APPLYING GENOMICS TO BIOMEDICINE

DIAGNOSIS OF ARRHYTHMOGENIC RIGHT VENTRICULAR DYSPLASIA

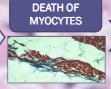
Adrià Hernàndez, Genetics Degree, UAB

adria.hernandez@e-campus.uab.cat

INTRODUCTION

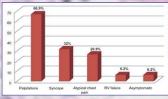
The arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease. It is characterized by death of myocytes in the right ventricle and their replacement by fibro-fatty tissue. Major genetic defects are found in desmosomes whose function is cell adhesion. Sudden cardiac death (SCD) is the main problem of ARVD; around of 20% of SCD are involved by ARVD (table 1). 50% of cases have familial distribution with at least one affected patient. The pattern of inheritance is AD and the prevalence range is 1:2500, but varies between populations.

TABLE 1: CAUSES OF SUDDEN CARDIAC DEATH (%) IN PEOPLE UNDER 35 YEARS OLD. Corrado et al. (1998)					
JSES	ATHLETES	NO ATHLETES	TOTAL		


CAUSES	ATHLETES	NO ATHLETES	TOTAL
Arrhythmogenic right ventricular dysplasia	22,4	8,2	10,8
Coronary arteriosclerosis	18,4	16,4	16,7
Anomalous coronary arteries	12,2	0,5	2,6
Conduction system disease	8,2	9,1	8,9
Mitral valve prolapse	10,2	9,5	9,7

OBJECTIVES

The main objective is to discuss the possibility of applying genomics to biomedicine as a genetic test for a long-term disease, for example in ARVD; extrapolating this use in many diseases such as cancer and cardiomyopathies. In particular, presentation of all features of ARVD: clinical characteristics, genetic causes, genetic testing and genetic counseling. Also, introducing a real case to explain improvement of applying genomic testing.

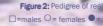

DESMOSOMES: CELL ADHESION

HAVE GENETIC **ALTERATIONS**

FIBRO-FATTY **INFILTRATION**

SYMPTOMS: (figure 1) Palpitations and syncopes Advanced phase: RV failure and LV involvement Sudden Cardiac Death (SCD)

gure 1: Symptoms of ARVD and its frequency

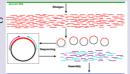

REAL CASE

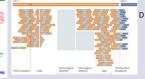
To introduce genetic testing in ARVD, here it is presented a familiar with two affected females (figure 2). They were diagnosed when they were 30-35 years old.

Any genetic test hasn't been done and any mutation hasn't been found. Also, sons and daughters are too young to present any clinical symptoms. The possible genetic diagnostic is explained in this work.

Figure 3: Molecular model of desmosom

are PKP2, DSC2, DSG2, DSP and JUP.


GENETIC TESTING


The major diagnosed people has a mutation in PKP2 (40%), around 40% people is not diagnosed and other 20% is affected different other genes.

oThere are techniques used to find variations only in one sequence of the genome: Sanger sequencing (A) and MLPA (B). Usually, are the first steps to look for a mutation in PKP2.

oMore genetic causes in different chromosomes, it would be more efficient to use a whole-genome technique (C). Next Generation Sequencing (NGS) is the most useful test to find variations (D).

oldentifying variations in ARVD/C Genetic Variants Database (E) to know all information of this variant.

DSC2, DSG2, DSP and JUP are genes that encodes desmosomes, too (table 2 and figure 3). More than 200 mutations have been found in this four genes. Majority of variations are punctual changes as missense mutations. All types of mutations may be detect.

Non-desmosomal genes: recent genes have been discovered, these could relate with cases of misdiagnosis and are important in genetic test; their prevalence is low (10%). These genes are: DES, TGF\$3, TMEM43, LMNA, TTN and PLN (table 2). They encode, mainly, intermediate filaments or regulatory elements.

GENETIC CAUSES

CTNNA3

DES

DSC2

DSG2

DSP

IUP

IMNA

PKP2 PLN

TGFB3

PKP2: is the most prevalent gene affected in ARVD. There are more than 150 pathogenic mutations identified only in PKP2 that represent 35-40% of total ARVD cases. A lot of types of mutations have been

detected (CNV, splicing, missense, nonsense and frameshift).

TMEM43

10g21.3

Desmin

Desmocollin-2

Desmoglein-2

Desmonlakin

Junction plakoglobin

Transforming growth factor β 3

Transmembrane protein 43

2q35

18q21

6n24

17q21

1q22

6q22.1

3p25.1

2q31.2

14a24.3

18q12.1

In ARVD/C Genetic Variants Database, it is possible to find all variants in this 12 genes with all important information. For that is a good tool for genetic diagnostic.

ETHICAL QUESTIONS

Key information and suggestions that cardiologists should know:

- ➤ Genetic testing in patients and relatives (al least two diagnosed in a family)
- •Interpretation of the results: mode of inheritance and risk recurrence, molecular genetics, penetrance and natural history and variable expressivity.
- •Organization of genetic counselling, principles of bioethics.
- ▶ Possible prenatal or preimplantation diagnostic if variations have been found.

CONCLUSIONS

- •ARVD is a polygenic disease and can evolve to a SCD (20%) or other malignant symptoms.
- Applying genomics to biomedicine may help as a good tool in some complicated diseases as cardiomyopathies or cancer.
- •Whole-genome testing will be important in research and diagnostic to these diseases.
- •Genetic causes and diagnostic of ARVD have been explained to solve real cases of affected families and the manner to help to improve their life.

REFERENCES

- impuzano, 0., et al. Genetics of arrh Genetics 2013, 50(5), 280-9.
- Genetics 2013, 50(5), 280-9.

 menor, J., et al. Arrhythmogenic Right Ventricular Cardic
 Review. Clin Med Insights Cardiol. 2013, 7, 97-114.

 n der Zwaag PA., et al. A genetic variants data
 dysplasia/cardiomyopathy. Hum Mutar 2009;30, 1278-83
 tiberts JD., et al. Detection of genomic deletions of PKP2 in a

oberts JD., et al. Detection of genomic of Clin Genet. 2013;83(5), 452-6.

Charron, P., et al. Genetic counselling and testing in cardiomyopathies: a position statement of the Europe Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European heart journ