## Molecular mechanisms of drug resistance in *Mycobacterium* tuberculosis: Intrinsic and acquired resistance



## Marçal Arumí Rovira Degree in Microbiology – Universitat Autònoma de Barcelona

### Introduction

Tuberculosis is a disease caused by the mycobacteria *Mycobacterium tuberculosis*. (1) Currently it can be cured thanks to the antibiotics.

The problem is that the ability of this bacteria can mutate and acquire drug resistance and become MDR-TB or XDR-TB. Figure 1 presents the cases of TB and MDR-TB in Europe from 2005 until 2012

## Objectives: - Define the me

- Define the mechanisms of intrinsic and acquired drug resistance in *M.*tuberculosis
- Describe the drug resistance mutations and their molecular changes.

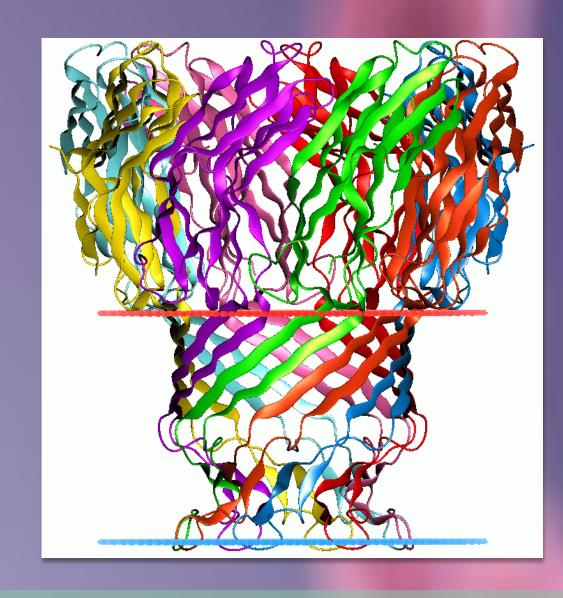



Fig 3: Molecular structure of MspA porin. Source: http://upload.wikimedia.org/wikipedia/commons/0/0f/1uun opm.aif

# 1,000,000 433455 475672 459651 397911 390519 380555 361860 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,0

Fig 1:TB and MDR-TB cases in Europe (WHO). Source: https://extranet.who.int/sree/Reports?op=vs&path=/WHO\_HQ\_Reports/G2/PR OD/EXT/MDRTB\_Indicators\_charts

## Porin Branched and capped portion of LAM Mycolic acids Arabinan portion of LAM Pentaarabinosyl motifs Linker Galactan Peptidoglycan Associated plasma-membrane proteins PIMs Polyprenyl sugars

Fig 2: Mycobacterial cell wall of *M. tuberculosis*. Altered source: img.docstoccdn.com/thumb/orig/27038162

## Intrinsic antibiotic resistance mechanism

- Mycobacterial cell wall: The Figure 2 shows the structure of the cell wall. The peptidoglycan and the arabinogalactan layer, are covalently linked to a layer of mycolic acids that prevent the drug diffusion between the inside and the outside of the bacteria. (4)
- **Porins:** Research demonstrate that MspA porin in *M.* smegmati makes the bacteria be more sensitive towards the antibiotics. Figure 3 shows the molecular structure of the MspA porin. There is the possibility that the absence/presence of *M. tuberculosis* MctB and OmpA porins may be linked at drug resistance.<sup>(5)</sup>
  - **Efflux pumps**: The main function is to expel waste and toxic substances through the cell wall. There are 18 pumps codified in its genome giving it a low-level drug resistance. The main problem would be a mutation that causes an overexpression of this efflux pumps.<sup>(6)</sup>

Spontaneous mutations are the only mechanism that can make *M. tuberculosis* a drug resistance bacteria. In chart 1 we can observe the discovered mutations that *M. tuberculosis* can have to protect itself against antibiotics.

| Drug            |                                                | Mode of action                                                                   | Gene                        | Gene function                                                                       | Role                                                                 | Mutation                                                    |
|-----------------|------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
| First-<br>line  | Isoniazid                                      | Inhibition of mycolic acid biosynthesis and other metabolic processes            | katG<br>inhA<br>ndh<br>ahpC | Catalase-peroxidase Enoyl ACP reductasa NADH dehydrogenase II Alkyl hidroperoxidase | Prodrug activation Drug target Activity modulation Resistance marker | Ser-315-Thr -15C->T promotor site Arg-13-Cys and Val-18-Ala |
|                 | Rifampicin                                     | Inhibition of transcription                                                      | rpoB                        | B-subunit of RNA polymerase                                                         | Drug target                                                          | Ser-450-Leu                                                 |
|                 | Pyrazinamide                                   | Inhibition of trans-translation                                                  | pncA<br>rpsA                | Pyrazinamidase<br>S1 ribosomal protein                                              | Prodrug activation Drug target                                       | Asp-12-Ala/Asn, Leu-85-Pro<br>Deletion Ala438               |
|                 | Ethambutol                                     | Inhibition of arabinogalactan synthesis                                          | embCAB<br>embR              | Arabinosyl transferases<br>embCAB transcription regulator                           | Drug target Drug target expression                                   | <i>embB</i> : Met-306-Val/IIe/Leu<br>Unknown                |
|                 | Streptomycin                                   | Inhibition of translation                                                        | rpsL<br>rrs<br>gidB         | S12 ribosomal protein<br>16S rRNA<br>16S rRNA methyltransferase                     | Drug target Drug target Target modification                          | Lis-43-Arg<br>A-1401-G                                      |
| Second<br>-line | Amikacin/Kanamycin/<br>Capreomycin/ Vancomycin | Inhibition of translation                                                        | rrs<br>tlyA<br>Eis          | 16S rRNA<br>16S/23S rRNA methyltransferase<br>enhanced intracellular survival       | Drug target<br>Drug target<br>Drug resistance                        | A-1401-G<br>G-223-T<br>                                     |
|                 | Ethionamide                                    | Inhibition of mycolic acid biosynthesis                                          | ethA<br>inhA<br>Ndh         | Flavin monooxygenase<br>Enoyl ACP reductase<br>NADH dehydrogenase II                | Prodrug activation Drug target Activity modulation                   | Ile-21-Thr/Val and<br>Arg-13-Cys and Val-18-Ala             |
|                 | Fluoroquinolones                               | Inhibition of DNA gyrase                                                         | gyrA<br>gyrB                | DNA gyrase subunit A<br>DNA gyrase subunit B                                        | Drug target Drug binding (target)                                    | Ala-90-Val and Asp-94-Gly/Tyr<br>Asn-533-Thr                |
|                 | P-aminosalicylic acid (PAS)                    | Unknown                                                                          | thyA                        | thymidylate synthase A                                                              | Drug resistance                                                      | Confers susceptibility: Val-261-Gly                         |
|                 | Linezolid                                      | Inhibition protein biosynthesis                                                  | Rrl                         | 50S ribosomal subunit                                                               | Drug target                                                          | G-2061-T and G-2576-T                                       |
|                 | Macrolides                                     | Increase cell wall permeability                                                  | erm 37                      | 23S rRNA methyltransferasa                                                          | Drug resistance                                                      | Intrinsic resistance                                        |
|                 | Cicloserine                                    | Inhibition peptidoglycan biosynthesis                                            |                             |                                                                                     |                                                                      |                                                             |
| New-<br>Drugs   | SQ109                                          | Inhibition cell wall biosynthesis                                                | mmpL3                       | Mmpl3 transporter                                                                   | Drug target                                                          | Ala-700-Thr and Glut-40-Arg                                 |
|                 | TMC207                                         | Inhibition ATP synthase                                                          | atpE                        | ATP synthase subunit C                                                              | Drug target                                                          | Ala-63-Pro and Iso-66-Met                                   |
|                 | NAS-21/ NAS-91 analogues                       | Inhibition fatty acid biosynthesis                                               | hadB                        | FAS-II dehydratase                                                                  | Drug target                                                          | Unknown                                                     |
|                 | Benzothiazinones                               | Inhibition arabinan biosynthesis                                                 | dprE1                       | decaprenylphosphoryl-beta-D-ribose oxidase                                          | Drug target                                                          | Cys-387-Ser                                                 |
|                 | PA-824<br>OPC- 67683                           | NO donor/ Inhibition cell wall biosynthesis Inhibition mycolic acid biosynthesis | Ddn                         | deazaflavin-dependent nitroreductase                                                | Prodrug activation                                                   | Unknown                                                     |

Chart 1. Antibiotics against *M. tuberculosis*, their targets and their main mutation. Source based on: (3)

## Conclusions:

As we could see in this review, besides the classic mutations there are other kinds of unknown of molecular changes. That's why we have to keep improving the molecular tools in order to know better its drug resistance mechanism. After that we will be able to make more rational antibiotics or to reform the current treatments. It is also important to use the molecular tools to study how MDR-TB and XDR-TB strains work and to avoid their global expansion. However it's important to keep investigating to discover new possible targets and to develop antibiotics which are effective despite their mutations.

### Bibliography