical

EP0101 | ADOLPH | 5 27 0 2001 | 20.57 | 74080 324100 | Sistema | Pacific

tropical

Taula 1: Visualitzaci6é de les primeres observacions de la base de dades, on V. max, fa referéncia a la velocitat
maxima del vent, R. V. max, al radi de la velocitat maxima del vent, R. is0 al radi de ' isobar més proper i Loc a la
localitzacié.

2.3 Estimaci6 de dades faltants

La funcié na.spline que hem utilitzat per a estimar els valors faltants de la nostra
base de dades, substitueix cada dada faltant per un valor obtingut amb una funci6
cubica ajustada a les nostres dades. El que hem fet ha estat aplicar-la, a cada cicl9,
a les dues variables que presentaven dades faltants, radi de la velocitat maxima
del vent 1 radi de 1I' isobar més proper.

Aprofundint més en el seu funcionament, cal tenir en compte que, concretament, el
que fa aquesta funcié, és una interpolacié cubica amb splines. En
matematiques, el concepte spline fa referéncia a una funcié definida per parts 1 que
posseeix un alt grau de suavitat en els llocs on les parts s' ajunten, i al dir que
utilitzem una interpolacié ctbica, el que especifiquem és que aquesta funcié sera
un polinomi de tercer grau.

Més detalladament, podem dir que, donada una funcié f definida a I’ interval [a, b] 1
amb els seglients trossos,

Aa=xy <X, <X, < <xp=0b

Una interpolacié ctbica amb splines, S, per a f, presenta les segilients
caracteristiques,




e §; és un polinomi cibic definit a I interval [x;, xj,1] perajdesde 0 an — 1.
. S(xj)zf(xj) perajde0Oan.

o Sj+1(xj+1) =Sj(xj;1) perajdeOan —2.

. S’j+1(xj+1) =S"j(xj41) perajdeOan— 2.

o S”j+1(xj+1) =5"ij(xjs1) perajdeOan —2.

e S"(xg) =5"(xp) =0

o S'(x0) =f"(x0) 15" (xn) = f"(xn)

Gracies a les caracteristiques anteriors, 1 tenint en compte els valors que coneixem,
podem calcular els coeficients dels S; polinomis com a solucié d’ un sistema
d’ equacions?. Per a acabar d’ entendre el seu funcionament, podem visualitzar el
segiient grafic que ens mostra en vermell I’ estimacié obtinguda per a les variables
que presentaven dades faltants per al ciclé Adrian, que va tenir lloc al maig de
2005 al Pacific.
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Grafic 2: Exemple de 1' aplicacié de la funcié na.spline en el Cicl6é Adrian, al maig
del 2005. Els punts vermells fan referéncia a 1' estimaci6 obtinguda amb la funcié.

2 Per a ampliar I’ informacié sobre 1’ interpolacié cibica amb splines es pot consultar el segiient document:
http://banach.millersville.edu/~BobBuchanan/math375/CubicSpline/main.pdf
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3. Analisi de series temporals

En aquest apartat procedirem a estudiar les series temporals del niimero de ciclons
anuals 1 mensuals diferenciant segons s’ hagin produit al Pacific o a I’ Atlantic. Es
clar, doncs, que com hem comentat a I' apartat anterior, per a realitzar aquest
analisi podem utilitzar la base de dades prévia al tractament de dades faltants, ja
que aquestes no ens afecten a I’ hora de veure el numero de ciclons que tenim
registrats 1, d’ aquesta manera, no perdrem informacio.

3.1 Estudi de les séries anuals

Podem comencar estudiant les séries anuals del namero de ciclons, mitjancant els
seguents grafics (Grafic 3).

grafic del namero de ciclons del Atlantic per any grafic del nimero de ciclons del Pacific per any
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Grafic 3: Série temporal del nimero de ciclons anual registrats al Atlantic i al Pacific, grafic de la funci6
d’ autocorrelaci6 i d’ autocorrelacié parcial per a cada série.



Podem veure que cap de les dues séries presenta una estructura clara, és a dir,
sembla que les observacions siguin incorrelades. A més, si ens fixem en els grafics
d' autocorrelacié 1 d' autocorrelacié parcial, ens porten a pensar que aquestes séries
podrien definir-se com a soroll blanc.

Per a poder confirmar o rebutjar les nostres sospites, utilitzem el test de Box Ljung
que contrasta 1’ hipotesi nul 1a de que les dades sén independentment distribuides,
donat un determinat lag temporal. Els resultats obtinguts, per a les dues séries 1
per a qualsevol lag de temps possible, ens indiquen que no tenim prou evidéncies
com per a rebutjar I’ hipotesi nul 1a3 de que les séries efectivament es poden definir
com a soroll blanc. Es a dir, considerem que les séries del niimero de ciclons anuals
tant per I’ Atlantic com pel Pacific, consisteixen en una successié d’ observacions
aleatories centrades, amb la mateixa variancia i incorrelades dos a dos, que
anomenem soroll blanc, 1 presenten les segiients propietats:

1. E[Z,]=0Vte Z
2. E[ZZ]=0%Vte Z
3. Cov(Zs,Z)=0,Vt #s

També ¢’ estudia la tendéncia lineal d’ aquestes dues séries a partir d’ un model de
regressié lineal simple que intenta explicar el nuimero de ciclons registrats
anualment, variable resposta, a traves del any en el que s’han observat, variable
explicativa, ja que, visualment, la seérie del nimero de ciclons anuals sembla
presentar un tendéncia lineal. Gracies a aquest model podem veure que en el cas
del Atlantic, el pendent lineal resulta significatiu, amb un p-valor de 0.015, el que
ens fa pensar que si que es pot considerar certa linealitat, a més, com que
I’ estimaci6 d aquest pendent és positiva, concretament 0.3, pensarem que el
numero de ciclons anuals del Atlantic presenta una tendéncia lineal creixent, tal
com podiem observar en la seva grafica. En canvi, al realitzar el mateix model per a
la série de ciclons del Pacific, veiem que el pendent no resulta significatiu, amb un
p-valor igual a 0.43, el que ens fa pensar que la série no presenta una clara
tendéncia lineal.

A continuacié, podem observar el grafic de I' ajust de la tendéncia lineal de la séries
del nimero de ciclons anuals a 1' Atlantic,

3 Podem trobar la taula de p-valors obtinguts en cada cas als annexos, apartat Al.
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grafic del numero de ciclons del Atlantic per any
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Time

Grafic 4: Ajust de la tendencia lineal de la série de nimero de ciclons anuals a I' Atlantic

Per ultim, com que en el cas del Atlantic obtenim que presenta una tendéncia
lineal, estadisticament significativa, estudiem la série sense tendéncia, és a dir, els
residus que obtenim sota el model de regressié lineal. En aquest cas, Uinicament
mirarem que siguin incorrelats, mitjancant el test de Box Ljung, 1 obtenim que
efectivament aixi és, per a qualsevol lag de temps. Els resultats es podem veure a

I' annex, apartat A2.

3.2 Estudi de les séries mensuals

Un cop finalitzat I’ analisi de les séries anuals, passem a analitzar les séries
mensuals a traves de la visualitzaci6 del seu grafic temporal, la funci
d’autocorrelacié i1 la d’ autocorrelacié parcial (Grafic 4). Aquests grafics sén un
indici de que aquestes series podrien ser considerades SARIMA* amb periodicitat
12, ja que soén séries mensuals. D’ entrada, el fet de que les séries siguin mensuals
ja ens fa pesar en un procés SARIMA, pero, els grafics d' autocorrelacié i
d' autocorrelacié parcial que observem en sén un indici encara més clar, ja que
presenten 1' estructura tipica d' un procés SARIMA.

4S8idiD sén dos enters no negatius, X, és defineix com un procés SARIMA(p,d,q) x (P,D,Q), amb periodicitat s si,
Y, = (1-B)*(1 - B*)?X, és un procés causal ARMA. A més, Direm que una série estacionaria {Z,,t € Z} és una
série autoregressiva amb mitjana mobil d'ordres p i q respectivament o ARMA(p,q), si compleix una equacio,
Xe =P Xy — = PX y=Z +60,Zy 4+ +64Zi_g on {Z,t € Z} és un soroll blanc i els polinomis @(x) =1 —
@yx — - — O, xP10(x) =1+ +6;x + -+ 6,x7 tenen totes les arrels fora del cercle unitat i no tenen arrels comuns.
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Grafic 5: Série temporal del nimero de ciclons mensuals registrats al Atlantic i al Pacific, grafic de la funcié
d’ autocorrelaci6 i d’ autocorrelacié parcial per a cada série.

Per altra banda podem veure que, la funcié d' autocorrelacié, que decreix molt
lentament, no entra dins de 1' interval de confiancga per a la correlacié igual a zero
fins a un lag de temps molt elevat. Per a evitar aixo, diferenciem una vegada la
série 1inicial, com podem observar als nous grafics d' autocorrelacié 1
d' autocorrelacié parcial als annexos, apartat 3, d' aquesta manera la funci
d' autocorrelacié entra abans a 1' interval de confianca de la correlacié igual a zero.
Al mateix apartat del annexos podem trobar també la série sense estacionalitat,
amb els seus grafics d' autocorrelaci6 1 d' autocorrelacié parcial. Per aquesta rad,
els parametres d i D del procés SARIMA els agafem ser iguals a 1, ja que aquests
indiquen el nimero de vegades que ha estat necessari diferenciar la série inicial.

Tenint aixo clar, passem a estudiar la série del nimero de ciclons mensuals del
Atlantic 1 del Pacific. El procediment habitual per a estudiar aquest tipus de séries
es basa en establir totes les combinacions possibles dels valors p, q, P, 1 Q per a
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valors iguals a 0 0 a 15. Un cop establerts aquests models s’ escull el millor seguint
el criteri del minim AICS 1 es realitza un analisi dels seus residus per a poder
decidir si és un model valid per a aplicar a les nostres dades. Al establir tots els
models possibles, veiem que en el cas de la série del Atlantic, el minim AIC
obtingut s’ observa sota la hipotesis de que la seérie és un procés SARIMA(,1,1) x
(0,1,1);,1 amb molt poca diferéncia per a un SARIMA(1,1,1) x (1,1,1);,, en canvi, per a la
série del Pacific, el millor model sembla ser el que s’ obté per a un procés
SARIMA(0,1,1) x (1,1,1);,.

Finalment, realitzem 1" analisi dels residus per veure si aquests models sén
realment valids per a aplicar-los a les nostres dades” 1 per decidir quin dels dos
models estudiats és millor per a modelar la série del nimero de ciclons de
I’ Atlantic. Recordem que els residus s’obtenen restant a les dades originals les
estimacions obtingudes amb un model determinat, és a dir, suposarem que les
nostres dades segueixen un model determinat amb el que obtindrem unes
estimacions 1, per tant, els residus. Recordem també que els residus es podem
interpretar com una estimacié del valor 1-éssim del soroll blanc que defineix la série
que conformen les nostres dades i1 per tant esperarem que siguin incorrelats,
encara que com es tracta d' una estimacié, en tot cas seran aproximadament
incorrelats. Tot 1 que no és una hipotesi necessaria, estudiarem també la
normalitat del errors obtinguts en cada cas.

Comprovem les nostres hipotesis mitjancant tests estadistics 1, concretament,
podem dir que no sén normals, utilitzant el test de Shapiro-Wilk, obtenint un
p-valor de 0.6-1071° en el cas del Atlantic sota un model SARIMA(1,1,1) x (1,1,1),1
2.5-1071® sota un model SARIMA(1,1,1) x (0,1,1),,, pel que fa al Pacific obtenim un
p-valor igual a 1.8-107°, per altra banda, el que si que podem dir és que sén
incorrelats segons el test de Box Ljung, amb un p-valor de 0.97 per a I’ Atlantic (en
tots dos casos) 1 0.12 per al Pacific®.

Per tant, tenint en compte els resultats anteriors, és a dir, que podem confirmar
I’ hipotesis d’ incorrelaci6 en tots dos casos, 1 ja que no s observem grans
diferéncies entre els dos models seleccionats per a 1 ‘Atlantic, proposem que la série
del numero de ciclons mensuals de I’ Atlantic segueix un procés SARIMA(1,1,1) x
(0,1,1);, mentre que la del Pacific segueix un procés SARIMA(0,1,1) x (1,1,1),,.

Un altre estudi de caire més descriptiu relacionat amb les séries del ntimero de
ciclons mensuals, vol veure si hi ha alguns mesos que presentin un ntimero de
ciclons major que altres. Aixo ho podem veure a traves de la seglient taula resum,

5 Els valors dels parametres d' aquests procés acostumen a ser inferiors a 3, pero és comu utilitzar valors iguals a 1
10 per a realitzar 1' estudi de la serie, tot i que es podrien realitzar totes les combinacions possibles dels valors
entre 01 3.

6 Es pot trobar una taula amb tots els AIC obtinguts als annexos, apartat A4.

7 Es poden trobar alguns grafics relacionats amb 1’ analisi dels residus als annexos, apartat A5 per a I’ Atlantic i
A6 per al Pacific.

8 Kl p-valor del test de Box Ljung es dbéna per a un lag igual a 4 en tots dos casos, pero s' ha comprovat que el
p-valor obtingut no és inferior a 0.05 en lags de fins a 20.
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Taula 2: Numero de ciclons mensuals per als diferents anys registrats a I’ Atlantic i Pacific.

Gracies a la taula anterior podem determinar que els mesos en els que es registren
un major numero de ciclons mensuals normalment sén Agost i Setembre. Aixo té
sentit tenint en compte que els ciclons es formen com a conseqiiéncia de la
evaporacié del aigua i, per tant, sera necessari una temperatura elevada. Aixo ens
fa pensar en un nou analisi descriptiu, introduint la temperatura com a factor per a
explicar el nimero de ciclons obtinguts mensualment.

Per a realitzar-lo el que farem sera observar conjuntament la série mensual de
ciclons, a 1" Atlantic 1 al Pacific, amb la série temporal de les temperatures
mensuals, en graus Centigrads, de la superficie del mar obtingudes als Tropics
(10°N-10°S, 0-360°). Aquesta informacié6 1" obtenim gracies al National
Oceanographic and Atmospheric Administration (NOAA), 1 concretament es podem
obtenir a traves de la segiient pagina,

http://www.cpc.ncep.noaa.gov/data/indices/sstoi.atl.indices

On la variable que ens interessa, la que guarda 1’ informaci6 de la temperatura
mensual als Tropics, és TROP.
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Grafic 6: Série temporal del nimero de ciclons mensuals registrats al Atlantic 1 al Pacific (grafics de sota) i série de
la temperatura mensual als Tropics (a dalt).

En aquests grafics podem observar el que ja sospitavem després de analitzar la
taula 2, que el nimero de ciclons augmenta a conseqiiéncia d’ un augment en la
temperatura. Fixem-nos, concretament, com després de cada pic a la taula de a
dalt, la que ens mostra la temperatura, obtenim un pic a la de sota, la del nimero
de ciclons mensuals.

Aquest analisi es podria aprofundir molt més, donant lloc a un nou treball. En
aquest cas, pero, no és 1' objectiu d' aquest estudi 1 inicament es realitza un analisi
superficial.
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4. Indexs PDI, IEI i OEI

En meteorologia s' utilitzen tres index diferents per a definir I' intensitat dels
ciclons. Aquests es defineixen de la segiient manera,

e Index PDI d' un cicl6 associat a dos instants de temps ty 1 t,

tn
f Vmaxodt,
t

0

on Vpyge, és la velocitat maxima del vent en m/s. A la practica, pero,
aproximarem la integral per la suma discreta lligada a la particid

to Stl S"'Stn,
n

z vmax3(ti+1 - ti)

i=0

e Index IEI d' un ciclé associat a dos instants de temps ty 1 t,

tn ,
3

f Umax Rmax dt'

t

[
on Ryq, és el radi de maxima velocitat del vent en metres. En aquest cas

aproximarem la integral per la suma discreta lligada a la particid

to Stl SStn,
n

z Umax3Rmax2(ti+1 - ti)
i=0
e Index OEI d' un cicl6 originat entre dos instants de temps t, 1 t,

tn
3 2
f Umax Riso dt'
t

0
on Rj;, és el radi de 1' isobar més proper en metres. En aquest cas

aproximarem la integral per la suma discreta lligada a la particid

to Stl SStn,
n

2
Z UmaxBRiso (ti+1 - ti)

i=0

I, per a tots els casos, donat que la base de dades déna les mesures de les variables
dels ciclons cada sis hores, les diferéncies de temps seran sempre de sis hores, el
que equival a 21600 segons.

Com hem fet durant tot el treball, diferenciem segons si els ciclons s' han donat a
I' Atlantic o al Pacific, ja que s' esperen observar diferéncies.
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4.1 Estudi de la relaci6 entre indexs

En primer lloc estudiarem la relaci6 entre aquests indexs mitjangant la seva
matriu de correlacions, grafics de dispersié dos a dos i1 1' estimacié de models de
regressio lineal dos a dos, tal com podem veure a continuacié.

Comencem observant els resultats obtinguts per als indexs del Atlantic. El primer
que es calcula es la matriu de correlacions per als indexs 1 a 1' observar que no
presenten una correlacié molt elevada, es passa a calcular la matriu de correlacions
entre el logaritme dels indexs, ja que es pensa que també podria estar
correlacionat. En aquest ultim cas podem observar com les correlacions augmenten,
el que ens indica clarament que els logaritmes del indexs es troben, d' alguna
manera, correlacionats.

PDI |IEI | OFI Log(PDI) | Log(EI) | Log(OEI)
PDI 1 [0.009] 02 Log(PDI) 1 0.69 0.57
IEI | 0.009 | 1 0.14 LogED) | 0.69 1 0.83
OEI 02 | 0.14 1 Log(OED) | 0.57 0.83 1

Taula 3: Matriu de correlacions entre els indexs del Atlantic i entre els logaritmes dels indexs.

D' aquesta manera també veiem que la relacié6 més forta es troba entre el logaritme
de 1' index IEI i el de 1' index OEI. Per a aprofundir en aquest analisi realitzem,
com hem comentat préviament, diagrames de dispersié dos a dos. Aquests
diagrames els realitzarem directament entre els logaritmes dels indexs ja que és on
s' observa una correlaci6 més elevada (Grafic 7). En aquest grafic ja s' observa
certa tendencia lineal que queda confirmada al aplicar els models de regressi6
simple. Concretament podem dir que el pendent entre el logaritme de I' index IEI 1
I' OEI és de 0.77, per altra banda, el pendent entre el logaritme de 1' index IEI i
el PDI és de 0.93 i finalment, el pendent entre el logaritme de 1' index PDI 11' OEI
és de 0.56, amb un p-valor menor a 2 - 1071¢ en tots els casos.
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Grafic 7: Diagrames de dispersi6 dos a dos entre els logaritmes dels indexs del Atlantic.

Un cop finalitzat 1' analisi per als indexs dels ciclons de I' Atlantic, passem a repetir
el mateix procediment, ara per als indexs dels ciclons del Pacific. Com abans,

comencem calculant les matrius de correlacions, entre els indexs 1 entre els seus

logaritmes.

PDI IEI OEI
PDI 1 0.4 0.02
IEIL 0.4 1 0.12
OEI 0.02 0.12 1

Log(PDI) | Log(EI) | Log(OEI)
Log(PDI) 1 0.74 0.43
Log(IED) 0.74 1 0.83
Log(OED | 0.43 0.83 1

Taula 4: Matriu de correlacions entre els indexs del Pacific i entre els logaritmes dels indexs.

En aquest cas també s' observa una correlacié més elevada entre els logaritmes

dels indexs i, concretament, tornem a obtenir que els logaritmes dels indexs que
estan més correlacionats son els dels indexs OEI i IEIL. Seguint els mateixos passos
que per a 1' analisi dels indexs de 1' Atlantic, ara visualitzarem els diagrames de
dispersi6 dos a dos (Grafic 8), on observem una tendéncia lineal que gracies als
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models de regressié lineal podem quantificar dient que el pendent entre el
logaritme de 1' index IEI 1 1' OEI és de 0.79, per altra banda, el pendent entre el
logaritme de 1' index IEI i1 el PDI és de 0.64 1 finalment, el pendent entre el
logaritme de 1' index PDI i1' OEI és de 0.59, amb un p-valor menor a 2-107¢ en
tots els casos.
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Grafic 8: Diagrames de dispersi6 dos a dos entre els logaritmes dels indexs del Pacific.

Sembla interessant notar que els pendents obtinguts en el cas del Atlantic 1 el
Pacific sén molt semblants, llevat del pendent que es déna entre el logaritme dels
indexs IEI 1 PDI que resulta ser bastant inferior en el cas del Pacific.
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4.2 Estimacid de la funci6é de densitat

Un cop finalitzat aquest petit analisi de relacié entre indexs, el que farem sera
estimar la seva funcié de densitat. Per a fer-ho, utilitzarem la funcié hist() d' R, ja
que una de les seves sortides és la densitat estimada. El que fa aquesta funcid per a
estimar la densitat és, en el cas en el que la diferéncia dels valors en els que mirem
la freqiiéncia de les dades (breaks) sigui en tots els casos igual a 1, estima la funci6
de densitat com la freqiiéncia relativa, és a dir, el recompte d' observacions dins un
cert interval dividit entre el total d' observacions, 1 en general, satisfa la segiient
restriccio,

> Fed b —b) =1

1

On f(x;) fa referencia a 1' estimaci6 de la funcié de densitat per a un determinat
valor 1 b; és el break 1-éssim.

D' aquesta manera per al calcul de la densitat I' inic que haurem de determinar
seran els breaks que utilitzarem. En aquest cas el que farem servir sera un
logarithmic binning de manera que obtenim els diferents breaks multiplicant el
break anterior per una constant, aixi, establim com a primer break un ntumero
inferior al minim observat en el determinat index 1 li multipliquem una certa
constant fins a obtenir un nimero més elevat que el maxim de 1' index?.

Per altra banda, La llei de Poténcies estipula que les freqiiéncies d' una variable
aleatoria decreixen segons augmenta la variable aleatoria, de manera que esperem
que la funcié de densitat sigui definida per la seglient igualtat, sempre que x, en el
nostre cas els indexs, sigui més gran que un determinat valor A positiu,

c
f(x) ~ x_“ 1[A,+00] ’

on ¢ és una constant que queda determinada a partir dels dos parametres, positius,
A1 a que defineixen la llei de poténcies 1 a és el que es coneix com 1' exponent de la
poténcia. Podem veure, a continuacid, un exemple grafic de la llei de poténcies,

Grafic 9: Exemple grafic de la llei de poténcies. A la dreta es troba la cua llarga amb poques observacions per a
cada valor, a I' esquerra podem trobar molts elements en els valors que podem considerar freqiients.

9 Per a poder veure el procediment aplicat a cada cas anar als annexos, apartat A7, on trobem la sintaxis d' R
necessaria.
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Gracies a I' exponent de la poténcia podem veure que,

e Si2>a>1,lesperanca de la variable aleatoria és infinita.

e Si 3>a>2, la variable aleatoria tindra esperanca pero no moment de
segon ordre.

e Sin>a>n-—1,lavariable aleatoria tindra moments finits fins I' orde n-2.

A més, evidentment, al aplicar logaritmes,
ln(f(x)) = InC — alnx
I per tant, en escala logaritmica obtindrem una recta.

Amb aixo clar, és important considerar un logarithmic binning exponencial, ja que
segons la llel de poténcies esperem que la funcié de densitat tingui una forma
exponencial, amb el que aplicant logaritmes, els breaks seran equidistants 1 la

funcié de densitat passara a tenir tendéncia lineal. En aquest cas, la constant que
1
utilitzarem per a obtenir els breaks en cada cas sera 10s.

Aixi, sabent els breaks a aplicar, construim 1' histograma i n' extraiem 1' estimacié
de la densitat. A continuacié podem observar els grafic d' aquesta estimacio,
utilitzant com a valor x, no els breaks, si no els punts centrals entre un break 1 el
seguent.
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Grafic 12: Estimaci6 de la funci6 de densitat per a I' index OEI (aplicant logaritmes).

Com podem observar als grafics anteriors, les primeres observacions no s' adapten
bé a la tendéncia lineal que esperem obtenir sota la llei de potencies, 1 per tant,
aquests primers valors no els tindrem en compte en apartats posteriors,
considerant el valor a partir del qual es pot pensar que els indexs segueixen una
llei de potencies com el parametre A exposat anteriorment.
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4.3 Estimaci6 de 1' exponent de poténcia

En tots els grafics anteriors podem observar com, a partir d' un cert valor,
I' estimacié de la funcié de densitat podria ajustar-se bé a traves d' una recta, el
pendent de la qual és 1' exponent de la poténcia a suposant que la funci6 de
densitat segueix la llei de poténcies, 1 degut a que apliquem logaritmes per tal de
obtenir-la en forma lineal, es veuen les seglients igualtats,

ln(f(x)) = InC — alnx

El que, al realitzar la regressié lineal equival a dir que,

C=eho

a=—p

El seguient pas logic sera, doncs, estimar aquest parametre a per als tres indexs del
Atlantic i del Pacific. Com que es tracta d' estimar un pendent, el que farem sera
utilitzar models de regressié lineal on la variable resposta d' interes sera el
logaritme de la densitat estimada 1 la variable explicativa sera el logaritme dels
punts centrals entre dos determinats breaks, tenint en compte que no introduirem
en aquests models les primeres observacions ja que fan desviar la tendéncia lineal
de les dades. Les estimacions obtingudes es podem trobar en la taula 5. A
continuacié es poden observar els grafics que mostren 1' ajust de la recta estimada
mitjan¢ant la regressié lineal sobre cada una de les funcions de densitat estimades,
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Grafic 13: Ajust de la recta de regressié sobre la funcié de densitat per a I' index PDI (aplicant logaritmes).
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Grafic 14: Ajust de la recta de regressi6 sobre la funcié de densitat per a I' index IEI (aplicant logaritmes).
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Grafic 15: Ajust de la recta de regressi6 sobre la funcié de densitat per a I' index OEI (aplicant logaritmes).

Per a finalitzar aquest subapartat, calcularem intervals de confianca per als
diferents exponents de poténcies. La manera més rapida d' obtenir un interval de
confianca per al parametre a, pendent de les rectes anteriors, donat que hem
utilitzat models de regressi6 lineal, seria utilitzar 1' error estandard estimat del
coeficient By, perod si féssim aixo estariem sota la suposicié de normalitat, cosa que
no és gens evident. Per tant, el que farem, sera utilitzar els métodes de bootstrap
no parameétric per a obtenir els intervals de confianca.

Pero de bootstrap no parameétric n' hi ha més d' un meétode i cabria preguntar-se
quin és el més adequat donades les nostres dades. Exposem-los breument,
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El primer métode es fa servir quan estem fent observacions aleatories en
parelles juntes, és a dir, de la variable resposta 1 de la variable explicativa, a
la vegada. El procediment a seguir per a realitzar aquest metode és,

1. Estimar el model de regressié lineal entre Y 1 X.

2. Seleccionem una mostra aleatoria amb reemplacament de les parelles
formades per les variables resposta 1 explicativa que formen el model
de regressié simple, amb la mateixa grandaria que la mostra inicial.

3. Ajustem un nou model sobre aquestes dues noves variables
simulades.

4. Utilitzem el segiient estadistic, que es coneix com 1' estadistic t, del
meétode boostrap-t, assumint que 1' estimacié inicial del parametre
d' interés és consistent 1 que la distribucié asimptotica d' aquest
estadistic és la Normal estandard,

_m—a

P sdy @'

on el subindex b indica el nimero de mostra aleatoria en el que

t

obtenim 1' estadistic, @, és 1' estimacié del pendent en una mostra
determinada, sd, (&) la seva desviacié estandard i @& 1' estimaci6 del
pendent inicial.

5. Repetim els passos del 2 al 4 tantes vegades com considerem
necessaries tot estimant, cada vegada, el model de regressié lineal.
Finalment obtenim 1' interval de confianca del pendent amb un 95%
de confianca utilitzant els quantils 0.0251 0.975 de 1' estadistic t.

El segon meétode, en canvi, es fa servir quan provem diferents valors per a la
variable explicativa per a determinar la variable resposta d' interes. Els
passos a seguir, en aquest cas, son,

1. Estimar el model de regressié lineal entre Y 1 X.

2. Seleccionem una mostra aleatoria amb reemplacament dels errors
obtinguts pel model de regressié lineal simple anterior, amb la
mateixa grandaria que la mostra inicial.

3. Simulem la variable resposta d' interés com,

Y=0p+FX+e¢
On € equival a I' estimaci6 dels errors obtinguda en el segon pas.

4. Tornem a estimar el model de regressié lineal, utilitzant la variable Y
simulada en el pas anterior.

5. Utilitzem 1' estadistic t, esposat al meétode anterior.

6. Repetim els passos del 2 al 5 tantes vegades com considerem

necessaries per a obtenir I' interval de confianca del pendent amb un
95% de confianca utilitzem els quantils 0.025 1 0.975 de 1' estadistic t.
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El primer métode és menys sensible a assumpcions que el segon, pero en el nostre
cas, és prou clar que les observacions de totes dues variables no s' observen
aleatoriament 1 a la vegada, si no que nosaltres fixem els valors de la variable
explicativa. Com que tots dos métodes tenen les seves avantatges 1 desavantatges
el millor és calcular els intervals de confianca mitjancant tots dos métodes 1
després comparar els resultats!?, que podem observar a la segiient taula,

a Primer métode | Segon métode
PDI Atlantic | 1.43 | (1.68, 1.07) (1.67, 1.21)
PDI Pacific | 1.108 | (1.34, 0.92) (1.28, 0.92)
IEI Atlantic | 1.23 | (1.33, 1.17) (1.29, 1.17)
IEI Pacific 1.32 | (1.50, 1.22) (1.42, 1.22)
ORI Atlantic | 1.327 | (1.41, 1.26) (1.39, 1.25)
ORI Pacific | 1.286 | (1.45, 1.10) (1.45, 1.13)

Taula 5: Estimacié dels exponents de poténcia i els seus intervals de confianga.

Sembla important notar que no s’ aprecien grans diferéncies entre els intervals de
confianca obtinguts pels dos meétodes. Concretament, com que els intervals de
confianca es solapen, no podem dir que hi hagi diferencies estadisticament
significatives entre les estimacions dels diferents exponents de potencia. Aixo ens
indica que, no Unicament no trobem diferéncies rellevants entre ciclons del Atlantic
1 del Pacific, si no que, globalment, I’ estimacié de I’ exponent de poténcies tampoc
mostra diferéncies significatives entre els tres indexs utilitzats.

4.4 Estimacid de la funcié de densitat amb el metode Kernel

El métode Kernel és un métode no parameétric per a estimar la funcié de densitat
d’ una variable aleatoria de la que desconeixem la seva distribucid. I’ estimacié de
la funcié de densitat a traves d’ aquest metode s’ obté a traves del segiient
procediment,

Obtenim x4, X5, ..., X, mostres independents 1 idénticament distribuides d’ una
distribuci6 amb funcié de densitat, f, que estimem com,

1 on K(x—xi)

I 1
fon ®) =X Kn(x —x) = — XL K(=;

On K és el que es coneix com a Kernel, una funcié simetrica pero no
necessariament positiva la integral de la qual és 1, 1 h fa referencia al

bandwitdth!! que no és més que un parametre, positiu, suavitzador.

10 Per a obtenir aquests intervals de confianca s' ha utilitzat un nimero de repeticions igual a 1000.
11 Per a ampliar 1' informacié sobre aquest concepte, es pot consultar la pagina 45 de B.N. Silverman, Density
Estimation for Statistics and Data Analysis. Chapman & Hall, 1992.
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A R trobem una funci6 implementada capag d’ estimar la funcié de densitat d’ una
determinada variable aleatoria mitjancant el metode Kernel. Aquesta funcid
s’ anomena density() 1 sera la que utilitzarem per a obtenir la nova estimacié de la
funci6 de densitat. Concretament, aquesta funcié utilitza el metode Kernel Normal,
que de fet, és el més utilitzat degut a les seves bones propietats matematiques.
Aquest métode consisteix a establir el Kernel d’ un determinat valor utilitzant una
distribuci6 de densitat Normal estandard (¢),

K(x) = ¢(x)

També podem veure que, per defecte, aquesta funcié calcula quin bandwitdth convé
utilitzar com a 0.9 vegades el minim entre la desviacié estandard i el rang
interquartilic dividit entre 1.34 vegades la mida mostral. Es a dir,

. 1Q
O.9(m1n {Sd, m})

Tenint clar aixod, el que farem sera tornar a estimar les funcions de densitat dels
indexs per tal de comparar els resultats amb els que obteniem a la seccié 4.2. A tal
efecte, el més practic és observar els seglients grafics on trobem la funcié de
densitat estimada a través del métode Kernel sobreposada a la funcié de densitat
estimada al apartat 4.2. En aquest cas, pero, utilitzarem la funcié de densitat
sense aplicar logaritmes, ja que en aquest cas, 1' ajust de les dues densitats
s' observa millor, 1, tal com féiem per a obtenir la funcié de densitat inicial,
utilitzem totes les dades, és a dir, també les dades inicials que traiem per a
realitzar 1' estimaci6 de 1' exponent de potencies.
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Grafic 16: Comparacié de la densitat obtinguda amb la funcié Kernel (linia vermella) amb la préviament calculada

per al' index PDI.
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per al' index IEL

OEI Atantic OEl Pacific

1.2e-21
|
1.2e-21
|

8.0e-22
|
8.0e-22
|

Density
Density
=)

4.0e-22
1
40e-22

i

T T T T T T
Oe+00  4e+22  Be+22 0e+00  4de+22 8e+22

0.0e+00
1
(o
0.0e+00
]

OEl OEl
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per al' index OEL
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En aquests grafics podem veure que, tal com esperavem, les dues grafiques de
densitat s' ajusten prou bé un cop passades les primeres dades. Especialment, en el
cas dels indexs PDI 1 OEL

Per altra banda, hem provat altres models de kernel disponibles a la funci6
density(), és a dir, que utilitzen altres distribucions diferents a la Normal, 1 també
altres valors bandwitdth, majors 1 menors al que s' utilitza per defecte. En
qualsevol cas, els grafics que es presenten, amb els parametres per defecte, sén en
els que s' observa un millor ajust de les dues funcions de densitat, en general, per a
tots els indexs.

4.5 Test de bondat d' ajust

En aquest dltim apartat es vol veure si es pot assumir que els indexs amb els que
hem estat treballant segueixen una distribucié de Pareto(6, a), ja que es pot veure
que la seva funcié de densitat és molt similar a la que hem obtingut aplicant la llei
de poténcies. Concretament, la funci6 de densitat d' un distribucié Pareto(8,a) es
defineix de la seglient manera, per a tota x major que el parametre q,

0alx— @+ 1[a,+oo]

I és zero altrament. Mentre que la funcié de densitat que segueixen els nostres
indexs, sota la llei de poténcies, es defineix de la segiient manera, sempre que x
siguil major que un determinat valor A,

Cx_al[A,_l_oo]

I també és zero altrament. D' aquesta manera es veu bastant clarament que el
parametre @ amb el que hem estat treballant fins ara és equivalent a 8 + 1, on 6 és
un dels parametres que defineix la distribuci6é Pareto, 1 el parametre g fa referéncia
al valor a partir del qual la densitat no és nulla, és a dir, traient les primeres
observacions que desviaven la tendéncia de les dades, que utilitzant la notacié de la
lle1 de potencies, anomenem A.

Amb aixo clar, passem a aplicar el test estadistic de bondat d' ajust. El més
habitual és el test de Kolmogorov-Smirnov, perd aquest no es pot fet servir
directament si els parametres que s' utilitzen per a la distribucié sota la que
pensem que es distribueixen les nostres dades no han estat fixats préviament, és a
dir, aquests parametres no poden haver estat estimats de les dades, com és el
nostres cas.

Per tant utilitzarem el test d' Anderson-Darling. Aquest test és analeg al test de
Kolmogorov-Smirnov, pero amb la particularitat que es pot fer servir en el cas de
que els parametres de la distribuci6 s' hagin estimat a partir de les dades. Aquest
test es troba implementat en R, a la funcié gofGENPARtest(), que realitza el test
d' Anderson-Darling de bondat d' ajust mitjancant el meétode de Monte Carlo.
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Concretament, donada un mostra de les dades inicials x;, amb i entre 1 1 m, si
aquestes segueixen una determinada distribucié, FD(x), aquest test es basa en
contrastar 1' hipotesis nulla de que FD(x) = F(x, 6), on F(x, ) és la hipotetica
distribucio 1 els seus parametres son estimats a traves de la mostra x;.

El test d' Anderson-Darling mesura la diferéncia entre la funcié de distribucié
hipotética 1 la funcié de freqiiencies acumulades, que seguint 1' ajuda de la funcié
gofGENPARtest() d' R anomenarem Fm(x), definida com,

Operax<xq,
[
aperaxi S x < Xjy1,

lperax, <x,
on x; és1' element i-éssim de la mostra ordenada en sentit creixent.

L' estadistic que utilitza aquest test és el segiient,

A2 = %Z(Zi —1)/InF(x;,0) + 2m + 1= 2i)/In (1 — F(x;, 0))

=1

Per tant, apliquem aquesta funcié a les nostres dades per a obtenir els p-valors del
test, que podem observar a la taula 6. Cal notar, pero, que és adient, com hem
comentat préviament, treure les dades inicials, que considerem que no segueixen la
llei de poteéncies. Per a trobar el valor a partir del qual es pot considerar que les
dades segueixen la llei de poténcies, utilitzem dos procediments. El primer,
consisteix a agafar el valor a partir del qual considerem que les dades tenen el
comportament donat per la llei de poténcies 1 que s' havia utilitzat a 1' estimacié de
I' exponent per mitja de 1' estimacié del pendent de les rectes de regressié del
logaritme de les funcions de densitat, a aquest valor estimat, I' anomenarem
a;. El segon métode, consisteix a estimar aquests parametre gracies als valors f, i
B; de les mateixes regressions. Per a fer-ho, utilitzem 1' assumpcié de que 1' integral
de la funci6é de densitat de la llei de poténcies ha de ser igual a 1, de manera que
trobem la segiient igualtat,

C=(a—1)a%1?

A més sabem que, al realitzar la regressié entre la variable resposta d' interes, el
logaritme de la densitat estimada, 1 la variable explicativa, el logaritme dels punts
centrals entre dos determinats breaks, es donen les segiients igualtats,

Amb tot aixo clar, podem establir que,




Per tant, apliquem el test de bondat d’ ajust d’ Anderson-Darling, utilitzant el

parametre a estimat pels dos meétodes. Podem trobar els p-valors obtinguts en cada

cas a la segiient taula,

a; Primer métode a, Segon métode
PDI Atlantic 4.641589 108 0.0895 1.747279327 10° 0.1305
PDI Pacific 6.812921 108 0.1325 1.055118972 103 NA
IEI Atlantic 4.641589 107 0 3.030056419 1018 0.001
IEI Pacific 1.467799 1018 0.006 4.862977242 1018 0.0045
OEI Atlantic 1-102%° 0.025 8.954468458 101° 0.03
OEI Pacific 1.467799 102° 0.118 2.266191063 1020 0.0345

Taula 6: P-valors del test d' Anderson-Darling de bondat d' ajust per a una distribucié hipotetica Pareto (6, a).

Aquesta taula ens mostra que, agafant un nivell de confianca de 1' 1%, podem
pensar que els indexs si que segueixen una distribucié de Pareto, ja sigui per al
primer metode, per al segon, o per a tots dos, en tots els casos llevat del cas de
I' index IEI. Notem també, que un dels p-valors apareix com a dada faltant, aixo és
degut a que ' estimacié del parametre a de la distribucié de Pareto en aquest cas
déna un valor massa gran, 1 no hi ha cap valor d' aquest index major a aquest
valor, per tant, aquest p-valor no és calculable.

L' Unic inconvenient que presenta aquest test és que estima els parametres a
traves de les dades, és a dir, no podem especificar que utilitzi les estimacions que
nosaltres hem obtingut. Aixo, no obstant, no té perquée suposar una gran limitacio.
Es coneix que el métode més habitual per a estimar el parametre 6 d' una
distribuci6 de Pareto és a traves del meétode de la maxima versemblanca,
concretament, s' utilitza la segiient estimacio,

~ n

Oy = ——=»
niggL
Yilog

on n és el nimero d' observacions que s' observem. Utilitzant aquesta estimacio,
podem obtenir les estimacions del parametre 6 de la distribucié de Pareto, com
abans, utilitzant dos meétodes per a obtenir el parametre a, 1 aixi, obtenim
I' estimacié del parametre a de la llei de poténcies. Podem observar els resultats a
la segiient taula, on el subindex 1, indica que hem utilitzat el parametre a obtingut
pel primer meétode, 1 el dos indica que hem utilitzat 1' obtingut mitjancant el segon
meétode,
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Ouvi | Buvi | Byyy | Guvo
PDI Atlantic | 0.319 | 1.319 | 0.462 | 1.462
PDI Pacific | 0.377 | 1.377| NA NA

IEI Atlantic | 0.193 | 1.193 | 0.295 | 1.295
IEI Pacific 0.309 | 1.309 | 0.453 | 1.453
OEI Atlantic | 0.331 | 1.331 | 0.321 | 1.321
OEI Pacific | 0.395| 1.395 | 0.442 | 1.442

Taula 7: Estimacions del parametre 8 de la distribuci6é de Pareto, i del parametre a de la llei de poténcies amb el
meétode de la maxima versemblanca.

Gracies a aquesta taula podem veure que les noves estimacions dels parametres de
la llei de poténcies es troben dins dels intervals de confianca de les estimacions
obtingudes préviament, o en qualsevol cas no molt allunyats. Aixo ens indica que si
realitzéssim intervals de confianca per a aquest nou metode d' estimacid, aquests
es solaparien amb els intervals de confianca calculats préviament, 1 per tant, en
qualsevol cas, no podriem dir que existeixen diferéncies estadisticament
significatives entre aquests dos meétodes d' estimacié per al nostre cas.
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5. Conclusions

Gracies a 1' analisi inicial de les séries del nimero de ciclons anuals 1 mensuals de
I' Atlantic 1 el Pacific hem pogut veure que no s' observa una relacié entre el
numero de ciclons que es donen entre un any i el segiient, o 1' anterior, pero, el que
s1 que s' observa és una diferenciacio entre la série del nimero de ciclons anuals de
I' Atlantic 1 el Pacific, ja que el namero de ciclons anuals a 1' Atlantic presenta un
petit pendent creixent, el que ens indica que el nimero de ciclons va augmentant
entre un any 1 el seglient, 1 aixo, en canvi, no s' observa pel que fa al Pacific.

Per altra banda, després de 1' analisi de les séries mensuals del namero de ciclons,
concloem que un model apropiat per a la série del nimero de ciclons de I’ Atlantic
segueix un procés SARIMA(1,1,1) x (0,1,1),,, mentre que per a la del Pacific seria un
procés SARIMA(0,1,1) x (1,1,1)4,.

Un Altre resultat que obtenim gracies a 1' analisi de les series del nimero de
ciclons mensuals, és 1' influéncia de la temperatura, concretament, s' observa un
augment del nimero de ciclons mensuals com a conseqiiéncia d' un augment de la
temperatura en un instant del temps anterior, en aquest cas, doncs, parlem de
mesos, per tant, després de que un determinat mes presenti un augment en la
temperatura, esperarem que el nimero de ciclons que s' observen al mes segiient
augmenti. Cal aclarir que aix0 és un resultat inicament visual, de fet, la relaci6 de
les séries dels numeros de ciclons amb les temperatures és un problema interessant
pero que no s' ha abordat a fons en aquest treball.

Finalment, a traves de I' analisi dels indexs meteorologics PDI, IEI i OEI obtenim
diversos resultats a mencionar. El primer és el fet de que el logaritme d' aquets
indexs es trobin molt correlats. A més, a I' aplicar un histograma amb dues escales
logaritmiques obtenim rectes de les quals estimem el pendent per mitja d' una
regressi6. Aquest comportament és tipic de les lleis de poténcies fent el seu
exponent el pendent de la recta considerada. Hem també utilitzat el métode
Kernel gaussia per a estimar la densitat obtenint resultats molt semblants. Per
altra banda, podem concloure, en practicament tots els casos, que els indexs
provenen d' una distribucié de Pareto, amb parametres estimats directament de les
nostres dades. Per ultim, un dels resultats més interessant d' aquest tema és el fet
de que no trobem diferéncies estadisticament significatives entre les estimacions
dels parametres de la llei de poténcies estimats a partir dels diferents indexs, ni
tampoc entre els indexs de 1' Atlantic 1 el Pacific. Aquest resultat, unit al fet de la
elevada correlacié observada entre el logaritme dels indexs, ens fa pensar que tot i
que son tres indexs diferents, i es construeixen de diferent manera, com que
es fan servir per al mateix, és molt possible que inicament sigui necessari,
a la practica, fer servir un d’'ells, ja que segons els resultats obtinguts, no
s’ esperaria obtenir moltes diferéncies estadisticament rellevants entre ells.
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ANNEXOS

Annex Al:

Lag | Atlantic | Pacific
1 0.6628 | 0.4094
2 0.7592 | 0.4047
3 0.6258 | 0.2313
4 0.7545 | 0.2129
5 0.3995 | 0.2979
6 0.4598 | 0.3884
7 0.5766 | 0.4372
8 0.6395 | 0.5008
9 0.7297 | 0.594

10 | 0.7194 | 0.6734
11 0.495 NA
12 | 0.5104 NA
13 0.412 NA
14 | 0.1949 NA
15 | 0.2232 NA
16 | 0.2516 NA
17 0.242 NA
18 | 0.2671 NA
19 | 0.2039 NA
20 | 0.2417 NA
21 | 0.2917 NA
22 | 0.3198 NA
23 | 0.3672 NA

Taula A1: P-valors obtinguts per al Test Box Ljung per a les séries anuals del Atlantic i Pacific.
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Annex A2:

série anual sense tendéncia

10
I

residus

Time

Grafic Al: Série de nimero de ciclons anual del Atlantic sense tendéncia.

Lag | Atlantic
1 0.3655
2 0.5965
3 0.7762
4 0.2919
5 0.2658
6 0.3746
7 0.4818
8 0.5069
9 0.6078
10 | 0.3836
11 0.2725
12 0.3457
13 0.382
14 | 0.3163
15 | 0.1143
16 | 0.1394
17 | 0.1524
18 | 0.1931
19 | 0.1842
20 | 0.2274
21 0.2708
22 0.3189
23 | 0.3704

Taula A2: P-valors obtinguts per al Test Box Ljung per a les séries anuals del Atlantic sense tendéncia.
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Partial ACF

Annex A3:

grafic del nimero de ciclons del Atlantic per mesos
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Grafic A3: Serie de nimero de ciclons mensual del Atlantic i del Pacific despres d' aplicar I’ operador diferéncia
una vegada.

grafic del nimero de ciclons del Atlantic per mesos
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I
1

2 oA g o+
o i
? -
T T T T T T T T T T T T
0 50 100 150 200 250 2002 2004 2006 2008 2010 2012
Time T,
Funcié de autocorrelacio Funcio6 de autocorrelacié
a4 o
@ ] ©
- o w e
el 4 -
“ i | ] o il ”JT’ e i o ] i e e e e s o
o 13 L L)L L M L v o
[ T T T T T <
0 5 10 15 20 0 2 4 € ] 10
Lag Lag
Funci6 de autocorrelaci6 parcial Funcié de autecorrelacié parcial
" E ] 'll " I.'.'ul'u'|' I.I il “\“II" iz \“\‘ ‘H\‘ S ———.
2 |
= 2 |
t o I
s &

Lag

Grafic A4: Série de numero de ciclons mensual del Atlantic i del Pacific sense estacionalitat.
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Annex A4:

Procés Atlantic | Pacific
(1,11 x(1,1,1);, 377.34
(0,1, x(1,1,1);, | 952.13
(1,100 x(1,1,1);, | 1000.14 | 416.76
(0,1,0)x (1,1,1);, | 1031.09 | 426.23
(1,1,1) x (0,1,1);, 378.43
(1,1,1) x (1,1,0);, | 1024.35 | 386.53
(1,1,1) x (0,1,0);> | 1095.78 | 425.93
(0,1,1) x (0,1,1)4, 954.24 381.83
(0,1,1)x(0,1,0)12 | 1121.42 | 431.8
(0,1,1)x(1,1,0)12 | 1045.81 | 391.28
(1,1,0) x (0,1,1);> | 1000.79 | 418.93
(1,1,00x(0,1,0)12 | 1174.98 | 468.76
(1,1,0) x (1,1,0);, | 1096.87 | 426.65
(0,1,0) x (0,1,1);, | 1030.82 | 427.33
(0,1,00x(1,1,0)12 | 1138.56 | 435.16

Taula A3: AIC obtinguts per als diferents models SARIMA per a les séries mensuals del Atlantic i Pacific.

Annex A5:

1. Resum grafic de 1' analisi dels residus obtinguts aplicant el model SARIMA(1,1,1)
x (1,1,1);, per a la série del Atlantic.

El primer grafic mostra els residus obtinguts, observem que es distribueixen
caoticament al voltant del zero. Aixo es una bona senyal, indica que els errors sén
incorrelats 1 possiblement amb mitjana igual a zero. Observem, també, poca
variabilitat.

Residus obtinguts sota el model (1,1,1)x(1,1,1)12

T T T T T
1990 1995 2000 2005 2010

Time

Grafic A5: Residus obtinguts aplicant el model SARIMA(1,1,1) x (1,1,1),, per a la série del Atlantic.
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Per altra banda, podem visualitzar un histograma i un qgplot per a contrastar
I' hipotesis de normalitat visualment. D' aquesta manera veiem que els residus
presenten un problema de cues, és dir, les probabilitats dels valors allunyats del
centre no corresponen a les que haurien de ser sota la hipotesis de normalitat.

Histogram of res
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Frequency

50

0

res

Normal Q-Q Plot

00 ©

\

Sample Quantiles
0
|

Theoretical Quantiles

Grafic A6: Histograma i un qgplot dels residus obtinguts aplicant el model SARIMA(1,1,1) x (1,1,1)4,
per a la serie del Atlantic.

Finalment, visualitzem el grafic d' autocorrelacié parcial, on veiem que els residus
si tenen la forma d' un soroll blanc.
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Grafic A7: Funcié d’ autocorrelaci6 i d’ autocorrelacié parcial dels residus obtinguts aplicant el model
SARIMA(1,1,1) x (1,1,1),, per a la série del Atlantic.

2. Resum grafic de I' analisi dels residus obtinguts aplicant el model SARIMA(1,1,1)
x (0,1,1);, per a la série del Atlantic.

Seguint el mateix procediment, el primer grafic mostra els residus obtinguts,
observem que també podem pensar que els errors sén incorrelats 1 possiblement
amb mitjana igual a zero 1 amb poca variabilitat.

Residus obtinguts sota el model (1,1,1)x(0,1,1)12

T T T T T
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Time

Grafic A8: Residus obtinguts aplicant el model SARIMA(1,1,1) x (0,1,1),, per a la série del Atlantic.
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Al visualitzar 1' histograma 1 el qgplot, obtenim unes conclusions molt similars a les
de abans.
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Grafic A9: Histograma i qgplot dels residus obtinguts aplicant el model SARIMA(1,1,1) x (1,1,1),,
per a la serie del Atlantic.

Finalment, visualitzem el grafic d' autocorrelacié parcial, on veiem que els residus,
en aquest cas, també tenen la forma d' un soroll blanc.
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Grafic A10: Funcié d’ autocorrelacié6 i d” autocorrelacié parcial dels residus obtinguts aplicant el model
SARIMA(1,1,1) x (1,1,1),, per a la série del Atlantic.
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Annex A6:

Resum grafic de I' analisi dels residus obtinguts aplicant el model SARIMA(0,1,1) x
(1,1,1);, per a la série del Pacific.

El primer grafic mostra els residus obtinguts, en aquest cas també podem dir que
els errors semblen incorrelats, possiblement amb mitjana igual a zero 1 amb poca
variabilitat.

Residus obtinguts sota el model (0,1,1)x(1,1,1)12

T T T T T T
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Time

Grafic A11: Residus obtinguts aplicant el model SARIMA(0,1,1) x (1,1,1),,
per a la seérie del Pacific.

L' histograma 1 el qqplot ens mostren que tornem a tenir, en aquest cas, problemes
de cues.
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Grafic A12: Histograma i qqplot dels residus obtinguts aplicant el model SARIMA(0,1,1) x (1,1,1),,
per a la serie del Pacific.

Finalment, visualitzem el grafic d' autocorrelacié parcial, on veiem que els residus
tornen a tenir la forma d' un soroll blanc.
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Grafic A13: Funcié d’ autocorrelacié i d” autocorrelacié parcial dels residus obtinguts aplicant el model
SARIMA(0,1,1) x (1,1,1),, per a la série del Pacific.
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Annex A7: Sintaxisd R

#Introduim les dades
atle < —sqlQuery(channel = 5,select * from [Hojal$])
names(atlc) < — make.names(names(atlc))

pac < — sqlQuery(channel = 6,select * from[Hojal$])
names(pac) < — make.names(names(pac))

#Unim les dues bases de dades en una sola

localitzacié < —c(rep(1, nrow(atlc)), rep(2, nrow(pac)))
d < —rbind(atlc, pac)

d < —data. frame(d, localitzacid)

#Variables categdriques
#Variable tipus
d$tipus < —factor(d$tipus)

levels(d$tipus) < —list("sistema tropical" =" = ","ona tropical" = "W","perturbacié6 tropical"
= "D","tormenta subtropical" = "S","tormenta extra — tropical"
= "E","residus baixo" ="L")

#Variable localitzacib
d$localitzacié < —factor(d$localitzacio)
levels(d$localitzaci6) < —list("atlantic" = 1,"pacific" = 2)

#Dades faltants

dld == —99] < —NA

dadesfaltants < —NULL

pmv < =100 * apply(is.na(d),2 ,mean)

pmi < =100 * apply(is.na(d),1, mean)

¢ < —subset(pmi,pmi == 0)

pcc < =100 * (length(c)/length(d[,1]))

dadesfaltants$percentatge. de. casos. complets < —pcc
dadesfaltants$percentatge. de. missings.per.variables < —pmv
dadesfaltants$resum. de.missings. per.variables < —summary(pmv)
dadesfaltants$resum. de.missings. per.individus < —summary(pmi)
dadesfaltants

d < —=d[, (pmv < 30)]

#Eliminem les variables que no utilitzarem
d < —d[,c(1:6,9,11,13,26,28)]

#Contruim una serie amb el niimero de ciclons del Atlantic anuals i mensuals
anys < —c(1988:2011)
mesos < —c(1:12)
ciclons.any.atlc < —0
ciclons.mesos. atlc < — cilons.mesos. atlc < —rep(0,12 * 24)
dim(ciclons. mesos. atlc) < —c(24,12)
for(iin 1:length(anys))
{
a < —subset(atlc, any == anys|i])
b < —summary(a$nom)
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ciclons.any. atlc[i] < —sum(as.numeric(b > 0))

for(j in 1: length(mesos))
{
m < —subset(a, mes == mesos|[j])
m2 < —summary(mS$nom)
ciclons.mesos. atlc[i, j] < —sum(as.numeric(m2 > 0))

}

#Contruim una serie amb el nimero de ciclons del Pacific anual i mensual
anys < —c(2001:2011)
mesos < —c(1:12)
ciclons.any.pac < —0
ciclons.mesos.pac < — cilons.mesos.pac < —rep(0,11 * 12)
dim(ciclons.mesos.pac) < —c(11,12)
for(iin 1:length(anys))
{
a < —subset(pac, any == anys|i])
b < —summary(a$nom)
ciclons.any.pac[i] < —sum(as.numeric(b > 0))

for(jin 1:length(mesos))
{
m < —subset(a, mes == mesos|j])
m2 < —summary(m$nom)
ciclons.mesos.pac(i,j] < —sum(as.numeric(m2 > 0))
}
}

par(mfrow = c(2,2))

#El convertim en una série temporal i indiquem que comenci a l'any 1988

(ciclons.any.atlc = ts(ciclons.any.atlc,start = 1988))
plot.ts(ciclons.any.atlc, main = "grafic del numero de ciclons del atlantic per any")
ciclons. mesos. atlc < —as.vector(t(ciclons. mesos. atlc))

#Indiquem que comenci a l'auny 1988 i va per mesos (12 en un any)

(ciclons.mesos.atlc = ts(ciclons.mesos.atlc, start = c(1988,1), frequency = 12))
plot.ts(ciclons.mesos. atlc, main = "grafic del numero de ciclons del atlantic per mesos")

#EI convertim en una série temporal i indiquem que comenci a l'any 1988

(ciclons.any.pac = ts(ciclons.any.pac,start = 2001))
plot.ts(ciclons.any.pac, main = "grafic del numero de ciclons del pacific per any")
ciclons. mesos.pac < —as.vector(t(ciclons.mesos.pac))

#Indiquem que comenci a l'auny 1988 i va per mesos (12 en un any)

(ciclons.mesos.pac = ts(ciclons.mesos.pac,start = c(2001,1), frequency = 12))
plot.ts(ciclons.mesos.pac, main = "grafic del numero de ciclons del pacific per mesos")
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par(mfrow = c(3,1))

plot. ts(ciclons. any. atlc, main = "grafic del numero de ciclons del atlantic per any")

#estimacions de les funcions ACF i PACF de la serie

f.autocorm < —acf (ciclons. any. atlc,type = "correlation”,plot = FALSE, lag. max
= (length(ciclons.any. atlc) — 1)); f.autocorm

f.autocor.parm < —pacf (ciclons. any. atlc,type = "correlation",plot = FALSE, lag. max
= (length(ciclons.any. atlc) — 1)); f.autocor.parm

plot(f.autocorm, main = "Funci6 de autocorrelaci6")

plot(f.autocor.parm, main = "Funcié de autocorrelacié parcial™)

par(mfrow = c(3,1))
plot. ts(ciclons.mesos. atlc, main = "grafic del numero de ciclons del atlantic per mesos")

f.autocorm < —acf (ciclons. mesos. atlc,type = "correlation”,plot = FALSE, lag. max
= (length(ciclons.mesos. atlc) — 1)); f.autocorm

f.autocor.parm < —pacf (ciclons. mesos. atlc,type = "correlation”,plot = FALSE, lag. max
= (length(ciclons.mesos. atlc) — 1)); f.autocor.parm

plot(f.autocorm, main = "Funci6 de autocorrelaci6o")

plot(f.autocor.parm, main = "Funci6 de autocorrelaci6 parcial")

par(mfrow = c(3,1))

(ciclons.any.pac = ts(ciclons.any.pac,start = 2001))

plot. ts(ciclons. any.pac, main = "grafic del numero de ciclons del pacific per any")

f.autocorm < —acf (ciclons. any.pac, type = "correlation",plot = FALSE, lag. max
= (length(ciclons.any.pac) — 1)); f.autocorm

f.autocor.parm < —pacf (ciclons. any.pac, type = "correlation",plot = FALSE, lag. max
= (length(ciclons.any.pac) — 1)); f. autocor.parm

plot(f.autocorm, main = "Funcié de autocorrelacio™)

plot(f.autocor.parm, main = "Funci6 de autocorrelaci6 parcial™)

par(mfrow = c(3,1))

plot. ts(ciclons. mesos.pac, main = "grafic del numero de ciclons del pacific per mesos")

f.autocorm < —acf (ciclons. mesos. pac, type = "correlation",plot = FALSE,lag. max
= (length(ciclons.mesos.pac) — 1)); f.autocorm

f.autocor.parm < —pacf (ciclons. mesos. pac, type = "correlation", plot = FALSE,lag. max
= (length(ciclons.mesos.pac) — 1)); f.autocor.parm

plot(f.autocorm, main = "Funcié de autocorrelacio™)

plot(f.autocor.parm, main = "Funci6 de autocorrelaci6 parcial™)

#Es poden considerar las séries dels anys soroll blanc?
library(stats)

Box.test(ciclons.any.atlc,lag = 1,type = c("Ljung"))
Box.test(ciclons.any.pac,lag = 1,type = c("Ljung"))

#0bservem tendencia lineal?

tlaa < —data. frame(ciclons.any. atlc,c(1988:2011))
names(tlaa) < —c("num","any")

mtlaa < —lm(num~any,data = tlaa)

summary(mtlaa)
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#Grafic d' ajust de la tendéncia lineal
plot. ts(ciclons. any. atlc, main = "grafic del nimero de ciclons del Atlantic per any")
lines(tlaa$any, mtiaa$fitted. values, col ="red")

#Treiem la tendeéncia lineal per la série del Atlantic

plot. ts(mtlaa$residuals, main = "série anual sense tendéncia", ylab = "residus")
Box.test(mtlaa$residuals,lag = 1,type = c("Ljung"))

tlap < —data. frame(ciclons.any.pac,c(2001:2011))

names(tlap) < —c("num","any")

mtlap < —lm(num~any, data = tlap)

summary(mtlap)

#Apliquem l'operador diferéncia un cop a les séries mensuals
par(mfrow = ¢(3,1))
n < —length(ciclons.mesos. atlc)
da < —(ciclons.mesos. atlc[2:n] — ciclons.mesos.atlc[1: (n — 1)])
da = ts(da,start = c(1989,1), frequency = 12)
plot.ts(da, main = "grafic del nimero de ciclons del atlantic per mesos")
f.autocorm < —acf(da, type = "correlation",plot = FALSE, lag. max
= (length(ciclons.mesos. atlc) — 1)); f.autocorm
f.autocor.parm < —pacf (da,type = "correlation",plot = FALSE, lag. max
= (length(ciclons.mesos. atlc) — 1)); f.autocor.parm
plot(f.autocorm, main = "Funcié de autocorrelacio™)
plot(f.autocor.parm, main = "Funci6 de autocorrelaci6 parcial")

par(mfrow = c(3,1))
n < —length(ciclons. mesos.pac)
dp < —(ciclons.mesos. pac|[2:n] — ciclons.mesos.pac[1: (n — 1)])
dp = ts(dp, start = c(2002,1), frequency = 12)
plot.ts(dp, main = "grafic del numero de ciclons del pacific per mesos")
f.autocorm < —acf (dp, type = "correlation",plot = FALSE, lag. max
= (length(ciclons.mesos.pac) — 1)); f.autocorm
f.autocor.parm < —pacf (dp, type = "correlation",plot = FALSE,lag. max
= (length(ciclons.mesos.pac) — 1)); f.autocor.parm
plot(f.autocorm, main = "Funcié de autocorrelacio™)
plot(f.autocor.parm, main = "Funci6 de autocorrelaci6 parcial")

#Ciclons mesos sense estacionalitat
par(mfrow = c(3,1))
n < —length(ciclons.mesos. atlc)
dda < —(da[13:n] —da[l:(n—12)])
plot.ts(dda, main = "grafic del numero de ciclons del Atlantic per mesos")
f.autocorm < —acf(da, type = "correlation",plot = FALSE, lag. max
= (length(ciclons.mesos. atlc) — 1)); f.autocorm
f.autocor.parm < —pacf (da,type = "correlation",plot = FALSE,lag. max
= (length(ciclons.mesos. atlc) — 1)); f.autocor.parm
plot(f.autocorm, main = "Funci6 de autocorrelacio™)
plot(f.autocor.parm, main = "Funci6 de autocorrelaci6 parcial™)
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par(mfrow = c(3,1))
n < —length(ciclons.mesos.pac)
ddp < —(dp[13:n] —dp[1: (n — 12)])
plot. ts(dp, main = "grafic del numero de ciclons del Pacific per mesos")
f.autocorm < —acf (dp, type = "correlation",plot = FALSE, lag. max
= (length(ciclons.mesos.pac) — 1)); f.autocorm
f.autocor.parm < —pacf (dp, type = "correlation",plot = FALSE,lag. max
= (length(ciclons.mesos.pac) — 1)); f.autocor.parm
plot(f.autocorm, main = "Funci6 de autocorrelaci6")
plot(f.autocor.parm, main = "Funcié de autocorrelacié parcial™)

#Estudi de les séries mensuals

#Atlantic

fit < =list()

fit[[1]] < —arima(ciclons.mesos.atlc,order = c(1,1,1), seasonal = list(order
=c¢(1,1,1),period = 12))

fit[[2]] < —arima(ciclons.mesos.atlc,order = ¢(0,1,1), seasonal = list(order
=c(1,1,1),period = 12))

fit[[3]] < —arima(ciclons.mesos.atlc,order = c(1,1,0), seasonal = list(order
=c(1,1,1),period = 12))

fit[[4]] < —arima(ciclons.mesos.atlc,order = ¢(0,1,0), seasonal = list(order
=c(1,1,1),period = 12))

fit[[5]] < —arima(ciclons.mesos.atlc,order = c(1,1,1), seasonal = list(order
=¢(0,1,1),period = 12))

fit[[6]] < —arima(ciclons.mesos.atlc,order = c(1,1,1), seasonal = list(order
=c(1,1,0),period = 12))

fit[[7]] < —arima(ciclons.mesos.atlc,order = c(1,1,1), seasonal = list(order
= ¢(0,1, 0),period = 12))

fit[[8]] < —arima(ciclons.mesos.atlc,order = c(0,1,1), seasonal = list(order
=¢(0,1,1),period = 12))

fit[[9]] < —arima(ciclons.mesos.atlc,order = c(0,1,1), seasonal = list(order
= ¢(0,1,0),period = 12))

fit[[10]] < —arima(ciclons.mesos.atlc,order = c(0,1,1), seasonal = list(order
=c(1,1,0),period = 12))

fit[[11]] < —arima(ciclons.mesos.atlc,order = c(1,1,0), seasonal = list(order
=¢(0,1,1),period = 12))

fit[[12]] < —arima(ciclons.mesos.atlc,order = c(1,1,0), seasonal = list(order
= ¢(0,1,0),period = 12))

fit[[13]] < —arima(ciclons.mesos.atlc, order = c(1,1,0), seasonal = list(order
=c(1,1,0),period = 12))

fit[[14]] < —arima(ciclons.mesos.atlc,order = c(0,1,0), seasonal = list(order
=¢(0,1,1),period = 12))

fit[[15]] < —arima(ciclons.mesos.atlc,order = c(0,1,0), seasonal = list(order
=c(1,1,0),period = 12))

#Analisi dels residus

#Residus

res < —residuals(fit[[1]])

plot(res,main = "Residus obtinguts sota el model (1,1,1)x(1,1,1)12")
par(mfrow = c(2,1))

hist(res)

qqnorm(res); qqline(res)
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shapiro.test(res)

f.autocor.res < —acf (res,type = "correlation"); f.autocor.res
f.autocor.par.res < —pacf (res, type = "correlation"); f. autocor. par.res
par(mfrow = c(2,1))

plot(f.autocor.res,main = "Funci6 de autocorrelacié")
plot(f.autocor.par.res, main = "Funci6 de autocorrelacié parcial™)
library(stats)

Box.test(res,lag = 4,type = c("Ljung"))

tsdiag (fit[[1]],gof-lag = 20)

res < —residuals(fit[[5]])

plot(res,main = "Residus obtinguts sota el model (1,1,1)x(0,1,1)12")
par(mfrow = c(2,1))

hist(res)

gqnorm(res); qqline(res)

shapiro.test(res)

f.autocor.res < —acf (res,type = "correlation"); f.autocor.res
f.autocor.par.res < —pacf (res, type = "correlation"); f.autocor.par.res
par(mfrow = c(2,1))

plot(f.autocor.res, main = "Funci6 de autocorrelacié")
plot(f.autocor.par.res, main = "Funci6 de autocorrelacié parcial™)
library(stats)

Box.test(res, lag = 4,type = c("Ljung"))

tsdiag (fit[[5]],gof.lag = 20)

#Pacific

fit < =list()

fit[[1]] < —arima(ciclons.mesos.pac, order
=c¢(1,1,1),period = 12))

fit[[2]] < —arima(ciclons.mesos.pac, order
=c(1,1,1),period = 12))

fit[[3]] < —arima(ciclons.mesos.pac, order
=c(1,1,1),period = 12))

fit[[4]] < —arima(ciclons.mesos.pac, order
=c(1,1,1),period = 12))

fit[[5]] < —arima(ciclons.mesos.pac, order
=¢(0,1,1),period = 12))

fit[[6]] < —arima(ciclons.mesos.pac, order
=c(1,1,0),period = 12))

fit[[7]] < —arima(ciclons.mesos.pac, order
= ¢(0,1,0),period = 12))

fit[[8]] < —arima(ciclons.mesos.pac, order
=¢(0,1,1),period = 12))

fit[[9]] < —arima(ciclons.mesos.pac, order
= ¢(0,1,0),period = 12))

fit[[10]] < —arima(ciclons.mesos.pac, order = c(0,1,1), seasonal = list(order
=c(1,1,0),period = 12))

fit[[11]] < —arima(ciclons.mesos.pac, order = c(1,1,0), seasonal = list(order
=¢(0,1,1),period = 12))

fit[[12]] < —arima(ciclons.mesos.pac, order = c(1,1,0), seasonal = list(order
= ¢(0,1,0),period = 12))

c(1,1,1),seasonal = list(order

¢(0,1,1),seasonal = list(order

¢(1,1,0),seasonal = list(order

¢(0,1,0), seasonal = list(order

c(1,1,1),seasonal = list(order

c(1,1,1),seasonal = list(order

c(1,1,1),seasonal = list(order

c(0,1,1),seasonal = list(order

¢(0,1,1),seasonal = list(order
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fit[[13]] < —arima(ciclons.mesos.pac, order = c(1,1,0), seasonal = list(order
=¢(1,1,0),period = 12))

fit[[14]] < —arima(ciclons.mesos.pac, order = c(0,1,0), seasonal = list(order
=¢(0,1,1),period = 12))

fit[[15]] < —arima(ciclons.mesos.pac, order = c(0,1,0), seasonal = list(order
=¢(1,1,0),period = 12))

res < —residuals(fit[[2]])

plot(res,main = "Residus obtinguts sota el model (0,1,1)x(1,1,1)12")
par(mfrow = c(2,1))

hist(res)

gqnorm(res); qqline(res)

shapiro.test(res)

f.autocor.res < —acf (res,type = "correlation"); f.autocor.res
f.autocor.par.res < —pacf (res, type = "correlation"); f.autocor.par.res
par(mfrow = c(2,1))

plot(f.autocor.res, main = "Funcié de autocorrelaci6")
plot(f.autocor.par.res, main = "Funci6 de autocorrelacié parcial™)
library(stats)

Box.test(res, lag = 4,type = c("Ljung"))

tsdiag(fit[[1]],gof.lag = 20)

#Analisi de les temperatures amb les séries mensuals de ciclons
T < —-T[,c(1,2,7)]

names(T) < —c("any","mes","temp")
par(mfrow = c(2,2))

TA < —subset(T,T$any > 1987)

TA < —subset(TA,TA$any < 2012)
TAS$serie < —as.vector(ciclons. mesos. atlc)
plot.ts(TA[, c(3,4)], main = "Atlantic")

TP < —subset(T,T$any > 2000)

TP < —subset(TP,TP$any < 2012)
TP$serie < —as. vector(ciclons. mesos. pac)
plot.ts(TPJ, c(3,4)], main = "Pacific")

#Imputaci6 de la base de dades
#Separar els diferents ciclons

ciclo < —split(d, d$nom)

#Eliminar els ciclons amb molts NAs
nuevo < —NULL

c<—0
for(iin 1:length(ciclo))
{

pmv < =100 * apply(is.na(ciclo[[i]]),2 ,mean)
if (sum(pmv < 30) == length(pmv))
{fc<=c+1
nuevo[[c]] < —ciclo[[{]]
}
}

ciclo < —nuevo
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#Imputacio

library(zoo)

for(iin 1:length(ciclo))

{
a < —as.data. frame(ciclo[[i]])
pmv < =100 * apply(is.na(a),2 ,mean)
for(j in 1:ncol(a))

{
if (pmv[j] > 0)
{
ciclo[[i]][,j] < —na.spline(al,j])
}
}

}

#Exemple de imputacid

par(mfrow = c(2,1))

plot(ciclo[[2]][,11], type = "b", col = "red", main = "radi velocitat maxima del vent")
lines(ciclo[[2]][,11], type = "b")

plot(ciclo[[2]][,13], type = "b", col = "red", main = "radi isobar més proper")
lines(ciclo[[2]][,13], type = "b")

v< -0
for(iin1:length(ciclo))
{
v[i] < —sum(as.numeric(is.na(ciclo[[i]][,13])))
}

#Tornem a recuperar la base de dades
a < —rbind(as.data. frame(ciclo[[1]]), as. data. frame(ciclo[[2]]))
for(iin 3:length(ciclo))
{
a < —rbind(a, as.data. frame(ciclo[[i]]))
}
d<-—a
pmv < =100 * apply(is.na(d),2 ,mean) #Comprovem que no hi ha NAs

#Indexs

#Arreglem les unitats de les variables

d[,7] < —d[,7] * 0.514444 #1knot = 0.514444m/s
d[,8] < —d[,8] * 1852 #1milla nautica = 1852 m
d[,9] < —d[,9] * 1852 #1milla nautica = 1852 m

#Creemels indexs

pdi < —6 %3600 * (d[,7])"3

iei < —6+3600 = ((d[,7D"3) = ((d[,8])"2)
oei < —6*3600 * ((d[,7D"3) * ((d[,.9D"2)

d < —data. frame(d, pdi, iei, oei)

i< —d[,c(1,12:14)]

pdi < —aggregate(pdi ~ ID,data = i,sum)
iei < —aggregate(iei ~ ID,data = i,sum)
oei < —aggregate(oei ~ ID,data = i,sum)

~ 49 ~



i < —data. frame(pdi, iei[,2], oei[,2])

names(i) < —c("ID","pdi", "iei"," oei")

#Diferenciem entre Atlantic i Pacific

atlc < —subset(d, localitzacié == "atlantic")
pac < —subset(d, localitzacié == "pacific")
#Atlantic

pdi < —aggregate(pdi ~ ID,data = atlc, sum)
iei < —aggregate(iei ~ ID,data = atlc, sum)
oei < —aggregate(oei ~ ID,data = atlc, sum)
ia < —data. frame(pdi, iei[,2],0eil[,2])

names(ia) < —c("ID","pdi","iei","oei"

#Pacific

pdi < —aggregate(pdi ~ ID,data = pac,sum)

iei < —aggregate(iei ~ ID,data = pac,sum)

oei < —aggregate(oei ~ ID,data = pac,sum)

ip < —data. frame(pdi, iei[,2], oei[,2])

names(ip) < —c("ID","pdi", "iei", "oei"

#Estudiem la relacié entre els indexs

#Atlantic

cor(ia[,c("iei","oei","pdi")],use = "complete. obs")
cor(log(ia[,c("iei","oei","pdi")]), use = "complete. obs")
summary(Im(log(ia$iei)~log(ia$oei)))

summary(Im(log (ia$iei)~log(ia$pdi)))

summary(Im(log (ia$pdi)~log(ia$oei)))

par(mfrow = c(2,2))

plot(log (ia$iei), log (ia$oei), xlab = "log(IEI)", ylab = "log(OEI)")
plot(log (ia$iei), log (ia$pdi), xlab = "log(IEI)", ylab = "log(PDI)")
plot(log (ia$pdi), log (ia$oei), xlab = "log(PDI)",ylab = "log(OEI)")

cor(ip[, c("iei", "oei","pdi")], use = "complete. obs")

cor(log(ip[,c("iei","oei","pdi")]), use = "complete.obs")

#Pacific

summary(Im(log(ip$iei)~log(ip$oei)))

summary(Im(log (ip$iei)~log(ip$pdi)))

summary(Im(log (ip$pdi)~log(ip$oei)))

par(mfrow = c(2,2))

plot(log(ip$iei), log (ipSoei), xlab = "log(IEI)", ylab = "log(OE)")
plot(log (ip$iei), log (ip$pdi), xlab = "log(IEI)", ylab = "log(PDI)")
plot(log (ip$pdi), log (ip$oei), xlab = "log(PDI)",ylab = "log(OED)")

#Contruim els grafics de densitat
b<—le+8
for(iin1:32)
{
b[i + 1] < —b[i] * (10)"(1/6)
}
h < —hist(ia$pdi, breaks = b)
¢ < —h$counts
d < —h$density

~50~



b < —b[—length(b)]

m < —h$mids

g < —data. frame(d, c, b,m)

gal < —subset(g,g$d > 0)

plot(gal$m, gal$d,type = "b", log = "xy",main = "Atlantic",xlab = "PDI", ylab = "Densitat")

b<—-1le+8
for(iin1:25)
{

b[i + 1] < —b[i] * (10)"(1/6)
}
h < —hist(ip$pdi, breaks = b)
¢ < —hS$counts
d < —h$density
b < —b[—length(b)]
m < —h$mids
g < —data. frame(d, c,b,m)
gpl < —subset(g,g$d > 0)
plot(gp1$m, gp1$d,type ="b", log = "xy",main = "Pacific",xlab = "PDI", ylab = "Densitat")

b<—-1le+17
for(iin1:55)
{
b[i + 1] < —bJ[i] * (10)"(1/6)
}
h < —hist(ia$iei, breaks = b)
¢ < —h$counts
d < —h$density
b < —b[—(length(b) — 1)]
m < —h$mids
g < —data. frame(d, c, b, m)
ga2 < —subset(g,g$d > 0)
plot(ga2$m, ga2$d,type = b,log = xy, main = Atlantic, xlab = IEI, ylab = Densitat) < —le + 17

for(iin1:49)
{
b[i + 1] < —b[i] * (10)"(1/6)
}
h < —hist(ip$iei, breaks = b)
¢ < —h$counts
d < —h$density
b < —b[—length(b)]
m < —h$mids
g < —data. frame(d, c, b, m)
gp2 < —subset(g,g$d > 0)
plot(gp2$m, gp2%d, type = "b",log = "xy",main = "Pacific",xlab = "IEI",ylab = "Densitat")

b<—-1le+19
for(iin1:37)
{
b[i + 1] < —b[i] * (10)"(1/6)
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}

h < —hist(ia$oei, breaks = b)

¢ < —h$counts

d < —h$density

b < —b[—1]

m < —h$mids

g < —data. frame(d, c, b,m)

ga3 < —subset(g,g$d > 0)

plot(ga3$m, ga3$d, type = "b",log = "xy",main = "Atlantic",xlab = "OEI",ylab = "Densitat")

b<—-1le+19
for(iin1:35)
{

b[i + 1] < —b[i] * (10)"(1/6)
}
h < —hist(ip$oei, breaks = b)
¢ < —h$counts
d < —h$density
b < —b[—1]
m < —h$mids
g < —data. frame(d, c,b,m)
gp3 < —subset(g,g$d > 0)
plot(gp3$m, gp3%d,type ="b", log = "xy",main = "Pacific",xlab = "OEI",ylab = "Densitat")

par(mfrow = c(1,2))

plot(gal$m, gal$d, type = "b", log = "xy", main = "Atlantic",xlab = "PDI", ylab = "Densitat")
plot(gp1$m, gp1$d,type ="b", log = "xy",main = "Pacific",xlab = "PDI", ylab = "Densitat")
plot(ga2$m, ga2$d,type = "b", log = "xy",main = "Atlantic",xlab = "IEI",ylab = "Densitat")
plot(gp2$m, gp2%d,type ="b", log = "xy",main = "Pacific",xlab = "IEI",ylab = "Densitat")
plot(ga3$m, ga3$d, type = "b", log = "xy", main = "Atlantic",xlab = "OEI",ylab = "Densitat")
plot(gp3$m, gp3%d, type ="b",log = "xy",main = "Pacific",xlab = "OEI",ylab = "Densitat")

#Calcul del pendent

par(mfrow = c(1,2))

apdia < —Ilm(log(d) ~ log(m), data = gal[—c(1:4),])

plot(log(gal$d) ~ log(gal$m),type = "b" ,main = "Atlantic",xlab = "PDI",ylab = "Densitat")
lines(log(gal[—c(1:4),]$m), apdia$fitted. values, col = "red")

apdip < —lm(log(d) ~ log(m), data = gp1[—c(1:5),])

plot(log(gp1$d) ~ log(gp1$m),type = "b" ,main = "Pacific",xlab = "PDI",ylab = "Densitat")
lines(log(gp1[—c(1:5),]$m), apdip$fitted. values, col = "red")

aieia < —lm(log(d) ~ log(m),data = ga2[—c(1:4),])

plot(log(ga2$d) ~ log(ga2$m), type = "b", main = "Atlantic",xlab = "IEI", ylab = "Densitat")
lines(log(ga2[—c(1:4),]$m), aieia$fitted. values, col = "red")

aieip < —lm(log(d) ~ log(m), data = gp2[—c(1:7),])

plot(log(gp2$d) ~ log(gp2$m), type = "b" ,main = "Pacific",xlab = "IEI", ylab = "Densitat")
lines(log(gp2[—c(1:7),]1$m), aieip$fitted. values, col = "red")

aoeia < —lm(log(d) ~ log(m),data = ga3[—c(1:5),])

plot(log(ga3$d) ~ log(ga3$m),type = "b" ,main = "Atlantic",xlab = "OEI", ylab = "Densitat")
lines(log(ga3[—c(1:5),]$m), aceia$fitted. values, col = "red")

aoeip < —lm(log(d) ~ log(m), data = gp3[—c(1:6),])

plot(log(gp3%$d) ~ log(gp3$m), type = "b" ,main = "Pacific",xlab = "OEI", ylab = "Densitat")
lines(log(gp3[—c(1:6),]$m), aceip$fitted. values, col = "red")
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#Calcul de l'interval de confianga del pendent
#Bootstrap parelles
n < —length(gal[—c(1:4),1])
data < —cbind(log(gal[—c(1:4),4]),log(gal[—c(1:4),1]))
theta < —summary(lm(data[,2]~data[,1]))$coef ficients[2]
sdtheta < —summary(lm(data[,2]~data[,1]))$coef ficients[4]
nb < —1000; z < —seq(1,n); th < —numeric(nb)
thetab < —numeric(nb)
for(iin 1:nb)
{
zb < —sample(z,n,replace =T)
ajustb < — lm(data|zb, 2]~ data[zb, 1])
thetab[i] < —summary(ajustb)$coef ficients[2]
sdthetab < —summary(ajustb)$coef ficients[4]
th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(gp1[—c(1:5),4])
data < —cbind(log(gp1[—c(1:5),4]),log(gp1[—c(1:5),1]))
theta < —summary(lm(data[,2]~data[,1]))$coef ficients[2]
sdtheta < —summary(lm(data[,2]~data[,1]))$coef ficients[4]
nb < —1000; z < —seq(1,n); tb < —numeric(nb)
thetab < —numeric(nb)
for(iin 1:nb)
{
zb < —sample(z,n,replace =T)
ajustb < — lm(data|zb, 2]~ data[zb, 1])
thetab[i] < —summary(ajustb)$coefficients[2]
sdthetab < —summary(ajustb)$coef ficients[4]
th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(ga2[—c(1:4),1])
data < —cbind(log(ga2[—c(1:4),4]),log(ga2[—c(1:4),1]))
theta < —summary(lm(data[,2]~data[,1]))$coef ficients[2]
sdtheta < —summary(lm(data[,2]~data[,1]))$coef ficients[4]
nb < —1000; z < —seq(1,n); tb < —numeric(nb)
thetab < —numeric(nb)
for(iin1:nb)
{
zb < —sample(z,n,replace =T)

ajustb < — Ilm(data|zb, 2]~ data[zb, 1])

thetab[i] < —summary(ajustb)$coef ficients[2]

sdthetab < —summary(ajustb)S$coef ficients[4]

th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))
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n < —length(gp2[—c(1:7),1])
data < —cbind(log(gp2[—c(1: 7),4]),log(gp2[—c(1:7),1]))
theta < —summary(lm(data[,2]~data[,1]))$coef ficients[2]
sdtheta < —summary(lm(data[,2]~data[,1]))$coef ficients[4]
nb < —=1000; z < —seq(1,n); th < —numeric(nb)
thetab < —numeric(nb)
for(iin 1:nb)
{
zb < —sample(z,n,replace =T)

ajustb < — Im(data[zb, 2]~ data[zb, 1])

thetab[i] < —summary(ajustb)$coef ficients[2]

sdthetab < —summary(ajustb)$coef ficients[4]

th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(ga3[—c(1:5),1])
data < —cbind(log(ga3[—c(1:5),4]),log(ga3[—c(1:5),1]))
theta < —summary(lm(data[,2]~data[,1]))$coef ficients[2]
sdtheta < —summary(lm(data[,2]~data[,1]))$coef ficients[4]
nb < —1000; z < —seq(1,n); tb < —numeric(nb)
thetab < —numeric(nb)
for(iin1:nb)
{
zb < —sample(z,n,replace =T)
ajustb < — lm(data|zb, 2]~ data[zb, 1])
thetab[i] < —summary(ajustb)$coefficients[2]
sdthetab < —summary(ajustb)$coef ficients[4]
tb[i] < —(thetabl[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(gp3[—c(1:6),1])
data < —cbind(log(gp3[—c(1:6),4]),log(gp3[—c(1:6),1]))
theta < —summary(lm(data[,2]~data[,1]))$coef ficients[2]
sdtheta < —summary(lm(data[,2]~data[,1]))$coef ficients[4]
nb < —1000; z < —seq(1,n); tb < —numeric(nb)
thetab < —mumeric(nb)
for(iin 1:nb)
{
zb < —sample(z,n,replace =T)
ajustb < — Ilm(data|zb, 2]~ data[zb, 1])
thetab[i] < —summary(ajustb)$coef ficients[2]
sdthetab < —summary(ajustb)S$coef ficients[4]
th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))
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#Bootstrap residus
n < —length(gal[—c(1:4),1])
data < —cbind(log(gal[—c(1:4),4]),log(gal[—c(1:4),1]))
a < =lm(data[,2]~datal[,1]);
res < —residuals(a)
theta < —summary(a)$coefficients[2]
sdtheta < —summary(a)$coef ficients[4]
nb < —1000; tb < —numeric(nb)
thetab < —numeric(nb)
for(iin 1:nb)
{
zb < —sample(res,n,replace = T)
yb < —a$coef ficient[1] + a$coef ficient[2] * data[,1] + zb
ajustb < —lm(yb ~ datal,1])
thetab[i] < —summary(ajustb)$coef ficients[2]
sdthetab < —summary(ajustb)S$coef ficients[4]
th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(gpl[—c(1:5),1])
data < —cbind(log(gpl[—c(1:5),4]),log(gp1[—c(1:5),1]))
a < —lm(datal,2]~data[,1]);
res < —residuals(a)
theta < —summary(a)$coef ficients|[2]
sdtheta < —summary(a)$coef ficients[4]
nb < —1000; tb < —numeric(nb)
thetab < —mumeric(nb)
for(iin 1:nb)
{
zb < —sample(res,n,replace = T)
yb < —a$coefficient[1] + a$coef ficient[2] * data[,1] + zb
ajustb < — lm(yb ~ datal[,1])
thetab[i] < —summary(ajustb)$coef ficients[2]
sdthetab < —summary(ajustb)S$coef ficients[4]
th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(ga2[—c(1:4),1])

data < —cbind(log(ga2[—c(1:4),4]),log(ga2[—c(1:4),1]))
a < —lm(datal,2]~data[,1]);

res < —residuals(a)

theta < —summary(a)$coef ficients|[2]

sdtheta < —summary(a)$coef ficients[4]

nb < —1000; tb < —numeric(nb)

thetab < —mnumeric(nb)

for(iin 1:nb)

{

zb < —sample(res,n,replace = T)

~55~



yb < —a$coefficient[1] + a$coef ficient|2] * data[,1] + zb
ajustb < — Ilm(yb ~ data[,1])

thetab[i] < —summary(ajustb)$coefficients[2]

sdthetab < —summary(ajustb)$coef ficients[4]

tb[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(gp2[—c(1:7),1])
data < —cbind(log(gp2[—c(1: 7),4]),log(gp2[—c(1:7),1]))
a < —=lm(data[,2]~datal[,1]);
res < —residuals(a)
theta < —summary(a)$coef ficients[2]
sdtheta < —summary(a)$coef ficients[4]
nb < —1000; tb < —numeric(nb)
thetab < —mumeric(nb)
for(iin1:nb)
{
zb < —sample(res,n,replace = T)
yb < —a$coef ficient[1] + a$coef ficient[2] * data[,1] + zb
ajustb < — lm(yb ~ datal,1])
thetab[i] < —summary(ajustb)$coef ficients[2]
sdthetab < —summary(ajustb)$coef ficients[4]
th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(ga3[—c(1:5),1])
data < —cbind(log(ga3[—c(1:5),4]),log(ga3[—c(1:5),1]))
a < —lm(datal,2]~data[,1]);
res < —residuals(a)
theta < —summary(a)$coef ficients|[2]
sdtheta < —summary(a)$coef ficients[4]
nb < —1000; tb < —numeric(nb)
thetab < —numeric(nb)
for(iin1:nb)
{
zb < —sample(res,n,replace = T)
yb < —a$coefficient[1] + a$coefficient[2] * data[,1] + zb
ajustb < — lm(yb ~ datal,1])
thetab[i] < —summary(ajustb)$coef ficients[2]
sdthetab < —summary(ajustb)S$coef ficients[4]
th[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

n < —length(gp3[—c(1:6),1])

data < —cbind(log(gp3[—c(1:6),4]),log(gp3[—c(1:6),1]))
a < —lm(datal,2]~data[,1]);

res < —residuals(a)

theta < —summary(a)$coef ficients|[2]

sdtheta < —summary(a)$coef ficients[4]
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nb < —1000; tb < —numeric(nb)
thetab < —numeric(nb)
for(iin 1:nb)
{
zb < —sample(res,n,replace =T)
yb < —a$coef ficient[1] + a$coef ficient[2] * data[,1] + zb
ajustb < — lm(yb ~ data[,1])
thetab[i] < —summary(ajustb)$coef ficients[2]
sdthetab < —summary(ajustb)$coef ficients[4]
tb[i] < —(thetab[i] — theta)/sdthetab

}
quantile(thetab, c(0.025,0.975))

#Ajust: Kernel

par(mfrow = c(1,2))

iapdik < —density(ia$pdi)

plot(gal$d ~ gal$m,type = "b",main = "PDI Atantic",xlab = "PDI",ylab = "Density")

lines(iapdik$x, iapdik$y, col = "red")

ippdik < —density(ip$pdi)

plot(gp1$d ~ gp1$m, type = "b",main = "PDI Pacific",xlab = "PDI",ylab = "Density")

lines(ippdik$x, ippdik$y, col = "red")

iaieik < —density(ia$iei)

plot(ga2$d ~ ga2$m, xlim = ¢(0,10724), type = "b",main = "IEI Atantic",xlab = "IEI", ylab
= "Density")

lines(iaieik$x, iaieikS$y, col = "red")

ipieik < —density(ip$iei)

plot(gp2%$d ~ gp2%$m, xlim = ¢(0,10722), type = "b",main = "IEI Pacific",xlab = "IEI",ylab
= "Density")

lines(ipieik$x, ipieikS$y, col = "red")

iaoeik < —density(ia$oei)

plot(ga3$d ~ ga3$m, xlim = ¢(0,10"23), type = "b",main = "OEI Atantic",xlab = "OEI",ylab
= "Density")

lines(iaoeik$x, iaoeik$y, col = "red")

ipoeik < —density(ip$oei)

plot(gp3%$d ~ gp3$m, xlim = ¢(0,10723), type = "b",main = "OEI Pacific",xlab = "OEI", ylab
= "Density")

lines(ipoeik$x, ipoeik$y, col = "red")

#Test Anderson — Darling

PDIA2 < —subset(ia, ia$pdi > 1747279327)
PDIA1 < —subset(ia, ia$pdi > 4.641589¢ + 08)
PDIP2 < —subset(ip, ip$pdi > 1.055118972¢ + 13)
PDIP1 < —subset(ip, ip$pdi > 6.812921e + 08)
IEIA2 < —subset(ia, ia$iei > 3.030056419¢ + 18)
IEIA1 < —subset(ia, ia$iei > 4.641589¢ + 17)
IEIP2 < —subset(ip, ip$iei > 4.862977242¢ + 18)
IEIP1 < —subset(ip, ip$iei > 1.467799%e + 18)
OFEIA2 < —subset(ia, ia$oei > 8.954468458¢ + 19)
OEIA1 < —subset(ia,ia$oei > 1.000000e + 20)
OEIP2 < —subset(ip, ip$oei > 2.266191063e + 20)
OEIP1 < —subset(ip, ip$oei > 1.467799¢ + 20)
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library(nsRFA)
gofGENPARtest(PDIA1$pdi, Nsim = 2000)
gofGENPARtest(PDIA2$pdi, Nsim = 2000)
gofGENPARtest(PDIP1$pdi, Nsim = 2000)
gofGENPARtest(PDIP2$pdi, Nsim = 2000)
gofGENPARtest(IEIA1$iei, Nsim = 2000)
gofGENPARtest(IEIA2$iei, Nsim = 2000)
gofGENPARtest(IEIP1$iei, Nsim = 2000)
gofGENPARtest(IEIP2$iei, Nsim = 2000)
gofGENPARtest(OEIA1$0ei, Nsim = 2000)
gofGENPARtest(OEIA2$0ei, Nsim = 2000)
gofGENPARtest(OEIP1$oei, Nsim = 2000)
gofGENPARtest(OEIP2$oei, Nsim = 2000)

#Estimaci6 de l'exponent de poténcia per maxima versemblanca
length(PDIA2$pdi)/(sum(log(PDIA2$pdi/1747279327)))
length(PDIA1$pdi)/(sum(log(PDIA1$pdi/4.641589¢ + 08)))
length(PDIP2$pdi) /(sum(log(PDIP2$pdi/1.055118972¢ + 13)))
length(PDIP1$pdi) /(sum(log(PDIP1$pdi/6.812921e + 08)))
length(IEIA2$iei) /(sum(log (IEIA2%iei/3.030056419¢ + 18)))
length(IEIA1$iei) /(sum(log (IEIA1$iei/4.64158%¢ + 17)))
length(IEIP2S$iei)/(sum(log(IEIP2$iei/4.862977242¢ + 18)))
length(IEIP1S$iei)/(sum(log (IEIP1$iei/1.467799%¢ + 18)))
length(OEIA2$0ei) /(sum(log(OEIA2$0ei/8.954468458e + 19)))
length(OEIA1$0ei) /(sum(log(OEIA1$0ei/1.000000e + 20)))
length(OEIP2%0ei) /(sum(log (OEIP2$0ei/2.266191063¢ + 20)))
length(OEIP1%0ei) /(sum(log (OEIP1%0ei/1.467799¢ + 20)))
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