TFG EN INGENIERIA INFORMATICA, ESCUELA DE INGENIERIA (EE), UNIVERSIDAD AUTONOMA DE BARCELONA (UAB)

Extension de la implementacion JAUS++ del
estandar de comunicaciones JAUS para la
Interoperabilidad entre sistemas no tripulados

Cinthia Jazmin toala Zamora (1281680)

Resumen—La realizacién de este trabajo tuvo como objetivo desarrollar una extension (JAUS Manipulator Service Set) de la
implementaciéon JAUS++ del estandar JAUS, que se utiliza para dotar de interoperabilidad a cualquier tipo de sistemas no
tripulados, independientemente de la tecnologia empleada en ellos, permitiendo asi, la heterogeneidad en la comunicacion
entre diversos frameworks. EI motivo por el que se creé esta extension fue para ofrecer interoperabilidad a los manipuladores
de uno de los sistemas no tripulados (vehiculo terrestre) del proyecto europeo fp7 ICARUS, dicho proyecto tiene como objetivo
dar soporte a los equipos de bUsqueda y rescate de supervivientes en desastres naturales, utilizando una tropa heterogénea
de vehiculos no tripulados que operan bajo los frameworks ROS, MOOS y FINROC. Para dar una explicacion detallada del
trabajo, este articulo incluye una descripcion de la arquitectura del estandar JAUS, ya que consiste en extender la libreria de la
implementacién de dicho estandar, a continuacién se explicara el objetivo y las tareas que se han desarrollado para
conseguirlo. Se ensefiara la metodologia que se ha utilizado para cumplir con la planificacién establecida, como asi también,
una conclusion del trabajo realizado. Por ultimo mostraremos las fuentes que se utilizé a lo largo del proyecto.

Paraules clau— Jaus++, Active-ist, FP7-Icarus, Jaus, sitemas no tripulados, interoperabilidad.

Abstract—The realization of this work had as goal to develop an extension (JAUS Manipulator Service Set) of JAUS ++
implementation of the JAUS standard, which it is used to provide interoperability between any types of unmanned systems,
independently of the technology employed in them, allowing thus, heterogeneity in communication between various
frameworks. The reason for this extension was created was to provide interoperability to the manipulator of one of unmanned
systems (land vehicle) of the European project fp7 ICARUS, this project aims to support the teams of search and rescue of
survivors natural disasters, using a heterogeneous troop of unmanned vehicles, operating under the frameworks ROS, MOOS y
FINROC. To give a detailed explanation of the work, this article includes a description of the architecture of JAUS standard, as
this implementation extends, then will be explained the goal and tasks that have been developed to achieve it. The methodology
used to comply with the established plan, as well as a conclusion of the work performed will be explained. Finally we show the

fonts that are used throughout the project.

Index Terms— Jaus++, Active-ist, FP7-Icarus, Jaus, unmanned systems, interoperability.

1 INTRODUCCION

STE trabajo final de grado fue propuesto por el centro
tecnolégico ASCAMM [5], una organizacion privada
sin fines de lucro, especializada en I+D (investigacion y
desarrollo) de sistemas inteligentes para tecnologias in-
dustriales. ASCAMM tiene en marcha proyectos tanto a
nivel nacional como a nivel internacional y con este traba-

E-mail de contacto: cinthiajazmin.toala@e-campus.uab.cat

Mencion realitzada: Ingenieria de Computadores

Trabajo tutorizado por: Tomas Manuel Margalef Burrull (Arquitectura de
Computadores y Sistemas Operativos).

Germdn Moreno Martinez (Fundacié privada ASCAMM).

Curso 2014/15

jo se dio soporte a unos de sus proyecto a nivel interna-
cional, concretamente al proyecto europeo fp7 ICARUS
[10], en el cual trabaja su departamento de sistemas no
tripulados.

El proyecto ICARUS naci6é después de los terremotos en
I'Aquila, Haiti y Japén, la Comision Europea confirmé
que existe una gran disconformidad en la tecnologia (ro-
bética) que se utiliz6 en el terreno de bisqueda y salva-
mento. De este modo, la Direccion General de la Comi-
sion Europea de Empresa e Industria decidié financiar
ICARUS, un proyecto de investigacién (con presupuesto
mundial de 17,5 millones €), que tiene como objetivo
desarrollar herramientas robéticas que puedan ayudar a

“Junio” de 2015, Escuela de Ingenieria (UAB)

EE/UAB TFG INFORMATICA: EXTENSION DE LA IMPLEMENTACION JAUS++

INTEROPERABILITY AND STANDARDIZATION

ROS based platform

MOOS based platform

ROS based platform

FINROC based platform

Figura_1. Ejemplo de interoperabilidad y estandarizacion entre distintos tipos de robots [8].

los equipos de intervencion en estas crisis, para conseguir
detectar, localizar y rescatar a seres humanos con dichas
herramientas. Estos sistemas no tripulados minimizan los
problemas que surgen en estos desastres y reducen el
grado elevado de peligrosidad que hay y los costes de
materiales de dicho trabajo.

Una de las cosas que necesitaba este proyecto era ex-
tender la implementacién que utilizan para la interopera-
bilidad entre sus vehiculos no tripulados. La extensiéon
(JAUS Manipulator Service Set) que se afadira en la im-
plementacion JAUS++ [7] serd aplicada para dotar de
interoperabilidad a los manipuladores del robot terrestre,
dicho robot opera bajo la plataforma FINROC y podemos
apreciarlo en la Figura_1.

2 JAUS+H+

Hoy en dia aparecen muchas tecnologias nuevas cons-
tantemente, e inicialmente todas son independientes, por
ejemplo en el caso de los sistemas no tripulados hay mu-
cha diversidad de plataformas para poder manipular e
interactuar dichos sistemas, el problema surge cuando
queremos interactuar a la vez varios sistemas con diferen-
tes frameworks, es aqui donde nace la necesidad de es-
tandarizar y por eso se cred JAUS y la implementacién
JAUS++ de este estandar.

JAUS++ es una implementacién de cédigo abierto es-
crito en C++ [4] del estandar JAUS [6]. Sus siglas signifi-
can Joint Architecture for Unmanned Systems, como su
nombre lo indica es una arquitectura para el dominio de

los sistemas no tripulados. Esta arquitectura se utiliza
para la comunicacién con cualquier tipo de vehiculos no
tripulados reales y/o simulados, independiente de la
tecnologia empleada en ellos garantizando heterogenei-
dad.

2.1 Libreria

Como podemos observar en la Figura 2 hoy en dia
JAUS++ que es de software libre, tiene implementado los
siguientes conjuntos de servicios: El Core, el Mobility, el
Transport y el Enviroment Sensing, pero carece del Ma-
nipulator y del Mission Spooling respecto al estandar
JAUS que es de software privativo.

Core Service
Set

Mobility
Service Set

Transport
Service Set

Environment
Sensing Service
Set

ascamm

Figura_2. Comparacioén de la implementacién JAUS++ con el estandar
JAUS [9].

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++

Estas librerias proporcionan los siguientes servicios don-
de se especifica una capa de comunicaciones de datos
para el transporte de mensajes definidos JAUS++:

Core Service Set: Representan la infraestructura que se
encuentra comtinmente en todos los dominios y tipos de
sistemas no tripulados. En la actualidad, siete servicios se
definen en el Core:
e Transport Service: Abstrae la funcionalidad de la capa
de transporte de comunicacién subyacente.

e Events Service: Establece una publica-
cién/suscripcién, mecanismo para la mensajeria au-
tomatica.

e Access Control: Gestiona el control exclusivo apropia-
ble para las operaciones criticas de seguridad.

e Management: Define la gestion del ciclo de vida de los
componentes.

e Time: Permite a los clientes consultar y establecer la
hora del sistema para los componentes.

e Liveness: Proporciona un medio para mantener activa
la conexién entre los componentes que se comunican.

e Discovery: Proporciona el descubrimiento automatico
de las entidades remotas (subsistemas tales como la
unidad de control o los sistemas no tripulados) y sus
capacidades.

Transport Service Set: Especificacion de transporte defi-
ne los formatos y protocolos utilizados para la comunica-
cion entre las entidades que cumplen los protocolos de
capa de enlace y medios de comunicacion (JUDP).

Mobility Service Set: Proporciona los medios para co-
municar y coordinar las actividades de un sistema no
tripulado o sistema de sistemas no tripulados. Los servi-
cios de movilidad representan las capacidades indepen-
dientes de la plataforma que se encuentran cominmente
en todos los dominios y tipos de sistemas no tripulados.
En la actualidad, 15 servicios se definen en Mobility, co-
mo por ejemplo:

e Pose sensors: Para determinar la posiciéon instanta-
nea y la orientacién de una plataforma en coordena-
das globales o locales.

¢ Velocity state sensor: Para determinar la velocidad
instantanea de una plataforma.

e Acceleration state sensor: Para determinar la acele-
racién instantanea de una plataforma.

e Primitive driver: Para realizar la movilidad bésica de
una plataforma basada en la fuerza de torsién.

e Vector drivers: Para realizar la movilidad de circuito
cerrado para el recorrido en linea recta.

e Velocity state driver: Similar a vector drivers, pero
con grados de libertad adicionales.

e Waypoint drivers: Realizar la movilidad de circuito
cerrado en una ubicacidén especificada.

¢ Path segment drivers: Realiza la movilidad de circui-
to cerrado a lo largo de una ruta especificada.

Environment Sensing Service Set: Los Servicios de de-
teccién de entorno representan capacidades de deteccién
de ambientes que se encuentran comtinmente en todos los
dominios y tipos de sistemas no tripulados de forma in-

dependiente de la plataforma. Son cinco los servicios que
lo definen:
¢ Range sensor: Determinar la proximidad de los obje-
tos en el entorno de la plataforma.
e Visual sensor: Proporciona la configuracion comun
para los diferentes tipos de sistemas de imégenes.
¢ Digital video: Un tipo de sensor visual que logra vi-
deo digital.
¢ Analog video: Un tipo de sensor visual que logra vi-
deo analégico.
o Still image: Un tipo de sensor visual que gestiona y
codifica las imagenes digitales individuales.

Mission Spooling Service Set: Cola de misién de una
plataforma independiente. En la actualidad, 1 de servicio
se define Spooling Services (Solo existe en JAUS y se pla-
nean mas servicios en un futuro):
e Mission Spooler: Para planes de misién, coordina los
planes de la misién.

Manipulator Service Set: Los manipuladores se utilizan a
menudo en sistemas no tripulados para alterar el medio
ambiente, para tomar el mando y el control de estos hay
19 servicios definidos en Manipulator service set.

Adelantdndonos a los objetivos, lo que haremos es
desarrollar servicios de este tipo para dotar de interope-
rabilidad a cualquier manipulador en sistemas no tripu-
lados. Se realizaran los siguientes 4 servicios de los 19 que
hay:

¢ EndEffectorPoseSensor: para reportar la posiciéon y
orientacién del end effector del manipulador cuando
se le pregunta.

e Joint position sensor: para reportar los valores de po-
sicién y orientacién de las articulaciones del manipu-
lador cuando se les pregunta.

¢ End effector pose driver: para realizar el control de la
posicién y la orientacion del end effector del manbipu-
lador.

e Joint position driver: es llevar a cabo el control de la
posiciéon y orientacion conjunta del manipulador.

2.2 Arquitectura

Ahora pasaremos a explicar resumidamente el funcio-
namiento y la arquitectura de este sistema, para que se
pueda entender el trabajo que se ha realizado.

Como vemos en la Figura_3 este sistema es un conjun-
to de subsistemas, dicho subsistema podria ser un vehicu-
lo no tripulado (UV) como por ejemplo un robot o una
unidad de control de operaciéon (OCU).

Cada subsistema estd dotado de nodos, que es cual-
quier dispositivo informaético, este nodo tiene una direc-
cién fisica. Como por ejemplo en el caso de un robot, un
nodo podria ser su microcontrolador o un manipulador.

Estos nodos estan formados por componentes, cada
componente tiene una coleccién de servicios basicos ya
afiadidos por defecto, que son los del Core Service Set que
hemos mencionado antes en el apartado de caracteristica,
o afladidos como el Manipulator Service Set, el cual aha-
diriamos si nuestro robot utilizase un manipulador, (co-

mo en el caso de robot terrestre de la plataforma FINROC
de la Figura_1). Estos componentes estan identificados
con una ID individual para poder acceder a toda la in-
formacioén afiadida a ellos de forma directa, identificable y
segura.

Transport Layer (e.g. JUDP)

Subsystem Subsystem
Nede Node
Component Component Component
I Transport Service Transport Service I Transport Service

Service Z

Service X
Service Y

Service Z

Figura_ 3. Arquitectura del sistema JAUS [1]

2.2 Caracteristicas

JAUS++ es totalmente orientado a objetos por lo que
permite crear componente JAUS con todos los servicios
basicos que hay en el Core (Transport (JUDP), Control,
Discovery, Events, Liveness, Time; Management) en po-
cas lineas de codigo.

Tiene librerias completas de mensajes tanto para el
nucleo (core) donde estdn los servicios basicos, como para
otros servicios, tales como el de movilidad (mobility).

JAUS ++ también incluye algunos servicios personali-
zados y experimentales que no forman parte de las nor-
mas JAUS. Sus creadores ampliaron el disefio para facili-
tar la transmisién de video, la utilizacién de joystick o
interactuar con el microcontrolador.

3 OBJETIVO

Como hemos estado adelantando el objetivo de este
trabajo es extender la implementacion JAUS++ y hacer
algunos servicios del Manipulator Service Set para
poder dotar de interoperabilidad a los manipuladores
del robot terrestre del proyecto FP7 Icarus. Para ello se
desarrollara los siguientes servicios:

*Dos servicios de sensores:
ManipulatorEndEffectorPoseSensor.
ManipulatorJointPositionSensor.

*Dos servicios de posicién de los drivers:
ManipulatorEndEffectorPoseDriver.
ManipulatorJointPositionDriver.

Lo que se proporciona con estos servicios de sensores y
drivers es un sistema de coordenadas en la que especifi-
camos la posicién y orientacién de cada parte del mani-
pulador; Este sistema suele estar unido a la base del

EE/UAB TFG INFORMATICA: EXTENSION DE LA IMPLEMENTACION JAUS++

vehiculo no tripulado. Podemos observamos un ejemplo
del sistema en la Figura_4.

En cada servicio de JAUS++ se establecen 3 tipos de

f Kena effector
7Y,
l‘/ Y end effector

| e S

& i\wg
Xp ‘/‘.b‘S S =Yg

Figura_4. Ejemplo del sistema de coordenadas de un manipulador [2].

mensajes que son Queries, Reports y Sets para poder
operar e interactuar entre ellos. Por ejemplo en la Tabla_1
podemos observar los mensajes que tendra Manipulator
Joint Position Driver.

Message Id Name isCommand?
(hex)

Input Set

0602h SetJointPosition True
0607h SetJointMotionProfile True
2600h QueryManipulatorSpecifications False
2607h QueryJointMotionProfile False
2608h QueryCommandedJoint Position False
Output Set

4600h ReportManipulatorSpecifications False
4607h ReportJointMotionProfile False
4608h ReportCommandedJoint Position False

Tabla_1. Manipulator Join Position Driver Service [3]

4 METODOLOGIA

Para poder organizar el trabajo que se tenia que reali-
zar, primeramente utilizamos la metodologia Work
Breakdown Structure (WBS) [11] para dividir el trabajo en
partes. WBS es una estructura de descomposicién de
trabajo (EDT) en paquetes entregables, su descomposicién
jerarquica orientada a entregar proyectos en componentes
mas pequefios, facilité la estructuracion y definicion de la
carga de trabajo.

Como cada servicio era independiente, se organizo el
trabajo en 4 paquetes, uno por cada servicio, para conse-
guir el alcance total del proyecto. En la Figura 9, Figu-
ra_10 y Figura_11 del apéndice podemos observar la es-
tructuracién y la descomposicién de cada uno de ellos.

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++

Una vez hecha la estructuracién del trabajo, pasamos
a realizar la planificacién del tiempo, para poder tener un
orden y control de los dias con los que se contaba para
finalizar el proyecto, en dicho proyecto ponemos identifi-
car 3 fases, la fase de investigaciéon y aprendizaje, la fase
de desarrollo y testeo y por tltimo la fase de documenta-
cion.

La planificacién que se hizo tenia 7 etapas que se rea-
lizaban en 18 semanas, como podemos observar en la
Tabla_2. Cada etapa tenia varias actividades a realizar,
dichas actividades realizadas se expondrdn a continua-
cién brevemente.

Semana |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Etapal
Etapa 2
Etapa 3
Etapa 4
Etapa 5
Etapa 6
Etapa 7

Tabla_2: Planificacion semanal del trabajo.

Etapa 1: Esta etapa fue dedicada expresamente para la
fase de investigacion y aprendizaje, asi que en las prime-
ras 4 semanas que corresponde del 9 de febrero al 8 de
marzo, se familiariz6 con la implementacién JAUS++, se
instalado el programa y se ley6 toda la documentacion
para entender dicha arquitectura de comunicacién. Por
altimo se procedi6 hacer los 8 tutoriales de la pagina web
de JAUS++.

Etapa 2 y etapa 3: En estas etapas que corresponde del 9
de marzo al 19 de abril se inici6 la fase de desarrollo,
primeramente se implementé Manipulator End Effector
Pose Sensor y sus mensajes. Tal y como habiamos men-
cionado anteriormente, los servicios son independientes,
asi que también se hizo pruebas del servicio una vez aca-
bado, con simulaciones para garantizar de su buen fun-
cionamiento. Seguidamente se procedié hacer lo mismo
con Manipulator Joint Position Sensor.

Etapa 4 y etapa5: Una vez hecho la parte de sensores, se
desarrollaron los drivers (del 20 de abril al 24 de mayo),
empezando por el Manipulator End Effector Pose Driver
y después con Manipulator Joint Position Driver, al igual
que los sensores también se hizo las pruebas correspon-
dientes para verificar su buen funcionamiento.

Etapa 6: Una vez acabado todo el cédigo se comprobd
detalladamente, que la extension realizada se integraba a
la perfeccion a JAUS++.

Etapa 7: La ultima etapa se utilizé para hacer la tultima
fase de todo proyecto, la fase de documentacién y presen-
tacion del trabajo realizado.

5 DESARROLLO Y RESULTADOS

En esta seccién se ofrecerd una visién clara y breve del
trabajo hecho, junto con los resultados obtenidos.

Primeramente pasaremos a definir el entorno donde
opera estos sistemas no tripulados, que se especifican con
sistemas de coordenadas. Para entender mejor este apar-
tado se aconseja ver la Figura_4 a medida que se va le-
yendo.

Sistema de coordenadas global: Este sistema de coorde-
nadas se definen en unidades de longitud, latitud y alti-
tud, para saber la posicién global de la plataforma donde
se interactda.

Sistema de coordenadas del Vehiculo: Este sistema de
coordenadas se definen en unidades de longitud, latitud y
altitud, para saber la posicién global del subsistema
(vehiculo no tripulado), segtin la Figura_4 es X, Y y Z de
la base.

Sistema de coordenadas del manipulador: En la mayoria
de los casos, este sistema de coordenadas esta unido a la
base del vehiculo y las coordenadas se definen igual que
antes. El origen de estas coordenadas se encuentra en la
interseccién del primer eje de la articulaciéon S1 y acaba en
la dltima articulacién (lista de posiciéon de cada articula-
cion).

Sistema de Coordenadas del efector final: Este sistema
de coordenadas estd unido al tltimo eslabén del manipu-
lador en serie. El punto de origen esta situado a una dis-
tancia Sn (56 para un manipulador de seis ejes por ejem-

plo).

Con estos sistemas de coordenadas se podra tomar el
mando, el control y la supervisién de los componentes de
un manipulador, que estd compuesto de indiferentes
namero de articulaciones.

Una vez explicado los sistemas de coordenadas que
tienen estos vehiculos no tripulados, para poder saber la
posicién exacta de cada componente pasamos a decir los
tipos de mensajes que hay en el sistema de comunicacién
JAUS++. Hay 3 tipos de mensajes que son:

Query: Este tipo de mensajes sirve para lanzar consulta
del servicio que estemos interesados.

Report: Estos mensajes sirven para poder recibir informa-
cién del servicio consultado.

Set: Este mensaje sirve para poder comandar cuando se
necesita controlar el servicio.

En la siguiente Figura_5 se puede ver un ejemplo de es-
quema de secuencia de mensajes del servicio de discovery
del core.

Component implementing
Discovery Service Client

sendQueryldentification
(Broadcast)

Client now knows the
address of components
implementing the discovery
sernvice and the type and
name of system,
subsystem, node or
component

sendRegisterServices
publishServices

sendQueryConfiguration

Chent now knows the
existence of legacy and
new component
implementations in the
subsystem or node whose
configuration was guened

—_—

/_________._._f—-—f
/

EE/UAB TFG INFORMATICA: EXTENSION DE LA IMPLEMENTACION JAUS++

Components implementing Discovery Service

sendReportldentification

sendReportidentific

\\\b

publishServices

sendReportConfiguration

sendQueryServices \
sendReportServices

Client now knows of the
existence of specific
services in the new
component
implementations of the
subsystem, node or
component list that it
querted for

Figura_5: Diagrama de la secuencia de mensajes del servicio discovery

Cada mensaje se crea en una clase de C++, dichas clases
tienen funciones implementadas tales como: Crear el
mensaje, establecer valores segtin el estado del compo-
nente, Pintar por pantalla el report del servicio, mostrar y
establecer los valores para cada variable del servicio,
especificar si se puede generar eventos del servicio o si se
puede controlar el servicio, etc. Estas funciones se crean
dependiendo de lo que necesitemos de cada servicio y
siempre se pueden ir ampliando.

Ahora que ya sabemos las definiciones necesarias para
entender el trabajo que se ha desarrollado pasamos a
exponer los 4 servicios implementados.

e Manipulator End-Effector Pose Sensor

En este servicio se ha desarrollado 4 tipos de mensajes:

o Query Manipulator Specifications

o Query End Effector Pose

o Report Manipulator Specifications

o Report End Effector Pose
Los mensajes de query se han desarrollado para gene-
rar consultas de la posicion relativa y la orientacion de
la base del manipulador, con respecto al sistema de
coordenadas del efector final.
Este servicio se refiere tinicamente a la operacién re-
mota de un manipulador. Los outputs que se generan
son los report respectivos de cada query.

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++

e Manipulator Joint Position Sensor commanded end effector pose ;
Set End Effector Pose Message
Los mensajes asociados aqui son:

o Query Manipulator Specifications Report Joint

Positions
o Query Joint Positions Tefis ey Message | Manipulator End-
. e . » Effector Pose
o Report Manipulator Specifications SR Driver

o Report Joint Positions.
El Report Joint Positions message proporciona las posi-

. Set Joint Effort
ciones Con]untas del mampulador. Las posiciones se dan

d d lucié ¢ . iti Report Manipulator Message

n r rev 10N n metr Iy rismati- ificati

en grados para de revoluciony e e O.S para prisma Specifications Message actual joint effort ;

cos. El Componente se representa enla F1gura_6. Report Joint Effort Message

Figura_7: Manipulator End-Effector Pose Driver

actual joint positions ; request joint positions ;
Report Joint Positions Query Joint Positions
Message Message

e Manipulator Joint Positions Driver

Algunos de los mensajes asociados aqui son (se puede
observar la tabla completa en la Figura_11 del apéndi-
ce):

o Set Joint Positions

o Report Manipulator Specifications

o Reports Joint Positions
La Figura_ representa el componente de joint position

Joint Position
Sensor

Figura_6: Componente Joint Position Sensor.

driver.
e Manipulator End-Effector Driver

Algunos de los mensajes realizados en este servicio commanded joint values ;
son (se puede observar la tabla completa en la Figu- Set Joint Positions Message
ra_11 del apéndice): Report Joint

_ p : Positions

o Set Tool Offset Joint Position Message | manipulator Joint

o Set Joint Motion Profile Sensor | Positions Driver

o Set End Effector Pose

o Query Manipulator Specifications

o Query Tool offset

o Query Joint Motion Profile Report Manipulator Set Joint Effort

. pe . Specifications Message Message
o Report Manipulator Specifications
actual joint effort ;
o Report Tool offset

. . . Report Joint Effort Message
o Report Joint Motion Profile

Este componente realiza el control de la posicién y
orientacién del efector final. La entrada es la posicién
deseada y la orientacién del efector final, especificado
en el sistema de coordenadas del vehiculo, los angulos
de las articulaciones actuales, y los datos del Report
Manipulator Specifications. El componente se repre-
senta en la Figura_8.

Figura_8: Componente Joint Position Driver.

6 CONCLUSION

Como habfamos dicho inicialmente el objetivo que
nos habiamos propuesto era desarrollar una extensién
de la implementacién JAUS++ basada en el estandar
JAUS. Dicha extensiéon es JAUS Manipulator Service
Set, con la cual conseguimos dotar de interoperabili-
dad a los manipuladores del vehiculo terrestre del
proyecto fp7 ICARUS.

Los servicios que se ha implementé finalmente han
sido los dos servicios de sensores: Manipulator End
Effector Pose Sensor y Manipulator Joint Position Sen-
sor. Y los dos servicios de drivers: Manipulator End
Effector Pose Driver y Manipulator Joint Position Dri-
ver.

Finalmente se concluye el trabajo satisfactoriamente
ya que se ha realizado los objetivos marcados y se ha
cumplido con la planificacién inicial propuesta.

Agradecimientos

En primer lugar queria dedicarles toda mi trayectoria de
aprendizaje a mi madre Violeta y a mi abuela Violeta, que
siempre han estado a mi lado y han respetado cada una
de mis decisiones.

De forma general quisiera agradecer a todo el profesora-
do del grado de ingenieria informatica, ya que a dia de
hoy puedo afirmar que los conocimientos adquiridos en
el grado, me ayudaran a solventar cualquier problema en
el futuro como hasta ahora.

A mi tutor de este trabajo en la UAB Tomas Margalef,
quiero agradecerle la dedicacién y el apoyo que me ha
dado durante estos meses. Sus consejos y experiencia me
han guiado en la preparacion de este.

Mis mas sinceros agradecimientos a Ana Cortés, que me
puso en contacto con la corporacién Ascamm, para hacer
las practicas en empresa, sin ella no hubiese sido posible
todo esto.

Le agradezco también a mi tutor en Ascamm, German
Moreno, por el tiempo que me dedicé a lo largo de mi
trayectoria en dicha empresa. No s6lo me ha guiado en la
elaboracion del trabajo final de grado, sino que también
me ha ensefiado todo lo necesario por si en un futuro
quiero realizar trabajos similares.

Agradezco a Ascamm por haberme dado la oportunidad
de trabajar con ellos.

Por dltimo y no menos importantes a mis compaferos
Carles y Noely, que me han animado en todo el trayecto
de la universidad.

EE/UAB TFG INFORMATICA: EXTENSION DE LA IMPLEMENTACION JAUS++

Bibliografia

[1] ACTIVE-IST. (2013). Jaus++ [Figura_3]. Recuperado de
http:/ /active-ist.sourceforge.net/jaus++.php?menu=jaus

[2] ACTIVE-IST. (2013). Jaus++ Recuperado de
http:/ /active-ist.sourceforge.net/jaus++.php?menu=jaus

[3] ACTIVE-IST. (2013). Jaus++ [Tabla_1].
http:/ /active-ist.sourceforge.net/jaus++.php?menu=jaus

[4] C++. (n.d.). March, 2015,
http:/ /www.cplusplus.com/

[5] Fundacion Privada Ascamm. (n.d.). Retrieved March, 2015,
from http:/ /www.ascamm.com/

[6] Jaus. (n.d.). March,
http:/ /openjaus.com/ doc41/namespaces.html

[7] Jaus ++. (n.d.). Retrieved March, 2015, from http://active-
ist.sourceforge.net/jaus++.php?menu=jaus

[8] Moreno, G. (2014). Unmanned Systems. [Figura_1].

[9] Moreno, G. (2014). Unmanned Systems. [Figura_2].

[10] Proyecto (n.d.). Retrieved March,
http:/ /www.fp7-icarus.eu/Etc.

[11] Work Breakdown Structure (WBS). (n.d.). Retrieved March,
2015, from https:/ / www.workbreakdownstructure.com/

[Figura_4].
Recuperado de

Retrieved from

Retrieved 2015, from

Icarus. 2015, from

Apéndice

Al. DEFINICIONES Y ABREVIACIONES

Interoperabilidad: Es una habilidad de dos o mas siste-
mas o componentes para intercambiar informacién o
utilizar la informacién intercambiada.

Unmanned Systems: Son vehiculos que se manipula sin
tripulacién.

Icarus: Es un proyecto Europeo cuyo objetivo es dar asis-
tencia a los equipos de busqueda y rescate utilizando una
tropa heterogénea de vehiculos no tripulados.

Jaus: Joint Architecture for Unmanned Systems es una
arquitectura abierta para el dominio de los sistemas no
tripulados que garantiza heterogeneidad.

Jaus++: Joint Architecture for Unmanned Systems ++ es
una implementacioén de JAUS.

Ros: Robot Operating System es un framework para el
desarrollo de software para robots de cédigo abierto.
MOOS: Cross Platform Software for Robotics Research es
un framework para el desarrollo de software para robots
de cédigo abierto.

FINROC: Framework for Intelligent Robot Control es un
framework para el desarrollo de software para robots de
cédigo abierto.

WSB: Work Breakdown Structure es un tipo de metodo-
logia para llevar a cabo mediano o grandes proyecto,
consiste en una estructura de descomposicion de trabajo
(EDT).

http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://www.cplusplus.com/
http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://www.fp7-icarus.eu/Etc
https://www.workbreakdownstructure.com/

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++

manipulator

SERVICES

MANAGER SERVICE Inputs

MANAGER SERVICE Outputs

Figura_9: Clasificascion de clases de los servicios dentro de las carpetas.

Sensors

ManipulatorEndEffectorPoseSensor.h Manipulator]ointPositionSensor.h
ManipulatorEndEffectorPoseSensor.cpp Manipulator]ointPositionSensor.cpp
QueryManipulatorSpecifications.h QueryManipulatorSpecifications.h
QueryManipulatorSpecifications.cpp QueryManipulatorSpecifications.cpp

QueryEndEffectorPose.h QueryJointPosition.h
QueryEndEffedorPose.cpp QueryJointPosition.cpp

ReportManipulatorSpecifications.h

ReportManipulatorSpecifications.h
ReporManipulatiorSpecifications.cpp

ReporManipulatiorSpecifications.cpp

ReportEndEffectorPose.h

ReportJointPosition.h
ReportEndEffectorPose.cpp

ReportJointPosition.cpp

Figura_10: Estructura interna (clases) de los sensores.

EE/UAB TFG INFORMATICA: EXTENSION DE LA IMPLEMENTACION JAUS++

drivers

ManipulatorEndEffectorPoseDriver.h Manipulator]ointPositionDriver.h

ManipulatorEndEffectorPoseDriver.cpp Manipulator] ointPositionDriver.cpp

SetToolOffset.h SetJointPosition.h
SetToolOffset.cpp SetJointPosition.cpp
SetlointMotionProfile.h SetJointMotionProfile.h
SetJointMotionProfile.cpp SetJointMotionProfile.cpp
SetEndEffectorPose.h QueryManipulatorSpecifications.h
SetEndEffectorPose.cpp QueryManipulatorSpecifications.cpp
QueryManipulatorSpecifications.h QuerylointMationProfile.h
QueryManipulatorSpecifications.cpp QueryJointMotionProfile.cpp

lOffset.h QueryCommandedlointPosition.h
uenicolais QueryCommanded]ointPosition.cpp
QueryToolOffset.cpp
QueryCommandedEndEffedorPose.h ReportManipulatorSpecifications.h
QueryCommandedEndEffedtorPose.cpp ReporManipulatiorSpecifications.cpp
QueryJointMoationProfile.h ReportJointMotion Profile.h
QueryJointMotionProfile.cpp ReportJointMotion Profile.cpp
ReportManipulatorSpecifications.h ReportCommandedlointPosition.h
ReporManipulatiorSpecifications.cpp ReportCommandedJointPosition.cpp
ReportToolOffset.h

ReportToolOffset.cpp

ReportJointMotion Profile.h
ReportJointMotion Profile.cpp

Report CommandedEndEffectorPose.h
ReportCommandedEndEffectorPose.cpp

Figura_11: Estructura interna (clases) de los drivers.

