
TFG EN ENGINIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Planificación de rutas cooperativas
David Quirós Pérez

Resumen—Actualmente se utilizan vehículos de guiado automatizado (AGV) en almacenes industriales para la realización de

tareas de transporte. El software que corren estos AGVs está pensado para trabajar en entornos no cambiantes o para

seguimiento de rutas prefijadas. En este proyecto buscaremos soluciones para que un grupo de AGVs pueda trabajar en

entornos cambiantes de forma cooperativa evitando conflictos (que coincidan en espacio y tiempo). De entre las soluciones

que encontraremos, implementaremos una en el entorno de simulación NETLOGO. La solución elegida ha sido el Cooperative

A*, un algoritmo derivado del clásico A*. Dicho algoritmo nos devolverá la ruta que seguirá cada AGV para realizar su tarea.

Presentaremos algunos ejemplos de ejecución dónde podremos ver dichos resultados, aunque el algoritmo no es completo ya

que hay un tipo de conflicto que no resuelve y no ha habido tiempo suficiente para implementar la solución.

Palabras clave—AGV, Planificación de rutas, Inteligencia artificial, NETLOGO, Cooperativo, Simulación.

Abstract— Nowadays, automated guided vehicles (AGVs) are used in industrial warehouses for performing transport tasks.

The software running these AGVs is designed to work in static environments or to follow pre-set routes. This project will seek

solutions for a group of AGV to work on changing environments cooperatively avoiding conflicts (coincidence on space and

time). Among the solutions we find, we will implement one in the simulation environment NETLOGO. The chosen solution was

the Cooperative A *, an algorithm derived from the classic A *. This algorithm will return the route to be followed for each AGV to

perform its task. We present some embodiments where we see these results, although the algorithm is not complete as there is

a kind of conflict not resolved and there has not been enough time to implement the solution.

Index Terms—AGV, Pathfinding, Artificial intelligence, NETLOGO, Cooperative, Simulation.

——————————  ——————————

1 INTRODUCCIÓN

N el ámbito industrial se utilizan AGVs (vehiculos de
guiado automático) para realizar tareas de transporte,

como por ejemplo llevar cajas de un sitio a otro. Actual-
mente el software que corren estos AGVs está diseñado
para entornos no cambiantes o rutas prefijadas, pero en
investigación encontramos software pensado para AGVs
que se muevan en entornos cambiantes. De esta forma los
AGVs pasan a llamarse agentes inteligentes. El objetivo
de estos agentes es cumplir una orden de transporte,
dada la localización de recogida y destinación del mate-
rial los agentes deberán responder con el coste que ten-
drán para resolverla. Después de forma centralizada se
asignan dichas órdenes a los agentes correspondientes.

En el caso que planteamos en este proyecto, nos encon-

tramos en un sistema multiagente donde cada agente
deberá planificar la ruta a un objetivo teniendo en cuenta
las posibles rutas que tomaran los otros. Habrá casos en
los que algun agente deberá esperar en su posición para
dejar pasar a otro o cambiará de camino para evitar el
conflicto. El sistema multiagente, dado una lista de tareas
para los agentes, deberá encontrar rutas individuales que
minimicen el coste global de ejecución de dichas tareas y
también reducir el número de conflictos (coincidecia tem-
poral y espacial entre agentes).

E

————————————————

 E-mail de contacto: david.quirosp@e-campus.uab.cat
 Mención realizada: Enginyeria de Computadors.
 Treball tutoritzat per: Màrius Montón Macián (Microelectrònica i sistemes

electronics)
 Curs 2014/15

Junio de 2015, Escola d’Enginyeria (UAB)

Figura 1: Representación de una posible solución.

2 EE/UAB TFG INFORMÁTICA: PLANIFICACIÓN DE RUTAS COOPERATIVAS

2 OBJETIVOS

A continuación se listan los objetivos definidos para este
proyecto:

2.1 Objetivo principal

- Implementar un algoritmo de planificación de rutas
cooperativas en el entorno de simulación NETLOGO.

Como fase inicial para realizar este objetivo tenemos que
decidir algun algoritmo a implementar, para ello se hará
una búsqueda de información para ver las soluciones
existentes actualmente sobre este tema. Más adelante lo
comentaremos en el estado del arte.

La siguiente fase será implementar la solución elegida. El
entorno donde se hará dicha implementación será
NETLOGO [4], es un entorno de modelado programable
para la simulación de fenómenos naturales y sociales.
Esta plataforma permite a los estudiantes hacer simula-
ciones abiertas y "jugar" con ellas, explorando su compor-
tamiento bajo diversas condiciones. También es un en-
torno de creación que permite a los estudiantes, profeso-
res y desarrolladores crear sus propios modelos.
NETLOGO es bastante simple, pero lo suficientemente
avanzado como para servir de poderosa herramienta para
los investigadores en muchos campos.

Nosotros partiremos del modelo ya creado por Lluís Ri-
bas, dicho modelo representa un almacén y los AGVs que
lo habitan, con los elementos necesarios para la simula-
ción.

2.2 Objetivo secundario

- Llevar la simulación del algoritmo implementado a los
robots reales y realizar pruebas en vivo.

En el caso ideal de que el primer objetivo se lograse con
resultados satisfactorios se intentará llevar la simulación a
robots reales.

3 ESTADO DEL ARTE

La planificación de rutas es el problema clásico de inte-
ligencia artificial, dónde el famoso algoritmo A* (Hart,
Nilsson, & Raphael 1968) es el que se encarga de dar solu-
ción. El problema es que el A* está pensado para un único
agente en entornos no cambiantes.

En [1][2], podemos ver como sobrepasar dichos límites

del A*. David Silver expone varios algoritmos derivados
del clásico A*. Una primera modificación sería el Local
Repair A* dónde cada agente traza su ruta teniendo en
cuenta los movimientos de sus vecinos inmediatos. Más
adelante expone otras versiones que son el Cooperative
A*, Hierarchical Cooperative A* y Windowed Hierarchi-
cal Cooperative A*. La gracia de estos algoritmos es que
se añade la llamada ―tercera dimensión‖, el tiempo. En
los casos que presenta David Silver los agentes trabajan
sobre un espacio bidimensional. En éste tablero los agen-

tes se desplazan con cuatro acciones que son moverse al
norte, sud, este u oeste. Al añadir la tercena dimensión
del tiempo también se les añade una quinta acción, la de
esperar. Por ejemplo, si el tablero típico esta definido por
las dimensiones espaciales Cell [x y], ahora tendremos
Cell [x y t]. Si nos movemos al norte pasaremos a Cell [x,
y+1 t+1], si decidimos esperar Cell [x y t+1]. David Silver
también trata el tema de cuál es la mejor heurística a utili-
zar, de las cuales la básica y más utilizada es la distancia
de Manhattan. Éste tipo de heurística ofrece un bajo ren-
dimiento para escenarios complejos, pero para los casos
con los que vamos a trabajar es admisible.

¿Pero como hace para que los agentes cooperen? Una
tabla de reservas compartida. En dicha tabla se guardaran
las posiciones que ocuparan los agentes y el tiempo en el
que las ocupan, de esta forma cada vez que se quiera
expandir un camino, primero se comprobará si a donde
queremos ir está ocupado en ese momento. Además, a
estos agentes se les asigna un orden de preferencia para
poder resolver los posibles conflictos, por ejemplo, si el
agente T1 y T2 se van a cruzar en el punto X en el siguien-
te tiempo, uno de los dos deberá replanificar su ruta (el
que tenga menos preferencia). El problema de esto es que
si el número de agentes es grande en comparación con las
posibles rutas que se puedan tomar, los agentes con prio-
ridades bajas probablemente no puedan alcanzar sus
objetivos.

Los autores en [5] explican otra forma de modificar el A*
para resolver el problema. En este caso trabajan con un
grupo de agentes mayor al caso expuesto por David Sil-
ver. Separan los agentes en grupos, cada grupo de agen-
tes tiene una ruta planificada que evita conflictos con los
otros agentes del mismo grupo, para este paso utiliza un
algoritmo llamado Operator Decomposition (OD). Cuan-
do tiene dos grupos de agentes busca una replanificación
de las rutas para uno de los grupos que evite las rutas del
otro con el algoritmo Independence Detection (ID). Si no
consigue encontrar alguna alternativa para los dos grupos
los une y replanifica las rutas de los agentes internos con
OD. La idea de hacerlo así es que el algoritmo OD es muy
costoso en cómputo y para aligerar hace esta separación
en grupos de agentes que puedan ejecutarlo de forma
paralela.

En [3], se expone The Differential Evolution Algorithm
(DE), un algoritmo genético que utiliza tanto una solución
centralizada como distribuida del problema. El resultado
de su experimento fue que la solución distribuida tiene
un mayor rendimiento ya que el tiempo de computo de la
versión centralizada es mayor a casua de que un único
DE se encarga de manejar a todos los robots (posiciones
de robots, posiciones destino, planificación de rutas para
cada uno evitando colisiones con obstáculos u otros ro-
bots, etc). En cambio, de forma distribuida se puede sepa-
rar en sub-tareas, cada cual ejecutada por un DE. La gra-
cia esta en que cada DE se puede ejecutar de forma para-
lela.

DAVID QUIRÓS PÉREZ: PLANIFICACIÓN DE RUTAS COOPERATIVAS 3

4 DESARROLLO REALIZADO

Estas son las tareas que se han realizado durante el pro-
yecto:

4.1 Elección del algoritmo a implementar

Como se ha descrito anteriormente en la descripción de
objetivos, la idea de este proyecto es la de implementar
un algoritmo que solucione el problema de la planifica-
ción de rutas cooperativas basándonos en la infomación
que encontremos. En el estado arte se han mencionado
varias ideas para posibles algoritmos, entre las cuales
adoptaremos las de David Silver [1][2]. El motivo princi-
pal de esta elección es básicamente por viabilidad tempo-
ral, los algoritmos Cooperative A* se encuentran dentro
del alcance al que puede llegar este proyecto.

El siguiente paso, antes de comenzar la implementar el
algoritmo en el entorno de NETLOGO es el de montar el
esqueleto en pseudocódigo:

Esta fue la primera idea para el algoritmo, tenemos un A*
clásico con algunos añadidos. Primero tenemos que cada
nodo del resultado no solo contiene las posiciones de la
ruta resultante y el coste, sino que también guardamos el
tiempo que lleva. Y segundo se añade el concepto de la
tabla de reservas donde a cada movimiento se comprueba
si dicha posición en el siguiente tiempo está ocupada.

Esta versión sufrió bastantes modiciaciones durante la
implementación por diversos temas que no se tenían en
cuenta en ese momento, mas adelante se explican estos
casos.

4.1 Familiarización con NETLOGO

El siguiente paso era comprender el funcionamiento de
este entorno de simulación. El tablero de NETLOGO se
divide en varias capas: la capa base son los patches,
agrupaciones de pixeles para identificar distintos puntos
del tablero. Por encima de los patches se colocan las tor-
tugas, que son lo que se conocería como clases. Por ulti-
mo está el observador, que puede dar órdenes a las tortu-
gas. El porqué de este nombre se puede ver en la referen-

cia [4]. En la siguiente imagen se muestra la interfaz prin-
cipal:

Trabajamos sobre un entorno ya creado por Lluís Ribas.
Este entorno posee los elementos necesarios para la simu-
lación del comportamiento de un almacén manejado por
AGVs. En el botón de SETUP se llamaran a todas las fun-
ciones destinadas a crear el entorno, en este caso serán los
modelos de las estanterías, cajas y el mapa topológico de
dicho almacén. El botón RUN para iniciar la simulación.

En esta imagen podemos ver los elementos nombrados
anteriormente, las líneas y puntos azules representan el
mapa topológico (grafo) sobre el que los AGVs planifica-
rán sus rutas. Tanto el grafo como el taxi (agente) son
tortugas, las cuales tienen definidas una serie de atribu-
tos. En NETLOGO las tortugas (clases) y los métodos no
están relacionados como en Java u otros lenguajes orien-
tados a objeto, es decir, cualquier tortuga podrá llamar a
cualquier método. Por esto hay que ser cuidadoso en
como se hacen los métodos, para quien están pensados.
Por ejemplo, las tortugas no pueden dar órdenes a otras
torugas, solo puede el observador, si dicho método da

function cooperative_a* (map,car,command,reserve)

 result.append(car.position, car, time=0, cost=0)

 while result is not NULL

 current = result.pop()

 if current.position = command.goal

 break while

 endif

 for neighbor in current.neighborhood

 if check_reserve(reserve,neighbor.position, current.time+1)

 cost=current.cost+distance_cost(neighbor,command.start)

 result.sort-append(map[neighbor], car, time + 1 , cost)

 reserve.input(reserve, car, neighbor.position, car.time +1)

 endif

 endfor

return result

Figura 2: Interfaz principal de NETLOGO

Figura 3: Representación del almacen sobre el que vamos a trabajar.

4 EE/UAB TFG INFORMÁTICA: PLANIFICACIÓN DE RUTAS COOPERATIVAS

ordenes a otras tortugas y se lanza desde una tortuga
petará. Se ha decidido trabajar sobre este escenario por-
que ofrece mas oportunidades para conflictos ya que las
calles entre estanterías son estrechas y sólo puede pasar
un AGV al mismo tiempo. A continuación veremos como
se ha llevado a cabo la implementación del Cooperative
A*.

4.1 IMPLEMENTACIÓN

El primer paso fue implementar el A* clásico para un
único vehiculo en el entorno, la heurística implementada
para reducir el numéro de nodos explorados es la típica
de la distancia real entre dos puntos. Esta heurística se
mantiene también para cuando trabajemos con más taxis
a la vez.

Una vez verificado el correcto funcionamiento de este A*
comenzaremos con los cambios para transformarlo en un
A* cooperativo. Antes de comenzar hay que recalcar que
trabajamos a nivel observador, es decir, las rutas se plani-
ficaran de forma centralizada. Tal y como teníamos el
entorno hasta ahora el único elemento que faltaba para
poder realizar la planificación cooperativa era la tabla de
reservas que nombraba David Silver en sus artículos. Él
trabajaba sobre grids, por eso utilizaba una tabla. En
nuestro caso estamos trabajando sobre un grafo, en lugar
de utilizar una tabla decidimos utilizar los arcos del grafo
para guardar los tiempos en los que eran cruzados por los
agentes. Cada vez que expandimos un nodo del A* reser-
vamos todos los arcos de esa posición para que no pue-
dan entrar otros taxis en ese tiempo.

En la primera versión que se implementó las rutas se
planificaban de forma secuencial, es decir, primero ha-
cíamos la ruta para el Taxi1, luego el Taxi2, etc. Esta fue
una primera versión para comprobar que sistema de ges-
tión de reservas funcionase. En este caso el primer taxi, al
ser el primero en planificar su ruta tenia todo el mapa
libre, por lo cual siempre resultaba en el camino óptimo.
El segundo taxi ya se podía encontrar con conflictos con
las reservas del primer taxi, el tercer taxi con las reservas
del primero y segundo, etc. El orden en el que se planifi-
caba la ruta para cada taxi determinaba su prioridad so-
bre los demás (la jerarquía). A pesar de que estamos tra-
bajando en una versión centralizada, la idea es que fuese
fácilmente exportable a una versión distribuida donde
cada taxi pueda planificar su propia ruta junto a los de-
mas. Por esto modificamos el flujo del código para que a
cada tiempo se expandiera un nodo para cada taxi. Aun
así, al hacerlo de forma secuencial se sigue manteniendo
una prioridad entre taxis en función de cual reserva pri-
mero a cada tiempo.

Al hacer este cambio se vió que nos hacía falta saber el
movimiento siguiente que harían los demás para poder
ver sus intenciones y evitar los conflictos. A continuación
mostraremos los conflictos con los que nos encontramos:

El taxi verde quiere ir hacia abajo y el amarillo hacia la
derecha, pero en su siguiente movimiento coincidirán en
el nodo X[3][3]. Suponiendo que el taxi verde reserva
primero, quien que tendrá problemas para seguir planifi-
cando su ruta será el amarillo. Cuando el taxi amarillo
intente expandir el nodo verá que el enlace entre su nodo
actual y el siguiente esta reservado para el siguiente
tiempo por otro taxi, por lo cual lo descartará ―temporal-
mente‖. En estos casos lo ideal es que el taxi amarillo
permanezca inmóvil durante un tiempo para poder con-
tinuar su ruta. Es decir, si los enlaces del nodo al que
quiero ir están reservados para el siguiente tiempo, en
lugar de expandir otra ruta posible, repetimos el mismo
nodo en el que nos encontramos durante una iteración. A
la siguiente iteración, al haber aumentado el tiempo ese
enlace estará libre y podrá continuar su ruta. Pero aquí
falta por contemplar otro caso que se ve en el siguiente
conflicto tratado.

Figura 4: Primer conflicto tratado.

Figura 5: Segundo conflicto tratado.

DAVID QUIRÓS PÉREZ: PLANIFICACIÓN DE RUTAS COOPERATIVAS 5

En este segundo conflicto nos damos cuenta de la necesi-
dad de preveer las intenciones de los otros taxis. En este
caso el taxi verde quiere ir en la dirección opuesta al ama-
rillo, mantenemos la priorioridad del taxi verde. Tal y
como habíamos resuelto para el caso anterior, cuando el
amarillo quiera avanzar verá el enlace reservado y repeti-
rá nodo para simular una espera. El problema está en que
ahora se van a cruzar ya que para los siguientes tiempos
esos links están libres y resultará en un fallo de la planifi-
cación. La primera idea para resolver este conflicto fue
reservar los nodos vecinos del que se evalua para un
tiempo mas adelante, de esta forma ahora podemos ver
las intenciones de los otros en el siguiente tiempo. Por
desgracia sigue sin ser suficiente ya que para otros casos
nos damos cuenta de que por ejemplo nos habría hecho
falta dos tiempos más de previsión, o tres o más. Para que
esta solución funcionase haría falta tener una previsión
tan larga como el camino más largo posible, lo cual es una
pérdida de tiempo de cómputo.

A parte del problema anterior también nos dimos cuenta
de que guardar las reservas en los enlaces es innecesario,
para ello también podemos usar los propios nodos, me-
nos cálculos. Por lo tanto, para solucionar este conflicto
decidimos cambiar las reservas a los nodos y la forma de
comprobar su estado. Ahora, en lugar de comprobar el
estado de la reserva los posibles nodos siguientes com-
probamos el nodo actual para el tiempo actual. Por ejem-
plo, para los casos como el primer conflicto que hemos
tratado antes (figura 4): el coche verde reserva primero el
nodo en disputa, para ese mismo tiempo llega el taxi
amarillo. Una vez el amarillo llegue comprobará si en ese
mismo nodo y en ese mismo instante hay algun otro taxi,
si la respuesta es positiva borramos el nodo actual de la
ruta resultante y repetimos el anterior de la misma forma
que hacíamos antes, la diferencia es que hay que corregir
el coste acumulado también.

Para los casos del segundo conflicto añadiremos la tabla
―tabú‖. En la función de comprobar la reserva ahora tam-
bién comprobará los nodos vecinos del nodo actual. Lo
que comprobará en los nodos vecinos será si hay algun
otro taxi para ese tiempo, si encuentra alguno comproba-
rá en las reservas del nodo actual si ese taxi se encuentra
para el siguiente tiempo en su posición. De ser así, para
evitar el conflicto lo que se ha de hacer es cortar ese enla-
ce. Ahora cada taxi tendrá su propia lista de tabus dónde
se almacenarán los enlaces cortados por tal de evitar esta
clase de conflictos. Esta lista se comprobará a la hora de
buscar nodos vecinos, si el enlace con este vecino esta
cortado no puedo visitarlo, por la esencia del propio A*
buscará una ruta alternativa.

5 RESULTADOS

El objetivo del algoritmo es, dada un serie de tareas para
los agentes del sitema, devolver las rutas óptimas evitan-
do conflictos para resolverlas. Como se ha explicado ante-
riormente, para planificar dichas rutas, trabajamos sobre
el mapa topológico (grafo) que define los cominos que

pueden tomar los agentes. Los costes de las rutas que nos
siven para definir si una ruta es mejor que otra ha sido la
distancia recorrida, cada vez que expandimos un nodo de
la ruta aumentamos el coste acumulado por la distancia
del enlace que ha cruzado más el coste prefivisto para
llegar al objetivo (heurística), tal y como hemos visto
anteriormente, esta previsión es el cálculo de la distancia
en línea recta entre la posición acutal y posición objetivo.
Respecto a evitar conflictos, hemos utilizado el tiempo.
Cada vez que avanzaba un tiempo la planificación los
agentes guardan en los nodos el tiempo en el que han
pasado para advertir a los demás agentes que ese nodo en
ese momento estará ocupado. A su vez, el primer paso
para evaluar si los agentes pueden ir a un nodo será com-
probando que no haya otro agente en ese momento.

Al final el algoritmo devolverá una lista de nodos para
cada agente. Esta lista de nodos representa el camino que
seguirán. A parte, ya que estamos utilizando un entorno
de simulación, para mostrar la solución de una forma más
visual se han pintado los nodos de las rutas de un color
para cada agente.

En la imagen mostramos una ejecución con tres agentes,
como dijimos antes los agentes tienen prioridades, en este
caso son Verde > Amarillo > Rojo. Al taxi verde le hemos
pedido que haga una ruta hasta el nodo X[5][8], el amari-
llo hasta X[2][3] y el rojo hasta X[7][6]. Los nodos pinta-
dos representan la ruta para los respectivos agentes. Las
listas de nodos que ha devuelto para cada taxi són:
-Taxi Verde: [(node 157) (node 158) (node 159) (node 160)
(node 161) (node 162) (node 163)]
-Taxi Amarillo: [(node 150) (node 149) (node 148) (node
147) (node 146) (node 145) (node 144) (node 138)]
-Taxi Rojo: [(node 134) (node 140) (node 140) (node 148)
(node 154) (node 154) (node 162) (node 168) (node 176)
(node 175)]

En la imagen, únicamente con los nodos pintados no se
puede apreciar si en algun momento los agentes realizan
alguna espera, con la lista de nodos podemos verlo. En

Figura 6: Primer ejemplo de ejecución.

6 EE/UAB TFG INFORMÁTICA: PLANIFICACIÓN DE RUTAS COOPERATIVAS

Figura 9: Conflicto sin tratar.

este caso tanto el taxi verde como amarillo no realizan
ninguna espera pero el rojo, al ser el que tiene la priori-
dad más baja, si que espera y en este caso dos veces. Po-
demos ver que en la ruta del taxi rojo se repiten los nodos
X[2][7] (node 140) y el X[4][7] (node 154). En el tiempo 2 el
taxi amarillo reserva antes el nodo X[3][7] por lo cual hace
esperar al taxi rojo, y en el tiempo 5 le pasa lo mismo con
el taxi verde en el nodo [5][7].

En este caso hemos cambiado el taxi rojo por el verde, en
el resultado podremos ver como cambian las rutas a cau-
sa de las distintas prioridades.
-Taxi Verde: [(node 134) (node 140) (node 148) (node 154)
(node 162) (node 168) (node 176) (node 175)]
-Taxi Amarillo: [(node 150) (node 149) (node 149) (node
148) (node 147) (node 146) (node 145) (node 144) (node
138)]
-Taxi Rojo: [(node 157) (node 158) (node 159) (node 160)
(node 161) (node 162) (node 163)]

Como podemos ver ahora solo se realiza una espera entre
todas las rutas, el taxi amarillo en el tiemo 2 en el nodo
X[3][8] (node 149). Viendo esto nos damos cuenta de que
la forma de repartir las prioridades afecta al resultado
global del sistema, en el caso que al sitema le interese
mantener unas prioridades en los agentes a causa de que
las tareas también las tienen este algoritmo sería suficien-
te. En el caso que todas las tareas fueran igual de priorita-
rias, entonces se deberían calcular las rutas con todas las
combinaciones de prioridades posibles entre los agentes
para ver cual da el mejor resultado goblal. Lo normal en
los almacenes actuales es que trabajen con pocos AGVs a
causa de su elevado precio, por lo cual el aumento de
cómputo que requiere comparar los resultados con todas
las combinaciones de prioridades es admisible.

Con estos ejemplos hemos visto los primeros conflictos
que hemos tratado en el desarrollo realizado [Figura 4],
ahora veremos los casos del segundo conflicto [Figura 5].

En este caso le pedimos al taxi verde que vaya a la posi-
ción del taxi amarillo y viceversa. Al taxi rojo lo manda-
mos al nodo X[2][9]. En el tiempo cuatro el taxi verde y
amarillo se disputarán el nodo X[3][5], al ser el verde mas
prioritario el taxi amarillo cortara el enlace entre X[3][5] y
X[3][6] para cuando replanifique la ruta no tenga esa
opción, de esta forma el A* lo llevará por una ruta alter-
nativa. Como podemos ver la desviación de la ruta ópti-
ma para el taxi amarillo es considerable, pero la única
solución que hay para resolver estos conflictos está en la
fase de asignación de tareas.

Durante la fase de prueba de este tipo de conflictos nos
dimos cuenta de que había otro tipo de conflicto que no
habíamos tenido en cuenta.

Este tipo de conflicto no puede resolverse de la forma en
la que se planteó el escenario. Tal y como esta montado,
cada vez que avanzamos en la planificación se comprueba
que el nodo al que nos movemos no este ocupado por
otro. En este caso, cuando los agentes avancen no verán
conflicto ya que dejan libre sus posiciones para el siguien-
te tiempo.

Figura 8: Tercer ejemplo de ejecución.

Figura 7: Segundo ejemplo de ejecución.

DAVID QUIRÓS PÉREZ: PLANIFICACIÓN DE RUTAS COOPERATIVAS 7

Después de darle vueltas al caso para ver como solucio-
narlo, la solución que se nos ocurre es la de hacer backtra-
cking de las rutas planificadas. Es decir, como no pode-
mos solventar este conflicto sin el conocimiento de las
intenciones de los otros agentes, necesitamos las rutas
completas para poder hacer la comprobación de si se dan
casos como estos. La comprobación se basaría en recorrer
las listas de las rutas resultantes en busca de: si en mi
estado actual con tiempo + 1 veo reserva de un agente
que está en el nodo siguiente para este tiempo. Cada vez
que se encuentre un caso del estilo habría que hacer algo
similar como en la solución del tipo de conflicto 2, cortar
el enlace entre esos nodos y meterlo en la tabla tabu para
el agente con menos prioridad, y después relanzar la
planificación para todos los agentes desde el tiempo ante-
rior a ese conflicto. Esta solución no ha sido implementa-
da a causa de falta de tiempo ya que la prioridad en el
punto donde se encontraba el proyecto era otra, ahora la
idea era hacer una simulación en condiciones haciendo
que los agentes se movieran siguiendo las rutas.

Para hacer que los agentes se muevan siguiendo las rutas
se ha utilizado el código que define el comportamiento de
los AGVs. En el entorno que se nos facilitó para trabajar
ya contenía la máquina de estados que define cada acción
que puede realizar un AGV, entre los estados de esta
máquina encontramos ―robot-follow-path‖ el cual dada
una lista de coordenadas polares los AGV la seguirán.
Para ello se hizo una función que tradujera la lista de
nodos que habíamos generado con nuestro algoritmo a
dicha lista de coordenadas polares, el problema está a la
hora de simular las esperas. Para ello se ha creado un
nuevo estado para los AGVs que simula las esperas.

6 CONCLUSIÓN

Tal y como definimos al principio del documento, el obje-
tivo de este proyecto era el de crear un algoritmo que
diese solución al problema de la planificación de rutas
cooperativas. Hemos visto en la fase de desarrollo en qué
consiste el algoritmo: un A* con unos cuantos elementos
extra como la dimensión del tiempo, tablas de reserva y
como resolver los conflictos que se crean entre los AGVs
para dar con una solución realista.

El algoritmo es capaz de devolver rutas correctas en este
tipo de entorno pero no es completo, como hemos visto
en la parte de resultados hay un tipo de conflicto que no
se planteó correctame, cuya solución requiere un tiempo
que el proyecto no tiene. Así pues, el objetivo secundario
del proyecto tampoco ha sido posible realizarlo.

A pesar de que hemos trabajado en una de las soluciones
―sencillas‖ para resolver la planificación cooperativa, nos
hemos dado cuenta tanto en la fase de diseño como de
implementación la complejidad que tratan estos proble-
mas. El tema de como tratar el tiempo para medir las
intenciones de ocupación del espacio ha resultado com-
plicado.

La complejidad de cómputo de este algoritmo es la misma
que la del A*, depende de la heurística elegida. En el peor
de los casos, con una pésima heurística, la complejidad
del algoritmo es exponencial. Pero si utilizamos una heu-
rística admisible (que no sobreestime el coste real) la
complejidad puede llegar a ser polinómica. Por lo que
para aplicaciones en tiempo real resultaría satisfactorio,
sin olvidar que nos encontramos en un ámbito industrial
dónde la cantidad de agentes es baja.

También podemos decir que el uso de la herramienta
NETLOGO ha sido bastante satisfactorio. El tiempo que
requiere aprender a usarlo y el tiempo requerido para
montar el entorno gráfico merece la pena ya que te ayuda
a identificar claramente el comportamiento de lo que se
está desarrollando.

Las líneas de mejora están claramente marcadas. La pri-
mera sería dar solución al tipo de conflicto que no hemos
podido tratar correctamente. Una segunda mejora sería la
de transformar el código de forma que no se ejecutase en
modo observador, sino que fuese a nivel de tortuga. Es
decir, distribuir la tarea de planificación a cada agente
teniendo en cuenta que todos deben compartir el estado
del mapa topológico para que puedan tratar las reservas.

AGRADECIMIENTOS

Principalmente darle las gracias a mi tutor Lluís Ribas por
darme la oportunidad de utilizar su entorno para poder
realizar el proyecto, a parte de los múltiples consejos para
hacerlo correctamente. También agradecer a mis compa-
ñeros/amigos sus consejos y ánimos, parece que no pero
ayuda. Y por último gracias a mi familia que son los que
más tienen que aguantar mis tonterías.

BIBLIOGRAFÍA

[1] David Silver, 2005. Cooperative Pathfinding. Department of
Computing Science, University of Alberta.

[2] David Silver, 2006. Cooperative Pathfinding. Department of
Computing Science, University of Alberta.

[3] Jayasree Chakraborty, Amit Konar, Uday K. Chakraborty and
L.C. Jain, 2008. Distr ibuted Cooper ative Multi–Robot Path Planning
Using Differential Evolution

[4] NetLogo itself: Wilensky, U. 1999. NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern University. Ev-
anston, IL.

[5] Trevor Standley and Richard Korf. Complete Algorithms for
Cooperative Pathfinding Problems. Computer Science Department
University of California, Los Angeles.

8 EE/UAB TFG INFORMÁTICA: PLANIFICACIÓN DE RUTAS COOPERATIVAS

APÉNDICE

A1. CASOS DE PRUEBA EXTRA

Figura 10: Taxi verde a nodo X[4][1], taxi amarillo al nodo donde se
encuentra taxi verde y taxi rojo al nodo X[7][5]. Taxi amarillo realiza
una espera en X[4][2] en el tiempo 4 para evitar el conflicto con el
taxi verde que pasa por el nodo X[5][2].

Figura 12: Taxi verde a nodo X[1][4], taxi amarillo a X[1][5] y taxi
rojo a X[1][2]. En este caso el taxi rojo es el único que modifica su
ruta ideal, primeramente se desvía hacia el nodo X[5][6] para dejar
pasar al taxi verde y realiza una espera en esa posición para dejar
pasar al taxi amarillo.

Figura 13: Taxi verde a X[5][9], taxi amarillo a X[7][5] y taxi rojo a

X[5][1]. En tiempo uno los 3 taxis se disputan el nodo X[5][5], el taxi

amarillo modifica su ruta esperando un tiempo en su posición y el

taxi rojo debe modificar su ruta para dejar pasar al taxi verde.

Figura 11: Taxi verde a nodo X[6][9], taxi amarillo a X[3][4] y taxi
rojo a nodo X[5][1]. En este caso no se realizan esperas, el conflicto se
da entre el taxi verde y rojo en tiempo 3 donde sus rutas ideales
coinciden en X[6][7], como se puede ver el taxi rojo se desvía de su
ruta ideal para evitar el conflicto.

