

TANNINS: AN ANTHELMINTIC ALTERNATIVE FOR HERBIVORES

MARTÍ FERRET BALANYÀ

BIOCHEMISTRY 2012-2016

Universitat Autònoma de Barcelona

Tutor: Josep Allué Creus

Is there a plausible **alternative** to **common anthelmintics**, which are becoming less effective to fight against parasites?

HYPOTHESIS

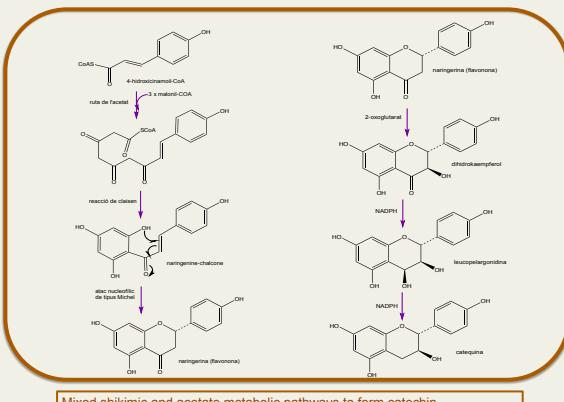
Tannins have **suppression effects** on parasites in herbivores

INTRODUCTION

Secondary metabolites perform **non-essential functions** but they can promote **adaptation** to **unfavourable environments** and under **stressful conditions**, such as high temperatures, light or water stress and poor soil quality, which regulate the **phenological** development of the plant, thus increasing the **synthesis of tannins**

TANNINS

Present in trees, shrubs and herbaceous plants. They are a **heterogeneous** group of **phenolic compounds** with high molecular weight which are able to bind proteins, polysaccharides, alkaloids, nucleic acids and some minerals


HYDROLYSABLE TANNINS (HT)

Formed by **carbonilic core (D-glucose)** linked to **phenolic groups** such as Gallic or Ellagic acid.

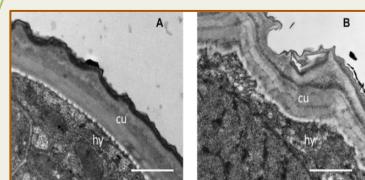
These compounds metabolized by *Eubacterium oxidoreducens*, *Streptococcus bovis*, *Syntrophococcus sucromutans* and *Coprococcus spp* form **pyrogallol**, which is **toxic** for herbivores

CONDENSED TANNINS (CT)

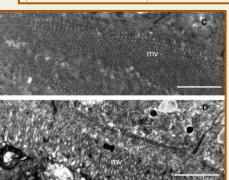
Non-branched polymers of **flavonoids** such as 3-flavanols (catechin or epicatechin), precursors of procyanidins and epigallocatechin, which can condense to form prodelfinidinas

Affecting

PATHOLOGY OF NEMATODES IN HERBIVORES


Reduction of **food intake**, **absorption** and **retention of minerals** (especially phosphorus), causing significant **losses in protein absorption** and **hormonal changes** that disrupt the normal functioning of the digestive system

PATHOGEN


The CT damage **external tissues** such as the **cuticle** and **hypodermis**, and **internal tissues** like the **microvilli** in intestinal tissue

Light microscopy of *A. suum* larvae (Williams et al., 2014).

Ultrastructural changes in *Ascaris suum* L4 exposed to condensed tannins (B and D) (Williams et al., 2014)

HERBIVORES

High concentrations of CT reduce voluntary feed intake in animals, explained by three factors: **decreased taste**, **slowing digestion** and **conditioned aversion**.

Moderate concentrations of CT increase protein absorption in **abomasum** due to a decrease in **ruminal degradation**

SELF-MEDICATION OF HERBIVORES

Herbivores show self-medication prophylactic and therapeutic behaviours. There are some studies by Lisonbee et al. (2009) or Villalba et al., (2014) demonstrating these behaviours in goats, sheep and cows

CONCLUSIONS

CT are a useful potential **alternative anthelmintic** in herbivores considering the recent appearance of resistance to conventional anthelmintics.

Animals treated with condensed tannins **reduce the population of nematodes** and their **reproduction**. This effect is produced by acting on the **cuticle** and **hypodermis larvae**, as well as the effect on **microvilli**, causing intestinal damage in these parasites.

SELECTED BIBLIOGRAPHY

Villalba, J. J., Miller, J., Unger, E. D., Landau, S. Y., & Glendinning, J. (2014). Ruminant self-medication against gastrointestinal nematodes: Evidence, mechanisms, and origins. *Fortschritte Komplementärmedizin*, 22(4), 261.

Lisonbee, L. D., Villalba, J. J., Provenza, F. D., & Hall, J. O. (2009). Tannins and self-medication: Implications for sustainable parasite control in herbivores. *Behavioural Processes*, 82(2), 184–189.

Williams, A. R., Fryganas, C., Ramsay, A., Mueller-Harvey, I., & Thamsborg, S. M. (2014). Direct anthelmintic effects of condensed tannins from diverse plant sources against *Ascaris suum*. *PLOS ONE*, 9(5), 16pp.