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PREAMBUL



INTRODUCCIO

La ciencia progressa gracies als problemes i dificultats que no es poden resoldre amb
meétodes coneguts en un moment determinat. Aquestes "pedres” en el cami de la ciéncia son
I'impuls que la fa avangar, que origina nous descobriments.

El calcul diferencial va néixer degut a la necessitat de resoldre problemes de tangents i de
maxims i minims. Pero no podem parlar de calcul diferencial fins al segle XVII, mentre que els
origens del calcul integral es remunten a la Grecia antiga. Aixo no vol dir que no s’haguessin
plantejat aquest tipus de problemes abans.

Els grecs ja tracaven tangents a cercles i seccions coniques. Apol-loni, a les seves
Seccions coniques, troba les normals de coniques calculant els segments maxims/minims
dibuixats des d’un punt a la corba.

Pero s’introdueixen elements nous, com el moviment. Ara les corbes seran tractades com
a trajectories, mentre que per als grecs representaven llocs geométrics.

També s’intenta superar I’’horror a I’infinit” dels grecs. La concepcid classica de la
constitucié de la materia i la qlestid del continu van generar diverses opinions. Uns, com
Cavalieri, mantenien que la descomposicid de la matéria era limitada, arribant a unes particules
“indivisibles” o atoms, de naturalesa diferent a I’original. Els altres, com Fermat, Pascal o
Wallis, defensaven la idea de matéria infinitament divisible en “infinitesimals”, que conservaven
les propietats basiques de la materia inicial. Els “indivisibles” de Roberval es poden considerar
com la transici6 d’un grup a I’altre.

Malgrat la falta de rigor, I’Gs (i abus) intuitiu de I’infinit va representar un progres
sorprenent.

Gilles Personne de Roberval considera la corba com a composicié de dos moviments. La
resultant dels vectors velocitat és la tangent. Aquesta idea la compartia Evangelista Torricelli.
Pero ambdds metodes presentaven limitacions.

René Descartes, en la segona part de La Géométrie, dona un meétode per tracar les
tangents pero restringit a les corbes algebriques i a vegades treballant amb un algebra prohibida
en la seva epoca.

Cap d’aquests méetodes no té aplicacio general ni conté diferenciacid. No és fins a Pierre
Fermat que podem parlar de la primera aparicié de la diferenciacié. Johannes Kepler havia

observat que I’increment d’una funcio s’esvaeix a I’entorn d’un extrem ordinari. Fermat tradueix



aquest fet en un procés per determinar maxims i minims. EI metode de Fermat, encara que

incomplet, equival a:

_ f(x+h)- f (%)

() . |
h=0

Isaac Barrow també va anticipar el calcul diferencial. Amb ell apareix el triangle
diferencial. EI seu métode es torna rigoros si féssim servir teoria de limits.

Els veritables creadors del calcul sén Isaac Newton i Gottfried W. Leibniz que, per vies
independents i diferents, arribaren a les mateixes conclusions. Newton i, de manera meés
important, Leibniz, van crear un simbolisme general amb un conjunt sistematic de regles
analitiques formals.

Encara falta fonamentar de manera rigorosa i consistent la nova matéria, pero haurem
d’esperar fins que ho facin Cauchy i els seus successors del segle XIX.

Donada la poca claredat dels fonaments de la matéria que acabava de néixer, el calcul va
rebre diversos atacs, distribuits en tres debats. EI primer és la critica de Nieuwentijdt a Leibniz
(1695-96). El segon es situa a I'Académie des Sciences de Paris, on els "moderns" (com
Varignon i Saurin) s'enfronten als "antics” (com Rolle i I'Abbé Galois). I el tercer és el de The

Analyst contra el calcul de Newton (1734-35).

Entre 1691 i 1692 el marques de L'Hopital, atret pel nou calcul, rep lligons del brillant
fisic i matematic suis, Johann Bernoulli. EI 1696 el marqués publicara el primer llibre de text del
calcul diferencial, I'Analyse des infiniment petits pour I'intelligence des lignes courbes. Dins la
foscor en queé es troba el calcul, I'Analyse és un intent de "normalitzar-lo”, en termes khunians,
donant-ne una visio segura i completa i ajudant a la seva popularitzacio.

La publicacio de I'Analyse va ser motiu de controversia. Johann, especialment després de
la mort de L'Hopital, va reclamar l'autoria d'aquest text. Quan el 1922 es van publicar les Ilicons
de Bernoulli a L'Hépital (les Lectiones de calculo differentialium) i el 1955 la correspondéncia
del suis, va quedar resolt el problema de l'autoria de les quatre primeres seccions de I'Analyse, a

favor de Bernoulli.

El Dr. Josep Pla em va proposar analitzar i comparar els dos textos, I'Analyse de

L'Hopital i les Lectiones de Johann Bernoulli, buscant les semblances i diferéncies entre els dos,



estudiant els avantatges i desavantatges de cadascun d'ells, ensumant possibles influencies
d'altres autors.

El meu treball esta dividit en set seccions. En la primera exposo la biografia de L’Hbpital
i comento la controversia entre el marqués i el seu mestre Bernoulli.

En la segona part remarco la importancia de I’Analyse com a (primer) llibre de text sobre
calcul diferencial.

La tercera part esta dedicada a la historia de les corbes que estudien ambdés autors,*

ordenades segons el text de Bernoulli:

1.- Cicloide (problema VI)

2.- Concoide (problema VII)

3.- Cissoide (problema VIII)

4.- Quadratriu (problema IX)

5.- Espiral d’Arquimedes (problema XI)

A continuacidé (quarta part) exposo diferents metodes per trobar la tangent a les corbes
estudiades en la seccio anterior. Només considero metodes anteriors a Newton i a Leibniz, doncs
amb aquests dos grans matematics ja neix el calcul i el problema de la tangent es transforma en
un algorisme. Analitzaré com tracten aquest problema Torricelli, Roberval, Fermat, Descartes i
Barrow.

La comparacio propiament dita, capitol a capitol, la duc a terme en les tres darreres
seccions.? La primera columna mostra el métode emprat per Bernoulli, la segona I’utilitzat per
L’Hopital. Un cop vist com exposen ambdds autors les definicions i axiomes pertinents, primer
analitzo el problema de la tangent a les corbes esmentades més amunt (cinquena part).

La sisena part esta dedicada a la comparacié del capitol sobre calcul d’extrems. Estudio
dos dels exemples comuns a tots dos: el de la refraccid i el de la posicié més baixa que assoleix

un pes en un sistema de dues politges.

! Com que I’estudi que fan L’Hépital i Johann Bernoulli de la parabola, I’el-lipse i la hipérbola és
practicament idéntic no esmento aquestes corbes en aquesta breu historia.

2 Al final del meu treball adjunto una llista amb la notacié que utilitzo i la correspondéncia amb I’emprada
per L"Hépital i Bernoulli.



I, finalment, la darrera secci6 tracta el problema dels punts d’inflexi6 i de retrocés.® En
particular, aqui comparo com tracten aquest problema en el cas de la concoide, fent servir

diferents camins.

® L’Hopital parla en general de diferencials d’ordre superior, Bernoulli no.



1. BIOGRAFIA DE L'HOPITAL

Al llarg de la historia de les matematiques trobem teoremes i regles amb noms d'autors que,
en la major part dels casos, no n’han estat els descobridors. Normalment aquests resultats porten el
nom d'aquells que n’han facilitat la seva comprensio, la seva publicacio, I’intent de demostracio.

Per exemple, ens és familiar el "teorema de Pitagores” pero els babilonis (i, fins i tot, abans)
ja coneixien aquest resultat. EI "triangle de Pascal” ja era conegut per Yang Hui al segle XIII i es
retroba en els treballs de Stifel, Tartaglia, Stevin i Herigone.

Generalment associem L'Hopital amb la regla que resol les indeterminacions del tipus 0/0.

Pero el que s'amaga darrera la "regla de L'Hopital" és una serie de pactes, intercanvis

epistolars i controversies a I’ estil matematic més pur del segle XVII.

Guillaume Francois Antoine de L'Hdpital,* Marqués de Sainte-Mesme, Comte d'Entremont,
Senyor d'Ouques,... va néixer a Paris el 1661.

Aviat mostra interes per la geometria. Als quinze anys ja va resoldre uns problemes ben
dificils sobre la cicloide proposats per Pascal.

Com corresponia al fill d'una familia noble va servir a I'exércit. De fet, assoli el rang de
capita de cavalleria. Va haver de deixar la seva carrera militar a causa de la seva miopia. Podria ser
que hagues fet servir aquesta excusa per dedicar-se a l'estudi de les matematiques.

De seguida el va atreure el nou calcul de Leibniz, encara que no es veié amb cor d'estudiar-
lo tot sol. Aixi que, quan Johann Bernoulli, el brillant i jove fisic i matematic suis, visita Paris el
1691, el marques el convida primer a casa seva i després a la seva propietat d'Ouques. Durant
alguns mesos, entre el 1691 i el 1692, Bernoulli ensenyara la nova matéria al marques.

Quan Bernoulli deixa Paris les llicons continuen per correu.

A partir d'aquest moment L'Hopital entra a formar part de I'édlite matematica i esdevé un
gran exponent del calcul a Franca, no només pels seus treballs cientifics, sind també pels contactes
que manté amb Leibniz, Bernoulli i Huygens. Sera membre de I'Académie des Sciences des de
1690 fins a la seva mort.

Donada la manca de tractats elementals, L'Hopital expressa a Bernoulli en una carta (1695)
la intencid de publicar un text sobre seccions coniques per més tard afegir-li un petit tractat sobre

calcul diferencial. Vol que sigui la introduccio de De scientia infiniti, tractat sobre el calcul integral

! Es pot trobar el seu nom escrit L'Hospital. La familia també I'escrivia Lhospital i, més tard, L'Hopital.
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que Leibniz pensava escriure.

El seu Traité des sections coniques no es publicara fins al 1707, tres anys després de la mort
de I’autor.

En canvi, I’any 1696 es publica el seu tractat sobre calcul diferencial, I’Analyse des
infiniment petits pour I’intelligence des lignes courbes.

L'Hopital reconeix com a propis els fonaments, tot i que Johann també els reivindica.
També de forma explicita els podem trobar en Leibniz, tot i que no accepta “la visio platonica de
L'Hépital sobre la realitat de les quantitats infinitament petites i infinitament grans."?

L'Hopital envia una copia del llibre a Johann el 1697, el qual li agraeix que, en el prefaci,
reconegui les seves aportacions i promet retornar el compliment en la seva propera publicacio.
Bernoulli lloa la distribucio solida de les proposicions i I'exposicio intel-ligible de I'Analyse.

El 1698, pero, Bernoulli escriu a Leibniz queixant-se que el marques ha plagiat les seves
Ilicons de calcul.

Després de la mort de L'Hopital (1704) tambe escriu a Brook Taylor lamentant-se.

Aleshores fa pablic que la regla que apareix a l'article 163, seccio X, de I'Analyse (coneguda
des de Ilavors com a "regla de L'Hdpital") en realitat la va descobrir ell.®

Aqui comenga la controversia. Durant molt de temps es va dubtar de qui era l'autor del
llibre. L'HOpital, al seu prefaci, deixa oberta la porta a les reivindicacions que vulguin fer Leibniz i

Bernoulli:

(...) reconec que dec molt a les idees dels senyors Bernoulli, sobretot a les del jove,
actualment professor a Groninga. M'he servit lliurement de les seves descobertes i de les
del senyor Leibniz. Es per aquesta rad que poden reivindicar tot el que els hi plagui, em
contento amb el que em vulguin deixar.*

A més a més, el mal caracter de Johann més aviat el va perjudicar en aquesta qguiestio.’

El 1922 P. Schafheitlin va editar les Lectiones de calculo differentialium de Johann
Bernoulli, és a dir, les llicons que va donar a L'Hopital entre 1691 i 1692.° Comparant els dos
textos s'observen massa coincidencies.

La questio sobre la prioritat queda resolta quan, el 1955, O. Spiess va publicar la

2 DSB, VI, pp. 304-305.

® De fet, L'Hopital mai no va afirmar que I’hagués descoberta. Perd quan Saurin va adjudicar l'autoria a
Leibniz, Johann va reclamar-la com a propia.

*Prefaci de I'Analyse, p.12.

> Sembla que, pel contrari, L'H6pital posseia una personalitat atractiva; era modest i generds, qualitats no gaire
freqiients entre els matematics de I'epoca.

® Donat que Leibniz no es decidia a fer-ho, el marqués va suggerir Bernoulli de publicar un text sobre calcul
integral. Aquest no va aparéixer fins al 1742, inclés dins la seva Opera Omnia, 1.
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correspondéncia de Johann Bernoulli. En una carta (17 mar¢ de 1694) L'Hopital va proposar a
Johann un tracte. EI marqueés li oferia una renda anual de tres-centes lliures (que incrementaria mes
endavant) a canvi que Bernoulli li comuniqués a ell, i nomes a ell, les seves descobertes.

No s'’ha trobat la resposta a aquesta carta, pero en una altra amb data el 22 de juliol del
mateix any es veu que Bernoulli ha acceptat, cosa bastant normal, donada la delicada posicid
economica del jove matematic. De fet, I'any seguent, a través de L'Hopital, Bernoulli obté una placa
de professor a la Universitat de Groninga (Holanda).

Obviament, mentre L'Hdpital era viu Bernoulli no gosa acusar-lo publicament de plagi. Es
quan el marques mor que es decideix a afirmar obertament que ell és I'autor de la major part de
I'Analyse.

Laposicio dels historiador s davant la controversia

Encara que des del 1955 queda demostrat que L'Hopital s'havia basat en les Ilicons de
Johann Bernoulli, s’ha de reconeixer el gran paper que va jugar I'Analyse en la popularitzacié del
calcul. A més a mes, hi ha contribucions originals del marques.

Jo faria una classificacié dels historiadors de la matematica en dos grups: simpatitzants o no
de L'Hépital.’

Entre els primers inclouria a:

- J. L. Coolidge, que el destaca com a autor de llibres de text. Es de I'opinié que el marqués
peca de negligencia en el prefaci, encara que no de forma intencionada. A més a mes, les Ilicons de
Bernoulli son quatre, mentre que I'Analyse té deu seccions. Coolidge és I'Unic autor dels que he
consultat que menciona que Johann obtingue la placa de professor a Groninga gracies a L'Hbpital.

- D. J. Struik, que reconeix que L'Hbpital va publicar la "seva™ regla amb propietat i per tant
té dret a que conservi aquest nom.

- C. B. Boyer, que en una nota afirma:

Part del material era sense cap dubte el resultat dels treballs propis de L'Hépital, ja que
era un matematic competent. La rectificacid de la corba logaritmica, per exemple,
apareix per primer cop, segons tots els indicis, en 1692, en una carta de L'Hépital a
Leibniz.®

"Segons Coolidge, la qiiestio radica en quant va prendre L'Hopital directament del seu mestre.
8C. B. BOYER. History of Mathematics, p. 529 de la traducci6 castellana.
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- Fontenelle, que, com era d'esperar, en els Eloges de I'Académie des Sciences de Paris fa el
retrat d'un veritable heroi.? Ni tan sols fa menci6 de la relacié entre L'Hopital i Johann Bernoulli.

Pero si diu que va ser L'Hopital qui va introduir Huygens en el nou calcul.
Al segon grup pertanyen:

- N. Bourbaki, segons el qual “el primer tractat de calcul diferencial i integral va ser escrit
en 1691 i 1692 per Johann Bernoulli per a Gs d'un marqueés que va resultar ser un bon alumne."*°
En una nota al final de la mateixa pagina afegeix que "L'Hopital I'navia publicat en frances,
lleugerament modificat, amb el seu propi nom."**

- V. J. Katz, que diu:

Cap al 1696 L'Hopital decidi que entenia el Calcul Diferencial prou bé com per publicar
un text sobre aquesta materia, i com que havia pagat bé el treball de Bernoulli, no va
tenir cap remordiment a I'nora de fer-se servir de l'organitzacié i descobertes d'aquest
Gltim en la nova matematica.

- P. Schafheitlein, que afirma que el material de I'Analyse prové de Bernoulli, tant de les

seves llicons com de la seva correspondencia.

Trobo que el cas de Montucla és, si més no, curios. Coolidge I'inclou entre els que estan a
favor del suis. En la Histoire des mathématiques, pero, lloa extensament I'Analyse i considera que
L'Hopital és un gedmetra de primera linia. En canvi, li retreu que no deixi prou clar, en el prefaci,

tot el que deu al seu mestre.

Contribucionsoriginalsde L 'Hopital

El marqués de L'Hopital va publicar la solucié dalguns problemes en les Mémoires de
I'Académie des Sciences, Acta Eruditorum i Journal des Sgavans. Entre d’altres, el problema de la
braquistocrona proposat per Johann Bernoulli.*®

Ell (1670) i Maclaurin (1748) van determinar la forma de les paraboles d'ordre superior

B. FONTENELLE. Histoires et mémoires de I'Académie des Sciences de Parfs, 11, pp. 47-63.
19N, BOURBAKI. Elements d’ histoire des mathématiques, p. 269 de la traduccié castellana.
11y
Ibid.
12/, J. KATZ. A History of Mathematics (an Introduction), p. 482.
3 Aquest problema I'estudia amb el propi Bernoulli, donant lloc a una lleu disputa. Jakob Bernoulli, Newton i
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y' = p™x, distingint-les segons que la n fos un enter positiu 0 negatiu.

Pero, en general, les seves contribucions son problemes plantejats i resolts per altres autors.
Per exemple, resol de manera simple i natural, aixo si, un problema dels Principia. La resolucié de
Newton ocupava cinc fulls.

L'Hopital va ser un amateur, no es pot dir que creés cap teoria matematica remarcable. On si

va destacar va ser en I'elaboracio de Ilibres de text, deixant dues obres classiques del segle XVIII.

Analyse des infiniment petits (1696)

Com que més endavant m'estenc en l'estudi d'aquest Ilibre de text, ara només comentaré

breument les seccions en queé esta dividit:

- Seccid I: dona les definicions, els axiomes i les regles basiques de la diferenciacio.

- Seccid 1I: aplica aquestes regles per calcular la tangent a una corba en un punt. Déna
resultats generals que, despres, aplica a corbes arbitraries o a la relacié entre dues corbes arbitraries.
Ofereix molts exemples.

- Seccid 111: tracta els maxims i minims i inclou problemes mecanics i de geografia.

- Seccid 1V: tracta els punts d'inflexid i les cuspides (o punts de retrocés). S’introdueix en
els diferencials d'ordre superior.

- Seccid V: s’analitzen les evolutes i evolvents. S’hi defineix el "radi de curvatura d'una

(dXZ + dy2)3/2
-dxddy

evoluta" com , on y és funcio de x, que és equivalent a I’actual. Es la seccié més

llarga.

- Seccions VI-VII: aquestes dues seccions tracten les caustiques per reflexié i refraccio que,

encara que no son topics tradicionals en el calcul modern, si que ho eren a finals del XVII.
Precisament van ser L'Hbpital i Bernoulli, junt amb Tschirnhaus, els encarregats de desenvolupar la
teoria de caustiques.

- Seccid VIII: estudia el tema de les envolupants a una familia de rectes. Es aqui on
introdueix el metode de Leibniz de diferenciacid respecte d’un parametre.

- Seccid 1X: segons el titol, esta dedicada a la resolucio de diversos problemes, fent servir

els métodes precedents. De fet, pero, tracta el que actualment es coneix com a indeterminacions.

Leibniz també van presentar solucions a aquest problema.
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Conte I’anomenada regla de L'Hbpital.
- Seccid X: compara I'elegancia del nou calcul amb els métodes no tan agils de Descartes i

Hudde per trobar maxims i minims.

Traité des sections coniques (1707)

El Traité des sections coniques, publicat postumament el 1707, és a la geometria analitica
com I'Analyse al calcul diferencial.

Tot i que té molts problemes en comd amb Nouveaux & émens des sections coniques de La
Hire, queda descartat el plagi ja que L'Hopital barreja els metodes algébrics i geometrics, mentre
que La Hire els separa.

Si hagués fet servir la trigonometria (que tampoc no utilitza en I'Analyse) i el calcul (perque
didacticament "va després” de la geometria analitica) s'hagués estalviat problemes.

Aquest Ilibre de text va estar de moda durant gairebé un segle. A més a més de la primera
edicié (1707), es va tornar a editar els anys 1720, 1723 (traduit a l'anglés per Stone), 1770
(Veneécia) i 1776.
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2. L'ANALYSE COM A PRIMER LLIBRE DE TEXT DE CALCUL
DIFERENCIAL

"[as a text-book writer] Here he was supreme, a worthy member of
the great French School which included Monge and Lacroix."*

J. L. COOLIDGE

Primer es exposicions

Leibniz representa el naixement oficial del calcul. Malgrat aix0, no publica treballs sobre la
nova matéria, només petits articles a I'Acta Eruditorum. Moltes de les seves descobertes les
coneixem a través de cartes que enviava a altres matematics. EI 1684 publica en I’ Acta Eruditorum
un article de sis pagines, on definia les diferéncies i les regles de diferenciacié de les operacions
elementals i donava aplicacions a problemes de tangents i punts critics. L'avantatge d'aquest nou
meétode és que I'Gs d'expressions fraccionaries i irracionals no representa una limitacio.

Es, pero, un text curt, mal imprimit i dificil d'entendre. Per exemple, la seva definicié de dx
és "una linia recta escollida arbitrariament."? | una mica més endavant, fa servir la segiient
proporcié: la diferéncia de l'ordenada (dy) és a la diferéncia de l'abcissa (dx) com l'ordenada (y) és
al segment de la tangent compres entre el punt de contacte amb la corda i I'eix de les abcisses.
Tampoc no es pot dir que sigui un text didactic: "La demostracio de totes [aquestes coses] sera facil
per algl versat en aquestes guiestions (...)."

Tot i aix0, no hem d'oblidar que és a ell a qui li devem la invenci6 d'un simbolisme adient,
dels algorismes i del métode invers de les tangents.

D'altra banda, entre el 1669 i el 1676 Newton va escriure tractats de fluxions, no publicats
fins al 1704. Trobem la base del métode als seus Principia (1687), molts anys després de descobrir
el seu calcul. Pero també és curt i criptic.

El 1685 i el 1693 John Craig publica dos treballs basats en el calcul leibnizia. No serveixen,
pero, com a introduccid a la matéria, donada la seva dificultat a causa del llenguatge geomeétric en
gue estan escrits.

Aixi doncs, abans del 1696 no era facil comencar a estudiar el calcul. Johann Bernoulli va

composar dos petits llibres de text entre el 1691 i el 1692, un d'ells sobre calcul integral (publicat el

1J. L. COOLIDGE. The Mathematics of Great Amateurs, p. 154.

2 G. W. LEIBNIZ. "Nova methodus pro maximis & minimis,..." (extret de D.E. SMITH. A Source Book in
Mathematics, p. 620)

¥ Ibid., p. 623.
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1742) i l'altre sobre calcul diferencial, les Lectiones (publicat gairebé dos-cents anys mes tard).
Amb aquest panorama, quan Huygens va voler aprendre calcul ho va tenir dificil. Va ser

L'Hopital qui el va introduir en la matéria, després de rebre les Ilicons del mestre Bernoulli.

Exit del'Analyse

La manca de treballs elementals sobre el calcul va impulsar L'Hopital a escriure el seu
tractat. L'Analyse, el primer tractat sistematic del calcul, va ser molt ben rebut pels savants ja que
obria la porta a aquesta disciplina al lector mitja, abans només accessible a uns quants. EI mateix
Johann el va lloar per I'exposici6 i disposicié de les seves proposicions.*

La influencia de I’Analyse va superar els limits del mon matematic. A Paris es va
representar un vaudeville titulat Infiniment petits, on es feia broma sobre la fragil salut del marqués
i la poca inclinacio de la marquesa envers la nova geometria.

L'Analyse ens permet coneixer el nivell de calcul de I'epoca. Diu Kuhn que "els llibres de
text son vehicles pedagogics per a la perpetuacié de la ciéncia normal.”® Les diferéncies entre la
ciencia normal a la Gran Bretanya i la ciencia normal al Continent queden plasmades en els seus
respectius llibres de text, fet que corrobora aquesta afirmacio. Els llibres de text també son vehicles
de transmissio del vocabulari i la sintaxi cientifica emprats en un moment donat. El llenguatge i
notacid utilitzats per L'Hoépital son semblants als actuals (llevat de I'anacronisme entre "rad" i
"proporci¢™), de manera que, actualment, el seu llibre es pot seguir sense dificultats.

Segons Kuhn, els Ilibres de text exposen els resultats establerts després d'una revolucio,
donant maduresa a la ciencia normal. L’Hopital no discuteix els fonaments de la nova ciéncia,
simplement els accepta. Per exemple, en el prefaci diu que els dos postulats que apareixen en la
primera seccié de I’Analyse son evidents, que els podria haver demostrat a la manera dels antics
pero que, aleshores, el llibre s’allargaria massa en coses ja conegudes. Aquest fet, junt amb la seva
claredat i el seu esperit didactic, confereix seguretat al calcul. L’ Analyse presenta el calcul com una
ciencia acabada, completa, “normalitzada” .

Tot i aix0, mirat des de la perspectiva actual I'Analyse presenta certes mancances:

* Tot i aix0, I'Académie des Sciences es va dividir a causa de I'Analyse. D'una banda estaven els defensors
de L'Hopital (els "moderns™), com Varignon i Saurin, i d'una altra els seus detractors (els "antics"), com Rolle i
I'Abbé Gallois. Finalment van guanyar els defensors, quan L'HOpital ja era mort. Aquest és el segon dels tres atacs
contra el calcul. El primer va ser el de Nieuwentijdt contra Leibniz (1695-96). El tercer va ser el de The Analyst (1734-
35) contra el calcul de Newton.

®T.S. KUHN. The Sructure of Scientific Revolutions, p. 214 de la traducci6 castellana.
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- No apareix la nocié ni de funcié ni de limit.°

- L'Hopital no fa servir séries de Taylor.’

- Tot i que la dinamica del segle XVII proporcionava oportunitats d'aplicar el calcul nou, no
trobem aplicacions cientifiques. S'ha de dir, pero, que la malaltia impedi L'Hopital dur a terme
aquest apartat.

- No fa tracat de corbes.®

Edicionsi traduccions

L'Analyse va estar de moda durant el segle XVIII. Encara que L'Hopital no discuteix la
naturalesa del calcul, va donar un gran impuls a aquesta nova materia, popularitzant-la tant
mitjancant la seva influéncia en el Journal des savants com a traves de les diverses edicions que es
van fer del seu llibre. A Paris es va tornar a editar els anys 1715, 1716, 1720, 1758 i 1781. També
hi ha un edici6 feta a Avignon el 1768.°

D'altra banda, Stone va traduir I'Analyse a I'anglés (1730).*° Per respecte a Newton de
vegades va alterar el llenguatge.™* Va afegir-li nou material (funcions logaritmiques, exponencials i
trigonomeétriques) i, a més a més, el va completar amb un apéndix sobre calcul integral, que va ser
traduit al frances i publicat el 1735.

També es van fer dues traduccions llatines a Viena (1764, 1790).

Crousaz (1721) i Varignon (1725) van publicar els seus respectius comentaris sobre
I'Analyse.

® La funcié sera popularitzada cinquanta anys més tard, gracies a Euler i en I’Introductio in analysim
infinitorum. La idea general de limit, intuida per Newton i defensada per D’Alembert, no va esdevenir basica fins a
Cauchy.

" Tot i que ja eren conegudes per James Gregory i Johann Bernoulli, van ser formalitzades després de I'¢poca
de L'Hopital pels treballs de Brook Taylor sobre diferéncies finites i infinitesimes. També les trobem en Colin
Maclaurin.

8 El segle XVII inventa les eines perd és el XVII1 qui les aplica a I'estudi de corbes.

% Les edicions de 1758, 1768 i 1781 van ser revisades i ampliades. Es poden trobar més edicions de
I'Analyse als catalegs del British Museum i de la Biblioteque Nationale i també a Poggendorff.

19 Deu anys més tard Buffon tradueix al francés el Methodus fluxionum de Newton. Aquests dos fets mostren
que hi havia un cert apropament entre la Gran Bretanya i el Continent.

1 per exemple, fa servir el terme “fluxié" en lloc de “diferencial”, " x** en lloc de "dx", "ordenada” en lloc d'
"aplicada", etc.
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Altresllibresdetext sobred calcul

El 1704 es publica A Treatise of Fluxions de Hayes i el 1706 An Institution of Fluxions de
Ditton, que exposen una aproximacio fluxional (newtoniana) del tema. Les diferencies mes
destacables amb el text de L'Hépital son que Ditton i Hayes si que estudien el logaritme i la funcié
exponencial, probablement a partir del text de Bernoulli.*?

Daltra banda, els autors britanics tambeé fan un estudi del calcul integral, cosa que no havia
pogut arribar a fer L'Hopital.

Perd ni Ditton, ni Hayes, ni L'Hopital no estudien el calcul del sinus ni el del cosinus.*
Aquest estudi el fara Euler I'any 1730.

El Methodus incrementorum directa e inversa de Brook Taylor (1715) va tenir un cert
renom, malgrat la complicada notacio i I’estil obscur de I’autor. EI 1742 es publica el Treatise of
Fluxions de Colin Maclaurin, amb el qual les matematiques a I’Anglaterra del segle XVIII
assoleixen el cim de la precisio logica.

La darrera meitat de segle XVIII al llibre de L'Hopital li surt un bon rival: I’Instituzoni
analitiche de Maria Agnesi (1748). Aquest mateix any, Leonhard Euler publica I’Introductio in
analysminfinitorum.

Pero és el Traité démentaire de calcul différentiel et de calcul intégral de Lacroix (Paris,

1802) qui, finalment, pren el lloc a I'Analyse.

12 per exemple, el problema V de les Lectiones de Johann Bernoulli tracta el logaritme.
13 Utilitzen algunes relacions trigonométriques en problemes concrets. Vegeu, per exemple, els articles 59 i 61
de I'Analyse.
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3. BREU HISTORIA DE LES CORBES ANALITZADES

Llevat d'algunes aplicacions arti’stiquas, poc va avancar la geoimnetria des de Pappos fins al
1600, | _ _
_ Les publicacions de les Seceions conigues d'Apol-loni (especialment la traduceid latina de
Commandino (1509-75)) van fer créixer I'interés per la geometria.

Un alte factor que contribui al renaixement de la geometria foren els nous problemes
cientifics i les noves necessitats prictiques, Johannes Kepler va uiilitzar les seccions conigues en un
treball de T'any 1609, la qual cosa va provocar la revisié d'aquestes corbes | la cerca de propictats
fitils a I'astronomia. Altres exemples sén la impoertincia crt:ixeﬁt de I'dptica (especialment després
de la invencid del telescopi i del microscopi a principts del XVII), el disseny de lents, les
exploracions geografiques {gue van fer necessari dibuixar camins sobre I'esfera i sobre el mapa),
l'estudi dels projectils ... |

" El problema prictic de trobar arees 1 volums va comengar a atreure l'atenci6. Amb la Nova
stereometria doliorum vinariorum (1615} de Kepler comengd una etapa de molta activitat en
agquesta discipling. ' |

Els matematics s'adonaren que, als métodes grecs de demostracid, els mancava gene.rahtat
gairebé per a cada teorema els grecs buscaven un métode espﬁcml

Les contribucions medievals no van suposar una extensié dels desenvolupaments classics, '
siné, més aviat, una exploracid de nous camins en la Matematica. Els resultats obtinguts en el camp
de la Cinematica, el tractament de séries infinites i la consideracié intuitiva del eoncepte de funcid
faren inﬁnvadarsi originals. _

Aleshores, les corbes es van definir com a trajecthrieé en iloc de com a seccions coniques, -
com havia fet Apol-loni, Les coniques, aixi com d'altres corbes gregues (la concoide de Nicomedes,
la cissoide de Diecles, T'espiral d'Arquimedes, la quadratriu d'Hippigs], van ser reestudiades. A mes
.a més, 25 van introduir noves corbes, com ara [a cicloide.

Els matemdtics del XVII van determinar les tangents, els extrems, ¢l radi dé curvatura, els
punts d'inflexid, 1'area i la longitud d;aquestﬂs corbes. Cadascun d'clls amb el seu métode
caracterfstic: Roberval considerant la corba com a composicié de dos moviments, Newtion aplicant

les séries de poténcies de funcions trigonométriques, Fermat amb el matode d”"adigualacis”, ...
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HISTORIA DE LA CICLOIDE

La cicloide €5 una corba plana descrita per un punt d'un cercle que roda sense lliscar sobre

una recta en el pla, Roberval, en el sen Traité des indivisibles (1634) la defineix com "la corba

tragada per un punt que es mou uniformerment sobre la circumferéncia d'un cercle mentre el cercle

és portat en la mateixa raé uniforme al llarg d'una recta tangent perpendicular a un diametre.

-dongt""

N

_._ --' - ]E""_—_ -.'_-

. '-'..1,—';_-—.:_-_5.4--“'.-:1::-+-1_.._._. —_——

'E. WALKER, A Study of the Traité des Indivisibles of Roberval, p. 55

18



Sigui {Asx,y} un sistema cartesia; AB I'six; A un punt cuspidal; F un vértex.

Quan (7 passa a ser P

r=04,
1= LAOG ,
AP = arc{AG) ,
aleshores A esdevé M:
| r=0'M,
1= LPOM,
Liavors:

x= HM = HI -JM = r(t-sing),
y=AH = PO=JO'= r(1-cos?),

que s6n les equacions paramétriques de la cicloide.

Eauacid de [a corba en roordanades cartasianes:

X4 W 2r-y)=r art:n:'.::-sﬂ :
F

Per tant, és una corba transcendent,

No es coneix cap document de I'2poca grega que permeti afirmar que coneixiet! 1a cicloide,
Tot i a.iﬁb, sembla que linterts per aquesté. corba ?rové de la paradoxa d'Aristdtil: dues
circumnfergncies concéntriques {amb didmetres diferents) recorren una distincia igual si giren
segons una circumfergneia i, en canvi, un cop separades recorren distincics proporcionals als seus
diametres. | _ '

Incorrectament atribwida a Nicholas Cusa (1450), sembla qus el primer en estudiar-la va ser
Charles Bouvelles {1501). També va atreure I'atencié de Galileu, qui parl de la corba de més rapid
descens (1632}, encara que no amb un plantajament génera_i i sense obtenir-ne cap resultat. Viviani,
deixeble de Galileu, va trobar-ne la tangent. ' ' |

Els résultats més importants els obtingueren Torricelli { Roberval,
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Gilles Personne de Roberval {1602-1675)

Bé indépcndantmnnt, bé a través de Galilen, Mersenne va tenir consixement de l'existéncia
de la cicloide i el 1615 va proposar altres matematics l'estudi de la corba.

Per indicacté de Mersenne, Roberval va intentar estudiar la corba que ¢fl va anemenar
“trocoide" (de roda), perd encara no tenia les eines adequades. Va ser després d'inventar ¢l seu

métode dels infinitesimals (recollit en el scu Traitd des indivisibles, 1634) que va poder:

. caleular la quadratura de la corba (1'3rea entre la corba i la seva base &s tres vegades [area
del cercle generador)

. tracar-1i Ja tangent

. caleular el volum generat per la rotacid d'un are al voltant de 1z base {que €z cinc vuiiens
dei volum del eilindre eirenmserit) '

. inventar la "companya de la trocoide” {que &s la sinusoide)

. explicar com construir la corba amb punis
Evangelista Torricelli (1608-1647)

Torricelli es va interessar pel problema 'dé la cicloide tant a través del sen mestre Galilen
com a partir de les cartes de Mersenne,

L’any 1643 Torricelli envia a Mersenne Iﬁ quadratura de la cicloide. Aquest resultat i la
construccid de les tangents van ser publicats en les seves Opere €] 1644, _

Entorn del volum generat per 1a revelucid de la cicloide al voltant del seu.eix, aixi com de
l'estudi dels centres de gravetat, va sorgir una qliestié de prioritats entre Roberval i Torricelli. BE
que Torricelli va publicar abans el seu métode mecinic per calcular ;es tangents, Roberval 1'havia

descobert primer.
Pierre Fermat {1601-1665} i René Descartes (1596-1650)

Quan, a través de Mersenne, Fermat | Descartes van saber dels resultats de Roberval, van
donar les seves propies solucions a la quadratura de T'arc de cicloide.

El sen métode per tragar 1a tangent a la cicloide (163B) era algdbric, mentre que €l de

Roberval era mecanic,
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Blaise Pascal (1623-1662)

El 1658 Pascal va proposar a la resta dels maternatics sis giiestions sobte la cicloide o, com
gl l'anomenava, "roleta”. El prcmi.qur:d& desert, Es per aquesta ra6 que 51 desembre del mateix any
1 sola el nom d'Amos Dettonville publica els sens matodes i resultats, considerats com la part més
britlant de! sen quefer matemtic, | | '

_ Molts matematics del segle XVIE es van interessar pel problema ﬂe la rectificacié de corbes.
Tat i no ser un dels problemes proposats per Pascal, I'arquitecte Sir Christopher Wren (1632-1723)
li va enviar, sense demostracid, la rectificacid de la cicloide, Quan Roberval en fou informat,
immediatament en doné la prova, tot dient que ell ja feia anys gue havia rectificat la corba, Aquesta
afirmacié és bastant plausible, doncs una demostraci6 d'aquest tipus no es pot elaborar tan

precipitadament.
JohnWallis. (1616-1703)

L’any 1659 Wallis escriu una bren histdria de la cicloide en el prefaci del seu Tractatus dio,

prior de cycloide, posterior de cissoide.
Christaan Huygens (1629-1695)

Huygens va descobrir que la cicloide era la tautocrona que ell buscava, és a dir, la corba que
el pandol simple descrin en moure's amb perfode constant (independentment de 1'amplitud).
A partir del péndol cicloidal, Huygens descobr! que Fevoluta de la cicloide és un parell de

semti-cicloides i aix{ va poder deduir un métode simple de rectificacis.

Gottiried Wilhelm Leibniz (1646-1716)

En la De geometria recondita et analysi indivibiﬁum'atque infinitarem de Leibniz trobem

T'equacié de la cicloide sota 1a forma:

yaaf2x- x40 ,dx =

23-x
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Leibniz va quadrar €l segment general de la cicloide fent servir el tecrema de la

t_r:.-msI'rntusemini':u2
Sir Isaac Newton (1642-1727)

Newton calculh rea sota la cicloide aplicant, com era usual en ell, les stries de poténcies

de les funcions trigonometriques.”
La giiesti6 de la braquistocrona.

En I'Acta Ernditorum de juny de 1696, Johann Bemoulli va proposar determinar la corba de
més tapid descens. En altres paraules, donat un punt A i un punt B no situdt directament sota A, es
_ demana trobar la trajectdria que havia de seguir un mdbil per anar de A a B en ¢l minim temips
possible. Tohann va mostrar que la sclucid era la cicloide. Newton, Leibniz, Jakob Bemoulli :

L'Hdpital també van resoldre el problema,
Leonhard Euler (1707-1783)

El desenvelupament del cileul variacional té el seu origen en el desaftament Ilangat per
Johann Bernoulli a proposit de la braguistocrona. Johann va utilitzar ¢} principi variacional per
concloure que la solucié era la cicloide. El sen germd Jakob va fer servir un métode on ja apareixien
alguns dels principis del métode de maxims i minims d'Euler, Per tant, no és d'estranyar que Euler

sovint cités la cicloide en ef 3eu tractat,

t Vegeu C. H. EDWARDS. The Historical Development of the Calenfus, pp. 250-251,
¥ Ibid,, p. 207.

22



HISTORIA DE LA CONCOIDE
(3récia
Nicomedes {200 aC) va definir la concoide i la va utilitzar per trisecar un angle i duplicar et

eub, Nicomedes va idear un enginy amb el qual va consiruir la seva corba. La invencid d'aquest

mecanisme exemplifica l'intergs dels matematics de l'époéa per la construccié de corbes de manera

mecitica.

Sigui AB una recta i P un punt exterior. Tracem rectes (radis) des de P que intersectin AB.
Sobre aquestes, i des del punt d'interseccif, prenem una longitud a. Els extrems P1, P2, Ps,... aixi
determinats descriuen la concoide.*

Si-b-és la-distineia de P a.AB i si la longitud 4 sagafa des de la recta en direccié P,
st AU oRpTyi e, aulroued

‘De fet, els grecs només consideraven lg branca swperior, L'ordinador, perd, en dibuixa les dues.
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Equacié de la corba en coordenades pelars:

8i ¢ és l'angle que forma un radi amb la perpendicular per P, aleshores:

r=a+bsec(t).

Equacit de la corba en coordenades cartesianes:

2+ (b)Y - g2 52=0.,

Fis, doncs, una corba algéhbrica,

" Spelenr tieeuar Tawmle W0, Bev-de i tricerty A5 perpmnioniom o
concoide amb pel @, directriu AB- i distdncia constant igual a 240, Sigui P el punt dinterseccid

entre AQ i Ia concoide i Q el d'interseccid entre OY i la conceide. Per 4 tracem una perpendicular a .
AB que talla la concoide en T. Tracemn OT que talla AB en M. Sigui M ‘el punt mig de NT.

Per construccié, NT=2A0. Atés que AANT és un triangle rectangle, MT=MN=MA.
Aleshores, MA=AG. Per tant, ZAOM=/AMO=2,ATM=2,TOQ. Bs a dir, ZAOM=2/3 ZYOA i
LTO0=1/3 £Y0OA, amb la qual cosa queda trisecat I'angle gYDA.ﬁ '

Duplicacié del cub:’ _
El problema de la duplicacit del cub és equivalent a trobar dues mitjanes proporcionals

S Yegeu T. HEATH.A History of Greek Mathemarics, 1, p. 236.

¢ A Bagdad, cap al 870, els "tres germans” també van fer servir la concoide per resoldre el problema de la
Iriscecid de l'angle. Aquesta resolucid es pot rober al sow hibre, Liber trium fratrum de geometvia traduit al llayf per
Gerard de Cremona (vegeu I, B, SMUTH, History of Mathamatics, I, p. 171

" 4egeu T. HEATH, op, cit., I, pp. 261-262,
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entre dues.rectes. Vegem-ne la soluci6 proposada per Nicomedes.

Siguin AB, BC les dues rectes entre [es quals s"han de trobar les dues mitjanes. Chmﬁ]ﬁtﬁm
el paral-lelogram ABCL. Bisequem AB, BCen D i E. Unim L amb D i allarguem de tal manera que
LD talli CB en G. Dibuixem EF perpendicular a BC i tal que CF=AD. Unim G amb F i dibuixem
CH parallela a GF, Des de F tracem FHK que talla CH i EC en H'i X respectivament, de manera
que HE=CF=AD, Construim la concoide amb pol F, directriv CH i “distincia” AD o CF. Aquesta
concoide troba EC en K, Unim FK i per la propietat de la concoide, HK= “distancia”. Unim K amb
L1 fem que KL trobi BA en M. Aleshores, CK i MA s6n les mitjanes proporcionals demanades.

Demostracio:
£ és el punt mig de BC. Allarguem BC fins a K. Aleshores, aplicant Euclides f, tenim que:
BK-KC+CE* =EK* .
Afegim EF° a ambdés costats;
_JE«‘K-K(',‘+{,.‘E"+}.€F2 =BK-KC+CF* = +.(1}
=FK* + EF* = FK*
Per paral-lelisme:

MA_ ML _BC
AB LK CK’

perd AB=2ADiBC =%GC. Aixf doncs:

MA _GC _FH
AD €K HK
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i, campcmenda —-’iliﬂa:—’FE ()

AD  HK

Per construceid, AD = HK | Per tant, pe:f (2):
MD = FK = MD? = FK?,

Ara;
D? = (MA+ AD)* = BM - MA+ DA?,
iper (i)
FE* =BK-KC+CF?,
Aixf doncs:

BM - MA+ DA’ =BK-KC+CF*.

Pard com que DA = CF | aleshores:
CK BM _LC

BM MA=BK -KC= 2 = ;
MA BK CK

i tambd:
EM MA
BK AL
Per tant;
LC. CK _ MA
CK Ma AL’
o bé:
AB _ CK ¥ MA
K MA BC

com voliermn demostrar.

Enginy de Nicomedes:®

| La directriu AR és un regle amb una ranura paral-lela a 1a seva Jongitud. FE és un altre regle,
fix, perpendicular al primer, amb un clau C fixat sobre ell (el pol}. PC €s un tercer regle, acabat en
punta (), amb una ranura paral-lela a la seva longitud, on queda encaixat C. ) €s un ¢lau fix sobre
PC, en linia recta amb la ranura. D es pot moure lljurement al llarg de la ranura en AB a cada costat
de F, La distincia PD és constant. En moure’s el regle PC, P descriura la concoide.

S Vegeu T, HEATH, op. cit., L, pp. 238-239,
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Les concoides de Nicomedes, juntameni amb la rectz i la circomferdneta, sén les corbes
mecinicament construibles més antigues sobre les que tenim informaci6 satisfactdria, Perd, malgrat
la “limitacié platdnica™ de resoldre un problema només amb regle i compas, aquestes corbes no

son construibles amb aquests estris.
Kl segle X VI

Precisament va ser lz determinacid de la tangent de la concoide el motiu que va portar
Roberval a plantejar 1a gitestié del punt d'inflexis, doncs havia detectat dog punts pels quals no es
podia tragar la tangent. Aixd va ser el tema d'una carta que dirigi a Fermat el 22 de novembre de
1636. |

Fermat i Descartes van tragar Ia tangent a la concotde seguint els seus respectius metodes.

*1, PLA. "Arquimedes i Descartes; &l métode com un canvi de llenguatge”, p. 45.
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HISTORIA DE LA CISSOIDE
Gricia

Diocles {finals del segle II aC - principis del segle I aC} va inventar la cissoide ilava
utilitzar per resoldre el problema Deli3, és a dir, ¢! problema de la duplicacié del cub o,
equivalentment, €l de trobar dues mitjanés proporcignals. Aquesta resolucié apareix en el seu llibre

Miralls ustoris.

Definicié: La corba queda definida de la segiient manera:

Siguin AB i DC dos didmetres perpendiculars dun cercle. Siguin E, F punts dels quaclants
BD, BC respectivament, de manera que arc(BE)=arc(BF). Tracem EG, FH perpendiculars a DC.
Unim E amb C, donant llec a EC, que talla HF en el punt P, La cissoide és el [loc geometric dels .
punts P gque s'obtenen de les diferents posicions de E sobre el quadrant BD i de 7 a la mateixa
distineia de B sobre el quadrant BC. |

Equacid de la corba en coordenades cartesianes:
' Sigui a el radi de la circumferdncia, x=0H, y=HP (&s a dir, prenem eixos de coordenades

oc, OB).

Com que
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1lavors:

(et x)y=n~la"- ¥ la-x),

o bé:
{a+x) yz= fea- x}z‘.

Es, també, una corba algebrica.

Adquesta equacid inclou la linia discontinua, que Diocles no considera. T€ una citspide en C
1 la tangent en [} €s una asimpteta de la corba.

La cissoide, a l'igual que [a concoide, no és construible amb regle i compas.

Duplicacié del cub: L

Aquest punt P verifica:

DH _HF _HC
HF HC HP'

és a dir, HF | HC s6n dues mitjanes proporcionals en proporeié conifnua entre DH i HP.

Demostracié:
De la constiruceid de la corba podem dedvir que EG=FH, DG=HC, per tant:

Donat que & €s un punt del cercle, FH €z mitjana proporcional enire D 1 HC:

DH HF
—=— .
HF HC

I per triangles semblants:
G _CH
=)
GE HP

Aleshares, de (1), (2) i (3) podem concloure gue:

¥ vfegen T. HEATH, op. cit., L, pp. 264-266.
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DH _HF _HC
HF HC HP’

que equival & dir que HF 1 HC s6n les dues mitjanes proporcionals entre DH i HP. |
El segle XVII

Huygens va donar [a longitud d'are de 1a cissoide, _

Newton, a partir d'una integracid, troba la generalitzacié del binomi. Amb aquest instrument
pot diferenciar i integrar, 1 en una carta a Leibniz aplica ¢l seun teorema a diversos exemples, Entre
ells, el de 1a rectificacid de la cissoide,"" _

Wallis dedica una part del seu Tractaius duo, prior de E}rci‘aidé, posterior de cissoide {1659)
a l'estudi d'aquesta corba. En particular, aplica el sen métode d'interpolacié per anaingia per quadrar

i 3 ¥
12 cigsoide.!

" yegen C. H. EDWARDS. The Historical Development of the Calenilas, pp. 219-220
2 Ihid., pp. 176-178.
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HISTORIA PE LA QUADRATRIU

Grécia

La geometria grega 5 va dedicar especialment als problemes counstruibles amb regle i
comi:rhs. Es donava més importancia a la forma que a la variacid, de manera que el concepte de
funcid no va ser desenvolupat. Malgrat tot, el ocasions la "limitacio platﬁnica“” era ignorada.

Hippias dElis {nascut probablement el 460 aC), de l'escola sofista, contemporani de
Sdcrates, va inventar una corba, la quadratriv, que en principi havia de servir per trisecar un angle,
Malauradament, la quadratrin no &s construible amb regle i compas.

Hippias potser vu intuir gque amb la seva corba es podia resoldre el problema de la
quadratura del cercle perd no va ser capag de justificar-ho. Dinostrat (350 aC), de I'escola platdnica,

vamostrar ¢om quadrar €] cercle a partir de la quadratriv i Pappos (s. II) en dona la prova,

Arquimedes (287-212 aC) podria haver estat influenciat per la composicid dels des
moviments de la corba d'Hippias a I'hora de definir la seva espiral,

Nicomedes (finals del segle T a(), un suceessor d'Arquimedes, va utilitzar un métode

innovador per trobar Ia longitud de la circumferéncia i, aixi, poder quadrar el cercle. Tho va fer a

partir de 1a quadratrin.

Y I.PLA. "Arquimedes i Descattes; ¢l mdtode com un canvi de llenguatge”, p. 45,
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AB gira al voltant de.] punt A en ¢l sentit de les agulles del rellotge amb velocitat constant,
fins arribar a la posicié AD. En el mateix temps, BC baixa, parallelament a ell mateix i amb
velocitat uniforine, cap a AD. . _

Suposemn que AR asscleix AD' quan BC amiba a B’ C. Sigui £’ el punt d'interseccié de AL i
B'C, El lloc geometric dels punts £ €s 1a quadratriu,

Analitzem el cas particular del punt final de la corba, G. Aquest punt no es pot obtenir
directament de la definicid de 12 corba, doncs, quan A assoleix AD, BC tambe assoleix Af) i no hi
ha punt d'interseccié entre la recta que gira i Ia recta que baixa. S'ha dentendre G com el 1imit dels

punts precedents. La construcetd d'aquest punt ja va ser crittcada en '&poca antiga.

.Equacié de la corba en coordenades cartesianes:

Com que AP’ i B'C’ es mouen amb velocitats constants, B'C’ recorre £'H en la mateixa

fracci6 de temps en qué AD ' assoleix AD.

t=ZD'AD,
y=E'H,
a=BA
Aixi:
Fop ¥
E T 7 1 {1}
2
o bé:
2
y=at—,
g
Si prenem x=AH, Hlavors:
i= arctgl,
A
i, pér tant:
2 - s ?
= ——aretg=—, .
= b3 g;'c ;
o bé;
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Es, per tant, una corba transcendent.

Equacid de a corba en coordenades polars:

t=ZD'AD,
y=EH,
a=AB,

Per daﬁnicié de la corba sabem que:

y __ @
are({D'D)  arc(BD)

Sigui r=r{f). Aleshores:

zZYy
= xig—=—,
o g?.ﬂ

" vegeu M. KLINE. Mathematical Thought from Ancient to Modern Times, pp. 30-40.
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Volem trisecar Pangle t=£DAD. Nomeés cal trisecar y, de manera que EH=2H H, ?
Provem-ho:

Tracem B"C " passant per H'i taflant 1a quadratrin en L. Unim A amb L. Llavors:

b
ZIAD HH 1
=22=2 @
T a a
2
De les expressions (1) i {2) obtenim:
!
ZIAD=—.
3

Rectiftcacid del cercle:"
Per rectificar el cercle a partir de Ia quadratrin necesgitem conixer la posicid final, G,

que €s la interseccid de la quadratriu amb AD.

arc(BED) _ AB
AB AG

Proposicié;
~ Demostracié:  Dinostrat, possiblement també el “mateix Hippias, van demostrar aquesta
proposicié per reduceid a "absurd,

- Necessitern alguns dels resuliats coneguts cap al 350 aC:

(i) les circumferdncies aén com cls seus radis
(if) gualsevol arc de cercie és més gran qﬁe la corda corresponent
(ii)  qualsevol arc de cercle menor que ¢l quadrant €8 més petit que Ia porcié de la

tangent en un extrem de I’arc pel radi passant per I'altre extrem

arc(BED) AB
AB

. S’han d’estudiar els

Ara ja es pot demostrar la proposicié. Suposem

dos casos segiients:

15 Vegeu T. HEATH, op. cit., I, pp. 225-230; C. B. BOYER. A History of Mathematics, pp. 106-107.

34



St AR > 86

quadratriv en Ft ABen L. Unim A amb F. La interseccid dn: AF 1 BED és ﬂ] punt E. Tracem la
perpendicular a AD passant pel punt F, FA.
Per hipdtesi | fent servir (i):
arc(BED) _ AB _ arc(BED)
~AB AK  are(LFK)
D’aqui abtenim que: AB = arc{LFK).

Perts per la propietat de la quadratriu:

AB _are(BED) _ are(LFK)
FH  arc(EDy - arc(FK) '’

i sabem que AB = arc{ILFK), Pertant: FH = arc(FK}, la qual cosa és absurda, per (ii).
Aixf, AK no pot ser més gran que AG. |

(2)8i AK < WG




Procedim de manera andloga al cas anterior, considerant ara 'arc{XML). Tracem KF
perpendicular a AD per F, La interseccid de KF amb la quadratriu & F, AF talla I"arc(KML) en
" M. Fent scrvir (i} deduim que AR = arc(IMK).
Fent servir la propietat de la quadratriu:

AB ; arc{BEDN _ arc{ LMK’}
FK  arc(ED) arc{MK)

1 sabent que AR = arc{LMK), tenim que FH =arc{XM ), la qual cosa és absurda, per (iii).
Aixf, AR no pot ser més petit que AG.

Com que no es pot donar ni el cas (1) ni el {2), només pot ser que AK sigui igual a AG.

Duadratura del cercle:

Per quadrar el cercle es pot aprofitar la primera proposicid de La mesura del cercle

d’ Arquimedes,'® on s'afirma que 1'area del cercle &s ignal a 1'rea del friangle rectangle amb

altura el radi i base Ia longitud de 1a circumfergncia,” La longitud de la circumferdncta és quatre
vegades la longitud del quadrant considerat en el cas de la rectificacié.

| D'aquesta forma podem obtenir una aproximacié del nombre m, tal com fa Arquimcc_lesa'

en 'obra esmentada.
El segle XVII

Encara que Descartes refusava les corbes no definibles geomatricament (o transcendents),
era conscient de lexistdncia de corbes sense equacions algebraigues, com ara la guadratriu,
L'inconvenient que tant Descartes com ¢ls anties [i trobaven, a aquesta corba, era que no hi havia
una relacié exacta, mesurable, entre els dos moviments generadors, ja que no es .pndia determinar
exactament Ia raé de la fongitud del cercle al seu radi (€s a dir, 7).

Cap al 1630, la rectificacis {exacta} de diverses corbes, juntament amb el calcul d'arees

- sota corbes transcendents, va ensorrar la distinci cartesiana entre corbes acceptables i no

acceptables geométricament.

"% Bn I'informe de Pappos sobre la quadrattin ' esmenta aquesta ohra,

"7 Aquesta proposici es pot demostrar per 2xhaustis, demastracié possiblement coneguda per Dinostrat i
potser per Hippias.
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Newion calcula la tangent a la quadratriu en el sen Methodus fluxionum. Fent servir les

séries del sinus i del cosinus, quadrd i rectifici la ql:laa:ir:altriu."s

" Vegen C. H. EDWARDS. The Historical Development af the Calculus, pp. 208-209, 221222,
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HISTORIA DE L'ESPIRAL
(ricia

L'algebra grega es va caracteritzar per ser més geométrica i retdrica que no pas numeérica i
simbalica. La geometria grega era estitica, limitacié que es troba en la ciéncia grega en gencral.
Els Gnics moviments que consideren s6n els uniformes (rectilinis o circul'ar_s).

Consegiientment, només es podien definir corbes en termes de condicions de llocs
geomeatrics senzilles (com el cercie) o bé com a inferseccions de superficies fixades (per exemple,
les seccions coniques). Alxd no imped! Arquimedes definir la seva corba™ com a composicit de
dos moviments simples. L'espiral &s el lloc geométric en el pla d'un punt que, comencgant per
l'urigén fix dun radi, es mou amb mevi_rr;ent uniforme, mentre que el radi gira tambeé
uniformerment entorn de 'origen. ' .

Arquimedes publicd un tractat, Sobre fes espirals, tot desenvolupant els seus resuliais
sobre la seva corba. Tot i ésser el més admirat dels seus freballs. ha estat poc llegit, donada Ia

seva dificultat.

Edquacié de [a corha en coordenades polars:

Sigui # el radi vector que forma un angle ¢ amb [ recta micial. Liavors: r=at.

** Pappos diu que, de fet, T'eapiral fa va fnventar Cand d'Alexandris, amic d'Arquimedes (vegeu 1. GOW. A
Short History of Gresk Mathematios, p. 229) Hi ha qui defemsa aguesta tesi {(vegen C. B. BOYER. A Histary of
Mathemarics, p. 141; D. E. SMITIL. Histary of Maothematics, T, p. 107). D'altres, perd, defensen Mauteria & Arquimnedes |
afitmen gue eil només enviava a Cond les proposicions que aquest també havia intentat demosivar {vegen I GOW, np,
cit,, g 229; F. CATORI A History of Mathematics, p. 36)
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Eavacid de la corba en coordenades cartesianes:

Jri 4yt = aarctgi,
X

També veiem que és una corba transcendent..

Arguimedes va ser alret pels tres pruhlcmcs de la geometria grega. La seva espiral en

. 1esol dus encara que no amb regle I compas.

Trisecei6.d'un angle:™

Volem trisecar l‘angié JGAP:'nn 04 és la recta micial de 15 corba, {) el vértex 1 P un
punt de l'espiral. - |

Considerem R 1 8, punts que trisequen OF. Des del vértex O tracem dos cercles ﬁmh radis
OR 1 08, que tallen I'espiral en els punts &7 1 " respectivament. Aleshores, és faot! veure que les

linies QU i OF triscquen l'angle £O4P,

Quadratura del cercle:”™

Arqummdeq va utilitzar Iespu‘al per quadrar el CEI’ClB De fct va mnstrar com rectificar un

cercle a pamr de la sui:ﬂangant pr:rlar de lesplral
i v i ) Izﬂ DLt

*Vegeu C. B. BOYER. 4 Histary of Mathematics, pp. 140-141.
" Yegen C, B. BOYER, op. cit,, pp. 141142, ~
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Sipgui P un punt de l'espiral OPR, La perpendicular a OF talla en 12 tarigent a l'espiral
en P, OQ és la sublangent polar.
En Sobre les espirals Arquimedes prova, per doble reduceio a ['absurd, que la-lengitud del

segment (I és igual a la de l'arc del cercle de centre i radi OP comprés entre §1 F. Es a
dir;

F
o0g="=2.
a .

En el cas que P sigui sobre Teix de les ¥, la subtangent polar OQ serd un quart de la
longitud de la circumfcréneia de centre O i radi OF. Per tant, aquesta circumferencia scra quatre

vegades ¢l segment 00”2

Aleshores, es pot trobar un triangle amb drea ipual a la del cercle. Amb una transformacio
geométrica, en lloc del triangle es pot obtenir un quadrat, amb la qual cosa el problema de

quadrar el cercle queda resolt.

Tangent a 1"espiral:
| Les 200 primeres proposicions de Sobre fes espirals estan dedicades a la determinacio de
la tangent en un punt de la corba. Els grecs consideren la tangent des d'un punt de vista estatic: €s
la recta que "toca” Ja corba en un sol punt, Encara que en l'exposicié final manté aquest concepte
estatic, Arquimedes sembla haver trobat la tangent a l'espiral de forma cinematica, de manera
molt semblant a com ho tracta el cacul diferencial. A partir del paral.lelogram de [es velocitars, la
tanpent a l'espiral en un punt és la resultant dels dos moviments generadors de la corba. En tol
cas, és el primer exemple de tangent a una corba diferent de la circumferéncia i de les coniques.
Per construir-la, només cal conédixer la subtangeﬁt polar OQ, Llavors, unint & amb P, ja

g'obte la tangent en el punt P,

@aﬂratu'ra de "espiral:

Les darrcres vuit proposicions del seu tractat sobre l'espital estan dedicades al caleul
d'arees. En particular, la proposicid 24 din que l'area escombrada pel radi vector en la primera
rotacid completa, S, és igual a un terg de I'area del cercle de centre el pol 1 radi el radi vector al

final de la primera volta:>

2 Bn general, si P &3 sobre la n-éstma volta de Yespiral, Ta rectn havra girat wm angle 2(m-1)sr17. Alxl,
OO=r{2{m= Dt b=(n-1¥+arel P5) , essent [ 1a longitod de la eireumforéneia de radi OF.
BLa demeostracit d'aquesta proposicia es pot trobar a C. H, EDWARDS. The Historical Devalopment of the
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§ = %E(Zm}l.

Més endavant, Pappos dedica el llibre IV de la seva Col Jeccid matemdtica a Testudi de
I'espiral, la concoide i la quadratriu, amb aplicacions als tres problemes i discussié sobre I'espiral

especial tracada sobre V'esfera.

Epoca medicval

El segle XIT &s el segle de les traduccions de 1'arab al lati. Malgrat aixd, la major part
dels treballs d'Arquimedes era desconeguda a 1'Occident medieval. |

El 1269, William de Moetbeke (1215-1286) va iraduir del grec al [lati els tractats
cientifics 1 matematics més importants H'Arquimades, entre ¢ls quals es froba el Sobre les
espirals. Encara que massa. literal, aquestes traduccions feren accessible l'obra del gran

matematic gree.
Ll segle XVII

Cap al 1640, Tomicelli 1 Roberval van rectificar, per separat, l'espiral d'Arquimedes. Van
demostrar que la longitud de la primera rolacié &3 ignal a la longitud de la pardbola x'=2ay des
de x=0 fins a =2 m7.

Torricelli i, de forma més importani, Roberval, van tractar la tangent a partir del conecepte

Calenins, pp. 55-61, i a'P. M. GONZALEZ URBANEJA. Les rafces def edlenlo infinftarimal en &l siglo XV, pp..ﬁg-
7. :
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intuitiv de moviment instantani. 5i la corba s el cam{ que segueix un punt mébil, la tangent és la
recta del moviment instantani. | |

Roberval arribd més lluny i afirmi que el moviment que seguia el ﬁu.nt sobtc 1a corba
n'era la composicid de dog de més senzills, de manera que la velocitat instantania cra la suma de
les velocitats instantinies d'aquests dos moviments generadors. La diagonal del paral.lelogram
detﬂnniﬁat pels vectors velocitat radial 1 velocitat angular és el vector velocitat en un punt

" determinat, que representa [a tangent a l'espiral en aquest punt.
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4. METODES PER TROBAR LA TANGENT A LES CORBES
ANALITZADES

METODES PER TROBAR LA TANGENT A LA CICLOIDE

1. Métode de Roberval"

Roberval considera una corba com a composicié de dos moviments uniformes i simultanis,

- La.direccid de] moviment és Ia tangent a la corba, resultant dels dos moviments generadors, .

EP _ circumf NEO

= K

EF recta AC
En el cas de la cicloide simple, EP=EF , atés que la recta AC és igual gue la circumferdneia

NEO. | |
S'ha de completar el parallelogram EPHF i dibuixar la seva diagonal EH, que seri la

tangent a la cicloide en E,

' veges E. WALKER. A Study of the Traité des Indivisibles of Reberval, pp. 129-130,
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2. Matode de Fermat®

En general el métode de Permat consisteix en establir la longitud de la suﬁtangent,
considerant les ordenades en el punt de coniacte i en un punt infinitament proper 1 despres
"adiguﬂant”. i

- Es considera 12 cicloide HRCG amb vériex en € i COMF el cercle generader, S'ha de
Tttt o oo afmelin?, ' '

cicloide en el punt K, Provem-ho:

RD {parpendicular a FC) talla ] cercle generador en M,
Tracem MA tangant 2l cercle en M.
Sigui EOVN parallela a RD. _

- Fem servir [a segiient propietat de la cicloide: NO = arc(OC)

Sigui;
DB=ag, DA=b, MA=d,
MD=r, RD=7z, DE=e¢,
EB=g-e, arc{CM)=n=8M.
Per tdentitat:

2 Vegeu P, FERMAT. Euvres, 111, pp. 144-145.
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Per semblanga de aiangles:

Donat que:

Navors:

i per tant;
' z0 — 7€
14

NE=

Per la propietat especifica de 12 corba:
NE = NO + 0E = arc (CO) = arc(MCY - arce{ M + OF,

d'on obtenin:

arc(MC) —arc(MO) + OF = = ; £ . o

Per poder reduir-ho tot a resultats analitics fem VE=0OF .i MV = arc(M0), és a dir, -

considerem punts infinitament propers.

MD _DA_ b _ r
VE - EA b-e rb-re’
Com que MD €s el radi del cercle generador, r, podem concloure:
rb—re
VE = . {4
L 4
Un altre cop per semblanca de triangles:
DA _ MA
DE MV’
i per identitat:
Bell
e de’
b
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de
MV=-—" (5
5 (3)

Com que: _ .
| arc(MC) — arc(MO) + O = RM ~ MV+VE,
i fent servir (3), (4) i (5% |

az - ez de rbh—re
ﬂ‘—_—-l"

f b b

az—ey _nb~detrb—re
a b :

Per tant, dividint ambdés costats per ab:

¥

abz —bez = anb —ade + arb—are . {6)
Pérf:-: |
' RD = MD + arc(MC),
I=r+n.
Per tant:
abr + abn —ber —ben = abn — ade v arb ~are
ber+ben=ade+are,
br+bn=ad+ar,
bir+ny=ald+r),
bz = alr+d},

r+d_£
b a
MD+MA _RD
DA DB’

DB és la subtangent, amb la qual cosa ja podem obtenir la tangent, RB. Perd la corda MC &s

' MD DC
isectriu de l'angle /DMA, per tant, tenim que —=——.
la bisectriu de l'angle #DMA, per tant, tenim que e

(7

A doncs:

MD+MA _DC+CA_ DA
MD nc DbC’

Fem servir (7): _
MD+MA MDD RD
DA DC RB’
El triangle AMDC és semblant al triangle ARDB, d'on resulta que RB és paral-lelaa MC.
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3. Mitode de Descartes’

Descartes desenvolupa una técnica per determinar la normal a una corba en un punt, en el -
cas d'una corba algébrica de la qual se’n coneix I'equacid, Les corbes meciniques les ha de’
 tractar com a casos particulars. Un cop coneix 1a nermal, ja pot determinar a tangent.

Per determinar [a tangent a la cicloide, Descartes desenvolupd la idea de centre instantani
de rotacid: |

Fem girar un poligon qualsevol ABCL sobre una recta ED.

Un punt A qualsevol descriurd un cert nombre de segments, de cercle de centres F, G, D,..
Ea tangent en qualsevel punt d'aguests cercles sempre serd perpendicular al radi del cercle
corresponent (gue uneix el punt de tangéncia amb el centre de {'arc).

En el cas particular de la cicloide (ABC), el cercle generador (CND} es pot considerar com
un poligon d'infinits costats. La tangent en un punt B serd perpendicular a la recta que uneix aquest
punt amb el punt en qué el cercle generador toca la base precisament quan aquest passa pel punt
{D) Prenem BN pa_ral lelaa AD, tal]ant ﬂ] ccrcla en N. Dibuixem ND. Tracem B(? parallela a ND

3 Yegeo B, WALKER, ap. cit., pp. 136-137; M. E. BARON, The Oripinr of the fnﬁnié‘esfma! Calcnlus,
pp.163-166,
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METODES PER TROBAR LA TANGENT A LA CONCOIDE
1. Mitode de_RuhervaI"

Sigui ACN una concoide de Nicomedes, amb pol D i directriu AB. Hem de construir la

Roberval considera la corba com a resultat dels dos moviments dun mateix punt. Un fa
pujar aquest punt al llarg de DF i l'altre fa moure circularment IX¥ a l'entorn del centre D, portant
_ daguesta manera C (passant per F} cap a N, és a dir, al llarg de FK, que és perpendicular & DF.

Per definicis de la concoide, EC éz igual a GF, alesheres: DGF — DEC = DG - DE
Dit d'una altra forma, per anar del punt E a G, E ha de pujar tant com  per anar de Ca F.

Dibuixem GH perﬁendicular a DG i FK perpendicular a DF. Des de 5 {un punt de GH}
dibuixem HI parallela a DG, que talla AR en el punt L

Dibuixem DHEK, que talla FX en el punt K. Aleshores, el triangle ADGH £s semblant al
triangle ADFK.

Sigui KL un segment igual i paral-lel-a HI, Llavors, FK i KL s6n les direccions dels dos
movimenis del punt F. ' | _

Per tant, hem de buscar L, ja que FL serd la resultant dels dos moviments, és a dir, la
tangent buscada. La rad entre el moviment circular de F i el seu moviment rectilini és:

. FK_FK .

K. HI’

d'on obtindrem L.

*Yepen E. WALKER. A Study of the Traité des Indivisibles of Roberval, pp. 128-129,
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Stgui 7 el pol 1 KG l'asimptota de la concoide ENF, Sigui JHE perpendicular a KG.

Busquem la tangent NBA per ¥ (on N és un punt de la concoide). Suposem resolt ¢l problema.

Tracem NC paral.lela a K&

Per la naturalesa de Ia corba; LN=HE,

Prenom D,.un punt entre C'1 £, 1 tracem OF paral-lela a CV,

Considerem la propietat especifica de 1a corba, ara scbre Ia tangent: unim B amb f (BI); M
serd el punt d'interseccid de Bf amb KG. "Adigualem” MB amb HE, ' |

Fent a=CA. e=CD, 7=EH, ja sortird 'equacié buscada (s'ha de buscar l'expressié analitica de
MB i "adigualar-la" a HE).

Fins aquf sdn les instruccions que déna Fermat. Ara buscaré MB i "adigualaré® a HE, -
Supesem EC, CH, HI, NC coneguts.
Per semblanga de triangles:

BD = (a+e}NC’ :
a

- +/BB*+pr* =Bl

També sabem que
DI=(Cl+e,

Aleshores:

% Yegeu P, FERMAT. (Buvres, 111, pp. 142-144,
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\/Mm; +el+20CT = BI = BM + MI .
e

Per semblanga ds triangles:

Mr Bl Bf BI - HI
—=—= = Mi= .
HI Al a+(7 a+ Cl

Llavors:
Br-HI
a+Cl -

-y i
=\/(i~'ﬂ~—’f5+cﬁ+g?+zec1 [1- i )

BM = B —MI=BI -

a a+CT

Ara apliquem la propietat de 1a corba sobre Ia tangent, &s a dir, "adigualem” BM=HE=z:

Py a+Cf

e i .
= M+CIZ+QZ+E£CI ﬂ"f"CH
az a+Lf

— o2 a2 _
_ \/wwzmm (et oECY

a® a

‘]M+Cf + g +2£(‘,‘f ,ﬂ =
a Ct

Y 2 2
\Iwmﬁwhzecf (1- 2 }

DY'aguesta manera podrem atllar z:

\I(a e} NC?

(.I

Cl

1=~ JM+CI+ +2£C‘I
4]

+ 72 4 2eCT (H_EC]

=

Fem =0

JNCE+Cr? (ﬂﬁ Ef‘j

Cr
z:
1-NC*+ T
_ NI(a—-EC)
CI=NT)y °

i aixf hem obtingut una expressid de BM.
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3. Mitode de Descartes®

Descartes troba [a tangent 2 la conceide en un punt émiprant €] seu métode, és a dir, tragant
s reelalecorba-cn-aguast punt.

Sigui DC ia primera concoide dels antics, A el pol i B Masimptota.

Perla naturﬁl_esa de la corba, sabem que DBE=CE=constant.

Busquem CG que sigui perpendicular a la corbaen C (la normal).

Sigut CF sobre CA tal que CF=CH, on CH ¢&s perpendicular 2 HB,

Des de Ftracem Fiz pﬁralrlEIa a BA, amb FG=FEA. Aixi, ja podem obtenir la norimal CG.

Observacid: Descartes indica que el problema es pot esiudiar amb el matode general per trobar
notmals, dones la concoide és geomatrica. Perd, en aquest cas, aplica un altre cam{ que simplifica la

construceid,

§ Yegeu R. DESCARTES. La Géométrie, pp. 351-352.
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METODES PER TROBAR LA TANGENT A LA CISSOIDE

l.lMéi_;nde de Fermat’

Siguin AG i Br ﬂiﬁiﬁétﬁés péfpendiculars del cercle, Sigﬁi IHG Ia.cissnide. Busguem la
tangent pel punt H. ' .
Suposem resolt.el problema.
Sigui F el punt d'interseccid de CG amb HF.
Sigul g=0F. Prenem £ un punt qualsevol entre 3 1 F, amb DE=e,
Per propictat de la corba:
MD DG

| DG DH'
"Adigualem": _
NE _EG
EG EO’
essent HQ 1a poreid de recta ZN que queda entre E'{ ]a tangent,
Sigui:
z=AD,
n=¥7,
r=DH,
a=0F,
e=DE.

Aleshores:

- 7 Vegeu P. FERMAT. Gnvres, T, pp. 141-142,
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EG=n-—eg,
o —re

Ef= 3
&

EN=+f 2t — ze+ne — &°.

Ara considerem [a propietat especifica, no sobre la cnrba siné sobre la tangent:

NE_EG
EG EO’
on £ és ['ordenada de 1a tangent.
Analiticament:
o —zetne — ¢ . n=¢e

=
n—eg ra—re
i
Elevant al quadrart els dos costats:

h-zetne—g*  (n—e)
=

i—e)? ra—re ¥
iI

m—zetne—¢ _ n e’ —2ne

nl"i"ez—zﬁ& r att+rie —2;' ag

al

Multiplicant per a° i "adigualant”, obtenim l'equacié: 3za+na=2zn .
Per tant, per constrnir la tangent perllonguem el radi €A del cercle fins 2 V i prenem
. AV=AC. Dividim AD-D(G per VD, DF és el quecient. Unint F amb H, ja temim la tangent.

Ffegen’t: %Mﬁﬂm&m!mmmﬁﬁ
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Sigut DP una recta | DRS, DYX dues corbes relacionades de manera que, si REY &5 una
recta qualsevol parallela a DB (recta de posici donada), que talla DP en E i les corbes DRS, DYX
en &, ¥, sempre es t€ [a rad:

RY _DY
DY EY

RF toca DRS en R.

Busquem la tangent a la corba DYX en el punt Y.

Sigui DYO una recta tal que GO sipui parallela a DB i talli FR, FP, DYO en G, P, O
raspectivament. '

Unim I amb &. Aleshores:

6o _Dpo
_ Do PO
. DYO+tocala cﬁrba D¥Xent.

En Lectiones, V1, 12 Barrow ja ha vist que la corba DY) és una hipdrbola, Y'Y toca aquesta
hiparbola. Llavors, ¥S també toca la corba DYX,

En el cas particular que DRS sigui una circumferéncia 1 ,{GDE un angle re;cte, DYX ¢sla.
cissoide, ’

Per [a naturalesa daquesta corba:

RE _DE
DE EY
Si prenermn £ infinitament proper a ¥, aleshores:
RY DY
DY EY’
que és la rad emprada per Barrow. |
Finalment, per propercionalitat podem amibar a % = %, que ens portard a la hipérbola

auxiliar.
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METODES PER TROBAR LA TANGENT A LA QUADRATRIU’

mm__m, mmmﬁmmmmmm it '

assoleix la posicid IV, AD es transfoma en ADy.

gtits; Qhan D

8i F és el punt d’interseccid de JN 1 AD, quina &5 1a tangent a la quadratrlu en F?
Sigoi FK la velocitat de V.
F descriu el segment FK en el mateix temps en qué Dy descrin DB, Per tant, IhB

representa la velocitat del moviment circular de Dy,

velocitat del moviment cireularde ¥~ AF _ are(FG)
velocitat del moviment circularde D,  AD,  arc(D B} '

? Consideram. I.u,quadmtnuﬂH Ll espirai AR

|.'g .
i) @Iﬁ'ﬂ!‘ﬂl uniforme de B

M@ﬁdmmu an B ds

En By

BZ, que també & 13 tangent al E-Spll‘ﬂl Pappos no concixin aquesta pmpmtat

" Vegmen 1. GRATTAN-GUINNESS. From the Calealus to Set Theory,..., pp. 36-37 de la traduccid
. castellana, )
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Lrare{FG) representa la velocitat del moviment circular de F. I com que Ja seva direccic és
perpendicutar 2 AF (€s a dir, tangent a la circumferéncia), el moviment circular de F ve representat

pel segment FR de la perpendicular, amb longitud igual a la de I’ arc(FG.

Per trobar 1a direceid del maoviment de F, tracem RS per R, paral-lela a AF. La tangenten F
és FM, on M &s 1a interseccié de RS amb AB,

,":L- la corba en el punt

Prenem M7, Amb centre T i radi IM tracem el quart de cercle ZMD, Sigui M perpendicular

aiB. Fém MN i arc{MD} 1
Kl i)

Unint M amb 0 ja obtindrem ]a tangent a la quadratriu.

3, Mdtode de Barrow'?

Sigui AEH una corba donada, AD una recta gnalsevol amb un punt {ix. Signi DH una recta

amb pesicié donada.

" Yepeu P, FERMAT. (Euvres, 1H, p. 145-146.

" yegeu 1. M. CHILD. The Geometrical Lectures of Isaac Barrow, pp. 115-116.
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Sigut AGB una corba tal que, si prenem un punt qualsevol G i tracem [a recta GD, que talla
AEH en E, amb GF paral-lelaa DH, GF tallant AD en F, sempre tenim la rad:

arc(AE) _x
AF yo
r. I"‘ -_‘.r:-:: 1 . ‘
_:"-3(' p LA E s
Wy
o |
A I T
y N o
B R A
% i 5
1"" .- .
B

ET toca ta corba AEH. Sobre ET prenem EV = arc{AE) . Sigut OGO una corba tal @e, la
_recta DOL talla OGO en .{'J i ET en L. Sigul 00 parallela a GF, tallant AD en Q.
Aleshores: |
LV =«
A0y
Llavors, la corba OGO és una hiperbola (resuliat ja vist a Lectiones Y117, Si (3 toca
aquesta corba, GS toca també AGBH. ' |
En el cas partiéular en que AEH sigui un quart de cercle amb centre ), la corba AGB €3 1a
quadratriu, |

=



METODES PER TROBAR LA TANGENT A L’ESPIRAL
1. M2tode de Roherval'
Per Roberval, una corba descriu ¢l cami d'un mbbil i la tangent representa Ia ‘recta del

moviment instantani. El moviment €z la composicid de des moviments, Adxi, la velocitat

instantania &s la suma de les velocitats instantanies dels dos moviments generadors.

Sigui-r=arif@=ws.

El punt P = P(af, wt) es mou sobre la corba. El sen moviment &5 la resultant del moviment
radial i de I"angular,

El radi vector de longitud a representa la velocitat radial. El vector de longitud rw
representa la velocitat angular, que és tangencial al cercle de radi » pel punt P.

La diagonal del paral-lelogram deierminat pels dos vectors és el vector velocitat en P, que

correspon 2 la tangent a 'espiral.

2. Métode de Torricelli'

Igual que Roberval, considera una corba com el cami descrit per un.mbbil i la tangent com

]a recta del moviment instantani.

¥ egeu C. H. EDWARDS. The Historical Develnpment of the Coleulus, pp. 134-135,
Y v7agou M. E. BARON. The Origins of the Infinitesimal Caleulus, pp. 191-192,
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El métode de les tangents de Torricelli relaciona els meétodes indivisibles de Galileu pel
moviment rectilini i projectils amb [a quadratura de corbes de la forma y = kx®, amb p enter. EI

concepic basic &s la idea medieval del grafic velocitat-ternps en el qual la distincia total
recorreguda és representada per ['area sots la corba.
- El cas de Ia tangent a 1'espiral és un dels seus exemples més fascinants.

A través de transformacions geométriques troba la relacid entre corbes espirals de [a formia
™ 0 L] , . . y L ¥ n
=|—= | iparaboles superiors de laforma| = | = | .
ao a b

El sen matade és complicat, geomatric 1 dificil de seguir en ’original. Per aixd el donaré en

B

notacié moderna.
Sense perdre peneralitat, podem considerar I'espiral més senzilla amb equacié r™ = k8" .

P €s un punt que es mou sobre [a corba de A a C, amb dues velocitats:

{1} v, la corresponent al moviment prﬂgréssiu sobre el radi vector.

(2) #, ]a corresponent al moviment circular on el radi vector gira uniformement al veltant

e oxigre A
518 =21:
e
U = r—— =re,
I Iy
[_ ,d_f"] .
ot mit
Aixi:
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z_nr.fmr_ ] {_I dr:l
- T rde]

re m&

Per trobar la tangent pel punt P, dibuixem AH perpendicular a AF tal que:

és a dir:

DF=arc(AE). ET toca AGE en E.
Fem ET=arc{AE). Suposem que DK é€s una corba tal que, per qualsevol recta DH per D,
tallant DKK en X1 TE en H, es verifica DK=TH. :
Aleshores, si tracem FS§ tocant DXK en F, F§ tambeé toca DIF (vist et Lectiones V111, 16).
Es més, si DF sempre manté la maleixa refactd amb 1'arc(AE), 1a tangent a DIF es pot tragar

i és paral-iela a F°S.
Aixf, ja podem tragar 1a tangent a I'cspiral circular, prenent AGE un cercle, DEY 'espiraiila

arc(AE} i}_
DF a

relacid segiicn enire 'arc(AF) 1 DF:

¥ egen 1. M. CHILD. The Geometrical Lecttres of fsaae Barrew, p. 115,
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SEGONA PART : ANALISI COMPARATIVA
DELS DOS TEXTOS



5. US DEL CALCUL DE DIFERENCIES PER TROBAR LA TANGENT
D'UNA CORBA

En la Seccid | de I'Analyse de L'Hdpital primer trobem la definicié de "quantitat variable"
(aquella que augmenta o disminueix continuament), de "diferéencia’ (la porcio en que la variable
augmenta o disminueix)* i de "quantitat constant” (aguella amb diferéncia zero).? Després,

L'Hopital déna els dos postulats seglients €ls quals, segons ell, no necessiten demostracio:

1. Es poden considerar iguals dues quantitats que difereixen en una quantitat infinitament
petita. Dit d'una altra manera, s una quantitat I'augmentem o la disminuim en una quantitat
infinitament menor que ella, restaigual. Aixi, podrem prendre AP igual a Ap, PM igua apm, 'espai
Apm igua al'espa APM, I'espai MPpm igua al rectangle MPpR, e sector AMm igual a triangle
AAMS etc.

2. Una corba pot ser considerada com un poligon d'infinits costats. Els angles entre aquests
costats donen la curvatura de la corba. Per tant, la porcié de corba Mm infinitament petita es pot

considerar per aquesta rad com un segment rectilini i, aixi, € triangle AmSM esdevé rectilini.

L'Hopital no dubta de I’ existéncia dels infinitesimals. Es poden representar com a ements

! Com a quantitat infinitament petita, no com avariable en el limit.
2 Hem de tenir en compte que, en aguella &poca, les variables dependents i independents no es distingien
clarament. L'HOpital, perd, savanca a la resta: déna la férmula de funcié implicita en e cas de poténcies d'una o més
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dd triangle diferencial.

En laintroducci6 de les Lectiones de Johann Bernoulli també trobem agquestes suposicions,
dividides en tres postulats. Bernoulli, pero, no defineix que son variablesi que constants.

Tots dos, abans datacar € problema de la tangent, donen les regles basiques de
diferenciacio (suma, substraccio, multiplicacio, divisio, potenciacio, radicacio). En e cas concret de
les potencies, L'HOpital dona la mateixa regla per potencies perfectes (enteres) i imperfectes (no
enteres). En canvi, Bernoulli primer explica € cas de potencies naturas, després e de les enteresi,
finAlment, e de les arrels, sense arribar a la generaitzacio del seu adumne. A més a més, per
explicar la diferenciaci de x™, L'Hopital fa servir les progressions aritmétiques i geométriques de
formameés clarai estructurada que no pas Bernoulli.

Sobta e fet que al'Analyse no aparegui ladiferenciacio del logaritme,® tot i que e problema
V deles Lectiones de Bernoulli esta dedicat a calcul de la sevatangent. També trobem afaltar I’ Us
de funcions trigonomeétriques, que li haurien estalviat molts de calculs.

A diferencia del seu mestre, a L'Hopital I'interessa donar una serie de proposicions generals
per aplicar-les després a alguns casos particulars. Ell mateix justifica aquest fet en € Prefaci de
I'Analyse:

... (les proposicions) son totes generalsi com tants de metodes dels quals és facil trobar
I'aplicacié a tantes proposicions particulars com es vulgui: només la faig sobre alguns
exemples escollits, persuadit que de fet en Matematiques només hem de treure profit
dels metodes, i que €es llibres que es basen en e detall o en proposicions particulars,
només son bons per fer perdre el temps aqui elsfai aaquells que elsllegeixen.*

Bernoulli es caracteritza per buscar coordenades X, y ortogonas per poder aplicar

directament laformula

o

y

dx:

n <

on s éslasubtangent.

En canvi, L'HOpital busca altres tipus de relacions (abcisses sobre corbes, ordenades des

variables.

% | sobta més encara perqué L'Hopital, a prefaci de I'Analyse, diu que amb e métode de Leibniz es pot tractar
qualseval tipus de corba. Les corbes transcendents ja havien comencat a aparéixer en es trebals de Leibniz i dels
Bernoulli. Finsi tot, L'Hépital va suggerir a Bernoulli de fer un apéndix sobre la diferenciacio del logaritme, que no es
dugué aterme.

* Prefaci de |’ Analyse, p. 10.
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dun punt...), segons les propietats de la corba estudiada® un fet que I’obliga a canviar les
coordenades. En agquest sentit, Bernoulli és més actua, ja que e métode és sempre & mateix i no
depen de lanatural esa de la corba.

Finalment, trobo que la notacio que fa servir L'HOpital és més moderna que la utilitzada per
Bernoulli.® Mentre que L'Hépital ja nota les poténcies com es fa actualment, Bernoulli a vegades
utilitza O, C, QQ per indicar potencia quadrada, cubica i quarta respectivament. | s shan de
multiplicar expressions llargues, Bernoulli escriu "in", quan el seu alumne només nota x.” Amb un
infinit invertit i trencat Bernoulli indica € doble signe + que si que fa servir L'HOpital. A més a
més, Bernoulli no escriu de forma clarales proporcions.

Penso que € tractament de la cissoide (corba algébrica) per part de Bernoulli és més
avantatjés que € de L'Hopital. El cas de la concoide (també algebrica) és equivalent en ambdés
autors.

Quant a les transcendents, trobo que € métode de L’ Hopital és mésrendible en € cas de la
cicloidei del’espiral. En € cas de laquadratriu, tot i que fan servir coordenades diferents, crec que
larendibilitat dels dos métodes és equivalent.

A continuacié analitzaré s exemples comuns a mestre i dumne en € cas del calcul de
tangents.

® Newton escull les coordenades segons la seva conveniéncia aixi com també déna primer una proposicio
general i després aplicacions particulars (vegeu |. NEWTON. Methodus fluxionum, problema IV, pp. 49-62 de la
traduccio francesa).

®Alhora, el seu llenguatge no és tan atrevit com el dels seus contemporanis (vegeu C. B. BOYER. "The first
calculus textbooks', p. 163).

| Leibniz jafaservir el simbol - .
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TANGENT A LA CICLOIDE

SEGONS BERNOULLI

Bernoulli estudia aquesta questié d
problema VI de les seves Lectiones.

Sigui EM para.lel aAC.

x=BF,
y=EF=BM,
f=EH=arc(HB).
5 G Ff
M\H :
A D c

Aplicant lapropietat de lacicloide, resulta:

x= EH+HM=f+4/2ay- y? |

ox = df + 220y = 2ydy.

2,/ 2ay — y?

Com que df és HN i AHKN és un triangle
rectangle (el postulat 2 diu que una corba es
pot considerar com un poligon dinfinits
costats):

SEGONS L’HOPITAL

El plantgament de L'HOpita és ben

diferent. Comenca demostrant una

proposicio de caire general.

Proposicio Il (Seccid 11):

Si agafem les abcisses sobre una corbade la
qua en sabem tracar les tangents PT, hem
de buscar latangent MT de la corba AM.

(Es a dir, en aguest cas I'abcissa no és AQ
sobre la recta AB, sind arc(AP) sobre la
corba APB).

Z A

T
A
M P
ST 6 q
< B

Sigui MP I'abcissa amb tangent PT i MT la
tangent buscada.’

Prenem mp infinitament proper a MP i MR
paral.lel aPT.

8 Aixo també ho fa Pascal, qui, ales perpendiculars tragades des de la corba, les anomena “sinus ala base”.
° Aqui, lafiguradel cas particular serveix per il-lustrar el cas general.
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HN=HK+ k= 2
2ay- y°
_ 2ady - ydy

V2ay - y?

Fent servir lardacio;

dy

dx

dx

<

arribaaveure que:

=2 _ ey y=Hm.
\ 2ay- v
Aixi doncs, HM és |la subtangent. Si portem
aquesta distancia sobre FB, obtenim FG.
Finament, unint E amb G ja obtindrem la
tangent alacicloide pd punt E.
Bernoulli acaba € problema afirmant que la

cordaBH és paral.lelaalatangent per E.
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x=arc(AP),
y=PM,

dx=arc(Pp)=MR,

dy=Rm.
Els triangles AmRM i AMPT son semblants.
Per tant:

dy_ MP
dx PT’
pr = Y&

dy

Ara aplicara aguest resultat al cas particular

delacicloide.

Exemple: Donada la corbatal quelaxilay

compleixen la seglient relacio:

s diferenciem i apliguem la proposicio

general:
d)(:ﬂ
b )
PT=_x
b

En € cas particular en qué APB sigui un
semi-cercle i MP perpendicular a AB, AMC

seraunasemicicloide.

Corol.lari: L'Hopital demostra que la corda
AP és pardl.lela a la tangent pel punt M de
lacicloide.



Tot i que tots dos arriben a mateix resultat ca remarcar que els camins seguits son
diferents. Ladiferencia que trobo més notable és I'eleccié de les coordenades.

Bernoulli sempre busca coordenades cartesianes per poder aplicar:

dy_y

dx s
de manera que, en aguest cas, I’ equacié de la corba no quedatan clarai senzillacom amb les

coordenades utilitzades per L’ Hopita. Resulten, aixi, expressions a operar molt llargues.

Fermat, en estudiar aquest problema, tambeé fa servir € segment EM (que éslaxen e casde
Bernoulli).’® Pero, de fet, € desenvolupament del métode de Fermat és el corol.lari de Bernoullli i
de L'Hopital: demostra que lacorda és paral.|ela alatangent.

Per la seva banda, crec que les coordenades considerades per L'HOpital Sapropen meés a
Roberval.™ Lax i lay de L'Hopita representen e moviment sobre e cercle generador i € de la
trandacio horitzontal respectivament. D’ agquesta manera, I’ equaci de la corba és molt meés senzilla.

Aixi, L’Hopital només necessita un parell de triangles semblants mentre que Bernoulli ha
de fer més operacions.

A part delacicloide, L'Hopital només aplicalaseva proposicio general a seglient exemple:

Exemple|: Donada la corba:

Y _xjatty

X a

trobar latangent en un punt donat.

10 Vegeu |’ apartat METODES PER TROBAR LA TANGENT A LA CICLOIDE.
11 .
Ibid.
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TANGENT A LA CONCOIDE

SEGONS BERNOULLI SEGONS L’HOPITAL

Bemaulli dediea ¢l problema V1T a trobar la 1" FORMA.:

tangent a Ja concoide de Wicomedes, encara

que només estudia la bramca superior, Proposicid VI (Seccid II):

Seguint la construceid de Nicomedes: Signi APB una corba de la qual sabem
4=GL, . tracar la tangent PH; F un punt fix exterior
b=CF=4D, ; a la corba; i una altra corba CMD tal que

per a qualsevol tecta FFPAM, 1a relacid entre
FP i FM ve donada per una equacid. 8'ha de
- buscar la tangent A7 pel punt M.

_l Sigui FHT perpendicular a M.
s=FH,

x=FpP, dre=0p,
y=FM, dy=mh,

Fent servir semblanca de triangles:

.ADEF i ADLG:

DL_DE _ pp ads
1G EF N
- ABGCi AEGF: Fent servir els segiients parells de triangles
GF _EF . axdxrabdy semblants:
e
GC  BC tfxt-g . APOp i AHFP,
. MBC i AMOCE: - MRt ATFM,
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2 2
AB_AG _ oy= axt2abxtab’
BC GK X,lxz.a2

I, com que GK s had'agafar perpendicular a
GC (encara que €l no ho diu), GK és la
subtangent. Unint K amb C ja tindrem la
tangent.

Demostra com, a partir d'aqui, es pot trobar
de forma rgpida la tangent (cosa que tambeé

es pot veure al'estudi de L'Hopital).

Observacions. b+x correspon a la y de
L'Hopital. Bernoulli no descriu la seva
construccié: no "avisa' que GK ha de ser
perpendicular a AG. En aguest sentit ja es
pot afirmar que € text de L'HOpital és més

didactic.
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obté&

PF _ pO sox
_:—: -—,
FH OP X
FP_OP oy
FM RM x>
2
mR:FM:FT:WdX_
RM FT xdy

A partir de I'equacié es pot posar dy en
funcié dedx i jaestéla subtangent.
Després denunciar la proposicio general,

I'aplicad cas particular de la concoide.

Exemple: Sigui ara APB unarecta (PH). La
relacio entre FP i FM ve donada per:

y-X=a.
La corba CMD sera la concoide de

Nicomedes, amb asimptota OH i pol F.
dy=dx,

2

Fr=Y
X

Es pot deduir una forma abreujada de trobar
la tangent: s tracem ME pard-lela a PH i
MT pard-lda a PE, MT és la tangent
buscada

Efectivament:
E:m FE:ﬂ,
FH FE X
2
FP _ FM FT sy
FE FT X2
22FORMA:
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Proposicio VII (Seccid Il):

Sigui ARM una corba, amb tangent MH a
punt M i de diametre EPAHT. F un punt fix
exterior, del qual surt una recta FPSM que

talla & diametre en P i la corba en M. La
recta FPM gira a voltant de F, fent moure
e pla PAM para-ldament a s mateix a

llarg de la recta ET, de forma que PA

sempre és igua. La interseccié continua de
FM i AM descriu la corba CMD. Sha de

buscar latangent MT.

Sigui pam un pla infinitament proper a pla
PAM.

Tracem mRSpard-lelaaAP.
Pp=Aa=Rm=RS=39m-Pp,

FP=Fp=x,

FM=Fmey,

PH=s,

MH-=t,

Pp=dz
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Considerem el's seguients parells de triangles
semblants:

.AFPpi AFSm,

.AMPH i AMSR,

. AMHT i AMRm.

Per tant, tenim la série de proporcions:

Fp _ﬂjgnzﬂj RS:M,

Fm Sm X X
PH SR oy bdz-tdz
HM RM SX
MR_MH -

Rm HT y—X

| d’ aguesta manera podem obtenir MT.

De tot aixd L'HOpita dedueix que, s
tracem FE parad-lela a MH i prenem HT
igual a PE, aleshores MT sera la tangent
buscada

PH-FP g rE &

Sabem que HT =

paral-lelaa MH, com que € triangle APFE

és semblant a triangle AMPH, llavors:

PE = FP : don deduim gque
PH PM
pE=PEPH it

MP

Aguesta proposicio general és interessant ja
que aqui si que l'aplica a diversos casos

particulars:

. S AM és una recta, CMD és hipérbola
(amb asimptota ET).

. Si AM és un cercle de centre P, CMD ésla
concoide de Nicomedes (amb asimptota ET

I pol F).



. S AM és una pardbola, CMD és la

companyadel paraboloide de Descartes.

En aguest cas, € primer metode emprat per L'Hopital és equivalent a I’ utilitzat per
Bernoulli. Només cal comprovar que la cadena de proporcions a partir dels triangles semblants
coincideix en els dos casos. A més a més, I'eleccio de les coordenades és la mateixa. Ambdos
treballen amb coordenades des d'un punt.

Perd € segon cami utilitzat pe marques és interessant doncs aplica € metode general a
diverses corbes.

A nivell didactic, cal remarcar que L’ Hopital presenta dues formes de resoldre @ problema
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TANGENT A LA CISSOIDE

SEGONS BERNOULLI

Al problema VIII Bernoulli defineix la

corba com ho havien fet els grecs: I'arc BD

hade ser igua al'arc BE.

AF=FC=3,
AG=X,
GH=y,
FG=a-x=FK.
> B ¢
P 4l% ¢

Sigui H un punt de la cissoide.

Fent servir lanaturalesa de la corba:

GD=KE=4/2ax- x*>.

Llavors:

AK_ AG

KE GH'
Esadir:

2a%-X _ X

2ax-x> Y
Simplificant:
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SEGONS L’HOPITAL

L'Hopital torna a fer servir & seu sistema:
primer demostra una proposicié genera i
després I'aplica a cas particular de la corba
estudiada

Proposicio VI (Seccid I1):

Donats la corba AN amb diametre AP, un

punt exterior fix F, una atra corba CMD i
la recta FMPN, i donada l'equacié que
relaciona FN, FP i FM, sha trobar la
tangent MT.

Pel punt F es traca la perpendicular HK a
FN.

Agafant centre F i radis FN, FP i FM
sobtenen els petits arcs arc(NQ), arc(PO) i
arc(MR), respectivament. L'angle entre FN i

Fn ésinfinitament petit.



Operant arribaa
x’=2ay’- xy’=(2a-x) y°.
Diferenciant ambdos costats:

3x2dx = 4aydy — 2xydy — yZdx,

| ara ja pot trobar la subtangent GL

(respecte elseixos x i y):

_ 2
GL=. .= 22X
3a-x

s=FK,

t=FH,

x=FP, dx=p0,

y=FM, dy=Rm,

Z=FN, -dz=nQ.

Considera el's seglients triangles semblants:
.APFK i ApOP,

.AFMR, AFPO i AFNQ,

.AHFN i ANQn,

.AMRM i AMFT.

Llavors:

NIX < |x nlx

o NI—~
<
<

2
_ Y oYK
FT x2dy

py|
<

Diferenciant I'equacié es podra posar dy en
funcié dedxi dedz | fent servir:
sz2dx

e

dz= -

(jaque s lax creix laz disminueix), les dx

desapareixeran de FT.

Observacid: Sobté e mateix resultat s AP

és una corba.

74



12 forma Sigui AN cercle de centre G que
passa per F i FB perpendicular a diametre
AP. | sigui PM sempreigua aPN. La corba
resultant €s una cissoide. L'equacio que
relacionaFN, FM i FP és:

Z+y=2X.
Diferentciant:

2t dx+ sz dx
5 .

dy= 2dx-dz=

tx

Per tant:

2

FT=_ %Y
26+ s

2%orma: Igual que Bernoulli.
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En aguest cas trobo que e métode de Bernoulli és més rendible que & de L'Hopital.
Bernoulli, amb coordenades ortogonals (aprofitant la naturalesa de la corba) i amb un parell de
triangles semblants, resol € problema. Mentre que L'Hopital necessita quatre parells de triangles
semblants. Al pas final, la subtangent queda en funcio de x, y, z s, t, mentre que a problema de
Bernoulli queda només en funcié de x.

Un dtre avantatge del metode de Bernoulli és que dona l'equacié de la corba en termes de x
I 'y, cosaque no faL'Hépital. Aixi és més comode el maneig de la corba.

Tampoc no hem d'oblidar que € métode de L'Hopital sallarga una mica més perqué primer

resol € cas general, que, d'una atra banda, només aplicaa cas de lacissoide.
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TANGENT A LA QUADRATRIU
SEGONS BERNOULLI

Adquesta corba queda caracteritzada de la

segiient forma:

AD _ AB

AE  AC’

Bernoulli 1i dedica el problema IX de les

seves Lectiones.

a=AC,  b=dB,
x=AH, F=are(ADn,
H=a-x.

‘Com que D pertany al quart de cercle: . .

DH =~{2ax - x*,

AE=% = EC=£I—%,

ADFC i AFEC sbn triangles scmblants. Per

tant;
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SEGONS L'HOPITAL

Com scmpre, primer ataca ¢l problemsa de

forma general per o després frectar un cas

particular,

Proposicid IX (Seceid 1), _
Donades les carbes ANB 1 CPLY; la recta

FET, 4, C, F punts fixos. Sipni EMEF una

corba tal que, pera quélsevol recia F4N,
MP és parallel a FE. La relacié de
Parc{dN) amb l'arc(CF) vc donada per
Tl'equacié, Busquém la tangent AT, amb A
punt sobre EG.

Sigui TH peraliel a FM i les rectes MRX i
MOH paral.leles a les tangents en P icn M,

- respectivament. Sigui FmOr infinitament '

proper a FMW, ainb mAp paral.lel a MP.
s=FA,



HC_EC _ po (abapifdacy’
HD EF ab-bx )

Considerant un triangle infinitament petit:

adx

==,
f'. Zax-x’

llavors:

a glde
ddE) == df=——e.
(4E) bf P

Tin Un cop ha diferenciat EF, aplica la
farmuia habitual;

d(EF) _EF
d(AE)

—
i obté [a subtangent s.

A partir d'aqui Bernoullt déna una forma
abraujada de caleular 1a tangent: prenent CX
perpendicular els
itiangles semblants ADHC @ AFEC i cls

a DC, considerant
gectors semblants DdC 1 BfC; i diferenciant
 FC arriba a:

FC

K

ALFC)
b-f

Adxés, perd, ho eseriu, no fa servir aquesta
netacid. '
Finalment, tenint CK es pot tragar la -
tangent FX, '

Al problema X Bemoulli segueix estudiant

aquesta corba.l Busca G, punt d'interseccid
de la quadratriu AG i el radi perpendicular

1=FN,

w=MK,
x=arc{CP), dy=are(Pp)=MR,
y=ate(AN), dy=arc(N).
Fls parells de triangles segfients son
semblanis:
. AFNm i AFMO,
. AMOm 1 AMAT,
. AMBm L AMKT,
d'on surt:

MH =S .

tdx

" Posant dy en funcio de dv a partiv de

l'equacid, desaparcixeran les dl.

Aixf, si tracem tecta parallela a FM pel
punt H, tallard FX en el punt T, obtenint per
tant la tangent AT,

Exemple: Sigui ANBun quart de cercle amb
centre F (fix) i CPD el radi APF
perpendicular a FXKGQTB.,

F

2 Aquest sepment MH es correspan amb Tare{MD) que utilicza Fermat (végeu I"apartat METODES PER

TROBAR LA TANGENT A LA QUADRATRID).
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CB.

Agafa un punt D ta que DB sigui
infinitament petit.

Per aix0 i per ladefinicio de laquadratriu:

AB_AD_ DB _DB_CB_AC
AC AE EC FG CG CG’

Aixi, CG és |la 32 proporciona d quart de
cercle ABi al radi AC.

2 Aquest arc(MQ) també I'utilitza Fermat per calcular la tangent a la quadratriu (vegeu |’ apartat

a=AF,
x=AP,

b=ANB,

y=arc(AN),
u=FP=MK=a-x,
t=FN=a.

L'equaci6 de laquadratriu és.

y_b
X a
per tant:
dy = b dx,
a
MH= sudy: asdy—sxdy: bs—ys.

tdx adx a

Com fa Bernoulli, L'HOpital també dona la
forma curta de trobar latangent MT, prenent
MH=arc(MQ) i perpendicular a FM, i HT
para-lel a FM. En efecte: FNB i FMQ son

sectors semblants, aixi:

FN _ arc(NB)
FM  arc(MQ)’
ac(MQ) = bs;ys = MH.

com volia demostrar.?
El corol-lari que L'Hépita déna a

continuaci6 és el problema X de Bernoulli.

METODES PER TROBAR LA TANGENT A LA QUADRATRIU).
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Ambdos autors trebalen amb es mateixos eements (tot i que Bernoulli fa servir

coordenades cartesianesi L’ Hopita, polars™):

Bernoulli | L’Hopital
a=AC|a=AF=FN=t
b=AB|b=ANB

AE | x=AP
f=arc(AD) | y=arc(AN)

EC |u=FP=MK=a-x

FC|s=sFM

A diferencia de Bernoulli, L’Hopital no troba la subtangent directament, Siné un segment
MH en funcio de x, y, s, t, u tal que, tracant una determinada paral-lela per H, resulta la tangent
buscada. A continuacié ho aplica a una corba concreta, la quadratriu. Les variables x, y son €s
elements caracteristics de la corba, que podem identificar amb el's seus moviments generadors.

En canvi, Bernoulli torna atreballar amb coordenades cartesianes per poder aplicar:

o

y

dx=

n <

Bernoulli treballa amb triangles semblants mentre que L’Hopita ho fa amb sectors

semblants.

Els corol-larisi conseqiiencies que se'’n deriven en els dos casos son €'s matei Xos.

B De fet, larelacio entre I’angle recorregut (t), el radi vector (r=r(t)) i les coordenades x, y de L'Hépital és
laseglent: y=at, a—x=rcost.
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TANGENT A L'ESPIRAL
SEGONS BERNOULLL

-El problema XI estd dedicat al cas de

lespiral d' Arquimedes.
Sigmi « el radi AC. b l1a longitud de [a
periféria DDCD 1 x = AF .

Sigui AE perpendicular a 4B.
Per definicié de 1'espiral:

AB 4

B I
b arc(CKD)

Aixd ho escriu, no fa servir aguesta:

notacia.,

Aleshm\es, aillant I'are CKD 1 diferenteiant-
la:
Aare( CKDY=DD=(Wa)dx,

i aixi tenim que:

SEGONS L'HOPITAL

Per al cas geperal enuncia la segilient

proposicié:

Proposicio V{Seccia IT):

. Sipni 4PB una corba, amﬁ A fix, de la qual

sabem trobar la tamgent PH. Sigui F un altre
purt ;ﬁx 1 CMD una altra corba tal que,
agaf'a:nt una recta FAP, la relacié entre FA4 1
AP ve donada per una equacic.

S'ha de trobar la tangent AT des de M.

Tracem sobre FP la perpendicular  FH. .

Prenem la recta FRmOp que forma un angle
amb FP infinftament petit.

Amb centre F descrivim els ares are{PO) i
arc(MR).

s=HF,

=PH,

11 no ho diu perd es pot sobreentendre que aquest are funciona com [a coordenada y.
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-AD DD 4D DD Cobxdx x=arciAF}, de=me{Pp),

e e o e 1l
AF  FG x FG : a y=FM, dy=mR,
Llavors: z=FP,
BG  AB it % ' Considerem els segiietits pareily de triangies
— = ésadir: —=——om,
FG AE bxde  AE semblants:
@ .APOp i APFH,
T aixi ja obté ia subtangent, AE. . AmRM i AMFT,
I.a idea torna a ser aplicar la formula; - AFPO | AFMR .
: Aleshores:
»_¥
& s PH_ Py po_ st
perd, en aquest cas, usant coordenades HF PO t
i ' - JE PO 3 sim 22
R M MR =z
- 2
mRFM e
RM . FT 1zdy

Exemple: 81 prenem 4PB un cercle de
centre F, PH serd parsllel {igual a FH, ésa
dir, ¢=s. En aquest cas, la corba CMI} &5
Tespiral d'Arquimexdes."” '

¥ Ho ha interpretat com a samblanga de triangles.

" Mewton, en el sen Methodus fruxiomem {Problema TV, setena manera), estudia el cas de les espirals ija fa
servir aquestes coordenades, que no s6n altra cosa que les coordenades polars,

g2
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x=arc(AP),

y=FM,

z=FP=a.

Fent servir laproposicié general:
y*dx

FT= :
ady

Si b és lalongitud de la circumferéncia (o

unaporcio), per definicio d'espiral:

b_
X

< |

(que serialardacié entre FM i AP).
Diferenciant:
Fr=2
a
que és d resultat que obté Bernoulli (tenint
en compte les diferents notacions).
A continuacio, descriu una forma rapida de

trobar aquesta tangent:

Si tracem l'arc de cercle arc(MQ) de centre
F i radi FM, que acabaen Q pd radi FA que
uneix es dos punts fixos Ai F. S prenem
FT igud a l'arc(MQ), la recta MT sera la
tangent en M. Efectivament: FPA i FMQ

sOn sectors semblants, per tant:

FP _ AP
FM  arc(MQ)

— arce(MQ)= %= FT

Aquest cas és forca interessant doncs
I'aplica a d'atres corbes, tot i que també son

espirals. Agafaen general:



_a"
S

y

X | o

onmeésraciond.
La corba FMD sera una espira a l'infinit.

Diferenciant, obtenim:

_ mby"dy

yadx = mxdy

i, per tant, FT queda de la seglient forma:

2
y dX: ™Y~ m. arc(MQ) .
ady a

Ambdos usen, com avariables, I'arc i € radi, és adir, fan servir coordenades polars (igua
que Newton).

En aquest cas, trobo que € tractament de L’ Hopita és més avantatjos ja que la proposicio
general aqui sf I’ aplicaa diversos exemples particulars.** A més amés, explica una formarapidade
trobar latangent, cosa que no fa Bernoulli.

14 Newton, al Problema IV, setena manera, del seu Methodus fluxionum, després del cas general estudia
espiralson larelacié entrelax i lay ve donada per una equacié. Per exemple:

. y:%, queésl'espira d' Arquimedes

xP—ax?+axy-y3=0
. x% =by
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6. ESTUDI DELSMAXIMSI MINIMS

Amb e problema XI1 Bernoulli comenca l'estudi dels maximsi minims. Un maxim (minim) és
un punt on la corba és concava (convexa) respecte I'eix. En aguest punt (maxim o minim) latangent és

para-lelaal'eix. Dit dunaaltraforma, y ésinfinitament petitarespecte s. Per tant, fent servir que:

o

gl
I

» <

podem considerar dy=0.

Exemple:* Donat a, dividit en x i a-x, shade buscar lax que faci maxim  rectangle x(a-x).
Diferenciant ax-¢ i igualant a zero:
adx-2xdx = 0,
X =al2.

La Seccio 1l de I'Analyse esta dedicada a problema de buscar I'ordenada més gran o més
petita, ésadir, a problema de trobar els maximsi minims.

L'estudi que fa L'Hopital dels maxims i minims es basa en el que havia fet Leibniz,? perd de
manera més general. Considerant que I'abcissa creix continuament, si I'ordenada també creix fins a
un cert punt on comenca a decreixer (0 viceversa), la diferéncia de I'ordenada passara de positiva a
negativa (0 a revés). Per tant, haura de ser zero o infinita en algun moment.* Igualant, doncs, la
diferéncia primera a zero (cas que aguesta disminueixi) i després ainfinit (cas que augmenti) trobara
I'ordenada més gran o lamés petita (art.46). Quan la diferéncia és zero la tangent en e maxim (o

minim) és paral-lelaal'eix deles abcisses. Es adir, la subtangent és infinita

! Aquest exemple coindideix amb el primer que déna Fermat en el seu Maxima et minima.
2Vegeu G. W. LEIBNIZ. “Nova methodus pro maximis &minimis, ...".
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En canvi, s la diferencia és infinita, la tangent es confon amb |'ordenada corresponent a

aquest maxim (o minim).

10

Després de les definicions, ambdds autors donen un seguit d'exemples on ja pressuposen Si
el que es busca és un maxim o un minim, sense donar cap indicacio de com esbrinar si és d'un tipus
o de l'dtre. Generalment, pero, la naturalesa dels extrems és clara a partir de les condicions del
problema.

Molts dels exemples son identics. Les figures també, perd, segons Coolidge, estan millor les
de L'Hopital.*

L'estudi de L'Hépital és més complet que & de Bernoulli (per exemple, Bernoulli no estudia
el cas de la diferénciainfinita).” Tot i aix0, al'estudi de L'H6pital manca el cas on el méxim (o el
minim) es troba als extrems de l'interval .°

També cal remarcar que en aquesta seccié tornem a observar que la notacio de L'Hopital és
meés moderna que la del seu mestre. Per exemple, als problemes XV i XVII, en resoldre una equacié
de segon grau, Bernoulli fa servir un infinit invertit i trencat per a indicar el doble signe del

discriminant. En canvi, en € problema XX utilitzael + habitual.

Ara analitzaré com tracten els dos autors els problemes seglents: el de la refraccio (el cami
meés rapid que segueix lallum per a passar d'un medi aun altre de diferent densitat) i € delaposicié

meés baixa que assole X un pes en un sistema de dues politges.

% Aquesta és laidea del teorema de Bolzano (1781-1848).

“ Defet, no he aconseguit veure les figures de les Lectiones de Bernoulli.

® Malgrat aix0, en una carta del 22 d'abril de 1694, Bernoulli li diu a L'Hopital que no sempre es compleix dy=0
guan hi ha un extrem. Esta pensant en les corbes "bicornies’, aguelles amb punt de retrocés. Les tangents en aguests punts
no son paral-leles sind perpendiculars al'eix delesx, ésadir, dy=c.

®Vegeu J. L. COOLIDGE. The Mathematics of Great Amateurs, p. 155.
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SEGONSBERNOULLI

Problema XVI:

Un viatger had'anar de A a E fent servir €
minim temps possible. Primer ha de
travessar € camp AFDB i després e
DBGE. Al primer camp recorre un espai b
en un temps a. | en el segon, un espai ¢ en

un temps a. Quinavia haura de seguir?

AB=m, ED=n,
BC=x, BD=¢,
DC=e-,

AC =vVm? + x2,

CE= \/e2 — 26X+ x°+ n?.

Usant lavelocitat a camp ABC:

me+ x°

b_
a temps

SEGONSL'HOPITAL

Exemple X1 (Seccio6 11):

Un viatger surt de C per aanar aF. Hade

travessar dos camps separats per la recta
AEB. Al camp del costat de C, recorre un
espal a en un temps c. Al camp del costat
de F, recorre un espai b en un temps c.
Quin ha de ser e punt E de AEB per poder

anar de C aF en & minim temps possible?

i L
W

A
= F
CE=u,
EF=z
Com Bernoulli:
a_ ¢
u temps’

Llavors el tempsde C aE sera

Cu
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aixi, el temps per aanar de AaC sera

aym’+ x
—

Andogament, fent servir la velocitat al
camp CDE:

_ \/e2-26X+ X2+ r]2
temps

C
a

amb laqual cosa el temps per aanar deC a

E sera

a\/e2 — 26X+ x°+ n?
- .

El temps total, que és e que volem fer

minim, és:;
aymi+x* ay/& — 2ext X2+ 1 )
b c '

Diferenciant aquesta expressio i igualant-la
a zero, € problema queda reduit a resoldre
la seglient equaci 6:

(b2 _ C2) X4+(2C2e_ 2b26) X3+

+(b?m? +b%e? —c?e? —c?n?)x* —

—2b%em®x+b%e’m?* =0 . (2)

And ogament:

b ¢

z temps’

Per tant, el tempsde E aF sera: %

Aleshores, el temps total

Ccu cz

a b

ha de ser minim.

Arafaservir € seglient resultat:

Article 56: Sigui AEB una corba planaamb
dos punts fixos, C i F. Des d'un punt P
gualsevol d'aguesta corba tracem les rectes
CP (u) i PF (2). Considerem una quantitat
composta per u, z, i per atres rectes a, b,
C,... Es demana quina és la posici6 de les
rectes CE i EF de manera que la quantitat

sigui maxima o minima.
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Siguin CE i EF les rectes amb la posicio
desitjada. Unim C amb F. Construim una
nova corba DM ta que, si tracem la recta
PQM perpendicular a CF, I'ordenada QM
sigui igua a la quantitat donada. Quan P
esdevé E, QM passa a ser OD, que sera
maxima o minima. Per tant, haurem de
diferenciar i igualar a zero o a infinit.
Tracem EG perpendicular a AEB i des d'un
punt G qualsevol GL, Gl perpendiculars a
CE i EF respectivament. Sigui e un punt
infinitament proper a E i des d'aquest punt
dibuixem les rectes CKe i FeH. Agafant
aquestes rectes com aradisi els puntsC, F
com a centres dibuixem els petits arcs EK i
EH. Es pot comprovar que €els parells de
triangles  rectangles  segilents  son
semblants:

.AELG i AEke,

.AEIG i AEhe.

Aleshores:

GL _ Ke_ du _ sin(£GEC)
Gl He -dz d¢n(£LGEF)

(dz és negatiu respecte du perquée quan lau

creix laz decreix).

Agafant, doncs, EG perpendicular a AB |

aplicant € resultat anterior:

Sin(£GEC) _GL _a

sSn(<GEF) Gl b'(*)

Sigui CGH la circumferencia de centre E i
radi EC. Primer tracem AC, HD i BF
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perpendiculars a AB; i després, GL i Gl
perpendiculaas a CE i a EF
respectivament.

Fent servir (*) i els seglents parells de

triangles semblants:

.AGEL i AECA,
.AGEl i AEHD,
sobté GL=AE i GI=ED.
Prenent x=AE:
ED= %
a
Sigui:

AB=f, AC=g, BF=h.

Com que AEBF i AEDH son semblants:
EB_ f-x_ ED hbx

= DH = .
BF h DH af —ax

AEDH i AEAC son triangles rectangles
les hipotenuses dels quals, EH i EC, son
iguals:

ED?*+ DH*= EA*+ AC?.
Esadir:

o™, WO _ oy 2
a®  (af —ax)?

Aix0 es redueix a estudiar la seguent

equacio:
(&°—b%) x*+(20* f —2a° f) x>+
+(a?f?+a?g? -b?f 2 -b%h?)x* -
—2a’fg®x+a’f?g?=0,

la solucié de laqual jaensindicaraquin és

el punt E buscat.

90



L'HOpita després també resol aguest
problema tal com ho havia fet Bernoulli,

pero canviant la notacio.

Bernoulli diferencia i iguala a zero. Per la seva banda, L’Hopital aplica I'article 56 de
I” Analyse, assolint la mateixa equacio (2) de Bernoulli. Després exposa una altra manera de resoldre
el problema, que coincideix amb ladel seu mestre.

En I'article de 1684 de I’Acta Eruditorum, Leibniz havia analitzat aguest problema
considerant dos medis de diferent densitat, separats per una recta, mentre que Bernoulli considera
diferents velocitats segons € medi. Arriba a la mateixa expressio (1) de Bernoulli (Ilevat notacio),
que diferenciai iguala a zero, sense donar I'equacio (2).

Aleshores, Leibniz aplicatot aixo al'Optica. Si considerem & cas de larefraccio, ladistancia
de AaC éslamateixaquelade C aE. Llavors, la densitat del segon medi és ala del primer com
BC ésaCE, ésadir, com el sinus de I'angle d'incidénciaés a sinus de I'angle de refraccio.’

Laformaamb que L'HOpital resol el problema és notable, doncs traca una circumferencia de
centre E, passant per C (igual que Fermat i Descartes).? El cami total, CEF, el descomposa en CEH
(H sobre la circumferencia) i en HF. Llavors aplicalallel delarefraccié a cami seguit finsaH. De
fet, € resultat de I'article 56 de I'Analyse és conegut com la llei de Snell, que fou € primer que

I”enuncia. Vaser demostrat per primer cop per Descartes.

"Vegeu G. W. LEIBNIZ, op. cit.
8 Vegeu R. DESCARTES. (Euwres, VI: La Dioptrique, discours 11, pp. 93-105; P. FERMAT. GEuwvres, III:
Maxima et minima, pp. 149-156.
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SEGONS BERNOULLI

Problema XTX:

Sigui A un pes que penja del fil AC, essent
C fix, Agquest fil passa per la politja mobil
E, que esta agafada a B (fix}. Suposem que

ni el fil ni la politja no tenen pes. Quina

serd . la disthncia méxima de 4 a

Thoritzontal BC?

Busquem D sobre BC tal que 4D signi

maxima.
AC=a. BC=h,
BE=c, DE=x,
BD =~c? -x%,
DlC=b- s
Add:

SEGONS L’HOPITAL

Exemple XM (Seccis ITI):

Signi F una politja que penja Llinrement de

la corda CF amb un pes D suspés de la
corda DFB que passa per damunt de la
politia Fi esta agafada en B. Suposem C i

B sobre la mateixa horitzontal. Ni la politja

ni la corda no tenen pes, En quin punt el

- Hegons el Principi de la Mecénica, D
descendira el maxim possible per sota de
B, Per tant, DFE ha de ser maxima,

CF=a, DFB=h,
CB=¢, CE=x,

EF=sg' -3,

? 5 un prablema ben eurids, dones, aparentrnent, [a solueid no depén de! pes que penja.

V4
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CE=\/b2+ c®—2byc? -,

AEza—\/b2+c2—2b =,

AD = X+a—\/b2+c2—2b c?—x°.

gue és I'expressio que hem de fer maxima.
Diferenciant-la i igudant-la a zero

obtenim:

— bx
\/b2+ c?-2byc?- x*= v

2,2
b? +c2 - 2by/c? —x? = b7x

c?-x

2 )

b?+c? - SZXZZ =2byc? — X2,
c?—x

b%c? —b?x® +c* —c?x® —b?x®
c? - x?

b2c? +c* —c?x? — 2b%x?

c? —x?

Finalment, el problema es redueix a

resoldre la seglient equacio:

+ (6b%c* —2c® — 4b*c?)x? +

+b*+c®-2b%c® =0.

També considera una altra forma de fer-ho,
que és andloga a primer metode de
L'Hopital i don surt una equacio mes

senzilla (degut al’ elecci6 de coordenades).

FB=+/(C— X)%+ a?- x?=/a+ c? — 20X,

DFE = b—+/a2+ 2 - 2cx + a2 — x2.

que és l'expressié que volem fer maxima.
Diferenciant-la i iguadant-la a zero

obtenim:

cdx xax
\/a2+ Cz_ 20X \/az_ XZ

2cx3 — 2¢2x% —a’x? +a’c? = 0.

:O1

Dividint per x-c:
2c’—a’x—-a’c=0.

Una de les arrels donara una x=CE tal que
ED (perpendicular) passa per la politjai €

pes quan estan en repos.

D'una dtraforma

EF=y,

BF=z
El que volem fer maxim és. b-z+y.
Per tant, dz=dy.
La politja descriu la circumferéncia de
centre C i radi FA. Agafem f infinitament
proper a F; sigui fR para-lel a CB, i fS
perpendicular a FB. Aixi,

FR=dy,

FS=dz,
(ésadir, FR=F9).
Els triangles rectangles AFRf i AFSF son
iguals i semblants, la qual cosa implica
que l'angle ZRFf ésigual al'angle £ S-f.

Aixi doncs, F esta situat de tal manera
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sobre la circumferencia FA que l'angle
format per EF i latangent en F ésigua a
l'angle format per FB i la tangent en F. Es
adir:

/BFC=/DFC.

Per tant, si dibuixem FH tal que:
/FHC=/CFB=/CFD,
aleshores els triangles ACBF i ACFH seran
semblants; els triangles rectangles AECF i

AEFH seran semblantsi:

cH=2

C

2

G
HE X~ ¢ _EF
EF y EC

D'on podem concloure (aprofitant que €l
punt es troba sobre la circumferencia):

2
aX_ o
XZ_T_ V2= a2 5.

Aranomés cal resoldre aquesta equacio.

El primer cami seguit per L’Hopital coincideix amb e segon de Bernoulli, on les
coordenades han estat escollides de manera que I’ equacio resultant és meés senzilla de resoldre que
en el primer cas. Estractad’ igualar a zero la diferencia de la quantitat que es vol fer maxima.

A continuacié L’ Hopital resol € problema de la seglient manera: considerala circumferencia
descrita per la corda CF i treballa amb elements infinitament propers. Aquest cami és, i més no,

forcaoriginal.
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7. ESTUDI DELSPUNTSD'INFLEXIO

En comencar € capitol dedicat als punts d'inflexid, Bernoulli en dona la segiient definicio:
el punt d'inflexio és aquell que separales dues curvatures, quan la corba passa de concava a convexa
o viceversa. Aquest punt és al final delaprimerai a principi del'dltima.

Vegem els tres metodes de Bernoulli per trobar €'s punts d’inflexio.

PRIMUS MODUS

Les tangents creixen fins a punt d'inflexio i quan canvia de curvatura comencen a decreixer.
Bernoulli diu que latangent en el punt d'inflexio és"remotissma’, d'on dedueix que la diferénciaentre

lasubtangent (t)* i I'abcissa (x) hade ser maxima Esadir:

X-t=m,
dx-dt= 0,
dx = dt.

D'aguesta manera sortirax i, per tant, e punt d'inflexio.

Exemple: Sigui la corba d'equacié ax?-yx*-a’y=0. Si la diferenciem:

2axdx - x2dy - 2xydx - g?dy = 0,
2axdx - 2xydx = x2dy+ a2dy,

2ax—2yx_ﬂ_z
x2+a? dx t

Aprofitant I'equacio de la corba:

o x2y+a2y: B

2ax - 2yx 2ax-2yx_

_ax atx+x®
2a-2y 2a°

Hem de fer maximal'expressio:

! Notem que, en aquest capitol, Bernoulli utilitzara unat per indicar la subtangent i no s, com havia fet fins ara.
Leibniz també fara servir aguesta notacié en el seu "Nova methodus pro maximis & minimis,...".
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Finalment, diferenciant i igualant a zero resulta l'equaci6 a>-3x*=0 i, per tant:

1
X=a,|=.
3

METHODUS SECUNDUS

Considerant dx constant, en €l punt d'inflexio, la corba no és ni convexani concava, és adir,
aqui sera una porci6 de recta infinitament petita d'on es dedueix que dy sera constant. La qual cosa

implicaque d(dy) (ésadir, ddy) és zero.

Exemple: Considerem la mateixa corba de I'exemple anterior pero posant y en funcio de x:

2

y= a2+X2'

Diferenciant;

_ 2adxdx
(a2+ X2)2 '

(Aqui Bernoulli faservir un quadradet davant de a®+x).

Diferenciant un altre cop (tenint en compte que ddx=0, atés que dx és constant) i igualant a

Zero, obtenim:

7 42 A52402 A 34 1.2
CICIF2adx 4a>x"dx Gaxdx:O'
(a2+x2)"

(I agui Bernoulli utilitza QQ per indicar la potencia quarta)
Bernoulli multiplica aquesta expressié per (a®+x%)* i ladivideix per 2a%dx?, obtenint |'abcissa
del punt diinflexié com aarrel de a®-3x*=0.

Bernoulli observa que tot aix0 funciona tant per a corbes mecaniques com per a

geomeétriques.
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MODUS TERTIUS

Suposem la corba formada per infinites rectes infinitament petites ab, bc, cd... Latangent en
el punt d és dc en m. Si la corba exterior és convexa, la tangent de és exterior i I'angle Zldm és
infinitament petit.? Si la corba exterior és concava, la tangent serd interior. Les tangents en punts
infinitament propers a punt dinflexié no son ni exteriors ni interiors. Les podem igualar, obtenint
aixi €l punt buscat. Per tant, a punt dinflexio la tangent coincideix amb la tangent en un punt

infinitament proper.

Sigui la corba ABC, on B és el punt d'inflexio. Des del punt F tracem les rectes FB i Fb, on
I'angle ZbFB és infinitament petit. Tracem FD i Fd perpendiculars a FB i Fb respectivament. La
tangent BdD en B és la mateixa que latangent en b.

Siguin arc(Be) i arc(gd) arcs de centre F.

FD=Fd=t, gD=dt,
FB=Fb=z, be=dz,
arc(Be)=dy.

Els sectors Fgd i BeF son semblants jaque I'angle Z/BFe ésigua al'angle ZgFd. Aixi:

FB _ Be tdy
= —=gd=—.
Fd gd z

També son semblants AbeB i AgdD (doncs D, d, B, b es troben sobre |a mateixa tangent):

be_ gd
Be gD’

tdy
dz_ 7z
dy dt

2 Per aFermat, € punt d’inflexi6 és aquell tal que latangent amb |’ eix d’ abcisses forma un angle minim.
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Fent servir ladefinici6 de tangent.®
Notem que BdD és |latangent en B, que també ho ésen b.

* * *

L'Hépital comenca per definir les diferencials d'ordre superior (cosa que no fa Bernoulli).

Definicio I: la porcid infinitament petita que creix o decreix la diferéncia d'una variable és la
diferencia de la diferéncia (o diferencia segona). Analogament es pot definir la diferencia tercera,
etc.

Aquesta definicid coincideix amb la que ja havia donat Leibniz (encara que de forma no
gaire clara) a seu article d’ Acta eruditorum "Nova methodus pro maximis & minimis,...", el 1684.*

La diferencia segona és infinitament petita respecte dy.

L'Hopital especifica que dd, ddd, ... serveix per indicar I'ordre de la diferénciai que dx?, dx’,
ddx?,... indicala poténciade ladiferéncia

Cdcula les diferéncies segones tant en e cas d'ordenades para-leles com en € cas

d'ordenades des d’ un punt. Observa que, per calcular la diferencia segona, una de les diferencies dx,

Sesadr: 2_Z,
dy t
4 Aquesta manca de claredat en les definicions de les diferéncies d’ordre superior no va donar precisament
coherénciaa simbolisme de les diferéncies. Per exemple, Johann Bernoulli, en una cartaaLeibniz € 1695, escriu:

3'd6y _ d2y
3
d—zyzd?’yd’zx:d?’yj. 2x
d“x
A mésamés, lacritica que vafer Nieuwentijdt (1695-96) es basa precisament en aguesta quiestio.
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dy o du ha de ser constant (Corol-laris | i 1lI). A la Proposicio | estudia un exemple, primer

considerant dx constant i després dy constant.

Definicio 11: Quan una corba AFK és concava i convexa respecte una recta AB o un punt fix B, €
punt F que separa la part concava de la convexa i que és a final duna i a principi de l'atra
sanomena dinflexio, si la corba a partir d'aguest punt segueix el seu cami del mateix costat, i de

retroces, si retrocedeix cap al'origen.

Proposicio 11: Donada una corba, trobar els seus punts d'inflexid i de retrocés.

1) Cas punt d'inflexio:
Si AP creix continuament, en aquest cas AT va creixent fins a
punt d'inflexio, a partir del qual comenca adecréixer. | AT sera
maxim quan P caigui sobre E (AL).

2) Cas punt de retroces:
Si AT creix continuament, aleshores AP també creix finsque T
esdevé L, on comenca a decréixer. AP ha de ser un maxim

(AE) quan T passaaser L.

Aleshores, en general:

AE = X,

EF =y,

AL = ﬂ_x
dy

(que ésI'expressié que Bernoulli famaximaen el seu primer metode).

Diferenciant:
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2
dy” dx ygxddy =0,
dy

Dividint per dx (que pren constant) i igualant a zero:

dy”-yddy ,_ -yddy
dy’ dy*

L'Hopital dedueix els casos segiients:®

- Si ddy=0, tenim un punt d'inflexio.

- Si ddy=o0, tenim un punt de retrocés.®

AiX0, pero, no és reciproc. En una carta a Johann Bernoulli (el 7 d'abril de 1694) afirma que
hi ha corbes que no canvien la seva curvaturai que, en canvi, verifiquen ddy=0.

La definicié de L'Hopital de punt dinflexié coincideix amb la que déna Bernoulli. Pero
aguest no considera e cas dels punts de retrocés en les seves Lectiones.” Leibniz tampoc no els

considera en aguest apartat.
L'Hépital déna un segon metode que coincideix amb e segon de Bernoulli. Considerant dx

constant, si y augmenta llavors ddy passa de positiva a negativa en canviar la curvatura (és a dir, a
punt d'inflexio o de retrocés). Per tant, ddy ha de ser igual a zero o ainfinit.

I, finalment, déna un corol-lari on descriu € tercer metode de Bernoulli:

- Quan ddy=0: Si prenem dues tangents infinitament properes FL i fL han de coincidir al
punt d'inflexio F.
- Quan ddy=c0: Podem tracar per F (punt de retrocés) dues tangents FL, FI amb angle entre

ellesinfinitament petit.

L'Hopital també estudia € cas en que les ordenades parteixen d'un mateix punt, cas que

Bernoulli ignora.®

® L'Hépital ,com també fa Pascal, escull la seva variable independent anb molta cura (vegeu J. L. COOLIDGE.
The Mathematics of Great Amateurs, p. 156)

® Segons Coolidge, L'H6pital comet I'error segiient: si ddy és infinitament petita respecte dy, aleshores no pot ser
mai infinita.

" Si que ho fa, pero, enlacartaque li enviaaL'Hépital el 22 d'abril de 1694.

8 En la carta que Bernoulli enviaa L'Hopita e 12 de gener de 1695 |i mostra como trobar les diferéncies segones

100



-

t {_"Fi
i
T

Sigui AFK una corba les ordenades de la qual son BM, BF,... des de B. Sigui MT la tangent
corresponent a l'ordenada BM i BT perpendicular a BM. Prenem m infinitament proper a M amb
ordenada Bmi tangent mt, amb Bt perpendicular aBm. Lainterseccio entre Bt i MT és el punt O.

Suposant que I'ordenada augmenta (quan BM passa a ser Bm), aleshores Bt és magjor que BO
ala part concava i menor que BO ala part convexa. Aixi, a punt dinflexié (o de retrocés) F, Ot
passa de positiva a negativa. Esadir, Ot serazero a punt F.

Tracem des de B els arcs arc(MR), arc(TH). De manera que es formen el s triangles semblants
AMRM, AMBT i ATHO, i els sectors semblants BMR i BTH.

Sigui:

BM=y, mR=dy, MR=dx.
De les semblances de triangles i sectors obtenim |a seglient cadena de proporcions:

mR _BM _ MR_ TH

RM BT TH HO
mR_BMjBT_ﬂ

RM BT Cdy

2
BM _MR_ ., _ &
BT TH dy

3
MR_TH _ o 9
TH HO dy”

Suposem dx constant. Si prenem la diferéncia de BT:

dxdy” -ydxddy

Bt-BT=Ht= .
dy

Per tant:

dx®+ dxdy” -ydxddy
dy’ '

Llavors, multiplicant per dy? i dividint per dx resulta l'equacio:

OH+Ht=0t=

en € cas d'ordenades des d'un punt, procediment identic a que apareix en l'article 64 de I'Analyse. Val a dir, pero, que la
idea d'ordenades des d'un punt sembla haver estat suggerida per L'Hopital en la carta anterior.
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dx?+ dy”-yddy=0,
d'on surten €l's punts d'inflexio.
I I'equacio:
dx*+ dy’-yddy=co,

d'on surten €l's punts de retrocés.

Encara dona una atra formade resoldre el problema.

A la part concaval'angle #BmE és més gran que #Bmn. En canvi, ala part convexa passa a revés.
La diferencia entre els dos angles és I'angle ZEmn, que és la mesura de I'arc(En), que passara de
positiu a negatiu en € punt F.

Suposem dx constant. Com gue €s triangles AHMS i AHnk sén semblantsi si Bm creix Rm

decreix:
Hm_ Hn
mS nk'
du _ -ddy K __ dxddy
dx nk du

Com que dls sectors BmSi mEk son semblants:
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Bm mE

mS  Ek’
l=ﬂ35k=d)(d”,
dx Ek y
2_
Ek + kn= arc(En) = dXdu—deijy
ydu

Multiplicant per ydu i dividint per dx:
du?-yddy= dx?+ dy”-yddy ,

gue en € punt F passa de positiu a negatiu.

Si lay tendeix ainfinit, dx® i dy* son nuls respecte yddy. Per tant:
o+ dy*-yddy = 0o,

d'on, finalment, resulta que ddy ha de ser zero o infinit.

Ara analitzaré un exemple com( atots dos autors.’

° Un altre exemple comu és e de I'espiral parabolica. Bernoulli fa servir el seu primer métode, mentre que
L'Hopital utilitzala primera maneradel cas d ordenades des d’un punt.
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PUNTSD'INFLEXIO DE LA CONCOIDE DE NICOMEDES

SEGONSBERNOULLI

Bernoulli resol aquest problema segons el's

tres méetodes.

Segons e primer metode:
AE=BG=a, EF=Db,
AD=X, BD=y,
DE=a-x.

[5 12y _ 122
GE= V2ab XX,

a-x
Fent servir semblanca de triangles:

GF _ BF

GE BD’

ésadir;

SEGONSL'HOPITAL

Exemple IV (Seccio 1V):

P

Sha de buscar & punt dinflexiéo de la
concoide AFK de pol P i asimptota BC. La
propietat que caracteritza aguesta corba és
gue tota recta PF (amb F un punt de la
concoide) tallal'asimptota en un punt D tal
gue FD és constant.

Sigui PA perpendicular a BC, i FE

paral-lelaaBC.
AB=FD=a, BP=b,
BE=x, EF=y.

Tragcant DL para-lela a AB, resulta que
ADLF i APEF son semblants. Per tant:

DL _ PE

LF EF’
EF=y= EPVa X
X

ladiferenciade laqua és:
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a-x a-x
2
+ab-ax
ay/ 2ax- x= a
a-x

Per tant:

y= i\/Zax P+ 2a%- X2
a-X

Diferenciant;

_ a®bdx
(a®- 2ax+ xz)\/ZaX- X

N adx-xdx
2ax- 2 .
Com que
dy_y
dx t'
aleshores:

= (ab-bx+ g2-2ax+ x%)(2ax- x%)
a’b+(a-x)®

(agui Bernoulli en lloc del cub fa servir un
C davant (a-x) i tal com escriu iguatats
dins les proporcions pot confondre una
mica).

Fent € canvi a-x=z

= (bzr ) (a’-2) _
a2b+ Z3

_ a’bz+a®2-pz’- 7
a2b+ Z3

L'expressio t-x=t-a+z és la que sha de fer

x> dx+ g2bdx
x’+/a’- x°

Si fem la diferencia d'aguesta quantitat i la

dy=

igudlem a zero, la soluci6 del nostre
problema sera una de les arrels de

I'equaci O:
x>+ 3bx*-2a’b=10.

Observem que ha fet servir e seu segon

metode.

També resol aquest problema com un cas
d'ordenades que parteixen d'un punt, fent

servir | equaci 6:
yddy= dx*+dy”, (*)

amb dx constant.

Considerem com a ordenades les rectes PF
pel pol P.

Tracem €els arcs arc(FG) i arc(DH) amb
centre P.

Sigui Pf una ordenada que forma amb PF

un angle infinitament petit, ZFPf.

AB=3a, BP=b,
PF=y, PD=z,
dz=dH, dx=FG.
Donat que €els punts de la concoide
verifiquen:
y=z+a,
aleshores:
dy=dz.
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maxima

Diferenciant i igualant a zero i, despres,
multiplicant per (a’b+Z)% i dividint per
a’bdz+a’zdz, la solucié sera arre de

I'equaci O:

2a°b-3pA- °=0.

Segons & segon métode:

Obté dy com abans i torna a diferenciar,
igualant ddy a zero i fent & canvi z=a-x.
Lasolucié seraarrel de l'equacio:

22+3b7%-2a°b=0.

D'aguesta forma el problema es resol més

rapidament.

Segons € tercer metode:
S A és d vetex, F d centre i MN

I'asimptota, quin sera el punt dinflexié B?

La interseccio de FB amb I'asimptota és €l

punt N.

NB=AM=a, FM=b,

FB=Fb=z  be=no=dz

Be=dy.

Sigui NO paral-lelaaBe.
FN=za,

NM=4/ 22-2az+ a%-p? .

ANMF i ANon s6n semblants. Per tant:

NM _ no

MF oN’

ADBP és un triangle rectangle. Per tant:

DB=4/7Z-b*.

Llavors, tenim els seglents parells de
triangles semblants:

.ADBPi AdHD

.APDH i APFG

d'on resulta:

N
2 2
PD_HD ~ dz=dy= zdx+/ 2°-b .

PF FG bz+ab

BP HD

DB_dH _ . bdz

Ara diferenciem (prenent dx constant i

substituint dz pel seu valor en funcié dey):

_ (bz*+2abz’- ab’2) dx®
(bz+ab)® '

ddy=...

Aleshores, si substituim en la férmula (*)

elsvaorsdey, dyi ddy, obtenim I'equacio:

(2*+2az3-ab®2) dx® _

(bz+ab)?

_ (£*+2ab’ z+ a’b%) dx®
B (bz+ab)? '

Operant resulta:
27°-3b°z- ab®=0.

Una de les arrels (2) d'aguesta equacio mes

a es donara PF.
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bdz

122_2a2+ 22-1? '

FN _ No

FB Be'

No=

B

bzdz
e= =dy,
(za)y Z*-2az+ a°*-b°

be bF

Be t '

= bz®
(za)y Z*-2az+ a°>-b°

Si z creix, t decreix. Per tant dt quedara

afectada per un signe negatiu.

Utilitzant € resultat vist a tercer métode;
dy’= dzZdt,
resulta |'equacio:

2a7°—6a%27+63°z—3ap’z—
—2a*+2a%p*=0,

d'on sortirala soluci6 buscada.

Cal remarcar les diverses maneres que ambdos fan servir per resoldre aquest exemple com.
Mentre que Bernoulli estudia el problema aplicant els seus tres metodes, L' Hopital, amés d' utilitzar
el seu segon metode, resol € problema com un cas d’ ordenades des d’ un punt.
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CONCLUSIO

Després de la publicacié de les Lectiones i de la correspondéncia de Johann Bernoulli, es va
coneixer e pacte entre L'HOpital i Bernoulli i es va veure clarament que I'Analyse es basava en les
Lectiones. Tot i aixd, no podem dir que €s dos textos siguin identics. Tampoc les intencions
divulgadores del's dos autors no son les mateixes.

Les diferencies més notables que he trobat entre €l's dos autors son:

- ladidacticadel text

- I'enfocament del's problemes

- I'élecci6 de coordenades

- e diferent tractament de les corbes algébriquesi transcendents

- lanotacio

A més a més, no hem d'oblidar que I'Analyse té deu seccions, de les quals només les quatre

primeres es corresponen amb les Lectiones de Bernoulli.

Didactica dd text

El treball de L'Hépital esta més ben estructurat que les llicons de Bernoulli. El text del marques
és molt més didactic, serveix per iniciar-se en € cacul diferencia, mentre que e de Bernoulli més
aviat esta dirigit as jainiciats. Quan és possible, L'Hopital presenta diverses maneres de resoldre €
mateix problema; normament una d’ elles coincideix amb laresolucié de Bernoulli (com, per exemple,
en e cas dd problema sobre la refraccid). De fet, I'Analyse és € primer tractat sistematic del calcul,
que faraque lanovamatériasigui accessible a lector mitja.

Jaen la primera seccié notem aguesta diferéncia quant alaintencié didactica. L'HOpital dedica
meés temps adefinicions i axiomes fonamental s que no pas Johann.

L'estudi de L'HOpital sobre maxims i minims és més complet que € de Bernoulli. Mentre que
L'Hopita distingeix els casos diferéncia nul-la/ diferenciainfinita, Bernoulli no ho fa en les Lectiones,
perd si en una carta dirigida a L'Hépital e 22 dabril de 1694, on considera € cas de les corbes

bicornies (ésadir, amb punt de retrocés).
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Quant a les diferencias d'ordre superior, L'Hépital comenca per definir-les (seguint lalinia de
Leibniz i malgrat la seva manca de claredat), mentre que Bernoulli déna directament la definicid de
punt d'inflexio. EI marqués dedica un apartat a punt de retrocés. En canvi, com ja he dit més amunt,

Bernoulli no ho faen les Lectiones sind en una cartaa L’ HOpital.

L 'enfocament dels problemes

Mentre que Bernoulli estudia directament problemes concrets, L'Hopital primer analitza el cas
generd i després ho aplica a alguns casos particulars, defensant aixi la idea de calcul com a métode
d'aplicacio general. Per exemple, en la Proposicio VI (Secci6 1) de I'Analyse, L'Hopital calcula la
tangent a una corba, coneixent la tangent a una corba auxiliar i larelacio entre é's segments de recta
compresos entre € punt fix de la recta i les interseccions d'aguesta amb les dues corbes. Aquest
resultat I'aplica als casos particulars de la hipérbola, la concoide i la companya del paraboloide de
Descartes.

Tot i aix0, ens trobem amb qué la Proposicio VIII (Seccié 1) només I'aplica a cas de la

cissoide. No hem d' oblidar, pero, que per a€ll € queimporta és el metode.

L 'eleccié de coordenades

Generalment, Bernoulli busca coordenades cartesianes per poder aplicar laformula:

dy_y
dx s

encara que no sempre, com en e casdel’ espiral, on utilitza coordenades polars.

Per la seva banda, L'HOpital busca altres tipus de relacions, segons la naturalesa de la corba
estudiada: coordenades des d'un punt* (com en el segon métode utilitzat per trobar els punts d'inflexié
de la concoide de Nicomedes), abcisses sobre una corba (com en € cas de la cilcoide), polars (com en
el cas de la quadratriu) ... Newton i Pascal ja escollien les seves coordenades amb molta cura i

depenent de la corba.

! Ja hem vist que Bernoulli considera les coordenades des d'un punt en la seva carta a L'Hopita el 12 de gener de
1695, perd no en les Lectiones.
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Podem dir que, d’aguna manera, Bernoulli és més actual, mentre que L’Hopital és més un

matematic del segle XVII.

El diferent tractament deles corbesalgebriquesi transcendents

En general, em sembla més avantatjés € tractament de les corbes algebriques per part de
Bernoulli (especiament la cissoide). En canvi, en @ cas de les transcendents (sobretot la cicloide i
I”espiral) surt guanyant el metode de L'Hopital.

En Bernoulli € que compta essencialment és1’equacié f (X, y) = 0, que és ben coneguda quan
la corba és algebrica. Quan és transcendent, |'expressio és forca meés fosca i € problema se li
complica

En L’Hopital, en canvi, d fet d’ gjustar-se a la naturalesa geometrica de la corba li permet una

millor eleccio de les coordenades. Obté, aeshores, expressions f (u,v) =0, on u, v SOn escaients.

Lanotacio

La notacio emprada per L'Hépital és més moderna que la utilitzada per Bernoulli. De fet, és
semblant a l'actua, de manera que es pot llegir sense dificultats. Bernoulli encara fa servir simbols
com [, C, QQ, etc.

Amb aquest trebal també he volgut destacar la figura de L'Hopital com a autor de Ilibres de
text. Precisament és la manca de tractats elementals sobre el calcul la rad que impulsa L'Hopita a
publicar I'Analyse. Els textos sobre calcul publicats fins aleshores eren curts i criptics (els articles de
Leibniz a Acta Eruditorum, la base del métode de fluxions de Newton en els seus Principia,...). El text
dd marqués és un intent de “normalitzar” lanova matéeria

L'Analyse estara de moda durant tot € segle XVII, sera traduit a I'anglés i a llati i editat

diverses vegades.

2 Recordem que, amés de |'Analyse, també publica amb éxit e Traité des sections coniques (1707).
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Hi ha historiadors que creuen que I'Unic que va fer L'Hopita fou "pagar” Bernoulli per poder
apropiar-se de les seves Ilicons.® Pero, deixant de banda la controvérsia originada a voltant de
I'’Analyse i les mancances que pugui tenir I'obra, jo estic d'acord amb I'dtre grup d'historiadors, que
defensen L'Hoépita tant per haver publicat amb propietat € primer Ilibre de text sobre calcul com per

les seves aportacions originals.

Agraiments

Vull expressar e meu agraiment a Dr. Josep Pla (Universitat de Barcelona) per haver-me
animat afer aquest treball, tot guiant-mei aconsellant-me.

També m’han estat molt Utils els comentaris critics de I’ esborrany que han fet en Carles Dorce
(IES Barres i Ones, Badalona) i na Marta Ginovart (Escola Superior d’ Agricultura de Barcelona), aixi
com també |es seves aportacions.

Finament, vull agrair al Seminari d'Historia de la Ciencia de la Universitat Autonoma de

Barcelonad material que m’' ha proveit, sense @ qua agquest treball no hagués estat possible.

3 Defet, en d prefaci del'Analyse L'Hdpital només reconeix feblement tot el que deu a Bernoulli.
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LLISTA DE SSIMBOLSUTILITZATS

arc( ) Ni Bernoulli ni L’Hépital no fan servir una notacio especia per al’arc.

Com amolt, ho indiquen dins €l text.
Y Per indicar la potencia quadrada ells utilitzen lanotacio de |’ epoca: yy.

A Quan trebalen amb triangles ho indiquen dins € text, sense cap

notacio especial.

4 Quan treballen amb angles ho indiquen també dins € text, sense cap

notacio especial.

ddy En aguest cas he mantingut la notacié utilitzada per ambdds autors a

I” hora de treballar amb diferencials d’ ordre superior.

dy” D’ aquesta manera €l's autors estudiats noten la potencia n-esima de dy.
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