
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Aplicación de algoritmos y métodos de IA
sobre un juego real en Internet

 Sergio Daniel Fernández Atochero

Resumen—En este proyecto se ha llevado a cabo una implementación funcional de un videojuego online de estrategia con

dificultad media para un mínimo de 2 jugadores y un máximo de 4, en donde, como máximo, puede haber un jugador humano,

aunque no es necesario que lo haya. El proyecto se compone de dos elementos que forman la Inteligencia Artificial, por un

lado en el cliente, con una IA Local que sido dotada de una pequeña autonomía y por otro lado, en el servidor, a través, de

técnicas de aprendizaje como un SVM y una red neuronal artificial que permiten que se aprenda de las estrategias llevadas a

cabo en el transcurso de una partida ganadora. El proyecto ha sido creado en su totalidad con HTML5 y con JavaScript, tanto

del lado del cliente como en el lado del servidor, para poder ser compatible con multitud de dispositivos y Sistemas Operativos.

Palabras clave—IA, algoritmo, juego, videojuego, técnica, estrategia, HTML5, Node.js, Kinetic.js, socket.io, estrella, mochila,

estrategia, online, aprendizaje, SVM, red, neuronal, artificial.

Abstract— In this project has conducted a working implementation of an online strategy game with medium difficulty for a

minimum of 2 and a maximum of 4 players, wherein a maximum may be a human player, but need not have there. The project

consists of two elements forming the Artificial Intelligence, on the one hand, a Local IA, It was provided with a small range of

autonomy and secondly, on the server, though, learning techniques as SVM and an artificial neural network that allows learning

from the strategies pursued during a winning game. The project has been created entirely with HTML5 and JavaScript, both

client side and server side, in order to be compatible with multiple devices and operating systems.

Index Terms— IA, algorithm, gaming, video game, art, strategy, HTML5, Node.js, Kinetic.js, socket.io, star, backpack, strategy,

online, learning, SVM, network, neural, artificial.

——————————  ——————————

1 INTRODUCCIÓN

ste articulo trata de describir el Proyecto Final de

Grado, desgranando en su totalidad el desarrollo del

proyecto, su funcionalidad, elementos que lo componen,

la metodología utilizada en su desarrollo y los resultados

obtenidos .

Aunque el objetivo final del proyecto no es en sí solo el

desarrollo del videojuego, merece la pena hacer una

breve descripción introductoria de cómo funciona el jue-

go, pues posteriormente se harán muchas referencias a

ello.

El videojuego es un juego de estrategia por turnos con un

máximo de 4 jugadores y un mínimo de 2, de los cuales

uno puede ser humano o no, y donde se pueden comprar

objetos y desarrollar tecnologías para intentar llegar a

una de las guaridas (posición de salida) de los otros ju-

gadores, situadas en las esquinas del mapa y así ganar

la partida; para poder llegar a la situación anteriormente

descrita de victoria, se han de atravesar las zonas de

recursos, las de agua, así como las defensas, además de

evitar los ataques del enemigo que trataran de impedir

nuestro objetivo, impidiendo la ejecución de nuestro turno

o turnos, también comentar que tal y como se ha plan-

teado el juego, el jugador debe regresar a su guarida

para dejar los recursos que ha ido recolectando, y así

liberar el espacio de la mochila que le permita seguir

recogiendo recursos y por tanto avanzando. Pero el pro-

yecto es mucho más amplio, dándose una visión general

del funcionamiento básico en la Figura 1, este funciona-

miento será el que describamos en los apartados poste-

riores de este artículo.

E

————————————————

 E-mail de contacte: SergioDaniel.Fernandez@e-campus.uab.cat
 Mención realizada: Computación
 Trabajo tutorizado por Ramón Baldrich (CVC)
 Curso 2013/14

 Febrero de 2014, Escola d’Enginyeria (UAB)

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

1.1 Inspiración

Si hacemos un repaso a la evolución de la Inteligencia

Artificial en los videojuegos, desde los primeros sistemas

de IA (años 50) que se aplicaron a juegos de mesa, como

las damas(Arthur Samuel) y el ajedrez(Claude Shannon),

pasando por los años 60 con juegos como el Pong o

Spacewar basados en la lógica, y por los años 70 donde

se crearon juegos de 1 jugador que luchaban contra los

enemigos, los cuales se movían mediante patrones al-

macenados, como el juego Space Invaders (1978) que

añadió la dificultad creciente y respondía a las acciones

del jugador. Más tarde se empezaron a aplicar técnicas

de IA más complejas como el Pac-Man (1980) que incor-

poró algoritmos de búsqueda en laberintos. La evolución

prosiguió en los 90 donde se produjo un boom de nuevos

géneros y nuevas técnicas de IA (Máquinas de estados

finitos, Redes neuronales, Computación evolutiva, Lógica

difusa, etc...), por ejemplo Dragon Warrior (1990) fue el

primer RPG y permitía variar las rutinas de la IA de los

enemigos durante las batallas o Battelcruiser 3000AD

(1996) que incorporaba redes neuronales. Más actual-

mente comentar BotPrize[1] que es un concurso sobre el

mundo de “Unreal Tournament 2004, que intenta a través

del Test de Turing comprobar la “humanidad” de los bots

(jugadores no humanos) que participan.

El avance de las tecnologías web han abierto ante noso-

tros un mundo de posibilidades que permiten incorporar

algoritmos y técnicas de aprendizaje computacional, a la

vez que utilizar la web para recopilar información, pero

hasta ahora los usos de esta combinación ha calado

poco en el conjunto de Internet, hay bastantes ejemplos

de esta simbiosis, pero todas o la inmensa mayoría de

ellas están dirigidas en gran medida a los sistemas de

recomendación, como por ejemplo en las e-commerce

como Amazon, donde se recogen tus preferencias para

ofrecerte un producto concreto, pero no he encontrado

referencias a juegos online que modifiquen su comporta-

miento a través del aprendizaje de modo online, en todo

caso se recogen datos del usuario online y posteriormen-

te se utilizan para entrenar nuevas versiones del juego en

offline, pero en ningún caso el juego online evoluciona sin

cambiar la versión.

1.1 Estado Del Arte

Nuestro objetivo es conseguir algo diferente a lo ante-

riormente explicado, básicamente consiste en la realiza-

ción de un juego de estrategia con varios jugadores, va-

riabilidad de opciones y una complejidad media, para

utilizar en él algoritmos y técnicas que le permitan que el

juego aprenda, y con este fin, poder utilizar ese conoci-

miento adquirido como referencia del propio juego, es

decir un retro-aprendizaje, pero todo ello sin tener que

sacar una nueva versión o aplicar un parche al juego,

sino que dicho comportamiento ya vendría incluido en la

versión final.

Este proyecto busca conseguir que los dos elementos

que conforman nuestra Inteligencia Artificial se comuni-

quen y aconsejen. Por ejemplo la Inteligencia Artificial

Local, que es aquella que utiliza el juego será capaz de

consultar a la Inteligencia Artificial No Local, localizada en

el servidor y que integra una Red Neuronal y un SVM.

Pero a su vez la Inteligencia Artificial No Local se retro-

alimentara de la información almacenada en la Inteligen-

cia Artificial Local cuando algún jugador (humano o no)

consigue ganar una partida.

Este principio se podría utilizar con el fin de modificar la

dificultad del juego de forma dinámica, permitiendo que

se vaya reentrenando para que cada partida sea más

compleja, y así poder ofrecer al usuario una experiencia

de juego donde la dificultad sea progresiva.

1.2 Motivaciones Personales

La idea inicial de este proyecto surgió tras la realizar la

Mención de Computación en el Grado de Ingeniería In-

formática de la UAB (Universidad Autónoma de Barcelo-

na), pues en el curse muchas asignaturas orientadas al

desarrollo de algoritmos como MIN&MAX, Algoritmo de

Estrella, Algoritmo de la Mochila, SVM, ID3, Redes Neu-

ronales, Redes Bayesianas, etc. Pero todas estas técni-

cas y/o algoritmos se llevaban a cabo en situaciones muy

específicas e independientes unas de otras, por ello pen-

sé en realizar un proyecto que integrara todo lo aprendido

Figura 1

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

y donde combinar muchas de ellas.

También como motivación personal pretendía utilizar

tecnologías innovadoras como es el caso de Node.js y

con la realización del proyecto asentar la experiencia en

estas nuevas tecnologías aplicándolas a un proyecto real.

Por último como motivación personal también indicar que

la resolución del proyecto es un gran paso para la finali-

zación del grado, otro gran factor de motivación.

2 METODOLOGÍA
Para la realización del proyecto no me quedo más opción

que aplicar una metodología de trabajo iterativa, pues el

proyecto está conformado únicamente por una sola per-

sona, por ello se ha llevado a cabo una división en 3

paquetes de trabajo independientes, con el fin de poder

hacer entregas funcionales (Hitos) de parte del código, y

en el caso de correr algún riesgo tener la posibilidad de

abandonar el proyecto dejando alguna parte totalmente

funcional y entregada al cliente.

A su vez cada paquete identifica una fase, que finaliza en

un Hito, las fases y subfases se describen a continuación,

pudiendo llevarse a cabo en paralelo en un equipo com-

puesto de varias personas.

2.1 Primera Fase. Creación de un videojuego

Como primera fase se desarrollo la parte visual del juego

y la lógica básica para los movimientos, sin llegar aún a

entrar en la IA Local. En este punto se describe el proce-

so seguido y una breve explicación de la razones para

llevarlo a cabo:

Comenzar comentando que uno de los objetivos básicos

que impone el proyecto, como es la utilización de tecno-

logías web para la ejecución del juego, que es necesaria

para conseguir una recopilación de información exitosa,

me llevo a considerar diversas opciones para el desarro-

llo del videojuego, este dato es significativo ya que des-

pués de evaluar dichas opciones opte por desarrollar el

juego íntegramente en HTML5 y JavaScript, y este factor

condiciono totalmente el desarrollo de las partes posterio-

res.

Seguidamente se planifico cuidadosamente los diferentes

componentes del juego y la forma de aplicar patrones de

diseño para conseguir una correcta interdependencia

entre los diversos componentes de esta primera fase, se

optó por el desarrollo del proyecto con el framework Me-

lonJS, el cual permite de un modo sencillo la construcción

de videojuegos en 2D visualmente atractivos. Pero tras

comenzar el desarrollo, el cliente (profesor) incluyo un

nuevo requisito que es totalmente lógico y que entraba en

conflicto con el desarrollo llevado a cabo hasta el mo-

mento. Este requisito era la generación de mapas con los

siguientes parámetros totalmente aleatorios:

-Tamaño de mapa.

-Generación de ríos y lagos (posición y número).

 -Generación de recursos.

El requisito era lógico como he mencionado anteriormen-

te, pues el framework que se utilizaba estaba basado en

pantallas predefinidas creadas con “tiles”(pequeños ele-

mentos gráficos que se combinan en otros de mayor

tamaño) que permitirían que la futura IA No-Local se

adaptara a dichas pantallas, con el cambio propuesto, al

hacerlo totalmente aleatorio la IA No-Local no puede

saber a qué se enfrentara, por ejemplo, si el mapa tiene

un tamaño fijo, y los recursos están siempre en el mismo

lugar, la IA conocerá tras varias ejecuciones la localiza-

ción de estos recursos y de los límites del mapa, por

tanto podrá optimizar las acciones de la IA para que con

el mínimo posible de movimientos pueda ganar la partida,

dando consecuencia un nivel demasiado elevado para un

jugador humano. Este hecho derivo en una nueva bús-

queda de un framework que se adaptara mejor para el

cumplimiento del requisito y se empezó a utilizar Kine-

ticJS, un framework de más bajo nivel para la creación de

interfaces HTML5 con canvas, teniendo que desechar la

calidad gráfica prevista al principio por una funcionalidad

más específica.

Tras este impedimento seguí desarrollando de forma

iterativa el resto de componentes en diferentes subfases.

Las cuales resumo a continuación:

2.1.1 Crear elementos de la interfaz

Se creó una interfaz donde se muestran los componentes

que el usuario y la IA necesitan recibir como información

gráfica e interna para el correcto desempeño del juego,

por ello se crearon diferentes apartados como la mochila,

que contiene los objetos recogidos, una panel de todos

los recursos que disponemos, una ventana de turnos

inhabilitados, otro panel de información general, además

de unos botones que permiten cambiar la información

del panel de información general, para poder comprar

objetos y/o tecnologías y por último el mapa.

Como se ha comentado anteriormente la mejora de la

apariencia gráfica tuvo que dejarse a un lado, pues había

un conflicto con los objetivos primordiales y al tenerse

que realizar todos los componentes desde 0, el tiempo

para la realización de esta parte se salía ampliamente del

disponible para la realización del TFG.

2.1.2 Crear movimientos y restricciones del
jugador

En esta subfase se definieron los movimientos que el

jugador puede realizar y se crearon las restricciones con

los diferentes elementos y límites del terreno, necesarias

para impedir que el jugador pudiese pasar por el agua, o

través de los recursos sin haber realizado la acción de

recogerlos previamente, también se definió el mecanismo

de inhabilitación, con el fin de bloquear el turno del juga-

Febrero de 2014, Escola d’Enginyeria (UAB)

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

dor, que básicamente consiste en invalidar dicho turno,

hasta que el resto de jugadores realice su turno, con este

procedimiento incluimos un factor de penalización que

será utilizado para marcar la diferencia entre los diferen-

tes jugadores, pues el objetivo final del juego consiste en

llegar a la base de un jugador enemigo en el menor nú-

mero de turnos posible y antes que el resto de enemigos.

2.1.3 Crear la lógica básica del juego

Cuando se creó la lógica básica del juego, lo que se hizo
fue desarrollar e implementar la lógica básica para que
un jugador pudiera comprar objetos para así, ser ofensiva
o defensivamente superior a sus oponentes y desarrollar
tecnologías, que permiten acelerar la recogida de recur-
sos, una vez realizado este proceso, se amplió la lógica
para que pudieran jugar varios jugadores por turnos.

Posteriormente se impuso otro requisito extra por parte
del cliente, consistente en implementar más variantes del
juego, y así lo desarrolle, fueron las siguientes:

 Variante de Visibilidad:
Permite elegir entre una visibilidad total o parcial, pu-
diendo ver solo una pequeña parte del mapa como si
fuera de noche y el jugador llevara una linterna, o ver
el terreno totalmente descubierto.

 Variante de Memoria:
Esta opción permite activar o desactivar la regenera-
ción de la niebla, representada con nubes en el jue-
go, en las zonas que hemos ido pasando.

 Variante de Regeneración de Recursos:
 Esta opción permite que en las zonas de niebla se
vuelvan a regenerar los recursos de forma aleatoria,
pero se comprobó que suponía un gran impedimento
en la ejecución correcta del juego, se optó por su
eliminación.

2.1.4 Mejorar el rendimiento

Además de la problemática encontrada con la apariencia

gráfica, se encontró un gran problema de rendimiento,

pues se generaban mapas de gran tamaño, el problema

en si era debido a que cada vez que se realizaba un mo-

vimiento por parte del jugador humano, era necesario

refrescar la pantalla y como se puede comprobar (Figura
2), la mayoría de las veces eran demasiados elementos

para mostrar, por lo que de nuevo se tuvo que replantear

la interfaz, con el fin de realizar una mejora drástica en su

rendimiento.

Para ello se separó en dos bloques dicha interfaz y se

representó el mapa en la parte izquierda, como se mues-

tra en la Figura 3.

Como se puede apreciar se redujo la ventana que mues-

tra el mapa a un tamaño fijo de 9x9 casillas, permitiendo

tener una submatriz del mapa original, el cual es de ta-

maño nxm, mostrando esta submatriz del mapa se pudo

solucionar uno de los principales problemas de rendi-

miento de esta fase.

2.2 Segunda Fase. Creación de una IA Local

Esta segunda fase fue la más compleja de plantear y

desarrollar, en ella se implementó la autonomía de los

jugadores no humanos(IA Local), que utilizan la informa-

ción recopilada por el propio juego para elegir entre las

tres estrategias básicas llamadas Recogida, Defensiva y

Ofensiva que se han sido definidas, las cuales utilizan un

algoritmo de Backtracking(concretamente la configura-

ción del problema de la mochila) para comprar objetos y

el algoritmo de estrella para llevar a cabo los movimien-

tos que mejor se adapten a la estrategia elegida, a conti-

nuación se hace una breve descripción de estos algorit-

mos y estrategias.

2.2.1 Métricas estandarizadas

Antes de comenzar a definir los diferentes algoritmos y

estrategias, se necesitaba una información que pudiera

ser evaluable independientemente de la configuración

inicial del juego (mapa, variantes, etc…), y que las estra-

tegias pudieran tomar como parámetros de entrada, para

ello se definieron diferentes porcentajes que estandari-

zan la información del juego, para ejemplificar este punto,

a continuación expongo un ejemplo:

 Ejemplo: Para un mapa de 320 casillas de

anchura, la casilla 20, correspondería al

6.25% de la anchura ((100/320)*20=6.25).

Para ello definimos diferentes porcentajes que estanda-

rizan la información del juego, pero estos porcentajes a

su vez se basan en otros dos porcentajes básicos llama-

dos porcentaje de avance ofensivo y defensivo, cuyo

código a modo de ejemplo se incluye en la sección A1 del
Apéndice, estos porcentajes son los siguientes:

Febrero de 2014, Escola d’Enginyeria (UAB) Febrero de 2014, Escola d’Enginyeria (UAB)

Figura 2

Figura 3

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

 Porcentaje de Avance Ofensivo (PAO):
Este porcentaje calcula lo cerca que se está de

una de las posibles guaridas (posición de inicio)

enemigas, incrementando el porcentaje según

nos acercamos.

 Porcentaje de Avance Defensivo (PAD):
Este porcentaje calcula lo lejos que se está de la

guarida del jugador que ejecuta su turno.

Los porcentajes utilizados por las estrategias y que a su

vez utilizan los porcentajes anteriormente descritos son

los siguientes:

 Porcentaje Ofensivo (PO):
Es el resultado de multiplicar el Porcentaje de

Avance Ofensivo (PAO) de la casilla que el juga-

dor ocupa por 0.5, pues supone el 50% del peso

total de este porcentaje y luego se le suma un

porcentaje calculado como el porcentaje de obje-

tos que ese jugador posee de la totalidad de ob-

jetos ofensivos disponibles para comprar, llama-

do Porcentaje de Objetos Ofensivos (POO) * 0.5

al igual que el parámetro anterior.

 PO= (PAO*0.5) + (POO*0.5)

 Porcentaje Defensivo (PD):
Es el resultado de multiplicar el Porcentaje de

Avance Defensivo (PAD) de la casilla que el ju-

gador ocupa por 0.5, pues supone el 50% del

peso total de este porcentaje y luego se le suma

un porcentaje calculado en base del número de

objetos defensivos colocados por el jugador en-

tre el número total de turnos y todo ello multipli-

cado por 0.5 como el parámetro anterior.

PD= (PAD*0.5)+ ((Nº de Objetos Defen-

sivos colocados por el jugador / Nº de

turnos) * 0.5)

 Porcentaje de Éxito (PE):
Depende del Porcentaje Defensivo (PD), ya que

si tenemos el problema de la defensa soluciona-

do, es más fácil que podamos ganar y del Por-

centaje Ofensivo (PO) pues nos da una perspec-

tiva de lo cerca que podemos estar de una base

enemiga y de cómo estamos preparados para

realizar la incursión. Cabe destacar que el PAD y

PAO se contrarrestan el uno al otro, porque de-

penden de la posición en el mapa y permiten que

no se dé nunca el 100% en el porcentaje de Éxi-

to, ya que es algo que no podemos saber, se

calcula como sigue:

 PE = (PD+PO)/2

 Porcentaje de Peligro (PP):
Depende del número de avistamientos, que es el

número de veces que vemos en nuestro campo

de visión a un jugador enemigo, también de una

variable donde almacenamos la menor distancia

con respecto a la base donde hemos visto a un

enemigo, que corresponde al valor PAD de la

casilla que ocupa el jugador enemigo y por ulti-

mo del número de turnos, se calcula de la si-

guiente forma:

PP= (Nº de Avistamientos/Nº de turnos)

+PAD

2.2.2 Estrategias

Los porcentajes anteriormente citados son tomados como

base a la hora de elegir la estrategia que se llevara a

cabo en ese turno, comentar que esa estrategia no per-

manece en el tiempo, si no que es modificada en cada

nuevo turno del jugador respondiendo a la situación ac-

tual de los porcentajes, también añadir que no se han

podido implementar todas las características necesarias

para que la IA Local funcione con total normalidad y de

una forma totalmente coherente, para llegar a ese objeti-

vo se hubiese necesitado muchísimo más tiempo que el

que teníamos disponible para la realización de este pro-

yecto, por lo que se tienen tres tipos de estrategias dife-

rentes muy simples que imponen diferentes comporta-

mientos a la IA Local (jugador no humano), pero que en

ningún momento se puede decir que la IA Local tenga un

comportamiento realista, comentar además, que para

simplificar el ataque las estrategias descargan todo su

potencial ofensivo sobre aquellos enemigos que tienen

en su campo de visión, los cuales son captados en dicho

campo y almacenados en un array junto con la distancia

del jugador que posee el turno, posteriormente se recorre

el array intentando optimizar los ataques, es decir, em-

piezan con aquellos objetos que permiten un ataque des-

de una distancia mayor al jugador o jugadores enemigos

más distantes, se pasa al siguiente objeto y se ataca al

siguiente jugador que este en el campo de acción de

dicho objeto y así hasta terminar con la lista de objetos

de la mochila, es decir, en un turno se permite hacer un

ataque con cada objeto ofensivo de la mochila.

Las estrategias implementadas son las siguientes:

 Recogida:
Esta estrategia es la que se tiene para iniciar el

juego, ya que para empezar hay que recoger re-

cursos, que posteriormente utilizaremos en la

compra de objetos y tecnologías, para ello a la

hora de configurar el mapa se marcan unas zo-

nas de seguridad, con el fin de asegurar que el

jugador tiene los recursos necesarios para em-

pezar como muestra la Figura 4, esta estrategia

es la predefinida hasta que al menos tengamos

10 recursos de cada tipo, y por consiguiente no

hacemos uso del algoritmo que rellena la mochi-

la, pues nuestro interés en mantener el máximo

posible de espacio libre en la mochila y así poder

Febrero de 2014, Escola d’Enginyeria (UAB)

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

recolectar el máximo de recursos. También se

reactivara la estrategia sino tenemos al menos

los 10 recursos de cada tipo, si esta situación se

cumple se pasara de esta estrategia a evaluar si

se cumplen las condiciones para la estrategia

Defensiva.

Las siguientes estrategias rellenan solo la mochila hasta

la mitad, pues tanto para las estrategias de defensa y

ataque se necesitan espacios libres en la mochila con los

que ir recogiendo recursos, si no dispusiéramos de estos

espacios libres, no podríamos avanzar y por tanto esta-

ríamos bloqueados.

Como se ha comentado anteriormente estas dos estrate-

gias no están correctamente implementadas y este hecho

desencadena en un comportamiento errático en las ac-

ciones de la IA Local, por lo que, aunque aquí se describa

su comportamiento actual, no quiere decir que sea el

comportamiento deseado para finalizar el proyecto satis-

factoriamente, este apunte se amplía pertinentemente en

las dos estrategias que definimos a continuación:

 Defensiva:
Si la puntuación defensiva está por debajo del

65% o la puntuación de peligro es mayor de un

65%, se activa la estrategia, comprando objetos

defensivos, como trampas y muros, el problema

es que para la colocación correcta de muros y

puertas, es necesaria la implementación de unos

algoritmos que permitan colocar dichos elemen-

tos haciendo recintos cerrados, o aprovechar las

fronteras con el agua para impedir correctamente

el avance del jugador enemigo, se definieron

unos algoritmos para llevar a cabo esta función

pero finalmente no se han podido realizar, a mo-

do de información adicional se muestran uno de

ellos en la Sección A2 del Apéndice, aunque poste-

riormente en Futuras Mejoras se volverá a hacer

un apunte sobre ellos .

 Ofensiva:
Esta estrategia es la que se lleva a cabo cuando

no se cumplen las condiciones para la elección

de las dos estrategias anteriores y busca ampliar

el porcentaje PAO, buscando rutas que permitan

recoger los recursos que estén más próximos a

las guaridas enemigas, haciendo así que nos

aproximemos mas a la base enemiga y que po-

damos ganar la partida.

Para un juego real lo lógico, sería no ser tan estrictos a la

hora de realizar las acciones de la estrategia, y poder

combinarlas, en Futuras Mejoras también se abordara

este tema.

2.2.3 Historial

Cada vez que un jugador no humano realiza su turno los

porcentajes y la estrategia usada se almacenan en un

historial, que será utilizado posteriormente por la IA No-

Local, esta variable tiene la siguiente estructura:

Historial = {{[PO], [PD], [PE], [PP], [Estrategia Usada]}1,

…………………………………….

 {[PO], [PD], [PE], [PP], [Estrategia Usada]}n}

2.2.4 Algoritmo de Backtracking y el problema
de la mochila

Este punto hace referencia al uso del problema que se

encontró a la hora de comprar los objetos y que se resol-

vió con el uso de prioridades para los objetos según su

estrategia y el algoritmo de Backtracking, además hemos

configurado el algoritmo para que lo pueda hacer en ta-

maños variables de la mochila, ya que no siempre nos

interesara rellenarla en su totalidad, si no que a veces

desearemos dejar espacios libres para recoger recursos,

pues sino, no podremos avanzar.

El problema[2] se puede expresar matemáticamente

como sigue (Figura 5):

En nuestro caso qi está acotado a la capacidad de la

mochila, aunque como se verá más tarde, este parámetro

no es fijo y cada tipo de ítem i tiene un beneficio, desig-

nado con vi, y el peso(wi) será 1 para un solo objeto, pero

como se tienen objetos repetibles, si se repite ese objeto

en la mochila, el peso del objeto ira incrementando ya

que se ha definido un orden de prioridad que depende de

la estrategia que este seleccionada en ese momento, por

ejemplo, si se está llevando a cabo una estrategia de-

Febrero de 2014, Escola d’Enginyeria (UAB)

Figura 4

Figura 5

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

fensiva, el beneficio de un muro será mayor que el de

una catapulta, en la Sección 3 del Apéndice se muestra la

tabla con las diferentes prioridades de las estrategias.

La resolución de este problema se lleva a cabo ejecutan-

do un algoritmo de Backtracking que intenta optimizar la

compra de objetos según los recursos disponibles y la

estrategia designada, siguiendo un orden de prioridad,

por lo que comienza con los objetos de mayor prioridad y

va restando recursos hasta quedarse sin recursos o lle-

nar los espacios que han sido especificados en la mochi-

la, posteriormente se devuelve la lista de objetos que se

deberían comprar, los cuales serán comprados por la IA

Local.

2.2.5 Algoritmo de Estrella

En este apartado se realiza una breve explicación del

algoritmo de Estrella y de aquellos aspectos del proyecto

donde da soporte.

El algoritmo de estrella o A* utiliza una función de evalua-

ción f(n)=g(n)+ h’(n), donde h’(n) representa el valor heu-

rístico del nodo a evaluar desde el actual, n, hasta el

final, y g(n), el coste real del camino recorrido para llegar

a dicho nodo, n, desde el nodo inicial. A* mantiene dos

estructuras de datos auxiliares, que podemos denominar

abiertos, implementado como una cola de priori-

dad(ordenada por el valor de f(n) de cada nodo), y cerra-
dos , donde se guarda la información de los nodos que ya

han sido visitados. En cada paso del algoritmo, se ex-

pande el nodo que esté primero en abiertos y en caso de

que no sea un nodo objetivo, calcula el valor de f(n) de

todos sus hijos, los inserta en abiertos y pasa el nodo

evaluado a cerrados.

El algoritmo es una combinación entre búsquedas del tipo

primero en anchura con primero en profundidad; mientras

que h’(n) tiende a primero en profundidad, g(n) tiende a

primero en anchura. De este modo, se cambia de camino

de búsqueda cada vez que existen nodos más promete-

dores.

En el caso que nos ocupa, este algoritmo se usa tras

evaluar que recursos hay en el campo de visión de la IA

Local, para saber si se puede llegar o no al recurso obje-

tivo, si no es posible devolverá una ruta vacía, en caso

contrario retornara la ruta hasta dicho recurso, pudiéndo-

se evaluar de los diversos recursos que hay en el campo

de visión, cuál es el más próximo que tenga una ruta

viable, y pasándosele dicha ruta a la IA Local para ir di-

rectamente hacia él, pero si se da el caso de que la mo-

chila ya esté llena, se ha modificado el algoritmo para

que nos retorne la ruta óptima(camino más corto evitando

recursos) hacia la guarida, con el fin de descargar la

mochila.

Además comentar que se ha utilizado una implementa-

ción de código totalmente libre y modificable para adap-

tarlo a nuestro proyecto[3].

2.3 Tercera Fase. Creacion de una IA No Local

Llegados a esta fase y tras crearse la aplicación del

cliente(videojuego), se paso al desarrollo del servidor y a

la elección de las técnicas que se iban a utilizar en el

servidor donde se eligieron del conjunto de modulos

disponibles del gestor de modulos(NPM) de Node.jS, el

SVM, y la Red Neuronal aunque podria haber utilizado

cualquier otra técnica como un ID3(pero necesitaba

discretizar los datos) o un K-Means,que es muy rápido,

pero opte por seleccionar el SVM y la Red Neuronal

porque me gustaba la idea de volver a utilizarlos y

correctamente parametrizados pueden llegar a ser

técnicas de un gran potencial.

2.3.1 Servidor con Node.js y Express

Para la creación del servidor, se utilizó Node.JS por tres

razones principalmente:

La primera por la sencillez a la hora de crear un servidor

que se logra con solo 3 líneas de código, y por su gestor

de paquetes que me ha permitido utilizar el módulo de

SVM y de la Red Neuronal con licencias totalmente libres

y que permiten modificar el código[4].

La segunda es el conocimiento previo del entorno y del

lenguaje JavaScript que el que utiliza, aunque el conoci-

miento al principio del proyecto era limitado, me ha permi-

tido realizar todo lo que deseaba en un tiempo muy infe-

rior que si hubiera utilizado PHP, que es el hemos utiliza-

do en el grado, o alguno de los otros lenguajes de servi-

dor disponibles.

La tercera es personal, me gusta cómo funciona Node.js

y las posibilidades que ofrece al ser totalmente asín-

crono, no como en otros lenguajes donde es necesario

Ajax para simular esta funcionalidad, además de su ex-

trema rapidez, también destacar que a primera vista pue-

de parecer que tiene incompatibilidades con el proyecto,

pues solo ejecuta un hilo de ejecución por servidor, en

aplicaciones con gran cantidad de cálculo como es nues-

tro caso, puede suponer un problema, pues las peticiones

de los clientes se han de quedar esperando en cola mu-

cho tiempo hasta que se complete en entrenamiento de

la red neuronal o el SVM(en nuestro caso el entrenamien-

to se hace cada 24 horas), pero este problema aunque

no se ha llegado a implementar en el proyecto por falta

de tiempo, sí que había sido contemplado y se había

buscado como solucionarlo, principalmente a través de

dos estrategias:

 Hilos de ejecución:
Crear un nuevo hilo de ejecución para la red

neuronal o SVM, pues no interferiría en las peti-

ciones de los usuarios, y sabríamos que ha ter-

minado, ya que todas las funciones en Node.js

llevan un parámetro de callback que permite eje-

cutar una función cuando finalice su ejecución.

Febrero de 2014, Escola d’Enginyeria (UAB)

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

Figura 6

NextTick:
NextTick (), es una función que permite dividir un

código en partes, en nuestro caso lo utilizaría-

mos para ir ejecutando el entrenamiento por ran-

gos, por ejemplo si hacemos 100 iteraciones po-

dríamos dividir en bloques de 5 iteraciones con

lo que ni el servidor ni el cliente tendrían cons-

tancia de ello ya que distribuiríamos la carga de

computo a través del tiempo.

El siguiente punto de este apartado es Express que es un

framework para Node.js robusto, rápido, flexible y simple

que nos permite implementar de forma muy sencilla as-

pectos de seguridad, enrutamiento y sesiones.

2.3.2 Websockets con SOCKET.IO

Socket.IO tiene como objetivo hacer posible aplicaciones

en tiempo real en todos los navegadores y dispositivos

móviles, borrando las diferencias entre los distintos me-

canismos de transporte. Además es 100% JavaScript,

con ello al enviar datos al servidor no tengo que realizar

ningún modificación en la estructura de los datos que

envío, pues puedo realizar el envió de variables Ja-

vaScript directamente, enviándose en formato JSON y

siendo recibidos por el servidor Node.js que también está

escrito en el JavaScript. Así es como envío el historial de

la IA Local al Servidor, donde será entrenado por la parte

de IA No-Local (SVM y Red Neuronal), también lo utilizo

para la parte de consulta como se verá en un apartado

posterior.

2.3.3 Técnicas de la IA no local

A continuación se hace una muy breve explicación de

que consisten las dos técnicas usadas para entrenar la IA

no local, estas técnicas son el SVM y la Red Neuronal:

Las Máquinas de Vectores Soporte(SVM) son a grandes

rasgos una técnica de aprendizaje, concretamente de

clasificación, que encuentran una “superficie”, con la que

intenta separar los ejemplos que le hemos pasado del

historial y que almacena como conjunto de entrenamien-

to, con el margen más grande posible, en nuestro caso al

tener 4 atributos (PD, PO, PE, PP), y por tanto 4 dimen-

siones sería teóricamente una híper-superficie, que bus-

caría minimizar el error en la separación de los elementos

y maximizar a su vez el margen de separación, mejoran-

do por tanto la generalización del clasificador. También

comentar que las máquinas de vectores soporte presenta

un buen rendimiento al generalizar en problemas de cla-

sificación, pese a no incorporar conocimiento específico

sobre el dominio, por lo que la solución no depende de la

estructura del planteamiento del problema, como en otras

técnicas. Para más información consultar[5]

Una Red Neuronal Artificial, se puede definir muy bre-

vemente como un conjunto de neuronas, clasificadas en

capas, donde siempre hay una capa inicial y otra capa

final, pudiéndose añadir la cantidad de capas ocultas

deseada, formando una especie de malla (Figura 6), lo

que realizamos al entrenarlas, es la adaptación de dicha

malla al problema a través de la regulación de los pesos

que hay entre ellas. Intentare explicarlo de una forma

más mundana, imaginemos un traje de nuestro padre que

tenemos y nos está muy grande (red neuronal inicial), en

este caso tendríamos que reducir el tamaño de nuestra

malla de neuronas, eliminando tela (capas ocultas), con-

siguiendo así un traje más adaptado a nuestro tamaño,

del mismo modo si este fuera pequeño tendríamos que

ampliarlo con la adicción de capas ocultas. Por último

para adaptar las holguras que quedaran (pesos entre las

neuronas) llamaríamos a un sastre, el cual a partir de la

experiencia obtenida al visualizar nuestra figura podría

adaptarnos más el traje hasta dejarlo como un guante

(entrenamiento). Aunque esta explicación puede parecer

fuera de lugar he creído conveniente añadirla, para que

entiendan el funcionamiento básico de la red neuronal

artificial todos aquellos no versados en el tema, para más

información consultar[6].

Por último comentar que el código para la implementa-

ción de ambas técnicas se ha incluido en la Sección A4 del
Apéndice.

2.3.4 Consulta de la IA no local

La IA local consulta al servidor que estrategia le reco-

mienda según el contexto en que se encuentre, dicho

contexto se define por los porcentajes PD, PO, PE y PP

que han sido explicados, haciendo una petición específi-

ca al SVM o a la red Neuronal, a la que el servidor res-

ponde con la estrategia que debería usar, o null en el

caso de que aún no haya sido entrenado, o no disponga

de datos suficientes. Un ejemplo del código que realiza

esta funcionalidad, se ha incluido en la Sección A4 del
Apéndice.

Febrero de 2014, Escola d’Enginyeria (UAB)

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

3 RESULTADOS VERSUS REQUISITOS

Nuestro fin primordial era cumplir con los requisitos y

llevar a cabo la mayoría de los objetivos propuestos, por

ello como resultados se realiza una disección de todos

ellos, comentando cual ha sido el resultado de cada uno

y haciendo especial hincapié en su grado de importancia.

Comencemos por los requisitos:

3.4 Requisitos

En nuestro proyecto tenemos dos tipos de requisitos los

funcionales y los no funcionales, por lo que a

continuación, los comentaremos por separado:

3.4.1 Requisitos Funcionales

El primer requisito funcional(RF1) consistente en la

existencia de un juego sencillo que permita la recogida de

recursos, la compra de objetos y tecnologias, y llegar a

una base enemiga para completar el juego, se ha

completado satisfactoriamente, aunque se ha de

comentar que el juego debería de haber sido más sencillo

de lo que es en realidad.

El segundo requisito funcional(RF2) se basa en ofrecer al

menos un modo de juego que permita evaluar y probar

las limitaciones de la IA; en nuestro caso se

implementaron dos, comentados anteriormente y

definidos con el termino de variantes, por lo que también

se ha obtenido un resultado satisfactorio en este

requisito.

El tercer requisito funcional(RF3) establece que se debe

implementar como mínimo un algoritmo o técnica de IA

de forma local, en nuestro caso también han sido dos

Backtracking para resolver el problema de la mochila y el

algoritmo de estrella para resolver el problema de las

ruta, por lo que se ha concluido con un resultado

satisfactorio en este punto.

Por último el cuarto requisito funcional(RF4) consistia en

la implementación de como mínimo una técnica de IA de

forma no local que aprenda de las acciones del usuario.

Este punto también ha sido solventado con el uso de un

SVM y una red neuronal, y por tanto con resultado

satisfactorio.

3.4.2 Requisitos No Funcionales

El primer requisito no funcional(RNF1) consiste en que el

juego debia de ser compatible con diferentes

navegadores y SO, y asi es, ya que esta implementado

integramente en HTML5 y Javascript, por tanto el

resultado tambien es satisfactorio.

El segundo requisito no funcional(RNF2) se basa en que

se pudiera elegir entre diferentes técnicas para la IA No

Local, y asi es, aunque la funcionalidad esta

implementada y se puede modificar sencillamente en el

código, no se ha establecido una opción para el jugador

por consider que debia abstraerse de este elemento, por

lo que siendo totalmente critico podriamos concluir en

que el resultado en este punto no ha sido lo establecido

inicialmente pero si satisfactorio.

El último de los requisitos no funcionales(RNF3)

establece que el juego incrementara su dificultad gracias

a la experiencia adquirida de forma local. El resultado

para este punto ha sido no satisfactorio pues surgió el

siguiente problema, al tener una IA Local y otra IA No

Local, nos encontramos con el dilema de saber cuál de

las dos estrategias recomendadas es mejor, y al final

optamos por dejar la IA No Local como un elemento al

que se le consulta y no se le termina por hacer caso.

Requisitos

Resultado

Satisfactorio No Satisfactorio
RF1 X
RF2 X
RF3 X
RF4 X

RNF1 X
RNF2 X
RNF3 X

RESULTADO: 6/7 de los Requisitos

son Satisfactorios

Tabla 1

2.4 Objetivos

En nuestro proyecto tenemos una diversidad de

objetivos, de los cuales ya hemos dado una descripción

especifica de todos ellos en la sección de Metodología y

que a su vez forman parte de las 3 fases en las que se

dividio el proyecto, aqui se repasan para dar finalmente

una valoración de su cumplimiento:

 Objetivos de la Fase 1 (Crear Videojuego)

o Crear un Mapa

o Crear Movimientos del Jugador.

o Crear Lógica del Juego.

o Mejorar Apariencia Gráfica.

o Mejorar Rendimiento.

o Implementar Variabte Visibilidad.

o Implementar Variante Memoria.

 Objetivos de la Fase 2(Crear IA Local)

o Implementar Backtracking para

resolver el problema de la mochila.

o Implementar el Algoritmo de

Estrella.

o Implementar varios tipos de

Estrategias.

Febrero de 2014, Escola d’Enginyeria (UAB)

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

 Objetivos de la Fase 3(Crear IA No Local)

o Diseñar e implementar el servidor.

o Implementar técnicas de aprendizaje

en el servidor.

o Implementar método de consulta de

la IA local para consultar al Servidor.

Como se ha explicado en la sección de Metodología, los

únicos puntos no satisfactorios, han sido la mejora de la

apariencia gráfica y las implementación de estrategias en

la IA Local por lo que obtenemos como resultado 11/13

objetivos propuestos realizados satisfactoriamente.

4 FUTURAS MEJORAS

Las futuras mejoras son muchas y muy variadas, a conti-

nuación se da un listado de varias de ellas, pero podrían

ser muchas más:

La primera será comenzar por el correcto desarrollo de

las estrategias para que la IA Local tenga una autonomía

real, además de incluir estrategias más complejas que

también incluyan las estrategias básicas con el fin de dar

más dinamismo a los jugadores no-humanos.

Mejorar el apartado gráfico necesario para una buena

aceptación del público en general.

También sería necesaria una optimización de los paráme-

tros que utilizan el SVM y la Red Neuronal, para conse-

guir que el entrenamiento fuera más óptimo.

En lo que concierne al juego habría que buscar alguna

forma de eliminar la necesidad de regresar a la base para

dejar los recursos, pues el juego se hace eterno y da

como resultado una experiencia poco agradable para el

jugador, además de implementar la posibilidad de que

varios jugadores humanos jueguen en la misma partida.

Por último una forma de comparar si la estrategia reco-

mendada por el servidor es mejor en términos de eficien-

cia y adaptación que la que recomienda la IA Local.

5 CONCLUSIÓN

Hemos podido comprobar que el objetivo primordial, que

es crear una plataforma para el aprendizaje online en un

videojuego en la web es posible y que por tanto puede

llevarse a cabo un proyecto de un gran interés, en un

futuro creo que se verán bastantes más ejemplos de este

tipo de proyectos, pues las tecnologías web están

creciendo exponencialmente ofreciendo posibilidades de

desarrollo e integración sencillas para las técnicas de IA,

que antes eran muy complejas y laboriosas, también

destacar que para mí ha supuesto una gran ayuda para

centrar todos los conocimientos adquiridos que tenía

dispersos y así lograr asentarlos.

Agradecimientos

A Ramon Baldrich por su tiempo y por guiarme en el

desarrollo del proyecto y a la UAB (Universidad Autóno-

ma de Barcelona) por haberme dado los conocimientos

necesarios para el desarrollo del proyecto.

Bibliografía

[1] ‚botprize : home.‛ [Online]. Available: http://botprize.org/.

[Accessed: 11-Feb-2014].

[2] ‚Roberto Martínez: Reporte 2: Problema de la mochila.‛ *Online+.

Available: http://roberto-mtz.blogspot.com.es/2011/07/reporte-2-

problema-de-la-mochila.html. [Accessed: 11-Feb-2014].

[3] ‚46 Dogs: A Star (A*) path/route finding Javascript code.‛ *Online+.

Available: http://46dogs.blogspot.com.es/2009/10/star-pathroute-

finding-javascript-code.html.

[4] ‚Browse by Keyword: ‘machine%20learning.’‛*Online+. Available:

https://www.npmjs.org/browse/keyword/machine learning.

[Accessed: 11-Feb-2014].

[5] ‚M{quinas de vectores de soporte - Wikipedia, la enciclopedia

libre.‛ [Online]. Available:

http://es.wikipedia.org/wiki/Máquinas_de_vectores_de_soporte.

[6] ‚Red neuronal artificial - Wikipedia, la enciclopedia libre.‛ [Online].

Available: http://es.wikipedia.org/wiki/Red_neuronal_artificial.

Febrero de 2014, Escola d’Enginyeria (UAB)

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

APÈNDICE

A1. EJEMPLO DE UNA IMPLEMENTACIÓN PARA EL CÁLCULO DE PORCENTAJES EN JAVASCRIPT

 var porcentajeUnidadX = (100 / mapaNRectX);
 var porcentajeUnidadY = (100 / mapaNRectY);
 var distanciaDeXaGuarida = Math.abs(posXGuarida - posX);
 var distanciaDeYaGuarida = Math.abs(posYGuarida - posY);

 this.porcentajeAvanceDefensivo=CalcularPorcentajeAvanceDefensivo();

 this.porcentajeAvanceOfensivo=CalcularPorcentajeAvanceOfensivo();
 function CalcularPorcentajeAvanceDefensivo() {
 var porcentajeX = 100 - (porcentajeUnidadX * distanciaDeXaGuarida);
 var porcentajeY = 100 - (porcentajeUnidadY * distanciaDeYaGuarida);
 return porcentajeAvanceDefensivo = (porcentajeX + porcentajeY) / 2;
 console.log("INFO CASILLA-->Porcentaje Defensivo: " + this.porcentajeAvanceDefensivo);

 }
 function CalcularPorcentajeAvanceOfensivo() {
 var porcentajeX = porcentajeUnidadX * distanciaDeXaGuarida;
 var porcentajeY = porcentajeUnidadY * distanciaDeYaGuarida;
 return porcentajeAvanceOfensivo = (porcentajeX + porcentajeUnidadY) / 2;
 console.log("INFO CASILLA-->Porcentaje Ofensivo: " + this.porcentajeAvanceOfensivo);

 }

A.2 ALGORITMOS AUXILIARES Y ALGORITMOS TEÓRICOS AUXILIARES

A continuación se da un pequeño ejemplo de un algoritmo auxiliar implementado en el juego y de dos que considero

de utilidad pero que no se llegaron a implementar.

Este primer algoritmo se utiliza por las estrategias para optimizar la recogida de recursos como es utilizar el tiempo en

el cual está inhabilitado para explorar las zonas adyacentes, a continuación hago una explicación detallada de dicho

comportamiento, en usa secuencia de pasos[Ilustración 5]:

1. Llegamos desde abajo dirección hacia arriba.
2. Nos quedamos atascados por un recurso, a partir de ahora tenemos 3 turnos para explorar el entorno.
3. Exploramos la izquierda, y quedan 2 turnos de inhabilitación.
4. Exploramos la derecha y queda 1 turno de inhabilitación.
5. Como ya tenemos la información podemos colocarnos hacia la posición que deseamos ir para continuar por

allí.

 Paso 1 Paso 2 Paso 3 Paso 4 Paso 5

 Paso 1 Paso 2 Paso3 Paso4

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

A continuación se describirán dos algoritmos que ayudarían a la estrategia de defensa, pero como se ha comentado

solo forman parte de la teoría, pues no han sido implementados en el proyecto:

Uniformidad del campo descubierto:
A la hora de prevenir un futuro ataque se premiara que el rango sea más general, antes que parcial, ya que una vista
general nos hará saber que el otro jugador está cerca y monitorizarlo, de la otra forma, no podremos saber de forma
concreta el porqué de pasar por esa zona.

Amurallamiento y Colocación de Puertas:
La estrategia defensiva puede tener dos tipos de amurallamiento y a su vez, diferentes algoritmos para colocar las
puertas. La primera es la colocación de una capa o más de murallas, se puede hacer el paralelismo con una cebolla; una
vez que hay diferentes capas la colocación de las puertas nos puede dar ventajas defensivas o facilitarnos la recogida
de recursos, esto se puede medir calculando la separación entre las diferentes puertas.

Febrero de 2014, Escola d’Enginyeria (UAB) Febrero de 2014, Escola d’Enginyeria (UAB)

Nota: La inserción de trampas permiti-
ría ampliar en gran medida el retardo
del oponente en llegar a nuestra gua-
rida, si se aplica el método deslocali-
zado, a su vez se puede calcular el
porcentaje defensivo que tiene suman-
do las casillas entre la puerta más inte-
rior y la más exterior.

Figura 7 Figura 8

Figura 9 Figura 10

Figura 11

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

A.3 OBJETOS Y TECNOLOGÍAS

En esta sección se hace un listado de los objetos que se

pueden comprar en el juego, además de dar una

pequeña definición sobre su funcionalidad cuando se

usan:

 Carro:

o Permite aumentar el tamaño de la

mochila para llevar mas objetos.

o Solo puede haber un objeto Carro en

la mochila simultaneamente.

 Pico

o Permite recolectar los recursos de

Piedra y Metal

o Solo puede haber un objeto Pico en

la mochila simultaneamente.

 Hacha

o Permite recolectar el recurso Madera

o Solo puede haber un objeto Hacha en

la mochila simultaneamente.

 Puente

o Permite colocar un puente sobre una

casilla de agua.

o Puede haber más de un objeto

Puente en la mochila.

 Puerta

o Permite colocar una puerta que solo

puede atravesar el jugador

propietario.

o Puede haber más de un objeto

Puerta en la mochila

 Muro

o Permite colocar un muro que no

puede atravesar ningún jugador.

o Puede haber más de un objeto Muro

en la mochila.

 Trampa

o Permite colocar una trampa que

inhabilitara al jugador según el nivel

de esta.

o Con el uso de la tecnologia “Subir

Nivel de Trampa” se puede subir el

nivel de la Trampa.

o Hay 5 niveles de Trampa que

permiten hasta un maximo de 5

turnos de inhabilitación.

o Puede haber más de un objeto

Trampa en la mochila.

 Cuchillo

o Permite atacar a un jugador enemigo

que se encuentre a una casilla o

menos del jugador propietario del

objeto.

o Solo puede haber un objeto Cuchillo

en la mochila simultaneamente.

 Honda

o Permite atacar a un jugador enemigo

que se encuentre a dos casillas o

menos del jugador propietario del

objeto.

o Solo puede haber un objeto Honda

en la mochila simultaneamente.

 Ariete

o Permite destruir puertas y muros de

un jugador enemigo que se

encuentren a una casilla de distancia.

o Solo puede haber un objeto Ariete en

la mochila simultaneamente.

 Catapulta

o Permite destruir puertas y muros de

un jugador enemigo que se

encuentren a una casilla de distancia.

o Solo puede haber un objeto Ariete en

la mochila simultaneamente.

PRIORIDAD

ESTRATEGIA

RECOGIDA DEFENSIVA OFENSIVA

1 Carro Carro Carro

2 Pico Pico Pico

3 Hacha Hacha Hacha

4 Puente Muro Puente

5 Puerta Puerta Catapulta

6 Muro Trampa Ariete

7 Trampa Catapulta Trampa

8 Cuchillo Honda Honda

9 Honda Cuchillo Cuchillo

10 Ariete Ariete Puerta

11 Catapulta Puente Muro

Tabla 2

También se hace un listado de las tecnologias que se

pueden obtener en el juego, además de dar una pequeña

definición sobre su funcionalidad cuando se usan:

 Subir Nivel Pico

o Nivel 1: Se tarda 3 turnos en recoger

un recurso Metal o Piedra.

o Nivel 2: Se tarda 2 turnos en recoger

un recurso Metal o Piedra.

o Nivel 3: Se tarda 1 turnos en recoger

un recurso Metal o Piedra.

 Subir Nivel Hacha

o Nivel 1: Se tarda 3 turnos en recoger

un recurso Madera.

SERGIO D. FERNÁNDEZ ATOCHERO APLICACIÓN DE ALGORITMOS Y MÉTODOS DE IA SOBRE UN JUEGO REAL EN INTERNET

o Nivel 2: Se tarda 2 turnos en recoger

un recurso Madera.

o Nivel 3: Se tarda 1 turnos en recoger

un recurso Madera.

 Subir Nivel Trampa

o Nivel 1: Inhabilita al jugador enemigo

que la pise 1 turno.

o Nivel 2: Inhabilita al jugador enemigo

que la pise 2 turno.

o Nivel 3: Inhabilita al jugador enemigo

que la pise 3 turno.

o Nivel 4: Inhabilita al jugador enemigo

que la pise 4 turno.

o Nivel 5: Inhabilita al jugador enemigo

que la pise 5 turno.

La prioridad en este caso es estricta, primero van el Pico

y el Hacha indistintamente y cuando se ha conseguido el

nivel máximo de ambos se comienza a incrementar el

nivel de Trampa.

A4. CÓDIGO DE EJEMPLO DE LA IA NO LOCAL

Implementación y configuración del SVM
Se ha utilizado un SVM multiclase, donde como parámetros se introduce el historial (Data), sin la estrategia y en labels
la estrategia misma, como sigue a continuación:

Data= {{[PO] [PD] [PE] [PP]}1,

{[PO] [PD] [PE] [PP]}2,
……………………………………………………
{[PO] [PD] [PE] [PP]}n}

Labels = {{[Estrategia Usada]}1,
 {[Estrategia Usada]}2,

………………………………………
 {[Estrategia Usada]}n}

El proceso seguido para entrenarlo ha sido el siguiente:

1. Se crea una nueva instancia de un objeto SVM:
svm = new svmjs.SVM();

2. Entrenamos el SVM:
a. Se configura, por ejemplo con un kernel gaussiano, con el valor de sigma en 0.5, aunque se podrían

haber usado otras configuraciones o parámetros como por ejemplo un kernel lineal
svm.train(Data, Labels, { kernel: 'rbf', rbfsigma: 0.5 });

b. Se entrena el SVM:
svm.train(Data, Labels, { kernel: 'linear' });

3. Cuando recibo una petición de la IA Local hago una predicción de la estrategia como sigue:

var testlabels = svm.predict(Data);

Implementación y configuración de la red neuronal artificial
Para la red neuronal artificial he adaptado se han adaptado los parámetros de entrada al formato exigido por la librería
Data= {input:{ [PO] [PD] [PE] [PP]}1 output: {[Estrategia Usada]}1,

{input:{ [PO] [PD] [PE] [PP]}2 output: {[Estrategia Usada]}2,
………

{input:{ [PO] [PD] [PE] [PP]}n output: {[Estrategia]}n}

El proceso seguido para entrenarlo ha sido el siguiente:

1. Se crea una nueva instancia de un objeto de Red Neuronal Artificial:
var net = new brain.NeuralNetwork();

2. Se entrena el modelo configurando los diversos parámetros:
net.train(Data, {

errorThresh: 0.004, // error threshold to reach
iterations: 20000, // maximum training iterations
log: true, // console.log() progress periodically
logPeriod: 10 // number of iterations between logging

})

3. Se hace una predicción de una estrategia con los parámetros obtenidos de la IA Local:
var output = net.run({[PO] [PD] [PE] [PP]});

Febrero de 2014, Escola d’Enginyeria (UAB)

