

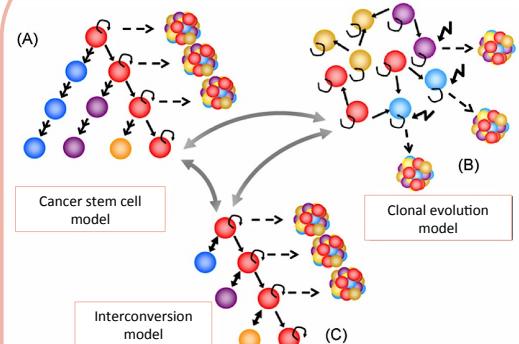
Cancer stem cells, reason of the failure of conventional cancer treatments

Anna Pérez Martín. Grau de Biotecnología. Universitat Autònoma de Barcelona

OBJECTIVES

- To understand the properties and the role within tumors of cancer stem cells
- To know cancer stem cells origin

- To study different signalling pathways implied in cancer stem cells maintenance
- To understand why current therapies fail in front of cancer stem cells

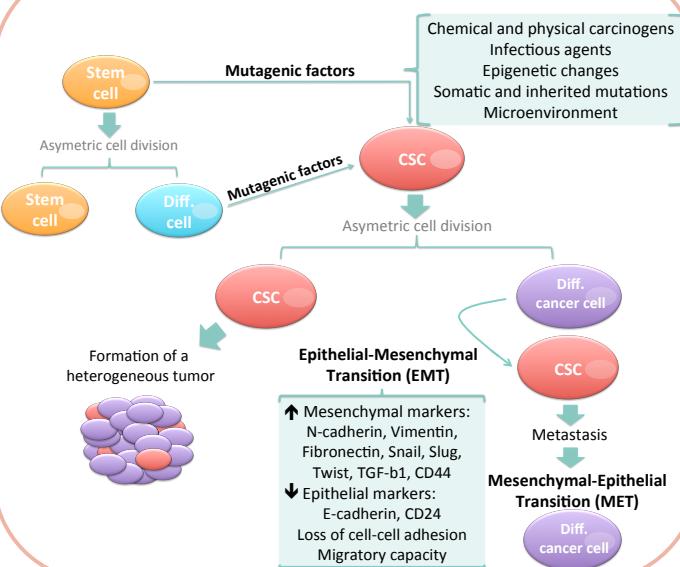

CANCER STEM CELLS

Definition Cancer stem cells (CSCs) are cancer pluripotent initiating cells that are present within tumors in a low percentage.

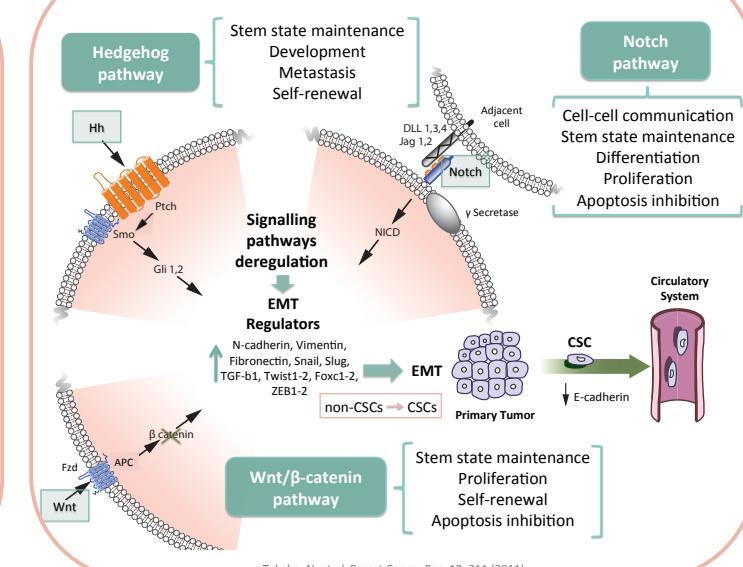
Properties CSCs have been defined on the basis of their ability to self-renew (dividing itself into two identical daughter CSCs), to expand the tumor, to migrate and form new tumors, to avoid antitumor signals, to evade apoptosis, to replicate limitless and to resist conventional therapies.

Inconvenient Because of their high resistance, cancer stem cells are a reason of the failure of conventional therapies, which are not targeting CSCs. New therapies are being developed, not focused on reducing the tumor mass, but in targeting CSCs.

THE ROLE OF CSCS IN CANCER PROPAGATION


Cancer stem cell model
Only CSCs have the ability to generate the tumor, being progenitors cells unable to generate it

Clonal evolution model
All tumor cells have the aptitude to form new tumors


Interconversion model
Cancer cells will always return to a equilibrium of cell-state proportions, due to a bidirectional interconversion between CSC and non-CSC states

Shackleton, M. et al. *Semin. Cancer Biol.* 20, 85–92 (2010)

ORIGIN OF CANCER STEM CELLS

SIGNALLING PATHWAYS IMPLIED IN CSCs

Takebe, N. et al. *Breast Cancer Res.* 13, 211 (2011)

CANCER TREATMENT

Conventional therapies

- Chemotherapy
- Radiotherapy
- Surgery

CSCs present genetic and cellular adaptations

- High capacity for DNA repair
- High resistance to drug penetration
- Resistance to apoptosis
- Microenvironment
- Dormancy/Slow cell cycle kinetics
- High metastatic potential
- Epithelial-Mesenchymal transition

Therapy failure

Cancer stem cells therapies

A successful therapy must eliminate the tumor bulk cells and induce the differentiation or elimination of CSCs

Being necessary to combine traditional chemotherapy and radiotherapy with new strategies targeting CSCs

Differentiation therapy

Must force CSCs to differentiate terminally to lose self-renewal property to lose progression property

- Retinoic acids
- Drugs targeting tumor epigenetic changes

Elimination therapy

Transplanting hematopoietic stem cells with allogeneic inserts
Therapies against the self-renewal
Modelling the mechanism of resistance
Therapies based on antigens
Hypoxia-induced anti-cancer agents
Epigenetic therapies

- Nanomedicine
- Gene therapy
- Drugs

CONCLUSIONS

- Knowledge of cancer stem cells leads to another point of view against the treatment of cancer.
- Cancer stem cells properties help us to understand conventional therapies failure.
- Combination therapies are needed to destroy CSCs, through differentiation or elimination, but also to avoid Epithelial-mesenchymal transition.

RELEVANT REF.

- Takebe, N., Warren, R. Q. & Ivy, S. P. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signalling pathways and epithelial-to-mesenchymal transition. *Breast Cancer Res.* 13, 211 (2011).
- Han, L., Shi, S., Gong, T., Zhang, Z. & Sun, X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. *Acta Pharm. Sin. B* 3, 65–75 (2013).
- Zhao, Y., Alakhova, D.Y., Can nanomedicines kill cancer stem cells? *Adv. Drug Deliv. Rev.* 65, 1763–1783 (2013).
- Shackleton, M. Normal stem cells and cancer stem cells: similar and different. *Semin. Cancer Biol.* 20, 85–92 (2010).