

NEUROBIOLOGICAL BASIS OF

ANGER

Daniel Sampedro Viana. Biology Degree. Universitat Autònoma de Barcelona

INTRODUCTION

Anger is a frequent destructive emotion that has an important role in society and the public health. But, do we know how anger structures in our brain? Do we know how we regulate such an important emotion?

CONTENT

The RAGE SYSTEM

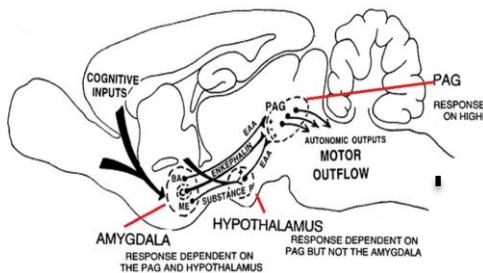


Fig. 1: Summary of the localization of RAGE circuit and the hierarchical control in the brain : BA, basal amygdala; ME, medial amygdala; EAA, excitatory amino acid; PAG, periaqueductal gray.

A very efficient and effective way to study the structures involved in anger is by observing the **rage system**.

Based on studies of brain stimulation it has been considered that the structures involved in the circuit of rage are:

- Amygdala
- Hypothalamus
- Periaqueductal gray (PAG)

Rage circuit runs from the middle of the amygdala, through areas of the hypothalamus and down towards midbrain PAG.

The system is organized as a **hierarchical structure** such that aggression evoked by stimulation of the amygdala depend on the functional integrity of the medial hypothalamus and periaqueductal gray. However, the aggression evoked by stimulation of the medial hypothalamus does not depend on functional integrity of the amygdala but depend on the integrity of PAG.

OBJECTIVE

The main objective is to show the knowledge that we have about **how anger work in the human brain** through a literature review of the current status of this area of cognitive neuroscience.

REGULATION and ACTIVATION

Seeking and Rage system

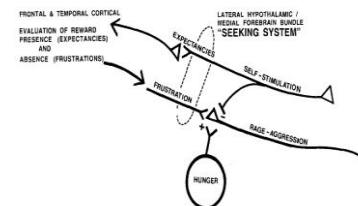


Fig.2. Schematic suggestion of likely interactions between SEEKING and RAGE system; (+), excitation; (-), inhibition.

The most common causes that generate anger are caused by **irritation** and **frustration**, like:

- Restriction of freedom
- Restriction of access to resources

“Frustration-aggression hypothesis” suggests that the RAGE system must be anatomical and neurophysiological linked to the SEEKING system.

Neurochemistry of Anger

Serotonin (5-HT)

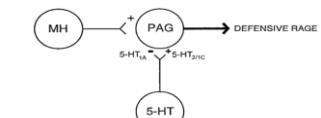


Fig.3. Summary of the difference in modulating PAG between serotonin receptors 5-HT_{1A} and 5-HT_{2/1C} of medial hypothalamus (MH) whose axons projecting in PAG.

Experiments show that the function is different depending on what 5-HT receptor is activated:

- 5-HT_{1A} → Suppress PAG → NO ANGER
- 5-HT_{2/1C} → Activate PAG → ANGER!

Substance P

Substance P works as a neurotransmitter and neuromodulator activating the hypothalamic receptor NK1 who promotes aggression and anger.

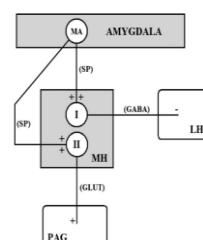


Fig.4. Summary of the Rage system; role of substance P modulating the circuit. MA, medial amygdaloid nucleus; SP, substance P; MH, medial hypothalamus; LH, neuronal groups within the MH; GABA, gamma aminobutyric acid; LH, lateral hypothalamus; GLUT, glutamate; PAG, periaqueductal grey; (+), excitation; (-), inhibition.

CONCLUSIONS

- The way to know how anger works in the human brain and how we regulate that emotion is through the studies in the **RAGE system**.
- It is still necessary to **bet for a deeper understanding**, although recently there has been increased interest in this field.
- Finally, we could control and regulate anger and avoid **anti-social behaviour**.

REFERENCES

- FIG.1 and FIG.2- Panksepp J. (1998): *Affective neuroscience, the foundations of human and animal emotions*. London: Oxford University Press; pp. 187-205.
- FIG.3- Shaikh M.B. et al (1997). Serotonin 5-HT_{1A} and 5-HT_{2/1C} receptors in the midbrain periaqueductal gray differentially modulate defensive rage behavior elicited from the medial hypothalamus of the cat. *Brain Research* 765; 198-207
- FIG.4- Katsouli E. et al (2009). The involvement of substance P in the induction of aggressive behavior. *Peptides* 30; 1586-1591
- Blair R.J. (2012). Considering anger from a cognitive neuroscience perspective. *Wiley Interdisciplinary Reviews: Cognitive Science* ; 3: 65-74
- Gregg T.R. & Siegel A. (2001). Brain structures and neurotransmitters regulating aggression in cats: implications for human aggressions. *Progress in Neuro-Psychopharmacology & Biological Psychiatry* 25; 91-140