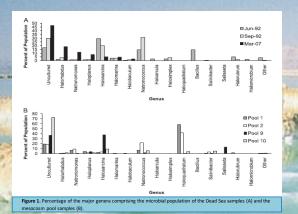


DEAD SEA MICROBIOLOGY

Treball de Fi de Grau 2014 - Microbiologia


David Rodríguez Temporal

Introduction

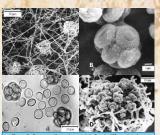
The Dead Sea is one of the most hypersaline environments on Earth (347g/I). Its water level is 417 m below the sea, and the lake is over 300 meters deep, but the water level decreases 1 m every year due to evaporation and the small water

The ionic composition is dominated by divalent cations, like Magnesium and Calcium, and its pH is about the ionic composition is dominated by divalent cations, like Magnesium and a very difficult place to develop like the category of the ionic composition is dominated by divalent cations, like Magnesium and a very difficult place to develop like the category of the ionic composition is dominated by divalent cations, like Magnesium and Calcium, and its pH is about the ionic composition is dominated by divalent cations, like Magnesium and Calcium, and its pH is about the ionic composition is dominated by divalent cations, like Magnesium and Calcium, and its pH is about the ionic composition is dominated by divalent cations, like Magnesium and Calcium, and its pH is about the ionic composition is dominated by divalent cations, like Magnesium and Calcium, and its pH is about the ionic composition is dominated by divalent cations, like Magnesium and Calcium, and its pH is about the ionic composition is dominated by divalent cations, like Magnesium and a very difficult place to develop like the ionic category.

This characteristics make this lake a truly inhospitable environment and a very difficult place to develop life. [1]

Freshwater springs

Recently, researchers have discovered deep freshwater springs on the lake floor, with new types of microorganisms growing in biofilms. The top of the springs' rocks are covered with green biofilms. The bottom of the rock is covered with a white biofilm, formed by sulfate-reducing bacteria. (Figure 3) In this community exist a great diversity of Archaea and Bacteria, so it can be a source of new investigations.


Viruses

Between 0.9-7.3x10⁷ virus-like particles/ml were enumerated, with a variety of morphologies. Viruses may play a major role in the decline of halophilic archaeal communities in the Dead Sea. [4]

At least 26 species have been found, most of them belonging to the ascomycetes. The most common genus are Aspergillus and Penicillium. [3]

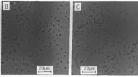
Gymnascella marismortui is a true halophile, and may be endemic of Dead Sea. (Figure 5)

Water column → 0.1-0.2 cfu/ml Sediment → 8.9-91.1 cfu/g

The unicellular flagellate green alga Dunaliella parva is th most important eukaryotic organism in the Dead Sea, and the only primary producer. (Figure 6, 7)

1964 \rightarrow 4x10⁴ cells/ml 1980 \rightarrow 8.8x10³ cells/ml 1992 \rightarrow 1.5x10⁴ cells/ml

Archaea

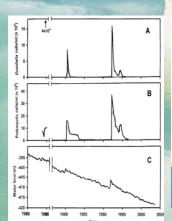

The prokaryotic community is dominated by extremely halophilic archaea, family Halobacteriaceae. (Figure 1) The bacteriorhodopsin pigments in their membranes, give a red color to these organisms.

The most studied archaea are the following:

Haloarcula marismortui was the first archaea isolated from the

Dead Sea.
Halobaculum gomorrense
Halorubrum sodomense Haloferax volcanii (Figure 2)

Numbers in archaeal blooms 1963 → 5.6x10⁶ cells/ml 1980 → 1.9x10⁷ cells/ml 1992 → 3.5x10⁷ cells/ml


Bacteria

first isolated bacteria were Chromohalobacter marismortui and Halomonas halmophila.

The most important bacteria are anaerobic (order Haloanaerobiales), these include fermentative bacteria and denitrifiers. The most representative species of this order are: Halobacteroides halobius Orenia marismortui

Sporohalohacter lortetii

Bacteria are in very low numbers. [2]

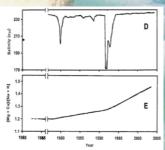
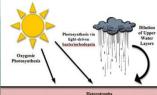
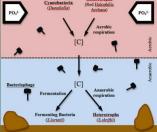


Figure 4. A: Population density of the unicellular green alga Dundliella. B: community density of prokaryotes in the upper meters of the water column. C: the water level of the Dead Sea. D: the salinity of the upper water layer. E: molar ratio of divalent and monovalent cations of the Dead Sea.

Ecology of blooms

When the upper water layers become diluted with fresh water from rain floods, and phosphate is available, a bloom of *Dunaliella* can be developed. (Figure 4, 8)


Dunaliella bloom is followed by growth of red halophilic archaea, that impart a reddish color to the water.


Glycerol produced by *Dunaliella* is the main source of organic nutrients for archaea.

When the salinity becomes too high for Dunaliella, they disappear from the water column and archaeal communitied decline, hypothetically by the action of bacteriophages. [5]

Conclusions

- In the Dead Sea exist a great diversity of microorganisms, subject to constant changes due to phenomena such as evaporation or water dilution.
- A big percentage of the microbial population is unculturable, so more studies can give us information of their role in the ecosystem.
- Some of the microorganisms have unique characteristics that can provide us information about the evolution and adaptation to extreme environments.

- iemi, Z. B. Avraham, J. Got. The Dead Sea: The Lake and its Setting. Oxford University Press, 1997 286 páginas

 A. Ventosa. Benjamin Elazari Volcani (1915-1999). Sktyr-three years of studies of the microbiology of the Dead Sea. INTERNATL MICROBIOL (1999) 2:195-198. Springer-Verlag (bérica 1999, cholog. E. News, S. V. Wosser, A. Dera and P. P. Molitoris. Trangal life in the extremely hypersaline water of the Dead Sea. First records. Proc. R. Soc. Lond. 8 (1998) 265, 1461-1465

 (S. Britzbok, M. Heldal) Occurrence of virus. Hicke particles in the Dead Sea. Extremophile. 1997 Aug; 13(1):448.

 Microbiological doubles in the Dead Sea. Enture challenges toward the understanding! It is the limit of salt concentrations. Hydrobiologia 405: 1-9, 1999