
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Corrector automático de plantillas test con
teléfono móvil, tableta o cámara web.

Jordi Prados Camargo

Resumen— Actualmente es muy común el uso de plantillas tipo test para evaluar conocimientos. Estas plantillas suelen

corregirse de forma manual o automática, pero en ambos casos el tiempo para notificar los resultados a los interesados no es

inmediato. El objetivo principal de este proyecto es reducir el tiempo de notificación creando un sistema que permita corregir

estas plantillas de forma inmediata. Para hacer este proceso más fácil, cada plantilla es identificada por un código QR único, el

cual aporta información útil para la detección. Como resultado, se ha diseñado un sistema compuesto por una cadena de

procesado de plantillas para obtener los resultados, un servidor que gestiona esta cadena y ofrece los mecanismos necesarios

para administrar y recibir las imágenes enviadas, y una aplicación Android, la cual permite capturar imágenes de las plantillas

y enviarlas al servidor para obtener los resultados.

Palabras clave— Android, binarización de imágenes, Código QR, detección de esquinas, Django, histogramas, iluminación,

OpenCV, Python, REST, transformación geométrica.

Abstract— Today it is very common to use templates to assess knowledge. These templates are usually corrected manually or

automatically, but in both instances the timing for reporting results to stakeholders is not immediate. The main objective of this

project is to reduce this notification time creating a system that corrects these templates immediately. To make this process

easier each template is identified by a unique QR code which provides useful information for detection. As a result, a system

capable of meeting the needs and objectives has been created. This system is composed of a processing chain to get the

results of the templates, a server that manages the processing chain and provides the tools for receiving the images, and an

Android application to capture images and display the results.

Index Terms— Android, image binarization, QR code, corner detection, Django, histogram, illumination, OpenCV, Python,

REST, geometric transform.

——————————  ——————————

1 INTRODUCCIÓN

STE proyecto nace de la necesidad de crear un siste-
ma que sea capaz de detectar la información de un

examen tipo test y devolver un resultado de la manera
más rápida posible. Ya existen algunas alternativas que
realizan este proceso, pero con este proyecto se intenta
dar una respuesta inmediata y así reducir y optimizar el
tiempo necesario para dar los resultados de las pruebas.

La propuesta de este proyecto es diseñar una plantilla
modelo para los exámenes tipo test y un sistema com-
puesto por tres elementos principales. El primer elemento
de este sistema, y el más importante, será el encargado de
la de detección de los resultados de una plantilla. El se-
gundo será un servidor que se encargará de la gestión del
sistema de detección y de ofrecer los mecanismos necesa-
rios para crear nuevos test y recibir las imágenes tomadas
de las plantillas. Por ultimo, el tercer elemento será la
aplicación Android, que tendrá como principal objetivo

tomar las fotografías, enviarlas al servidor y mostrar los
resultados. Estos tres elementos que forman el sistema
deben trabajar conjuntamente para conseguir que el sis-
tema sea lo más robusto y preciso posible.

Cada componente de este sistema será detallado en los
siguientes puntos así como los resultados y conclusiones
obtenidas.

2 ESTADO DEL ARTE

Actualmente existen aplicaciones que permiten la correc-
ción de exámenes tipo test a partir de imágenes. En la
gran mayoría de casos estas aplicaciones están adaptadas
a las necesidades de cada organización, por lo que las
características de cada plantilla siguen un patrón fijo. Un
ejemplo es el software utilizado en la Universidad Autó-
noma de Barcelona [1], donde existe un servicio para el
profesorado que ofrece la posibilidad de corregir exáme-
nes test o encuestas con unas determinadas característi-
cas. Para hacer uso de este servicio es necesario reservar
una hora y día, por lo que hace de este servicio poco fle-
xible. También existen diferentes proyectos que ofrecen

E

————————————————

 E-mail de contacte: jordiprados90@gmail.com
 Mención realizada: Computación
 Trabajo tutoritzado por: Javier Sánchez (departamento de computación)
 Curso 2014/15

2 EE/UAB TFG INFORMÀTICA: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL

herramientas para este fin [2], [3], las cuales una plantilla
limitada y con unas características muy especificas para
hacer uso del detector.

Todas estas herramientas y servicios encontrados son
procesos offline, es decir, la obtención de resultados no se
realiza al momento de entrega, sino, que se obtienen
cuando el examen ha acabado y todas las plantillas han
sido procesadas por una herramienta determinada. Esto
hace que el tiempo de respuesta de los resultados no sea
inmediato y se necesiten varios días.

3 OBJETIVOS

El objetivo principal esta compuesto por tres partes: ca-
dena de procesado y detección, servidor y aplicación
Android.

3.1 Cadena de procesado y detección

La cadena de procesado es la parte más importante del
sistema. Su correcto funcionamiento es crítico para tener
un sistema fiable. Sus objetivos principales son los si-
guientes:

 Tratamiento inicial de la imagen para eliminar
posible ruido y homogeneizar la iluminación.

 Identificación de la plantilla detectando los cua-
drados que la forman.

 Lectura del código QR de la plantilla para obte-
ner información útil para la detección.

 Detectar los contornos de las tablas que forman
la plantilla.

 Obtener los resultados analizando si las celdas de
cada tabla están marcadas o no.

3.2 Servidor

El servidor es la parte central del sistema. Es el encargado
de la interacción entre la aplicación Android y la cadena
de procesado y detección. Este sistema tiene que cumplir
los siguientes objetivos para poder ofrecer un buen servi-
cio:

 Mecanismos para recibir imágenes.

 Utilizar la cadena de procesado para obtener los
resultados de las imágenes.

 Devolver al usuario la respuesta de la detección.

 Interfaz web para crear nuevos exámenes con sus
códigos QR correspondientes.

 Posibilidad de visualizar los resultados de las
imágenes enviadas.

3.3 Aplicación Android

La aplicación Android es la parte que se encarga de vi-
sualizar los resultados obtenidos por la detección. Este
sistema tiene que cumplir los siguientes objetivos para
ofrecer un buen servicio:

 Herramienta para capturar fotografías de las
plantillas.

 Enviar la fotografía tomada al servidor.

 Mostrar los resultados de la detección.

 Posibilidad de cambiar alguna respuesta mal de-
tectada antes de enviar la confirmación final al
servidor.

4 TRABAJO REALIZADO

En este apartado se explican todas las tareas realizadas
durante el desarrollo del sistema de detección, servidor y
la aplicación Android. Previamente a esto, se detalla có-
mo es la plantilla utilizada para los test.

4.1 Plantilla utilizada

La definición de un modelo de plantilla permite al siste-
ma detectar la información necesaria lo más rápido posi-
ble. En los inicios del proyecto se creó una plantilla para
empezar a trabajar, pero ésta ha ido evolucionado según
las necesidades de los diferentes módulos de la detección.
Por ejemplo un cambio significativo fue la introducción
de códigos QR para identificar las plantillas, el cual supu-
so un reajuste en el diseño.

Las plantillas están compuestas por tres elementos
principales: la tabla de la identificación del alumno, la
zona donde esta el código QR y la zona de las tablas de
las preguntas. Un ejemplo es el que se puede ver en la
imagen del apéndice A1.

Todas las posibles combinaciones de plantillas tienen
que estar basadas en la misma estructura. Lo único que
esta permitido cambiar es incrementar o decrementar el
número de preguntas y de respuestas. También, la distri-
bución de las preguntas se puede hacer en una o dos
tablas, lo que hace que el sistema permita detectar planti-
llas con una gran variedad de combinaciones.

4.2 Cadena de procesado.

La cadena de procesado es la parte más importante. Está
compuesta por un conjunto de módulos donde cada uno
tiene una función específica dentro de la detección. En
concreto hay cinco módulos: preprocesamiento de la ima-
gen, detección de cuadrados, detección del código QR e
identificación de la plantilla, detección de los contornos
de las tablas y detección de respuestas. Todos ellos traba-
jan como si fueran una caja negra, es decir, esperan unos
parámetros y devuelven unos resultados. Estos módulos
son secuenciales, esto quiere decir que los parámetros que
pueden esperar son los valores de salida de otro módulo
de la cadena.

Se ha utilizado Python para el desarrollo con librerías
como NumPy [4] y OpenCV [5] entre otras. Estas librerías
aportan funciones útiles para la detección, en especial la
librería OpenCV tiene funciones de tratamiento de ima-
gen que son esenciales para el sistema.

Todos los detalles de implementación de estos módu-
los son detallados en los siguientes puntos.

Junio de 2015, Escola d’Enginyeria (UAB)

JORI PRADOS CAMARGO.: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL 3

Figura 3: Porción de una plantilla binarizada. Las zonas en blanco
son las tablas e información de la plantilla.

4.2.1 Preprocesamiento de la imagen.

Este módulo se encarga de filtrar la imagen para prepa-
rarla para el resto de módulos. Principalmente elimina el
ruido, homogeneiza la iluminación y pasa la imagen a
una escala de grises con la que será más fácil trabajar.

Primero de todo se utiliza una técnica de smothing,
concretamente se utiliza Gaussian smothing [6] para redu-
cir el ruido que puede haber en la imagen. Para este pro-
pósito se ha utilizado la función GaussianBlur de OpenCV.

Después de aplicarle este filtro a la imagen para elimi-
nar el ruido, se realiza una normalización con el objetivo
de homogeneizar la iluminación. El objetivo es resaltar los
colores negros de las tablas que forman la plantilla, y para
conseguirlo, primero se utiliza la operación closing de
morfología matemática [7] con un kernel circular. El re-
sultado de esta operación se puede ver en la imagen de la
Figura 1.

Figura 1: A la izquierda imagen en escala de grises y a la derecha
imagen con la operación closing.

Como se puede observar en la Figura 1, la operación de
closing reduce el color negro de las tablas. La parte del
código QR no se ve reducida ya que el kernel utilizado no
es lo suficientemente grande.

Una vez realizada esta operación de morfología ma-
temática, se divide la imagen en escala de grises con la
imagen resultante de la operación del closing. El resultado
es el mostrado en la Figura 2, en la cual se puede observar
como ahora las tablas de la plantilla quedan remarcadas
por encima del resto y la iluminación ha sido homogenei-
zada. A esta operación se la conoce como Bottom Hat [7].
Esto será útil para el siguiente módulo, el cual intenta
encontrar los cuadrados que forman la plantilla.

4.2.2 Detección de cuadrados.

En este módulo se realiza la tarea de identificar los

cuadrados que forman la plantilla. Por cuadrados se en-
tiende las zonas de mayor área que contienen otros cua-
drados más pequeños.

Primero de todo se intentan resaltar las tablas de la

plantilla por encima de cualquier elemento de la imagen.
Se utiliza la imagen procesada y se binariza utilizando el
mecanismo de binarización Otsu [8]. Esta técnica es espe-
cialmente útil cuando hay una clara diferencia entre los
objetos a extraer y el fondo. El principio de binarización
de una imagen se basa en las siguientes funciones:

- En el caso de que los objetos a extraer sean claros
respecto al fondo:

𝑔(𝑥, 𝑦) = {
1, 𝑓(𝑥, 𝑦) > 𝑇
0, 𝑓(𝑥, 𝑦) ≤ 𝑇

 (1)

- En el caso de que los objetos a extraer sean más
oscuros que el fondo:

 𝑔(𝑥, 𝑦) = {
1, 𝑓(𝑥, 𝑦) < T
0, 𝑓(𝑥, 𝑦) ≥ T

 (2)

Donde f(x, y) es el valor de un punto de la imagen en
escala de grises y T es el umbral. Para obtener este um-
bral, Otsu maximiza la intervarianza entre clases utili-
zando los datos de la imagen. Un ejemplo es el que se
puede observar en la Figura 3. Esto tiene sus ventajas y
sus desventajas, ya que por un lado, las zonas significati-
vas quedan resaltadas, pero por el otro, existirán zonas
importantes de la plantilla que no superen el umbral y no
serán binarizadas correctamente.

Figura 2: Imagen resultado de la operación Bottom hat.

4 EE/UAB TFG INFORMÀTICA: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL

Figura 4: Esquinas que forman cada tabla.

Figura 5: Diferentes códigos QR con el orden de cada esquina.

Esta binarización se realiza para detectar los contornos
de las tablas y así poder utilizar la función findContours de
OpenCV. Despues de estos pasos, se procede a utilizar las
funciones findContours, contourArea y approxPolyDP de
OpenCV utilizando la imagen binarizada previamente. La
primera función nos devuelve las posiciones (x, y) de los
contornos encontrados y la segunda estima el área que
ocupa un contorno. La ultima función busca una forma
aproximada de una figura geométrica, intentando reducir
los puntos que representan el contorno. Ésta ultima, se
basa en el algoritmo de “Douglas-Peucker Line-
Simplification Algorithm” [9], el cual busca reducir el
número de puntos utilizado para representar una curva.
Esta función utiliza un parámetro llamado épsilon el cual
es la distancia máxima entre el valor aproximado y el
valor del contorno real.

Con estas funciones se intenta conseguir representar
los contornos con 4 puntos, los cuales delimitaran las
esquinas de los cuadrados de la plantilla.

Básicamente, el algoritmo para encontrar los cuadrados
que forman la plantilla sigue los siguientes pasos:

 Encontrar los contornos de la imagen.
 Calcular el área de cada contorno con la función

contourArea.
 Los contornos con mayor área y que no estén den-

tro de otros contornos serán los candidatos elegi-
dos.

 Para los contornos elegidos, utilizar la función ap-
proxPolyDP para obtener la figura geométrica que
los representa. En el caso de tener cuatro puntos,
serán considerados parte de la plantilla.

En la Figura 4 se puede ver los puntos que forman cada
cuadrado. Un problema de este método es que las esqui-
nas que forman cada tabla no están ordenadas de la mis-
ma forma. Este aspecto tiene que ser corregido para poder
detectar las celdas de cada tabla.

4.2.3 Detección del código QR e identificación de la
plantilla.

Uno de los pasos más importantes es la detección del
código QR de la plantilla. Como se ha podido ver en los
puntos anteriores, el código QR se ve afectado por el pre-
procesado de la imagen. Esto no supone un problema ya
que se dispone de los puntos que forman los cuadrados
de la plantilla, por lo que solo se tiene que analizar el
contenido de cada cuadrado de la imagen original en
busca de QR.

Para la detección del código, se utiliza la librería en C
llamada zlib [10] y la librería QRTools [11] de Python. Esta
última utiliza la librería zlib para detectar un código QR
en una imagen. Cuando un código QR es detectado se
puede extraer su información, como por ejemplo, el valor
del código. Tambíen, con una pequeña modificación en el
código de la librería es posible extraer la localización de
los puntos que forman el código QR. Estos puntos siem-
pre están en el mismo orden, lo que nos permite saber la
orientación global de la plantilla dentro de la imagen, tal
y como se muestra en la Figura 5.

Para reordenar los puntos de cada cuadrado, se utili-
zan los cuatro puntos del código QR para aprovechar que
estos están ordenados como se ha mostrado en la Figura
5.

El objetivo ahora es encontrar una similitud entre la

posición de estos puntos con la posición de los cuatro
puntos de cada tabla detectada. El problema es que cada
tabla trabaja con un rango de coordenadas (x, y) diferente
y esto dificulta la comparación con los puntos del código
QR. Para resolver este problema, las esquinas de cada
tabla son normalizadas con valores entre el 0 y 1 utilizan-
do la siguiente formula:

𝑥𝑖
′ =

𝑥𝑖 − min 𝑥

max 𝑥 − min 𝑥
 (3)

La formula anterior sirve también para normalizar valo-
res de y. Este proceso se realiza también para los puntos
que delimitan el código QR. De esta manera se consigue
tener los puntos de cada tabla en el mismo rango de valo-
res que los puntos del código QR. El siguiente paso es
crear una métrica para determinar qué punto del código
QR puede ser emparejado con otro punto de una tabla. La
métrica utilizada es la distancia euclidiana entre dos pun-
tos. De esta manera, dada una tabla detectada en la ima-

JORI PRADOS CAMARGO.: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL 5

gen, el procedimiento para realizar la ordenación sigue
los siguientes pasos:

 Identificar cada punto de la tabla con un número.
Estos identificadores sirven para obtener el valor
real de un punto antes de ser normalizado.

 Normalizar cada punto de la tabla y los del código
QR.

 Por cada punto normalizado del código QR, em-
parejarlo con el punto de la tabla más cercano.

 Recorrer los emparejamientos en orden para obte-
ner los números de identificación de cada punto
de la tabla y así poder obtener el valor del punto
real de la imagen.

Un ejemplo de esta ordenación es el mostrado en la Fi-
gura 6.

Una vez ordenados los puntos de cada tabla detectada se
procede a identificar cual es cada tabla. Primero se intenta
buscar la tabla de la identificación. Esta tabla es la más
cercana al código QR. Una vez detectada esta tabla, el
resto de tablas detectadas se cuentan como tablas de test.

El servidor, utilizando la información del código QR
detectado, proporciona detalles de la plantilla tales como
el número de tablas o de preguntas. Esta información es
útil para poder descartar las plantillas en el caso de no
poder detectar el número de tablas que estipula este test
introducido en la base de datos del servidor.

4.2.4 Detección de los contornos de las tablas.

Utilizando la información obtenida en los módulos ante-
riores, este módulo centra su esfuerzo en encontrar las
esquinas que delimitan cada celda de cada tabla.

Para detectar las celdas de una tabla, se utiliza la ima-
gen procesada, como la de la Figura 2, y se utilizan las
esquinas de cada tabla, ordenadas en el módulo anterior.
Se aplica una transformación geométrica con el objetivo
de facilitar la detección de las celdas. Para este caso se
intenta calcular la transformación de perspectiva de una
imagen 2D [12]. Este proceso es necesario ya que el siste-
ma es sensible a la posición de la tabla, es decir, es necesa-
rio tener las tablas lo mas rectas posible. Se ha utilizado la

función getPerspectiveTransform de OpenCV para realizar
esta tarea. Un ejemplo de este proceso es el que se puede
observar en la Figura 7.

Se distinguen dos tipos de líneas dentro de la tabla, las

líneas horizontales y las líneas verticales. El proceso trata
de remarcar las líneas horizontales y las líneas verticales
para después obtener el punto en el que convergen. Para
este propósito se utiliza morfología matemática, en partí-
cular la operación closing¸ con dos kernels diferentes. Un
kernel con forma rectangular horizontal para remarcar las
líneas horizontales, y un kernel rectangular vertical para
remarcar las verticales. La medida del kernel es un aspec-
to crítico porque dependiendo de su tamaño puede re-
marcar más o menos zonas. Para establecer una medida
óptima se utiliza una de las esquinas de la tabla a detectar
y se va desplazando el punto en diagonal mientras el
valor del punto sea de color negro. Cuando detecta que el
valor del punto es de color blanco, se cuentan los puntos
negros y ese valor se utiliza como número para el grosor
de la línea del kernel. Un ejemplo de la detección de las
líneas horizontales y verticales es el que se puede ver en
la imagen de la Figura 8.

Una vez se han resaltado las líneas horizontales y ver-
ticales, se buscan los puntos de convergencia entre las
dos. Para realizar este paso se utiliza la función
bitwise_and [13] de OpenCV, la cual realiza la operación
lógica AND entre los valores de las dos imágenes. Segui-
damente, se procede a detectar el centro de masas de cada
zona de convergencia calculada previamente. Para esto,
primero se utiliza la función findContours, la cual nos
devuelve los puntos de los diferentes contornos, y des-
pués se utiliza la función moments [14], [15] de OpenCV.

Figura 8: La primera imagen muestra las lineas horizontales de
la tabla, la segunda las lineas verticales y la última muestra el
punto de convergencia entre las dos primeras.

Figura 6: A la izquierda las esquinas de las tablas estan desordena-
das, a la derecha estan ordenadas utilizando el código QR.

Figura 7: La tabla de la izquierda es la imagen de la plantilla, mien-
tras que la tabla de la derecha es la misma tabla binarizada y apli-
candole la transformación de perspectiva.

6 EE/UAB TFG INFORMÀTICA: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL

Figura 9: Esquinas de cada celda detectadas.

En el ámbito de visión por computador, los momentos de
una imagen sirven para describir objetos después de la
segmentación. También, usándolos se pueden extraer
propiedades de la imagen tales como intensidad total,
centro de masas e información sobre su orientación.

Como resultado, obtenemos los puntos centrales de
cada esquina que definen las celdas. Un ejemplo es el
mostrado en la Figura 9.

Una vez detectados las esquinas de cada celda, se

reordenan por filas de izquierda a derecha y de arriba
abajo formando una matriz de puntos. Las dimensiones
de esta matriz dependen del tipo de tabla. En el caso de la
tabla de identificación, la matriz será de 11 columnas por
9 filas. De esta manera, los puntos intermedios que no
estén en una esquina pueden ser eliminados fácilmente
determinando la distancia entre cada punto. También,
dado que se conoce el número de preguntas y respuestas
de la plantilla, los contornos de las tablas de test forman
matrices dependiendo de las características de cada tabla.
Esto facilita el trabajo para el módulo de detección de
respuestas.

Llegados a este punto, se ha realizado una compara-
ción entre 7 imágenes tomadas por diferentes dispositivos
para ver como se comporta el detector de contornos de las
tablas. Para esta prueba se han utilizado los siguientes
dispositivos móviles: LG G3, Samsung Galaxy Young y
Sony Xperia S. Esta prueba se ha realizado sobre una
plantilla que tiene 471 esquinas, por lo que se intenta ver
cuál de estos dispositivos alcanza este número. En el grá-
fico comparativo de la Figura 10 se muestra el número de

esquinas detectadas correctamente por el sistema.
Cada teléfono móvil ha tomado siete imágenes, donde
cada imagen es similar en ángulo e iluminación a otra
imagen tomada por los otros dispositivos móviles. Se han
intentado comparar estas imágenes similares para deter-
minar el funcionamiento del modelo según la imagen de
cada dispositivo.

Como se puede observar claramente en el gráfico de la
Figura 10, las imágenes tomadas por el teléfono móvil LG
G3 ofrecen los mejores resultados. En muchos casos con-
sigue detectar el número máximo de esquinas de la plan-
tilla. Por el contrario, al tener más resolución, el proceso
necesita más tiempo para obtener resultados. En cambio,
el teléfono móvil Sony Xperia S obtiene resultados algo
mejores que los obtenidos por el Samsung Galaxy Young.
Por último, los resultados obtenidos por el Samsung Ga-
laxy Young no llegan a ser del todo satisfactorios ya que
la lente de la cámara es de menor calidad. Las imágenes

no son del todo nítidas y hay que enfocar muy bien para
obtener una imagen clara.

En este módulo existe el problema de que no se consi-
ga detectar el número correcto de contornos. De hecho en
el gráfico de la Figura 10 se muestra este problema en
algunos dispositivos. Si no se detectan los contornos exac-
tos, la plantilla no puede ser evaluada correctamente.
Para solucionarlo se se ha creado una plantilla con el
máximo de preguntas permitido y el máximo número de
respuestas permitido por hoja, un ejemplo lo podemos
ver en el apéndice A2. Esta plantilla se utilizará como
patrón para el resto de plantillas entrantes, lo que quiere
decir que la única plantilla a la que se le detectarán los
contornos será a ésta. La información de los contornos de
esta plantilla es guardada en un fichero csv, así como la
disposición de los diferentes cuadrados que la forman. De
esta manera, cuando una imagen de una plantilla entra en
el sistema, se realizan los siguientes pasos para poner en
correspondencia los puntos:

Para el cuadrado de identificación:

 Obtener la matriz de la transformación geométri-
ca entre los cuatro puntos que forman el cuadra-
do de identificación y los cuatro puntos del cua-
drado de identifiacion de la plantilla guardada en
el fichero csv. Utilizar esta matriz para pasar los
puntos del fichero csv a la imagen de la plantilla
entrante.

Para los cuadrados de las tablas de las preguntas:

 Dado que pueden existir plantillas de exámenes
con diferentes combinaciones de preguntas y
respuestas, es necesario conocer estos datos de la
plantilla entrante antes de continuar con la detec-
ción. Esta información se obtiene al enviar el có-
digo QR al servidor, el cual nos identifica la plan-
tilla. Aprovechando que los datos del fichero del
csv están guardados por filas y columnas for-
mando una matriz, dependiendo del número de
preguntas y respuestas de la plantilla se puede
deliminar la zona de contornos a escoger dentro
de esta matriz. Seguidamente, se calculan las cua-
tro esquinas que delimitan esta zona y se obtiene

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

N
ú

m
er

o
 d

e
es

q
u

in
as

 c
o

rr
ec

ta
s

d
et

ec
ta

d
as

Imégenes

Comparativa en detección de esquinas de tablas

Sony Xperia S Samsung Galaxy Young LG G3

Figura 10: Gráfico comparativo para la detección de esquinas.

JORI PRADOS CAMARGO.: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL 7

la matriz de transformación geométrica entre es-
tos cuatro puntos y los cuatro puntos de la tabla a
detectar de la imagen entrante. Una vez obtenida
la matriz se puede usar para pasar los puntos de
la zona del csv seleccionada a la tabla de la ima-
gen entrante.

Con este proceso se asegura que siempre se detectarán
el número correcto de contornos, independientemente de
la calidad de la imagen. Por el contrario, los puntos no
siempre son posicionados exactamente pero las respues-
tas sí que podrán ser evaluadas para la detección. Un
ejemplo de este desplazamiento es el mostrado en la Fi-
gura 11.

Este desplazamiento se debe a que las tablas detectadas
de las diferentes imágenes no son del todo rectas. En
muchos casos tienen una pequeña curva debido a un
aspecto físico de la cámara que toma la fotografía. Esta
curva hace que todos los puntos sean desplazados
respecto al centro de masas de cada celda de la tabla.

4.2.5 Detección de respuestas.

Este módulo es la fase final de la cadena de procesado.
Utiliza los contornos de cada tabla detectados para poder
delimitar cada celda por 4 puntos. Con estos 4 puntos se
obtiene la zona de cada casilla para poder procesarla por
separado al resto de la imagen. Cada fila de cada tabla
corresponde a una pregunta, por lo tanto, el objetivo es
buscar la celda marcada dentro de una fila. Para esto se
han creado dos detectores básicos: uno utiliza la compa-
ración de histogramas, para determinar si una celda esta
marcada o no, y el otro hace un recuento de las zonas
marcadas de la celda.

El detector basado en la comparación de histogramas
compara cada celda con una celda vacía. Primero se cal-
culan los histogramas de cada celda y luego se comparan.
Se utiliza la función calcHist de OpenCV y la función
compareHist para esta tarea. Esta última función tiene la
opción de utilizar 4 tipos de métricas para la compara-
ción: Correlation, Chi-Square, Intersection y Bhatta-
charyya distance. Cada métrica ofrece un comportamien-
to distinto, por lo que se ha realizado un estudio para
determinar cuál de ellas ofrece mejores detecciones de
respuestas. Los resultados de este estudio se pueden ver
en la tabla y la gráfica del apéndice A3.
Para determinar si una celda esta marcada o no, el valor
obtenido de la comparación de histogramas tiene que ser
superior al valor medio obtenido al comparar histogra-
mas por cada celda de la fila.

El segundo detector cuenta las zonas marcadas dentro
de una celda. En este caso cada celda es binarizada tal y
como aparece en los ejemplos de la Figura 12. De esta
manera, por cada celda se hace un recuento del número
de zonas en con color blanco marcadas utilizando la libre-
ría Numpy para trabajar con arrays. Este número debe de
ser superior a un umbral para contarlo como respuesta
marcada o no marcada. El umbral fijado depende del
valor medio de cada fila.

Estos dos detectores son básicos pero tienen un buen
comportamiento en general. No distinguen entre símbo-
los, por lo que hay que marcar bien la zona para obtener
buenos resultados. Estos resultados son evaluados en el
apartado 5 (Resultados) de este documento.

4.3 Servidor.

El servidor hace de intermediario entre la cadena de pro-
cesado y la aplicación Android. En un principio no existía
interfaz web y solo se disponía de una API REST para
atender a las peticiones que llegaban. Debido a la intro-
ducción del código QR se creó una interfaz para adminis-
trar los exámenes. Por lo tanto tenemos dos partes: la
interfaz web y la parte de la API REST, que controla la
base de datos, y la cadena de procesado. Para la creación
de la API REST se ha utilizado Django REST framework
[16] basado en Python. Éste ofrece muchas facilidades
para crear este tipo de servicios. La estructura de la base
de datos viene definida por el esquema Entidad - Rela-
ción de la Figura 13.

La API se divide en diferentes peticiones a direcciones
HTTP. Las direcciones que forman la API son las siguien-
tes:

 /api/exams/: en el caso de hacer una petición
GET, devuelve un JSON con la lista de todos los
exámenes introducidos en el sistema. Los campos
que contiene un examen son los siguientes: nombre,
fecha, número de preguntas, número de respuestas
por pregunta, número de tablas en la plantilla, códi-
go QR y preguntas de correción. En el caso de hacer
una petición POST, se necesitan todos estos campos
pasados en formato JSON, además se genera el con-
tenido del código QR. Este código es único dentro de

Figura 12: Diferentes celdas binarizadas.

Figura 13: Diagrama Entidad - Relación de la base de datos.

Figura 11: Ejemplo de desplazamiento en los puntos.

8 EE/UAB TFG INFORMÀTICA: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL

Figura 14: A la izquierda se muestra el modo cámara para capturar
imágenes y a la derecha se muestra la confirmación de esta ima-
gen.

Figura 15: La imagen de la izquierda muestra los resultados de la
detección. En ésta se pueden modificar los valores antes de ser
enviados. En la imagen de la derecha, se muestran los resultados
del test después de ser enviados al servidor para recibir la correc-
ción. Estos resultados solo se muestran en la aplicación del profe-
sor.

la base de datos y está formado por 50 carácteres
aleatorios. En realidad se crean 2 codigos QR, uno
para la plantilla de corrección y otro para la plantilla
de los alumnos. Por cada examen creado se inserta
un proceso en un sistema de colas del servidor. Este
proceso es una función para enviar emails a los
alumnos notificándoles los resultados de las prue-
bas. Los emails son enviados cuando el reloj del sis-
tema llega a la fecha de notificación estipulada en la
creación del examen. Se ha utilizado el sistema cron-
tab de Django para este propósito.

 /api/scores/: igual que en la dirección anterior, si se
realiza una petición GET se obtiene el listado de to-
das las notas de los exámenes. Usando una petición
POST, se insertan las respuestas utilizando un objeto
en formato JSON y se devuelve el número de res-
puestas correctas, incorrectas y no contestadas.

 /api/checker/: Esta dirección solo acepta peticiones
POST, además, el contenido de la petición tiene que
contener una imagen. El objetivo es utilizar la cade-
na de procesado para detectar las respuestas de la
plantilla y, después, devolver un objeto JSON con el
contenido detectado. Antes de guardar los resulta-
dos en la base de datos, la detección debe ser con-
firmada por el usuario y enviada a /api/scores/ pa-
ra registrar estos resultados.

La interfaz web tiene como objetivo ofrecer una he-

rramienta para el profesado que sea capaz de administrar
los exámenes y poder ver los resultados de los alumnos.
Algunos ejemplos de esta interfaz son los mostrados en el
apéndice A4.

4.4 Aplicación Android.

Esta última parte del sistema es la herramienta que se
utiliza para capturar las imágenes de las plantillas. Es
compatible con versiones de Android superiores a 4.1
Jelly Bean. También se utilizan los nuevos patrones de
diseño de Material Design introducidos en la versión 5.0
Lollipop de Android [17]. Esto hace que esta aplicación
sea compatible en la gran mayoría de dispositivos An-
droid utilizando los nuevos formatos.

Se han creado dos aplicaciones diferentes para diferen-
ciar las funciones que puede tener un profesor de las que
puede tener un alumno. La diferencia entre estas dos
aplicaciones reside en el hecho de que la aplicación del
profesor permite saber el resultado de un examen al mo-
mento de enviar la foto. Por el contrario, el alumno no
tendrá este privilegio, con esto se evitan filtraciones de
respuestas en el tiempo del examen. Como se ha comen-
tado antes, el alumno será notificado al finalizar el exa-
men vía email.

El funcionamiento de esta aplicación es el mostrado en
la Figura 14 y Figura 15 y sigue los siguientes pasos:

 Primero se realiza la fotografía de la plantilla. En

este paso hay la posibilidad de cambiar el modo
flash para mejorar la calidad de las imágenes.

 Una vez capturada la imagen, se realiza una vista

previa para aceptar o descartar la imagen. Si la
imagen es aceptada se enviará al servidor para su
detección. Un ejemplo es el mostrado en la Figu-
ra 14.

 Cuando el servidor ha recibido la imagen y la ha
procesado devuelve información relacionada con
la plantilla y también los resultados de la detec-
ción. El usuario tiene que validar los datos detec-
tados. Cuando estos resultados son aceptados,
esta información se envía al servidor para que
sea insertada en el sistema. Un ejemplo es la lista
de respuestas mostrada en la Figura 15.

 En el caso de que la plantilla sea una plantilla de
corrección, no se mostrará ningún tipo de infor-
mación, simplemente será registrada en el servi-
dor. Si se trata de una plantilla de estudiante, y
se utiliza la aplicación del profesor, se mostraran
los resultados de la detección. En caso de utilizar
la aplicación del alumno, no se mostraran los re-
sultados.

JORI PRADOS CAMARGO.: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL 9

50,5

9,5

Promedio

Detección de respuestas marcadas.

Correctas Incorrectas

Figura 17: Valores promedios de los dos detectores.

Figura 16: Etapas del funcionamiento general del
sistema cuando se recibe una imagen.

4.5 Funcionamiento general del sistema.

Todos los diferentes módulos explicados en los puntos
anteriores funcionan de forma conjunta para obtener los
resultados deseados. En este punto se detalla como se
crea un examen tipo test en el sistema y también se ofrece
una visión general de las etapas por las que pasa una
imagen hasta que es corregida.

Para crear un examen en el sistema se tienen que se-
guir los siguientes pasos:

 Entrar en la sección para crear un nuevo examen
y rellenar todos los campos que se piden del
formulario.

 Entrar en el detalle del examen creado y obtener
los dos códigos QR generados.

 Abrir una plantilla en un editor de texto y, en la
tabla o tablas de preguntas, poner el número de
preguntas y respuestas estipulado en la creación
del examen.

 Copiar el código QR de correción en esta planti-
lla. También copiar el código QR del alumno en
la misma plantilla pero en un fichero diferente.

 Guardar las plantillas e imprimirlas para detec-
tarlas por el sistema.

 En la plantilla de corrección, marcar las respues-
tas correctas y utilizar la aplicación Android para
guardar los resultados en el sistema.

En el esquema de la Figura 16 se pueden observar las
diferentes etapas por las que pasa una imagen cuando
entra en el servidor hasta que se consiguen evaluar los
resultados. De esta manera se tiene una visión global de
su funcionamiento.

5 RESULTADOS

El resultado del proyecto ha sido la creación de tres sis-
temas: una cadena de procesado con la creacion con dife-
rentes módulos, un servidor web y una aplicación An-
droid. Estos tres elementos han sido comentados a lo
largo del documento pero no se ha evaluado como fun-
cionan los tres conjuntamente. En este apartado se ofrecen
los resultados obtenidos cuando el sistema trabaja con los
tres elementos descritos. También se detallan cuáles son
sus principales problemas.

Primero de todo, hay que decir que el detector funcio-
nará mejor o peor en función de la calidad de la imagen.
Se ha detectado que el detector de respuestas es sensible a
la iluminación, por este motivo, se ofrece la posibilidad
de utilizar el flash cuando se realizan capturas de planti-
llas en la aplicación Android.

Por lo general, el tiempo que tarda una plantilla en ser
corregida una vez ha llegado al servidor no suele sobre-
pasar los 2 segundos. El tiempo total desde que se captura
la imagen hasta que se recibe una respuesta depende del
tiempo que se tarde en enviar la fotografía al servidor.

En el gráfico de la Figura 17 se muestra el número de
respuestas detectadas correcta e incorrectamente por los
diferentes detectores creados. Se basa en 8 imágenes con
un total de 60 preguntas cada una. Los datos son valores
promedios entre los dos detectores.

Existe un problema con las respuestas que son detec-
tadas de forma incorrecta. Este problema tiene que ver
con diferentes factores. Uno de estos factores es el comen-
tado anteriormente sobre el pequeño desplazamoniento
que sufren los puntos de las tablas respecto al centro de
masas de cada celda. Esto hace que los diferentes detecto-
res cuenten para la detección los bordes que delimitan
cada celda distorsionando así la detección. Otro factor
importante es el preprocesado que se realiza a la imagen
al inicio de la cadena de procesado. Dependiendo del
color escogido para marcar las respuestas, con el prepro-
cesado de la imagen se puede perder información de las
respuestas marcadas. También, la resolución de las imá-
genes y las cualidades de la cámara son factores críticos.
Si tenemos una resolución alta, el detector tendrá más
detalle en cada celda. También la calidad de imagen hace

10 EE/UAB TFG INFORMÀTICA: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL

que las respuestas marcadas no sean tan sensibles al pro-
cesado de la imagen.

6 LÍNEAS DE TRABAJO FUTURAS

Este proyecto inicia una base para la creación de un futu-
ro sistema detector de plantillas tipo test. Como líneas de
trabajo futura se podrían plantear las siguientes:

 Utilizar el servidor para recopilar datos de las de-
tecciones y así tener un Ground Thruth con el que
validar un futuro detector.

 Crear un detector más robusto con la capacidad
de poder detectar diferentes símbolos a la hora
de marcar las respuestas.

 Implementar medidas en la aplicación Android
para determinar si una imagen está bien enfoca-
da o no.

 Mejorar la interfaz web insertando filtros para las
búsquedas de los exámenes.

7 CONCLUSIONES

En la realización de este proyecto se ha podido ver todo el
proceso de creación de un sistema complejo. El objetivo
principal se ha cumplido ya que el sistema es funcional y
los resultados que ofrece, en tiempo de respuesta y de
detección, son satisfactorios. Los sistemas de servidor y
aplicación Android se han cumplido con un resultado
mejor de lo esperado. En un principio no se esperaba
crear una página web para administrar el sistema, pero
debido a diferentes reajustes en la planificación, se dispu-
so del suficiente tiempo para realizar esta tarea. También,
la aplicación Android ha respondido a las expectativas
creadas y ha quedado una aplicación acabada y funcional.

Otro aspecto muy importante ha sido la inclusión de
los códigos QR en el sistema, ya que gracias a esta inser-
ción, se simplificó la cadena y el sistema pasó a ser más
robusto. Este cambio se implementó rápidamente y no
supuso grandes cambios en la planificación. También ha
sido necesario documentarse suficiente para poder en-
tender y utilizar correctamente los diferentes algoritmos
utilizados en la creación de la cadena de procesado.

Como conclusión final de este trabajo se ha conseguido
analizar correctamente las imágenes de las plantillas,
detectar las características de éstas con el objetivo de pro-
cesarlas y detectar las respuestas marcadas para después
devolver un resultado. Para todo ello se ha utilizado el
sistema creado: cadena de procesado, servidor y aplica-
ción Android.

AGRADECIMIENTOS

Quiero mostrar mi agradecimiento a Javier Sánchez Puja-
das, tutor de este trabajo de final de grado. He recibido su
soporte y, en muchos casos, ha aportado grandes ideas
para el proyecto. También agradecer el apoyo y la ayuda
recibida por mis compañeros de Starlab.

REFERENCIAS

[1] Servicio de informática UAB, Corrección de exámenes. Dispo-

nible en https://www.uab.cat/web/correccio-d-examens-

1096478501685.html, Junio 2015

[2] Francisco de Assis Zampirolli, Jose Artur Quilici Gonzalez and

Rogério Perino de Oliveira Neves, “Automatic Correction of

Multiple-Choice Tests using Digital Cameras and Image Proce-

ssing”. Universidade Federal do ABC, 2010

[3] Darío Álvarez Gutierrez, Lucas Díaz, Sanzo. “COETEST: Co-

rrección óptica de exámenes de test en papel automática, rápida

y económica”. Universidad de Oviedo, Julio 2011.

[4] NumPy package Python disponible en

http://www.numpy.org/ 2013

[5] OpenCV library. 2015

[6] Raquel Urtasun, Computer Vision: Filtering. TTI Chicago, 2013

http://www.cs.toronto.edu/~urtasun/courses/CV/lecture02.

pdf

[7] Jean Serra, “Image Analysis and Mathematical Morphology”.

January 1983.

[8] Bryan S. Morse, “Thresholding”. Brigham Young University

1998 – 2000.

[9] John Hersberg, Jack Snoeyink. “Speeding Up the Douglas-

Peucker Line-Simplification Algorithm”. Palo Alto and Univer-

sitiy of British Columbia, 1992.

[10] Sitio official de la librería zlib. 2014. http://www.zlib.net/

[11] Sitio oficial de la librería QRTools, 2014.

https://launchpad.net/qr-tools

[12] Denis Zorin, “2D transformations, homogeneous coordinates,

hierarchical transformations”. New York University 2001.

http://mrl.nyu.edu/~dzorin/ig04/lecture05/lecture05.pdf

[13] OpenCV library, “función bitwise_and”. 2015

http://docs.opencv.org/modules/core/doc/operations_on_ar

rays.html#bitwise_and

[14] OpenCV library, “función moments”. 2015

http://docs.opencv.org/modules/imgproc/doc/structural_an

aly-

sis_and_shape_descriptors.html?highlight=moments#moments

[15] Chapter 1, “Introduction to Moments”.

http://zoi.utia.cas.cz/files/chapter_moments_color1.pdf

[16] Django REST Framework, 2015. http://www.django-rest-

framework.org/

[17] Ayuda Android developers, 2015.

http://developer.android.com/index.html

https://www.uab.cat/web/correccio-d-examens-1096478501685.html
https://www.uab.cat/web/correccio-d-examens-1096478501685.html
http://www.numpy.org/
http://www.cs.toronto.edu/~urtasun/courses/CV/lecture02.pdf
http://www.cs.toronto.edu/~urtasun/courses/CV/lecture02.pdf
http://www.zlib.net/
https://launchpad.net/qr-tools
http://mrl.nyu.edu/~dzorin/ig04/lecture05/lecture05.pdf
http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise_and
http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#bitwise_and
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
http://zoi.utia.cas.cz/files/chapter_moments_color1.pdf
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/
http://developer.android.com/index.html

JORI PRADOS CAMARGO.: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL 11

APÉNDICES

A1. EJEMPLO DE PLANTILLA

A2. PLANTILLA BASE.

12 EE/UAB TFG INFORMÀTICA: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL

A3. COMPARATIVA DIFERENTES METRICAS DE COMPARACION DE HISTOGRAMAS.

Este apendice muestra una tabla comparativa entre las diferentes métricas utilizadas en el detector de comparación de
histrogramas. Estos resultados evalúan el número de respuestas detectadas correctamente y el número de respuestas
que han sido detectadas con un valor diferente al que en realidad se ha marcado en la hoja del test. Los resultados
obtenidos con este método son parecidos en las diferentes métricas. Estos resultados no nos aportan una decisión defi-
nitiva y se deberían realizar muchas más pruebas para poder tener una decisión más concluyente sobre cuál de estas
métricas es mejor. También, para evaluar estas métricas se tiene que definir un umbral que permita determinar si una
respuesta está marcada o no. Este umbral es un punto crítico ya que dependiendo de su valor los resultados pueden
variar.

Tabla 1: Comparativa de métricas.

 Métrica

Correlation Chi-Square Intersection Bhattacharyya distance

Imagen Correc-
tas

Incorrectas Correctas Incorrectas Correctas Incorrectas Correctas Incorrectas

1 57 11 56 12 57 11 51 17

2 59 9 57 11 59 9 47 21

3 59 9 56 12 58 11 55 13

4 59 9 57 11 35 9 55 13

5 46 22 56 23 47 21 44 24

6 49 19 57 22 30 38 46 22

7 65 3 62 6 65 3 56 12

8 66 2 63 5 66 2 60 8º

PROMEDIO 57,5 10,5 55 12,75 52,125 15,87 51,75 16,25

Figura 18: Gráfico comparativo de métricas.

0

10

20

30

40

50

60

70

Correlation Chi-Square Intersection Bhattacharyya distance

N
ú

m
e

ro
 d

e
 r

e
sp

u
e

st
as

Métodos de comparación de histogramas de imágenes

Comparación del Histograma

Correctos

Incorrectos

JORI PRADOS CAMARGO.: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL 13

Figura 21: Detalles de una exámen.

A4. EJEMPLOS DE LA INTERFAZ DEL SERVIDOR.

En este apencice se muestran algunos ejemplos de la interzar web del servidor.

Figura 19: Formulario de inicio de sesión en la web del servidor.

Figura 20: Listado de exámenes.

14 EE/UAB TFG INFORMÀTICA: CORRECTOR AUTOMÁTICO DE PLANTILLAS TEST CON TELÉFONO MÓVIL

Figura 22: Formulario de creación de un nuevo exámen.

Figura 3: Listado de resultados de los exámenes.

Figura 2: Detalles de un resultado añadido.

	1 Introducción
	2 Estado del arte
	3 Objetivos
	3.1 Cadena de procesado y detección
	3.2 Servidor
	3.3 Aplicación Android

	4 Trabajo realizado
	4.1 Plantilla utilizada
	4.2 Cadena de procesado.
	4.2.1 Preprocesamiento de la imagen.
	4.2.2 Detección de cuadrados.
	- En el caso de que los objetos a extraer sean claros respecto al fondo:
	𝑔,𝑥,𝑦.=,,1, &𝑓(𝑥,𝑦)>𝑇-0, &𝑓(𝑥,𝑦)≤𝑇.. (1)
	4.2.3 Detección del código QR e identificación de la plantilla.
	4.2.4 Detección de los contornos de las tablas.
	Este desplazamiento se debe a que las tablas detectadas de las diferentes imágenes no son del todo rectas. En muchos casos tienen una pequeña curva debido a un aspecto físico de la cámara que toma la fotografía. Esta curva hace que todos los puntos se...
	4.2.5 Detección de respuestas.

	4.3 Servidor.
	4.4 Aplicación Android.
	4.5 Funcionamiento general del sistema.

	5 Resultados
	6 Líneas de trabajo futuras
	7 Conclusiones
	Agradecimientos
	Quiero mostrar mi agradecimiento a Javier Sánchez Pujadas, tutor de este trabajo de final de grado. He recibido su soporte y, en muchos casos, ha aportado grandes ideas para el proyecto. También agradecer el apoyo y la ayuda recibida por mis compañero...
	Referencias
	A1. Ejemplo de plantilla
	A2. Plantilla base.
	A3. Comparativa diferentes metricas de comparacion de histogramas.
	Este apendice muestra una tabla comparativa entre las diferentes métricas utilizadas en el detector de comparación de histrogramas. Estos resultados evalúan el número de respuestas detectadas correctamente y el número de respuestas que han sido detect...
	A4. Ejemplos de la interfaz del servidor.
	En este apencice se muestran algunos ejemplos de la interzar web del servidor.

