
TFG EN INGENIERÍA INFORMÁTICA, ESCUELA DE INGENIERÍA (EE), UNIVERSIDAD AUTÓNOMA DE BARCELONA (UAB) 1

 “Junio” de 2015, Escuela de Ingeniería (UAB)

Extensión de la implementación JAUS++ del

estándar de comunicaciones JAUS para la

interoperabilidad entre sistemas no tripulados

 Cinthia Jazmin toala Zamora (1281680)

Resumen—La realización de este trabajo tuvo como objetivo desarrollar una extensión (JAUS Manipulator Service Set) de la

implementación JAUS++ del estándar JAUS, que se utiliza para dotar de interoperabilidad a cualquier tipo de sistemas no

tripulados, independientemente de la tecnología empleada en ellos, permitiendo así, la heterogeneidad en la comunicación

entre diversos frameworks. El motivo por el que se creó esta extensión fue para ofrecer interoperabilidad a los manipuladores

de uno de los sistemas no tripulados (vehículo terrestre) del proyecto europeo fp7 ICARUS, dicho proyecto tiene como objetivo

dar soporte a los equipos de búsqueda y rescate de supervivientes en desastres naturales, utilizando una tropa heterogénea

de vehículos no tripulados que operan bajo los frameworks ROS, MOOS y FINROC. Para dar una explicación detallada del

trabajo, este artículo incluye una descripción de la arquitectura del estándar JAUS, ya que consiste en extender la librería de la

implementación de dicho estándar, a continuación se explicará el objetivo y las tareas que se han desarrollado para

conseguirlo. Se enseñará la metodología que se ha utilizado para cumplir con la planificación establecida, como así también,

una conclusión del trabajo realizado. Por ultimo mostraremos las fuentes que se utilizó a lo largo del proyecto.

Paraules clau— Jaus++, Active-ist, FP7-Icarus, Jaus, sitemas no tripulados, interoperabilidad.

Abstract—The realization of this work had as goal to develop an extension (JAUS Manipulator Service Set) of JAUS ++

implementation of the JAUS standard, which it is used to provide interoperability between any types of unmanned systems,

independently of the technology employed in them, allowing thus, heterogeneity in communication between various

frameworks. The reason for this extension was created was to provide interoperability to the manipulator of one of unmanned

systems (land vehicle) of the European project fp7 ICARUS, this project aims to support the teams of search and rescue of

survivors natural disasters, using a heterogeneous troop of unmanned vehicles, operating under the frameworks ROS, MOOS y

FINROC. To give a detailed explanation of the work, this article includes a description of the architecture of JAUS standard, as

this implementation extends, then will be explained the goal and tasks that have been developed to achieve it. The methodology

used to comply with the established plan, as well as a conclusion of the work performed will be explained. Finally we show the

fonts that are used throughout the project.

Index Terms— Jaus++, Active-ist, FP7-Icarus, Jaus, unmanned systems, interoperability.

——————————  ——————————

1 INTRODUCCIÓN

STE trabajo final de grado fue propuesto por el centro
tecnológico ASCAMM [5], una organización privada

sin fines de lucro, especializada en I+D (investigación y
desarrollo) de sistemas inteligentes para tecnologías in-
dustriales. ASCAMM tiene en marcha proyectos tanto a
nivel nacional como a nivel internacional y con este traba-

jo se dio soporte a unos de sus proyecto a nivel interna-
cional, concretamente al proyecto europeo fp7 ICARUS
[10], en el cual trabaja su departamento de sistemas no
tripulados.

El proyecto ICARUS nació después de los terremotos en
l'Aquila, Haití y Japón, la Comisión Europea confirmó
que existe una gran disconformidad en la tecnología (ro-
bótica) que se utilizó en el terreno de búsqueda y salva-
mento. De este modo, la Dirección General de la Comi-
sión Europea de Empresa e Industria decidió financiar
ICARUS, un proyecto de investigación (con presupuesto
mundial de 17,5 millones €), que tiene como objetivo
desarrollar herramientas robóticas que puedan ayudar a

E

————————————————

 E-mail de contacto: cinthiajazmin.toala@e-campus.uab.cat
 Mención realitzada: Ingeniería de Computadores
 Trabajo tutorizado por: Tomàs Manuel Margalef Burrull (Arquitectura de

Computadores y Sistemas Operativos).
Germán Moreno Martínez (Fundació privada ASCAMM).

 Curso 2014/15

2 EE/UAB TFG INFORMÁTICA: EXTENSIÓN DE LA IMPLEMENTACIÓN JAUS++

los equipos de intervención en estas crisis, para conseguir
detectar, localizar y rescatar a seres humanos con dichas
herramientas. Estos sistemas no tripulados minimizan los
problemas que surgen en estos desastres y reducen el
grado elevado de peligrosidad que hay y los costes de
materiales de dicho trabajo.

Una de las cosas que necesitaba este proyecto era ex-
tender la implementación que utilizan para la interopera-
bilidad entre sus vehículos no tripulados. La extensión
(JAUS Manipulator Service Set) que se añadirá en la im-
plementación JAUS++ [7] será aplicada para dotar de
interoperabilidad a los manipuladores del robot terrestre,
dicho robot opera bajo la plataforma FINROC y podemos
apreciarlo en la Figura_1.

2 JAUS++

 Hoy en día aparecen muchas tecnologías nuevas cons-
tantemente, e inicialmente todas son independientes, por
ejemplo en el caso de los sistemas no tripulados hay mu-
cha diversidad de plataformas para poder manipular e
interactuar dichos sistemas, el problema surge cuando
queremos interactuar a la vez varios sistemas con diferen-
tes frameworks, es aquí donde nace la necesidad de es-
tandarizar y por eso se creó JAUS y la implementación
JAUS++ de este estándar.

JAUS++ es una implementación de código abierto es-
crito en C++ [4] del estándar JAUS [6]. Sus siglas signifi-
can Joint Architecture for Unmanned Systems, como su
nombre lo indica es una arquitectura para el dominio de

los sistemas no tripulados. Esta arquitectura se utiliza
para la comunicación con cualquier tipo de vehículos no
tripulados reales y/o simulados, independiente de la
tecnología empleada en ellos garantizando heterogenei-
dad.

2.1 Librería

Como podemos observar en la Figura_2 hoy en día
JAUS++ que es de software libre, tiene implementado los
siguientes conjuntos de servicios: El Core, el Mobility, el
Transport y el Enviroment Sensing, pero carece del Ma-
nipulator y del Mission Spooling respecto al estándar
JAUS que es de software privativo.

Figura_1. Ejemplo de interoperabilidad y estandarización entre distintos tipos de robots [8].

Figura_2. Comparación de la implementación JAUS++ con el estándar
JAUS [9].

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++ 3

Estas librerías proporcionan los siguientes servicios don-
de se especifica una capa de comunicaciones de datos
para el transporte de mensajes definidos JAUS++:

Core Service Set: Representan la infraestructura que se
encuentra comúnmente en todos los dominios y tipos de
sistemas no tripulados. En la actualidad, siete servicios se
definen en el Core:
 Transport Service: Abstrae la funcionalidad de la capa

de transporte de comunicación subyacente.
 Events Service: Establece una publica-

ción/suscripción, mecanismo para la mensajería au-
tomática.

 Access Control: Gestiona el control exclusivo apropia-
ble para las operaciones críticas de seguridad.

 Management: Define la gestión del ciclo de vida de los
componentes.

 Time: Permite a los clientes consultar y establecer la
hora del sistema para los componentes.

 Liveness: Proporciona un medio para mantener activa
la conexión entre los componentes que se comunican.

 Discovery: Proporciona el descubrimiento automático
de las entidades remotas (subsistemas tales como la
unidad de control o los sistemas no tripulados) y sus
capacidades.

Transport Service Set: Especificación de transporte defi-
ne los formatos y protocolos utilizados para la comunica-
ción entre las entidades que cumplen los protocolos de
capa de enlace y medios de comunicación (JUDP).

Mobility Service Set: Proporciona los medios para co-
municar y coordinar las actividades de un sistema no
tripulado o sistema de sistemas no tripulados. Los servi-
cios de movilidad representan las capacidades indepen-
dientes de la plataforma que se encuentran comúnmente
en todos los dominios y tipos de sistemas no tripulados.
En la actualidad, 15 servicios se definen en Mobility, co-
mo por ejemplo:
 Pose sensors: Para determinar la posición instantá-

nea y la orientación de una plataforma en coordena-
das globales o locales.

 Velocity state sensor: Para determinar la velocidad
instantánea de una plataforma.

 Acceleration state sensor: Para determinar la acele-
ración instantánea de una plataforma.

 Primitive driver: Para realizar la movilidad básica de
una plataforma basada en la fuerza de torsión.

 Vector drivers: Para realizar la movilidad de circuito
cerrado para el recorrido en línea recta.

 Velocity state driver: Similar a vector drivers, pero
con grados de libertad adicionales.

 Waypoint drivers: Realizar la movilidad de circuito
cerrado en una ubicación especificada.

 Path segment drivers: Realiza la movilidad de circui-
to cerrado a lo largo de una ruta especificada.

Environment Sensing Service Set: Los Servicios de de-
tección de entorno representan capacidades de detección
de ambientes que se encuentran comúnmente en todos los
dominios y tipos de sistemas no tripulados de forma in-

dependiente de la plataforma. Son cinco los servicios que
lo definen:
 Range sensor: Determinar la proximidad de los obje-

tos en el entorno de la plataforma.
 Visual sensor: Proporciona la configuración común

para los diferentes tipos de sistemas de imágenes.
 Digital video: Un tipo de sensor visual que logra ví-

deo digital.
 Analog video: Un tipo de sensor visual que logra ví-

deo analógico.
 Still image: Un tipo de sensor visual que gestiona y

codifica las imágenes digitales individuales.

Mission Spooling Service Set: Cola de misión de una
plataforma independiente. En la actualidad, 1 de servicio
se define Spooling Services (Solo existe en JAUS y se pla-
nean más servicios en un futuro):
 Mission Spooler: Para planes de misión, coordina los

planes de la misión.

Manipulator Service Set: Los manipuladores se utilizan a
menudo en sistemas no tripulados para alterar el medio
ambiente, para tomar el mando y el control de estos hay
19 servicios definidos en Manipulator service set.

Adelantándonos a los objetivos, lo que haremos es
desarrollar servicios de este tipo para dotar de interope-
rabilidad a cualquier manipulador en sistemas no tripu-
lados. Se realizaran los siguientes 4 servicios de los 19 que
hay:
 EndEffectorPoseSensor: para reportar la posición y

orientación del end effector del manipulador cuando
se le pregunta.

 Joint position sensor: para reportar los valores de po-
sición y orientación de las articulaciones del manipu-
lador cuando se les pregunta.

 End effector pose driver: para realizar el control de la
posición y la orientación del end effector del manbipu-
lador.

 Joint position driver: es llevar a cabo el control de la
posición y orientación conjunta del manipulador.

2.2 Arquitectura

Ahora pasaremos a explicar resumidamente el funcio-
namiento y la arquitectura de este sistema, para que se
pueda entender el trabajo que se ha realizado.

Como vemos en la Figura_3 este sistema es un conjun-
to de subsistemas, dicho subsistema podría ser un vehícu-
lo no tripulado (UV) como por ejemplo un robot o una
unidad de control de operación (OCU).

Cada subsistema está dotado de nodos, que es cual-
quier dispositivo informático, este nodo tiene una direc-
ción física. Como por ejemplo en el caso de un robot, un
nodo podría ser su microcontrolador o un manipulador.

Estos nodos están formados por componentes, cada
componente tiene una colección de servicios básicos ya
añadidos por defecto, que son los del Core Service Set que
hemos mencionado antes en el apartado de característica,
o añadidos como el Manipulator Service Set, el cual aña-
diríamos si nuestro robot utilizase un manipulador, (co-

4 EE/UAB TFG INFORMÁTICA: EXTENSIÓN DE LA IMPLEMENTACIÓN JAUS++

mo en el caso de robot terrestre de la plataforma FINROC
de la Figura_1). Estos componentes están identificados
con una ID individual para poder acceder a toda la in-
formación añadida a ellos de forma directa, identificable y
segura.

2.2 Características

JAUS++ es totalmente orientado a objetos por lo que
permite crear componente JAUS con todos los servicios
básicos que hay en el Core (Transport (JUDP), Control,
Discovery, Events, Liveness, Time; Management) en po-
cas líneas de código.

Tiene librerías completas de mensajes tanto para el
núcleo (core) donde están los servicios básicos, como para
otros servicios, tales como el de movilidad (mobility).

JAUS ++ también incluye algunos servicios personali-
zados y experimentales que no forman parte de las nor-
mas JAUS. Sus creadores ampliaron el diseño para facili-
tar la transmisión de video, la utilización de joystick o
interactuar con el microcontrolador.

3 OBJETIVO

Como hemos estado adelantando el objetivo de este
trabajo es extender la implementación JAUS++ y hacer
algunos servicios del Manipulator Service Set para
poder dotar de interoperabilidad a los manipuladores
del robot terrestre del proyecto FP7 Icarus. Para ello se
desarrollará los siguientes servicios:

•Dos servicios de sensores:

ManipulatorEndEffectorPoseSensor.
ManipulatorJointPositionSensor.

•Dos servicios de posición de los drivers:

ManipulatorEndEffectorPoseDriver.
ManipulatorJointPositionDriver.

Lo que se proporciona con estos servicios de sensores y

drivers es un sistema de coordenadas en la que especifi-
camos la posición y orientación de cada parte del mani-
pulador; Este sistema suele estar unido a la base del

vehículo no tripulado. Podemos observamos un ejemplo
del sistema en la Figura_4.

En cada servicio de JAUS++ se establecen 3 tipos de

mensajes que son Queries, Reports y Sets para poder
operar e interactuar entre ellos. Por ejemplo en la Tabla_1
podemos observar los mensajes que tendrá Manipulator
Joint Position Driver.

4 METODOLOGÍA

Para poder organizar el trabajo que se tenia que reali-
zar, primeramente utilizamos la metodología Work
Breakdown Structure (WBS) [11] para dividir el trabajo en
partes. WBS es una estructura de descomposición de
trabajo (EDT) en paquetes entregables, su descomposición
jerárquica orientada a entregar proyectos en componentes
más pequeños, facilitó la estructuración y definición de la
carga de trabajo.

Como cada servicio era independiente, se organizó el
trabajo en 4 paquetes, uno por cada servicio, para conse-
guir el alcance total del proyecto. En la Figura_9, Figu-
ra_10 y Figura_11 del apéndice podemos observar la es-
tructuración y la descomposición de cada uno de ellos.

 Figura_ 3. Arquitectura del sistema JAUS [1]

 Tabla_1. Manipulator Join Position Driver Service [3]

 Figura_4. Ejemplo del sistema de coordenadas de un manipulador [2].

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++ 5

Una vez hecha la estructuración del trabajo, pasamos
a realizar la planificación del tiempo, para poder tener un
orden y control de los días con los que se contaba para
finalizar el proyecto, en dicho proyecto ponemos identifi-
car 3 fases, la fase de investigación y aprendizaje, la fase
de desarrollo y testeo y por último la fase de documenta-
ción.

La planificación que se hizo tenía 7 etapas que se rea-
lizaban en 18 semanas, como podemos observar en la
Tabla_2. Cada etapa tenía varias actividades a realizar,
dichas actividades realizadas se expondrán a continua-
ción brevemente.

Etapa 1: Esta etapa fue dedicada expresamente para la
fase de investigación y aprendizaje, así que en las prime-
ras 4 semanas que corresponde del 9 de febrero al 8 de
marzo, se familiarizó con la implementación JAUS++, se
instalado el programa y se leyó toda la documentación
para entender dicha arquitectura de comunicación. Por
último se procedió hacer los 8 tutoriales de la página web
de JAUS++.

Etapa 2 y etapa 3: En estas etapas que corresponde del 9
de marzo al 19 de abril se inició la fase de desarrollo,
primeramente se implementó Manipulator End Effector
Pose Sensor y sus mensajes. Tal y como habíamos men-
cionado anteriormente, los servicios son independientes,
así que también se hizo pruebas del servicio una vez aca-
bado, con simulaciones para garantizar de su buen fun-
cionamiento. Seguidamente se procedió hacer lo mismo
con Manipulator Joint Position Sensor.

Etapa 4 y etapa5: Una vez hecho la parte de sensores, se
desarrollaron los drivers (del 20 de abril al 24 de mayo),
empezando por el Manipulator End Effector Pose Driver
y después con Manipulator Joint Position Driver, al igual
que los sensores también se hizo las pruebas correspon-
dientes para verificar su buen funcionamiento.

Etapa 6: Una vez acabado todo el código se comprobó
detalladamente, que la extensión realizada se integraba a
la perfección a JAUS++.

Etapa 7: La última etapa se utilizó para hacer la última
fase de todo proyecto, la fase de documentación y presen-
tación del trabajo realizado.

5 DESARROLLO Y RESULTADOS

En esta sección se ofrecerá una visión clara y breve del
trabajo hecho, junto con los resultados obtenidos.

Primeramente pasaremos a definir el entorno donde
opera estos sistemas no tripulados, que se especifican con
sistemas de coordenadas. Para entender mejor este apar-
tado se aconseja ver la Figura_4 a medida que se va le-
yendo.

Sistema de coordenadas global: Este sistema de coorde-
nadas se definen en unidades de longitud, latitud y alti-
tud, para saber la posición global de la plataforma donde
se interactúa.

Sistema de coordenadas del Vehículo: Este sistema de
coordenadas se definen en unidades de longitud, latitud y
altitud, para saber la posición global del subsistema
(vehículo no tripulado), según la Figura_4 es X, Y y Z de
la base.

Sistema de coordenadas del manipulador: En la mayoría
de los casos, este sistema de coordenadas está unido a la
base del vehículo y las coordenadas se definen igual que
antes. El origen de estas coordenadas se encuentra en la
intersección del primer eje de la articulación S1 y acaba en
la última articulación (lista de posición de cada articula-
ción).

Sistema de Coordenadas del efector final: Este sistema
de coordenadas está unido al último eslabón del manipu-
lador en serie. El punto de origen está situado a una dis-
tancia Sn (S6 para un manipulador de seis ejes por ejem-
plo).

Con estos sistemas de coordenadas se podrá tomar el
mando, el control y la supervisión de los componentes de
un manipulador, que está compuesto de indiferentes
número de articulaciones.

Una vez explicado los sistemas de coordenadas que
tienen estos vehículos no tripulados, para poder saber la
posición exacta de cada componente pasamos a decir los
tipos de mensajes que hay en el sistema de comunicación
JAUS++. Hay 3 tipòs de mensajes que son:

Query: Este tipo de mensajes sirve para lanzar consulta
del servicio que estemos interesados.
Report: Estos mensajes sirven para poder recibir informa-
ción del servicio consultado.
Set: Este mensaje sirve para poder comandar cuando se
necesita controlar el servicio.

En la siguiente Figura_5 se puede ver un ejemplo de es-
quema de secuencia de mensajes del servicio de discovery
del core.

 Tabla_2: Planificación semanal del trabajo.

6 EE/UAB TFG INFORMÁTICA: EXTENSIÓN DE LA IMPLEMENTACIÓN JAUS++

Cada mensaje se crea en una clase de C++, dichas clases
tienen funciones implementadas tales como: Crear el
mensaje, establecer valores según el estado del compo-
nente, Pintar por pantalla el report del servicio, mostrar y
establecer los valores para cada variable del servicio,
especificar si se puede generar eventos del servicio o si se
puede controlar el servicio, etc. Estas funciones se crean
dependiendo de lo que necesitemos de cada servicio y
siempre se pueden ir ampliando.
Ahora que ya sabemos las definiciones necesarias para

entender el trabajo que se ha desarrollado pasamos a
exponer los 4 servicios implementados.

 Manipulator End-Effector Pose Sensor

En este servicio se ha desarrollado 4 tipos de mensajes:
o Query Manipulator Specifications
o Query End Effector Pose
o Report Manipulator Specifications
o Report End Effector Pose

Los mensajes de query se han desarrollado para gene-
rar consultas de la posición relativa y la orientación de
la base del manipulador, con respecto al sistema de
coordenadas del efector final.
Este servicio se refiere únicamente a la operación re-
mota de un manipulador. Los outputs que se generan
son los report respectivos de cada query.

Figura_5: Diagrama de la secuencia de mensajes del servicio discovery

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++ 7

 Manipulator Joint Position Sensor

Los mensajes asociados aquí son:
o Query Manipulator Specifications
o Query Joint Positions
o Report Manipulator Specifications
o Report Joint Positions.

El Report Joint Positions message proporciona las posi-
ciones conjuntas del manipulador. Las posiciones se dan
en grados para de revolución y en metros para prismáti-
cos. El componente se representa en la Figura_6.

 Manipulator End-Effector Driver

Algunos de los mensajes realizados en este servicio
son (se puede observar la tabla completa en la Figu-
ra_11 del apéndice):
o Set Tool Offset
o Set Joint Motion Profile
o Set End Effector Pose
o Query Manipulator Specifications
o Query Tool offset
o Query Joint Motion Profile
o Report Manipulator Specifications
o Report Tool offset
o Report Joint Motion Profile

Este componente realiza el control de la posición y
orientación del efector final. La entrada es la posición
deseada y la orientación del efector final, especificado
en el sistema de coordenadas del vehículo, los ángulos
de las articulaciones actuales, y los datos del Report
Manipulator Specifications. El componente se repre-
senta en la Figura_8.

 Manipulator Joint Positions Driver

Algunos de los mensajes asociados aquí son (se puede
observar la tabla completa en la Figura_11 del apéndi-
ce):
o Set Joint Positions
o Report Manipulator Specifications
o Reports Joint Positions

La Figura_ representa el componente de joint position
driver.

Joint Position

Sensor

actual joint positions ;

Report Joint Positions

Message

request joint positions ;

Query Joint Positions

Message

Figura_6: Componente Joint Position Sensor.

Manipulator Joint

Positions Driver

Joint Position

Sensor

Set Joint Effort

Message

commanded joint values ;

Set Joint Positions Message

Report Manipulator

Specifications Message

Report Joint

Positions

Message

actual joint effort ;

Report Joint Effort Message

Figura_8: Componente Joint Position Driver.

Manipulator End-

Effector Pose

Driver

Joint Position

Sensor

Set Joint Effort

Message

commanded end effector pose ;

Set End Effector Pose Message

Report Manipulator

Specifications Message

Report Joint

Positions

Message

actual joint effort ;

Report Joint Effort Message

Figura_7: Manipulator End-Effector Pose Driver

8 EE/UAB TFG INFORMÁTICA: EXTENSIÓN DE LA IMPLEMENTACIÓN JAUS++

6 CONCLUSIÓN

Como habíamos dicho inicialmente el objetivo que

nos habíamos propuesto era desarrollar una extensión

de la implementación JAUS++ basada en el estándar

JAUS. Dicha extensión es JAUS Manipulator Service

Set, con la cual conseguimos dotar de interoperabili-

dad a los manipuladores del vehículo terrestre del

proyecto fp7 ICARUS.

Los servicios que se ha implementó finalmente han
sido los dos servicios de sensores: Manipulator End
Effector Pose Sensor y Manipulator Joint Position Sen-
sor. Y los dos servicios de drivers: Manipulator End
Effector Pose Driver y Manipulator Joint Position Dri-
ver.

Finalmente se concluye el trabajo satisfactoriamente
ya que se ha realizado los objetivos marcados y se ha
cumplido con la planificación inicial propuesta.

Agradecimientos
En primer lugar quería dedicarles toda mi trayectoria de
aprendizaje a mi madre Violeta y a mi abuela Violeta, que
siempre han estado a mi lado y han respetado cada una
de mis decisiones.
De forma general quisiera agradecer a todo el profesora-
do del grado de ingeniería informática, ya que a día de
hoy puedo afirmar que los conocimientos adquiridos en
el grado, me ayudarán a solventar cualquier problema en
el futuro como hasta ahora.
A mi tutor de este trabajo en la UAB Tomàs Margalef,
quiero agradecerle la dedicación y el apoyo que me ha
dado durante estos meses. Sus consejos y experiencia me
han guiado en la preparación de este.
Mis más sinceros agradecimientos a Ana Cortés, que me
puso en contacto con la corporación Ascamm, para hacer
las prácticas en empresa, sin ella no hubiese sido posible
todo esto.
Le agradezco también a mi tutor en Ascamm, German
Moreno, por el tiempo que me dedicó a lo largo de mi
trayectoria en dicha empresa. No sólo me ha guiado en la
elaboración del trabajo final de grado, sino que también
me ha enseñado todo lo necesario por si en un futuro
quiero realizar trabajos similares.
Agradezco a Ascamm por haberme dado la oportunidad
de trabajar con ellos.
Por último y no menos importantes a mis compañeros
Carles y Noely, que me han animado en todo el trayecto
de la universidad.

Bibliografía

[1] ACTIVE-IST. (2013). Jaus++ [Figura_3]. Recuperado de

http://active-ist.sourceforge.net/jaus++.php?menu=jaus

[2] ACTIVE-IST. (2013). Jaus++ [Figura_4]. Recuperado de

http://active-ist.sourceforge.net/jaus++.php?menu=jaus

[3] ACTIVE-IST. (2013). Jaus++ [Tabla_1]. Recuperado de

http://active-ist.sourceforge.net/jaus++.php?menu=jaus

[4] C++. (n.d.). Retrieved March, 2015, from

http://www.cplusplus.com/

[5] Fundación Privada Ascamm. (n.d.). Retrieved March, 2015,

from http://www.ascamm.com/

[6] Jaus. (n.d.). Retrieved March, 2015, from

http://openjaus.com/doc41/namespaces.html

[7] Jaus ++. (n.d.). Retrieved March, 2015, from http://active-

ist.sourceforge.net/jaus++.php?menu=jaus

[8] Moreno, G. (2014). Unmanned Systems. [Figura_1].

[9] Moreno, G. (2014). Unmanned Systems. [Figura_2].

[10] Proyecto Icarus. (n.d.). Retrieved March, 2015, from

http://www.fp7-icarus.eu/Etc.

[11] Work Breakdown Structure (WBS). (n.d.). Retrieved March,

2015, from https://www.workbreakdownstructure.com/

Apéndice

A1. DEFINICIONES Y ABREVIACIONES

Interoperabilidad: Es una habilidad de dos o más siste-
mas o componentes para intercambiar información o
utilizar la información intercambiada.
Unmanned Systems: Son vehículos que se manipula sin
tripulación.
Icarus: Es un proyecto Europeo cuyo objetivo es dar asis-
tencia a los equipos de búsqueda y rescate utilizando una
tropa heterogénea de vehículos no tripulados.
Jaus: Joint Architecture for Unmanned Systems es una
arquitectura abierta para el dominio de los sistemas no
tripulados que garantiza heterogeneidad.
Jaus++: Joint Architecture for Unmanned Systems ++ es
una implementación de JAUS.
Ros: Robot Operating System es un framework para el
desarrollo de software para robots de código abierto.
MOOS: Cross Platform Software for Robotics Research es
un framework para el desarrollo de software para robots
de código abierto.
FINROC: Framework for Intelligent Robot Control es un
framework para el desarrollo de software para robots de
código abierto.
WSB: Work Breakdown Structure es un tipo de metodo-
logía para llevar a cabo mediano o grandes proyecto,
consiste en una estructura de descomposición de trabajo
(EDT).

http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://www.cplusplus.com/
http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://active-ist.sourceforge.net/jaus++.php?menu=jaus
http://www.fp7-icarus.eu/Etc
https://www.workbreakdownstructure.com/

CINTHIA TOALA: EXTENSION OF IMPLEMENTATION JAUS ++ 9

Figura_10: Estructura interna (clases) de los sensores.

Figura_9: Clasificasción de clases de los servicios dentro de las carpetas.

10 EE/UAB TFG INFORMÁTICA: EXTENSIÓN DE LA IMPLEMENTACIÓN JAUS++

Figura_11: Estructura interna (clases) de los drivers.

