TFG EN ENGINIERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Planificacion de rutas cooperativas

David Quirds Pérez

Resumen—Actualmente se utilizan vehiculos de guiado automatizado (AGV) en almacenes industriales para la realizacién de
tareas de transporte. El software que corren estos AGVs estd pensado para trabajar en entornos no cambiantes o para
seguimiento de rutas prefijadas. En este proyecto buscaremos soluciones para que un grupo de AGVs pueda trabajar en
entornos cambiantes de forma cooperativa evitando conflictos (que coincidan en espacio y tiempo). De entre las soluciones
que encontraremos, implementaremos una en el entorno de simulacion NETLOGO. La solucién elegida ha sido el Cooperative
A*, un algoritmo derivado del clasico A*. Dicho algoritmo nos devolvera la ruta que seguird cada AGV para realizar su tarea.
Presentaremos algunos ejemplos de ejecucion dénde podremos ver dichos resultados, aunque el algoritmo no es completo ya
que hay un tipo de conflicto que no resuelve y no ha habido tiempo suficiente para implementar la solucion.

Palabras clave—AGYV, Planificacion de rutas, Inteligencia artificial, NETLOGO, Cooperativo, Simulacion.

Abstract— Nowadays, automated guided vehicles (AGVs) are used in industrial warehouses for performing transport tasks.
The software running these AGVs is designed to work in static environments or to follow pre-set routes. This project will seek
solutions for a group of AGV to work on changing environments cooperatively avoiding conflicts (coincidence on space and
time). Among the solutions we find, we will implement one in the simulation environment NETLOGO. The chosen solution was
the Cooperative A *, an algorithm derived from the classic A *. This algorithm will return the route to be followed for each AGV to
perform its task. We present some embodiments where we see these results, although the algorithm is not complete as there is

a kind of conflict not resolved and there has not been enough time to implement the solution.

Index Terms—AGYV, Pathfinding, Artificial intelligence, NETLOGO, Cooperative, Simulation.

1 INTRODUCCION

N el ambito industrial se utilizan AGVs (vehiculos de

guiado automatico) para realizar tareas de transporte,
como por ejemplo llevar cajas de un sitio a otro. Actual-
mente el software que corren estos AGVs esta disefiado
para entornos no cambiantes o rutas prefijadas, pero en
investigacion encontramos software pensado para AGVs
que se muevan en entornos cambiantes. De esta forma los
AGVs pasan a llamarse agentes inteligentes. El objetivo
de estos agentes es cumplir una orden de transporte,
dada la localizacion de recogida y destinacion del mate-
rial los agentes deberan responder con el coste que ten-
dran para resolverla. Después de forma centralizada se
asignan dichas érdenes a los agentes correspondientes.

En el caso que planteamos en este proyecto, nos encon-

o E-mail de contacto: david.quirosp@e-campus.uab.cat
o Mencion realizada: Enginyeria de Computadors.

o Treball tutoritzat per: Marius Monton Macidn (Microelectronica i sistemes

electronics)
o Curs 2014/15

tramos en un sistema multiagente donde cada agente
debera planificar la ruta a un objetivo teniendo en cuenta
las posibles rutas que tomaran los otros. Habra casos en
los que algun agente deberd esperar en su posicién para
dejar pasar a otro o cambiard de camino para evitar el
conflicto. El sistema multiagente, dado una lista de tareas
para los agentes, debera encontrar rutas individuales que
minimicen el coste global de ejecucién de dichas tareas y
también reducir el ntimero de conflictos (coincidecia tem-

poral y espacial entre agentes).
N < o T
hJI
A A ﬁ

Figura 1: Representacion de una posible solucion.

Junio de 2015, Escola d’Enginyeria (UAB)

2 OBJETIVOS

A continuacién se listan los objetivos definidos para este
proyecto:

2.1 Obijetivo principal
- Implementar un algoritmo de planificaciéon de rutas
cooperativas en el entorno de simulacién NETLOGO.

Como fase inicial para realizar este objetivo tenemos que
decidir algun algoritmo a implementar, para ello se haré
una busqueda de informacién para ver las soluciones
existentes actualmente sobre este tema. Mds adelante lo
comentaremos en el estado del arte.

La siguiente fase serd implementar la solucién elegida. El
entorno donde se hard dicha implementacion sera
NETLOGO [4], es un entorno de modelado programable
para la simulacién de fenémenos naturales y sociales.
Esta plataforma permite a los estudiantes hacer simula-
ciones abiertas y "jugar" con ellas, explorando su compor-
tamiento bajo diversas condiciones. También es un en-
torno de creacién que permite a los estudiantes, profeso-
res y desarrolladores crear sus propios modelos.
NETLOGO es bastante simple, pero lo suficientemente
avanzado como para servir de poderosa herramienta para
los investigadores en muchos campos.

Nosotros partiremos del modelo ya creado por Lluis Ri-
bas, dicho modelo representa un almacén y los AGVs que
lo habitan, con los elementos necesarios para la simula-
cion.

2.2 Objetivo secundario

- Llevar la simulacién del algoritmo implementado a los
robots reales y realizar pruebas en vivo.

En el caso ideal de que el primer objetivo se lograse con
resultados satisfactorios se intentara llevar la simulacién a
robots reales.

3 ESTADO DEL ARTE

La planificacién de rutas es el problema clasico de inte-
ligencia artificial, donde el famoso algoritmo A* (Hart,
Nilsson, & Raphael 1968) es el que se encarga de dar solu-
cion. El problema es que el A* esta pensado para un dnico
agente en entornos no cambiantes.

En [1][2], podemos ver como sobrepasar dichos limites
del A*. David Silver expone varios algoritmos derivados
del clésico A*. Una primera modificacién serfa el Local
Repair A* dénde cada agente traza su ruta teniendo en
cuenta los movimientos de sus vecinos inmediatos. Més
adelante expone otras versiones que son el Cooperative
A*, Hierarchical Cooperative A* y Windowed Hierarchi-
cal Cooperative A*. La gracia de estos algoritmos es que
se anade la llamada “tercera dimensién”, el tiempo. En
los casos que presenta David Silver los agentes trabajan
sobre un espacio bidimensional. En éste tablero los agen-

EE/UAB TFG INFORMATICA: PLANIFICACION DE RUTAS COOPERATIVAS

tes se desplazan con cuatro acciones que son moverse al
norte, sud, este u oeste. Al afiadir la tercena dimensiéon
del tiempo también se les aflade una quinta accién, la de
esperar. Por ejemplo, si el tablero tipico esta definido por
las dimensiones espaciales Cell [x y], ahora tendremos
Cell [x y t]. Si nos movemos al norte pasaremos a Cell [x,
y+1 t+1], si decidimos esperar Cell [x y t+1]. David Silver
también trata el tema de cual es la mejor heuristica a utili-
zar, de las cuales la basica y mas utilizada es la distancia
de Manhattan. Este tipo de heuristica ofrece un bajo ren-
dimiento para escenarios complejos, pero para los casos
con los que vamos a trabajar es admisible.

(Pero como hace para que los agentes cooperen? Una
tabla de reservas compartida. En dicha tabla se guardaran
las posiciones que ocuparan los agentes y el tiempo en el
que las ocupan, de esta forma cada vez que se quiera
expandir un camino, primero se comprobaré si a donde
queremos ir estd ocupado en ese momento. Ademads, a
estos agentes se les asigna un orden de preferencia para
poder resolver los posibles conflictos, por ejemplo, si el
agente T1y T2 se van a cruzar en el punto X en el siguien-
te tiempo, uno de los dos debera replanificar su ruta (el
que tenga menos preferencia). El problema de esto es que
si el nimero de agentes es grande en comparacién con las
posibles rutas que se puedan tomar, los agentes con prio-
ridades bajas probablemente no puedan alcanzar sus
objetivos.

Los autores en [5] explican otra forma de modificar el A*
para resolver el problema. En este caso trabajan con un
grupo de agentes mayor al caso expuesto por David Sil-
ver. Separan los agentes en grupos, cada grupo de agen-
tes tiene una ruta planificada que evita conflictos con los
otros agentes del mismo grupo, para este paso utiliza un
algoritmo llamado Operator Decomposition (OD). Cuan-
do tiene dos grupos de agentes busca una replanificacion
de las rutas para uno de los grupos que evite las rutas del
otro con el algoritmo Independence Detection (ID). Si no
consigue encontrar alguna alternativa para los dos grupos
los une y replanifica las rutas de los agentes internos con
OD. La idea de hacerlo asi es que el algoritmo OD es muy
costoso en cémputo y para aligerar hace esta separacién
en grupos de agentes que puedan ejecutarlo de forma
paralela.

En [3], se expone The Differential Evolution Algorithm
(DE), un algoritmo genético que utiliza tanto una solucién
centralizada como distribuida del problema. El resultado
de su experimento fue que la soluciéon distribuida tiene
un mayor rendimiento ya que el tiempo de computo de la
version centralizada es mayor a casua de que un dnico
DE se encarga de manejar a todos los robots (posiciones
de robots, posiciones destino, planificaciéon de rutas para
cada uno evitando colisiones con obstaculos u otros ro-
bots, etc). En cambio, de forma distribuida se puede sepa-
rar en sub-tareas, cada cual ejecutada por un DE. La gra-
cia esta en que cada DE se puede ejecutar de forma para-
lela.

DAVID QUIROS PEREZ: PLANIFICACION DE RUTAS COOPERATIVAS

4 DESARROLLO REALIZADO

Estas son las tareas que se han realizado durante el pro-
yecto:

4.1 Eleccion del algoritmo a implementar

Como se ha descrito anteriormente en la descripcion de
objetivos, la idea de este proyecto es la de implementar
un algoritmo que solucione el problema de la planifica-
cién de rutas cooperativas basdndonos en la infomacién
que encontremos. En el estado arte se han mencionado
varias ideas para posibles algoritmos, entre las cuales
adoptaremos las de David Silver [1][2]. El motivo princi-
pal de esta eleccion es basicamente por viabilidad tempo-
ral, los algoritmos Cooperative A* se encuentran dentro
del alcance al que puede llegar este proyecto.

El siguiente paso, antes de comenzar la implementar el
algoritmo en el entorno de NETLOGO es el de montar el
esqueleto en pseudocodigo:

function cooperative_a* (map,car,command,reserve)
result.append(car.position, car, time=0, cost=0)
while result is not NULL
current = result.pop()
if current.position = command.goal
break while
endif
for neighbor in current.neighborhood
if check_reserve(reserve,neighbor.position, current.time+1)
cost=current.cost+distance_cost(neighbor,command.start)
result.sort-append(map[neighbor], car, time + 1, cost)
reserve.input(reserve, car, neighbor.position, car.time +1)
endif
endfor
return result

cia [4]. En la siguiente imagen se muestra la interfaz prin-
cipal:
Epsautar | Infarmocén | Cidm)

L.
st Borrar Ak

. I O st el vt
mn] |
e []

| [communcien.
vebaad o nausivente (i) +

wne | nn g[S =

B

Figura 2: Interfaz principal de NETLOGO

Trabajamos sobre un entorno ya creado por Lluis Ribas.
Este entorno posee los elementos necesarios para la simu-
lacion del comportamiento de un almacén manejado por
AGVs. En el botén de SETUP se llamaran a todas las fun-
ciones destinadas a crear el entorno, en este caso seran los
modelos de las estanterias, cajas y el mapa topolégico de
dicho almacén. El botén RUN para iniciar la simulacién.

e | g EOS bemo

Command-to-0

nothing v

Reply-from-L0

MOVIE
InLE

FEC |‘ PAUSE (211 oYl X217

sTop

Esta fue la primera idea para el algoritmo, tenemos un A*
clasico con algunos afiadidos. Primero tenemos que cada
nodo del resultado no solo contiene las posiciones de la
ruta resultante y el coste, sino que también guardamos el
tiempo que lleva. Y segundo se afiade el concepto de la
tabla de reservas donde a cada movimiento se comprueba
si dicha posicién en el siguiente tiempo estd ocupada.

Esta version sufrié bastantes modiciaciones durante la
implementacién por diversos temas que no se tenian en
cuenta en ese momento, mas adelante se explican estos
Casos.

4.1 Familiarizacién con NETLOGO

El siguiente paso era comprender el funcionamiento de
este entorno de simulacién. El tablero de NETLOGO se
divide en varias capas: la capa base son los patches,
agrupaciones de pixeles para identificar distintos puntos
del tablero. Por encima de los patches se colocan las tor-
tugas, que son lo que se conoceria como clases. Por ulti-
mo esté el observador, que puede dar 6rdenes a las tortu-
gas. El porqué de este nombre se puede ver en la referen-

movie-grab-what
interface v

Figura 3: Representacion del almacen sobre el que vamos a trabajar.

En esta imagen podemos ver los elementos nombrados
anteriormente, las lineas y puntos azules representan el
mapa topolégico (grafo) sobre el que los AGVs planifica-
ran sus rutas. Tanto el grafo como el taxi (agente) son
tortugas, las cuales tienen definidas una serie de atribu-
tos. En NETLOGO las tortugas (clases) y los métodos no
estan relacionados como en Java u otros lenguajes orien-
tados a objeto, es decir, cualquier tortuga podré llamar a
cualquier método. Por esto hay que ser cuidadoso en
como se hacen los métodos, para quien estdn pensados.
Por ejemplo, las tortugas no pueden dar 6rdenes a otras
torugas, solo puede el observador, si dicho método da

ordenes a otras tortugas y se lanza desde una tortuga
petard. Se ha decidido trabajar sobre este escenario por-
que ofrece mas oportunidades para conflictos ya que las
calles entre estanterias son estrechas y sélo puede pasar
un AGV al mismo tiempo. A continuacién veremos como
se ha llevado a cabo la implementacién del Cooperative
A*.

4.1 IMPLEMENTACION

El primer paso fue implementar el A* cldsico para un
anico vehiculo en el entorno, la heuristica implementada
para reducir el numéro de nodos explorados es la tipica
de la distancia real entre dos puntos. Esta heuristica se
mantiene también para cuando trabajemos con maés taxis
ala vez.

Una vez verificado el correcto funcionamiento de este A*
comenzaremos con los cambios para transformarlo en un
A* cooperativo. Antes de comenzar hay que recalcar que
trabajamos a nivel observador, es decir, las rutas se plani-
ficaran de forma centralizada. Tal y como tenfamos el
entorno hasta ahora el tnico elemento que faltaba para
poder realizar la planificacién cooperativa era la tabla de
reservas que nombraba David Silver en sus articulos. El
trabajaba sobre grids, por eso utilizaba una tabla. En
nuestro caso estamos trabajando sobre un grafo, en lugar
de utilizar una tabla decidimos utilizar los arcos del grafo
para guardar los tiempos en los que eran cruzados por los
agentes. Cada vez que expandimos un nodo del A* reser-
vamos todos los arcos de esa posicién para que no pue-
dan entrar otros taxis en ese tiempo.

En la primera versién que se implementé las rutas se
planificaban de forma secuencial, es decir, primero ha-
cfamos la ruta para el Taxil, luego el Taxi2, etc. Esta fue
una primera versién para comprobar que sistema de ges-
tién de reservas funcionase. En este caso el primer taxi, al
ser el primero en planificar su ruta tenia todo el mapa
libre, por lo cual siempre resultaba en el camino éptimo.
El segundo taxi ya se podia encontrar con conflictos con
las reservas del primer taxi, el tercer taxi con las reservas
del primero y segundo, etc. El orden en el que se planifi-
caba la ruta para cada taxi determinaba su prioridad so-
bre los demas (la jerarquia). A pesar de que estamos tra-
bajando en una versién centralizada, la idea es que fuese
facilmente exportable a una versién distribuida donde
cada taxi pueda planificar su propia ruta junto a los de-
mas. Por esto modificamos el flujo del cédigo para que a
cada tiempo se expandiera un nodo para cada taxi. Aun
asi, al hacerlo de forma secuencial se sigue manteniendo
una prioridad entre taxis en funcién de cual reserva pri-
mero a cada tiempo.

Al hacer este cambio se vié que nos hacfa falta saber el
movimiento siguiente que harfan los deméas para poder
ver sus intenciones y evitar los conflictos. A continuaciéon
mostraremos los conflictos con los que nos encontramos:

EE/UAB TFG INFORMATICA: PLANIFICACION DE RUTAS COOPERATIVAS

x[1][1] x[1][2] x[1][3] x[1][4] x[1][5]

X[211]

X[215]

x[32][1] x[2][5]

x[5][1] x[51[2] x[51[3] x[5][4] x[51[5]

Figura 4: Primer conflicto tratado.

El taxi verde quiere ir hacia abajo y el amarillo hacia la
derecha, pero en su siguiente movimiento coincidiran en
el nodo X[3][3]. Suponiendo que el taxi verde reserva
primero, quien que tendra problemas para seguir planifi-
cando su ruta serd el amarillo. Cuando el taxi amarillo
intente expandir el nodo verd que el enlace entre su nodo
actual y el siguiente esta reservado para el siguiente
tiempo por otro taxi, por lo cual lo descartard “temporal-
mente”. En estos casos lo ideal es que el taxi amarillo
permanezca inmévil durante un tiempo para poder con-
tinuar su ruta. Es decir, si los enlaces del nodo al que
quiero ir estan reservados para el siguiente tiempo, en
lugar de expandir otra ruta posible, repetimos el mismo
nodo en el que nos encontramos durante una iteraciéon. A
la siguiente iteracién, al haber aumentado el tiempo ese
enlace estard libre y podrad continuar su ruta. Pero aqui
falta por contemplar otro caso que se ve en el siguiente
conflicto tratado.

X[1][1] x*[1][2] *[11[3] X[1][4] X[1][5] %[1][6]

X[2101] A[2103]

% » x[31[3]

x[31[1] X[3][5] x[31[6]

X[4][1] A[4102]

X511 X[5112] A[5103] X[514] ¥[5105] X[516]

Figura 5: Segundo conflicto tratado.

DAVID QUIROS PEREZ: PLANIFICACION DE RUTAS COOPERATIVAS

En este segundo conflicto nos damos cuenta de la necesi-
dad de preveer las intenciones de los otros taxis. En este
caso el taxi verde quiere ir en la direccion opuesta al ama-
rillo, mantenemos la priorioridad del taxi verde. Tal y
como habiamos resuelto para el caso anterior, cuando el
amarillo quiera avanzar vera el enlace reservado y repeti-
rd nodo para simular una espera. El problema esta en que
ahora se van a cruzar ya que para los siguientes tiempos
esos links estan libres y resultard en un fallo de la planifi-
caciéon. La primera idea para resolver este conflicto fue
reservar los nodos vecinos del que se evalua para un
tiempo mas adelante, de esta forma ahora podemos ver
las intenciones de los otros en el siguiente tiempo. Por
desgracia sigue sin ser suficiente ya que para otros casos
nos damos cuenta de que por ejemplo nos habria hecho
falta dos tiempos mas de prevision, o tres o mas. Para que
esta solucién funcionase haria falta tener una previsiéon
tan larga como el camino mas largo posible, lo cual es una
pérdida de tiempo de cémputo.

A parte del problema anterior también nos dimos cuenta
de que guardar las reservas en los enlaces es innecesario,
para ello también podemos usar los propios nodos, me-
nos calculos. Por lo tanto, para solucionar este conflicto
decidimos cambiar las reservas a los nodos y la forma de
comprobar su estado. Ahora, en lugar de comprobar el
estado de la reserva los posibles nodos siguientes com-
probamos el nodo actual para el tiempo actual. Por ejem-
plo, para los casos como el primer conflicto que hemos
tratado antes (figura 4): el coche verde reserva primero el
nodo en disputa, para ese mismo tiempo llega el taxi
amarillo. Una vez el amarillo llegue comprobara si en ese
mismo nodo y en ese mismo instante hay algun otro taxi,
si la respuesta es positiva borramos el nodo actual de la
ruta resultante y repetimos el anterior de la misma forma
que hacfamos antes, la diferencia es que hay que corregir
el coste acumulado también.

Para los casos del segundo conflicto afiadiremos la tabla
“tabd”. En la funcién de comprobar la reserva ahora tam-
bién comprobara los nodos vecinos del nodo actual. Lo
que comprobard en los nodos vecinos sera si hay algun
otro taxi para ese tiempo, si encuentra alguno comproba-
ré en las reservas del nodo actual si ese taxi se encuentra
para el siguiente tiempo en su posicién. De ser asi, para
evitar el conflicto lo que se ha de hacer es cortar ese enla-
ce. Ahora cada taxi tendrd su propia lista de tabus dénde
se almacenardn los enlaces cortados por tal de evitar esta
clase de conflictos. Esta lista se comprobara a la hora de
buscar nodos vecinos, si el enlace con este vecino esta
cortado no puedo visitarlo, por la esencia del propio A*
buscara una ruta alternativa.

5 RESULTADOS

El objetivo del algoritmo es, dada un serie de tareas para
los agentes del sitema, devolver las rutas éptimas evitan-
do conflictos para resolverlas. Como se ha explicado ante-
riormente, para planificar dichas rutas, trabajamos sobre
el mapa topoldgico (grafo) que define los cominos que

pueden tomar los agentes. Los costes de las rutas que nos
siven para definir si una ruta es mejor que otra ha sido la
distancia recorrida, cada vez que expandimos un nodo de
la ruta aumentamos el coste acumulado por la distancia
del enlace que ha cruzado mads el coste prefivisto para
llegar al objetivo (heuristica), tal y como hemos visto
anteriormente, esta prevision es el calculo de la distancia
en linea recta entre la posicion acutal y posicion objetivo.
Respecto a evitar conflictos, hemos utilizado el tiempo.
Cada vez que avanzaba un tiempo la planificacién los
agentes guardan en los nodos el tiempo en el que han
pasado para advertir a los demds agentes que ese nodo en
ese momento estard ocupado. A su vez, el primer paso
para evaluar si los agentes pueden ir a un nodo serd com-
probando que no haya otro agente en ese momento.

Al final el algoritmo devolvera una lista de nodos para
cada agente. Esta lista de nodos representa el camino que
seguirdn. A parte, ya que estamos utilizando un entorno
de simulacién, para mostrar la solucién de una forma mas
visual se han pintado los nodos de las rutas de un color
para cada agente.

Edr 5 tidsio ap

YN X2l X(NE] XIM] XS] XLs) N RN)

x(21] ¥[2115) X(2107]

)‘.[3]&'1

XEI XEE] E X215 et

X[411] X[41[3] x[4]1[5] X[4117] X[41[9]

X111 X[5103] x[s)4] x[51(s] xIs)e]l x[SW7] X[SN8l x[S9]

X111 x[6](3] x[6][5] X[617] X[8]r91

b 181 R =) B 1) 1 3 R 2 R A Y R) | B) =1 R)

Figura 6: Primer ejemplo de ejecucién.

En la imagen mostramos una ejecucién con tres agentes,
como dijimos antes los agentes tienen prioridades, en este
caso son Verde > Amarillo > Rojo. Al taxi verde le hemos
pedido que haga una ruta hasta el nodo X[5][8], el amari-
llo hasta X[2][3] y el rojo hasta X[7][6]. Los nodos pinta-
dos representan la ruta para los respectivos agentes. Las
listas de nodos que ha devuelto para cada taxi son:

-Taxi Verde: [(node 157) (node 158) (node 159) (node 160)
(node 161) (node 162) (node 163)]

-Taxi Amarillo: [(node 150) (node 149) (node 148) (node
147) (node 146) (node 145) (node 144) (node 138)]

-Taxi Rojo: [(node 134) (node 140) (node 140) (node 148)
(node 154) (node 154) (node 162) (node 168) (node 176)
(node 175)]

En la imagen, tnicamente con los nodos pintados no se
puede apreciar si en algun momento los agentes realizan
alguna espera, con la lista de nodos podemos verlo. En

este caso tanto el taxi verde como amarillo no realizan
ninguna espera pero el rojo, al ser el que tiene la priori-
dad mas baja, si que espera y en este caso dos veces. Po-
demos ver que en la ruta del taxi rojo se repiten los nodos
X[2][7] (node 140) y el X[4][7] (node 154). En el tiempo 2 el
taxi amarillo reserva antes el nodo X[3][7] por lo cual hace
esperar al taxi rojo, y en el tiempo 5 le pasa lo mismo con
el taxi verde en el nodo [5][7].

g x X131 x[1]4] X[10iS] x[1lie] ¢ X[1](e]

X[2131 X[21i5] X[2109]

ki

¥l X et ity e i x xaith)
¥4l ¥[4113] X[41i5] ¥ae]
Ml Xt MsN3] X541 XsNS] MISKE] X ¥sI8l XIs)ie]
X611 ¥I6113] X[61i5] ¥6T9]

X711 X X[71(9]

Figura 7: Segundo ejemplo de ejecucion.

En este caso hemos cambiado el taxi rojo por el verde, en
el resultado podremos ver como cambian las rutas a cau-
sa de las distintas prioridades.

-Taxi Verde: [(node 134) (node 140) (node 148) (node 154)
(node 162) (node 168) (node 176) (node 175)]

-Taxi Amarillo: [(node 150) (node 149) (node 149) (node
148) (node 147) (node 146) (node 145) (node 144) (node
138)]

-Taxi Rojo: [(node 157) (node 158) (node 159) (node 160)
(node 161) (node 162) (node 163)]

Como podemos ver ahora solo se realiza una espera entre
todas las rutas, el taxi amarillo en el tiemo 2 en el nodo
X[3][8] (node 149). Viendo esto nos damos cuenta de que
la forma de repartir las prioridades afecta al resultado
global del sistema, en el caso que al sitema le interese
mantener unas prioridades en los agentes a causa de que
las tareas también las tienen este algoritmo seria suficien-
te. En el caso que todas las tareas fueran igual de priorita-
rias, entonces se deberian calcular las rutas con todas las
combinaciones de prioridades posibles entre los agentes
para ver cual da el mejor resultado goblal. Lo normal en
los almacenes actuales es que trabajen con pocos AGVs a
causa de su elevado precio, por lo cual el aumento de
cémputo que requiere comparar los resultados con todas
las combinaciones de prioridades es admisible.

Con estos ejemplos hemos visto los primeros conflictos
que hemos tratado en el desarrollo realizado [Figura 4],
ahora veremos los casos del segundo conflicto [Figura 5].

EE/UAB TFG INFORMATICA: PLANIFICACION DE RUTAS COOPERATIVAS

A[10[3] X[1]4] X[1NS1 X[XL x[1][8]
x[2][1] x[2][3]

xi XEIR M XEM @ISl A X371 HiEle]
T1

X[4111] (4131 X[415]

Xl X sl X X[s15]
X621 XI615] X[S17 X(slio]

X(7118] ¥7]i8]

Figura 8: Tercer ejemplo de ejecucién.

En este caso le pedimos al taxi verde que vaya a la posi-
cién del taxi amarillo y viceversa. Al taxi rojo lo manda-
mos al nodo X[2][9]. En el tiempo cuatro el taxi verde y
amarillo se disputaran el nodo X[3][5], al ser el verde mas
prioritario el taxi amarillo cortara el enlace entre X[3][5] y
X[3][6] para cuando replanifique la ruta no tenga esa
opcioén, de esta forma el A* lo llevara por una ruta alter-
nativa. Como podemos ver la desviacién de la ruta 6pti-
ma para el taxi amarillo es considerable, pero la tnica
solucién que hay para resolver estos conflictos esta en la
fase de asignacién de tareas.

Durante la fase de prueba de este tipo de conflictos nos
dimos cuenta de que habia otro tipo de conflicto que no
habiamos tenido en cuenta.

[2][5]

X[217]

) * ®[=2][=]

Figura 9: Conflicto sin tratar.

Este tipo de conflicto no puede resolverse de la forma en
la que se plante6 el escenario. Tal y como esta montado,
cada vez que avanzamos en la planificacién se comprueba
que el nodo al que nos movemos no este ocupado por
otro. En este caso, cuando los agentes avancen no veran
conflicto ya que dejan libre sus posiciones para el siguien-
te tiempo.

DAVID QUIROS PEREZ: PLANIFICACION DE RUTAS COOPERATIVAS

Después de darle vueltas al caso para ver como solucio-
narlo, la solucién que se nos ocurre es la de hacer backtra-
cking de las rutas planificadas. Es decir, como no pode-
mos solventar este conflicto sin el conocimiento de las
intenciones de los otros agentes, necesitamos las rutas
completas para poder hacer la comprobacién de si se dan
casos como estos. La comprobacién se basaria en recorrer
las listas de las rutas resultantes en busca de: si en mi
estado actual con tiempo + 1 veo reserva de un agente
que esta en el nodo siguiente para este tiempo. Cada vez
que se encuentre un caso del estilo habria que hacer algo
similar como en la solucién del tipo de conflicto 2, cortar
el enlace entre esos nodos y meterlo en la tabla tabu para
el agente con menos prioridad, y después relanzar la
planificacién para todos los agentes desde el tiempo ante-
rior a ese conflicto. Esta solucién no ha sido implementa-
da a causa de falta de tiempo ya que la prioridad en el
punto donde se encontraba el proyecto era otra, ahora la
idea era hacer una simulacién en condiciones haciendo
que los agentes se movieran siguiendo las rutas.

Para hacer que los agentes se muevan siguiendo las rutas
se ha utilizado el cédigo que define el comportamiento de
los AGVs. En el entorno que se nos facilité para trabajar
ya contenia la maquina de estados que define cada accién
que puede realizar un AGV, entre los estados de esta
maquina encontramos “robot-follow-path” el cual dada
una lista de coordenadas polares los AGV la seguiran.
Para ello se hizo una funcién que tradujera la lista de
nodos que habiamos generado con nuestro algoritmo a
dicha lista de coordenadas polares, el problema estd a la
hora de simular las esperas. Para ello se ha creado un
nuevo estado para los AGVs que simula las esperas.

6 CONCLUSION

Tal y como definimos al principio del documento, el obje-
tivo de este proyecto era el de crear un algoritmo que
diese solucién al problema de la planificacién de rutas
cooperativas. Hemos visto en la fase de desarrollo en qué
consiste el algoritmo: un A* con unos cuantos elementos
extra como la dimensién del tiempo, tablas de reserva y
como resolver los conflictos que se crean entre los AGVs
para dar con una solucioén realista.

El algoritmo es capaz de devolver rutas correctas en este
tipo de entorno pero no es completo, como hemos visto
en la parte de resultados hay un tipo de conflicto que no
se plante6 correctame, cuya solucién requiere un tiempo
que el proyecto no tiene. Asi pues, el objetivo secundario
del proyecto tampoco ha sido posible realizarlo.

A pesar de que hemos trabajado en una de las soluciones
“sencillas” para resolver la planificacién cooperativa, nos
hemos dado cuenta tanto en la fase de disefio como de
implementacién la complejidad que tratan estos proble-
mas. El tema de como tratar el tiempo para medir las
intenciones de ocupacién del espacio ha resultado com-
plicado.

La complejidad de computo de este algoritmo es la misma
que la del A*, depende de la heuristica elegida. En el peor
de los casos, con una pésima heuristica, la complejidad
del algoritmo es exponencial. Pero si utilizamos una heu-
ristica admisible (que no sobreestime el coste real) la
complejidad puede llegar a ser polinémica. Por lo que
para aplicaciones en tiempo real resultaria satisfactorio,
sin olvidar que nos encontramos en un ambito industrial
dénde la cantidad de agentes es baja.

También podemos decir que el uso de la herramienta
NETLOGO ha sido bastante satisfactorio. El tiempo que
requiere aprender a usarlo y el tiempo requerido para
montar el entorno grafico merece la pena ya que te ayuda
a identificar claramente el comportamiento de lo que se
esta desarrollando.

Las lineas de mejora estan claramente marcadas. La pri-
mera seria dar solucioén al tipo de conflicto que no hemos
podido tratar correctamente. Una segunda mejora seria la
de transformar el cédigo de forma que no se ejecutase en
modo observador, sino que fuese a nivel de tortuga. Es
decir, distribuir la tarea de planificaciéon a cada agente
teniendo en cuenta que todos deben compartir el estado
del mapa topoldgico para que puedan tratar las reservas.

AGRADECIMIENTOS

Principalmente darle las gracias a mi tutor Lluis Ribas por
darme la oportunidad de utilizar su entorno para poder
realizar el proyecto, a parte de los multiples consejos para
hacerlo correctamente. También agradecer a mis compa-
fieros/amigos sus consejos y 4nimos, parece que no pero
ayuda. Y por ultimo gracias a mi familia que son los que
mas tienen que aguantar mis tonterias.

BIBLIOGRAFIA

[1] David Silver, 2005. Cooperative Pathfinding. Department of
Computing Science, University of Alberta.

[2] David Silver, 2006. Cooperative Pathfinding. Department of
Computing Science, University of Alberta.

[3] Jayasree Chakraborty, Amit Konar, Uday K. Chakraborty and
L.C. Jain, 2008. Distr ibuted Cooper ative Multi-Robot Path Planning
Using Differential Evolution

[4] NetLogo itself: = Wilensky, U. 1999. NetLogo.
http:/ / ccl.northwestern.edu/netlogo/. Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern University. Ev-
anston, IL.

[5] Trevor Standley and Richard Korf. Complete Algorithms for
Cooperative Pathfinding Problems. Computer Science Department
University of California, Los Angeles.

8 EE/UAB TFG INFORMATICA: PLANIFICACION DE RUTAS COOPERATIVAS

APENDICE

Al. CASOS DE PRUEBA EXTRA

Xl X[PEY 3 R4 3 N1 R X[1l8] - xrilrel

x[1[1] X[1][41 x[1](s]

X[2141 X211 X[2](8]

X411 X412 X1 [4116] X[418] X[41[9]
X[5]] X[S)[2 X X X[5]5] X[SIi6] X[5l8] xI5]09]

A[41] X412 X[41(5] X[41(6] X[4l8] x[4109]

X[6][1] x[6)(2] X X(6]14] 1'[5][.5] X[B8ls] X X(8l8 «[6](9]

XS KEIE] X[sia1 SIS X[sli8] (S]]

HElL X : MEJal XI6ls] X[6)s] X[el7) x(sle] x(sle)

Figura 12: Taxi verde a nodo X[1][4], taxi amarillo a X[1][5] y taxi
rojo a X[1][2]. En este caso el taxi rojo es el tinico que modifica su
Figura 10: Taxi verde a nodo X[4][1], taxi amarillo al nodo donde se ~ uta ideal, primeramente se desvia hacia el nodo X[SJ [6] para de]:ar
encuentra taxi verde y taxi rojo al nodo X[7][5]. Taxi amarillo realiza ~ P3Sar al taxi verde y realiza una espera en esa posicion para dejar
una espera en X[4][2] en el tiempo 4 para evitar el conflicto con el ~ Pasar al taxi amarillo.

taxi verde que pasa por el nodo X[5][2].

#1001 X X[11[3 X[104] X[11(5] X[6] X[I71 X[X[1109]

A[AS] wAde] x[A0(7] x[a0(s] x[1][9]
x[2][s] x[2107 x[2]2]

M2I5] 2ls] X171 x[2lE] X[2]E]

“[4]01] X X x[419]

A4l % X x[4]8] x[41[9]

XSIL] X X[s][3 i X biH X 1 X X[S19]

#[s)] XS]] %[5 x5 x[5][6] x[5][8]
¥[61[1] X X X ¥[6]9]

A6]l1] x6l2] X6 #(6](4] ¥[8](S] x[6)(e] X[B](7] XIE][8]

Figura 13: Taxi verde a X[5][9], taxi amarillo a X[7][5] y taxi rojo a
X[5][1]. En tiempo uno los 3 taxis se disputan el nodo X[5][5], el taxi

Figura 11: Taxi verde a nodo X[6][9)], taxi amarillo a X[3][4] y taxi amarillo modifica su ruta esperando un tiempo en su posicién y el

rojo a nodo X[5][1]. En este caso no se realizan esperas, el conflicto se
da entre el taxi verde y rojo en tiempo 3 donde sus rutas ideales
coinciden en X[6][7], como se puede ver el taxi rojo se desvia de su
ruta ideal para evitar el conflicto.

taxi rojo debe modificar su ruta para dejar pasar al taxi verde.

