
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Aplicación para la asignación automática
de puertas de embarque a los vuelos

de un aeropuerto
Carlos Rea Nogales

Resumen— En el siguiente artículo se explica el desarrollo de un sistema de asignación automática de puertas de embarque a

los vuelos de un aeropuerto, utilizando técnicas heurísticas de búsqueda local. Los objetivos de este sistema son lograr reducir

al mínimo el número de puertas que tienen vuelos en conflicto, el tiempo de retraso de los vuelos y la distancia que caminan

los pasajeros en los trasbordos. El problema examinado es abordado como un problema de satisfacción de restricciones y

búsqueda local. Este problema ha sido resuelto mediante la metaheuristica de búsqueda tabú y un algoritmo voraz .Se ha

implementado el sistema en el lenguaje de programación java y se ha evaluado su rendimiento tomando como referencia datos

reales del aeropuerto de Barcelona – El Prat. Los resultados obtenidos muestran que es un sistema robusto y eficaz en la

asignación de los vuelos y que esta asignación depende de las variables y restricciones del problema y a su vez de los

parámetros del algoritmo de búsqueda tabú.

Palabras clave— Asignación de puertas a los vuelos de un aeropuerto, búsqueda tabú, problema de satisfacción de

restricciones, búsqueda local.

Abstract— The following article explains the development of an automatical Airport Gate Assignment system, using heuristic

tecniques of local search. The objectives of this system are to achieve a minimization in the number of gates with flights in

conflict, the delay of the flights and the distance walked by the passengers in a transfer. The examined problem is tackled as a

Constraint satisfaction problem and local search. This problem has been solved through the metaheuristic of tabu search and a

greedy algorithm. The system has been implemented in the programmation language java and its performance has been

evaluated taking as a reference real data from Barcelona’s Prat Airport. The obtained results show that this is a robust and

efficient system for flight assignments and that this assignation depends both on restrictions and variables of the problem and

the algorithm parameters of the tabu search.

Index Terms— AGAP (Airport Gate Assignment Problem), tabu search metaheuristic, CSPs (Constraint satisfaction problem).

——————————  ——————————

1 INTRODUCCIÓN

ste proyecto que se enmarca dentro del trabajo final

de grado, está relacionado con el problema de la asig-

nación de puertas en un aeropuerto (en inglés Airport

Gate Assignment Problem, AGAP). Tal problema requie-

re la reasignación de las puertas para asignar vuelos di-

námicos y optimizar el estado de las puertas para mejorar

el nivel de servicio ofrecido a los pasajeros.

El problema AGAP, es un problema de satisfacción de

restricciones (en inglés Constraint satisfaction problem,

CSPs) que se puede resolver mediante búsqueda local. Su

complejidad es NP-Hard, es decir no existe un algoritmo

conocido para encontrar una solución óptima en tiempo

polinomial. Por ello es un problema complejo y difícil de

optimizar, ya que involucra la consideración de muchos

factores, como el número de puertas disponibles, el nú-

mero de vuelos para asignar, los trasbordos entre vuelos,

los tipos de aviones que se pueden alojar en una puerta,

etc. El aumento del tamaño de estas variables y restriccio-

nes hace que la complejidad del problema se incremente

exponencialmente.

Del mismo modo este tipo de problemas de asignación de

vuelos se puede ver como un problema de planificación

de tareas (en inglés Job Shop Scheduling), los cuales son

de mucho interés en otras áreas. Las soluciones encontra-

das mediante diversas técnicas computacionales tienen

desde hace años mucha importancia en el área de la inte-

ligencia artificial.

E

————————————————

 E-mail de contacto: carlos.rea@e-campus.uab.cat
 Mención realizada: Computación.
 Trabajo tutorado por: Robert Benavente (Ciencias de la computación)
 Curso 2013/14

2 EE/UAB TFG INFORMATICA: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO

Para realizar este proyecto se han revisado diferentes

trabajos en el campo en el que se realiza este proyecto,

encontrando diferentes maneras de resolver el problema.

Hay diversos algoritmos heurísticos con los que se han

obtenido resultados óptimos en términos de maximizar o

minimizar una función objetivo y que son efectivos para

este tipo de problemas. Entre las diferentes técnicas en-

contradas, se mencionan: la metaheuristica de búsqueda

tabú [1, 3, 4], el algoritmo de recocido simulado [2, 7],

algoritmos voraces [1], y una serie de algoritmos híbridos

en los que se combinan diferentes métodos para encontrar

una solución mejorada [1, 7].

En este trabajo el método elegido es un algoritmo me-

taheuristico de búsqueda tabú que se encarga de llevar a

cabo la asignación de los vuelos y un algoritmo voraz que

se ocupa de generar la solución inicial con la que comen-

zara la búsqueda tabú.

Se utilizó la metaheurística de búsqueda tabú, ya que es

un método robusto, bueno para encontrar soluciones

optimizadas en espacios de búsqueda grandes y está

probada su utilidad en la resolución de este tipo de pro-

blemas. [1, 3, 4]

Los datos con los que se ha trabajado son datos reales

extraídos del aeropuerto de Barcelona – El Prat. Para

poder completar datos que faltaban se han generado da-

tos ficticios o aleatorios, que son coherentes con los datos

reales. En la sección 3 se explica con más detalle cómo se

generan estos datos. La aplicación está preparada para

trabajar con datos reales y su funcionamiento garantiza

encontrar una solución. La información extraída fue

guardada en ficheros de texto y cargados por la aplica-

ción para poder realizar el procesamiento y el análisis de

los resultados obtenidos mediante la solución adoptada.

El resto del artículo se organiza de la siguiente manera.

En la sección 2 se presenta el marco teórico del problema.

A continuación en la sección 3 se explica la metodología

aplicada en el proyecto. Posteriormente en la sección 4 se

muestran los resultados obtenidos y finalmente en la

sección 5 se presentan las conclusiones a las que se ha

llegado con este trabajo.

2 MARCO TEÓRICO

2.1 Modelado CSPs

El problema AGAP se ha planteado de la siguiente mane-
ra, considerando las siguientes variables y restricciones:

Variables = Vuelos

Dominio = Puertas de embarque

Restricciones =

 Cada vuelo tiene que ser asignado a una sola

puerta.

 Dos vuelos no pueden ser asignados a la misma

puerta en el mismo tiempo.

 El tiempo entre dos vuelos en una misma puerta

debe ser menor a un cierto tiempo.

 Hay puertas disponibles para unos modelos de

avión únicamente.

 El tiempo de retraso de un vuelo debe ser míni-

mo.

 La distancia entre puertas en un trasbordo debe

ser mínima.

 Capacidad de aviones más grande a puertas más

cercanas a la puerta de acceso del aeropuerto.

2.2 Función objetivo

La función objetivo es la ecuación que será optimizada

dadas las restricciones que necesitan ser minimizadas

usando técnicas de programación lineal o no lineal.

Los objetivos que se busca con la función objetivo son:

 Minimizar el número de puertas que tienen vue-

los en conflicto.

 Minimizar la distancia a pie que tienen que reco-

rrer los pasajeros en un trasbordo.

Para este trabajo se ha establecido la siguiente función

objetivo F, la cual busca minimizar el tiempo:

𝐹 = 𝑓_𝑟𝑒𝑡 (𝑥) ∗ 𝑎 + 𝑓 _𝑡𝑟𝑎𝑠 (𝑥) ∗ (1 − 𝑎) (1)

a = peso asignado al tiempo (entre 0 y 1).

x = es el estado actual de la asignación de puertas y vue-

los.

f_ret (x) = función que calcula el tiempo mínimo entre dos

vuelos en una misma puerta, para evitar solapamientos y

se expresa mediante la siguiente ecuación.

∑ ∑ ∑ 𝑡𝑙𝑙(𝑉𝑗) − 𝑡𝑠(𝑉𝑘) 𝑡. 𝑞. 𝑉𝑗 = 𝑖, 𝑉𝑘 = 𝑖, 𝑗 ≠ 𝑘𝑛𝑣
𝑘=1

𝑛𝑣
𝑗=1

𝑛𝑝
𝑖=1 (2)

np = número de puertas.

nv = número de vuelos.

tll(A) = tiempo de llegada del vuelo A.

ts(B) = tiempo de salida del vuelo B.

CARLOS REA NOGALES.: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO 3

V = vuelos

f_tras (x) = función que calcula el tiempo mínimo que

tardan en desplazarse los pasajeros en un trasbordo. Esta

expresada en la siguiente ecuación.

∑ ∑ 𝑑 (𝑃𝑜𝑠𝑃𝑢𝑒𝑟𝑡𝑎(𝑉𝑖), 𝑃𝑜𝑠𝑃𝑢𝑒𝑟𝑡𝑎(𝑉𝑗)) ∗ 𝑁𝑇(𝑉𝑖 , 𝑉𝑗)𝑛𝑣
𝑗=1

𝑛𝑣
𝑖=1 (3)

d(A, B) = distancia Euclidea entre las puertas A y B.

posPuerta = función que devuelve la posición (x, y) de la

puerta asignada al vuelo V.

NT = número de pasajeros que han de hacer un trasbordo

entre los vuelos Vi y Vj.

2.2 Metaheuristica de búsqueda tabú

La búsqueda tabú (en inglés Tabu Search, TS) es un pro-

cedimiento heurístico de memoria adaptativa propuesto

por Fred Glover en 1986 para la búsqueda de los óptimos

globales en problemas de optimización combinatoria.

La búsqueda tabú explora el espacio de soluciones a tra-

vés de una sucesión de movimientos desde una solución a

la mejor de sus vecinas tratando de evitar óptimos locales.

El algoritmo realiza una búsqueda por entornos en la cual

se desplaza en cada iteración a la mejor solución del ve-

cindario de la solución actual. Los principales atributos de

cada solución visitada son almacenados en una lista tabú

por un determinado número de iteraciones para evitar

que estas soluciones sean revisitadas, es decir, para evitar

ciclos en la búsqueda por entornos. Así, un elemento del

vecindario de la solución actual es declarado tabú, es

decir es prohibido, si alguno de sus atributos está en la

lista tabú. En general, un método basado en búsqueda

tabú requiere de los siguientes elementos:

 Solución inicial. Es la configuración inicial a par-

tir de la cual se comienza la búsqueda.

 Movimiento. Es un procedimiento determinista

por el que se genera una solución admisible a

partir de la soluciona inicial.

 Vecindad. Es el conjunto de todas las soluciones

admisibles que pueden ser generadas por un

movimiento sobre la solución actual.

 Lista tabú. Es un mecanismo de memoria adap-

tativa que evita que la búsqueda entre en un ciclo

o quede atrapada en un óptimo local.

 Criterio de parada. La búsqueda termina des-

pués de un número determinado de iteraciones.

2.2 Generación de una solución factible y
optimizada

El primer objetivo del trabajo es generar una solución

factible que sirva como punto de partida para el algorit-

mo de búsqueda tabú. Esta solución inicial se genera

mediante un algoritmo voraz que se encarga de obtener

una configuración inicial de los datos respetando las res-

tricciones del problema. La intención es incorporar infor-

mación adicional del problema que genere datos de ma-

yor calidad y de esta manera conseguir una buena solu-

ción inicial que hará más fácil y rápida la búsqueda de

una solución factible y mejorada por parte del algoritmo

de búsqueda tabú. Para ello lo primero que se hace es

ordenar los vuelos según la hora de llegada al aeropuerto.

Después se asigna cada vuelo a una puerta disponible si

existe, sino se le asigna una puerta cualquiera.

Algoritmo Solución Inicial

ListaSolución = inicializar lista vacía

Mientras (no se hayan asignado todos los vuelos) Hacer

Si (la puerta que se va asignar está vacía)

 ListaSolucion = asignar puerta

Si no

 Mientras (no se haya encontrado una

puerta disponible) hacer

 Si el vuelo que llega a la puerta no se so-

lapa con el último vuelo que hay en la puerta

 ListaSolucion = asignar puerta

 Fin si

 Fin mientras

Fin si

Si no se asignó ninguna puerta

 ListaSolucion = asignar puerta.

Fin si

Fin mientras

Retornar listaSolucion

Fin Algoritmo Solución Inicial

El segundo objetivo es realizar una optimización de la

asignación de los vuelos mediante la búsqueda tabú. El

algoritmo parte de la solución inicial y se genera una

estructura de vecindario que contiene el conjunto de to-

dos los posibles movimientos que se pueden hacer desde

una asignación concreta, el algoritmo selecciona el si-

guiente movimiento de la lista del vecindario y calcula el

mejor vecino mediante la función de coste. Cuando acaba

de explorar todo el vecindario, se queda con el movimien-

to que dio el menor valor en la función de coste, y añade

la solución a la lista tabú para prohibir que se pueda ele-

gir ese movimiento en futuras iteraciones del algoritmo.

Con la lista tabú se trata de evitar que la búsqueda entre

un ciclo o quede atrapada en un óptimo local, la lista tabú

tiene un tamaño determinado y cuando se llena sale el

4 EE/UAB TFG INFORMATICA: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO

primero que entro para dar espacio al nuevo movimiento

que entra. El algoritmo acaba cuando llega a una condi-

ción de parada que es un número determinado de itera-

ciones o cuando encuentra una solución óptima que evita

todas las posibles restricciones del problema. Entonces

retorna la mejor solución encontrada.

Algoritmo Tabu Search

Sol-actual = generar solución inicial.

Lista-dominios = obtener dominios.

Lista-tabu = inicializar la lista vacía.

Mientras (No se cumpla el criterio de parada)

Hacer

Generar el vecindario actual (Sol-actual,

Lista-dominios).

Reducir el vecindario (Lista-tabu).

Seleccionar la mejor solución no tabú del

vecindario y almacenar como Sol-actual.

Si (coste (Sol-actual) es mejor que coste

(Mejor-sol))

Mejor-sol = sol-actual

 Fin Si

Lista-tabu = Actualizar lista tabú (Sol-

actual)

Fin Mientras

Retornar Mejor-sol

Fin Algoritmo Tabu Search

3 METODOLOGÍA APLICADA

3.1 Obtención de los datos

Como se ha adelantado en la introducción del docu-

mento, los datos utilizados para la evaluación del sistema,
son datos reales, concretamente han sido obtenidos de la
página web del aeropuerto de Barcelona – El Prat. Se ha
recogido información referente a los vuelos [8], aviones
[9] y puertas de embarque [10].

El motivo por el cual se ha optado por buscar datos

reales es para que la aplicación pueda ejecutarse en un
entorno real y probar su eficacia y rendimiento.

Para las puertas se tienen en cuenta las siguientes propie-
dades:

● Número de puerta.

● Distancia a las demás puertas.

● Posición relativa X, Y en el plano del aeropuerto.

● Modelos de avión que pueden estacionarse en la

puerta.

● Lista de aviones asignados

De la lista anterior la información real que se ha recopila-

do es la del número de la puerta y la posición relativa x, y

a escala real en el plano del aeropuerto. La distancia a las

demás puertas es una lista que contiene la distancia de

una puerta a las demás puertas, y se calcula con la distan-

cia euclidea entre dos puertas utilizando las coordenadas

x, y. Los modelos de avión que pueden estacionarse en la

puerta están guardados en una lista que contiene modelos

de aviones generados aleatoriamente para cada vuelo. En

la aplicación las puertas más alejadas a la puerta de acce-

so al aeropuerto, solo se les permite alojar aviones peque-

ños o medianos, mientras que los aviones más grandes

van a las puertas más cercanas a la puerta de acceso, el

motivo es que haciendo esto se evita desplazamientos de

grupos grandes de pasajeros transitando por los pasillos

del aeropuerto. La lista de aviones asignados contiene

todos los aviones que están asignados a esa puerta en la

solución final.

Para los vuelos se tienen en cuenta las siguientes propie-
dades:

● Número de vuelo.

● Hora de llegada al aeropuerto.

● Hora de salida del aeropuerto.

● Aerolínea del vuelo.

● Avión asignado al vuelo.

● Puerta asignada al vuelo.

● Lista de trasbordos.

De la lista anterior la información real que se recopiló fue

el número de vuelo, la hora de llegada al aeropuerto y la

aerolínea del vuelo, para hacer esto, se guardó un listado

de todos los vuelos de un día entero desde las 07:00 a.m.

hasta las 12:00 p.m. La hora de salida es ficticia y se gene-

ra aumentando en 1 hora la hora de llegada para todos los

vuelos. El avión asignado al vuelo se genera de forma

aleatoria, de la lista de aviones se selecciona un avión

cualquiera para cada vuelo. La puerta asignada al vuelo

es la puerta que se asigna para ese vuelo en la solución

final. La lista de trasbordos es una lista generada con

datos ficticios, para obtener estos datos se crea la infor-

mación en un fichero de texto con los datos de los tras-

bordos para algunos vuelos, asignando trasbordos a los

primeros vuelos que llegan, con vuelos que están por

llegar al aeropuerto. Esta lista de trasbordos se implemen-

ta como una tabla hash cuya variable se corresponde con

el vuelo con el que realiza el trasbordo y el valor se co-

rresponde con el número de pasajeros que realizan ese

trasbordo. El número de pasajeros también es aleatorio y

depende del número de pasajeros del avión.

Para los aviones se tienen en cuenta las siguientes pro-

piedades:

 Modelo de avión.

 Número de asientos del avión.

De la lista anterior los datos reales que se recopilaron son

el modelo de avión y el número de asientos del avión.

CARLOS REA NOGALES.: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO 5

Toda la información real es almacenada en ficheros de

texto que posteriormente es leída por la aplicación para

realizar el análisis y las pruebas respectivas.

Conocer la hora de salida y la disponibilidad de la puerta

fue necesario para determinar las siguientes restricciones:

 Cada vuelo tiene que ser asignado a una sola

puerta.

 Dos vuelos no pueden ser asignados a la misma

puerta en el mismo tiempo.

 El tiempo entre dos vuelos en una misma puerta

debe ser menor a un cierto tiempo.

La lista de distancias es una lista para cada puerta y se

utilizó para determinar la siguiente restricción:

 La distancia entre puertas en un trasbordo debe

ser mínima.

La lista de modelos de aviones que pueden asignarse a

una puerta determina la siguiente restricción:

 Hay puertas disponibles para unos modelos de

avión únicamente.

3.2 Desarrollo de la aplicación de asignación de

puertas

Para evaluar el sistema de asignación de puertas se im-
plementó una aplicación en lenguaje java compuesta de
tres módulos: un módulo para las clases que contienen
información de los datos, otro para las clases que imple-
mentan el algoritmo y sus funciones útiles, y por último,
un módulo que muestra los resultados de forma gráfica,
se puede ver el resultado en la figura 1.

En un principio de vio la posibilidad de implementar

la aplicación mediante alguna librería especializada en
programación con restricciones para facilitar el trabajo y
obtener mejores resultados pero la curva de aprendizaje
de las librerías era alto con relación al tiempo disponible
para realizar el proyecto. Debido a la falta de conocimien-
to a la hora de modelar las restricciones de un problema
complejo empleando estas librerías, me decanté por reali-
zar la aplicación implementando lo necesario para llevar-
la a cabo.

En una primera fase del proyecto se implementó el

módulo de las clases que contienen la información de los
datos que se utilizaron para hacer las pruebas. Las clases
implementadas son las siguientes:

 Clase Vuelos. Contiene información de los
vuelos.

 Clase Puertas. Contiene información de las
puertas

 Clase Aviones. Contiene información de los
aviones

En una segunda fase del proyecto se llevó a cabo la im-
plementación del módulo del algoritmo de búsqueda
tabú. Este algoritmo necesita de las siguientes clases:

Clase Move: esta clase se utiliza para generar los movi-

mientos del vecindario en la solución. Un movimiento

está formado por dos variables, un valor que se corres-

ponde con el índice de la puerta, es decir hace referencia a

una puerta y una variable que se corresponde con el índi-

ce del vuelo. Por lo tanto esta clase contiene la informa-

ción de un movimiento del vecindario.

Clase BestCandidate: esta clase se utiliza para obtener el

mejor candidato del vecindario actual. La información

que se guarda es el coste que devuelve la función objeti-

vo, el movimiento actual realizado del vecindario y una

lista que contiene la solución actual, en la cual se corres-

ponde el índice con los vuelos y el valor con las puertas.

Clase TabuList: es una clase que contiene información

referente a la lista tabú, se guarda una variable MaxSize

que contiene la longitud de la lista tabú, y la lista en sí

que es una cola, en donde se almacenan los movimientos

prohibidos por el algoritmo para que no se puedan utili-

zar en futuras iteraciones del algoritmo.

Clase Tools: esta clase contiene la función de coste dentro

de la cual se llama a la función que calcula el coste de la

restricción de los vuelos solapados y la función que calcu-

la el coste de la restricción de los trasbordos.

Clase NeighBorHood: esta clase contiene tres listas, una

lista para la solución actual, otra para el dominio de la

solución y por ultimo una lista de los movimientos de la

solución. Esta clase se encarga de generar el vecindario de

la solución actual, de reducir el vecindario con la lista

tabú y de encontrar el mejor candidato de la lista de mo-

vimientos de la solución actual.

En una tercera fase del proyecto se realizó el modulo

que muestra los resultados de forma gráfica como se
puede ver en la figura 1. Para ello se utilizó una librería
de gráficos llamada JFreeChart [11] que facilita el trabajo
a la hora de mostrar los resultados. Se ha elegido esta
librería entre otras cosas porque es sencilla, rápida de
usar y fácil de integrar en la aplicación. Se ha optado por
utilizar una herramienta de diagrama de Gantt y adaptar
el horario de los vuelos porque era más fácil de mostrar
los resultados con esta estructura y queda más claro el
resultado final de la asignación

6 EE/UAB TFG INFORMATICA: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO

Fig. 1. Gráfico de los resultados obtenidos.

Como se puede observar en el gráfico de la figura 1, se

muestra el listado de la asignación de los vuelos. En el eje
vertical a la izquierda está el listado de puertas de embar-
que, en la parte superior se muestra el tiempo separado
en lapsos de tiempo de 1 hora, las figuras de color rojo
son los vuelos y hacen referencia al tiempo que permane-
ce un vuelo en una puerta. El degradado del color solo
sirve para diferenciar los vuelos en caso de que se sola-
pen.

Fig. 2. Diagrama de flujo de la aplicación.

En el diagrama de la figura 2 se puede ver cada paso
del proceso que sigue la aplicación desde que carga los
datos hasta que los muestra de forma gráfica.

4 RESULTADOS OBTENIDOS

En este apartado voy a describir como se realizaron las
pruebas y el informe de los resultados relevantes.

Para cada una de las pruebas se dispone de varias
muestras de diferentes tamaños. Hay un conjunto de
datos pequeño que consta de 17 vuelos y 8 puertas en
total. Un conjunto de datos mediano que cuenta con 83
vuelos y 22 puertas. Por ultimo hay un conjunto de datos
grande que consta de 803 vuelos y 94 puertas.

En todas las pruebas realizadas se supone que todos

los aviones permanecen en el aeropuerto una hora desde
la hora de llegada hasta la hora de salida. Además se ha
establecido un tiempo fijo por defecto de 15 minutos entre
dos vuelos en una misma puerta para solventar cualquier
eventualidad en caso de haber algún retraso.

Experimento para ver la evolución del coste de la fun-
ción objetivo en función del tamaño de la lista tabú:
conjunto de datos mediano

Número de puertas=61
Número de vuelos=20
Número de iteraciones =100

tamaño de la lista tabú Valor de la función objetivo

75 319864

50 319864

30 319786

20 319864

15 319777

10 319761

5 319582

1 320169

Tabla 1. Resultados obtenidos para del análisis del ta-
maño de la lista tabú.

Como se pude ver en la tabla 1 el mejor resultado se

obtiene para una lista tabú de tamaño 5. Los resultados
muestran que no hay mucha diferencia entre una lista de
5, una lista de 10 o una de 15. Para estas condiciones sobre
este conjunto de datos el mejor tamaño es de 5 pero sobre
otro conjunto de datos habrá que buscar el tamaño ade-
cuado de lista tabú con la que se obtienen los mejores
resultados.

CARLOS REA NOGALES.: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO 7

Experimento para ver la evolución del coste de la fun-
ción objetivo en función del número de iteraciones del
algoritmo de búsqueda tabú: conjunto de datos me-
diano

Número de puertas=61
Número de vuelos=20
Tamaño de la lista tabú=5

Numero de

iteraciones

Valor de la función

objetivo

Tiempo de

ejecución

(ms)

25 319846 874

50 319628 1274

75 319583 1469

100 319582 1857

150 319578 2473

200 319578 3160

Tabla 2. Resultados obtenidos para evaluar el número de
iteraciones.

Como se puede ver en la tabla 2 el mejor resultado se

produce con 150 iteraciones del algoritmo de búsqueda
tabú, sin embargo si se busca la mejor relación entre coste
de la función objetivo y tiempo de ejecución se puede ver
que la mejor opción se encuentra entorno a las 75-100
iteraciones del algoritmo, también se puede observar que
el valor que encuentra la función objetivo con pocas itera-
ciones son óptimos locales, es decir el resultado es una
buena solución pero no es la mejor solución.

De los dos experimentos anteriores se llega a la conclu-

sión de que para un conjunto de datos con 61 vuelos y 20
puertas de embarque la mejor configuración de los pará-
metros del algoritmo de búsqueda tabú son 75 iteraciones
y 5 el tamaño de la lista tabú.

Experimento para ver la evolución del coste de la fun-
ción objetivo en función del número de puertas: conjun-
to de datos pequeño

Número de vuelos=17
Número de iteraciones=50
Tamaño de la lista tabú=5

Tabla 3. Resultados obtenidos para evaluar el número

de puertas.

Para este experimento se usó un conjunto pequeño de

datos para asegurarse de que el modelo puede obtener
una salida correcta. Podemos ver en la tabla 3 que con
solo una puerta el valor de la función objetivo es el más
alto lo que indica que los conflictos de los vuelos en la
puerta son inevitables. Lo mismo ocurre cuando el núme-
ro de puertas disponibles es demasiado pequeño, cuando
ampliamos el número de puertas a 6 el conflicto en la
puerta disminuye drásticamente y es mucho menor que el
valor en 3 puertas. Otro dato a tener en cuenta es el tiem-
po de retraso de los vuelos, se puede ver en la tabla 1
como era de esperar que cuando hay solo 1 puerta es
cuando se produce el mayor número de retrasos. El tiem-
po de retraso va disminuyendo a medida que se añaden
más puertas, hasta que finalmente no hace falta retrasar
ningún vuelo, a partir de 8 puertas ya se consigue asignar
todos los vuelos sin retrasar ninguno.

Número

de puertas

Valor de la

función

objetivo

Tiempo de

ejecución

(ms)

tiempo de

retraso

(min)

1 49978564 6539 6480

2 15273842 5454 4020

3 7003985 4089 2190

4 2746579 2384 960

5 2006546 2036 585

6 450099 956 135

7 207146 1288 30

8 50478 692 0

9 40298 591 0

10 35241 600 0

12 25132 673 0

16 5020 575 0

17 0 456 0

8 EE/UAB TFG INFORMATICA: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO

Experimento para ver la evolución del coste de la fun-
ción objetivo en función del número de vuelos: conjun-
to de datos mediano.

Número de puertas=20
Número de iteraciones=100
Tamaño de la lista tabú=15

Tabla 4. Resultados obtenidos para evaluar el número de
vuelos.

Como se puede ver en la tabla 4 como era de esperar

cuando hay puertas disponibles para alojar vuelos el
valor de la función objetivo es 0 ya que cada vuelo es
asignado a una puerta diferente. A medida que se van
añadiendo más vuelos el valor de la función objetivo se
incrementa, este valor es el resultado de minimizar el
tiempo entre vuelos en una puerta. A mayor número de
vuelos, mayor es el espacio de búsqueda y el tiempo de
ejecución del algoritmo. También se puede ver que cuan-
do se intenta asignar 83 vuelos se producen conflictos de
los vuelos en las puertas, debido a que hay vuelos que
llegan a la misma hora y no hay puertas disponibles en
ese momento, por eso el valor de la función objetivo se
incrementa notablemente ya que tiene que retrasar vuelos
un total de 210 minutos.

Experimento para ver la evolución del coste de la fun-
ción objetivo en función de los trasbordos: conjunto de
datos mediano

Número de vuelos=75
Número de puertas=20
Número de iteraciones=75
Tamaño de la lista tabú=10

Tabla 5. Resultados obtenidos para el análisis de los
trasbordos.

En este experimento se analiza el resultado según el

coste asociado a las dos restricciones en la función objeti-
vo. Como se puede ver en la tabla 5, en la primera colum-
na de la izquierda se destaca la configuración de los pesos
asignados a la función objetivo, en primera posición apa-
rece el peso para los solapamientos y en segunda posición
después del guion el peso para los trasbordos. Como se
puede observar cuando se da más prioridad a los solapa-
mientos el resultado de la función objetivo es el más
grande, esto ocurre porque cuando se suma el resultado
de las dos restricciones asociadas a la función objetivo, el
coste de la restricción de los solapamientos es mucho
mayor que el coste de los trasbordos, y el valor de la fun-
ción objetivo disminuye a medida que se da más priori-
dad a los trasbordos. En el caso en el que solo se tiene en
cuenta los trasbordos, se intenta asignar los vuelos con los
que hay trasbordos a la misma puerta o a una puerta
cercana, al no tener en cuenta los conflictos entre los vue-
los en una misma puerta, se solapan vuelos y el sistema
los retrasa hasta asignarlos a la puerta de menor distan-
cia, con el inconveniente de que se retrasan un total de
975 minutos lo cual es excesivo, y se podría evitar si con-
siderásemos la restricción de los vuelos en conflicto, por
eso esta configuración de los pesos no es deseable en
ningún caso. Si se quiere dar la misma prioridad a los
trasbordos y solapamientos conviene una asignación de
0.5 para ambos. Por lo tanto según la restricción que se

Número

de vuelos

Valor de la

función de

objetivo

Tiempo de

ejecución

(ms)

tiempo de

retraso

(min)

11 0 446 0

18 0 444 0

26 30104 601 0

33 65280 687 0

41 110712 844 0

51 212172 1122 0

61 319777 1764 0

75 534643 2728 0

83 4809960 24137 210

Peso (solapamientos -
trasbordos)

función de
coste

tiempo de
retrasos

1 - 0 534600 0

0.9 - 0.1 481197 0

0.8 - 0.2 427767 0

0.7 - 0.3 374345 0

0.6 - 0.4 320944 0

0.5 - 0.5 267474 0

0.4 - 0.6 214100 0

0.3 - 0.7 160622 0

0.2 - 0.8 107132 0

0.1 0.9 53694 0

0 - 1 9750 975

CARLOS REA NOGALES.: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO 9

quiera minimizar el algoritmo encontrara una solución en
función de la prioridad asignada, ya sea darle más priori-
dad al tiempo mínimo entre vuelos en una puerta, o a la
distancia que caminan los pasajeros en un trasbordo, no
se puede obtener el mejor beneficio de los dos al mismo
tiempo.

Experimento de análisis de la función objetivo: conjun-
to de datos grande

Número de vuelos=803
Número de puertas=94
Número de iteraciones=75
Tamaño de la lista tabú=10

Para este experimento el conjunto de datos presenta

conflictos entre vuelos lo cual hace que se tenga que lla-
mar muchas veces al algoritmo de búsqueda tabú y retra-
sar muchos vuelos, debido a esto el tiempo de ejecución
se extiende mucho más del previsto, se ha calculado el
tiempo de ejecución del algoritmo en unas 4 horas apro-
ximadamente por lo que encontrar una solución al cabo
de un cierto número de llamadas al algoritmo de búsque-
da tabú para intentar asignar todos los vuelos, puede
demorar más de 1 día.

Experimento para ver el resultado de la asignación de
los vuelos en conflicto de forma gráfica: conjunto de
datos mediano

Número de vuelos=81
Número de puertas=20
Número de iteraciones=75
Tamaño de la lista tabú=10

Fig. 3. Gráfico de los resultados obtenidos en la prime-
ra llamada al algoritmo de búsqueda tabú.

Como se puede ver en la figura 3, hay 6 puertas que

tienen vuelos en conflicto, las puertas: A12, A18, A19,
A20, A21 y A25. Las puertas A25 y A18 contienen vuelos
solapados a la misma hora por eso no se distinguen. El
sistema retrasa los vuelos en conflicto 15 minutos y vuel-
ve a llamar al algoritmo de búsqueda tabú. Si en la si-
guiente iteración encuentra vuelos solapados los retrasa
otros 15 minutos hasta asignarlos. Después de 22 llama-
das al algoritmo de búsqueda tabú, se obtienen los resul-
tados de la figura 4 que muestra una asignación correcta

de los vuelos, en detrimento de los vuelos que ha tenido
que retrasar, en total el tiempo de retraso es de 1240 mi-
nutos con un tiempo de ejecución de 52 segundos apro-
ximadamente. Esta situación puede darse si se tiene en
cuenta que eran 6 vuelos que llegaron al aeropuerto de
improviso y no hay puertas disponibles para alojarlos
entonces se opta por retrasar los vuelos un cierto tiempo

hasta asignarlos.

Fig. 4. Gráfico de los resultados obtenidos en la solu-
ción final.

5 CONCLUSIÓN

En primer lugar, se ha recopilado la información necesaria

para evaluar la aplicación. Se ha implementado el algoritmo

de búsqueda tabú. Se ha realizado una presentación grafica

de los resultados obtenidos. Se ha conseguido minimizar la

función objetivo considerando las restricciones del problema

obteniendo una buena solución para los vuelos en conflicto y

los trasbordos de los pasajeros. Se ha hecho un análisis del

rendimiento de la aplicación obteniendo resultados favora-

bles. Por todo lo anterior se puede concluir que se ha logra-

do cumplir el objetivo de crear un sistema de asignación de

vuelos a las puertas de un aeropuerto.

Como trabajo futuro se pueden realizar las siguientes mejo-

ras:

 Realizar la asignación de puertas aplicando otras

heurísticas de ordenación de los vuelos o las puer-

tas de embarque.

 Implementar otros algoritmos de búsqueda local

como el algoritmo de recocido simulado y compa-

rar los resultados para ver con cual se obtiene un

mejor rendimiento.

 Implementar la solución actual mediante software

especializado en programación con restricciones.

 Crear una interfaz gráfica de usuario en donde se

puedan modificar parámetros del algoritmo como el

tamaño de la lista tabú o el número de iteraciones y

otros atributos relacionados con los vuelos, puertas

o aviones.

10 EE/UAB TFG INFORMATICA: APLICACIÓN PARA LA ASIGNACIÓN AUTOMATICA DE PUERTAS DE EMBARQUE A LOS VUELOS DE UN AEROPUERTO

AGRADECIMIENTOS

Me gustaría expresar mi gratitud a Robert Benavente,
tutor del proyecto por sus consejos y recomendaciones en
este trabajo.

BIBLIOGRAFÍA

[1] Wipro Technologies. (2009). Gate Assignment Solution (GAM)
Using Hybrid Heuristics Algorithm. Draft technical white paper
on gate assignment solution. Team Airline Innovation Centre of
Excellence, Wipro Technologies.
[Accedido el día 25 de febrero de 2014].

[2] Andreas Drexl and Yury Nikulin. Multicriteria airport gate as-
signment and Pareto simulated annealing. IEE Transactions,
Vol. 40(4): 385-397. Apr 1, 2008
[Accedido el día 25 de febrero de 2014].

[3] H Ding, A Lim, B Rodrigues and YZhu. “New heuristics for over-
constrained flight to gate assignments”.Journal of the Operatio-
nal Research Society (2004), Vol. 55(7): p. 760-768. Jul, 2004.
[Accedido el día 26 de febrero de 2014].

[4] Sang Hyun Kim, Eric Feron, John-Paul Clarke, Aude Marzuoli,
Daniel Delahaye. Airport Gate Scheduling for Passengers, Air-
craft, and Operations. Tenth USA/Europe Air Traffic Manage-
ment Research and Development Seminar (ATM 2013).

[Accedido el día 27 de febrero de 2014].

[5] Soi-Hoi Lam, Jia-Meng Cao and Henry Fan. Development of an

intelligent agent for airport gate assignment. Journal of Air
Transportation; 2002, Vol. 7 Issue 2, p 103. June 2002

[Accedido el día 28 de febrero de 2014].

[6] S. H. Kim, E. Feron, and J.-P. Clarke, “Gate assignment to

minimize passenger transit time and aircraft taxi time,” AIAA J.
of Guidance, Control, and Dynamics, vol. 36, no. 2, pp. 467-
475, 2013.
[Accedido el día 3 de marzo de 2014].

[7] H. Ding, A. Lim, B. Rodrigues and Y. Zhu. The Airport Gate

Assignment Problem. Computers & Operations Research, vol.
32, p.1867-1880. 2003.
[Accedido el día 4 de marzo de 2014].

[8] Salidas y llegadas de vuelos del aeropuerto de Barcelona- El
Prat.

 <http://www.aeropuertos.net/aeropuerto-de-barcelona-
llegadas-de-vuelos/>

[Accedido el día 26 de marzo de 2014]

[9] Aviones comerciales

 <http://turinegocios.com/cms/front_content.php?idart=182>
[Accedido el día 27 de marzo de 2014]

[10] Mapa del aeropuerto de Barcelona – El Prat.

<http://www.barcelona-tourist-
guide.com/sp/aeropuerto/mapas/indicaciones-para-ir-en-
automovil-desde-el-aeropuerto-de-barcelona-hasta-el-centro-
de-la-ciudad.html>.

 [Accedido el día 28 de marzo de 2014]

[11] Librería de gráficos para Java, JFreeChart.

< http://www.jfree.org/jfreechart/>.

 [Accedido el día 2 de junio de 2014]

http://www.aeropuertos.net/aeropuerto-de-barcelona-llegadas-de-vuelos/
http://www.aeropuertos.net/aeropuerto-de-barcelona-llegadas-de-vuelos/
http://turinegocios.com/cms/front_content.php?idart=182
http://www.barcelona-tourist-guide.com/sp/aeropuerto/mapas/indicaciones-para-ir-en-automovil-desde-el-aeropuerto-de-barcelona-hasta-el-centro-de-la-ciudad.html
http://www.barcelona-tourist-guide.com/sp/aeropuerto/mapas/indicaciones-para-ir-en-automovil-desde-el-aeropuerto-de-barcelona-hasta-el-centro-de-la-ciudad.html
http://www.barcelona-tourist-guide.com/sp/aeropuerto/mapas/indicaciones-para-ir-en-automovil-desde-el-aeropuerto-de-barcelona-hasta-el-centro-de-la-ciudad.html
http://www.barcelona-tourist-guide.com/sp/aeropuerto/mapas/indicaciones-para-ir-en-automovil-desde-el-aeropuerto-de-barcelona-hasta-el-centro-de-la-ciudad.html
http://www.jfree.org/jfreechart/

