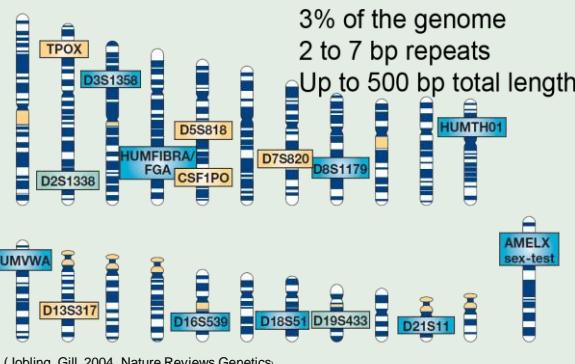
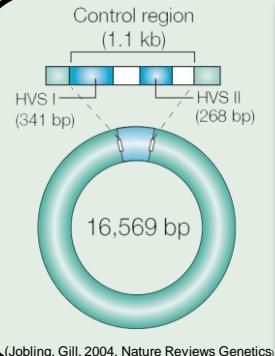


Miguel Ángel Pérez Amor, Grau en Genètica, Curs 2013-2014, Universitat Autònoma de Barcelona


INTRODUCTION AND HISTORICAL OVERVIEW

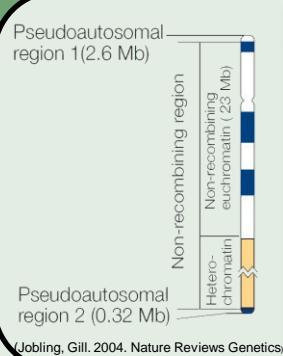
Forensic genetics is the branch of biology that uses genetic techniques in order to help out legal authorities in solving cases.

MARKERS


STR

Advantages
Smaller than VNTR
Higher quantity than VNTR
Can be amplified from degraded samples
Fast and easy to apply technique (PCR)
Reaction can be multiplexed
High statistical power

Disadvantages
Less alleles than VNTR
Less heterocigosity
PCR contamination risk
Wrong genotyping risk in big amplicons
Highly degraded samples can lead to wrong results


mtDNA

Advantages
Haploid genome
High number of mitochondrion per cell
Maternal inheritance
Slower degradation than nuclear DNA

Disadvantages
Heteroplasmy
Absence of recombination leads to less variability

Y-STR

Advantages
Paternal inheritance
Highly conserved in lineages
Variable between populations
Samples can be recovered even with victim material excess

Disadvantages
Absence of recombination
Less discriminating power than nuclear STR
Low mutation rate

DISCUSSION

- STR are the most commonly used markers.
- mtDNA and Y-STR are mainly used in lineage construction and sex discrimination.
- STR research is advancing with the discovery of new markers and the development of smaller amplicons (miniSTR).
- New types of markers are emerging (X chromosome markers, indel polymorphisms, methylation patterns).
- The future of forensic genetics might be markers with high genotypic – phenotypic correlation (i.e. eye color).
- SNP marker use is not yet extended due to its limitations (mostly biallelic).
- Forensic genetics highly relies on the use of databases to obtain and compare significant results.

REFERENCES

- 1 - Crow. *DNA forensics: past, present and future*. University of Wisconsin.
- 2 - U.S. Department of Justice, Office of Justice Programs, National Institute of Justice. (2000) *The Future of Forensic DNA Testing: Predictions of the Research and Development Working Group*. National Commission on the Future of DNA Evidence. Rockville, Maryland, USA.
- 3 - Roewer. *DNA fingerprinting in forensics: past, present, future*. *Investigative Genetics* (2013) 4:22
- 4 - Butler, J.M. (2010) *Fundamentals of Forensic DNA Typing*. Elsevier Academic Press, New York, USA.
- 5 - Jobling, Gill. *Encoded evidence: DNA in forensic analysis*. *Nature Reviews: Genetics* (Volume 3, 2004) 739 - 752
- 6 - Kerec, de Klerk. *Improving human forensics through advances in genetics, genomics and molecular biology*. *Nature Reviews: Genetics* (Volume 12, 2011) 179 - 192
- 7 - Hedman. (2011) *Uniparental DNA markers and forensic genetics in Finland*. Hjelt Institute, Department of Forensic Medicine, University of Helsinki, Finland. Helsinki, Finland.
- 8 - Leal et al. *Developments in the use of Y-chromosome markers in forensic genetics*. *African Journal of Biotechnology* Vol. 3 (12) (2004) 637-642.
- 9 - Szibor et al. *Use of X-linked markers for forensic purposes*. *Int J Legal Med* 117 (2003) 67-74
- 10 - Huang et al. *A novel method for the analysis of 20 multi-indel polymorphisms and its forensic application*. *Electrophoresis Journal* (October, 2013)
- 11 - Vidačík et al. *Forensic DNA methylation profiling—Potential opportunities and challenges*. *Forensic Science International: Genetics* 7 (2013) 499-507.
- 12 - Andersen et al. *Genetic analyses of the human eye colours using a novel objective method for eye colour classification*. *Forensic Science International: Genetics* 7 (2013) 508-515.