TFG EN ENGINYERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Creation of a Collaborative Model of
Honeypots

Asif Al Ferdous Khan

Resumen—Hoy en dia todo gira entorno a Internet y la ciberseguridad es un asunto muy importante tanto para la economia
como nuestras vidas personales. La constante evolucién de los métodos de ataque empleados para vulnerar la seguridad de
redes y maquinas privadas provoca la necesidad de nuevos modelos de recopilacién de datos y estudios de los mismos. Los
Honeypots son herramientas empleadas para esta tarea por su capacidad de simulacién de servicios y entornos para engafiar
a los atacantes y recopilar datos sobre su modus operandi. Es por ello que en este articulo se propone un modelo de red
distribuida de honeypots para la recopilacion de inteligencia sobre ciberataques y el desarrollo de una plataforma para
centralizar los datos generados y gestionar dicha red.

Palabras clave—Honeypot, Ciberseguridad, Inteligencia de Amenazas, Modern Honey Network, Dionaea, Kippo

Abstract—Nowadays everything is connected to the Internet and cybersecurity has become a really important topic for both the
economy and our personal lives. The constant evolution of the methods employed to undermine the security of private networks
and machines has caused the necessity to bring new models to collect data in order to study them. Honeypots are instruments
employed for this task because of their capacity to simulate services and environments to lure attackers and to collect data
about their modus operandi. That is why in this paper we propose a model of a distributed network of honeypots dedicated to

the collection of intelligence about cyberattacks and the development of a platform to centralize the acquired data and to

manage said network.

Index Terms—Honeypot, Cybersecurity, Threat Intelligence, Modern Honey Network, Dionaea, Kippo

1 INTRODUCTION

IVEN the rapid growth of the Internet over the last
decades and its increasing presence in the economy
and our daily lives, security against cyberthreats is vital.

Cybercrime is an ongoing and critical issue to face at
the present. It is mainly dedicated to information and
data theft, particularly to the ones with potential market
value such as: login credentials, passwords, PIN codes,
banking information or credit cards.

The information is generally stolen by misleading the

o Contact E-mail: asif.alferdous@e-campus.uab.cat
Specialization: Information Technologies
Tutored by:

Ramon Vicens (Blueliv)

Guillermo Navarro Arribas (DEIC)
Course 2014/15

victim through phising! methods or malware infection,
both on client computers and servers. Many of these in-
fected computers tend to remain under the control of the
attackers forming part of a botnet? The botnet receives its
instruction from one or more criminal’s servers, where
the stolen information is also sent. These servers are
known as C&C (Command-and-Control). [1]

But nowadays it is becoming standard practice to use
legit servers from third parties, which have been com-
promised by security breaches and infected in order to
avoid detection.

The infection of those servers is done by scanning the

1 Phishing refers to the acquisition of sensitive information for mali-
cious reasons by supplanting the identity or masquerading as a trustwor-
thy entity. It is often done using fake web pages or e-mails.

2 A botnet is a distributed network of infected computers known as
bots, remotely controlled by a malicious entity.

Internet looking for open ports of services with vulnera-
bilities, to later exploit them to gain unauthorized access.

There is an incipient necessity to gather intelligence
about the methodology used for these breaches in order
to detect and prevent them. The study of the modus op-
erandi of the attackers is a key factor to improve the secu-
rity of the information and to guarantee the integrity of
the systems.

One of the tools used for this purpose are honeypots,
which simulate services and environments to lure attack-
ers to believe they are penetrating a real system. The in-
teraction between the attacker and the honeypot is logged
for posterior analysis and study.

A large scale networked implementation of these tools
could provide an important amount of data about the
methodology used by the attackers, although the main
limitation of honeypot technology is the high level of
maintenance it requires.

Moreover, all the gathered data remains locally in the
machine that hosts the honeypot software, with no inher-
ent scheme of compilation of the data from the host and
neither a correlation of the data between the different
honeypots in the network.

1.1 Objectives

This work is done in cooperation with Blueliv, a targeted
cyberthreat intelligence provider for enterprises, aiming
to provide new sources of threat intelligence and counter-
intelligence data.

The main objective of this project is to develop a
honeypot management platform and deploy a network of
honeypots in different geographical locations with a cen-
tralized server to process and store all the gathered data.
Moreover, this platform will seek to streamline the pro-
cess of deployment of new honeypots and to streamline
the later maintenance. The Fig. 1 shows a model of the
platform’s expected functioning.

Other objectives, in a personal level, are to expand our
knowledge about information security, since it is a field
that interests us, and also to acquire more specific
knowledge about honeypot technology.

The specific goals to reach for the fulfilment of the pro-
ject are:

1. Develop a honeypot management platform for
the centralized server. This platform should
have, at least, the following capabilities:

a. Ability to see data generated from a
network of honeypots.

b. Ability to deploy new honeypot sensors
into the network from the platform.

c. Improve the maintenance with the abil-

EE/UAB TFG INFORMATICA: COLLABORATIVE MODEL OF HONEYPOTS

ity to launch fixes and updates from the
platform.

d. Ability to edit the configuration files of
the honeypots from the platform.

e. Implement a large scale usage of the
previous capabilities (i.e. queue the de-
ployment of multiple honeypots auto-
matically)

2. Deploy a network of sensors with honeypot
technology to acquire intelligence about the
methodology employed by the attackers.

3. Implement a centralized client-server paradigm
for the data generated from the sensors (clients)
sending it to the server with the platform.

Honeypot -Attack information | Processing Engine
Deployment
Y
N
i User Interface
Honeypot ¢
v
User

Fig. 1. Model of the honeypot management platform. Deployed honey-
pots send information about attacks to the processing engine, which
are accessed through the user interface. The engine also deploys new
honeypots.

2 METHODOLOGY

The methodology employed in this project consisted in
five phases:

Market research
Analysis

Design
Development
Deployment

AN

2.1 Market research

An initial market research was done in order to discover
the state of the art in the field of honeypots. The goal of
this phase was to search for technology that could suite
the needs of this project and could serve as basis for fur-
ther development.

It was stablished that in the case that no available
technology suited to the needs of the project, developing
own technology would have been considered.

ASIF AL FERDOUS KHAN: COLLABORATIVE MODEL OF HONEYPOTS

2.2 Analysis

An analysis of the available technologies led to decide
which of them accomplished better the requirements
established in the objectives.

After a comparison of their features, one solution was
selected as the foundation of the project and used to de-
velop the required capabilities. The chosen solution was
deployed in a small scale for further analysis and testing.
To familiarize ourselves with the technology a technical
analysis of its architecture and functions was conducted.

Given the case that none of the technologies had
served as basis, a viability study about developing own
technology from scrap would have been done during this
phase.

2.3 Design

In order to optimize the development phase, an extensive
planning was necessary. After the analysis of the architec-
ture of the chosen solution, the new features to develop
were stablished. From the data obtained during the anal-
ysis, both the initial and the new architecture and func-
tions were represented into several documents: model
diagrams, sequence diagrams and database diagrams;
and the concrete elements to develop were established.

2.4 Development

After the planning and designing of the functionalities to
introduce, they were developed over the basis technolo-
gy. The testing of the new features and their overall effect
on the platform was conducted as constant functional
tests.

2.5 Deployment

After reaching the fulfilment of the requirements in the
development, a large scale deployment was done to start
the recollection of intelligence data. This was done by
deploying several honeypot sensors in virtual servers
located in various geographical locations; and the gener-
ated data was centralized in the developed platform.

3 STATE OF THE ART

To understand the state of the art, below is a more de-
tailed definition of what a honeypot is, followed by a
brief description of the main honeypot management
frameworks found during the market research.

3.1 Honeypots

Honeypots are security resources that simulate and pre-
tend to be services of a computing system, or the whole
system, with vulnerabilities or weak points in order to be
probed, attacked, compromised, used or accessed in any
unauthorized way. [2]

Their objective is to gather all the possible information

from these attacks or unauthorized accesses in order to
study the methodology used from the attackers and pre-
vent them in the future. Since they only simulate the envi-
ronment and responses of these services, no sensitive
information is compromised from the attacks. [3]

In the deployment phase two honeypots were used as
sensors: Dionaea and Kippo. Dionaea is a low-interaction
honeypot specialized in trapping and collecting malware
samples for further analysis. It is written in Python and
can listen to ports and emulate protocols (such as HTTP,
HTTPS, FTP, MySQL, SMB...) to interact with the mal-
ware. Kippo is another low-interaction honeypot but it
emulates the SSH service. It is also implemented in Py-
thon and stores information about brute-force login at-
tacks against the service. [2] [4]

3.2 Honeywall CDROM

The Honeywall CDROM is a project developed by The
Honeynet Project. It's a bootable installation CDROM
designed to simplify the process of creation of a hon-
eynet® by automating the deployment of the Honeywall*
The purpose of the Honeywall is to capture, control, and
analyze all inbound and outbound activity interacting
with the honeynet. [5]

3.3 SURFcert IDS

SURFcert IDS (formerly known as SURFids) is a distrib-
uted intrusion detection system and an early warning
system developed by SURFnet. It is a free and open
source software that employs sensors as proxies to redi-
rect the traffic from a monitored network, which serves as
a bait, to a centralized one where the actual honeypots are
located and the interaction takes place. [2]

3.4 Modern Honey Network

Modern Honey Network (MHN to abbreviate) is an open
source software developed by ThreatStream. It provides
deployment and events aggregation capabilities for sev-
eral of the current open source honeypot software availa-
ble. [6]

4 ANALYSIS

The market research provided a view of the state of the
art in honeypot technology and three honeypot manage-
ment platforms were found: Honeywall CDROM, SURF-
cert IDS and MHN.

These were possible candidates to use as basis to reach
the fulfilment of the objectives, but further analysis was
required to stablish the actual compatibility. Table 1
shows a comparison of the main features.

3 A honeynet is the network formed by two or more honeypots.
4 Term used by The Honeynet Project to refer to the gateway of a hon-
eynet.

EE/UAB TFG INFORMATICA: COLLABORATIVE MODEL OF HONEYPOTS

TABLE 1
COMPARISON OF FEATURES

Honeywall CDROM MHN SURFcert IDS
Monitoring Local network Remote hosts Remote hosts
L Network’s gateway & local Remote sensors & Remote sensors &
Monitoring method
sensors Central server Central network
Honeypot location Internal network External host Internal host/network
Distributed X N4 N4
o Distributed sensors act as
Distributed sensors send .) i
o . L . proxies and redirect traffic
Distribution paradigm Not distributed monitored data to central .
to central network where it
server) .
is monitored
Damage scope in case of
e scop High Low High
security breach
Open source N N v
Free v v v
Active maintenance X v v

It was easy to conclude that Honeywall CDROM had
low compatibility with the objectives of this project, since
its approach was focused on monitoring a local network,
it had no large scale distributed solution and it also had
become partially outdated with no active maintenance.

Both MHN and SURFcert IDS had better compatibility
and could serve as basis for this project. They were simi-
lar in some features but they were totally different in the
distribution paradigm. In one hand, MHN allocated the
honeypots in the distributed sensors and sent the collect-
ed data to the main server, which acted as processing
engine and database. On the other hand, SURFcert IDS
used its sensors similarly to a proxy to redirect the traffic
to its centralized network where the actual honeypots and
the database were.

Even though SURFcert’s distribution simplified nota-
bly the installation and maintenance processes, in case of
a security breach the damage scope, as possible leak-
age/destruction of information or system’s integrity loss,
would be considerably higher in comparison to MHN.

Finally, MHN provides several installation scripts in
bash to automate the installation of honeypots and its
configuration with the platform.

After considering all these matters, MHN was selected
as technology to use as basis, especially because of its
approach of the distribution paradigm and its lower
damage scope.

4.1 Modern Honey Network’s architecture

From MHN there are two key functionalities required to
mention: event aggregation capabilities and honeypot
installation and configuration scripts. Even though, both
of them are important additions for the project, they pre-
sent some lack of features as explained next. The devel-
opment phase will partially consist on improving these

features among including others.

The installation and configurations scripts are written

in bash language and include support for several types of
honeypots, such as: Dionaea, Kippo, Wordpot, Snort and
many others. But these scripts require the external access
to the remote host to manually run the script.

The data aggregation capabilities include the centrali-

zation of some data generated by the network of sensors.
These data includes source IP, attacked port, associated
protocol and geolocation. Some honeypots have addition-
al support on the gathered information, such as Kippo’s
most used users and passwords. It also provides some
data analysis as daily attack counts, a real-time map of
attacks and some filtering options of the stored attacks.
But there is a lack of detailed information about the at-
tack, such as the data of the logs. To understand how the
data aggregation works, below is an explanation of the
architecture and its representation can be seen in Fig. 2.

MHN’s architecture is structured in six layers:

e Honeypot sensors
Hpfeeds
Mnemosyne
Databases

Rest API

Web application

In the first layer there is the network of honeypots de-

ployed in remote hosts to act as sensors. When these sen-
sors are attacked, some data about the attack is sent to the
MHN'’s server. This is done using the next layer.

To stablish a communication channel through which

the attack event data is sent, the Hpfeeds protocol is used.
Hpfeeds is a lightweight authenticated publish-subscribe
protocol largely used with honeypot technology. [7]

Once the data has been received into the platform,

ASIF AL FERDOUS KHAN: COLLABORATIVE MODEL OF HONEYPOTS

Mnemosyne is the engine that processes it. It is responsi-
ble of the next three layers: the normalization and ade-
quacy of the heterogeneous data generated from different
types of honeypots, to provide persistence for hpfeeds
using a mongoDB database and to expose the normalized
data through a RESTful APL. [8]

Both Hpfeeds and Mnemosyne are implemented in Py-
thon; though, currently there are implementations in
other languages.

Finally, the last layer consists in a web application that
serves as user interface to consult the data. It is imple-
mented with Flask, which is a microframkework that
combines a frontend implemented with HTML templates
and a backend in Python which does the main work and
renders the templates. [9]
Recollection

Honeypots Processing

Storage

Data

Attack event notification protocol Normalization

Honeypot1 —t

Honeypot 2

{ mongoDB
A
hpfeeds
4

Data
indexation
(Pythen)

Honeypot 3

Honeypot N

Fig. 2. Architecture of Modern Honey Network. The honeypot layer
generates data, which is recollected, processed and stored as ex-
plained previously. Finally, the access to the stored data is done
through the user interface or the RESTful API.

5 DESIGN

After analyzing the architecture of MHN and its capabili-
ties, the remaining features to develop and implement in
order to achieve the objectives were stablished:

1. Ability to deploy new honeypot sensors from the
platform using the installation scripts. This
would be done through:

a. Implementation of SSH capabilities into
the backend of the platform.

. Modification of the frontend.

c. Implementation of task queuing (back-
ground asynchronous execution) to
avoid timeouts in the web interface.

d. Enhance task queuing capabilities to

implement multiple deployment instruc-
tions.
2. Maintenance capabilities for the
honeypots through:
a. DPersistence of the SSH credentials to
maintain the access to the remote hosts.
b. Development and implementation of
update scripts.
c. Modification of the frontend.

deployed

3. Ability to edit configuration files of the deployed
honeypots from the platform.

The previous features to develop were the most criti-
cal to the fulfillment of the project, but next are some less
prioritized features stablished to develop in case that the
time frame allowed it:

4. Improve the data recollection including logs and
other files from the honeypots.

5. Improve data analysis through:
a. Implementation of a dashboard view.
b. Implementation of a detailed view of an
attack.

5.1 Views

As stated earlier, the web interface is built on Flask micro-
framework. Flask is implemented in Python and uses
Jinja25> templates to create the HTML views for the web
application. [10]

The basic implementation of Flask is simple. Suppose a
view that renders the template for the deployment page.
This view, when called, will receive some data through a
POST method, will execute some determined Python
instructions using the received data, use a variable to
indicate the success or failure of the operation and finally
render the template. The implementation of the previous
view, omitting library imports and instances’ creation,
would be as stated next:

@route ('/deploy/', methods=['GET',
def deploy():
Deployment operations would go here with

'POST'])

a variable ‘res’ indicating the result
of the execution.
return render template('deploy.html',

result=res)

The @route decorator declares the associated URL
that will trigger the function. It also declares which meth-
ods are allowed, by default GET if nothing is declared. In
this example the POST method is necessary to receive the
data used for the later execution and the GET method to
deliver template with the result of the execution.

5 Jinja2 is a template engine for Python. It is a text-based template lan-
guage that allows calling functions on objects and sandboxed execution.

Once called the URL, the function is executed and the
res variable stores its result. The function returns the
rendered template including the result.

The Jinja2 template would be:

<html>
<head>
<title>Deployment result</title>
</head>
<body>
The result is: {{ result }}
</body>
</html>

During the rendering, the {{ result }} variable is
substituted with the value given by res in the previous
code.

Below is the list of views and templates developed to
introduce the new features:
1. Deployment layer:

a. Deployment page (deploy.html) - A
form to introduce the deployment in-
formation (honeypot, IP, auth. creden-
tials...)

b. Execution page (ssh.html) - Uses the
given information to authenticate the ac-
cess to the remote host and launches the
deployment using SSH.

c. List of deployments (deploy_list.html) -
A historic of the launched deployments
and access to the execution details.

d. Details of execution (status.html) - To
check the execution output and errors.

2. Maintenance layer

a. Maintenance page (maintain.html) - To
select the honeypot and the maintenance
task.

b. Execution page (updatehtml) - To
launch an update to a previously de-
ployed sensor.

3. Configuration edit layer

a. Edit configuration (config.html) - To ed-
it the configuration file of a previously
deployed honeypot.

5.2 Database

MHN relays on two databases:
e A non-relational mongoDB database employed

by Mnemosyne to maintain all the information
related to hpfeeds and attack events.

e A relational SQLite database which maintains all
the information regarding the platform, as for
example the users and the sensors” data.

A diagram of the mongoDB database is available in the
section Al of the annex. For the introduced functionali-

EE/UAB TFG INFORMATICA: COLLABORATIVE MODEL OF HONEYPOTS

ties, it wasn’t necessary to modify this database.

To integrate the new functionalities it was necessary to
modify the SQLite database, concretely the ‘sensors’ table.

This table was modified to introduce the SSH authenti-
cation credentials of the remote host: a username and a
password or a private key file. Paths to locate the external
files regarding the configurations of the honeypots were
also introduced. These paths include both the local loca-
tion and the remote host’s location.

Fig. 2 shows the original state of this table, while Fig. 3
shows it after the modifications done.

[Sensors J

Name Type Nullable
id Int No
uuid String(36) No
name String(50) No
created_date DateTime No
ip String(15) No
hostname String(50) No
identifier String(50) No
honeypot String(50) No

Fig. 3. Table for the sensors’ persistence, which was modified in order
to persist the new functionalities’ data.

{ sensors J

Name Type Nullable
id Int No
uuid String(36) No
name String(50) No
created_date DateTime No
ip String(15) No
hostname String(50) No
identifier String(50) No
honeypot String(50) No
host_user String(50) No
host_pswd String(250) Yes
path_to_keys String(250) Yes
path_to_config String(250) No
host_config_path String(250) No
host_files_path String(250) Yes

Fig. 4. Sensors’ table modified to persist the SSH authentication cre-
dentials for the remote host and the honeypot’s configuration files.

ASIF AL FERDOUS KHAN: COLLABORATIVE MODEL OF HONEYPOTS

6 DEVELOPMENT

Below is the summary of the work done during the de-
velopment phase.

6.1 New honeypot deployment

Starting the development phase, the first step was to inte-
grate SSH capabilities to the backend in order to deploy a
new sensor in a remote host given the authentication
credentials. This was done using Paramiko, a Python
library for the SSHv2 protocol implementation. [11] A
simplified version of Paramiko’s usage is shown below:

ssh = paramiko.SSHClient ()

ssh.set missing host key policy(paramiko.AutoAdd
Policy())

ssh.connect (ip, username=user, password=pw)

stdin, stdout, stderr = ssh.exec_ command (command)

ssh.close()

First of all, an instance of the SSH client is created and
its policy regarding unknown hosts is declared as to ac-
cept all. Next, a connection is stablished using the in-
stance previously created passing the authentication cre-
dentials. The execution is launched and its input, output
and errors are saved in stdin, stdout and stderr respec-
tively. Finally, the connection is closed.

Also, as explained in the section 5.1, some new views
with their respective templates were necessary. The first
view renders a page with a form to input the remote
host’s information and the honeypot to deploy. This in-
formation is sent to the second view through POST meth-
od, which stablishes the SSH connection with the given
information.

The first version of this implementation used to stab-
lish the SSH connection, executed the command and
waited for the result before rendering the page to show
the result. This provoked some timeout issues with the
web server, which also made the SSH execution to fail
and, so, the honeypot wouldn’t be successfully installed.

In order to solve this issue, a different approach was
applied. The execution of the SSH commands is handled
by Celery, an external asynchronous task queuing service.
A function independent to the view stablishes the SSH
connection and executes the commands. This function is
declared as a Celery task using the following decorator
above it:

@Qcelery.task
def ssh exec(ip, user, pw, pkey, command,
honeypot) :

Before adding the task to the queue, the view tests the
given authentication credentials in order to validate them.
If the authentication is successful, the task is queued and
the view renders the page indicating that the deployment
has been launched. In case that the authentication fails or

New honeypot deployment

User MHN Remote host Database

Input credentials ;

Auth. credentials

Input installation script)

Generate execution command 2

SSH connection

Authentication ’
Execute command »

Script execution 2

(Execution output
[T i eron
E Show errors
[If no error]
Save credentials >
Auth. credentials
E Show OK mesng
User MHN Remote host Database

Fig. 5. Sequence diagram of the process of a new honeypot deploy-
ment.

any other error happens, the page is rendered informing
about the error and the task is not queued.

To check the status of the queued tasks a page has
been added. In this page, all the tasks are listed, and if
finished, the user can access to the details of the execu-
tion. All the information regarding the tasks is saved as
JSON data files.

Finally, a page to show the details and result of a de-
termined execution was added.

Fig. 5 shows a summary of the process followed for a
new honeypot deployment.

6.2 Honeypot update

To implement the ability to launch updates from the plat-
form, as represented in Fig. 6, the first task was to adapt
the SQLite database to persist the new information as
explained in the section 5.2.

To update the honeypots, new scripts in bash language
were created. This scripts work in the same way as the
original scripts of MHN but they execute the instructions
required to update a previously deployed honeypot as
provided by their creators. Currently only scripts for
Dionaea and Kippo have been developed.

Finally, the views and pages indicated in the section
5.1 were created to add this feature to the frontend.

8 EE/UAB TFG INFORMATICA: COLLABORATIVE MODEL OF HONEYPOTS

6.3 Edit honeypot’s configurations

Update existing honeypot
Using the resources of the features previously developed,

et e Patabase Remote host it was easy to implement the editing of the remote con-
—Sclecthoreypol 9, figuration of a honeypot as shown in Fig. 7. Concretely
———— through the database modifications explained in the sec-
m tion 5.2 and the some of the views for the maintenance
Generate execution command (—_) Capablhtles.
gReeve creentials o There is a local copy of each honeypot’s configuration
file in the platform’s server which the user can edit. When
==H comok the editing is done, these configurations are sent through
< athentioation : the usage of SSH and SCP to the remote host where the
Execute command > honeypot is located and overwrites its configuration file.
Once this process is done successfully the local config-
setpexeston g) uration file also gets overwritten by new one to reflect
these changes for future usage and consistency.
{ Execution output
E oo
(Show errors
o emor 7 DEPLOYMENT
e —— The final phase of this project was the deployment of a
User MHN Database Remote host distributed network of sensors with the platform central-

izing the information. In order to do so, eight virtual ma-
chines located in various geographical points were creat-
ed to host the honeypot sensors. The honeypots deployed
were Kippo and Dionaea. Initially, there was the same
Modify configuration file of a honeypot amount of sensors of both of them but since Kippo
honeypots received more interaction and provided more
data, the deployment was focused on them.

Fig. 6. Sequence diagram of the process of updating of a previously
deployed honeypot.

User MHN Database Remote host

Select honeypot ’
‘ Retrieve config. file ;

The virtual machines employed, using Ubuntu 14.04
distribution with 32-bit architecture, were hosted in Dig-
Wwi& italOcean. The reason behind using this provider resides
| modifis configurations
- > on the speed and simplicity of creating a virtual machine
Configurations . .
o they offer, which settles to the rapid-and-easy deploy-
B2 by, ment philosophy that this project tries to stablish. And the
W reason behind using Ubuntu 14.04 x32 is the stability and
Gonerteset) compatibility that offers, since most honeypots are tested
_ with this configuration. Table 2 shows the basic infor-
St sedencommen® |) mation about the deployed sensors.
Retrieve credentials
- The central platform was also deployed in a Digital-
Auth. credentials . . .
Ocean virtual machine located in Amsterdam.
‘ SSH connection ,
Authentication -
Execute command - TABLE 2
——Drewewmgs 4,
DEPLOYED HONEYPOTS
Script execution 2 Host Name Honeypot Location
Nodel Dionaea New York
-« et Node2 Kippo New York
TR o o Node3 Kippo San Francisco
EITors "
< Node4 Dionaea Amsterdam
If no error]
f] Overmite confa. i Node5 Kippo Amsterdam
‘erwrite config. Tile ; -
Node6 Kippo London
Node7 Kippo Frankfurt
‘ Show OK message " "
Node8 Kippo Singapore
User MHN Database Remote host Node9 KIppO Singapore
Nodel0 Dionaea Singapore

Fig. 7. Sequence diagram representing the process followed to edit a
remote honeypot’s configuration file.

ASIF AL FERDOUS KHAN: COLLABORATIVE MODEL OF HONEYPOTS

8 RESULTS

After ten days of deployment, the sensors already had
gathered a considerable amount of data produced by
numerous port scans and attacks as shown in the Table 3.

TABLE 3
ATTACK EVENTS

Name-Honeypot (Location) Scans/Attacks

Nodel-Dionaea (NY) 4801
Node2-Kippo (NY) 2478
Node3-Kippo (SF) 3266
Node4-Dionaea (AMS) 2929
Node5-Kippo (AMS) 991
Node6-Kippo (LON) 27036
Node7-Kippo (FRA) 5097
Node8-Kippol (SNG) 15482
Node9-Kippo2 (SNG) 1949
Nodel0-Dionaea (SGP) 1744

The average amount of the total daily interaction re-
ceived is between 7500-9000.

Note that many of these interactions are not specifical-
ly attack events, many of them are port scans which usu-
ally are reconnaissance actions for future attacks but not
attacks by themselves.

The top attackers’ IP were mainly from China, Russia
and Japan, but many attacks were also received from IP
addresses located in Poland, Italy, United Kingdom,
France and United States.

The most attacked port is the 22, associated to the SSH
service. This is partly due to the fact that Kippo works
exclusively with this service while Dionaea works with
various, such as: HTTP, HTTPS, FTP and MySQL among
others. Still, SSH protocols’ interaction numbers are sig-

roet: root

Mesttest | ([N || [| e
admin: admin
ubnt: ubnt
[guest: guest 300 - bk - r -
[kadmin: blank

root:defautt | |||
pi- raspberry
xbian raspber.

[admin: default

00 - L — -

Fig. 8. Most used combinations of user-password in the attacks
received to the Kippo honeypots.

nificantly higher to the other services” and, so, are worthy
of a more detailed review.

Kippo simulates a fake SSH service with ability to in-
teract with the attacker. The default user-password is
‘root:123456’, which attackers usually try to guess using
brute-force or dictionary attacks. If they manage to suc-
cessfully log in, Kippo tries to satisfy their demands in a
controlled environment simulating some of the most
usual commands (for instance: wget, ping, apt, ssh, ad-
duser...) while logging all the activity and saving the
downloaded files for further analysis.

The Fig. 8 shows a diagram with the most tried user
and password combinations by the attackers in order to
break in.

Once the intruders have successfully logged in, three
patterns of behavior are observed:

1. No action is done right after the break in. This
could be due to: the attack being the recon-
naissance and data storage phase prior to a
mass automated attack or the attacker noticing
the honeypot environment.

2. Manually check information about the simu-
lated host, such as the active processes, active
users and other general information about the
machine. Some of these cases lead to behavior
3 if the honeypot isn’t detected. Others detect
the honeypot due to the lack of activity and no
further activity is done.

3. Download executable files from a remote host
and leave them executing in the background.
This happens when the intrusion is automated
or the attacker doesn’t notice the honeypot
environment.

The most relevant behavior is the last one, since it pro-
vides intelligence about the attackers” methodology and
their course of actions once the system has been penetrat-
ed.

The objective of these files is commonly to keep moni-
toring the machine and exploit it for further malicious
actions, such as opening a backdoor to connect to a C&C
server and receive orders. These orders are principally to
make DDoS attacks to determined IP addresses. In some
cases, the backdoor is used to sell the access (the authenti-
cation credentials) in the black market in order to be used
as part of a botnet or employed for further distribution of
malware.

9 CONCLUSIONS

Reached the deadline of the project, the main objectives
stablished have been achieved. Even though the initial
planning suffered a few setbacks and had to be readjust-
ed, it was correctly followed. These readjustments were

10

done in order to improve the employed methodology,
such as the introduction of a design phase to optimize the
development.

Currently, a functioning centralized platform with in-
telligence data gathering capabilities by means of a dis-
tributed network of honeypots has been deployed. The
platform is able to not only centralize the acquired data,
but also to deploy new honeypot sensors and configure
them, reducing considerably the complexity of this pro-
cess. It also simplifies the later maintenance, allowing
launching updates and the editing of the configuration
files from the platform.

The data gathered so far by the network of sensors al-
ready provided valuable information about behaviors,
trends of attacks and, in general, intelligence about cyber-
threats.

From a personal point of view, this project has served
to learn about honeypot technology and to expand the
previous knowledge about information security. It also
helped to take contact with many technologies, such as
Flask, mongoDB and Celery; to experience all the steps of
a real development project; to understand the importance
of an extensive design stage and how positively it affects
to the development; and to be able to face unexpected
problems and find suitable solutions.

The work done during this project could serve as basis
for a corporative project. However, there are still many
features and functionalities that could be developed and
implemented.

10 FUTURE WORK

The scheduled time has been the principal limitation on
the features that could be developed. There’s plenty of
room for many other functionalities and improvements
that could be implemented. Medium and low priority
objectives, such as improving the data recollection, im-
plementing a dashboard view or a more detailed view of
an attack event, have not been achieved in the available
time frame. These leave a path to follow in future pro-
jects.

There is a considerable amount of improvements that
could be introduced in the platform, such as compatibility
with more types of honeypots and its consequent mainte-
nance requirements.

Regarding the sensors, there are also improvements
that could be introduced. For example, Kippo could be
improved to offer better responses to the attackers when
prompted for information about the machine in order to
resemble a more realistic environment. This would help
to deceive intruders and convince them to pursue their
activity.

EE/UAB TFG INFORMATICA: COLLABORATIVE MODEL OF HONEYPOTS

Finally, a further and more exhaustive analysis of the

methodology of the attackers could be done using the
acquired data, such as the downloaded files, since there
was not enough time to include it to the project.

ACKNOWLEDGMENT

I would like to thank both, Ramon Vicens from Blueliv
and Guillermo Navarro from UAB, for their mentoring
and help; to Ramon especially for making possible this
project and giving me the opportunity to work in it.

I would also like to thank Victor Acin, Ramsés Pascual

and Vicent Gil Esteve for their help, as well as to many
other co-workers from Blueliv.

Finally, thanks to Celia Rupérez for listening always

and for her unconditional support.

This work was supported by Blueliv.

The basis technology used in this project was original-

ly developed by ThreatStream.

REFERENCES

(1]

(2]

(3]

(4]

(6]

(7]

(8]

9]

"Botnets," Shadowserver Foundation, [Online]. Available:
https:/ /www.shadowserver.org/wiki/ pmwiki.php/Information

/Botnets. [Accessed 14 June 2015].

T. Grudziecki, P. Jacewicz, L. Juszczyk, P. Kijewski and P.
Pawlinski, “Proactive Detection of Security Incidents II -
Honeypots,” 2012.

A. Sardana and R. Joshi, Honeypots - A New Paradigm to
Information Security, Science Publishers, 2011, pp. 27, 63-89.
A. Harper, S. Harris, J. Ness, C. Eagle, G. Lenkey and T. Williams,

Gray Hat Hacking - The Ethical Hacker's Handbook, Third ed.,
McGraw-Hill, 2011, p. 639.

Honeynet Project & Research Alliance, “Know Your Enemy:
Honeywall CDROM Roo,” 17 August 2005.

ThreatStream, “Modern Honey Network,” [Online]. Available:
http:/ / threatstream.github.io/mhn/. [Accessed 12 April 2015].
M. Schloesser, "Hpfeeds," [Online]. Available:
https:/ / github.com/rep/hpfeeds. [Accessed 31 May 2015].

[Online]. Available:
https:/ / github.com/johnnykv/mnemosyne. [Accessed 19 June
2015].

A. Ronacher, "Flask "A Python Microframework"," [Online].
Available: http:/ /flask.pocoo.org/. [Accessed 30 May 2015].

J. Vestergaard, "Mnemosyne,"

[10] A. Ronacher, "Jinja," [Online]. Available: http:/ /jinja.pocoo.org/.
[Accessed 19 June 2015].
[11] 7J. Forcier, “Paramiko,” [Online]. Available:

http:/ /www.paramiko.org/. [Accessed 24 May 2015].

ASIF AL FERDOUS KHAN: COLLABORATIVE MODEL OF HONEYPOTS

Annex

Al. MONGODB DATABASE DIAGRAM

Fig. 1-4 show the main collections of the non-relational
mongoDB database as mentioned in section 5.2. This da-
tabase is managed by Mnemosyne to save all the incom-
ing data from Hpfeeds as explained in section 4.1.

[hpfeed 1

Name Type Nullable
_id String(24) No
ident String(36) No
timestamp DateTime No
normalized Boolean No
payload String(250) No
channel String(250) No

Fig. 1. The ‘hpfeed’ collection saves the raw messages received
from the hpfeed channels. This data usually come in JSON format.

[session J

Name Type Nullable
_id String(24) No
protocol String(50) No
hpfeed_id String(24) No
timestamp DateTime No
source_ip String(15) No
source_port Int No
destination_port Int No
identifier String(36) No
honeypot String(50) No

Fig. 2. The ‘session’ collection summarizes the interaction of a
honeypot with the attackers.

[daily_stats]

Name Type Nullable
_id String(24) No
channel String(250) No
date String(8) No
hourly Int No

Fig. 3. The ‘daily_stats’ collection summarizes the data used to
provide the statistics about the daily interactions of the honeypots.

(counts
Name Type Nullable
_id String(24) No
date String(8) No
identifier String(36) No
event_count Int No

Fig. 4. The ‘counts’ collection summarizes various types of counts

over time ranges in order to speed up aggregation queries.

11

