
Retinoid pathway alterations related to breast cancer

Mònica Santiveri Saez

Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), 2014

Introduction

Retinoids, which include vitamin A and its natural and synthetic analogs, have been used as potential chemotherapeutic or chemopreventive agents because of their differentiative, anti-proliferative, pro-apoptotic and antioxidant properties. On the other hand, it has been shown that in many cancers these retinoid signaling pathways are altered.

Connection with cancer

Understanding the function of these binding proteins and nuclear receptors is essential for the development of compounds with specific effects. Retinoids have been used in the treatment of breast cancer because they have shown to have an action against malignancies. However, this treatment with retinoids may be ineffective if some of these metabolic or signaling pathways of the retinoids are altered. Some of these alterations can cause additional effects and others can cause basic effects. For example, several studies have shown that epigenetic silencing of the receptor RAR β is a common occurrence in various human breast cancers. Another important example that has been found in many breast cancers is the loss of the expression of CRBP-I.

CRBP-I and breast cancer

1. CRBP-I cellular localization:

CRBP-I localizes primarily to lipid droplets, so a major function of CRBP-I is the promotion of retinol storage in these organelles.

2. CRBP-I function in retinol storage and RAR activation:

There is a link between a target cell's ability to store retinol and its ability to use retinol to locally activate RARs under physiologic conditions.

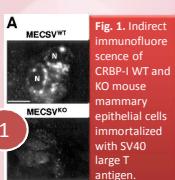


Fig. 1. Indirect immunofluorescence of CRBP-I in MCF-7 and KU mouse mammary epithelial cells immortalized with SV40 large T antigen.

1

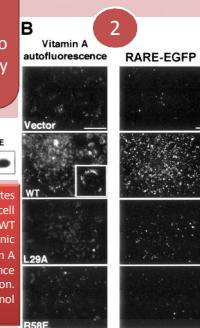


Fig. 2. A) CRBP-I immunoblot of total lysates of immortalized mammary epithelial cell lines (MTSV1-7) transfected with vector, WT or mutants CRBP-I. B) Confocal images of MTSV1-7 cultures were tested for vitamin A autofluorescence or EGFP fluorescence following stable RARE-EGFP transfection. Cells were exposed to serum as a retinol source, and no exogenous RA was added.

2

3. CRBP-I function in epithelial differentiation:

CRBP-I, acting via its effect on retinol storage and through the downstream activation of RAR, promotes breast epithelial cell differentiation and growth inhibition, both *in vitro* and *in vivo*.

4. CRBP-I and tumorigenicity *in vivo*:

The somatic loss of CRBP-I function in human breast cancer is an event that contributes to tumor progression by chronically depressing RAR activity and allowing tumor cells to escape differentiation and gain greater growth autonomy.

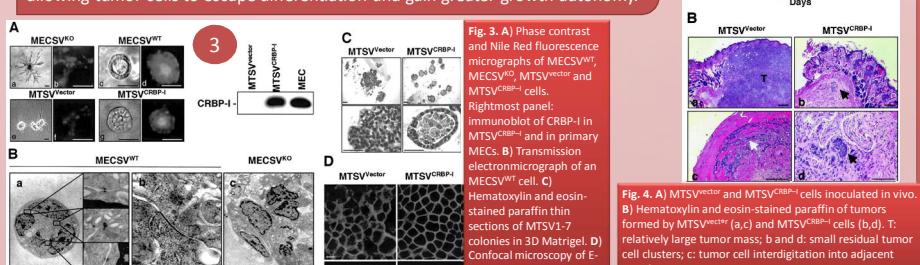


Fig. 3. A) Phase contrast and Nile Red fluorescence micrographs of MEC5V^{WT}, MEC5V^{CRBP-I} and MEC5V^{WT} and in primary MECs. B) Transmission electron micrograph of a MEC5V^{WT} cell. C) Hematoxylin and eosin-stained paraffin thin sections of MTSV1-7 colonies in 3D Matrigel. D) Confocal microscopy of E-cadherin immunostaining.

Fig. 4. A) MTSV^{Vector} and MTSV^{CRBP-I} cells inoculated in vivo. B) Hematoxylin and eosin-stained paraffin of tumors formed by MTSV^{WT} (a,c) and MTSV^{CRBP-I} (b,d). T: relatively large tumor mass; b and d: small residual tumor cell clusters; c: tumor cell interdigitation into adjacent muscle tissue.

Conclusions

- Retinoic acid (RA), the active metabolite of retinol, by binding to its nuclear receptors RAR and RXR regulates the transcription of genes involved in anti-proliferative, pro-apoptotic and anti-oxidants processes.
- CRBP-I, acting via its effect on retinol storage and through the downstream activation of RAR, promotes breast epithelial cell differentiation and growth inhibition. Therefore, the somatic loss of CRBP-I function in human breast cancer is an event that contributes to tumor progression by chronically depressing RAR activity and allowing tumor cells to escape differentiation and gain greater growth autonomy.
- This decrease of CRBP-I levels could be due to hypermethylation of DNA, causing their epigenetic silencing. These mechanisms are not known well enough yet, so they should be further investigated.
- Many studies have shown that retinoids can suppress carcinogenic process as well as its prevention, but epigenetic changes can make cells resistant to retinoids. Successful cancer treatment with retinoids may require a combination with drugs that regulate the epigenome, including DNA methyltransferase inhibitors and classic chemotherapeutic agents.
- Ideally, cancer treatment with retinoids would be a personalized therapy for each patient, in order to precisely know if some mechanism of the retinoids pathway is altered and, in that case, what is the most appropriate drug to provoke the desired anti-proliferative and anti-apoptotic effects.

References

- Al Tamimi Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. *J Lipid Res.* 2013 Jul;54(7):1761-75.
- Bush N, Wan YL. Retinoid pathway and cancer therapeutics. *Adv Drug Deliv Rev.* 2010 Oct 30;62(13):1285-98.
- Tan NC, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, Wahli W, Noy N. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. *Mol Cell Biol.* 2002 Jul;22(14):5114-27.
- Neil J McKenna. *EMBO retinoids 2011: mechanisms, biology and pathology of signaling by retinoic acid and retinoic acid receptors.* *Nucl Recept Signal.* 2012;10:e003.
- Connolly RM, Nguyen NK, Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. *Clin Cancer Res.* 2013 Apr 1;19(7):1661-9.
- Jing Y, Wang J, Li Y, Liu Y, Xianman S, Zelent A, Mira-Y Lopez R. Defective expression of cellular retinol binding protein type I and retinoic acid receptors alpha1, beta2, and gamma2 in human breast cancer cells. *PLoS One.* 1996 Jul 1;1(1):1054-70.
- Arapian A, Bertran S, Kuprumbatti YS, Nakaj S, Mira-Y Lopez R. Epigenetic CRBP downregulation appears to be an evolutionarily conserved (human and mouse) and oncogene-specific phenomenon in breast cancer. *Mol Cancer.* 2004 Apr 27;3:13.
- Farias EF, Ong DE, Gyselinck NB, Nakaj S, Kuprumbatti YS, Mira-Y Lopez R. Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation, and tumorigenicity. *J Natl Cancer Inst.* 2005 Jan 5;97(1):21-31.
- Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. *Annu Rev Pathol.* 2011;6:345-64.