

1. INTRODUCTION

Multifunctional or multitasking proteins, also named moonlighting proteins, are proteins with more than one function. The first function ever disclosed of the protein is named canonical function and the other discovered lately are moonlighting functions.

These proteins complicate the interpretation of knock-outs/ knock-ins, DNA arrays, metabolomics and systems biology analyses, drug targeting, drug pharmacokinetics, pharmacodynamics and toxicity assays, etc [1,2].

Generally, they are discovered by serendipity while investigating other issues, but it would be useful to find other methods to to identify moonlighting proteins. An approach is bioinformatics analyses, although the final demonstration remains experimental. The bioinformatics approach has been the objective of the group of Bioinformatics for Molecular Biology, which supervises this End-of-Degree Project [3, 4] which has also created the first database of these proteins [5].

There are some examples of proteins in which the second function is not a "normal" function and are involved in different diseases (Neomorphic Moonlighting Function, gain-of-toxic-function) [6].

Thus, the complex phenotypes of several disorders may be related to the involvement of moonlighting proteins. A major challenge associated with therapeutic manipulation of moonlight protein is designing a drug which inhibits the function involved in the pathology while minimizing disruption of the other functions [2].

2. OBJECTIVES

The objectives of the Final Degree Project are:

- A. to compile those moonlighting proteins associated with genetic diseases or disorders, which appear because of a mutation that occur in the human gene of each protein, and to join, as an update, into the database of multitasking protein (multitaskProtDB), where researchers will be able to find out quickly and easily the information they are looking for.
- B. Identify and specify which proteins are known drug targets and, if possible, what different kind of side effect could be attributable to the different functions they have.

3. MATERIAL AND METHODS

PubMed (www.ncbi.nlm.nih.gov/pubmed)

Following: moonlighting, multitasking, bioinformatics, disease, disorders, drug targeting and drug side effects.

Databases:

- MultitaskProtDB (<http://wallace.uab.es/multitask>)
- Online Mendelian Inheritance in Man (OMIM) (<http://www.ncbi.nlm.nih.gov/omim>)
- Human Gene Mutation Database (HGMD, <http://www.hgmd.org>)
- The Drug Gene Interaction Database (<http://dgidb.genome.wustl.edu>)
- Side Effect Resource (SIDER) (<http://sideeffects.embl.de/>)

We have used only the *Homo sapiens* moonlighting proteins and it has been built a table with the disorders related, the drugs and the side effects

GLYCERALDEHYDE-3-P-DEHYDROGENASE

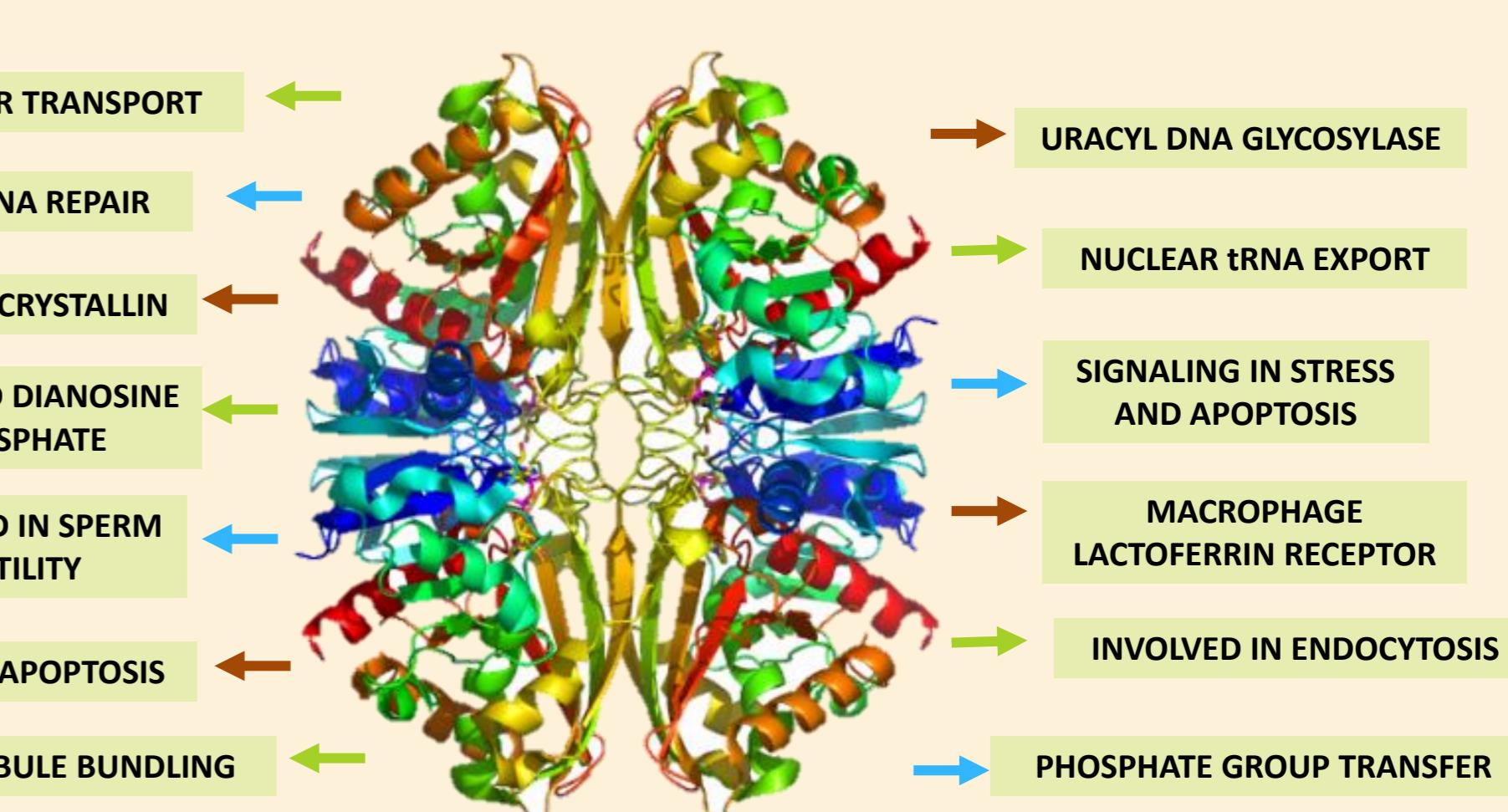
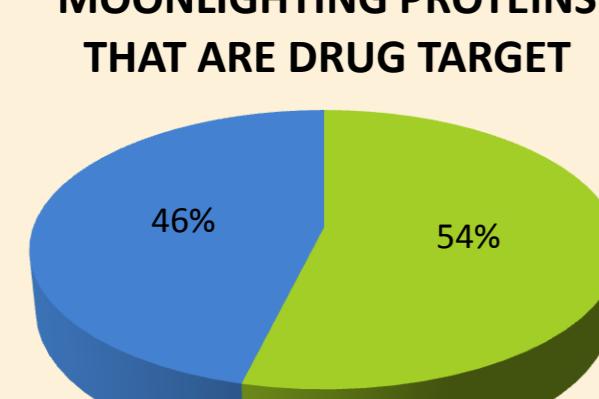
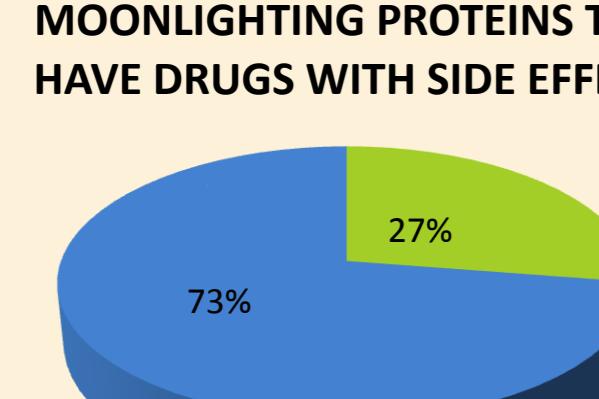


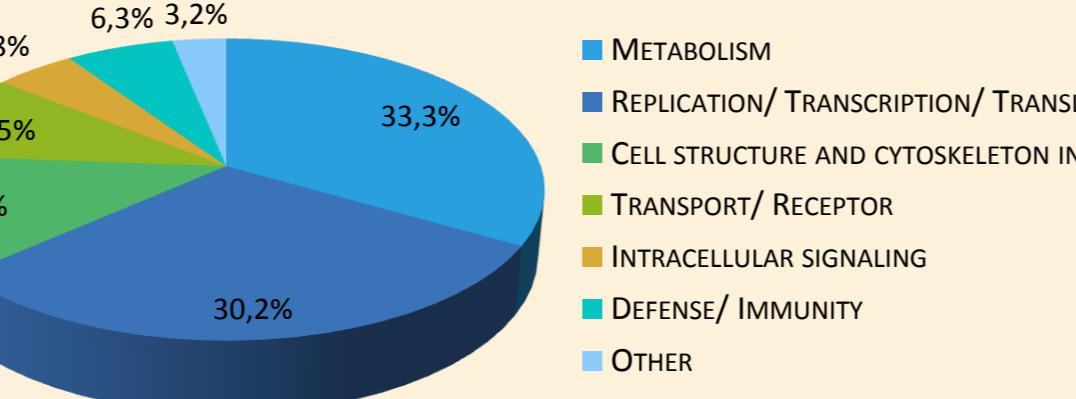

Figure 1. Glyceraldehyde-3P-dehydrogenase, a moonlighting protein with 13 functions.

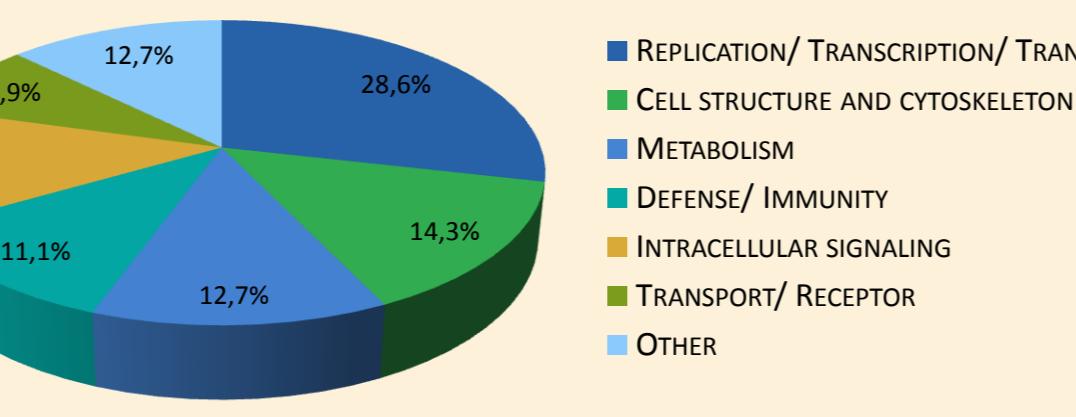
4. RESULTS

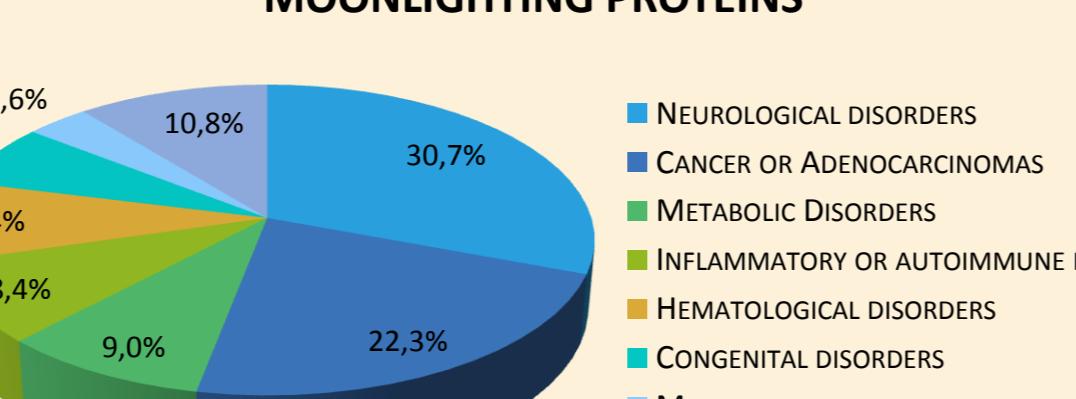

Table 1. Some of the 91 human moonlighting proteins that are found in the database MultitaskProtDB.

ID	NCBI Code	UniProt Code	Protein Name	Canonical Function	Moonlighting Function	Organism	PDB	Oligomeric State	Reference
1	AAD19351	Q71UF1	Aconitase EC-4.2.1.3	Catalyzes the stereo-specific isomerization of citrate to isocitrate via cis- <i>eo</i> isomers	Down-regulation /IREBP (cysteine-rich DNA maintenance (Mitochondria))	Homo sapiens			6041708
4	P21399	P21399	Cytoplasmic aconitase hydratase/IRP1 EC-4.2.1.3	Catalyzes the stereo-specific isomerization of citrate to isocitrate via cis- <i>eo</i> isomers	mRNA binding protein	Homo sapiens	2B3X		17898860
5	Q00337	Q00337	HCNT1 (Sodium/nucleoside cotransporter 1)	Nucleosides Transport (Selective for pyrimidine nucleosides (Nucleosides))	Inhibition of tumor growth (likely to be relevant in tumor biology)	Homo sapiens			23725207
7	A497899	P15338	ATF2 protein (Cyclic AMP-dependent transcription factor) EC-2.7.1.48	Transcription factor (stimulates CRE (cAMP responsive element)-dependent transcription)	DNA damage response	Homo sapiens	1BII		15916964
8	NP081820	P29999	Cytochrome c	IT transfer electrons between Complexes III (Coenzyme Q - Cyt C reductase) and IV	Apoptosis	Various (Homo sapiens)	2W0V		15907471
9	AAB01381	P08222	DLD (Dihydrolipoyl dehydrogenase, mitochondrial) EC-1.3.8.4	Ubiquinol-ubiquinone reductase is a component of the glyoxylate cleavage complex as well as <i>eo</i> isomers	Protease	Homo sapiens	3Q2J		17404228
10	AA5A5459	P28482	ERK (Signal-regulated kinases) EC-2.7.2.14	ERK (Signal-regulated kinases) (MAPK) (Mitogen-activated protein kinase 1)	Transcriptional repressor	Homo sapiens	1BII		18878948
30	NP_647441	P07223	Enolase (Gamma enolase) EC-4.2.1.11	Conversion of 2-phosphoglycerate to phosphoenolpyruvate (Glycolysis)	Rattus norvegicus	Rattus norvegicus (& Homo sapiens)	7753500		
74	AA0017009	Q9BPW9	h5COH-E2 (Dehydrogenase/reductase SDR family member 9)	Retinol and hydroxy-steroid Dehydrogenase/Reductase	Transcriptional repressor	Homo sapiens	Homotetramer		16891198
75	AA5A5185	P05455	La protein (Lupus La protein)	Protect RNA from 3'-end digestion	RNA folding chaperone	Homo sapiens	1B72		16776560
76	AAB02104	P09217	Amelogenin	Regulates the size and shape of mineral crystallites	Mitochondrial DNA maintenance	Homo sapiens			16674603
79	A4H70865	P28889	Gpx4 (Phospholipid hydroperoxide glutathione peroxidase, mitochondrial (Glutathione))	Peroxidase (Protects from radiation and oxidative damage)	Formation of the mitochondrial capsule during sperm maturation	Homo sapiens	2Q8B	Monomer	17620719
84	NP_00171051	P00744	Phosphoglucom isomerase EC-5.3.1.9	Catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate (Phosphoglucom isomerase)	Neuroleukin, autocrine mobility factor (Autocrine mobility factor /Neuroleukin)	Homo sapiens	1JLJ		13527444
88	P19971	P19971	Thymidine phosphorylase EC-2.4.2.4	Phosphorylates thymidine to produce 2'-deoxyuridine (Thymidine kinase)	Platelet-derived endothelial cell growth factor	Homo sapiens	2W0X	Homodimer	16700132
89	AAU12021	Q14702	Neuropilin (VEGF receptor)	Vascular endothelial cell growth factor receptor	Receptor for semaphorin III (neuropilin, regulator of angiogenesis)	Homo sapiens	1S5B	Homodimer, and heterodimer with NRP2.	9529250
91	CA2A2533	P04406	Glyceraldehyde-3-phosphate dehydrogenase EC-1.2.1.12	Conversion of D-glyceraldehyde-3-phosphate to 3-phosphoglycerate (Glycolysis)	Uridyl-DNA glycosylase, Transferase	Homo sapiens	1JPF	Homotetramer	15877227
104	NP000528	P52478	PMS2 mismatch-repair enzyme	PMS2 mismatch-repair enzyme	Regulation of antibody variable chain genes	Homo sapiens	1H72	Heterodimer of PMS2 and MLH1	94680111
105	P13568	P13568	CFTR chloride channel (Cystic fibrosis transmembrane conductance regulator) EC-3.6.99.1	Involved in the transport of chloride ions	Regulator of other epithelial ion channels (Regulator of Na ⁺ channels)	Homo sapiens	2W0V		7543688
148	AAAS2578	P21399	Glycerol Kinase EC-2.7.1.10	It converts glycerol to sn-glycerol-3-phosphate (glycerol kinase)	ATP-stimulated translocation protein (ASTP), poinciana binding, apoptosis	Homo sapiens			8884278
149	AA055455	Q13584	Isoctrate dehydrogenase EC-1.1.1.42	TCA cycle enzyme	Mitochondrial mRNA binding	Homo sapiens			27055425
151	AAU1740	P25267	Succinyl-coA synthetase (Succinate thiokinase) EC-6.2.1.4	TCA cycle enzyme	Mitochondrial DNA maintenance	Homo sapiens		Heterodimer of an alpha and a beta subunit	15902449
152	P21912	P21912	Succinate dehydrogenase EC-1.3.99.5	TCA cycle enzyme	Tumor suppression (It should play specific tumor-suppressing roles, directly or <i>eo</i> isomers)	Homo Sapiens		Component of complex II composed of four subunits	11404820
153	AAH1744	P07554	Fumarate hydratase EC-4.2.1.2	Catalyzes the reversible hydration/dehydration of fumarate to malate (TCA cycle)	Transmembrane protein (at the cell surface is likely to be important)	Homo sapiens	1O2A	Homotetramer	11086300
154	AAA36154	P13010	Ku70/Ku80	Single-strand DNA binding protein ATP-dependent helicase. Has a role in chromosomal <i>eo</i> isomers	Extracellular protease (function at the cell surface is likely to be important)	Homo sapiens	1O2Z	Heterodimer	15736853
155	AAU15099	Q01091	Xanthine oxidoreductase	Purine catabolism enzyme	Structural role in the mammary gland	Homo sapiens			12502743
156	AAE48323	P10074	ERCC2 - TFIH basal transcription factor complex	DNA helicase involved in the repair of DNA damaged by exposure to ultraviolet <i>eo</i> isomers	One of the six subunits forming the core of TFIH	Homo sapiens			14720918


A MOONLIGHTING PROTEINS ASSOCIATED WITH DISEASES


B MOONLIGHTING PROTEINS THAT ARE DRUG TARGET


C MOONLIGHTING PROTEINS THAT HAVE DRUGS WITH SIDE EFFECTS


D CANONICAL FUNCTIONS IN HUMAN MOONLIGHTING PROTEINS INVOLVED IN PATHOLOGY

E MOONLIGHTING FUNCTIONS IN HUMAN MOONLIGHTING PROTEINS INVOLVED IN PATHOLOGY

F DISORDERS ASSOCIATED WITH HUMAN MOONLIGHTING PROTEINS

Figures 2. Percentage of moonlighting proteins that have a disease or diseases-associated (A), that are drug target (B) and that have drugs with side effects (C). Distribution of the different types of canonical functions (D) or moonlighting functions (E) in the human moonlighting proteins associated with diseases. Distribution of the different types of disorders in the human moonlighting proteins (F).

5. CONCLUSIONS

- From 288 moonlighting proteins in the database MultitaskProtDB, only 91 of them are human proteins. That means around 30% of all multitasking proteins which have been described until nowadays. There are 69% of them which have diseases associated or have susceptibility to a disorder. These suggest that moonlighting proteins are more prone to be involved in human disease than the average. Although unknown what percentage of the estimated 1-5 million proteins in the human proteome it is difficult to think in about 70% of them involved in pathology.
- Of these human moonlighting proteins involved in pathology, more than 75% are proteins whose canonical function is involved in the metabolism or in the replication, transcription and translation or in the cell structure or cytoskeleton interactions, whilst these functions as moonlighting ones are found in 55%. Concluding that it has been an increase of the other functions and also from the category "others" from 3,2% to 12,7%, where are included the proteins with more than one category of functions.
- According to the clinical disorder, 62% of the diseases can be classified into neurological disorders, different kinds of cancer and metabolic disorders (30,7%, 22,3% and 9%, respectively).
- 54% of these 91 proteins are drug targets, what mean that there are 49 proteins on which may act different drugs in which there are also included the substrates.
- But,