

J2EE TIENDAVIRTUAL APPLICATION FRAMEWORK

Memòria del Projecte Fi de Carrera
d'Enginyeria en Informàtica
realitzat per

Eduardo Varga Laguna
i dirigit per

Joan Serra Sagristà
Bellaterra,......de...........….....de 200...

 2

 3

Escola Tècnica Superior d’Enginyeria

El sotasignat, ..

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la seva
direcció per en

I per tal que consti firma la present.

Signat: ..

Bellaterra,de...............................de 200.....

 4

 5

INDICE
1. Introducción……10

1.1. Motivaciones……10

1.2. Objetivos……10

1.3. Organización de la memoria……10

2. Fundamentos teóricos……13

2.1. MVC……13

2.2. J2EE……14

2.3. Struts……16

2.3.1. Estructura de una aplicación basada en Struts……17

2.3.1.1. Introducción……17

2.3.1.2. Componentes de la view……18

2.3.1.2.1. JSPs……18

2.3.1.2.2. Recursos……19

2.3.1.2.3. ActionForms……19

2.3.1.2.4. ActionErrors……20

2.3.1.3. Componentes del controller……21

2.3.1.3.1. ActionServlet……21

2.3.1.3.2. RequestProcessor……21

2.3.1.3.3. Ficheros de configuración……21

2.3.1.3.4. ActionMapping……22

2.3.1.3.5. Action……23

2.3.1.3.6. ActionForward……23

2.3.1.4. Componentes del modelo……24

2.3.1.4.1. Modelo conceptual……24

2.3.1.4.2. Modelo de diseño……24

2.3.1.4.3. Modelo de datos……25

3. Fases del proyecto……28

3.1. Introducción……28

3.2. Captura de requerimientos……28

3.2.1. Introducción……28

3.2.2. Clasificación de los requerimientos……29

3.2.2.1. Requerimientos del “entorno” ……29

3.2.2.1.1. Descripción……29

3.2.2.1.2. Recopilación de requerimientos del cliente……29

3.2.2.2. Requerimientos ergonómicos……30

3.2.2.2.1. Descripción……30

 6

3.2.2.2.2. Recopilación de requerimientos del cliente……30

3.2.2.3. Requerimientos de interface……31

3.2.2.3.1. Descripción……31

3.2.2.3.2. Recopilación de requerimientos del cliente……31

3.2.2.4. Requerimientos funcionales……32

3.2.2.4.1. Descripción……32

3.2.2.4.2. Recopilación de requerimientos del cliente……32

3.2.2.5. Requerimientos de desempeño……33

3.2.2.5.1. Descripción……33

3.2.2.5.2. Recopilación de requerimientos del cliente……33

3.2.2.6. Disponibilidad……33

3.2.2.6.1. Descripción……33

3.2.2.6.2. Recopilación de requerimientos del cliente……33

3.2.2.7. Entrenamiento……34

3.2.2.7.1. Descripción……34

3.2.2.7.2. Recopilación de requerimientos del cliente……34

3.2.2.8. Restricción de diseño……34

3.2.2.8.1. Descripción……34

3.2.2.8.2. Recopilación de requerimientos del cliente……34

3.2.2.9. Materiales……35

3.2.2.9.1. Descripción……35

3.2.2.9.2. Recopilación de requerimientos del cliente……35

3.2.3. Manejo de requerimientos……35

3.3. Diseño……36

3.3.1. El concepto de servicio……36

3.3.2. Construcción de servicios……37

3.3.3. Modelo de datos……37

3.3.4. Comunicación de datos entre las capas de las aplicaciones……39

3.3.5. Patrones de diseño utilizados en el aplicativo……40

3.3.5.1. BUSINESS DELEGATE……40

3.3.5.1.1. Contexto……40

3.3.5.1.2. Problema……41

3.3.5.1.3. Causas……41

3.3.5.1.4. Solución……41

3.3.5.1.5. Consecuencias……43

3.3.5.2. TRANSFER OBJECT……44

3.3.5.2.1. Contexto……44

3.3.5.2.2. Problema……44

 7

3.3.5.2.3. Causas……45

3.3.5.2.4. Solución……45

3.3.5.2.5. Consecuencias……46

3.3.5.3. DATA ACCESS OBJECT……47

3.3.5.3.1. Contexto……47

3.3.5.3.2. Problema……47

3.3.5.3.3. Causas……48

3.3.5.3.4. Solución……49

3.3.5.3.5. Consecuencias……50

3.4. Implementación……52

3.4.1. Organización del repositorio……52

3.4.2. Descriptor de despliegue del Web Server (web.xml) ……56

3.4.3. struts-config.xml……67

3.4.4. Explicación de un Caso de Uso……73

3.4.4.1. Introducción……73

3.4.4.2. Capas dentro del Caso de Uso……73

3.4.4.2.1. JSP de inicio……73

3.4.4.2.2. Invocación del Action……75

3.4.4.2.3. Acceso a la capa de negocio……78

3.4.4.2.4. Acceso a la capa de datos……80

3.4.4.2.5. Retorno del resultado……85

3.4.5. Implementación del modelo de datos……87

3.4.5.1. Tablas……87

3.4.5.1.1. USUARIO……87

3.4.5.1.2. PEDIDO……88

3.4.5.1.3. LINEAPEDIDO……88

3.4.5.1.4. PRODUCTO……89

3.4.5.1.5. CATEGORIA……89

3.4.5.1.6. PRODCAT……89

3.4.5.2. Representación gráfica de las Tablas de la BD……90

3.5. Grupo de pruebas……92

3.5.1. Introducción……92

3.5.2. Posibles pruebas……92

4. Recomendaciones……95

4.1. Alternativas al uso de JSP en la capa view……95

4.1.1. stxx……95

4.1.2. StrutsCX……95

4.1.3. VelocityStruts……95

 8

4.1.4. StrutsCocoon……96

4.2. El modelo debe ser simple……96

4.3. El modelo no tiene que exponer la tecnología……96

4.4. El modelo tiene que estar muy probado……97

4.5. El Action no es parte del modelo……97

4.6. La view no es parte del modelo……98

4.7. La view no tiene que llamar al modelo……98

4.7.1. No usar scriptlets en las JSPs……99

4.7.2. Utilizar taglibs……99

4.7.3. No enlazar directamente JSPs entre ellas……99

4.7.4. Pensar y leer mucho, codificar poco……100

4.7.5. Preferir ActionForms con request scope que con session scope……100

4.7.6. Refactorizar a menudo……101

4.7.7. El buen código se comenta solo……101

5. Conclusiones……103

5.1. Posibles mejoras en el producto final……103

5.2. Valoración personal……104

6. Referencias……106

6.1. Libros……106

6.2. Enlaces Internet……106

Anexo I. Instalación del entorno de desarrollo……108

 Anexo I.1. Software a utilizar……108

 Anexo I.2. Instalación del JDK 1.4……108

 Anexo I.2.1. Proceso de instalación……108

 Anexo I.2.2. Verificación de la instalación……109

 Anexo I.3. Instalación de Lomboz Eclipse IDE……109

 Anexo I.3.1. Introducción……109

 Anexo I.3.2. Proceso de instalación……109

 Anexo I.3.3. Verificación de la instalación……110

 Anexo I.3.4. Configuración de Eclipse……110

 Anexo I.4. Instalación de Apache Tomcat……110

 Anexo I.4.1. Proceso de instalación……110

 Anexo I.4.2. Verificación de la instalación……111

 9

 10

1. Introducción

1.1. Motivaciones

Las motivaciones al presentar una propuesta basada en la tecnología J2EE no era otra que la

‘comodidad’ y ‘agilidad’ que me aportaba el hecho de trabajar diariamente con esta tecnología en mi

ámbito laboral. Al plantearme que tipo de proyecto realizar, primó el poder compaginar estas dos

actividades y no perder excesivo tiempo en entender la tecnología y todos sus ‘secretos’, pudiendo así,

centrarme en el desarrollo en si del proyecto de final de carrera.

Evidentemente, también hay un componente de ilusión, ya que si decidí en su día encaminar mi

futuro en esta línea es porque me interesa mucho el desarrollo de aplicativos para clientes utilizando

tecnologías ‘modernas’, y de plena actualidad como pueden ser este tipo de entornos.

1.2. Objetivos

El objetivo principal de este proyecto ha sido enseñar mediante un ejemplo de aplicativo sencillo,

como desarrollar una aplicación con la plataforma J2EE mediante el Framework Struts.

1.3. Organización de la memoria

La organización de esta memoria sigue un orden lógico dentro de lo que es la explicación normal

de un proyecto de Ingeniería Informática.

Primero se han expuesto los Fundamentos teóricos a partir de los cuales el lector de la

memoria puede tener una referencia clara posteriormente de el porque de las cosas que se irá

encontrando en el desarrollo del mismo.

Después se han descrito las Fases en las que se ha encontrado el proyecto desde su inicio

hasta su fin, pasando por las primeras fases de captación de requerimientos, análisis posterior del

problema, exposición de las posibles soluciones, diseño de los componentes que formarían parte,

implementación de los mismos con sus pertinentes revisiones y retoques y finalmente, las pruebas

correspondientes a cada parte de la aplicación.

 11

En el siguiente capitulo se podrá ver que decisiones se tomaron una vez tenia todos los

requerimientos claros en cuanto al Diseño del proyecto. Se explicará todos los patrones de diseño que

se suelen utilizar como solución en este tipo de entornos.

Posteriormente ya se entra en la explicación de como el Diseño explicado en el capitulo anterior

se llevo a cabo, es decir, a la Implementación propiamente dicha.

Finalmente, se incluye una serie de pruebas que se realizaron para comprobar el correcto

funcionamiento del aplicativo y que cumpliese con los requerimientos marcados en el inicio, estas

pruebas incluyen tanto las pruebas realizadas al fin, como las pruebas realizadas durante la

implementación, es en este tipo de pruebas cuando se comprueba que realmente se puede pasar a la

siguiente iteración de tu proyecto.

 12

 13

2. Fundamentos teóricos

Struts es un framework de desarrollo de aplicaciones, basada en tres tecnologías principales:

• La arquitectura MVC (Modelo-View-Controller)

• El estándar J2EE

• El framework de código abierto Yakarta Struts.

A continuación se hace una introducción a estas tres tecnologías:

2.1. MVC

La arquitectura de Struts está basada en una arquitectura conocida como Model - View -

Controller (MVC).

Cuando se quiere desarrollar una aplicación con Struts es preciso tener presente este hecho, y

más claramente puede decirse que no tiene mucho sentido plantearse utilizar Struts sin estar dispuesto a

hacer las separaciones entre las 3 capas.

MVC fue introducido el año 1988 para el desarrollo de interfaces de usuario en sistemas

Smalltalk-80.

Las funciones de cada capa son las siguientes:

• Model: contiene únicamente la lógica de negocio, y es completamente independiente de

las otras 2 capas. Es el único lugar desde donde se accede a datos, back ends, etc.

• View: contiene la lógica de presentación del modelo. Interactúa con el modelo para

acceder a su estado. Recibe órdenes del controller para seleccionar la pantalla a

mostrar.

• Controller: contiene el flujo de la aplicación. Traslada las peticiones del usuario a

llamadas al modelo para invocar las operaciones de negocio. Selecciona la siguiente

pantalla a mostrar y lo transmite a la view.

 14

Las acciones que el usuario realiza sobre el navegador se transmiten a un servlet que actúa de

controller, intercepta todas las peticiones y las trata adecuadamente.

El tratamiento de una petición implica llamar a los objetos del model. Una vez se ha acabado la

petición, el controller instancia la view correspondiente al resultado de la petición, y finalmente ésta view

se muestra en el navegador del usuario.

2.2. J2EE

Java 2 Enterprise Edition (J2EE) es un estándar creado para facilitar el desarrollo de

aplicaciones multi-nivel. Ante la complejidad y heterogeneidad de este tipo de sistemas, J2EE ofrece una

arquitectura unificada y modular que facilita el desarrollo de aplicaciones distribuidas, proporcionándoles

una serie de servicios que permiten acelerar el proceso de desarrollo dentro de las necesidades

específicas de una empresa.

Las características más importantes de la arquitectura J2EE son la portabilidad (posibilitada

por la definición de un estándar y de un proceso de certificación contra el estándar), la escalabilidad

(gracias sobre todo a los servicios de distribución de componentes), la simplicidad (gracias a los servicios

incorporados) y la capacidad de integración con sistemas propietarios.

El desarrollo en J2EE se basa principalmente en las especificaciones de Enterprise JavaBeans,

Servlets y JSP, así como en la tecnología XML.

Navegador

Controller (Servlet)

View (JSP)

 Datos,
BackEnds

…

Web Container

Modelo
(Bean)

 15

La plataforma J2EE proporciona implementaciones de los aspectos más complejos del desarrollo

de aplicaciones de gran escala de modo que los desarrolladores puedan centrarse en los problemas

específicos, generalmente la lógica de negocio y las interfaces de usuario.

El modelo de aplicaciones de J2EE encapsula las distintas capas de funcionalidad en distintos

tipos de componentes. La lógica de negocio se encapsula en Enterprise JavaBeans (EJB), la interacción

de usuario puede realizarse a través de páginas HTML, Applets u otras tecnologías, y controlarse desde

el servidor mediante Servlets o JSP.

Modelo de aplicaciones J2EE

El estándar J2EE promueve la reutilización y la compatibilidad de productos dentro de la

plataforma, por lo que normalmente una aplicación combinará el desarrollo de componentes específicos

y presentaciones personalizadas con la integración de componentes o servicios de prefabricados. El

modelo de aplicaciones J2EE divide las aplicaciones en tres partes fundamentales: componentes,

contenedores y conectores.

Los componentes contienen el desarrollo de la aplicación. Producidos con las tecnologías

citadas más arriba, pueden ser reutilizados entre aplicaciones y fabricantes.

Los contenedores proporcionan el entorno de ejecución de los componentes, y los comunican

con sus clientes, aportando varios servicios a ambos, permitiendo configurar muchos comportamientos

en tiempo de despliegue, en vez de en tiempo de desarrollo. Los contenedores los desarrollan empresas

de sistemas (típicamente servidores de aplicaciones: BEA, Oracle, IBM...).

 16

Los conectores permiten la comunicación de aplicaciones J2EE con otros tipos de sistemas.

Una API portable permite la integración con sistemas existentes dentro de la empresa o con tecnologías

existentes más allá del estándar J2EE.

2.3. Struts

A continuación se explica el funcionamiento de Struts. En el siguiente diagrama de interacción,

extraído de http://rollerjm.free.fr/pro/Struts11.html, puede verse el flujo de una interacción del usuario con

una aplicación Struts.

Struts se centra principalmente en la capa de controller. Todas las peticiones que hace el

usuario desde su navegador hacia la aplicación pasan por un mismo servlet, el ActionServlet, que

delega la ejecución de la petición en un objeto de tipo RequestProcessor, que es el que controla el flujo

de la petición.

En primer lugar instancia un objeto ActionForm. Los datos que conforman el input de la

operación y que el usuario ha rellenado en un formulario HTML son recogidos por Struts y puestos

dentro del ActionForm. Estos datos pueden tener diferentes niveles de visibilidad, y dependiendo de este

 17

nivel Struts los almacena en un puesto u otro: request (HttpServletRequest), session (HttpSession), o

application (ServletContext).

Según la URL invocada (ActionMapping), se instancia una subclase de Action entre los

configurados en el fichero struts-config.xml. El código del Action es el que hace los llamamientos al

modelo, bien directamente, bien a través del patrón de diseño BusinessDelegate, que viene a ser como

una interfaz restringida del modelo en las necesidades particulares de la aplicación.

Los datos de vuelta de la operación llenan un bean que puede ser el mismo ActionForm si tiene

scope de sesión, o bien, un bean específico por los datos de respuesta de la petición.

El resultado final de una petición es un objeto ActionForward que el Action ha escogido según

ha ido la ejecución de la lógica de negocio (“ok”, “error”,...). En el fichero de configuración, se establece

la relación (mapping) entre cada final de operación y el recurso que debe recibir control en cada caso.

Este recurso puede ser otro Action, una JSP, etc. El controller le pasa la petición al objeto

correspondiente, haciendo un forward o un redirect según se haya definido en el mapping.

Ésta es la descripción más general de como es el flujo de una operación con Struts.

2.3.1. Estructura de una aplicación basada en Struts

2.3.1.1. Introducción

La ejecución de una petición a una aplicación Struts no difiere demasiado de la presentada

anteriormente.

Para introducir de una manera rápida los elementos principales de una aplicación Struts,

mostraremos la secuencia de la ejecución de una operación típica:

• Una JSP que contiene un formulario con unos campos de entrada se envía a la

aplicación. Los tags de las taglibs de Struts con que se han creado la JSP hacen que los

datos de los campos de entrada llenen los campos de un objeto del tipo ActionForm que

se ha definido específicamente para esta operación.

• La aplicación tiene especificado en su deployment descriptor que todas las peticiones las

trate siempre el mismo servlet: el ActionServlet proporcionado por Struts. El

ActionServlet, vía su RequestProcessor, obtiene un objeto ActionMapping que

contiene la información (almacenada en el fichero de configuración) de qué clase de

Action se tiene que instanciar para tratar la petición. El RequestProcessor instancia al

Action concreto y le invoca su método execute ().

 18

• El Action es propiamente la implementación de la operación. Dentro de su método

execute() tiene a su alcance toda la información que necesita para procesar la operación:

el objeto ActionForm que se ha creado en el paso 1, el servlet context de donde puede

obtener los datos de sesión, y los objetos HttpServletRequest y HttpServletResponse

por si los necesita. Para procesar la operación necesitará llamar a algún método de las

clases del modelo de negocio.

• Las clases del modelo hacen su trabajo apoyándose en los servicios que la

infraestructura les proporciona y retornan su resultado, o lanzan una excepción. Es

importante notar que estas clases no son en absoluto conscientes de si las están

llamando desde una aplicación Struts o desde cualquier otro tipo de aplicación.

• Según cuál sea el objeto devuelto por la lógica de negocio, o la excepción que se haya

lanzado, el Action creará beans con datos de respuesta y los pondrá como atributos de

la HttpRequest, o bien creará unos ActionErrors. Finalmente el Action escoge uno de

los ActionForwards definidos en el fichero de configuración struts-config.xml y lo pone

como valor de retorno del método execute().

• El ActionServlet busca a qué corresponde el forward que le ha pasado el Action y le

pasa el control. En este ejemplo el forward corresponde a una JSP, pero también podría

ser otro Action. La JSP de respuesta ya tendrá los tags correspondientes para extraer la

información de los ActionErrors o de los request attributes que el Action ha rellenado.

2.3.1.2. Componentes de la view

2.3.1.2.1 JSPs

Struts no requiere en concreto ninguna tecnología concreta de implementación de la view,

JavaServer Pages es la más extendida y es la que se usa para ilustrar esta parte de la estructura de una

aplicación.

Es importante notar que dentro del estándar JSP hay algunas prácticas que pueden impactar

negativamente en algunos aspectos importantes como pueden ser la facilidad de mantenimiento o la

reusabilidad.

Si se tienen en cuenta las recomendaciones, las JSP serán muy compactos, fáciles de entender

y de mantener, y estarán formadas únicamente por tags HTML y de las diferentes taglibs escogidas.

A continuación se relacionan las taglibs más importantes proporcionadas por Struts:

 19

• html: Generan código HTML, sobretodo formularios. Su funcionalidad consiste en

enlazar de manera muy dinámica los objetos que manejan los Actions (ActionForms,

request attributes, etc) con los controles HTML del formulario.

• bean: Acceso a beans que los Action han dejado en algún scope (request o session), y

creación de beans a partir de parámetros, cabeceras o cookies, que después se pueden

referenciar en otros lugares de la página.

• logic: Generación condicional de HTML, o generación iterativa de HTML a partir de

beans que sean colecciones java.util o arrays. Si un Action produce un bean que es una

colección de beans, es posible generar una tabla con unos pocos tags.

Para obtener información de todos los taglibs existentes para el desarrollo de las JSP, se puede

acceder al siguiente enlace:

http://struts.apache.org/struts-taglib/

2.3.1.2.2 Recursos

 El concepto de la internacionalización (i18n) se basa en conseguir generar un aplicativo que

soporte cualquier idioma mediante el uso de un fichero de properties en el que definiremos las keys y su

respectivo literal en el idioma en concreto.

De este modo tendremos un fichero de recursos por cada idioma soportado por la aplicación.

No hay límite en el número de idiomas que una aplicación puede soportar. Struts adapta el

soporte de multiidioma de Struts basado en el locale, mediante el cual detecta el idioma que hay en el

navegador y utiliza el recurso (fichero de properties) adecuado.

2.3.1.2.3 ActionForms

Muchas de las JSPs de una aplicación contienen datos de entrada en un formulario HTML. En la

arquitectura Struts, estos datos quedan a disposición de las Actions en forma de objetos del tipo

ActionForm.

Hay dos maneras de implementar un ActionForm:

 20

• Haciendo una subclase trivial de ActionForm con una variable por cada campo del

formulario, con sus métodos accessors, y que implemente los métodos validate() y

reset().

• Declarándola del tipo DynaActionForm y configurándola en el struts-config.xml. Las

DynaActionForms crean dinámicamente los campos que se le han configurado, con el

tipo correspondiente, y evitan tener que hacer tantas subclases triviales de ActionForm.

Para hacer validaciones específicas sí que es preciso hacer subclases de

DynaActionForm, o bien utilizar el Struts Validator

Es dentro de las ActionForms donde se produce la validación de los datos. En las del primer

tipo ya se ve que el método validate() es lo que hace este trabajo. El método devuelve un objeto

ActionErrors con la lista de los errores que se han encontrado. Si esta lista no es vacía, Struts vuelve a

redireccionar a la página de entrada del Action donde el usuario podrá ver los errores de validación

mediante los tags <html:errores> correspondientes.

Uno de los problemas que puede tener esta manera de validar es que se acaba escribiendo

mucho código de validación similar en muchos ActionForms. Es por ello que existe un componente de

Struts llamado Validator que permite definir las validaciones en un lugar centralizado (el mismo Validator

ya proporciona los más habituales) y referenciarlas desde el fichero de configuración.

2.3.1.2.4 ActionErrors

Cualquier excepción que se produzca en el model durante la ejecución de la aplicación, o

cualquier error del usuario, por ejemplo en forma de datos de entrada incorrectos, tienen que acabar

convirtiéndose en un ActionError.

Los ActionErrors se pueden crear a partir de una string con el mensaje de error, pero lo

recomendable es hacerlo a partir de una clave en el fichero de recursos, lo cual permitirá que el error se

presente en el idioma del usuario.

El tag <html:errors> es el utilizado para mostrar los ActionErrors a los usuarios. Éste tag

puede estar en cualquier JSP de entrada de datos. Si el objeto ActionErrors está vacío no genera nada,

pero si contiene algún ActionError entonces se mostrará. Además con el parámetro property se pueden

seleccionar qué mensajes de la lista se quieren incluir en aquella posición concreta de la página. Así, si

se quiere, se pueden mostrar mensajes de error de validación cerca de los campos de entrada donde se

han producido.

 21

2.3.1.3. Componentes del controller

2.3.1.3.1 ActionServlet

Es el componente que hace propiamente de controller servlet del JSP, y que por tanto centraliza

todas las peticiones que se hacen en la aplicación. De trabajo hace bien poco ya que rápidamente

delega en un objeto RequestProcessor.

Normalmente una aplicación Struts no necesitará más que especificar el servlet en su

deployment descriptor y asignarle las URLs que le interesen (típicamente, *.do).

2.3.1.3.2 RequestProcessor

RequestProcessor está diseñado para poder modificar el comportamiento. Consta de una serie

de métodos processXxxxx (por ejemplo, processPreProcess, processActionForm, processValidate,

processForwardConfig) que se invocan de manera ordenada y documentada, de manera que se puede

modificar el comportamiento.

2.3.1.3.3 Ficheros de configuración

Todos los parámetros configurables de una aplicación Struts se especifican en un único fichero

struts-config.xml. Hay muchos aspectos de la aplicación que requieren sus entradas en el fichero. La

lista que va a continuación expone los más importantes. Para una referencia completa referirse a la

documentación de Struts o directamente a

http://yakarta.apache.org/struts/dtds/struts-config_1_1.dtd.

Action
Mappings

Una entrada por cada Action definida a la aplicación, con su path,

la referencia a una ActionForm, si es que usa, y la clase que la implementa

Action
Forwards

Por cada Action, una entrada por cada uno de los posibles finales

de la operación. Típicamente “success” o “failure”, pero pueden haber

 22

muchos más. Cada definición de forward tiene la URL a la que se trasladará

la petición, y si se hará mediante un “forward” (lo más normal) o un “redirect”

Global
Forwards

Si hay muchas operaciones que pueden acabar invocando el mismo

forward se puede definir a nivel global. Buenos ejemplos son la página de

inicio, o una página genérica de error.

Form
Beans

Todas las ActionForms (o form beans) definidas para la aplicación.

Se especifica de qué subclase de ActionForm son, o, en el caso de ser

DynaForms, cuáles properties tienen y de qué tipos son

Message
Resources

Los ficheros de recursos definidos por la aplicación.

Plug-ins

Los Struts plug-ins instalados.

Controller

Se especifica de qué clase es el request processor.

Como se puede apreciar, es mucha información. Si la aplicación es muy grande eso podría

representar un problema de mantenimiento. Por ello Struts tiene el concepto de módulos que permiten

dividir la aplicación en una serie de partes, cada una de ellas con su fichero de configuración.

2.3.1.3.4 ActionMapping

Un objeto ActionMapping no es más que la definición de un Action que se ha encontrado en el

fichero de configuración transformada en un objeto. Lo utiliza el propio framework para saber que Action

concreto se ha de instanciar, y después la pasa también como parámetro al propio Action por sí se

necesita (normalmente sólo hace falta para buscar el forward a retornar).

 23

2.3.1.3.5 Action

El objeto Action tiene su método principal, execute(), que es donde se escribe la lógica de la

operación. Cada operación se implementa habitualmente en una subclase de Action diferente. Struts

pasa 4 parámetros a execute():

• La petición, en forma de objeto HttpServletRequest

• La respuesta, en forma de objeto HttpServletResponse

• El ActionMapping que ha originado la petición

• El ActionForm que contiene los datos de entrada

El proceso de la ejecución de un Action es, de manera simplificada:

• Obtener los datos de entrada (en este punto ya han sido validadas)

• Instanciar objetos del modelo y de servicios, invocar los métodos que sean necesarios

para llevar a cabo la operación.

• Poner los datos de salida en el puesto que haga falta (como request attribute, o en el

mismo ActionForm si ésta tiene un scope de sesión).

• Retornar un objeto ActionForward según haya sido el resultado de la operación

Si los objetos del modelo lanzan alguna excepción, ésta se ha de capturar, y retornar un forward

adecuado, que probablemente será uno que lleve a una JSP de error, o en la misma JSP de entrada de

datos, donde se mostrará un mensaje entendedor para el usuario.

Es muy normal que la mayoría de operaciones tengan algún proceso común en todas las

operaciones. Por ejemplo, el tratamiento de excepciones genéricas, o escribir en el log la entrada y la

salida de la acción, etc. Por ello se puede crear una action básica que derive de Action, y hacer que

todas las acciones de la aplicación deriven de nuestra acción base.

2.3.1.3.6 ActionForward

Un Action siempre tiene que acabar devolviendo un objeto ActionForward. No lo ha de crear

explícitamente, sino que estará configurado en el struts-config.xml, y por tanto disponible en el objeto

ActionMapping que se le pasa con execute().

 24

2.3.1.4. Componentes del modelo

Struts no proporciona clases que se puedan considerar pertenecientes al modelo. Cada

aplicación debe empezar desde cero, a partir de los requerimientos, a construir un modelo conceptual

primero, y después un modelo de diseño. A menudo, los dos modelos no son demasiado diferentes,

sobre todo si la aplicación no es demasiado grande. De manera simplista puede decirse que el modelo

de diseño es más detallado que el conceptual y ya contiene algún elemento más tecnológico, como los

servicios de invocar o patrones de diseño. El modelo conceptual es más un modelo de análisis.

2.3.1.4.1 Modelo conceptual

La interfaz del modelo debe ser la más sencilla posible que cumpla todos los requisitos. La

simplicidad es básica para poder ser llamado fácilmente desde los Actions, y para poder codificar un

juego de pruebas de aceptación que sirvan para determinar si el modelo funciona tal y como se

especifica en los requisitos.

La interfaz del modelo también debe ser bastante intuitiva. Los objetos presentes en el modelo

tienen que representar objetos en el dominio de negocio, o sea, aquellos nombres de los que se habla en

los requerimientos (objetos de negocio o business objects).

2.3.1.4.2 Modelo de diseño

Para hacer un buen modelo de diseño es muy útil conocer las experiencias de gente que ha

intentado hacer cosas parecidas anteriormente. Un lugar donde están recogidas estas experiencias de

manera sistematizada es en los llamados patrones de diseño o design patterns.

Los primeros patrones de diseño fueron publicados el año 1994 en el libro “Design Patterns” de

Gamma, Helm, Johnson y Vlissides. Allí se define un patrón de diseño como “una descripción de

comunicaciones entre objetos que resuelven un problema genérico de diseño”.

Todos los patrones de diseño son aplicables a cualquier tipo de aplicación. En el mundo de las

aplicaciones web también han aparecido muchos problemas que son más específicos del entorno J2EE.

Tal vez el mejor lugar donde se recogen patrones de diseño específicos de J2EE es a los Java

Blueprints de Sun. A continuación se presentan algunos patrones de diseño muy útiles de Java

Blueprints.

 25

Front Controller

Centralización de todas las peticiones de una aplicación en un único

objeto que las distribuye y procesa de manera consistente.

Justamente: Struts ActionServlet.

Data Access Object
(DAO)

Desacopla el acceso a los datos de la interfaz externa de un objeto

persistente. Todo el acceso a datos está incluido en la

implementación del DAO, pero su interfaz externa es la de un objeto

normal, independiente de base de datos.

Transfer Object (o
Value Object)

Los valores de retorno de los métodos de los business objects a

menudo pueden constar de datos que se han extraído en diferentes

llamadas internas, por ejemplo haciendo joins de diferentes tablas y

después añadiendo datos obtenidos invocando una transacción. Un

transfer object reúne todos estos datos y los devuelve de una sola

vez al cliente.

Es uno de los mejores artilugios para hacer más sencilla una interfaz

de modelo.

Value List Handler

Estrategia para implementar listas virtuales. Es el caso en que el

cliente hace una petición que tiene que retornar una lista de n

elementos donde n puede llegar a ser muy grande. Junto con

Transfer Object y Data Access Object es posible iterar sobre una lista

larga sólo unos pocos elementos a la vez sin haberlos de pedir todos

de entrada.

2.3.1.4.3 Modelo de datos

``Un modelo de datos es un sistema formal y abstracto que permite describir los datos de

acuerdo con reglas y convenios predefinidos. Es formal pues los objetos del sistema se manipulan

 26

siguiendo reglas perfectamente definidas y utilizando exclusivamente los operadores definidos en el

sistema, independientemente de lo que estos objetos y operadores puedan significar.''

Según Codd :

``Un modelo de datos es una combinación de tres componentes:

• Una colección de estructuras de datos (los bloques constructores de cualquier base de

datos que conforman el modelo);

• Una colección de operadores o reglas de inferencia, los cuales pueden ser aplicados a

cualquier instancia de los tipos de datos listados en (1), para consultar o derivar datos de

cualquier parte de estas estructuras en cualquier combinación deseada;

• Una colección de reglas generales de integridad, las cuales explícita o implícitamente

definen un conjunto de estados consistentes --estas reglas algunas veces son

expresadas como reglas de insertar-actualizar-borrar.''

Un modelo de datos puede ser usado de las siguientes maneras:

• Como una herramienta para especificar los tipos de datos y la organización de los

mismos que son permisibles en una base de datos específica;

• Como una base para el desarrollo de una metodología general de diseño para las bases

de datos;

• Como una base para el desarrollo de familias de lenguajes de alto nivel para

manipulación de consultas (querys) y datos;

• Como el elemento clave en el diseño de la arquitectura de un manejador de bases de

datos.

El primer modelo de datos desarrollado con toda la formalidad que esto implica fue el modelo

relacional, en 1969, mucho antes incluso que los modelos jerárquicos y de red. A pesar de que los

sistemas jerárquicos y de red como software para manejar bases de datos son previos al modelo

relacional, no fue sino hasta 1973 que los modelos de tales sistemas fueron definidos, apenas unos

cuantos años antes de que estos sistemas empezaran a caer en desuso.

 27

 28

3. Fases del proyecto

3.1. Introducción

En el transcurso de un proyecto de Ingenieria del Software, sea cual sea la plataforma o entorno

de desarrollo, hay un conjunto de fases por las que pasa el mismo que son perfectamente definibles y

secuenciales, ya que la consecución de una conlleva el inicio de la siguiente.

En el caso real, cuando te ves inmerso, esto no es así 100%, ya que normalmente por falta de

tiempo por los periodos marcados por las fechas de entrega y por razones obvias de la imperfección del

ser humano para hacer las cosas correctamente, estas fases se ven mezcladas entre si y eso conlleva a

que en fechas posteriores a la entrega del proyecto haya un, a veces excesivamente largo y otras veces

inacabable proceso de detección de errores y corrección de incidencias.

Las fases por las que pasa el proyecto serian las siguientes:

1) Captura de requerimientos.

2) Diseño de la solución para satisfacer los requerimientos previos.

3) Implementación del diseño pactado.

4) Pruebas del producto.

5) Rectificaciones

3.2. Captura de Requerimientos

3.2.1. Introducción

En el inicio de un ‘proyecto real’ es imprescindible una serie de reuniones previas con el

cliente para establecer cuales van a ser los requerimientos del sistema.

Estos requerimientos no son estáticos, esto quiere decir que no son tomados y establecidos al

principio del proyecto y se mantienen inamovibles durante la implementación del mismo, sino que van

sufriendo alteraciones / modificaciones a partir de las nuevas ideas del cliente o bien en las

presentaciones de la evolución del proyecto en las cuales el cliente tiene contacto directo y visual con la

futura aplicación.

 29

Observaciones : Por cuestiones obvias implícitas en este proyecto en las que el cliente y el

consultor son la misma persona, obviaremos el cambio de requerimientos durante la implementación y

plantearemos una captación de requerimientos inicial. En los siguientes puntos se intentará simular de la

mejor manera posible el proceso.

3.2.2. Clasificación de los requerimientos.

El clasificar requerimientos es una forma de organizarlos, hay requerimientos que por sus

características no pueden ser tratados iguales. Por ejemplo, los requerimientos de entrenamiento de

personal no son tratados de la misma manera que los requerimientos de una conexión a Internet.

La siguiente es una recomendación de como pueden ser clasificados los requerimientos aunque

cada proyecto de software pueda usar sus propias clasificaciones.

3.2.2.1. Requerimientos del "entorno"

3.2.2.1.1 Descripción

El entorno es todo lo que rodea al sistema. Aunque no podemos cambiar el entorno, existen

cierto tipo de requerimientos que se clasifican en esta categoría por que:

El sistema usa el entorno y lo necesita como una fuente de los servicios necesarios para que

funcione. Ejemplos del entorno podemos mencionar: sistemas operativos, sistema de archivos, bases de

datos.

El sistema debe de ser robusto y tolerar los errores que puedan ocurrir en el entorno, tales como

congestión en los dispositivos y errores de entrada de datos, por lo tanto el entorno se debe de

considerar dentro de los requerimientos.

3.2.2.1.2 Recopilación de requerimientos del cliente

- El aplicativo ha de poder ser visitado desde cualquier Terminal portátil o PC de tipo

estándar.

 30

• S.O. -> Windows, a partir de la versión Windows 2000

• S.O. -> Linux, cualquiera de las distribuciones más comunes (Red Hat, Suse,

etc...)

- Ha de soportar el acceso desde cualquiera de los dos navegadores de mayor uso entre

los usuarios.

• Internet Explorer.

• Mozilla Firefox.

- El sistema de almacenamiento ha de ser robusto y garantizar la persistencia de los

datos, asi como un volumen considerable de peticiones de clientes del servicio.

3.2.2.2. Requerimientos “ergonómicos”

3.2.2.2.1 Descripción

El mas conocido de los requerimientos ergonómicos es la interface con el usuario o GUI (Graphic

User Interface). En otras palabras, los requerimientos ergonómicos son la forma en que el ser humano

interactua con el sistema.

3.2.2.2.2 Recopilación de requerimientos del cliente

• El ‘look & feel’ del aplicativo ha de comportar un aprendizaje rápido e intuitivo.

Seguir el concepto de formularios, tablas para la muestra de información por

pantalla, botonera de fácil acceso a todos los puntos del aplicativo.

• El tema del diseño del mismo se dejará total libertad al diseñador, pudiendo el

cliente rectificar colores y posicionamiento de objetos en posteriores presentaciones

del estado del proyecto, cambios que no comporten una reestructuración del

comportamiento del aplicativo, sólo cambios ‘estéticos’.

• La GUI ha de seguir el siguiente esquema:

 31

3.2.2.3. Requerimientos de interface

3.2.2.3.1 Descripción

La interface es como interactua el sistema con el ser humano o con otros sistemas (el enfoque

es prácticamente el opuesto a los requerimientos ergonómicos), La interface es la especificación formal

de los datos que el sistema recibe o manda al exterior. Usualmente se especifica el protocolo, el tipo de

información, el medio para comunicarse y el formato de los datos que se van a comunicar.

3.2.2.3.2 Recopilación de requerimientos del cliente

- La navegación se hará mediante el clic de las opciones que saldrán continuamente en

el lado izquiero de la interfaceo bien los botones que toque en cada momento.

- Toda la introducción de datos se realizará mediante formularios,cada parámetro

dependerá de a que se refiere el input en cuestión.

• Long para objetos como precios.

 32

• Strings para nombres, apellidos, etc...

3.2.2.4. Requerimientos funcionales

3.2.2.4.1 Descripción

Estos son los que describen lo que el sistema debe de hacer. Es importante que se describa el

¿Que? Y no el ¿Como?. Estos requerimientos al tiempo que avanza el proyecto de software se

convierten en los algoritmos, la lógica y gran parte del código del sistema.

3.2.2.4.2 Recopilación de requerimientos del cliente

• Se permitirá hacer Login y Logout a usuarios ya registrados.

• Permitirá el registro de nuevos usuarios.

• Permitirá la modificación de los datos de un usuario registrado.

• Permitirá mostrar el catálogo de todos los productos en todo momento.

• Permitirá mostrar el catálogo por categoría de todos los productos en todo

momento.

• Permitirá mostrar la información de cada producto por separado.

• Permitirá añadir un producto a la cesta.

• Permitirá eliminar/modificar linea de un pedido.

• Permitirá ver la cesta de un usuario que este logueado.

• Permitirá ver los pedidos de un usuario que este logueado.

• Permitirá eliminar la cesta de pedidos de un usuario logueado.

• Permitirá tramitar un pedido de un usuario logueado.

• Permitirá exportar a pdf el catálogo de productos.

 33

3.2.2.5. Requerimientos de desempeño

3.2.2.5.1 Descripción

Estos requerimientos nos informan las características de desempeño que deben de tener el

sistema. ¿Que tan rápido?, ¿Que tan seguido?, ¿Cuantos recursos?, ¿Cuantas transacciones? .

Este tipo de requerimientos es de especial importancia en los sistemas de tiempo real en donde

el desempeño de un sistema es tan crítico como su funcionamiento.

3.2.2.5.2 Recopilación de requerimientos del cliente

• Apartado sin requeriemientos ya que aquí entramos en un tema muy específico y

muy técnico.

• El aplicativo tendrá que ser rápido.

• Aceptar un número de transacciones concurrentes aceptable.

• Etc...

3.2.2.6. Disponibilidad

3.2.2.6.1 Descripción

Este tipo de requerimientos se refiere a la durabilidad, degradación, portabilidad, flexibilidad,

contabilidad y capacidad de actualización. Este tipo de requerimientos es también muy importante en

sistemas de tiempo real puesto que estos sistemas manejan aplicaciones críticas que no deben de estar

fuera de servicio por periodos prolongados de tiempo.

3.2.2.6.2 Recopilación de requerimientos del cliente

• Apartado sin requeriemientos ya que aquí entramos en un tema muy específico y

muy técnico.

 34

3.2.2.7. Entrenamiento

3.2.2.7.1 Descripción

Este tipo de requerimientos se enfoca a las personas que van usar el sistema. ¿Que tipo de

usuarios son?, ¿Que tipo de operadores?, ¿Que manuales se entregarán y en que idioma?

Este tipo de requerimientos, aunque muchas veces no termina en un pedazo de código dentro de

el sistema, son muy importantes en el proceso de diseño ya que facilitan la introducción y aceptación de

el sistema en donde será implementado.

3.2.2.7.2 Recopilación de requerimientos del cliente

• Se cuenta con que los usuarios serán de todo tipo : Tanto usuarios avanzados

como usuarios con poca experiencia en el manejo de aplicativos online, por lo tanto

como buscamos siempre solucionar el problema en el peor de los casos, el

aplicativo tendrá que ser ‘intuitivo’ y de fácil aprendizaje.

• El aplicativo no contará con ningun tipo de manual de utilización, ya que será un

aplicativo de carácter online, por lo tanto no es factible el hecho de anexar ningun

tipo de ayuda.

3.2.2.8. Restricciones de diseño

3.2.2.8.1 Descripción

Muchas veces las soluciones de un sistema de software son normadas por leyes o estándares,

este tipo de normas caen como "restricciones de diseño".

3.2.2.8.2 Recopilación de requerimientos del cliente

• No hay ningun tipo de restricción de diseño.

 35

3.2.2.9. Materiales

3.2.2.9.1 Descripción

Aquí se especifica en que medio se entregara el sistema y como esta empaquetado. Es

importante para definir los costos de industrialización del sistema.

3.2.2.9.2 Recopilación de requerimientos del cliente

• Al tratarse de un aplicativo online en este apartado sólo se tendrá en cuenta que el

sistema será implantado en un servidor y debería tener un responsable que diese

soporte al sistema, para estar pendiente a posibles caidas del servidos, fallos en el

sistema, interrupciones temporales del servicio, etc..

• Los resources del aplicativo serán entregados en un war (web application

resources), para su fácil despliegue en cualquier Servidor Web o Servidor de
Aplicaciones. Este war contendrá la estructura lógica de carpetas de cualquier

aplicación Web para su correcto despliegue.

3.2.3. Manejo de requerimientos.

De acuerdo con el "Capability Maturity Model" (CMM) [A4], el manejo de requerimientos

involucra:

"Establecer y mantener un acuerdo con el cliente sobre los requerimientos de el proyecto de

software. Este acuerdo son los requerimientos de el sistema alojados al software." … "Este acuerdo

cubre requerimientos técnicos y no técnicos (como fechas de entrega). El acuerdo forma las bases para

estimar, planear, ejecutar y monitorear el proyecto de desarrollo de software a través de todo su ciclo de

vida." … "Bajo las restricciones del proyecto, el grupo de manejo de requerimientos toma las medidas

necesarias para que los requerimientos que están bajo su responsabilidad estén documentados y

controlados"

¿De que manera podemos controlar los requerimientos de software si estos siempre evolucionan

con el tiempo?. El CMM nos proporciona las guías para lograrlo.

 36

"Para lograr el control de los requerimientos, el grupo de requerimientos revisa los

requerimientos antes de que estos sean incorporados al proyecto de software y cada vez que los

requerimientos cambian los planes, productos, y actividades son ajustadas para quedar en línea con los

nuevos requerimientos de software".

En otras palabras, para obtener el nivel que requiere el CMM en manejo de requerimientos

débenos de tomar en cuenta dos cosas.

Que los requerimientos deben de ser revisados (y aprobados) por el grupo de requerimientos,

y no son impuestos por en su totalidad por presiones externas ajenas al proyecto.

El requerimiento técnico podrá ser impuesto por el mercado o presiones de la competencia, pero

entonces los requerimientos no técnicos (Calidad, Costo y Tiempo de entrega) deberán estar

especificados de común acuerdo con el grupo de requerimientos del proyecto de software.

Los requerimientos técnicos y no técnicos forman un conjunto entre si, si cambia uno

forzosamente deberán cambiar los demás. Esto es: más contenido técnico implica o más costo, o
menos calidad o mas tiempo estimado de entrega. De modo que los cambios técnicos deberán ser

aprobados por el grupo de requerimientos y este grupo estimará los impactos en tiempo, costo, calidad.

El resultado de la estimación es la entrada a los líderes del proyecto para decidir si el cambio se acepta o

no.

Estos dos puntos son los esenciales del manejo de requerimientos en CMM.

Una version completa del CMM (en ingles) puede ser bajada gratuitamente de el "Software

Engineering Institute" de la Universidad de Carnegie Mellon.

3.3. Diseño

3.3.1. El concepto de servicio

La capa lógica es la encargada de proporcionar implementaciones de la lógica de negocio para

la capa cliente. Está basada en el concepto de servicio, el cual podríamos definir como un grupo de

funcionalidades relacionadas entre sí. Así pues, un servicio de la capa de lógica proporcionará diferentes

métodos que contienen la implementación necesaria para solucionar una funcionalidad requerida para el

sistema, y cada uno de ellos podrá ser invocado de manera independiente del resto.

 37

3.3.2. Construcción de servicios

A continuación podemos ver los pasos necesarios para crear un componente de negocio bajo la

concepción de servicio:

• Construir un interface de tipo BusinessInterface, que publique los métodos de

negocio que el servicio ofrece. Dicho interface ha de extender el interface de la

arquitectura common.saf.j2ee.common.business.BusinessInterface, y se ha de

denominar siguiendo el patrón de nomenclatura XXXService, donde XXX es la

etiqueta identificativa del servicio, y el sufijo Service denota el hecho de ofrecer un

servicio.
• Construir una clase de tipo BusinessObject, que implemente el

BusinessInterface, y que contenga la implementación de la lógica de negocio

requerida para el servicio. Se ha de denominar siguiendo el patrón de nomenclatura

XXXBO, donde XXX es la etiqueta identificativa del servicio, y el sufijo BO denota el

hecho de ser un BusinessObject.

• Construir una clase de tipo BusinessDelegate, que implemente el

BusinessInterface, que realice labores de fachada, interceptando las peticiones y

delegándolas al BusinessObject. Se ha de denominar siguiendo el patrón de

nomenclatura XXXDelegate, donde XXX es la etiqueta identificativa del servicio.

3.3.3. Modelo de datos

Para resolver la capa de acceso a los datos existen diferentes estrategias como el uso del patrón

DAO, el uso de frameworks de control de la persistencia o también, alguna combinación de los

anteriores. Más adelante vamos a ver la combinación del patrón arquitectural DAO junto con el uso de un

framework de persistencia como Hibernate.

El patrón DAO (Data Access Object) es el elegido para manejar la persistencia de los objetos del

modelo del negocio, formando una capa separada que aísla al resto de capas de los detalles de

implementación de acceso a datos. Un objeto DAO puede controlar la persistencia de un único objeto

TransferObject simple, o de varios objetos TransferObject con una relación de agregación entre ellos.

Así pues, no es necesario que haya un objeto DAO para cada objeto TransferObject existente en la

aplicación. En el siguiente diagrama se muestra la relación entre los objetos de nuestra implementación

del patrón DAO:

 38

cd DAO.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

.10 Unregistered Trial Version EA 4.10 Unregistered Trial Versi

«interface»
DAOFactory

«interface»
DAO

«interface»
ProjectDAO

HibernateProjectDAO

«interface»
HibernateDAOFactory

BaseProjectDAO

_RootDAO

<<implements>>

«use»

«extend»
<<implements>>

«extend»

«extend»

«use»

Patrón arquitectural DAO

Para la localización de objetos DAO, se seguirá el patrón factoría, para ello la arquitectura

proporciona una clase abstracta: common.saf.j2ee.database.dao.DAOFactory y los objetos factorías

concretas, que implementan la factoría abstracta y que son los encargados de instanciar los diferentes

DAO. La clase DAOFactory abstracta declara métodos para localizar los objetos DAO, del tipo

getXXXDAO(), donde XXX hace referencia al objeto de negocio del que el DAO controla la persistencia.

Se han de implementar tantas factorías concretas como sistemas gestores de persistencia haya (por

ejemplo, puede haber una única factoría relacionada con el motor de persistencia Hibernate), y así como

tantos métodos de obtención de DAO’s como objetos de este tipo haya. La clase factoría concreta se

especifica en el siguiente parámetro del fichero de configuración de la aplicación:

 39

El tipo de factoría usada, así como el tipo de DAO concreto son totalmente transparentes para el

cliente.

Cada clase DAO es la encargada de dar persistencia en el sistema elegido al TransferObject
concreto, accediendo a dicho sistema mediante conexiones o sesiones proporcionadas por Servicios de

Acceso específicos para cada sistema gestor de persistencia. Un DAO ha de implementar un interface

específico para cada TransferObject, que a su vez ha de extender del interface genérico DAO. Para la

construcción de objetos DAO se han de seguir las siguientes normas:

• Construir un interface que declare los métodos a implementar por la clase DAO

encargada de proporcionar persistencia al TO correspondiente. Dicho interface ha

de extender del interface genérico: common.saf.j2ee.database.dao.DAO.

• Implementar los interfaces DAO necesarios según los sistemas gestores de

persistencia que necesitemos, implementado los métodos definidos anteriormente.

• Implementar el método adecuado getXXXDAO () en la factoría concreta, que

permita localizar el DAO específico.

Además, los interfaces de tipo DAO han de seguir el patrón de nomenclatura XXXDAO, donde

XXX es el nombre del objeto del modelo de negocio al que dotan de persistencia, y DAO denota el hecho

de tratarse de un objeto siguiendo dicho patrón.

3.3.4. Comunicación de datos entre las capas de
aplicaciones

La transferencia de datos entre capas se hará siguiendo el patrón TransferObject, un patrón

ampliamente usado en la transferencia de datos entre capas, y en el cual los objetos TransferObject
son representaciones de objetos del modelo de negocio. Básicamente, son objetos muy sencillos,

simples contenedores de datos, correspondientes a clases serializables, con atributos privados y

métodos getter/setter públicos, y los constructores necesarios. Todo objeto de negocio, habrá de ser

diseñado siguiendo el patrón TO, ya sea mediante un único TransferObject simple, o mediante un

TransferObject compuesto de agregaciones de otros objetos TransferObject. Para la construcción de

objetos TO se ha de construir una clase pública siguiendo las siguientes normas:

• Se ha de implementar el interface proporcionado por la arquitectura

java.io.Serializable.

• Han de disponer de al menos un constructor sin argumentos. Se pueden desarrollar

tantos constructores como se considere necesario.

 40

• Todos sus atributos, ya sean tipos primitivos, tipos Java, u otros TransferObject, o

colecciones de alguno de éstos, son definidos como privados, y además son

serializables.

• Se han de proporcionar métodos getter y setter públicos para cada uno de los

atributos definidos.

• Opcionalmente, se ha de rescribir el método toString () heredado de la clase Object,

para que devuelva una representación del objeto TransferObject, mostrando todos

sus atributos. El formato para dicha representación es el siguiente:

[nombreAttr1=valor, nombreAttr2=valor,....]. Se ha de tener en cuenta que si el

TransferObject contiene algún TransferObject agregado, la representación de

este atributo se ha de realizar invocando el respectivo método toString () de éste.

Además, los objetos de tipo TransferObject han de seguir el patrón de nomenclatura XXXTO,

donde XXX es el nombre del objeto del modelo de negocio que representa el TransferObject, y TO

denota el hecho de tratarse de un objeto siguiendo dicho patrón.

3.3.5. Patrones de diseño utilizados en el aplicativo

3.3.5.1. BUSINESS DELEGATE

3.3.5.1.1 Contexto

Patrón estructural. Un sistema multi-capa distribuido requiere invocación remota de métodos

para enviar y recibir datos entre las capas. Los clientes están expuestos a la complejidad de tratar con

componentes distribuidos.

3.3.5.1.2 Problema

Los componentes de la capa de presentación interactúan directamente con servicios de negocio.

Esta interacción directa expone los detalles de la implementación del API del servicio de negocio a la

capa de presentación. Como resultado, los componentes de la capa de presentación son vulnerables a

los cambios en la implementación de los servicios de negocio: cuando cambia la implementación del

 41

servicio de negocio, la implementación del código expuesto en la capa de presentación también debe

cambiar.

Además, podría haber una reducción de rendimiento en la red porque los componentes de la

capa de presentación que utilizan el API de servicio de negocio hacen demasiadas invocaciones sobre la

red. Esto sucede cuando los componentes de la capa de presentación usan directamente el API

subyacente, sin cambiar el mecanismo del lado del cliente.

3.3.5.1.3 Causas

 Los clientes de la capa de presentación necesitan acceder a servicios de negocio.

 Diferentes clientes, dispositivos, clientes Web, y programas, necesitan acceder a los

servicios de negocio.

 Los APIs de los servicios de negocio podrían cambiar según evolucionan los

requerimientos del negocio.

 Es deseable minimizar el acoplamiento entre los clientes de la capa de presentación y

los servicios de negocio, y así ocultar los detalles de la implementación del servicio.

 Los clientes podrían necesitar implementar mecanismos de caché para la información

del servicio de negocio.

 Es deseable reducir el tráfico de red entre el cliente y los servicios de negocio.

3.3.5.1.4 Solución

Utilizamos un Business Delegate para reducir el acoplamiento entre los clientes de la capa de

presentación y los servicios de negocio. El Business Delegate oculta los detalles de la implementación

del servicio de negocio, como los detalles de búsqueda y acceso de la arquitectura EJB.

El Business Delegate actúa como una abstracción de negocio del lado del cliente; proporciona

una abstracción para, y por lo tanto oculta, la implementación de los servicios del negocio. Utilizando

Business Delegate se reduce el acoplamiento entre los clientes de la capa de presentación y los

servicios de negocio del sistema. Dependiendo de la estrategia de implementación, Business Delegate

podría aislar a los clientes de la posible volatilidad en la implementación del API de los servicios de

negocio. Potencialmente, esto reduce el número de cambios que se deben hacer en el código de cliente

de la capa de presentación cuando cambie el API del servicio de negocio o su implementación

subyacente.

 42

Patrón Business Delegate

Sin embargo, los métodos de interface en el Business Delegate aún podrían requerir

modificaciones si cambia el API del servicio de negocio. Si bien es cierto, que los cambios se harán con

más probabilidad en el servicio de negocio que en el Business Delegate.

Con frecuencia, los desarrolladores son escépticos cuando un objetivo de diseño como la

abstracción de la capa de negocio provoca un trabajo adicional como pago por futuras ganancias. Sin

embargo, utilizando este patrón o esta estrategia resulta sólo en una pequeña cantidad de trabajo extra y

proporciona unos beneficios considerables. El principal beneficio es ocultar los detalles del servicio. Por

ejemplo, el cliente puede ser transparente para los servicios de búsqueda y nombrado. El Business

Delegate también maneja las excepciones de los servicios de negocio.

El Business Delegate podría interceptar dichas excepciones a nivel de servicio y generar en su

lugar excepciones a nivel de aplicación. Las excepciones de nivel de aplicación son fáciles de manejar

por los clientes, y pueden ser amigables para el usuario. El Business Delegate también podría realizar

de forma transparente cualquier operación de reintento o de recuperación necesaria en el caso de un

fallo en el servicio no exponer el cliente al problema hasta que se haya determinado que el problema no

es solucionable. Estas ganancias representan una razón competitiva para utilizar el patrón.

Otro beneficio es que el delegado podría almacenar resultados y referencias a servicios de

negocio remotos. El Caché puede mejorar el rendimiento de forma significativa, porque limita los

innecesarios y potencialmente costosos viajes por la red.

Finalmente, se debería tener en cuenta que este patrón se podría utilizar para reducir el

acoplamiento entre otra capas, no simplemente entre las capas de presentación y de negocio.

 43

3.3.5.1.5 Consecuencias

 Reduce el Acoplamiento y la manejabilidad: El Business Delegate reduce el

acoplamiento entre las capas de presentación y de negocio ocultando todos los

detalles de implementación de la capa de negocio. Es fácil manejar los cambios porque

están centralizados en un sólo lugar, el Business Delegate.

 Puede traduce las excepciones del servicio de negocio: El Business Delegate es el

responsable de traducir cualquier excepción de red o relacionada con la infraestructura

en excepciones de negocio, aislando a los clientes del conocimiento de las

particularidades de la implementación.

 Implementa recuperación de fallos y sincronización de Threads: Cuando el Business

Delegate encuentra un fallo en el servicio de negocio, puede implementar

características de recuperación automática sin exponer el problema al cliente. Si la

recuperación tiene éxito, el cliente no necesita saber nada sobre el fallo. Si el intento de

recuperación no tiene éxito, entonces el Business Delegate necesita informar al

cliente del fallo. Además, los métodos del Business Delegate podrían estar

sincronizados, si fuera necesario.

 Expone un Interface Simple y Uniforme a la Capa de Negocio: El Business Delegate,

para servir mejor a sus clientes, podría proporcionar una variante del interface

proporcionado por los EJB subyacentes.

 Impacto en el Rendimiento: El Business Delegate podría proporcionar servicio de

caché (y un mejor rendimiento) a la capa de presentación para las peticiones de

servicios comunes.

 Presenta una Capa Adicional: El Business Delegate podría verse como la adicción de

una capa innecesaria entre el cliente y el servicio, y con eso incrementar la complejidad

y disminuir la flexibilidad.

 Oculta los elementos Remotos: Aunque la localización transparente es uno de los

beneficios de este patrón, podría surgir un problema diferente debido a que el

desarrollador está tratando con un servicio remoto como si fuera un servicio local. Esto

podría suceder si el desarrollador del cliente no entiende que el Business Delegate es

cliente-proxy a un servicio remoto. Normalmente, unas llamadas a métodos en el

Business Delegate resultan en unas llamadas a métodos remotos.

 44

3.3.5.2. TRANSFER OBJECT

3.3.5.2.1 Contexto

Las aplicaciones cliente necesitan intercambiar datos con Beans Enterprise.

3.3.5.2.2 Problema

Las aplicaciones de la plataforma J2EE implementan componentes de negocio del lado del

servidor como beans de sesión y de entidad. Algunos métodos expuestos por los componentes de

negocio devuelven datos al cliente. Algunas veces, el cliente invoca a los métodos get de un objeto de

negocio varias veces para obtener todos los valores de los atributos.

Los beans de sesión representan los servicios de negocio y no se comparten entre usuarios. Un

bean de sesión proporciona métodos de servicios genéricos cuando se implementan mediante el patrón

Session Facade.

Por otro lado, los beans de entidad, son objetos transaccionales, multiusuario que representan

datos persistentes. Un bean de entidad expone los valores de los atributos proporcionando un método

accesor (también referidos como métodos get) por cada atributo que desea exponer.

Toda llamada a método hecha al objeto de servicio de negocio, ya sea a un bean de entidad o a

un bean de sesión, potencialmente es una llamada remota. Así, en una aplicación de JavaBeans

Enterprise (EJB) dichas llamadas remotas usan la capa de red sin importar la proximidad del cliente al

bean, creando una sobrecarga en la red. Las llamadas a métodos de beans enterprise podría penetrar

las capas de red incluso si tanto el cliente como el contenedor EJB que mantiene el bean de entidad se

están ejecutando en la misma JVM (Máquina Virtual Java), el mismo Sistema Operativo o máquina física.

Algunos vendedores podrían implementar mecanismos para reducir esta sobrecarga utilizando una

aproximación de acceso más directa pasando por encima de la red.

Según se incrementa la utilización de estos métodos remotos, el rendimiento de la aplicación se

puede degradar significativamente. Por lo tanto, utilizar varias llamadas a métodos get que devuelven

simples valores de atributos es ineficiente para obtener valores de datos desde un bean enterprise.

 45

3.3.5.2.3 Causas

 Todos los accesos a un bean enterprise se realizan mediante interfaces remotos. Cada

llamada a un bean enterprise potencialmente es una llamada a un método remoto con

sobrecarga de red.

 Normalmente, las aplicaciones tienen transacciones de lectura con mayor frecuencia

que las de actualización. El cliente solicita los datos desde la capa de negocio para su

presentación, y otros tipos de procesamientos de sólo-lectura. El cliente actualiza los

datos de la capa de negocio con mucha menos frecuencia con la que los lee.

 El cliente normalmente solicita valores que son algo más que un atributo o que son

dependientes del objeto de un bean enterprise. Así, el cliente podría invocar varias

llamadas remotas para obtener los datos necesarios.

 El número de llamadas que un cliente hace al bean enterprise impactan en el

rendimiento de la red.

3.3.5.2.4 Solución

Utilizar un Transfer Object para encapsular los datos de negocio. Se utiliza una única llamada a

un método para enviar y recuperar el Transfer Object. Cuando el cliente solicita los datos de negocio al

bean enterprise, éste puede construir el Transfer Object, rellenarlo con sus valores de atributos y

pasarlo por valor al cliente.

Los clientes normalmente solicitan más de un valor a un bean enterprise. Para reducir el número

de llamadas remotas y evitar la sobrecarga asociada, es mejor el Transfer Objects para transportar los

datos desde el bean enterprise al cliente.

Cuando un bean enterprise utiliza un Transfer Object, el cliente hace una sola llamada a un

método remoto del bean enterprise para solicitar el Transfer Object en vez de numerosas llamadas

remotas para obtener valores de atributos individuales. Entonces el bean enterprise construye un nuevo

ejemplar Transfer Object, copia dentro los valores del objeto y lo devuelve al cliente. El cliente recibe el

Transfer Object y puede entonces invocar los métodos de acceso (o get) del Transfer Object para

obtener los valores de atributos individuales del objeto Transfer Object. O, la implementación del

Transfer Object podría hacer que todos los atributos fueran públicos.

 46

Patrón Transfer Object

Como el Transfer Object se pasa por valor al cliente, todas las llamadas al ejemplar Transfer
Object son llamadas locales en vez de invocaciones de métodos remotos.

3.3.5.2.5 Consecuencias

 Simplifica el Bean de Entidad y el Interface Remoto: El bean de entidad proporciona un

método getData() para obtener el Transfer Object que contiene los valores de los

atributos. Esto podría eliminarse implementando múltiples métodos get en el bean y

definiéndolos en el interface remoto del bean. De forma similar, si el bean de entidad

proporciona un método setData() para actualizar los valores de atributos del bean de

entidad con una sola llamada a método, se podría eliminar implementando varios

métodos set en el bean.

 Transfiere más Datos en menos llamadas remotas: En lugar de realizar múltiples

llamadas sobre la red al BusinessObject para obtener los valores de los atributos,

esta solución proporciona una sola llamada a un método. Al mismo tiempo, esta única

llamada obtiene una mayor cantidad de datos. Cuando consideremos la utilización de

este patrón, debemos tener en cuenta el inconveniente de disminuir el número de

llamadas contra la mayor transmisión de datos por cada llamada.

 Reduce el tráfico de red: Un Transfer Object transfiere los valores desde el bean de

 47

entidad al cliente en una llamada a un método remoto. El Transfer Object actúa como

un transportista de datos y reduce el número de llamadas remotas requeridas para

obtener los valores de los atributos del bean; y esto significa un mejor rendimiento de la

red.

 Accesos y transacciones concurrentes: Cuando dos o más clientes acceden de forma

concurrente al BusinessObject pueden aparecer inconsistencias en el Transfer

Objects por accesos concurrentes. Además, tendremos que tratar con problemas

relacionados con la sincronización, el control de versión y los Transfer Objects

obsoletos.

3.3.5.3. DATA ACCESS OBJECT

3.3.5.3.1 Contexto

El acceso a los datos varía dependiendo de la fuente de los datos. El acceso al almacenamiento

persistente, como una base de datos, varía en gran medida dependiendo del tipo de almacenamiento

(bases de datos relacionales, bases de datos orientadas a objetos, ficheros planos, etc.).

3.3.5.3.2 Problema

Muchas aplicaciones de la plataforma J2EE en el mundo real necesitan utilizar datos

persistentes en algún momento. Para muchas de ellas, este almacenamiento persistente se implementa

utilizando diferentes mecanismos, y hay marcadas diferencias en los APIS utilizados para acceder a

esos mecanismos de almacenamiento diferentes. Otras aplicaciones podrían necesitar acceder a datos

que residen en sistemas diferentes. Por ejemplo, los datos podrían residir en sistemas mainframe,

repositorios LDAP, etc. Otro ejemplo es donde los datos los proporcionan servicios a través de sistemas

externos como los sistemas de integración negocio-a-negocio (B2B), servicios de tarjetas de crédito, etc.

Normalmente, las aplicaciones utilizan componentes distribuidos y compartidos como los beans

de entidad para representar los datos persistentes. Se considera que una aplicación emplea consistencia

manejada por el bean (BMP) cuando sus beans de entidad acceden explícitamente al almacenamiento

persistente -- el bean de entidad incluye código para hacer esto. Una aplicación con requerimientos

sencillos podría por lo tanto utilizar beans de entidad en lugar de beans de sesión o servlets para

acceder al almacenamiento persistente y recuperar o modificar los datos. O, la aplicación podría usar

 48

beans de entidad con persistencia manejada por el contenedor, y así dejar que el contenedor maneje los

detalles de las transacciones y de la persistencia.

Las aplicaciones pueden utilizar el API JDBC para acceder a los datos en un sistema de control

de bases de datos relacionales (RDBMS). Este API permite una forma estándar de acceder y manipular

datos en un almacenamiento persistente, como una base de datos relacional. El API JDBC permite a las

aplicaciones J2EE utilizar sentencias SQL, que son el método estándar para acceder a tablas RDBMS.

Sin embargo, incluso dentro de un entorno RDBMS, la sintaxis y formatos actuales de las sentencias

SQL podrían variar dependiendo de la propia base de datos en particular.

Incluso hay una mayor variación con diferentes tipos de almacenamientos persistentes. Los

mecanismos de acceso, los APIs soportados, y sus características varían entre los diferentes tipos de

almacenamientos persistentes, como bases de datos relacionales, bases de datos orientadas a objetos,

ficheros planos, etc. Las aplicaciones que necesitan acceder a datos de un sistema legal o un sistema

dispar (como un mainframe o un servicio B2B) se ven obligados a utilizar APIs que podrían ser

propietarios. Dichas fuentes de datos dispares ofrecen retos a la aplicación y potencialmente pueden

crear una dependencia directa entre el código de la aplicación y el código de acceso a los datos. Cuando

los componentes de negocio -- beans de entidad, beans de sesión e incluso componentes de

presentación como servlets y beans de apoyo para páginas JSP -- necesitan acceder a una fuente de

datos, pueden utilizar el API apropiado para conseguir la conectividad y manipular la fuente de datos.

Pero introducir el código de conectividad y de acceso a datos dentro de estos componentes genera un

fuerte acoplamiento entre los componentes y la implementación de la fuente de datos. Dichas

dependencias de código en los componentes hace difícil y tedioso migrar la aplicación de un tipo de

fuente de datos a otro. Cuando cambia la fuente de datos, también deben cambiar los componentes para

manejar el nuevo tipo de fuente de datos.

3.3.5.3.3 Causas

 Los componentes como los beans de entidad controlados por el bean, los beans de

sesión, los servlets, y otros objetos como beans de apoyo para páginas JSP

necesitan recuperar y almacenar información desde

almacenamientos persistentes y otras fuentes de datos como sistemas legales, B2B,

LDAP, etc.

 Los APIs para almacenamiento persistente varían dependiendo del vendedor del

producto. Otras fuentes de datos podrían tener APIS que no son estándar y/o

propietarios. Estos APIs y sus capacidades también varían dependiendo del tipo de

almacenamiento -- bases de datos relacionales, bases de datos orientadas a objetos,

 49

documentos XML, ficheros planos, etc. Hay una falta de APIs uniformes para corregir

los requerimientos de acceso a sistemas tan dispares.

 Los componentes normalmente utilizan APIs propietarios para acceder a sistemas

externos y/o legales para recuperar y almacenar datos.

 La portabilidad de los componentes se ve afectada directamente cuando se incluyen

APIs y mecanismos de acceso específicos.

 Los componentes necesitan ser transparentes al almacenamiento persistente real o la

implementación de la fuente de datos para proporcionar una migración sencilla a

diferentes productos, diferentes tipos de almacenamiento y diferentes tipos de fuentes

de datos.

3.3.5.3.4 Solución

Utilizar un Data Access Object (DAO) para abstraer y encapsular todos los accesos a la fuente

de datos. El DAO maneja la conexión con la fuente de datos para obtener y almacenar datos.

El DAO implementa el mecanismo de acceso requerido para trabajar con la fuente de datos.

Esta fuente de datos puede ser un almacenamiento persistente como una RDMBS, un servicio externo

como un intercambio B2B, un repositorio LDAP, o un servicio de negocios al que se accede mediante

CORBA Internet Inter-ORB Protocol (IIOP) o sockets de bajo nivel.

Los componentes de negocio que tratan con el DAO utilizan un interface simple expuesto por el

DAO para sus clientes. El DAO oculta completamente los detalles de implementación de la fuente de

datos a sus clientes. Como el interface expuesto por el DAO no cambia cuando cambia la

implementación de la fuente de datos subyacente, este patrón permite al DAO adaptarse a diferentes

esquemas de almacenamiento sin que esto afecte a sus clientes o componentes de negocio.

Esencialmente, el DAO actúa como un adaptador entre el componente y la fuente de datos.

 50

Patrón Data Access Object

Factoría abstracta para la gestión de DAO

3.3.5.3.5 Consecuencias

 Permite la transparencia: Los objetos de negocio puede utilizar la fuente de datos sin

 51

conocer los detalles específicos de su implementación. El acceso es transparente

porque los detalles de la implementación se ocultan dentro del DAO.

 Permite una migración más fácil: Una capa de DAOs hace más fácil que una aplicación

pueda migrar a una implementación de base de datos diferente. Los objetos de negocio

no conocen la implementación de datos subyacente, la migración implica cambios sólo

en la capa DAO. Además, si se emplea la estrategia de factorías, es posible

proporcionar una implementación de factorías concretas por cada implementación del

almacenamiento subyacente. En este caso, la migración a un almacenamiento

diferente significa proporcionar a la aplicación una nueva implementación de la factoría.

 Reduce la complejidad del código de los objetos de negocio: Como los DAOs manejan

todas las complejidades del acceso a los datos, se simplifica el código de los objetos

de negocio y de otros clientes que utilizan los DAOs. Todo el código relacionado con la

implementación (como las sentencias SQL) están dentro del DAO y no en el objeto de

negocio. Esto mejora la lectura del código y la productividad del desarrollo.

 Centraliza todos los accesos a datos en un capa independiente: Como todas las

operaciones de acceso a los datos se ha delegado en los DAOs, esto se puede ver

como una capa que aísla el resto de la aplicación de la implementación de acceso a los

datos. Esta centralización hace que la aplicación sea más sencilla de mantener y de

manejar.

 52

3.4. Implementación

3.4.1. Organización del repositorio

 53

 54

 55

 56

3.4.2. Descriptor de despligue del Web Server (web.xml)

Para empezar describiremos el descriptor de despliegue del Web Server, este fichero es un xml

con el nombre web.xml.
El contenido de este fichero es básico en el arranque del Web Server , ya que en el mismo, se

describen los elementos que contendrá y el modo en que se accede a los mismos. También se definen

aspectos de seguridad, ficheros de bienvenida, parámetros iniciales, parámetros de contexto.

Al arrancar el Web Server lo primero que hace es ir en busca de este fichero y leer su contenido,

cualquier fallo en el mismo arrojará una serie de excepciones en las cuales se indica que el arranque no

ha sido satisfactorio.

Este fichero es privado, esto quiere decir que es inaccesible su contenido para los usuarios de

futuras aplicaciones contenidas en el contenedor del Web Server.
A continuación mostramos la definición del mismo y la explicación de cada una de las entradas

del fichero.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp">
 <display-name>mercadoLibreOnline</display-name>

 <!-- filter configuration -->

<filter>
 <filter-name>JspFilter</filter-name>
 <filter-class>common.sp.spshop.web.filters.JspFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>JspFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
 </filter-mapping>

<!-- Register the session counting event listener. -->
 <listener>
 <listener-class>
 common.sp.spshop.web.listeners.SessionCounterListener
 </listener-class>
 </listener>

 <!-- servlet configuration -->
 <servlet>
 <servlet-name>HsqlBootstrap</servlet-name>
 <display-name>HsqlBootstrap</display-name>
 <servlet-class>

common.sp.spshop.web.servlets.HsqlBootstrap
</servlet-class>

 <load-on-startup>2</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>action</servlet-name>
 <display-name>ActionServlet</display-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>

 57

 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- end error page definition -->
 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>2</session-timeout>
 </session-config>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

 <!-- error configuration -->
 <error-page>
 <error-code>404</error-code>
 <location>/homeJspError.jsp</location>
 </error-page>

 <!-- taglib definition -->
 <!-- struts tag library descriptors -->
 <taglib>
 <taglib-uri>/tags/struts-bean</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-html</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-logic</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-nested</taglib-uri>
 <taglib-location>/WEB-INF/struts-nested.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/tiles</taglib-uri>
 <taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>
 </taglib>
 <!-- end struts tag library descriptors -->
 <!-- end taglib definition -->
</web-app>

1)

<display-name>mercadoLibreOnline</display-name>

Este elemento es opcional, es un nombre corto que posteriormente podrá ser utilizado por las

herramientas de la GUI para ser mostrado.

2)

<filter>

 <filter-name>JspFilter</filter-name>
 <filter-class>common.sp.spshop.web.filters.JspFilter</filter-class>
 </filter>

En el descriptor de despliegue se pueden definir una serie de filtros, no es obligatorio tener

definido ninguno, pero para nuestro aplicativo puede ser interesante.

 58

En la definición del filtro, le indicamos el nombre JspFilter, este nombre se utiliza para

posteriores referéncias a este filtro dentro del descriptor de despliegue, y la clase que contendrá la

implementación que se ejecutará cuando se aplique el filtro.

La implementación de la clase (common.sp.spshop.web.filters.JspFilter) la mostramos a

continuación:

package common.sp.spshop.web.filters;

import (…)

/**
 * @author Eduardo Varga
 *
 */
public class JspFilter implements Filter{

private FilterConfig config;

 public void init(FilterConfig config) throws ServletException {

 this.config=config;
 }

 public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain) throws
IOException, ServletException {

 HttpServletResponse response = (HttpServletResponse) res;
 response.sendError(404);
 }

 public void destroy() {}
}

Como vemos nuestra clase implementará la interfície javax.servlet.Filter, esto supone

implementar los métodos de dicha interfície, los métodos són los que se reseñan en rojo.

• public void init(FilterConfig config) throws ServletException será invocado por

el container del Web Server cuando el filtro tenga que entrar en servicio. La

inicialización puede ser interrumpida por dos razones.

- O bien, se lanza una ServletException.

- O bien, no devuelve una respuesta en un tiempo definido en el proprio web.xml.

• public void init(FilterConfig config) throws ServletException será invocado por

el container del Web Server cada vez que una request/response pase por el filtro, una

vez haya sido inicializado.

• public void destroy()será invocado por el container del Web Server una vez el filtro

tenga que finalizar su ejecución.

 59

3)

<filter-mapping>
 <filter-name>JspFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
 </filter-mapping>

El filtro anteriormente definido ha de ser mapeado para definir sobre que URL’s ha de ser

aplicado.

Como vemos el filter-name ha de coincidir con el nombre definido para esta propiedad en la

definición del filtro JspFilter, además, ha de incluir el parámetro url-pattern que definirá los elementos

que recibirán el trato por parte del filtro.

La forma en la que el Web Server resuelve este url-pattern es :

http://host:port + ContextPath

 Por lo tanto este filtro será aplicado en la resolución de todas las URL’s que redirijan a una jsp.

4)

 <listener>
 <listener-class>
 common.sp.spshop.web.listeners.SessionCounterListener
 </listener-class>
 </listener>

 Otra de las opciones que se nos permite en el web.xml, es definir una serie de listeners, esto

nos permite tener un elemento que está pendiente de una serie de eventos en la aplicación.

 Como podemos ver en el ejemplo de nuestra aplicación, la clase que implementará nuestro

listener es common.sp.spshop.web.listeners.SessionCounterListener, esta clase será invocada en

el momento que el evento para el que ha sido creada suceda.

 A continuación mostramos el código de esta clase y explicaremos que contiene:

package common.sp.spshop.web.listeners;

import (…)

/**
* Nuestro listener guardará el número de sesiones que está utilizando la aplicación Web
concurrentemente,
* ademas de las que ha utilizado durante su ciclo de vida.
*/

public class SessionCounterListener implements HttpSessionListener {

(…)

public synchronized void sessionCreated(HttpSessionEvent event) {
(…)
}

public synchronized void sessionDestroyed(HttpSessionEvent event) {
(…)
}

 60

/** Número total de sesiones creadas. */

public int getTotalSessionCount() {
(…)
}

/** Número de sesiones cocurrentes en memoria. */

public int getCurrentSessionCount() {
(…)
}

/**
* El mayor número de sesiones que haya habido en algun momento en memoria.
*/

public int getMaxSessionCount() {
(…)
}

/**
* Guardamos en el ServletContext los datos obtenidos
* para que tanto desde cualquier servlet o JSP tenga acceso
* a la cuenta de sesiones
*/

private synchronized void storeInServletContext(HttpSessionEvent event) {
(…)
}

private void logSessionCounter(){
(…)
}

}

Como vemos nuestra clase implementará la interfície javax.servlet.HttpSessionListener, esto

supone implementar los métodos de dicha interfície, los métodos són los que se reseñan en rojo.

• public synchronized void sessionCreated(HttpSessionEvent event) cada vez que el

container del Web Server detecte que hay un evento relacionado con una

HttpSession, en el caso de ser la creación de una sesión invocará a este método.

• public synchronized void sessionDestroyed(HttpSessionEvent event) en el caso

contrario, que se detecte un evento de este tipo, pero sea por la destrucción de una

sesión se llamará a este método.

Luego dentro de nuestra clase podemos añadir una serie de métodos que

nos sirvan a nosotros, por si queremos otorgarle alguna funcionalidad extra , los métodos añadidos són

los que se reseñan en verde.

• public int getTotalSessionCount() con este método obtendremos el número total de

sesiones creadas.

• public int getCurrentSessionCount() con este método obtendremos el número total

de sesiones concurrentes en memória.

 61

• public int getMaxSessionCount() con este método obtendremos el número máximo

de sesiones que haya habido en memória concurrentemente.

• private synchronized void storeInServletContext(HttpSessionEvent event) con este

método guardaremos en el ServletContext el contador de sesiones, por si en algu

momento lo necesitamos desde cualquier servlet o JSP.

• private void logSessionCounter() este método nos servirá para guardar en un fichero

de log, para su psterior consulta, los datos que se van registrando en cada momento.

 5)

<servlet>
 <servlet-name>HsqlBootstrap</servlet-name>
 <display-name>HsqlBootstrap</display-name>
 <servlet-class>

common.sp.spshop.web.servlets.HsqlBootstrap
</servlet-class>

 <load-on-startup>2</load-on-startup>
 </servlet>

 A continuación incluimos la definición de un servlet que se cargará en el arranque del Web

Server, esto quiere decir que lo que implementemos en el código de la clase del servlet será

posteriormente utilizado por nuestra aplicación.

 Como vemos en la definición encontramos una serie de entradas como el nombre del servlet

HsqlBootstrap, el mismo nombre utilizaremos por si quiere ser posteriormente consultado desde

cualquier JSP o servlet (display-name), luego viene la definición de la clase que contendrá la

implementación del servlet y finalmente, tenemos el parámetro load-on-startup que es un parámetro

muy útil en el caso de que en el arranque tengamos varios servlets y sea importante el orden en el que

sean cargados, ya que los resultados que carga uno pueden ser posteriormente necesitados para la

carga del siguiente.

 La clase en la que tenemos la implementación del servlet es

common.sp.spshop.web.servlets.HsqlBootstrap, a continuación veremos el código y comentaremos

los aspectos más destacados :

package common.sp.spshop.web.servlets;

import (…)

/**
 * Servlet que crea la base de datos
 */
public class HsqlBootstrap extends HttpServlet implements Servlet{
(…)

 public void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
 // inicializacion hsqldb
 try {
 initHsql();
 } catch (Exception e) {
 throw new ServletException("Imposible inicializar HSQLDB");
 }

 62

 }

 /**
 * @see javax.servlet.http.HttpServlet#void (javax.servlet.http.HttpServletRequest,
javax.servlet.http.HttpServletResponse)
 */
 public void doPost(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
 // inicializacion hsqldb
 initHsql();
 }

 public final void init(ServletConfig config) throws ServletException {
 super.init(config);

 // inicializacion hsqldb
 initHsql();
 }

 /**
 *
 */
 private void initHsql() {
 Connection conn = null;
 Statement st = null;

 try {
 Context ctx = new InitialContext();

 String dsname=ConfigurationReader.getString(DATASOURCE_NAME_CFG_PROPERTY);
 DataSource ds=ServiceLocator.getInstance().getDataSource(dsname);

 //si existe un DataSource previo eliminamos las tablas existentes
 if (ds != null) {
 conn = ds.getConnection();

 int rc;
 st = conn.createStatement();

 try {
 rc = st.executeUpdate("DROP TABLE USUARIO");
 } catch (SQLException e1) {

(…)
 }

 //creación de las tablas y relaciones existentes entre ellas
 rc = st.executeUpdate("CREATE TABLE USUARIO (USRID INTEGER NOT NULL
IDENTITY PRIMARY KEY, USRLOGIN CHAR(10) NOT NULL, USRPASSWORD CHAR(10) NOT NULL, USRNOMBRE
CHAR(20) NOT NULL, USRAPELLIDO1 CHAR(30) NOT NULL, USRAPELLIDO2 CHAR(30) NULL, USRDIRECCION
VARCHAR(100) NOT NULL, USRPOBLACION CHAR(50) NOT NULL, USRCODPOSTAL CHAR(5) NOT NULL,
USRPROVINCIA CHAR(50) NULL, USRPAIS CHAR(40) NOT NULL, USRTELEFONO CHAR(20) NOT NULL, USRMAIL
CHAR(20) NOT NULL)");
 (…)

 st.close();
 conn.close();

 logger.logInfo("Base de datos creada con éxito");
 }

 } catch (NamingException e) {
 logger.logError("Error al crear base de datos",e);
 } catch (SQLException e) {
 logger.logError("Error al crear base de datos",e);
 } finally {

 try {
 if (st != null)
 st.close();
 if (conn != null)
 conn.close();

 63

 } catch (SQLException e) {
 }

 }
 }

}

 Como podemos ver esta clase es algo mas pesada, en esta clase implementé la creación de la

Base de Datos, por lo tanto, y como bien se puede intuir, la Base de Datos durará mientras este

arrancado el Web Server.

 Se podría haber creado la base de datos permanente, con la definición del datasource a nivel de

descriptor de despliegue y posteriormente crear una base de datos con un cliente, para que nuestra

Base de Datos fuese permanente y se pudiese gestionar, pero como no era uno de los objetivos del

proyecto el tema de la Base de Datos (gestión y administración de la misma), decidí crear algo más

ligero como lo implementado.

 Suficiente para que cumpliese su misión y tuviesemos una Base de Datos, que recuerdo,

mientras el Web Server está arrancado cumple la misma misión que una más compleja, y la

interactuación que tenemos con ella desde el código de nuestra aplicación sería la misma que si

hubiesemos creado una Base de Datos ‘de verdad’.

 Una vez realizado el comentario anterior pasaremos a comentar el código en si.

 Podemos ver como nuestra clase:

• Extiende de la clase javax.servlet.http.HttpServlet.

• Implementa la interfície javax.servlet.Servlet .

Al ser un servlet ha de implementar siempre la clase comentada anteriormente, para implementar

los métodos de la misma hay que hacer que nuestra clase servlet extienda o bien de un

javax.servlet.GenericServlet o bien de un javax.servlet.http.HttpServlet, de esta forma nuestro servlet

sólo podrá recibir y responder a peticiones de Web clients que sigan el protocolo HTTP, los métodos

que se han de implementar són los remarcados en rojo.

• public void doGet(HttpServletRequest req, HttpServletResponse resp) throws

ServletException, IOException este método se invoca cuando se realiza una petición

del tipo HTTP GET.
.
• public void doPost(HttpServletRequest req, HttpServletResponse resp) throws

ServletException, IOException este método se invoca cuando se realiza una petición

del tipo HTTP POST.

 64

• public final void init(ServletConfig config) throws ServletException este

método es invocado por el container del Web Server cuando detecta que el servlet

definido ha de entrar en servicio.

Como vemos, la finalidad de este servlet es la creación de la Base de Datos en el arranque, por

lo tanto los 3 métodos que estamos obligados ha implementar realizan la misma acción, que no es otra

que invocar al método definido por mi, que contiene todo el negocio de la creación de la Base de Datos.

A continuación pasaré a comentar los datos mas relevantes (marcados en verde) dentro de las

acciones que se realizan dentro de este método private void initHsql().

 Primero nos encontramos con la definición del datasource, obtenemos el nombre del mismo (un

simple objeto String) y obtenemos una referencia al mismo (… 1 …).

Despues mediante la referéncia que hemos obtenido del datasource obtenemos una conexión

hacia la Base de Datos (… 2 …), de esta conexión obtenida crearemos un Statement mediante el cual ya

tendremos conexión directa para realiza nuestras peticiones (… 3 …).

 Como podemos observar (… 4 …) la forma de invocar y de lanzar nuestras sentencias SQL es

de la forma que se muestra.

 Una vez acabadas todas las acciones es muy importante que cerremos (… 5 …) tanto el

Statement como la Conexión.

 Finalmente, hay que asegurarse que el cierre se ha realizado, para ello completamos la acción

contenida en el try…catch (… 6 …)

… 1 …
String dsname=ConfigurationReader.getString(DATASOURCE_NAME_CFG_PROPERTY);
 DataSource ds=ServiceLocator.getInstance().getDataSource(dsname);
… 2 …
conn = ds.getConnection();
… 3 …
int rc;
st = conn.createStatement();
… 4 …
rc = st.executeUpdate(SENTENCIA SQL)
… 5 …
st.close();
conn.close();
… 6 …
try {

if (st != null)
 st.close();
 if (conn != null)
 conn.close();
} catch (SQLException e) {}

 6)

<servlet>

 <servlet-name>action</servlet-name>
 <display-name>ActionServlet</display-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>

 65

 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 A continuación tenemos la definición del servlet que posteriormente servirá nuestras peticiones

durante el transcurso de nuestro aplicativo (Front Controller).
 Al haber utilizado el framework de desarrollo Struts, la configuración de este ActionServlet en el

arranque de nuestro Web Server es totalmente obligatorio.

 Las entradas que nos encontramos són las que hemos venido viendo hasta ahora, un nombre

action, el mismo nombre por si posteriormente queremos obtener una referencia (display-name). Luego

la clase que implementará nuestro servlet, que no es otra que org.apache.struts.action.ActionServlet.
Finalmente, nos encontramos que en este caso, tenemos un parámetro de entrada para este

servlet, este parámetro no es otro que el descriptor de Struts -> struts-config.xml, nuestro servlet

sacará, durante la ejecución del aplicativo, todo lo que necesita precisamente de este fichero,

posteriormente a la explicación del descriptor de despliegue del Web Server que estamos realizando

entraremos a profundizar en el contenido de dicho fichero.

7)

<servlet-mapping>

 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

El servlet anterior necesita que le indiquemos a que peticiones tiene que ‘hacer caso’, tal y como

explicamos anteriormente para el uso de Filtros, la forma en la que el Web Server resuelve este url-
pattern es :

http://host:port + ContextPath

8)

<session-config>

 <session-timeout>2</session-timeout>
 </session-config>

La siguiente entrada que nos encontramos nos define un atributo para la sesión de nuestra

aplicación web.

Este atributo, como su nombre indica (session-timeout), nos define los minutos a partir de los

cuales, debido a falta de actividad en el Web Server, la sesión finalizará.

 9)

<welcome-file-list>

 <welcome-file>index.html</welcome-file>

 66

 </welcome-file-list>

 En esta entrada nos encontramos un ‘fichero de bienvenida’, en mi caso sólo tengo una entrada,

pero aquí podría haber una lista de ‘ficheros de bienvenida’, esta ‘lista’ de ficheros no tiene otra misión

que servir una entrada en caso que la URL responda a un directorio, de esta forma el Web Server

recurre a nuestra lista y la recorre secuencialmente hasta que encuentra un fichero que responda a la

ruta especificada por la URL.

 10)

<error-page>

 <error-code>404</error-code>
 <location>/homeJspError.jsp</location>
 </error-page>

 Esta entrada es muy útil ya que nos establece un mapeo entre un código de error de los

conocidos y un fichero que responda ha dicho código de error.

 Esto es muy práctico ya que evitará, de una forma muy sencilla, las tediosas pantallas de error

servidas por defecto por los navegadores y substituirlas por presentaciones creadas por nostros.

 En mi caso sólo he realizado esto para el conocidisimo código de error 404.

 11)

<taglib>
 <taglib-uri>/tags/struts-bean</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-html</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-logic</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/struts-nested</taglib-uri>
 <taglib-location>/WEB-INF/struts-nested.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/tags/tiles</taglib-uri>
 <taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>
 </taglib>

 Finalmente, nos encontramos con la carga de todos los tld, posteriormente necesarios en la

creación de las JSP en la capa de presentación de nuestro aplicativo.

 La carga de estos taglibs es totalmente necesaria ya que en la creación de nuestras JSP el uso

de los tags definidos en las mismas es imprescindible.

 67

3.4.3. struts-config.xml :

Tal y como comentamos en el apartado anterior, a continuación pasaremos a desglosar y

explicar en detalle otro de los ficheros importantes dentro de nuestro aplicativo, ya que en este fichero se

encuentra toda la información que necesita el framework Struts para el manejo de peticiones y

respuesta a las mismas.

 El código que se encuentra en este fichero lo mostraremos a continuación para su posterior

descripción, entrada por entrada, así como hicimos con el descriptor de despliegue del Web Server.

 El código es el siguiente:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

 <!-- ========== Data Source Configuration =============================== -->

 <!-- ========== Form Bean Definitions =================================== -->

 <form-beans>
 <form-bean name="mostrarCatalogo"
type="common.sp.spshop.web.forms.MostrarCatalogoForm"></form-bean>
 <form-bean name="datosRegistro"
type="common.sp.spshop.web.forms.DatosRegistroForm"></form-bean>
 <form-bean name="datosLogin"
type="common.sp.spshop.web.forms.DatosLoginForm"></form-bean>
 <form-bean name="datosLogout"
type="common.sp.spshop.web.forms.DatosLogoutForm"></form-bean>
 <form-bean name="mostrarProducto"
type="common.sp.spshop.web.forms.MostrarProductoForm"></form-bean>
 <form-bean name="anadirProducto"
type="common.sp.spshop.web.forms.AnadirProductoForms"></form-bean>
 <form-bean name="datosPedido"
type="common.sp.spshop.web.forms.DatosPedidoForm"></form-bean>
 <form-bean name="borrarLineaCesta"
type="common.sp.spshop.web.forms.BorrarLineaCestaForm"></form-bean>
 <form-bean name="cambiarLineaCesta"
type="common.sp.spshop.web.forms.CambiarLineaCestaForm"></form-bean>
 <form-bean name="filtrarPor"
type="common.sp.spshop.web.forms.FiltrarPorForm"></form-bean>
 <form-bean name="ordenarPor"
type="common.sp.spshop.web.forms.OrdenarPorForm"></form-bean>
 <form-bean name="paginacionCatalogo"
type="common.sp.spshop.web.forms.PaginacionCatalogoForm"></form-bean>
 </form-beans>

 <!-- ========== Global Forward Definitions ============================== -->
 <global-forwards>
 <forward name="error" path="/homeError.jsp"></forward>
 </global-forwards>

 <!-- ========== Action Mapping Definitions ============================== -->
 <action-mappings>

 <action path="/mostrarCategoria"
type="common.sp.spshop.web.actions.MostrarCategoriaAction" name="mostrarCatalogo" scope="request"
validate="false">

 68

 <forward name="ok" path="/homeCatalogo.jsp"/>
 </action>

 <action path="/verCesta" type="common.sp.spshop.web.actions.VerCestaAction">
 <forward name="ok" path="/homeVerCesta.jsp"/>
 </action>

 <action path="/verPedidos" type="common.sp.spshop.web.actions.VerPedidosAction">
 <forward name="ok" path="/homeVerPedidos.jsp" />
 <forward name="login" path="/homeLogin.jsp"/>
 </action>

 <action path="/paginaModificacionRegistro"
type="common.sp.spshop.web.actions.PaginaModificacionRegistroAction">
 <forward name="login" path="/homeLogin.jsp"/>
 <forward name="ok" path="/homeModificacionRegistro.jsp"/>
 </action>

 <action path="/export-products-pdf"
type="common.sp.spshop.web.actions.PdfCreatorAction">
 <forward name="ok" path="/homeCatalogo.jsp"/>
 </action>

 <action path="/paginaRegistro" forward="/homeRegistroUsuario.jsp"
name="datosRegistro" validate="false"/>

 <action path="/hacerLogout" type="common.sp.spshop.web.actions.LogoutAction">
 <forward name="volver" path="/mostrarCategoria.do" />
 </action>

 <action path="/registrar" type="common.sp.spshop.web.actions.RegistrarAction"
name="datosRegistro" validate="true" input="volver">
 <forward name="volver" path="/homeRegistroUsuario.jsp" />
 <forward name="ok" path="/confirmacionRegistro.do" redirect="true"/>
 </action>

 <action path="/confirmacionRegistro" forward="/homeConfirmacionRegistro.jsp"/>

 <action path="/modificarRegistro"
type="common.sp.spshop.web.actions.ModificarRegistroAction" name="datosRegistro" validate="true"
input="volver" scope="request">
 <forward name="volver" path="/homeRegistroUsuario.jsp" />
 <forward name="ok" path="/homeConfirmacionRegistro.jsp" />
 </action>

 <action path="/hacerLogin" type="common.sp.spshop.web.actions.LoginAction"
name="datosLogin" validate="true" input="volver" scope="request">
 <forward name="volver" path="/homeLogin.jsp" />
 <forward name="verPedidos" redirect="true" path="/verPedidos.do" />
 <forward name="modificarRegistro" path="/paginaModificacionRegistro.do"/>
 <forward name="tramitarPedido" path="/paginaTramitarPedido.do"/>
 </action>

 <action path="/mostrarProducto"
type="common.sp.spshop.web.actions.MostrarProductoAction" name="mostrarProducto" validate="true"
scope="request">
 <forward name="ok" path="/homeDetProd.jsp"/>
 </action>

 <action path="/anadirProducto"
type="common.sp.spshop.web.actions.AnadirProductoAction" name="anadirProducto" scope="request"
validate="true">
 <forward name="ok" path="/verCesta.do" redirect="true"/>
 </action>

 <action path="/paginaTramitarPedido"
type="common.sp.spshop.web.actions.PaginaTramitarPedidoAction">
 <forward name="ok" path="/homeConfirmarPedido.jsp"/>
 <forward name="login" path="/homeLogin.jsp"/>
 </action>

 69

 <action path="/tramitarPedido"
type="common.sp.spshop.web.actions.TramitarPedidoAction" name="datosPedido" scope="request"
validate="true" input="volver">
 <forward name="volver" path="/homeConfirmarPedido.jsp" />
 <forward name="ok" redirect="true" path="/verPedidos.do"/>
 </action>

 <action path="/cambiarLineaCesta"
type="common.sp.spshop.web.actions.CambiarLineaCestaAction" name="cambiarLineaCesta"
input="volver" scope="request" validate="true">
 <forward name="ok" path="/homeVerCesta.jsp"/>
 <forward name="volver" path="/homeVerCesta.jsp"/>
 </action>

 <action path="/borrarLineaCesta"
type="common.sp.spshop.web.actions.BorrarLineaCestaAction" name="borrarLineaCesta"
scope="request" validate="true" input="volver">
 <forward name="ok" path="/homeVerCesta.jsp"/>
 <forward name="volver" path="/homeVerCesta.jsp"/>
 </action>

 <action path="/eliminarCesta"
type="common.sp.spshop.web.actions.EliminarCestaAction" scope="request">
 <forward name="ok" path="/homeVerCesta.jsp"/>
 </action>

 <action path="/filtrarPor" type="common.sp.spshop.web.actions.FiltrarPorAction"
name="filtrarPor" scope="request">
 <forward name="ok" path="/homeCatalogo.jsp"/>
 </action>

 <action path="/ordenarPor" type="common.sp.spshop.web.actions.OrdenarPorAction"
name="ordenarPor" scope="request">
 <forward name="ok" path="/homeCatalogo.jsp"/>
 </action>

 <action path="/paginacionCatalogo"
type="common.sp.spshop.web.actions.PaginacionCatalogoAction" name="paginacionCatalogo"
scope="request">
 <forward name="ok" path="/homeCatalogo.jsp"/>
 </action>

 </action-mappings>
 <!-- controller definition -->
 <controller>
 <!-- The "input" parameter on "action" elements is the name of a
 local or global "forward" rather than a module-relative path -->
 <set-property property="inputForward" value="true" />

 </controller>
 <!-- end controller definition -->
 <!-- message properties definition -->
 <message-resources parameter="common.sp.spshop.web.resources.mensajes" />
 <!-- message properties definition -->
 <!-- plug-in definition -->
 <plug-in className="org.apache.struts.plugins.ModuleConfigVerifier" />

 <!-- end plug-in definition -->
</struts-config>

 1) Primeramente nos encontramos con los <form-beans> , aquí están definidos todos aquellos

Java Beans que posteriormente serán utilizados en nuestra Aplicación Web.

La entrada consta de un nombre para cada <form-bean>, así como un atributo type que no es

mas que la clase que implementa el contenido de dicho elemento.

 70

 A continuación mostraremos el contenido de una de estas clases, para ver como es su

composición.

Como ejemplo utilizaremos uno de los <form-bean> definido, este es

common.sp.spshop.web.forms.AnadirProductoForms:

package common.sp.spshop.web.forms;

import (...)

/**
 * @author Eduardo Varga Laguna
 */
public class AnadirProductoForms extends ActionForm {
 (...)

 private Long prodId = null;

 /**
 * Get prodId
 * @return Long
 */
 public Long getProdId() {
 return prodId;
 }

 /**
 * Set prodId
 * @param <code>Long</code>
 */
 public void setProdId(Long p) {
 this.prodId = p;
 }

 public void reset(ActionMapping mapping, HttpServletRequest request) {
 prodId = null;

 }

 public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();
 if (prodId == null) {
 logger.logDebug("Error al validar datos de producto a añadir");
 errors.add("prodId", new

ActionMessage("error.catalogo.errorProdId"));
 }

 return errors;
 }

}

A comentar sobre la implementación vista arriba, reseñamos en rojo lo más significativo:

- Primero observamos que nuestra clase extiende de

org.apache.struts.action.ActionForm, este objeto ActionForm és un JavaBean y

nos servirá como contenedor de datos.

- Como podemos observar en nuestra clase tendremos definidos todos aquellos

atributos que necesitarán ser inicializados, así como sus getters-setter, para la

posterior manipulación de los mismos.

 71

- Tenemos también implementado el método reset(…), para en caso de necesitarlo,

tener una forma rápida de vaciar el objeto.

- Finalmente, hemos implementado el método validate(…), el uso de este método y la

invocación del mismo sigue el siguiente orden:

• Cuando en nuestro código se ejecuta un Action, lo primero que se hace es

obtener el ActionForm y rellenar los parámetros con los valores

introducidos por el usuario.

• Una vez tenemos el objeto con los datos pertinentes, se invoca a nuestro

método y se hace la comprobación pertinente, devolviendose un objeto del

tipo ActionErrors, que podrá ser capturado en nuestra JSP, para que

muestre los datos que toca pro pantalla.

2)

<global-forwards>

 <forward name="error" path="/homeError.jsp"></forward>
 </global-forwards>

La siguiente entrada que nos encontramos és un <global-forwards> que como su nombre

indica, nos permitirá un redireccionamiento global para cualquiera de nuestras acciones, simplemente

pasandole la cádena “error” que es con la que nuestro contenedor del Web Server asocia este global-
forward.

3) Lo siguiente que nos encontramos es el <action-mappings> con sus pertinentes <actions>

definidos.

 Como podemos observar las entradas de los <action> pueden seguir uno de los siguientes

patrones:

3.1)

<action path="/verPedidos" type="common.sp.spshop.web.actions.VerPedidosAction">

 <forward name="ok" path="/homeVerPedidos.jsp" />
 <forward name="login" path="/homeLogin.jsp"/>
 </action>

En este primer tipo, vemos como tenemos un path, que es el nombre que utilizaremos en las

JSP’s para asociar el Submit al action pertinente.

Luego tenemos el type, que es la clase que implementa toda la lógica de negocio de nuestro

action.

 72

A continuación vemos dos entradas del tipo forward, esto tiene la misma misión que el global-
forward pero asociado exclusivamente a este action, así, una vez ejecutado nuestro código dentro de

nuestra clase podremos, mediante el nombre asociado (“ok” / ”login”), hacer la redirección pertinente.

Más adelante mostraremos el contenido de una de estas clases, lo mostraremos en el apartado

donde haremos el seguimiento de un caso de uso, desde la capa de presentación hasta la capa de

datos, pasando por la capa de negocio, así como el retorno de la respuesta.

3.2)

<action path="/confirmacionRegistro" forward="/homeConfirmacionRegistro.jsp"/>

En este segundo tipo, vemos que no hay ninguna clase que contenga como se comportará

nuestro action, aquí simplemente tenemos, como en el caso anterior, un path que será el nombre con el

que conseguiremos invocar desde nuestra JSP a este action y aquí, a diferencia del caso anterior, lo

único que realizamos es un forward directo a la JSP definida.

Este tipo de entrada es útil para aquellas entradas que no tienen ningun tipo de lógica de

negocio, aquellas que no tratan datos, simplemente hacen de puente entre una JSP y otra. Al pasar

todas las acciones por nuestro servlet definido (ActionServlet) es obligatorio pasar por aquí.

4)

<controller>

 <set-property property="inputForward" value="true" />
 </controller>

La siguiente entrada que nos encontramos es la de <controller>, esta entrada es utilizada para

definir los parámetros del controller (org.apache.struts.action.ActionServlet), en mi caso tomará los

parámetros por defecto.

5)

 <message-resources parameter="common.sp.spshop.web.resources.mensajes" />

Luego tenemos definidos los <message-resources>, que es todo aquel contenido estático que

posteriormente será utilizado.

 En estos ficheros es donde incorporamos todos aquellos strings que se muestran en nuestras

JSP, o que utilizamos como mensaje de error, etc…

 73

6)

<plug-in className="org.apache.struts.plugins.ModuleConfigVerifier" />

Finalmente, vemos que se pueden definir plug-ins para nuestra aplicación,

3.4.4. Explicación de un Caso de Uso:

3.4.4.1. Introducción

Para poder ver todo lo explicado teoricamente en los apartados Teorico, Diseño e

Implementación de una forma más clara y entendedora, para ver como interactua todo lo anteriormente

expuesto de una forma más sencilla, haremos un completo seguimiento de un caso de uso pasando por

todos los estados, capas, etc… que sean necesarios para así, finalmente, poder tener una visión global

del problema y la solución utilizada mediante la tecnología J2EE y el framework de desarrollo Struts.

Cogeremos la acción de Añadir un artículo al carro de la compra para hacer el seguimiento.

3.4.4.2. Capas dentro del Caso de Uso

3.4.4.2.1. JSP de inicio

Para empezar situaremos la explicación en la JSP de inicio, esta es catalogo.jsp, el código de

esta JSP es el siguiente:

(1)
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<td>
<table width="100%" border="0" cellspacing="0" cellpadding="15">

<tr>
 <% if(request.getAttribute("spshop.cat.ruta") != null){ %>
 <td class="forTexts">

<logic:iterate id="cat" name="spshop.cat.ruta">
 <html:link styleClass="forCategoriaLista"

action="mostrarCategoria" paramId="catId"
paramName="cat" paramProperty="id" >

<bean:write name="cat" property="nombre" /> </html:link>
 </logic:iterate>

 <logic:notEmpty name="spshop.cat.subcategorias">

 74

 <html:img page="/images/header_categorias.gif" width="200"
height="27"/>

 <logic:iterate id="cat" name="spshop.cat.subcategorias">
 <html:link
 action="mostrarCategoria" paramId="catId"
paramName="cat" paramProperty="id"
 styleClass="forCategoria"> <bean:write name="cat"
property="nombre" /> </html:link>

 </logic:iterate>

 </logic:notEmpty>
 <% }%>
 <html:img page="/images/header_productos.gif" width="200" height="27"/>

 <table cellpadding=10 cellspacing=0 border=0>
 <logic:iterate id="prod" name="spshop.cat.productos" offset="0"
length="3">
 <tr class=forProductoLista>
 <bean:define name="prod" property="imagen" id="imagenURL"/>
 <td width=50>
 <html:img src="<%=imagenURL.toString() %>"
border="0"/>
 </td>
 <td width=200><html:link styleClass="forProductoLista"
action="mostrarProducto" paramId="prodId" paramName="prod" paramProperty="id"><bean:write
name="prod" property="titulo" /></html:link>

 <bean:write name="prod" property="artista" /></td>
 <td width=80><bean:write name="prod" property="precio" />
Euros

(2)
<html:link styleClass="forProductoLista" action="anadirProducto" paramId="prodId"
paramName="prod" paramProperty="id">
 <html:img page="/images/cesta.gif" border="0"/>
 </html:link></td>
 </tr>
 </logic:iterate>
 </table>
 </td>
 </tr>
</table>
<table width="100%" cellspacing="0" cellpadding="15" border="0">
 <tr>
 <td width="35%"></td>
 <td width="30%" align="left">
 <html:img page="/images/inicio.gif" border="0" style="{cursor:hand;}"
onclick="inicio();"/>
 <html:img page="/images/anterior.gif" border="0" style="{cursor:hand;}"
onclick="anteriores();"/>
 <html:img page="/images/siguiente.gif" border="0" style="{cursor:hand;}"
onclick="siguientes();"/>
 <html:img page="/images/fin.gif" border="0" style="{cursor:hand;}"
onclick="fin();"/>
 </td>
 <td width="35%"></td>
 </tr>
</table>
</td>

(1) Como comentamos en el apartado en que explicamos el fichero de despliegue web.xml,
en las JSP es necesario el uso de las taglib, que son la fuente de la que obtendremos

todas las etiquetas típicas de las JSP, estos tags los iremos encontrando continuamente

en el código. Algunos de estos tags són: <logic:iterate, <html:link, <logic:notEmpty,
<bean:write

(2) Para el caso de uso que estamos planteando, la línea más significativa es la siguiente:

 75

<html:link styleClass="forProductoLista" action="anadirProducto" paramId="prodId"
paramName="prod" paramProperty="id">

Aquí podemos ver como tenemos el atributo action, que tendrá correspondencia con

alguna de las entradas del ActionMapping definido en nuestro fichero de configuración

struts-config.xml, explicado anteriormente.

3.4.4.2.2. Invocación del Action

Una vez hemos dado al enlace que tenemos en la JSP, nuestra petición será capturada por el

ActionServlet que hemos definido en el fichero web.xml. Esta petición será seguidamente procesada

por el RequestProcessor.

La siguiente acción que se realizará será la creación e introducción de valores en el objeto

ActionForm correspondiente definido en el fichero struts-config.xml

<form-bean name="anadirProducto"type="common.sp.spshop.web.forms.AnadirProductoForms">
</form-bean>

 El código asociado a la clase (common.sp.spshop.web.forms.AnadirProductoForms) del

form-bean es el siguiente:

package common.sp.spshop.web.forms;

import (...)

/**
 * @author Eduardo Varga Laguna
 */
public class AnadirProductoForms extends ActionForm {
 (...)

 private Long prodId = null;

 public Long getProdId() {
 return prodId;
 }

 public void setProdId(Long p) {
 this.prodId = p;
 }

 public void reset(ActionMapping mapping, HttpServletRequest request) {
 prodId = null;

 }

 public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
 (...)
 }

}

 76

Una vez este completado el objeto ActionForm y el método validate(…) no haya fallado , el

RequestProcessor irá al ActionMapping definido en el struts-config.xml y nos linkará con el action

que tenemos definido con el nombre que teniamos en el link de la JSP , la entrada correspondiente a la

acción que estamos utilizando de ejemplo es la siguiente:

<action path="/anadirProducto" type="common.sp.spshop.web.actions.AnadirProductoAction"
name="anadirProducto" scope="request" validate="true">

<forward name="ok" path="/verCesta.do" redirect="true"/>
</action>

 Vemos que la clase que implementa nuestra acción es

common.sp.spshop.web.actions.AnadirProductoAction y que contiene un forward asociado.

 Primero veremos el código que tenemos asociado a esa clase, el código es el siguiente:

package common.sp.spshop.web.actions;

import (…)

/**
 * @author Eduardo Varga
 */
(1)
public class AnadirProductoAction extends Action {

(…)

 (2)

public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServletRequest
request, HttpServletResponse response) throws Exception {

 (3)

ActionMessages errors = new ActionMessages();
 ActionForward forward = new ActionForward();

 (4)
 try {

 PedidoDelegate pedidoDelegate = new PedidoDelegate();
 // localizamos la cesta de la compra
 CestaCompra cesta = (CestaCompra)
request.getSession().getAttribute("cesta");
 if (null == cesta) {
 cesta = pedidoDelegate.crearCestaCompra();
 request.getSession().setAttribute("cesta", cesta);
 }
 // recuperamos el producto que tenemos que añadir

AnadirProductoForms apForm = (AnadirProductoForms) form;
 CatalogoDelegate catalogoDelegate = new CatalogoDelegate();
 Producto prod =
catalogoDelegate.getProducto(apForm.getProdId().longValue());

 pedidoDelegate.anadirLinea(cesta, prod, 1);

 } catch (Exception e) {
 logger.logError("Error al añadir producto.",e);
 (5)

errors.add("error", new ActionMessage("error.comun.error"));
 }

 77

 if (!errors.isEmpty()) {
 saveErrors(request, errors);
 forward = mapping.findForward("error");
 } else {
 forward = mapping.findForward("ok");
 }

 return (forward);
 }
}

 Sobre esta clase hay un monton de cosas interesantes ha comentar, todos ellos resaltados en

rojo y que pasaremos a comentar seguidamente:

(1) El primer punto destacable es ver que nuestra clase extiende de la clase

org.apache.struts.action.Action, Un Action no deja de ser una conexión entre lo que

quiere el usuario cuando realiza la request y la lógica interna de negocio que tiene el

aplicativo para llevar a cabo lo que el usuario quiere.

(2) El RequestProcessor una vez ha localizado la acció y la clase que la implementa se

encargá de invocar el método public ActionForward execute(ActionMapping mapping,

ActionForm form, HttpServletRequest request, HttpServletResponse response) throws

Exception,
En este método es donde encontraremos todo lo necesario para llevar a cabo la acción

requerida.

(3) Una vez ya dentro del método execute(…) nos topamos con la declaración de dos objetos

ActionMessages y ActionForward que serán al finalizar el recorrido del action muy

importantes, posteriormente explicaremos el papel de estos dos objetos en toda nuestra

lógica de negocio.

(4) Llegados a este punto del método execute(…) es donde nos encontramos toda la auténtica

lógica de negocio, no entraremos a que hace exactamente este apartado del código,

simplemente entraremos a analizar una de sus líneas que es la que nos permitirá continuar

con la explicación y el flujo de nuestra acción.

(5) Aquí vemos los objetos anteriormente citados en el punto (3), el objeto ActionMessages nos

servirá como contenedor de errores, en caso de haberlos, para su posterior tratamiento.

El objeto ActionForward es precisamente el objeto de retorno que devuelve el método

execute(…) . Es este objeto el que contendra el objeto que luego mapee con los forward
pertinentes, definidos dentro del fichero struts-config.xml.

 78

3.4.4.2.3. Acceso a la capa de negocio

Una vez visto el Action por dentro entraremos más hacia la capa de negocio de

nuestro aplicativo, como hemos visto en el punto (4) hay una serie de objetos por ahí definidos que son a

los que nuestro Action delega lo que se ha de hacer,

PedidoDelegate pedidoDelegate = new PedidoDelegate();

…
pedidoDelegate.anadirLinea(cesta, prod, 1);

 Como podemos ver el nombre de estos objetos sigue el siguiente patrón xxxDelegate, para

continuar entonces, pasaremos a ver que hay declarado y definido en esa clase, el código de

common.sp.spshop.web.pattern.delegates.PedidoDelegate es el siguiente:

package common.sp.spshop.web.pattern.delegates;

import (...);

/**
 * @author Eduardo Varga
 *
 */
public class PedidoDelegate extends DefaultBusinessDelegate implements PedidoService{
(...)

 public PedidoDelegate(){
 this._service=new PedidoBO();
 }

 public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paisEnvio){
 this._service.confirmarPedido(pedido);
 }

 (...)
}

 Es aquí donde veremos toda la lógica explicada en el apartado 3.3.2 Construcción de

servicios.

 Como vemos nuestra clase :

• Extiende de la clase :

common.saf.j2ee.common.business.DefaultBusinessDelegate (1)
• Implementa la interfície :

common.sp.spshop.common.business.interfaces.PedidoService (2)

• Tambien podemos observar como en el constructor de nuestra clase se realiza la

creación del servicio a través de la creación de un objeto del tipo

 79

common.sp.spshop.common.business.objects.PedidoBO (3)

 A continuación pasaremos a mostrar el código de las clases nombradas en estos 3 puntos y así

entenderemos el porque de todo este montaje.

(1)

package common.saf.j2ee.common.business;

import java.io.Serializable;

public abstract class DefaultBusinessDelegate implements Serializable{

}

 El interface Serializable proporciona serialización automática mediante la utilización de las

herramientas de Java Object Serialization. Serializable no declara métodos; actúa como un marcador,

diciéndole a las herramientas de Serialización de Objetos que nuestra clase Bean es serializable. Marcar

las clases con Serializable significa que le estamos diciendo a la Máquina Virtual Java (JVM) que

estamos seguros de que nuestra clase funcionará con la serialización por defecto. Aquí tenemos algunos

puntos importantes para el trabajo con el interface Serializable.

• Las clases que implementan Serializable deben tener un constructor sin
argumentos. Este constructor será llamado cuando un objeto sea "reconstituido"

desde un fichero .ser.

• No es necesario implementar Serializable en nuestra subclase si ya está

implementado en una superclase.

• Todos los campos excepto static y transient son serializados. Utilizaremos el

modificador transient para especificar los campos que no queremos serializar, y

para especificar las clases que no son serializables.

(2)

package common.sp.spshop.common.business.interfaces;

import (...)

/**
 * @author Eduardo Varga
 *
 */
public interface PedidoService extends BusinessInterface{

 public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paisEnvio);

 80

(...)
}

 Esta clase es simplemente la interfície donde definimos los métodos que tendrá nuestro servicio.

Como ya sabemos en la interfície sólo está la declaración, nunca la implementación.

 Como vemos nuestra interfície extiende de

common.saf.j2ee.common.business.BusinessInterface, esta clase es simplemente:

package common.saf.j2ee.common.business;

import java.io.Serializable;

/**
 * @author Eduardo Varga Laguna
 *
 * Todas las interfaces que creemos en la capa de negocio tendrán que extender esta interface
base.
 */
public interface BusinessInterface extends Serializable {
}

(3)

package common.sp.spshop.common.business.objects;

import (...)

/**
 * @author Eduardo Varga
 *
 */
public class PedidoBO extends DefaultBusinessObject implements PedidoService{

 (...)

 public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paisEnvio) {
 Pedido pedido=null;
 PedidoDAO pedidoDAO=null;

 pedidoDAO=DAOFactory.getInstance().getPedidoDAO();

 pedido=pedidoDAO.confirmarPedido(usuario,cesta,dirEnvio,locEnvio,provEnvio,cpEnvio,paisEn
vio);
 if(logger.isDebugEnabled())
 logger.logDebug("Confirmado pedido "+pedido.getId());
 return pedido;
 }

 (...)
}

 Es en esta clase donde se encuentra la implementación de los métodos, desde la

implementación de los métodos aquí definidos es donde pasamos a la capa final, la capa de datos.

3.4.4.2.4. Acceso a la capa de datos

 81

Como hemos dicho en el punto anterior, a través de la implementación de uno de los métodos de

la clase anterior explicaremos los objetos que nos quedan, de esta forma accederemos a la última capa,

la que tiene el contacto directo con la Base de Datos.

 El código del método que utilizaremos como ejemplo es el siguiente:

public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paisEnvio) {

PedidoDAO pedidoDAO=DAOFactory.getInstance().getPedidoDAO();

Pedido pedido=
pedidoDAO.confirmarPedido(usuario,cesta,dirEnvio,locEnvio,provEnvio,cpEnvio,paisEnvio);

(...)

 Como vemos, aquí aparecen dos objetos nuevos:

- common.sp.spshop.database.dao.PedidoDAO (1)
- common.saf.j2ee.database.dao.DAOFactory (2)

A continuación mostramos el código correspondiente a estas dos clases para proceder

a la explicación de las mismas:

 (1)
package common.sp.spshop.database.dao;

import (...)

/**
 * @author Eduardo Varga
 *
 */
public interface PedidoDAO extends DAO{

 public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paisEnvio);

 public List listaPedidos(Usuario usuario);

 public void cambiarEstado(Pedido pedido, String estado);
}

 Tal y como explicamos en el apartado de Patrones de Diseño, para el acceso a la Base de

Datos utilizamos el patrón conocido como Data Acces Object (DAO).
 Como podemos observar, nuestra clase és una interfície en la cual declararemos la firma de

todos y cadauno de los métodos (marcados en verde) que posteriormente tendrán que ser

implementados para el acceso y control de la persistencia en Base de Datos.

 Otro dato relevante es ver como nuestra interfície extiende de una clase genérica

common.saf.j2ee.database.dao.DAO, el contenido de dicha clase lo mostramos a continuación:

 82

package common.saf.j2ee.database.dao;

import java.io.Serializable;

/**
 * @author Eduardo Varga Laguna
 */
public interface DAO extends Serializable{
}

 Una vez mas dicha clase, debido a su uso genérico, simplemente extiende de

java.io.Serializable. (Explicado anteriormente)

(2)

 En este segundo punto nos encontramos con la declaración de la clase que no hará de factoría

para los DAO’s, el nombre de nuestra clase será common.saf.j2ee.database.dao.DAOFactory,

nombre que viene establecido por los Patrones de Diseño.

 A continuación mostraremos el código de dicha clase y posteriormente pasaremos a explicar los

puntos claves.

 El código es el siguiente:

package common.saf.j2ee.database.dao;

import (...)

/**
 * Clase DAOFactory abstracta que ha de extender la factoria de DAOs concreta
 */
public abstract class DAOFactory {

 (...)

 //***
 //PARA CADA DAO NECESARIO, AÑADIR UN METHOD ABSTRACTO QUE RETORNE DICHO DAO
 //***
 public abstract CatalogoDAO getCatalogoDAO();
 public abstract PedidoDAO getPedidoDAO();
 public abstract UsuarioDAO getUsuarioDAO();
}

 Tal y como expusimos en el tema de Patrones de diseños -> DAO, en esta clase es donde

obtendremos referéncia al DAO que queramos invocar, por lo tanto, lo más importante es la creación de

los métodos getXXXDAO() que nos permitirán dicha invocación. (Reseñado en rojo).

 Finalmente nos encontramos con la implementación en si de la interfície del DAO, es aquí donde

se encuentra implementada toda la lógica de negocio de nuestro objeto de acceso a datos. En la

implementación de estos métodos es donde llevaremos el control de todos los accesos, consultas,

inserciones, borrado, etc... en Base de Datos.

 83

 El código de dicha clase common.sp.spshop.database.hdbsql.dao.HDBSQLPedidoDAO lo

mostramos a continuación, pasando posteriormente a comentar lo más destacado que nos podemos

encontrar en dicha clase:

/**
 *
 */
package common.sp.spshop.database.hdbsql.dao;

import (...)

/**
 * @author Eduardo Varga
 *
 */
public class HDBSQLPedidoDAO implements PedidoDAO {

 /** logger para trazas */
 private static Logger logger = LoggerFactory.getLogger(HDBSQLPedidoDAO.class);

 private Connection getConnection(){
 return ((HDBSQLDAOFactory)DAOFactory.getInstance()).getConnection();
 }

 public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio,
String locEnvio, String provEnvio, String cpEnvio,String paisEnvio) {

(...)
 }

 public List listaPedidos(Usuario usuario) {

 // insertamos pedido
 StringBuffer query = new StringBuffer();

 query = new StringBuffer();
 query.append("SELECT * FROM PEDIDO WHERE PEDUSRID=");
 query.append(usuario.getId());

 ArrayList lista = new ArrayList();

 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 try {
 conn=getConnection();
 stmt = conn.createStatement();
 rs = stmt.executeQuery(query.toString());
 while (rs.next()) {
 Pedido pedido = new Pedido();
 pedido.setId(new Integer((int)rs.getLong("PEDID")));
 pedido.setEstado(rs.getString("PEDESTADO"));
 java.sql.Date fecha = rs.getDate("PEDFECHA");
 GregorianCalendar gc = new GregorianCalendar();
 gc.setTime(fecha);
 pedido.setFecha(gc.getGregorianChange());
 lista.add(pedido);
 }
 logger.logDebug("Recuperada lista de pedidos del usuario:
"+usuario.getId()+" ("+lista+" pedidos)");
 return lista;
 } catch (SQLException e) {
 try {
 conn.rollback();
 } catch (SQLException e1) {
 logger.logError("Error al hacer rollback.", e);

 84

 }
 throw new SystemException("Error en comando registraUsuario().", e);
 } finally {
 try {
 if (stmt != null)
 stmt.close();
 if (conn != null)
 conn.close();
 } catch (SQLException e) {
 logger.logError("Error al cerrar recursos JDBC", e);
 throw new SystemException("Error al cerrar recursos JDBC", e);
 }
 }
 }

 public void cambiarEstado(Pedido pedido, String estado) {
 (...)
 }
}

 Como vemos, y debido a la importancia de la implementación de esta clase, nos encontramos

con bastantes puntos de interes.

 Los pasaremos a comentar a continuación, estos puntos són los marcados en rojo en el código

anterior.

- implements PedidoDAO como vemos nuestra clase implementará la interfície que

creamos anteriormente, esto quiere decir que es aquí donde los métodos serán

desarrollados.

- StringBuffer query = new StringBuffer() declaración del objeto que nos servirá

para la creación de la query.

- query.append(SENTENCIA SQL), la forma de montar la query es con el método

.append(SENTENCIA SQL) de los objetos StringBuffer.

- Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

declaración de los 3 objetos con los que realizaremos la interacción

- conn=getConnection();

 stmt = conn.createStatement();

 rs = stmt.executeQuery(query.toString());

los 3 objetos anteriormente inicializados nos sirven ahora para obtener la conexión,

obtener un objeto del tipo Statement y finalmente mediante el método

.executeQuery(...) de los objetos Statement obtener el resultado de la consulta en

 85

Base de Datos en un objeto ResultSet que será con el que iremos obteniendo los

resultados.

- while (rs.next()) {

 Pedido pedido = new Pedido();
pedido.setId(new Integer((int)rs.getLong("PEDID")));

 pedido.setEstado(rs.getString("PEDESTADO"));
 java.sql.Date fecha = rs.getDate("PEDFECHA");
 ...
 }

una vez tenemos el objeto ResultSet nos disponemos a su manipulación, como

vemos mediante un while vamos recorriendo uno por uno los resultados de la query

en Base de Datos. Aquí aparece el concepto explicado en los patrones de diseño

que no es otro que el Transfer Object, el objeto Pedido sigue este patrón, ya que

como vemos interactua como contenedor en la obtención de los datos del ResultSet
mediante los métodos getXXX(NOMBRE ATRIBUTO EN BD).

- if (stmt != null)

 stmt.close();

 if (conn != null)

 conn.close();

Finalmente, nos disponemos ha cerrar los objetos previamente creados, para no

dejar nada consumiendo recursos que nos pueda generar problemas en la memória
virtual , quedandose objetos sin cerrar.

3.4.4.2.5. Retorno del resultado

Una vez obtenido el resultado deseado, simplemente queda el retorno de ese resultado hacia la

capa de presentación.

 El punto en el que tenemos que centrarnos se encuentra dentro de nuestra clase inicial de

Action, en dicha clase encontramos las siguientes líneas que són las que nos desvelan el ‘fin del

trayecto’.

 if (!errors.isEmpty()) {
 saveErrors(request, errors);
 forward = mapping.findForward("error");
 } else {
 forward = mapping.findForward("ok");
 }

 Aquí es donde le daremos el valor deseado al objeto ActionForward que creamos al inicio de la

clase, como vemos le asignamos dos valores posibles “ok” / “error” dependiendo del éxito o no de toda

la operación.

 86

 Depende del valor que le introduzcamos el RequestProcessor luego realizará el link a una u

otra posibilidad, dependiendo de la definición que hicimos en el fichero struts-config.xml.

 87

3.4.5. Implementación del modelo de datos

3.4.5.1. Tablas

Las tablas propietarias utilizadas són las siguientes:

3.4.5.1.1 USUARIO

USRID (PK) INTEGER

USRLOGIN CHAR(10)

USRPASSWORD CHAR(10)

USRNOMBRE CHAR(20)

USRAPELLIDO1 CHAR(30)

USRAPELLIDO2 CHAR(30)

USRDIRECCION VARCHAR(100)

USRPOBLACION CHAR(50)

USRCODPOSTAL CHAR(5)

USRPROVINCIA CHAR(50)

USRPAIS CHAR(40)

USRTELEFONO CHAR(20)

USRMAIL CHAR(20)

 88

3.4.5.1.2 PEDIDO

PEDID (PK) INTEGER

PEDUSRID INTEGER

PEDFECHA DATE

PEDESTADO CHAR(10)

PEDFECHACANCEL DATE

PEDDIRECCIONENVIO VARCHAR(100)

PEDPOBLACIONENVIO CHAR(50)

PEDPROVINCIAENVIO CHAR(50)

PEDPAISENVIO CHAR(40)

PEDCODPOSTAL CHAR(5)

3.4.5.1.3 LINEAPEDIDO

LINID (PK) INTEGER

LINPEDIDOID (PK) INTEGER

LINPRODUCTO INTEGER

LINCANTIDAD INTEGER

LINIMPORTE FLOAT

LINIVA FLOAT

LINTOTAL FLOAT

 89

3.4.5.1.4 PRODUCTO

PRODID (PK) INTEGER

PRODTITULO CHAR(60)

PRODARTISTA CHAR(60)

PRODDESCRIPCION VARCHAR(150)

PRODPRECIO FLOAT

PRODDESCUENTO FLOAT

PRODIMAGEN VARCHAR(60)

3.4.5.1.5 CATEGORIA

CATID (PK) INTEGER

CATPADRE INTEGER

CATNOMBRE CHAR(20)

CATDESCRIP VARCHAR(150)

3.4.5.1.6 PRODCAT

CATID (PK) INTEGER

PRODID (PK) INTEGER

 90

3.4.5.2. Representación gráfica de las Tablas de la BD

A continuación mostraremos la representación gráfica de las tablas que componen la BD:

 donde (definición de Foreign Keys):

- USUARIO_USRID = PEDIDO_PEDUSRID.

- LINEAPEDIDO_LINPEDIDOID = PEDIDO_PEDID.

- LINEAPEDIDO_LINPRODUCTO = PRODUCTO_PROID.

- PRODCAT_PRODID = PRODUCTO_PRODID.

- PRODCAT_CATID = CATEGORIA_CATID.

- CATEGORIA_CATPADRE = CATEGORIA_CATID.

 91

 92

3.5. Grupo de pruebas

3.5.1. Introducción

Debido a que el aplicativo es a pequeña escala y el rol de desarrollador y probador está encarnado

en mí, el conjunto de pruebas al que he sometido el aplicativo no van más allá que a las pruebas básicas

de navegación comprobando que todo funcionase.

Debido a que el desarrollo de un aplicativo de este tipo invita a realizarlo de forma modular

desarrollando cada caso de uso desde el principio hasta el final, las pruebas se realizaron despues de

tener completo cada uno de los casos de uso, desde la capa de presentación hasta la capa de Base de

Datos, de esta forma fui localizando los problemas, a través de los logs del propio servidor.

3.5.2. Posibles pruebas

En un proyecto de Ingenieria Informática a gran escala suele haber un equipo que se encarga

única y exclusivamente ha realizar estas pruebas.

Estas pruebas se pueden separar y clasificar, ha continuación expondré varias pruebas que se

podrian realizar, si el aplicativo hubiese sido de mayor envergadura:

• Pruebas de stress: Una de las pruebas a la que mayor atención y recursos se le

suele dedicar es a las conocidas como pruebas de stress, en estas pruebas no

se intenta otra cosa que someter al aplicativo a una sobrecarga de trabajo para

poder encontrar el rendimiento de todos los componentes llevados al extremo y

encontrar posibles cuellos de botella.

• Pruebas de navegación: Estas, al ser las mas obvias, suelen ser las pruebas

que siempre se realizan, són las más ‘simples’ y a su vez las que se realizan con

menos planificación. El problema de estas pruebas es que se le suelen asociar al

desarrollador ya que es el que tiene contacto dia a dia con el aplicativo, y a

veces, al propio usuario una vez el aplicativo ya ha sido puesto en ‘producción’

con la consiguiente aparición de errores, bugs y demás. Lo aconsejable para

este tipo de pruebas sería realizar un desglose y un diagrama de flujo en el que

se tratasen, sino todos, la mayoria de caminos disponibles dentro del aplicativo.

 93

• Pruebas de satisfacción de requerimientos: Este tipo de pruebas suelen

realizarse durante el desarrollo del aplicativo, en las llamadas reuniones de

seguimiento. En dichas pruebas, se intenta ver que el aplicativo va cumpliendo

con lo acordado en la captación de requermientos inicial. Dichas pruebas

engloban un gran número de perspectivas debido al gran número y tipología de

requermientos existentes, como ya se vio en el capítulo de captación de
requerimientos.

Con estos tres tipos de pruebas se podría establecer un nivel óptimo de satisfacción sobre la

calidad del producto final. Existen muchas y múltiples metodologias y herramientas de prueba existentes

en el mercado.

 94

 95

4. Recomendaciones

A continuación se relacionan algunas recomendaciones de desarrollo que se han obtenido a

partir de la lectura de documentación sobre Struts, forums y la propia experiencia.

4.1. Alternativas al uso de JSP en la capa
view

Uno de los sistemas más extendidos en las aplicaciones web para construir los componentes

de la view se basa en la tecnología JavaServer Pages.

Struts se basa también en esta tecnología para implementar este tipos de componentes.

A pesar de eso el framework permite sustituir este sistema de presentación o añadir otros

mediante extensiones del Struts. A continuación mencionaremos los más relevantes:

4.1.1. stxx

Se trata de una extensión para Struts para soportar tenologias XML y XSL. Permite que las

clases que implementan acciones de Struts regresen XML para ser transformado mediante XSL y

Anakia.

4.1.2. StrutsCX

Igualmente como el anterior, se trata de una extensión para Struts que permite generar salida

en formatos como HTML, XML usando tecnologías XML y XSL estándard.

4.1.3. VelocityStruts

Esta extensión habilita el uso de plantillas de Velocity en la capa de view para Struts.

 96

Las plantillas Velocity permiten diseñar la vista de forma sencilla mediante el uso de un

lenguaje específico de definición de plantillas.

El uso de esta extensión no inhabilita el uso de páginas JSP, de manera que es posible

mantener conjuntamente estos dos tipos de presentación.

4.1.4. Struts Cocoon

Esta extensión permite integrar Cocoon a Struts. Eso se consigue enlazando la salida de las

acciones de Struts con una pipeline XML del Cocoon. Con ello se aporta la potencia y flexibilidad del

Cocoon al framework.

4.2. El modelo debe ser simple

Lo más probable es que cuando uno se enfrenta con el diseño de un modelo para una

aplicación ya tenga una serie de consideraciones tecnológicas más o menos complejas detrás. La

aplicación tendrá que encadenar unas transacciones de host de maneras bien extrañas, o hacer joins de

diferentes tablas porque las tablas ya existen y no se pueden tocar, etc.

Es muy importante que estas complejidades no afloren en la interfaz del modelo. Seguro que

hay una manera lo más simple posible de expresarlo, probablemente aquélla que haríamos servir para

explicarlo a un usuario final o a un sponsor del proyecto, y que tal vez incluso está documentada en un

documento de requerimientos.

Si se consigue dar este primer paso, el modelo será más fácilmente reusable, y se alcanzará

hacer un controller y una view formada por una serie de clases con muy poco código (por tanto, con

pocas oportunidades de fallar)

En resumen, la complejidad tiene que estar escondida dentro del modelo, y éste sólo expone

una interfaz lo más sencilla posible sin ningún rastro de detalle de implementación.

4.3. El modelo no tiene que exponer la
tecnología utilizada

 97

Los nombres de los objetos tienen que tener significado de negocio, no tecnológico. La

implementación concreta del modelo también tiene que quedar escondida. Un Action, cuando llama a un

modelo, no tiene porque tener que saber que detrás hay una base de datos. Eso se concreta en que no

debe importar ningún package de JDBC. El patrón de diseño de Transfer Object o Value Object es muy

útil para tal efecto.

Los métodos del modelo tienen como parámetros, valores de retorno y excepciones lanzadas

objetos básicos o del propio modelo, pero no de la tecnología utilizada para implementarlo.

En el caso de las excepciones, el modelo de las nested exceptions o excepciones

encadenadas es imprescindible: si un método del modelo se encuentra un problema con la base de

datos, crea una excepción de un tipo significativo a nivel del modelo e incluye la excepción original

adentro. Así no se pierde la información detallada de la causa del problema, pero tampoco pasa

responsabilidad al Action de tener que tratar con objetos tecnológicos.

4.4. El modelo tiene que estar muy probado

El testing siempre es el punto más fácil de recortar cuando las fechas aprietan. En un modelo

de desarrollo test-driven, eso no nos lo podemos permitir. Si hay algún aspecto donde focalizar el testing,

éste es el modelo. Como es dentro del modelo donde se encuentra escondida la mayor complejidad, es

la capa donde más se pueden producir los errores, y donde los errores son más importantes.

Además, el hecho de tener el modelo bien separado del resto hace ideal la utilización de JUnit

como herramienta de pruebas. Cada nueva funcionalidad hay que traducirla en unos pocos test cases,

que prueben tanto los casos favorables como las condiciones de error.

4.5. El Action no es parte del modelo

Éste es uno de los puntos donde es preciso tener clara la división entre controller y modelo. El

modelo tiene que contener toda la lógica de negocio, con unas interfaces claras y significativas bajo el

punto de vista de los requerimientos y del usuario.

Es habitual, en un desarrollo iterativo, que para implementar una nueva funcionalidad uno se

vea tentado de codificar lógica de negocio dentro del Action. Como el Action se debe hacer de todas

 98

maneras, puede dar pereza añadir un método en una clase del modelo, o añadir una nueva clase al

modelo, y se pone dentro del Action.

Eso no es bueno por muchas razones, entre las que lo más importante es que si se debe volver

en hacer lo mismo en otro Action se tendrá que repetir el mismo código. Además, uno de los

requerimientos que nos lleva a escoger Struts es el de hacer aplicaciones más reusables: el mismo

modelo puede servir para otras aplicaciones, o por la misma con otra interfaz.

En resumen, el código del Action idealmente debe ser muy corto, y limitarse a hacer llamadas a

un modelo que debe tener una interfaz simple.

Es más fácil seguir esta norma si se tiene una batería de pruebas para el modelo, y cada nueva

funcionalidad genera una o diversas nuevas pruebas, aparte del Action y los componentes de view

correspondientes.

4.6. La view no es parte del modelo

Esta es aún más clara que el anterior, porque son dos de las capas del MVC, pero no está de

más también remarcarla. No hay que codificar lógica de negocio dentro de la view, por las mismas

razones que antes.

4.7. La view no tiene que llamar al modelo

La view se ha de limitar a las tareas de presentación. Su función hay que limitarla a recoger los

datos que le ha pasado el Action anterior, presentarlas al usuario, recoger las que entre el usuario por la

siguiente petición, posiblemente validarlas sintácticamente (no semánticamente, de eso se encarga el

modelo), y finalmente enviar la petición al controller. El controller, y en particular el Action, es quién llama

al modelo y establece el resultado final de la petición (ActionForward), a partir del que se invocará el

siguiente recurso.

Todo eso se puede hacer, en el caso de las JSPs, con unos pocos tags HTML y unos pocos

custom tags.

La manera más fácil de adherirse a esta norma es hacerlo siguiendo lo siguiente:

 99

4.7.1. No usar scriptlets en las JSPs

Los scriptlets son la manera más fácil de mezclar lógica con presentación, y son una potencial

fuente de problemas porque promueven fácilmente la técnica del cut-and-paste de código en múltiples

JSPs, dando lugar a una aplicación más difícil de mantener.

Si se ve que una misma lógica, que realmente pertenece en la presentación, hay que repetir en

múltiples JSPs, la manera correcta es crear un custom tag que la implemente, y en la JSP simplemente

escribir el tag.

Lo más probable, es que éste tag ya exista entre los muchos que proporciona Struts o la JSTL

(JSP Standard Tag Library).

4.7.2. Utilizar taglibs

Las taglib de Struts son una fuente constante de sorpresas agradables. Si se utilizan con toda

su potencia se pueden hacer JSPs realmente compactos, fáciles de entender y de mantener.

La recomendación es intentar entenderlas en toda su extensión, y con cada nuevo problema o

requerimiento que uno se encuentre buscar primero en su documentación, o por Internet.

Probablemente alguien ya lo ha hecho antes y se ha incorporado al framework.

4.7.3. No enlazar directamente JSPs entre ellas

La función del controller en el MVC es la de tratar todas las peticiones que llegan a la aplicación

y, una vez efectuada la operación, redireccionar a la view que corresponda. Si desde una JSP (por

ejemplo, desde un menú) ponemos un enlace directo a otra JSP, esta petición no pasará nunca por el

controller (l'ActionServlet).

Por ello, cuando lo que se quiere hacer es enlazar de una JSP a otra lo que se hace es pasarlo

por una action especial que ya vé con Struts, el ActionForward, que simplemente hace un forward a la

JSP que se le pasa como parámetro.

Puede que haya aplicaciones Struts genéricas en que el hecho de no pasar por el controller

entre dos JSPs no suponga problema alguno. En el caso de una aplicación Intranet-Struts sí, porque se

 100

pierde el proceso que hace el nuestro RequestProcessor (por ejemplo, convertir la cookie de idioma en

locale, o comprobar los roles del usuario)

4.7.4. Pensar y leer mucho, codificar poco

La idea que hay detrás de esta norma es muy sencilla: seguro que alguien ya lo ha intentado

antes. Struts consta de unas 300 clases muy arquitecturadas, y para conseguir la mayoría de tareas es

necesaria una cantidad de código sorprendentemente pequeña. Al ser código abierto, la evolución de

Struts ha venido de la práctica de muchísimos usuarios que han visto resueltas de manera elegante sus

requerimientos.

Por ello, ante la duda sobre como afrontar un problema de desarrollo de una aplicación Struts,

lo mejor es leerse bien el API (tanto la de Struts como la J2EE: Servlet y JSP), probablemente con un par

de líneas de código se resuelve. La web de Struts y los forums que allí se relacionan también son muy

útiles si no se encuentra directamente la respuesta en la documentación. A veces también está bien dar

una ojeada a los fuentes de Struts, allí también veremos que las clases de Struts son sorprendentemente

pequeñas...

Si el modelo es simple, también será más fácil seguir esta norma.

4.7.5. Preferir ActionForms con request scope que con
session scope

En un entorno de alta disponibilidad, cuando algún dato se guarda a nivel de sesión

(HttpSession), este dato se almacena en la base de datos de persistencia de las sesiones. Dependiendo

de la longitud del dato y de su cantidad, eso puede acabar provocando una ralentización de la aplicación

sólo por el hecho de tener que persistir la sesión.

Por tanto es preciso evitar, en la medida del posible, ir acumulando datos en la sesión.

Si finalmente se guardan datos en la sesión, es preciso recordar borrarlas cuando ya no se

necesitan.

En el caso de Struts, las ActionForms con scope de sesión tienen sentido cuando hay una serie

de interacciones con el usuario previas a la ejecución de una operación de negocio (diálogos tipos

wizard). En este caso son indicadas sin duda.

 101

Intanet Struts añade en la sesión un pequeño objeto AisSessionBean para mantenimiento de

datos de sessio de infraestructura.

4.7.6. Refactorizar a menudo

Es impresionante la cantidad de problemas que uno se puede evitar dedicando un tiempo a

rehacer una jerarquía de clases en cuentas de introducir con calzador un método a la clase que se tiene

más a mano. Merece la pena aprovechar la potencia del WSAD para cambiar el nombre de una clase o

de un método, o para subir un método a la clase padre, o para cambiar de package una clase, etc. Eso

combinado con una buena batería de pruebas permite aventurarse mucho más en la tarea de

refactoritzar: si los tests siguen pasando, quiere decir que no hemos roto nada.

4.7.7. El buen código se comenta solo

No hay nada más desagradable que heredar un código lleno de comentarios que no ténen

nada que ver con lo que hace realmente. Desgraciadamente eso es lo más normal. La mejor manera de

evitarlo es poniendo el mínimo de comentarios posibles, que se sustituyen por un diseño entendedor y

un código claro: métodos con pocas líneas y con nombres bien escogidos que indiquen lo que hacen.

Vale más dedicar tiempo en pensar en una interfaz lo más sencilla y aclaratoria posible que escribiendo

comentarios que un día u otro seguro de que quedarán obsoletos.

Tenemos la suerte que el Java es un lenguaje fácil de leer, siempre y cuando no se tenga que

leer s_mft.getUpC1(). Si para que el código sea legible el nombre de una variable o método debe ser

más largo, pues se hace más largo. Las herramientas de asistencia del WSAD (Ctrl + espacio) ya

ahorran de escribir nombres largos, merece la pena aprovecharlo.

Sólo en el caso de que el comentario aporte alguna información útil es adecuado posarlo.

En esta recomendación no está incluidos los comentarios Javadoc que documentan la interfaz

pública de una librería o framework. En este caso, sí que son necesarios y entonces es preciso ser muy

estricto en modificar el Javadoc, si es preciso, cada vez que se toca algún método. Por su parte,

tampoco merece la pena escribir un Javadoc lleno de descripciones triviales que sólo repiten las

palabras de que consta el nombre del método.

 102

 103

5. Conclusiones

5.1. Posibles mejoras en el producto final

Debido a que el proyecto pretendía mostrar de una forma ‘sencilla’ y clara lo que sería en la

realidad el desarrollo de un aplicativo en J2EE con el framework de desarrollo Struts, hay muchas cosas

que se han implementado de una forma sencilla y ligera para que no aportasen un trabajo añadido al

cómputo global del proyecto.

A continuación reflejaré una série de mejoras que podrían introducirse para que el proyecto

cogiese mas forma y cuerpo:

- Como primera mejora, y ya comentada en unos de los puntos anteriores de esta

memoria se encuentra el tema de la Base de Datos. Como ya expliqué, la Base de

Datos en la actualidad es creada mediante un servlet en el arranque del Web Server

que no permité la perdurabilidad de los datos mas allá de la vida que tenga la sesión

del Web Server en cuestion.

De esta forma se puede ver claramente una de las posibles mejoras, que no sería

otra que desarrollar esta parte del proyecto de una forma mas amplía, generando en

una máquina aparte la Base de Datos, con sus herramientas de gestión y

administración y el posterior tratamiento a través del código, configurando en los

descriptores de despliegue y configuración todo el tema de la API JBDC utilizada.

- Otra posible mejora hubiese sido desarrollar de una forma eficaz y eficiente el

conjunto de pruebas, haciendose eco de todas aquellas herramientas que existen en

el mercado para este fin y desarrollando esta parte del proyecto como un módulo

aparte del mismo

- En el tema de la presentación se podría también haber desarrollado un complejo

sistema de navegación que siguiese un patrón mas actual y no el simple hecho de

pantalla -> acción -> pantalla. Este trabajo podría correr aparte por cuenta de un

buen Diseñador Web que se encargase de un profundo estudio para potenciar la

parte estética y de marketing. No hay que olvidar que este proyecto no dejaría de ser

un aplicativo para vender libros, con el consiguiente peso comercial que tendría.

Estas són algunas de las mejoras que se me ocurren, pero probablemente debido a la

 104

complejidad del proyecto se podría hacer hincapié en cada uno de los módulos y apartados del mismo,

especializando cada uno de estos módulos hasta el extremo.

5.2. Valoración personal

Como autor de esta memoria, diseñador, desarrollador y ideólogo de este proyecto, creo que

puedo decir que el objetivo con el que se empezó todo esto queda cumplido, por lo menos para las

expectativas que yo deposité en él.

La idea no fue en ningún momento crear una aplicación cerrada y especializada en cada uno de

los puntos que toca, sino todo lo contrario, de una forma ‘ligera’ y sencilla conseguir crear en el lector

una idea general de cómo arrancar un proyecto de este tipo. Por esta razón se y asumo que si se

observa el proyecto con lupa genere en el lector y usuario del aplicativo muchas lagunas, o si mas no,

generé cierto interés en profundizar en esos temas ‘abiertos’ .

Saludos cordiales del autor.

 Eduardo Varga Laguna.

 105

 106

6. Referencias

6.1. Libros

• Cavaness, Chuck. Programming Yakarta Struts. O ' Reilly. 2002

• Java Enterprise – in a Nutshell. O’Reilly. 2002

• Professional Jakarta Struts. Goodwill & Hightower. Wrox. 2004

6.2. Enlaces internet

• http://www.oreilly.com/catalog/yakarta/

• http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

• http://www.geocities.com/txmetsb/req-mgm-2.htm

• http://www.cs.ualberta.ca/~pfiguero/soo/metod/requerimientos.html

• http://www.clikear.com/manuales/uml/modelos.asp

• http://www.javahispano.org/tutorials.item.action?id=28

• http://civil.fe.up.pt/acruz/access/modeloER.htm

• http://yakarta.apache.org/struts/index.html

• http://yakarta.apache.org/struts/userGuide/index.html

• http://struts.sourceforge.net/community/extensions.html

• http://it.cappuccinonet.com/strutscx/index.php

• http://stxx.sourceforge.net/

• http://yakarta.apache.org/velocity/anakia.html

• http://yakarta.apache.org/velocity/tools/struts/

• http://struts.sourceforge.net/struts-cocoon/

• http://logging.apache.org/log4j

• http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html

• http://java.sun.com/blueprints/index.html

• http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

• http://www.adrformacion.com/cursos/javaser/leccion3/tutorial2.html

• http://e-docs.bea.com/wls/docs92/webapp/web_xml.html#wp1015950

• http://hsqldb.org/

 107

 108

Anexo I. Instalación del entorno de
desarrollo

Anexo I.1. Software a utilizar
En la medida que podamos vamos a intentar utilizar herramientas que sean gratuitas, aquellas

herramientas que tienen licencia GPL. Las herramientas software que vamos a utilizar son las siguientes:

Nombre Versión URL Proveedor

Java Development Kit 1.4.2_08 http://java.sun.com/j2se

Lomboz Eclipse IDE

1.0.0 (R1

Lomboz for

Eclipse 3.1,

build 20050526)

http://forge.objectweb.org/projects/

lomboz

Apache Tomcat 4.1.31 http://jakarta.apache.org/tomcat

Es necesaria la creación de una carpeta de nombre entorno-desarrollo en la unidad de la

máquina donde se vaya a realizar la instalación, que se usará como carpeta base para la instalación de

todo el software necesario.

Anexo I.2. Instalación de JDK 1.4

Anexo I.2.1 Proceso de Instalación

Para la instalación de éste software se han de seguir los siguientes pasos:

1) Ejecutar el archivo j2sdk-1_4_2_08-windows-i586-p.exe y aceptar la licencia.

 109

2) Después de la aceptación de la licencia, aparecerá una pantalla en la cual hemos de

establecer las referencias de instalación.

• Para cambiar el directorio de instalación por defecto, basta pulsar el botón Change y

establecer el valor C:\entorno-desarrollo\j2sdk1.4.2_08\:

• Seleccionar únicamente Internet Explorer como navegador a instalar el plugin y

comenzar el proceso de instalación pulsando el botón de Install.

3) Una vez finalizado el proceso de instalación, es necesario añadir una variable de entorno de

nombre JAVA_HOME y valor C:\entorno-desarrollo\j2sdk1.4.2_08.

 4) Por último, es necesario modificar la variable de entorno PATH para añadir el path

C:\entorno-desarrollo\j2sdk1.4.2_08\jre\bin.

 Anexo I.2.2 Verificación de la Instalación

Para la verificar la correcta instalación del JDK, abrir una ventana de comandos, y tras ejecutar la

instrucción java –version.

Anexo I.3. Instalación de Lomboz
Eclipse IDE

 Anexo I.3.1 Introducción

Lomboz Eclipse IDE es simplemente una distribución de Eclipse IDE que lleva integrada el plugin

Lomboz de ObjectWeb para el desarrollo de aplicaciones J2EE.

 Anexo I.3.2 Proceso de Instalación

Para la instalación de éste software se han de seguir los siguientes pasos:

 110

1) Extraer el archivo lomboz-eclipse-emf-gef-jem-I20050526.zip, en la carpeta siguiente:

C:/entorno-desarrollo.

2) Crear un acceso directo en el escritorio al fichero C:/entorno-desarrollo /eclipse/eclipse.exe

para poder ejecutar la herramienta:

 Anexo I.3.3 Verificación de la Instalación

Para verificar la correcta instalación de Eclipse, pulsar sobre el acceso directo creado y aceptar

la localización del workspace ofrecido por defecto -> Aparecerá la pantalla principal de la herramienta

Eclipse.

 Anexo I.3.4 Configuración de Eclipse

Antes de comenzar a usar Eclipse, es necesario realizar las siguientes operaciones de

configuración:

1) Abrir Eclipse, y seleccionar la opción Window Preferences. Expandir la opción Java Build

Path, y marcar el checkbox de Folder (asegurarse de que las carpetas de source y output se llaman src y

bin, respectivamente). Seleccionar además la opción de JRE_LIB variable como librería JRE a usar.

Anexo I.4. Instalación de Apache
Tomcat

 Anexo I.4.1 Proceso de Instalación

Para la instalación de éste software se han de seguir los siguientes pasos:

1) Descargar de la página oficial el ejecutable Jakarta-tomcat-5.0.30.exe. Ejecutarlo.

2) Tras pulsar el botón de Aceptar, aparecerá la pantalla de licencia. Tras aceptar la licencia

pulsando el botón de I Agree, aparecerá la pantalla de opciones de instalación.

 111

3) Seleccionamos la instalación Normal, y pulsamos el botón de Next. En la siguiente pantalla,

introducimos como directorio de instalación el directorio C:\entorno-desarrollo\Tomcat5.0.30 , y pulsamos

el botón de Install.

4) Una vez el proceso de instalación haya finalizado, pulsamos el botón de Next.

5) Aceptamos la información de configuración que viene por defecto, y pulsamos el botón Finish

para finalizar el proceso de instalación.

Anexo I.4.2. Verificación de la Instalación

Para verificar la correcta instalación de Apache Tomcat, arrancamos Tomcat desde el menú

Inicio Programas Apache Tomcat 5.0 Start Tomcat

Aparecerá una ventana de DOS que corresponderá a la salida estándar y de errores de Tomcat.

Cuando haya finalizado el proceso de inicialización, abrimos un navegador y tras solicitar la URL

http://localhost:8080/index.jsp , veremos la página de inicio de Tomcat.

 112

 113

En el siguiente documento podrá encontrar de una forma clara y entendedora a través de

la creación de un sencillo aplicativo el mecanismo para la creación de una aplicación J2EE

basada en el Framework de desarrollo Yakarta Struts.

En el mismo partirá desde cero, desde el inicio en la captación de requerimientos, pasando

por la etapa de análisis y diseño y la posterior implementación.

	Portada.doc
	(TÍTOL DEL PROJECTE)

	memoria.pdf

