Universitat
£ Autonoma
de Barcelona

J2EE TIENDAVIRTUAL APPLICATION FRAMEWORK

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

Eduardo Varga Laguna
I dirigit per

Joan Serra Sagrista
Bellaterra,......de................... de 200...

Universitat
20| Autonoma e t se

de Barcelona Escola Técnica Superior d’Enginyeria

El SOtaSIZNat, ..c.ceueueeiiiniriririreiieieiereiereeiecieeeeseseee s esenenenenen

Professotr/a de 1'Escola Técnica Superior d'Enginyeria de la UAB,
CERTIFICA:

Que el treball a que correspon aquesta memoria ha estat realitzat sota la seva
direcci6 per en

I per tal que consti firma la present.

SIgNAL: .o,

Bellaterra, o [T de 200.....

INDICE
1. Introduccion...... 10
1.1. Motivaciones...... 10
1.2. Objetivos...... 10
1.3. Organizacion de la memoria...... 10

2. Fundamentos teéricos...... 13

2.3. Struts...... 16
2.3.1. Estructura de una aplicacion basada en Struts...... 17
2.3.1.1. Introduccion...... 17
2.3.1.2. Componentes de la view...... 18
2.3.1.2.1. JSPs...... 18
2.3.1.2.2. Recursos...... 19
2.3.1.2.3. ActionForms...... 19
2.3.1.2.4. ActionErrors...... 20
2.3.1.3. Componentes del controller...... 21
2.3.1.3.1. ActionServlet...... 21
2.3.1.3.2. RequestProcessor...... 21
2.3.1.3.3. Ficheros de configuracién...... 21
2.3.1.3.4. ActionMapping...... 22
2.3.1.3.5. Action...... 23
2.3.1.3.6. ActionForward...... 23
2.3.1.4. Componentes del modelo...... 24
2.3.1.4.1. Modelo conceptual...... 24
2.3.1.4.2. Modelo de disefio...... 24
2.3.1.4.3. Modelo de datos...... 25
3. Fases del proyecto...... 28
3.1. Introduccion...... 28
3.2. Captura de requerimientos...... 28
3.2.1. Introduccion...... 28
3.2.2. Clasificacion de los requerimientos...... 29
3.2.2.1. Requerimientos del “entorno” 29
3.2.2.1.1. Descripcién...... 29
3.2.2.1.2. Recopilacién de requerimientos del cliente...... 29
3.2.2.2. Requerimientos ergondmicos...... 30
3.2.2.2.1. Descripcion...... 30

3.2.2.2.2. Recopilacién de requerimientos del cliente...... 30
3.2.2.3. Requerimientos de interface...... 31
3.2.2.3.1. Descripcion...... 31
3.2.2.3.2. Recopilacién de requerimientos del cliente...... 31
3.2.2.4. Requerimientos funcionales...... 32
3.2.2.4.1. Descripcion...... 32
3.2.2.4.2. Recopilacion de requerimientos del cliente...... 32
3.2.2.5. Requerimientos de desempefio...... 33
3.2.2.5.1. Descripcion...... 33
3.2.2.5.2. Recopilaciéon de requerimientos del cliente...... 33
3.2.2.6. Disponibilidad...... 33
3.2.2.6.1. Descripcién...... 33
3.2.2.6.2. Recopilacién de requerimientos del cliente...... 33
3.2.2.7. Entrenamiento...... 34
3.2.2.7.1. Descripcion...... 34
3.2.2.7.2. Recopilacién de requerimientos del cliente...... 34
3.2.2.8. Restriccion de disefio...... 34
3.2.2.8.1. Descripcion...... 34
3.2.2.8.2. Recopilacién de requerimientos del cliente...... 34
3.2.2.9. Materiales...... 35
3.2.2.9.1. Descripcion...... 35
3.2.2.9.2. Recopilacion de requerimientos del cliente...... 35
3.2.3. Manejo de requerimientos...... 35
3.3. Disefio...... 36
3.3.1. El concepto de servicio...... 36
3.3.2. Construccion de servicios...... 37
3.3.3. Modelo de datos...... 37
3.3.4. Comunicacion de datos entre las capas de las aplicaciones...... 39
3.3.5. Patrones de disefio utilizados en el aplicativo...... 40
3.3.5.1. BUSINESS DELEGATE...... 40
3.3.5.1.1. Contexto...... 40
3.3.5.1.2. Problema...... 41
3.3.5.1.3. Causas...... 41
3.3.5.1.4. Solucion...... 41
3.3.5.1.5. Consecuencias...... 43
3.3.5.2. TRANSFER OBJECT...... 44
3.3.5.2.1. Contexto...... 44
3.3.5.2.2. Problema...... 44

3.3.5.2.3. Causas...... 45
3.3.5.2.4. Solucion...... 45
3.3.5.2.5. Consecuencias...... 46
3.3.5.3. DATA ACCESS OBJECT...... 47
3.3.5.3.1. Contexto...... 47
3.3.5.3.2. Problema...... 47
3.3.5.3.3. Causas...... 48
3.3.5.3.4. Solucion...... 49
3.3.5.3.5. Consecuencias...... 50
3.4. Implementacion...... 52
3.4.1. Organizacién del repositorio...... 52
3.4.2. Descriptor de despliegue del Web Server (web.xml) 56
3.4.3. struts-config.xml...... 67
3.4.4. Explicacion de un Caso de Uso...... 73
3.4.4.1. Introduccion...... 73
3.4.4.2. Capas dentro del Caso de Uso...... 73
3.4.4.2.1. JSP deinicio...... 73
3.4.4.2.2. Invocacion del Action...... 75
3.4.4.2.3. Acceso a la capa de negocio...... 78
3.4.4.2.4. Acceso a la capa de datos...... 80
3.4.4.2.5. Retorno del resultado...... 85
3.4.5. Implementacion del modelo de datos...... 87
3.4.5.1. Tablas...... 87
3.45.1.1. USUARIO...... 87
3.4.5.1.2. PEDIDO...... 88
3.4.5.1.3. LINEAPEDIDO...... 88
3.45.1.4. PRODUCTO...... 89
3.45.1.5. CATEGORIA...... 89
3.4.5.1.6. PRODCAT...... 89
3.4.5.2. Representacion grafica de las Tablas de la BD...... 90
3.5. Grupo de pruebas...... 92
3.5.1. Introduccion...... 92
3.5.2. Posibles pruebas...... 92
4. Recomendaciones...... 95
4.1. Alternativas al uso de JSP en la capa view...... 95
4.1.1. stxx...... 95
4.1.2. StrutsCX...... 95
4.1.3. VelocityStruts...... 95

4.1.4. StrutsCocoon...... 96
4.2. El modelo debe ser simple...... 96
4.3. El modelo no tiene que exponer la tecnologia...... 96
4.4. El modelo tiene que estar muy probado...... 97
4.5, El Action no es parte del modelo...... 97
4.6. La view no es parte del modelo...... 98
4.7. La view no tiene que llamar al modelo...... 98
4.7.1. No usar scriptlets en las JSPs...... 99
4.7.2. Utilizar taglibs...... 99
4.7.3. No enlazar directamente JSPs entre ellas...... 99
4.7.4. Pensary leer mucho, codificar poco...... 100
4.7.5. Preferir ActionForms con request scope que con session scope...... 100
4.7.6. Refactorizar a menudo...... 101
4.7.7. Elbuen cédigo se comenta solo...... 101
Conclusiones...... 103
5.1. Posibles mejoras en el producto final...... 103
5.2. Valoracién personal...... 104
Referencias...... 106
6.1. Libros...... 106
6.2. Enlaces Internet...... 106

Anexo |. Instalacién del entorno de desarrollo...... 108

Anexo I.1. Software a utilizar...... 108
Anexo |.2. Instalaciéon del JDK 1.4...... 108
Anexo 1.2.1. Proceso de instalacion...... 108
Anexo 1.2.2. Verificacion de la instalacion...... 109
Anexo 1.3. Instalacién de Lomboz Eclipse IDE...... 109
Anexo 1.3.1. Introduccion...... 109
Anexo 1.3.2. Proceso de instalacion...... 109
Anexo 1.3.3. Verificacién de la instalacion...... 110
Anexo 1.3.4. Configuracion de Eclipse...... 110
Anexo |.4. Instalacion de Apache Tomcat...... 110
Anexo 1.4.1. Proceso de instalacion...... 110

Anexo 1.4.2. Verificacién de la instalacion...... 111

1. Introduccion

1.1. Motivaciones

Las motivaciones al presentar una propuesta basada en la tecnologia J2EE no era otra que la
‘comodidad’ y ‘agilidad’ que me aportaba el hecho de trabajar diariamente con esta tecnologia en mi
ambito laboral. Al plantearme que tipo de proyecto realizar, primé el poder compaginar estas dos
actividades y no perder excesivo tiempo en entender la tecnologia y todos sus ‘secretos’, pudiendo asi,

centrarme en el desarrollo en si del proyecto de final de carrera.

Evidentemente, también hay un componente de ilusion, ya que si decidi en su dia encaminar mi
futuro en esta linea es porque me interesa mucho el desarrollo de aplicativos para clientes utilizando

tecnologias ‘modernas’, y de plena actualidad como pueden ser este tipo de entornos.

1.2. Objetivos

El objetivo principal de este proyecto ha sido ensefiar mediante un ejemplo de aplicativo sencillo,

como desarrollar una aplicacién con la plataforma J2EE mediante el Framework Struts.

1.3. Organizacion de la memoria

La organizacién de esta memoria sigue un orden légico dentro de lo que es la explicacién normal

de un proyecto de Ingenieria Informética.

Primero se han expuesto los Fundamentos tedricos a partir de los cuales el lector de la
memoria puede tener una referencia clara posteriormente de el porque de las cosas que se ird

encontrando en el desarrollo del mismo.

Después se han descrito las Fases en las que se ha encontrado el proyecto desde su inicio
hasta su fin, pasando por las primeras fases de captacién de requerimientos, analisis posterior del
problema, exposicién de las posibles soluciones, disefio de los componentes que formarian parte,
implementacion de los mismos con sus pertinentes revisiones y retoques y finalmente, las pruebas

correspondientes a cada parte de la aplicacion.

10

En el siguiente capitulo se podra ver que decisiones se tomaron una vez tenia todos los
requerimientos claros en cuanto al Disefio del proyecto. Se explicara todos los patrones de disefio que
se suelen utilizar como solucién en este tipo de entornos.

Posteriormente ya se entra en la explicacion de como el Disefio explicado en el capitulo anterior

se llevo a cabo, es decir, a la Implementacion propiamente dicha.

Finalmente, se incluye una serie de pruebas que se realizaron para comprobar el correcto
funcionamiento del aplicativo y que cumpliese con los requerimientos marcados en el inicio, estas
pruebas incluyen tanto las pruebas realizadas al fin, como las pruebas realizadas durante la
implementacién, es en este tipo de pruebas cuando se comprueba que realmente se puede pasar a la
siguiente iteracion de tu proyecto.

11

12

2.Fundamentos tedricos

Struts es un framework de desarrollo de aplicaciones, basada en tres tecnologias principales:
. La arquitectura MVC (Modelo-View-Controller)

o El estandar J2EE

. El framework de c6digo abierto Yakarta Struts.

A continuacién se hace una introduccion a estas tres tecnologias:

2.1. MVC

La arquitectura de Struts estd basada en una arquitectura conocida como Model - View -
Controller (MVC).

Cuando se quiere desarrollar una aplicacién con Struts es preciso tener presente este hecho, y
mas claramente puede decirse que no tiene mucho sentido plantearse utilizar Struts sin estar dispuesto a

hacer las separaciones entre las 3 capas.

MVC fue introducido el afio 1988 para el desarrollo de interfaces de usuario en sistemas
Smalltalk-80.

Las funciones de cada capa son las siguientes:

e Model: contiene Unicamente la l6gica de negocio, y es completamente independiente de

las otras 2 capas. Es el Unico lugar desde donde se accede a datos, back ends, etc.

e View: contiene la logica de presentacion del modelo. Interactia con el modelo para
acceder a su estado. Recibe 6rdenes del controller para seleccionar la pantalla a

mostrar.

e Controller: contiene el flujo de la aplicacién. Traslada las peticiones del usuario a
llamadas al modelo para invocar las operaciones de negocio. Selecciona la siguiente

pantalla a mostrar y lo transmite a la view.

13

Las acciones que el usuario realiza sobre el navegador se transmiten a un servlet que actia de

controller, intercepta todas las peticiones y las trata adecuadamente.

El tratamiento de una peticién implica llamar a los objetos del model. Una vez se ha acabado la
peticion, el controller instancia la view correspondiente al resultado de la peticidn, y finalmente ésta view

se muestra en el navegador del usuario.

2.2. J2EE

Java 2 Enterprise Edition (J2EE) es un estdndar creado para facilitar el desarrollo de
aplicaciones multi-nivel. Ante la complejidad y heterogeneidad de este tipo de sistemas, J2EE ofrece una
arquitectura unificada y modular que facilita el desarrollo de aplicaciones distribuidas, proporcionandoles
una serie de servicios que permiten acelerar el proceso de desarrollo dentro de las necesidades
especificas de una empresa.

Las caracteristicas mas importantes de la arquitectura J2EE son la portabilidad (posibilitada
por la definicion de un estandar y de un proceso de certificacién contra el estandar), la escalabilidad
(gracias sobre todo a los servicios de distribucion de componentes), la simplicidad (gracias a los servicios
incorporados) y la capacidad de integracion con sistemas propietarios.

El desarrollo en J2EE se basa principalmente en las especificaciones de Enterprise JavaBeans,

Servlets y JSP, asi como en la tecnologia XML.

14

La plataforma J2EE proporciona implementaciones de los aspectos mas complejos del desarrollo
de aplicaciones de gran escala de modo que los desarrolladores puedan centrarse en los problemas

especificos, generalmente la I6gica de negocio y las interfaces de usuario.

El modelo de aplicaciones de J2EE encapsula las distintas capas de funcionalidad en distintos
tipos de componentes. La l6gica de negocio se encapsula en Enterprise JavaBeans (EJB), la interaccién
de usuario puede realizarse a través de paginas HTML, Applets u otras tecnologias, y controlarse desde
el servidor mediante Servlets o JSP.

Client-Side Server-Side Server-Side Enterprise
Presentation Presentation Business Logic Information
. Web . : System

Browser
Pure
HTML

Java
Applet

Desktop

Java . Java
Application Serviet

Other Device

HIZ2EE
J2EE]
Client Alistliy

Modelo de aplicaciones J2EE

El estandar J2EE promueve la reutilizacion y la compatibilidad de productos dentro de la
plataforma, por lo que normalmente una aplicacién combinara el desarrollo de componentes especificos
y presentaciones personalizadas con la integracion de componentes o servicios de prefabricados. El
modelo de aplicaciones J2EE divide las aplicaciones en tres partes fundamentales: componentes,
contenedores y conectores.

Los componentes contienen el desarrollo de la aplicacién. Producidos con las tecnologias
citadas mas arriba, pueden ser reutilizados entre aplicaciones y fabricantes.

Los contenedores proporcionan el entorno de ejecucion de los componentes, y los comunican
con sus clientes, aportando varios servicios a ambos, permitiendo configurar muchos comportamientos
en tiempo de despliegue, en vez de en tiempo de desarrollo. Los contenedores los desarrollan empresas

de sistemas (tipicamente servidores de aplicaciones: BEA, Oracle, IBM...).

15

Los conectores permiten la comunicacion de aplicaciones J2EE con otros tipos de sistemas.
Una API portable permite la integracion con sistemas existentes dentro de la empresa o con tecnologias

existentes mas alla del estandar J2EE.

2.3. Struts

A continuacién se explica el funcionamiento de Struts. En el siguiente diagrama de interaccion,

extraido de http://rollerjm.free.fr/pro/Struts11.html, puede verse el flujo de una interaccion del usuario con

una aplicacion Struts.

Struts Controller ReguestProcessor BusinessDelegate Helper View
ActionServiet RequestProcessar UserDelegate HelperBean isp

Mo

Client

I I
1: daPostovaid Ksubmits farm |
bl 1.1: processivoid I

= ActionForm
1.1.1: creates if necessary — DynaActionF orm

[‘;I.1 2. processPopulated void |
|
|

1.1.3: validate:ActionErrors

Action
1.1.4: UserAction

|

|

|

|

|
1441 get(Sting)object

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.1.4.2! businessMethod1 Jvaid . 1
1.1.4.3: populated:yoi |T|

|

|

|

|

|

|

|

|

|

|

=
=3

1.1.4.4: forwards to

!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3
g

2 getData

Browser 5 Struts Contraller [

L
|
|
!
|
|
!

|

|
| |
| |

|
} | | 3 getrroperies |
| . | .
| ‘ | ‘
| | | |
‘ |
| | |
I I |
i | ‘

encapsulates Walue Ohject hean
Business logic holds the data reguired
and access Model by the screens

Struts se centra principalmente en la capa de controller. Todas las peticiones que hace el
usuario desde su navegador hacia la aplicacion pasan por un mismo servlet, el ActionServlet, que
delega la ejecucion de la peticion en un objeto de tipo RequestProcessor, que es el que controla el flujo

de la peticion.

En primer lugar instancia un objeto ActionForm. Los datos que conforman el input de la
operacion y que el usuario ha rellenado en un formulario HTML son recogidos por Struts y puestos

dentro del ActionForm. Estos datos pueden tener diferentes niveles de visibilidad, y dependiendo de este

16

nivel Struts los almacena en un puesto u otro: request (HttpServietRequest), session (HttpSession), o

application (ServletContext).

Segun la URL invocada (ActionMapping), se instancia una subclase de Action entre los
configurados en el fichero struts-config.xml. El codigo del Action es el que hace los llamamientos al
modelo, bien directamente, bien a través del patrén de disefio BusinessDelegate, que viene a ser como

una interfaz restringida del modelo en las necesidades particulares de la aplicacion.

Los datos de vuelta de la operacion llenan un bean que puede ser el mismo ActionForm si tiene

scope de sesibn, o bien, un bean especifico por los datos de respuesta de la peticién.

El resultado final de una peticién es un objeto ActionForward que el Action ha escogido segun
ha ido la ejecucion de la l6gica de negocio (“ok”, “error”,...). En el fichero de configuracion, se establece
la relacién (mapping) entre cada final de operacién y el recurso que debe recibir control en cada caso.
Este recurso puede ser otro Action, una JSP, etc. El controller le pasa la peticion al objeto

correspondiente, haciendo un forward o un redirect segin se haya definido en el mapping.

Esta es la descripcion méas general de como es el flujo de una operacion con Struts.

2.3.1. Estructura de una aplicacion basada en Struts

2.3.1.1. Introduccidén

La ejecucion de una peticion a una aplicacion Struts no difiere demasiado de la presentada

anteriormente.

Para introducir de una manera rapida los elementos principales de una aplicaciéon Struts,

mostraremos la secuencia de la ejecucion de una operacidn tipica:

e Una JSP que contiene un formulario con unos campos de entrada se envia a la
aplicacion. Los tags de las taglibs de Struts con que se han creado la JSP hacen que los
datos de los campos de entrada llenen los campos de un objeto del tipo ActionForm que

se ha definido especificamente para esta operacion.

e La aplicacion tiene especificado en su deployment descriptor que todas las peticiones las
trate siempre el mismo servlet: el ActionServlet proporcionado por Struts. El
ActionServlet, via su RequestProcessor, obtiene un objeto ActionMapping que
contiene la informacion (almacenada en el fichero de configuracion) de qué clase de
Action se tiene que instanciar para tratar la peticién. El RequestProcessor instancia al

Action concreto y le invoca su método execute ().

17

e El Action es propiamente la implementacién de la operacion. Dentro de su método
execute() tiene a su alcance toda la informacién que necesita para procesar la operacion:
el objeto ActionForm que se ha creado en el paso 1, el servlet context de donde puede
obtener los datos de sesion, y los objetos HttpServietRequest y HttpServietResponse
por si los necesita. Para procesar la operacidn necesitara llamar a algin método de las

clases del modelo de negocio.

e Las clases del modelo hacen su trabajo apoyandose en los servicios que la
infraestructura les proporciona y retornan su resultado, o lanzan una excepciéon. Es
importante notar que estas clases no son en absoluto conscientes de si las estan

llamando desde una aplicacidn Struts o desde cualquier otro tipo de aplicacion.

e Seguln cual sea el objeto devuelto por la l6gica de negocio, o la excepcion que se haya
lanzado, el Action creara beans con datos de respuesta y los pondra como atributos de
la HttpRequest, o bien creard unos ActionErrors. Finalmente el Action escoge uno de
los ActionForwards definidos en el fichero de configuracion struts-config.xml y lo pone

como valor de retorno del método execute().

e El ActionServlet busca a qué corresponde el forward que le ha pasado el Action y le
pasa el control. En este ejemplo el forward corresponde a una JSP, pero también podria
ser otro Action. La JSP de respuesta ya tendra los tags correspondientes para extraer la

informacion de los ActionErrors o de los request attributes que el Action ha rellenado.

2.3.1.2. Componentes de la view

23121 JSPs

Struts no requiere en concreto ninguna tecnologia concreta de implementacion de la view,
JavaServer Pages es la méas extendida y es la que se usa para ilustrar esta parte de la estructura de una

aplicacion.

Es importante notar que dentro del estandar JSP hay algunas practicas que pueden impactar
negativamente en algunos aspectos importantes como pueden ser la facilidad de mantenimiento o la

reusabilidad.

Si se tienen en cuenta las recomendaciones, las JSP seran muy compactos, faciles de entender

y de mantener, y estaran formadas Unicamente por tags HTML y de las diferentes taglibs escogidas.

A continuacién se relacionan las taglibs mas importantes proporcionadas por Struts:

18

e html: Generan cddigo HTML, sobretodo formularios. Su funcionalidad consiste en
enlazar de manera muy dindmica los objetos que manejan los Actions (ActionForms,

request attributes, etc) con los controles HTML del formulario.

e hean: Acceso a beans que los Action han dejado en algin scope (request o session), y
creacion de beans a partir de parametros, cabeceras o cookies, que después se pueden

referenciar en otros lugares de la pagina.

e logic: Generacién condicional de HTML, o generacion iterativa de HTML a partir de
beans que sean colecciones java.util o arrays. Si un Action produce un bean que es una

coleccion de beans, es posible generar una tabla con unos pocos tags.

Para obtener informacion de todos los taglibs existentes para el desarrollo de las JSP, se puede

acceder al siguiente enlace:

http://struts.apache.org/struts-taglib/

2.3.1.2.2 Recursos

El concepto de la internacionalizacién (i18n) se basa en conseguir generar un aplicativo que
soporte cualquier idioma mediante el uso de un fichero de properties en el que definiremos las keys y su

respectivo literal en el idioma en concreto.
De este modo tendremos un fichero de recursos por cada idioma soportado por la aplicacion.

No hay limite en el nimero de idiomas que una aplicacién puede soportar. Struts adapta el
soporte de multiidioma de Struts basado en el locale, mediante el cual detecta el idioma que hay en el

navegador y utiliza el recurso (fichero de properties) adecuado.

2.3.1.2.3 ActionForms

Muchas de las JSPs de una aplicacion contienen datos de entrada en un formulario HTML. En la
arquitectura Struts, estos datos quedan a disposicion de las Actions en forma de objetos del tipo

ActionForm.

Hay dos maneras de implementar un ActionForm:

19

e Haciendo una subclase trivial de ActionForm con una variable por cada campo del
formulario, con sus métodos accessors, y que implemente los métodos validate() y
reset().

e Declarandola del tipo DynaActionForm y configurandola en el struts-config.xml. Las
DynaActionForms crean dindmicamente los campos que se le han configurado, con el
tipo correspondiente, y evitan tener que hacer tantas subclases triviales de ActionForm.
Para hacer validaciones especificas si que es preciso hacer subclases de

DynaActionForm, o bien utilizar el Struts Validator

Es dentro de las ActionForms donde se produce la validacion de los datos. En las del primer
tipo ya se ve que el método validate() es lo que hace este trabajo. EI método devuelve un objeto
ActionErrors con la lista de los errores que se han encontrado. Si esta lista no es vacia, Struts vuelve a
redireccionar a la pagina de entrada del Action donde el usuario podra ver los errores de validacion

mediante los tags <html:errores> correspondientes.

Uno de los problemas que puede tener esta manera de validar es que se acaba escribiendo
mucho cédigo de validacién similar en muchos ActionForms. Es por ello que existe un componente de
Struts llamado Validator que permite definir las validaciones en un lugar centralizado (el mismo Validator

ya proporciona los mas habituales) y referenciarlas desde el fichero de configuracion.

2.3.1.2.4 ActionErrors

Cualquier excepcién que se produzca en el model durante la ejecucion de la aplicacion, o
cualquier error del usuario, por ejemplo en forma de datos de entrada incorrectos, tienen que acabar

convirtiéndose en un ActionError.

Los ActionErrors se pueden crear a partir de una string con el mensaje de error, pero lo
recomendable es hacerlo a partir de una clave en el fichero de recursos, lo cual permitira que el error se

presente en el idioma del usuario.

El tag <html:errors> es el utilizado para mostrar los ActionErrors a los usuarios. Este tag
puede estar en cualquier JSP de entrada de datos. Si el objeto ActionErrors esta vacio no genera nada,
pero si contiene algin ActionError entonces se mostrara. Ademas con el parametro property se pueden
seleccionar qué mensajes de la lista se quieren incluir en aquella posicidn concreta de la pagina. Asi, si
se quiere, se pueden mostrar mensajes de error de validacion cerca de los campos de entrada donde se

han producido.

20

2.3.1.3. Componentes del controller

2.3.1.31 ActionServlet

Es el componente que hace propiamente de controller servlet del JSP, y que por tanto centraliza
todas las peticiones que se hacen en la aplicacion. De trabajo hace bien poco ya que rapidamente

delega en un objeto RequestProcessor.

Normalmente una aplicacion Struts no necesitard mas que especificar el servlet en su

deployment descriptor y asignarle las URLs que le interesen (tipicamente, *.do).

2.3.1.3.2 RequestProcessor

RequestProcessor esta disefiado para poder modificar el comportamiento. Consta de una serie
de métodos processXxxxx (por ejemplo, processPreProcess, processActionForm, processValidate,
processForwardConfig) que se invocan de manera ordenada y documentada, de manera que se puede

modificar el comportamiento.

2.3.1.3.3 Ficheros de configuracion

Todos los parametros configurables de una aplicacién Struts se especifican en un Unico fichero
struts-config.xml. Hay muchos aspectos de la aplicacién que requieren sus entradas en el fichero. La
lista que va a continuacion expone los mas importantes. Para una referencia completa referirse a la

documentacion de Struts o directamente a

http://yakarta.apache.org/struts/dtds/struts-config 1 1.dtd.

. Action Una entrada por cada Action definida a la aplicacién, con su path,
Mappings
la referencia a una ActionForm, si es que usa, y la clase que la implementa
Action : . .
Por cada Action, una entrada por cada uno de los posibles finales
Forwards
de la operacion. Tipicamente “success” o “failure”, pero pueden haber

21

muchos mas. Cada definicién de forward tiene la URL a la que se trasladara
la peticion, y si se hara mediante un “forward” (lo mas normal) o un “redirect”
Global . . : .
Si hay muchas operaciones que pueden acabar invocando el mismo
Forwards
forward se puede definir a nivel global. Buenos ejemplos son la pagina de
inicio, 0 una pagina genérica de error.
Form . - L
Beans Todas las ActionForms (o form beans) definidas para la aplicacion.
Se especifica de qué subclase de ActionForm son, o, en el caso de ser
DynaForms, cudles properties tienen y de qué tipos son
Message Los ficheros de recursos definidos por la aplicacion.
Resources
Plug-ins Los Struts plug-ins instalados.
Controller Se especifica de qué clase es el request processor.

Como se puede apreciar, es mucha informacion. Si la aplicacién es muy grande eso podria

representar un problema de mantenimiento. Por ello Struts tiene el concepto de mdédulos que permiten

dividir la aplicacién en una serie de partes, cada una de ellas con su fichero de configuracion.

2.3.1.34 ActionMapping

Un objeto ActionMapping no es mas que la definicion de un Action que se ha encontrado en el

fichero de configuracion transformada en un objeto. Lo utiliza el propio framework para saber que Action

concreto se ha de instanciar, y después la pasa también como parametro al propio Action por si se

necesita (normalmente sélo hace falta para buscar el forward a retornar).

22

2.3.1.35 Action

El objeto Action tiene su método principal, execute(), que es donde se escribe la Idgica de la
operacion. Cada operacion se implementa habitualmente en una subclase de Action diferente. Struts

pasa 4 parametros a execute():
e La peticidon, en forma de objeto HttpServietRequest
e Larespuesta, en forma de objeto HttpServletResponse
e El ActionMapping que ha originado la peticion

e El ActionForm que contiene los datos de entrada

El proceso de la ejecucién de un Action es, de manera simplificada:
e Obtener los datos de entrada (en este punto ya han sido validadas)

e Instanciar objetos del modelo y de servicios, invocar los métodos que sean necesarios

para llevar a cabo la operacion.

e Poner los datos de salida en el puesto que haga falta (como request attribute, o en el

mismo ActionForm si ésta tiene un scope de sesion).

e Retornar un objeto ActionForward segun haya sido el resultado de la operacién

Si los objetos del modelo lanzan alguna excepcion, ésta se ha de capturar, y retornar un forward
adecuado, que probablemente sera uno que lleve a una JSP de error, 0 en la misma JSP de entrada de

datos, donde se mostrara un mensaje entendedor para el usuario.

Es muy normal que la mayoria de operaciones tengan algin proceso comun en todas las
operaciones. Por ejemplo, el tratamiento de excepciones genéricas, o escribir en el log la entrada y la
salida de la accion, etc. Por ello se puede crear una action basica que derive de Action, y hacer que

todas las acciones de la aplicacién deriven de nuestra accion base.

2.3.1.3.6 ActionForward

Un Action siempre tiene que acabar devolviendo un objeto ActionForward. No lo ha de crear
explicitamente, sino que estara configurado en el struts-config.xml, y por tanto disponible en el objeto

ActionMapping que se le pasa con execute().

23

2.3.1.4. Componentes del modelo

Struts no proporciona clases que se puedan considerar pertenecientes al modelo. Cada
aplicacion debe empezar desde cero, a partir de los requerimientos, a construir un modelo conceptual
primero, y después un modelo de disefio. A menudo, los dos modelos no son demasiado diferentes,
sobre todo si la aplicacién no es demasiado grande. De manera simplista puede decirse que el modelo
de disefio es méas detallado que el conceptual y ya contiene algin elemento mas tecnolégico, como los

servicios de invocar o patrones de disefio. El modelo conceptual es mas un modelo de analisis.

23141 Modelo conceptual

La interfaz del modelo debe ser la mas sencilla posible que cumpla todos los requisitos. La
simplicidad es basica para poder ser llamado facilmente desde los Actions, y para poder codificar un
juego de pruebas de aceptacion que sirvan para determinar si el modelo funciona tal y como se

especifica en los requisitos.

La interfaz del modelo también debe ser bastante intuitiva. Los objetos presentes en el modelo
tienen que representar objetos en el dominio de negocio, o sea, aquellos nombres de los que se habla en

los requerimientos (objetos de negocio o business objects).

2.3.1.4.2 Modelo de disefio

Para hacer un buen modelo de disefio es muy Util conocer las experiencias de gente que ha
intentado hacer cosas parecidas anteriormente. Un lugar donde estan recogidas estas experiencias de

manera sistematizada es en los llamados patrones de disefio o design patterns.

Los primeros patrones de disefio fueron publicados el afio 1994 en el libro “Design Patterns” de
Gamma, Helm, Johnson y Vlissides. Alli se define un patrén de disefio como “una descripcion de

comunicaciones entre objetos que resuelven un problema genérico de disefio”.

Todos los patrones de disefio son aplicables a cualquier tipo de aplicacién. En el mundo de las
aplicaciones web también han aparecido muchos problemas que son mas especificos del entorno J2EE.
Tal vez el mejor lugar donde se recogen patrones de disefio especificos de J2EE es a los Java
Blueprints de Sun. A continuacién se presentan algunos patrones de disefio muy Utiles de Java

Blueprints.

24

Front Controller Centralizacion de todas las peticiones de una aplicacién en un Gnico
objeto que las distribuye y procesa de manera consistente.

Justamente: Struts ActionServlet.

Data Access Object | Desacopla el acceso a los datos de la interfaz externa de un objeto
(DAO) persistente. Todo el acceso a datos esta incluido en la
implementacién del DAO, pero su interfaz externa es la de un objeto

normal, independiente de base de datos.

Transfer Object (0 Los valores de retorno de los métodos de los business objects a
Value Object) menudo pueden constar de datos que se han extraido en diferentes
llamadas internas, por ejemplo haciendo joins de diferentes tablas y
después afiadiendo datos obtenidos invocando una transaccion. Un
transfer object redine todos estos datos y los devuelve de una sola

vez al cliente.

Es uno de los mejores artilugios para hacer mas sencilla una interfaz

de modelo.

Value List Handler Estrategia para implementar listas virtuales. Es el caso en que el
cliente hace una peticién que tiene que retornar una lista de n
elementos donde n puede llegar a ser muy grande. Junto con
Transfer Object y Data Access Object es posible iterar sobre una lista
larga s6lo unos pocos elementos a la vez sin haberlos de pedir todos

de entrada.

2.3.1.4.3 Modelo de datos

“Un modelo de datos es un sistema formal y abstracto que permite describir los datos de

acuerdo con reglas y convenios predefinidos. Es formal pues los objetos del sistema se manipulan

25

siguiendo reglas perfectamente definidas y utilizando exclusivamente los operadores definidos en el

sistema, independientemente de lo que estos objetos y operadores puedan significar."
Segun Codd :
““Un modelo de datos es una combinacion de tres componentes:

e Una coleccién de estructuras de datos (los bloques constructores de cualquier base de

datos que conforman el modelo);

e Una coleccién de operadores o reglas de inferencia, los cuales pueden ser aplicados a
cualquier instancia de los tipos de datos listados en (1), para consultar o derivar datos de

cualquier parte de estas estructuras en cualquier combinacion deseada;

e Una coleccidn de reglas generales de integridad, las cuales explicita o implicitamente
definen un conjunto de estados consistentes --estas reglas algunas veces son

expresadas como reglas de insertar-actualizar-borrar."

Un modelo de datos puede ser usado de las siguientes maneras:

e Como una herramienta para especificar los tipos de datos y la organizacion de los

mismos que son permisibles en una base de datos especifica;

e Como una base para el desarrollo de una metodologia general de disefio para las bases

de datos;

e Como una base para el desarrollo de familias de lenguajes de alto nivel para

manipulacién de consultas (querys) y datos;

e Como el elemento clave en el disefio de la arquitectura de un manejador de bases de

datos.

El primer modelo de datos desarrollado con toda la formalidad que esto implica fue el modelo
relacional, en 1969, mucho antes incluso que los modelos jerarquicos y de red. A pesar de que los
sistemas jerarquicos y de red como software para manejar bases de datos son previos al modelo
relacional, no fue sino hasta 1973 que los modelos de tales sistemas fueron definidos, apenas unos

cuantos afios antes de que estos sistemas empezaran a caer en desuso.

26

27

3.Fases del proyecto

3.1. Introduccidn

En el transcurso de un proyecto de Ingenieria del Software, sea cual sea la plataforma o entorno
de desarrollo, hay un conjunto de fases por las que pasa el mismo que son perfectamente definibles y

secuenciales, ya que la consecucion de una conlleva el inicio de la siguiente.

En el caso real, cuando te ves inmerso, esto no es asi 100%, ya que normalmente por falta de
tiempo por los periodos marcados por las fechas de entrega y por razones obvias de la imperfeccion del
ser humano para hacer las cosas correctamente, estas fases se ven mezcladas entre si y eso conlleva a
gue en fechas posteriores a la entrega del proyecto haya un, a veces excesivamente largo y otras veces

inacabable proceso de deteccién de errores y correccion de incidencias.
Las fases por las que pasa el proyecto serian las siguientes:
1) Captura de requerimientos.
2) Disefio de la solucién para satisfacer los requerimientos previos.
3) Implementacién del disefio pactado.
4) Pruebas del producto.

5) Rectificaciones

3.2. Captura de Requerimientos

3.2.1. Introduccion

En el inicio de un ‘proyecto real’ es imprescindible una serie de reuniones previas con el
cliente para establecer cuales van a ser los requerimientos del sistema.

Estos requerimientos no son estéaticos, esto quiere decir que no son tomados y establecidos al
principio del proyecto y se mantienen inamovibles durante la implementacion del mismo, sino que van
sufriendo alteraciones / modificaciones a partir de las nuevas ideas del cliente o bien en las
presentaciones de la evolucién del proyecto en las cuales el cliente tiene contacto directo y visual con la

futura aplicacion.

28

Observaciones : Por cuestiones obvias implicitas en este proyecto en las que el cliente y el
consultor son la misma persona, obviaremos el cambio de requerimientos durante la implementacién y
plantearemos una captacion de requerimientos inicial. En los siguientes puntos se intentara simular de la

mejor manera posible el proceso.

3.2.2. Clasificacion de los requerimientos.

El clasificar requerimientos es una forma de organizarlos, hay requerimientos que por sus
caracteristicas no pueden ser tratados iguales. Por ejemplo, los requerimientos de entrenamiento de

personal no son tratados de la misma manera que los requerimientos de una conexion a Internet.

La siguiente es una recomendaciéon de como pueden ser clasificados los requerimientos aunque

cada proyecto de software pueda usar sus propias clasificaciones.

3.2.2.1. Requerimientos del "entorno”

3.2.2.1.1 Descripcién

El entorno es todo lo que rodea al sistema. Aunque no podemos cambiar el entorno, existen
cierto tipo de requerimientos que se clasifican en esta categoria por que:

El sistema usa el entorno y lo necesita como una fuente de los servicios necesarios para que
funcione. Ejemplos del entorno podemos mencionar: sistemas operativos, sistema de archivos, bases de

datos.

El sistema debe de ser robusto y tolerar los errores que puedan ocurrir en el entorno, tales como
congestion en los dispositivos y errores de entrada de datos, por lo tanto el entorno se debe de

considerar dentro de los requerimientos.

3.2.2.1.2 Recopilacion de requerimientos del cliente

- El aplicativo ha de poder ser visitado desde cualquier Terminal portatil o PC de tipo

estandar.

29

e S.O.-> Windows, a partir de la versién Windows 2000

e S.O. -> Linux, cualquiera de las distribuciones mas comunes (Red Hat, Suse,
etc...)

- Ha de soportar el acceso desde cualquiera de los dos navegadores de mayor uso entre

los usuarios.
e Internet Explorer.
e Mozilla Firefox.

- El sistema de almacenamiento ha de ser robusto y garantizar la persistencia de los

datos, asi como un volumen considerable de peticiones de clientes del servicio.

3.2.2.2. Requerimientos “ergonémicos”

3.2.2.2.1 Descripcién

El mas conocido de los requerimientos ergondémicos es la interface con el usuario o GUI (Graphic
User Interface). En otras palabras, los requerimientos ergonémicos son la forma en que el ser humano

interactua con el sistema.

3.2.2.2.2 Recopilacion de requerimientos del cliente

e El ‘look & feel' del aplicativo ha de comportar un aprendizaje rapido e intuitivo.
Seguir el concepto de formularios, tablas para la muestra de informaciéon por

pantalla, botonera de facil acceso a todos los puntos del aplicativo.

e El tema del disefio del mismo se dejara total libertad al disefiador, pudiendo el
cliente rectificar colores y posicionamiento de objetos en posteriores presentaciones
del estado del proyecto, cambios que no comporten una reestructuracion del

comportamiento del aplicativo, s6lo cambios ‘estéticos’.

e La GUI ha de sequir el siguiente esquema:

30

TITULO

MENU
DE
HAVE-
GA-
CION

CUADRO DONDE SE
MOSTRARA LA INFO.
QUE TOQUE EN CADA
MOMENTO.

3.2.2.3.

PIE DE PAGINA

Requerimientos de interface

3.2.2.3.1 Descripcion

La interface es como interactua el sistema con el ser humano o con otros sistemas (el enfoque

es practicamente el opuesto a los requerimientos ergondmicos), La interface es la especificacion formal

de los datos que el sistema recibe o0 manda al exterior. Usualmente se especifica el protocolo, el tipo de

informacion, el medio para comunicarse y el formato de los datos que se van a comunicar.

3.2.2.3.2 Recopilacion de requerimientos del cliente

- La navegacién se hard mediante el clic de las opciones que saldran continuamente en

el lado izquiero de la interfaceo bien los botones que toque en cada momento.

- Toda la introduccién de datos se realizard& mediante formularios,cada parametro

dependera de a que se refiere el input en cuestion.

Long para objetos como precios.

31

e Strings para nombres, apellidos, etc...

3.2.2.4. Requerimientos funcionales

3.2.2.4.1 Descripcion

Estos son los que describen lo que el sistema debe de hacer. Es importante que se describa el
Que? Y no el ¢Como?. Estos requerimientos al tiempo que avanza el proyecto de software se

convierten en los algoritmos, la l6gica y gran parte del cédigo del sistema.

3.2.2.4.2 Recopilaciéon de requerimientos del cliente

e Se permitird hacer Login y Logout a usuarios ya registrados.

e Permitira el registro de nuevos usuarios.

e Permitird la modificacion de los datos de un usuario registrado.

e Permitira mostrar el catalogo de todos los productos en todo momento.

e PermitirdA mostrar el catdlogo por categoria de todos los productos en todo

momento.
e Permitird mostrar la informacion de cada producto por separado.
e Permitira afiadir un producto a la cesta.
e Permitird eliminar/modificar linea de un pedido.
e Permitird ver la cesta de un usuario que este logueado.
e Permitira ver los pedidos de un usuario que este logueado.
e Permitira eliminar la cesta de pedidos de un usuario logueado.
e Permitira tramitar un pedido de un usuario logueado.

e Permitira exportar a pdf el catadlogo de productos.

32

3.2.2.5. Requerimientos de desempefio

3.2.2.5.1 Descripcion

Estos requerimientos nos informan las caracteristicas de desempefio que deben de tener el

sistema. ¢, Que tan rapido?, ¢ Que tan seguido?, ¢ Cuantos recursos?, ¢ Cuantas transacciones? .

Este tipo de requerimientos es de especial importancia en los sistemas de tiempo real en donde

el desempefio de un sistema es tan critico como su funcionamiento.

3.2.2.5.2 Recopilacion de requerimientos del cliente

e Apartado sin requeriemientos ya que aqui entramos en un tema muy especifico y

muy técnico.
e El aplicativo tendra que ser rapido.
e Aceptar un nimero de transacciones concurrentes aceptable.

e FEtc...

3.2.2.6. Disponibilidad

3.2.2.6.1 Descripcion

Este tipo de requerimientos se refiere a la durabilidad, degradacién, portabilidad, flexibilidad,
contabilidad y capacidad de actualizacién. Este tipo de requerimientos es también muy importante en
sistemas de tiempo real puesto que estos sistemas manejan aplicaciones criticas que no deben de estar
fuera de servicio por periodos prolongados de tiempo.

3.2.2.6.2 Recopilacion de requerimientos del cliente

e Apartado sin requeriemientos ya que aqui entramos en un tema muy especifico y

muy técnico.

33

3.2.2.7. Entrenamiento

3.2.2.7.1 Descripcion

Este tipo de requerimientos se enfoca a las personas que van usar el sistema. ¢Que tipo de

usuarios son?, ¢Que tipo de operadores?, ¢ Que manuales se entregaran y en que idioma?

Este tipo de requerimientos, aunque muchas veces no termina en un pedazo de cddigo dentro de
el sistema, son muy importantes en el proceso de disefio ya que facilitan la introduccién y aceptacién de

el sistema en donde serd implementado.

3.2.2.7.2 Recopilacién de requerimientos del cliente

e Se cuenta con que los usuarios seran de todo tipo : Tanto usuarios avanzados
como usuarios con poca experiencia en el manejo de aplicativos online, por lo tanto
como buscamos siempre solucionar el problema en el peor de los casos, el

aplicativo tendra que ser ‘intuitivo’ y de facil aprendizaje.

e El aplicativo no contara con ningun tipo de manual de utilizacion, ya que sera un
aplicativo de caracter online, por lo tanto no es factible el hecho de anexar ningun

tipo de ayuda.

3.2.2.8. Restricciones de disefio

3.2.2.8.1 Descripcion

Muchas veces las soluciones de un sistema de software son normadas por leyes o estandares,

este tipo de normas caen como "restricciones de disefio".

3.2.2.8.2 Recopilacion de requerimientos del cliente

e No hay ningun tipo de restriccion de disefio.

34

3.2.2.9. Materiales

3.2.2.9.1 Descripcion

Aqui se especifica en que medio se entregara el sistema y como esta empaquetado. Es
importante para definir los costos de industrializacion del sistema.

3.2.2.9.2 Recopilacion de requerimientos del cliente

e Al tratarse de un aplicativo online en este apartado sélo se tendra en cuenta que el
sistema sera implantado en un servidor y deberia tener un responsable que diese
soporte al sistema, para estar pendiente a posibles caidas del servidos, fallos en el
sistema, interrupciones temporales del servicio, etc..

e Los resources del aplicativo seran entregados en un war (web application
resources), para su facil despliegue en cualquier Servidor Web o Servidor de
Aplicaciones. Este war contendra la estructura légica de carpetas de cualquier
aplicacion Web para su correcto despliegue.

3.2.3. Manejo de requerimientos.

De acuerdo con el "Capability Maturity Model" (CMM) [A4], el manejo de requerimientos

involucra:

"Establecer y mantener un acuerdo con el cliente sobre los requerimientos de el proyecto de
software. Este acuerdo son los requerimientos de el sistema alojados al software." ... "Este acuerdo
cubre requerimientos técnicos y no técnicos (como fechas de entrega). El acuerdo forma las bases para
estimar, planear, ejecutar y monitorear el proyecto de desarrollo de software a través de todo su ciclo de
vida." ... "Bajo las restricciones del proyecto, el grupo de manejo de requerimientos toma las medidas
necesarias para que los requerimientos que estan bajo su responsabilidad estén documentados y

controlados"

¢,De que manera podemos controlar los requerimientos de software si estos siempre evolucionan
con el tiempo?. El CMM nos proporciona las guias para lograrlo.

35

"Para lograr el control de los requerimientos, el grupo de requerimientos revisa los
requerimientos antes de que estos sean incorporados al proyecto de software y cada vez que los
requerimientos cambian los planes, productos, y actividades son ajustadas para quedar en linea con los

nuevos requerimientos de software".

En otras palabras, para obtener el nivel que requiere el CMM en manejo de requerimientos

débenos de tomar en cuenta dos cosas.

Que los requerimientos deben de ser revisados (y aprobados) por el grupo de requerimientos,

y No son impuestos por en su totalidad por presiones externas ajenas al proyecto.

El requerimiento técnico podra ser impuesto por el mercado o presiones de la competencia, pero
entonces los requerimientos no técnicos (Calidad, Costo y Tiempo de entrega) deberan estar

especificados de comun acuerdo con el grupo de requerimientos del proyecto de software.

Los requerimientos técnicos y no técnicos forman un conjunto entre si, si cambia uno
forzosamente deberan cambiar los demas. Esto es: mas contenido técnico implica o mas costo, o
menos calidad o mas tiempo estimado de entrega. De modo que los cambios técnicos deberan ser
aprobados por el grupo de requerimientos y este grupo estimara los impactos en tiempo, costo, calidad.
El resultado de la estimacion es la entrada a los lideres del proyecto para decidir si el cambio se acepta o

no.
Estos dos puntos son los esenciales del manejo de requerimientos en CMM.

Una version completa del CMM (en ingles) puede ser bajada gratuitamente de el "Software

Engineering Institute” de la Universidad de Carnegie Mellon.

3.3. Disefio

3.3.1. El concepto de servicio

La capa légica es la encargada de proporcionar implementaciones de la légica de negocio para
la capa cliente. Esta basada en el concepto de servicio, el cual podriamos definir como un grupo de
funcionalidades relacionadas entre si. Asi pues, un servicio de la capa de l6gica proporcionara diferentes
métodos que contienen la implementacién necesaria para solucionar una funcionalidad requerida para el

sistema, y cada uno de ellos podréa ser invocado de manera independiente del resto.

36

3.3.2. Construccidon de servicios

A continuacion podemos ver los pasos necesarios para crear un componente de negocio bajo la

concepcion de servicio:

e Construir un interface de tipo Businessinterface, que publique los métodos de
negocio que el servicio ofrece. Dicho interface ha de extender el interface de la
arquitectura common.saf.j2ee.common.business.Businessinterface, y se ha de
denominar siguiendo el patron de nomenclatura XXXService, donde XXX es la
etiqueta identificativa del servicio, y el sufijo Service denota el hecho de ofrecer un
servicio.

e Construir una clase de tipo BusinessObject, que implemente el
Businessinterface, y que contenga la implementacién de la l6gica de negocio
requerida para el servicio. Se ha de denominar siguiendo el patrén de nomenclatura
XXXBO, donde XXX es la etiqueta identificativa del servicio, y el sufijo BO denota el

hecho de ser un BusinessObject.

e Construir una clase de tipo BusinessDelegate, que implemente el
Businessinterface, que realice labores de fachada, interceptando las peticiones y
delegandolas al BusinessObject. Se ha de denominar siguiendo el patrén de

nomenclatura XXXDelegate, donde XXX es la etiqueta identificativa del servicio.

3.3.3. Modelo de datos

Para resolver la capa de acceso a los datos existen diferentes estrategias como el uso del patron
DAO, el uso de frameworks de control de la persistencia o también, alguna combinacién de los
anteriores. Mas adelante vamos a ver la combinacién del patron arquitectural DAO junto con el uso de un

framework de persistencia como Hibernate.

El patron DAO (Data Access Obiject) es el elegido para manejar la persistencia de los objetos del
modelo del negocio, formando una capa separada que aisla al resto de capas de los detalles de
implementacién de acceso a datos. Un objeto DAO puede controlar la persistencia de un Gnico objeto
TransferObject simple, o de varios objetos TransferObject con una relacién de agregacién entre ellos.
Asi pues, no es necesario que haya un objeto DAO para cada objeto TransferObject existente en la
aplicacion. En el siguiente diagrama se muestra la relacion entre los objetos de nuestra implementacion
del patron DAO:

37

ledmao) [Trial Version EA 4.10 Unreqistered Trial V erg
«interface» «interface»
DAOFactory <I<<imp|ements>> HibernateDAOFactory
| i
! !
«use» «u$€»
H 1
1
v Y
«interface» «interface» HibernateProjectDAO
DAO ProjectDAO <<implements>>
«extend» j

«extend»
|

BaseProjectDAO

T
1
1

/

«extend»
"4

_RootDAO

Patron arquitectural DAO

Para la localizacion de objetos DAO, se seguira el patron factoria, para ello la arquitectura
proporciona una clase abstracta: common.saf.j2ee.database.dao.DAOFactory y los objetos factorias
concretas, que implementan la factoria abstracta y que son los encargados de instanciar los diferentes
DAO. La clase DAOFactory abstracta declara métodos para localizar los objetos DAO, del tipo
getXXXDAO(), donde XXX hace referencia al objeto de negocio del que el DAO controla la persistencia.
Se han de implementar tantas factorias concretas como sistemas gestores de persistencia haya (por
ejemplo, puede haber una Unica factoria relacionada con el motor de persistencia Hibernate), y asi como
tantos métodos de obtencion de DAQO’s como objetos de este tipo haya. La clase factoria concreta se

especifica en el siguiente parametro del fichero de configuracién de la aplicacion:

38

El tipo de factoria usada, asi como el tipo de DAO concreto son totalmente transparentes para el

cliente.

Cada clase DAO es la encargada de dar persistencia en el sistema elegido al TransferObject
concreto, accediendo a dicho sistema mediante conexiones o sesiones proporcionadas por Servicios de
Acceso especificos para cada sistema gestor de persistencia. Un DAO ha de implementar un interface
especifico para cada TransferObject, que a su vez ha de extender del interface genérico DAO. Para la

construccion de objetos DAO se han de seguir las siguientes normas:

e Construir un interface que declare los métodos a implementar por la clase DAO
encargada de proporcionar persistencia al TO correspondiente. Dicho interface ha
de extender del interface genérico: common.saf.j2ee.database.dao.DAO.

e Implementar los interfaces DAO necesarios segun los sistemas gestores de
persistencia que necesitemos, implementado los métodos definidos anteriormente.

e Implementar el método adecuado getXXXDAO () en la factoria concreta, que

permita localizar el DAO especifico.

Ademas, los interfaces de tipo DAO han de seguir el patron de nomenclatura XXXDAO, donde
XXX es el nombre del objeto del modelo de negocio al que dotan de persistencia, y DAO denota el hecho

de tratarse de un objeto siguiendo dicho patrén.

3.3.4. Comunicacion de datos entre las capas de
aplicaciones

La transferencia de datos entre capas se hara siguiendo el patron TransferObject, un patron
ampliamente usado en la transferencia de datos entre capas, y en el cual los objetos TransferObject
son representaciones de objetos del modelo de negocio. Basicamente, son objetos muy sencillos,
simples contenedores de datos, correspondientes a clases serializables, con atributos privados y
métodos getter/setter publicos, y los constructores necesarios. Todo objeto de negocio, habra de ser
disefiado siguiendo el patron TO, ya sea mediante un Unico TransferObject simple, o mediante un
TransferObject compuesto de agregaciones de otros objetos TransferObject. Para la construccién de

objetos TO se ha de construir una clase publica siguiendo las siguientes normas:

e Se ha de implementar el interface proporcionado por la arquitectura

java.io.Serializable.

e Han de disponer de al menos un constructor sin argumentos. Se pueden desarrollar

tantos constructores como se considere necesario.

39

e Todos sus atributos, ya sean tipos primitivos, tipos Java, u otros TransferObject, o
colecciones de alguno de éstos, son definidos como privados, y ademas son

serializables.

e Se han de proporcionar métodos getter y setter publicos para cada uno de los
atributos definidos.

e Opcionalmente, se ha de rescribir el método toString () heredado de la clase Object,
para que devuelva una representacion del objeto TransferObject, mostrando todos
sus atributos. El formato para dicha representacion es el siguiente:
[nombreAttrl=valor, nombreAttr2=valor,....]. Se ha de tener en cuenta que si el
TransferObject contiene algin TransferObject agregado, la representacion de

este atributo se ha de realizar invocando el respectivo método toString () de éste.

Ademas, los objetos de tipo TransferObject han de seguir el patron de nomenclatura XXXTO,
donde XXX es el nombre del objeto del modelo de negocio que representa el TransferObject, y TO

denota el hecho de tratarse de un objeto siguiendo dicho patrén.

3.3.5. Patrones de disefio utilizados en el aplicativo

3.3.5.1. BUSINESS DELEGATE

3.3.5.1.1 Contexto

Patron estructural. Un sistema multi-capa distribuido requiere invocacion remota de métodos
para enviar y recibir datos entre las capas. Los clientes estan expuestos a la complejidad de tratar con
componentes distribuidos.

3.3.5.1.2 Problema

Los componentes de la capa de presentacion interactdan directamente con servicios de negocio.
Esta interaccion directa expone los detalles de la implementacion del API del servicio de negocio a la
capa de presentacion. Como resultado, los componentes de la capa de presentacion son vulnerables a

los cambios en la implementacién de los servicios de negocio: cuando cambia la implementacion del

40

servicio de negocio, la implementacion del cddigo expuesto en la capa de presentacion también debe

cambiar.

Ademas, podria haber una reducciéon de rendimiento en la red porque los componentes de la
capa de presentacion que utilizan el API de servicio de negocio hacen demasiadas invocaciones sobre la
red. Esto sucede cuando los componentes de la capa de presentacion usan directamente el API

subyacente, sin cambiar el mecanismo del lado del cliente.

3.3.5.1.3 Causas

» Los clientes de la capa de presentacion necesitan acceder a servicios de negocio.

= Diferentes clientes, dispositivos, clientes Web, y programas, necesitan acceder a los
servicios de negocio.

= Los APIs de los servicios de negocio podrian cambiar segln evolucionan los
requerimientos del negocio.

» Es deseable minimizar el acoplamiento entre los clientes de la capa de presentacion y
los servicios de negocio, y asi ocultar los detalles de la implementacion del servicio.

» Los clientes podrian necesitar implementar mecanismos de caché para la informacion
del servicio de negocio.

= Es deseable reducir el trafico de red entre el cliente y los servicios de negocio.

3.3.5.1.4 Solucién

Utilizamos un Business Delegate para reducir el acoplamiento entre los clientes de la capa de
presentacion y los servicios de negocio. El Business Delegate oculta los detalles de la implementacion

del servicio de negocio, como los detalles de busqueda y acceso de la arquitectura EJB.

El Business Delegate actia como una abstraccion de negocio del lado del cliente; proporciona
una abstraccién para, y por lo tanto oculta, la implementacién de los servicios del negocio. Utilizando
Business Delegate se reduce el acoplamiento entre los clientes de la capa de presentacion y los
servicios de negocio del sistema. Dependiendo de la estrategia de implementacion, Business Delegate
podria aislar a los clientes de la posible volatilidad en la implementacion del API de los servicios de
negocio. Potencialmente, esto reduce el nimero de cambios que se deben hacer en el cédigo de cliente
de la capa de presentacion cuando cambie el APl del servicio de negocio o su implementacion

subyacente.

41

Chient arrESSES ==P0J0== ACLESSES BusinessService

BusinessDelegate
1 1.7 1 1

r———
I
o |
Uses | [ooksup
1 : EJBService || JMSService
==8ingleton== [_ _ _ _ J
Senicelocator

Patron Business Delegate

Sin embargo, los métodos de interface en el Business Delegate aun podrian requerir
modificaciones si cambia el API del servicio de negocio. Si bien es cierto, que los cambios se haran con

mas probabilidad en el servicio de negocio que en el Business Delegate.

Con frecuencia, los desarrolladores son escépticos cuando un objetivo de disefio como la
abstraccion de la capa de negocio provoca un trabajo adicional como pago por futuras ganancias. Sin
embargo, utilizando este patrdén o esta estrategia resulta sélo en una pequefia cantidad de trabajo extra 'y
proporciona unos beneficios considerables. El principal beneficio es ocultar los detalles del servicio. Por
ejemplo, el cliente puede ser transparente para los servicios de blsqueda y nombrado. El Business

Delegate también maneja las excepciones de los servicios de negocio.

El Business Delegate podria interceptar dichas excepciones a nivel de servicio y generar en su
lugar excepciones a nivel de aplicacion. Las excepciones de nivel de aplicacion son faciles de manejar
por los clientes, y pueden ser amigables para el usuario. El Business Delegate también podria realizar
de forma transparente cualquier operacién de reintento o de recuperacion necesaria en el caso de un
fallo en el servicio no exponer el cliente al problema hasta que se haya determinado que el problema no

es solucionable. Estas ganancias representan una razén competitiva para utilizar el patrén.

Otro beneficio es que el delegado podria almacenar resultados y referencias a servicios de
negocio remotos. El Caché puede mejorar el rendimiento de forma significativa, porque limita los

innecesarios y potencialmente costosos viajes por la red.

Finalmente, se deberia tener en cuenta que este patrébn se podria utilizar para reducir el

acoplamiento entre otra capas, no simplemente entre las capas de presentacion y de negocio.

42

3.3.5.1.5 Consecuencias

Reduce el Acoplamiento y la manejabilidad: EI Business Delegate reduce el
acoplamiento entre las capas de presentacién y de negocio ocultando todos los
detalles de implementacion de la capa de negocio. Es facil manejar los cambios porque
estan centralizados en un solo lugar, el Business Delegate.

Puede traduce las excepciones del servicio de negocio: El Business Delegate es el
responsable de traducir cualquier excepcién de red o relacionada con la infraestructura
en excepciones de negocio, aislando a los clientes del conocimiento de las
particularidades de la implementacién.

Implementa recuperacion de fallos y sincronizacién de Threads: Cuando el Business
Delegate encuentra un fallo en el servicio de negocio, puede implementar
caracteristicas de recuperacién automatica sin exponer el problema al cliente. Si la
recuperacion tiene éxito, el cliente no necesita saber nada sobre el fallo. Si el intento de
recuperacién no tiene éxito, entonces el Business Delegate necesita informar al
cliente del fallo. Ademas, los métodos del Business Delegate podrian estar
sincronizados, si fuera necesario.

Expone un Interface Simple y Uniforme a la Capa de Negocio: El Business Delegate,
para servir mejor a sus clientes, podria proporcionar una variante del interface
proporcionado por los EJB subyacentes.

Impacto en el Rendimiento: El Business Delegate podria proporcionar servicio de
caché (y un mejor rendimiento) a la capa de presentacion para las peticiones de
servicios comunes.

Presenta una Capa Adicional: El Business Delegate podria verse como la adiccion de
una capa innecesaria entre el cliente y el servicio, y con eso incrementar la complejidad
y disminuir la flexibilidad.

Oculta los elementos Remotos: Aunque la localizacion transparente es uno de los
beneficios de este patrén, podria surgir un problema diferente debido a que el
desarrollador esta tratando con un servicio remoto como si fuera un servicio local. Esto
podria suceder si el desarrollador del cliente no entiende que el Business Delegate es
cliente-proxy a un servicio remoto. Normalmente, unas llamadas a métodos en el

Business Delegate resultan en unas llamadas a métodos remotos.

43

3.3.5.2. TRANSFER OBJECT

3.3.5.2.1 Contexto

Las aplicaciones cliente necesitan intercambiar datos con Beans Enterprise.

3.3.5.2.2 Problema

Las aplicaciones de la plataforma J2EE implementan componentes de negocio del lado del
servidor como beans de sesion y de entidad. Algunos métodos expuestos por los componentes de
negocio devuelven datos al cliente. Algunas veces, el cliente invoca a los métodos get de un objeto de

negocio varias veces para obtener todos los valores de los atributos.

Los beans de sesion representan los servicios de negocio y no se comparten entre usuarios. Un
bean de sesién proporciona métodos de servicios genéricos cuando se implementan mediante el patron

Session Facade.

Por otro lado, los beans de entidad, son objetos transaccionales, multiusuario que representan
datos persistentes. Un bean de entidad expone los valores de los atributos proporcionando un método

accesor (también referidos como métodos get) por cada atributo que desea exponer.

Toda llamada a método hecha al objeto de servicio de negocio, ya sea a un bean de entidad o a
un bean de sesion, potencialmente es una llamada remota. Asi, en una aplicacion de JavaBeans
Enterprise (EJB) dichas llamadas remotas usan la capa de red sin importar la proximidad del cliente al
bean, creando una sobrecarga en la red. Las llamadas a métodos de beans enterprise podria penetrar
las capas de red incluso si tanto el cliente como el contenedor EJB que mantiene el bean de entidad se
estan ejecutando en la misma JVM (Maquina Virtual Java), el mismo Sistema Operativo 0 maquina fisica.
Algunos vendedores podrian implementar mecanismos para reducir esta sobrecarga utilizando una

aproximacién de acceso mas directa pasando por encima de la red.

Segln se incrementa la utilizacion de estos métodos remotos, el rendimiento de la aplicacion se
puede degradar significativamente. Por lo tanto, utilizar varias llamadas a métodos get que devuelven

simples valores de atributos es ineficiente para obtener valores de datos desde un bean enterprise.

44

3.3.5.2.3 Causas

= Todos los accesos a un bean enterprise se realizan mediante interfaces remotos. Cada
llamada a un bean enterprise potencialmente es una llamada a un método remoto con
sobrecarga de red.

= Normalmente, las aplicaciones tienen transacciones de lectura con mayor frecuencia
que las de actualizacioén. El cliente solicita los datos desde la capa de negocio para su
presentacion, y otros tipos de procesamientos de solo-lectura. El cliente actualiza los
datos de la capa de negocio con mucha menos frecuencia con la que los lee.

= El cliente normalmente solicita valores que son algo mas que un atributo o que son
dependientes del objeto de un bean enterprise. Asi, el cliente podria invocar varias
llamadas remotas para obtener los datos necesarios.

= El nimero de llamadas que un cliente hace al bean enterprise impactan en el

rendimiento de la red.

3.3.5.2.4 Solucién

Utilizar un Transfer Object para encapsular los datos de negocio. Se utiliza una Unica llamada a
un método para enviar y recuperar el Transfer Object. Cuando el cliente solicita los datos de negocio al
bean enterprise, éste puede construir el Transfer Object, rellenarlo con sus valores de atributos y

pasarlo por valor al cliente.

Los clientes normalmente solicitan mas de un valor a un bean enterprise. Para reducir el nimero
de llamadas remotas y evitar la sobrecarga asociada, es mejor el Transfer Objects para transportar los

datos desde el bean enterprise al cliente.

Cuando un bean enterprise utiliza un Transfer Object, el cliente hace una sola llamada a un
método remoto del bean enterprise para solicitar el Transfer Object en vez de numerosas llamadas
remotas para obtener valores de atributos individuales. Entonces el bean enterprise construye un nuevo
ejemplar Transfer Object, copia dentro los valores del objeto y lo devuelve al cliente. El cliente recibe el
Transfer Object y puede entonces invocar los métodos de acceso (0 get) del Transfer Object para
obtener los valores de atributos individuales del objeto Transfer Object. O, la implementacion del

Transfer Object podria hacer que todos los atributos fueran publicos.

45

createsiuses

I__________________________I
I
. W
Clent accesses Component ==POJ0==
———————— —= TransferOhject
g * |+ createsilses

7

==PresentationTier== ==BusinessTiers= | | ==IntegrationTier==
PresComponent BizComponent IntComponent

Patron Transfer Object

Como el Transfer Object se pasa por valor al cliente, todas las llamadas al ejemplar Transfer

Object son llamadas locales en vez de invocaciones de métodos remotos.

3.3.5.2.5 Consecuencias

= Simplifica el Bean de Entidad y el Interface Remoto: El bean de entidad proporciona un
método getData() para obtener el Transfer Object que contiene los valores de los
atributos. Esto podria eliminarse implementando miltiples métodos get en el bean y
definiéndolos en el interface remoto del bean. De forma similar, si el bean de entidad
proporciona un método setData() para actualizar los valores de atributos del bean de
entidad con una sola llamada a método, se podria eliminar implementando varios
métodos set en el bean.

= Transfiere mas Datos en menos llamadas remotas: En lugar de realizar mdltiples
llamadas sobre la red al BusinessObject para obtener los valores de los atributos,
esta solucion proporciona una sola llamada a un método. Al mismo tiempo, esta Unica
llamada obtiene una mayor cantidad de datos. Cuando consideremos la utilizaciéon de
este patron, debemos tener en cuenta el inconveniente de disminuir el nimero de

llamadas contra la mayor transmision de datos por cada llamada.

= Reduce el trafico de red: Un Transfer Object transfiere los valores desde el bean de

46

entidad al cliente en una llamada a un método remoto. El Transfer Object actia como
un transportista de datos y reduce el nimero de llamadas remotas requeridas para
obtener los valores de los atributos del bean; y esto significa un mejor rendimiento de la
red.

= Accesos y transacciones concurrentes: Cuando dos o mas clientes acceden de forma
concurrente al BusinessObject pueden aparecer inconsistencias en el Transfer
Objects por accesos concurrentes. Ademas, tendremos que tratar con problemas
relacionados con la sincronizaciéon, el control de versién y los Transfer Objects

obsoletos.

3.3.5.3. DATA ACCESS OBJECT

3.3.5.3.1 Contexto

El acceso a los datos varia dependiendo de la fuente de los datos. El acceso al almacenamiento
persistente, como una base de datos, varia en gran medida dependiendo del tipo de almacenamiento

(bases de datos relacionales, bases de datos orientadas a objetos, ficheros planos, etc.).

3.3.5.3.2 Problema

Muchas aplicaciones de la plataforma J2EE en el mundo real necesitan utilizar datos
persistentes en algin momento. Para muchas de ellas, este almacenamiento persistente se implementa
utilizando diferentes mecanismos, y hay marcadas diferencias en los APIS utilizados para acceder a
esos mecanismos de almacenamiento diferentes. Otras aplicaciones podrian necesitar acceder a datos
gue residen en sistemas diferentes. Por ejemplo, los datos podrian residir en sistemas mainframe,
repositorios LDAP, etc. Otro ejemplo es donde los datos los proporcionan servicios a través de sistemas

externos como los sistemas de integracién negocio-a-negocio (B2B), servicios de tarjetas de crédito, etc.

Normalmente, las aplicaciones utilizan componentes distribuidos y compartidos como los beans
de entidad para representar los datos persistentes. Se considera que una aplicacién emplea consistencia
manejada por el bean (BMP) cuando sus beans de entidad acceden explicitamente al almacenamiento
persistente -- el bean de entidad incluye codigo para hacer esto. Una aplicacién con requerimientos
sencillos podria por lo tanto utilizar beans de entidad en lugar de beans de sesién o servlets para

acceder al almacenamiento persistente y recuperar o modificar los datos. O, la aplicacién podria usar

47

beans de entidad con persistencia manejada por el contenedor, y asi dejar que el contenedor maneje los

detalles de las transacciones y de la persistencia.

Las aplicaciones pueden utilizar el APl JDBC para acceder a los datos en un sistema de control
de bases de datos relacionales (RDBMS). Este API permite una forma estandar de acceder y manipular
datos en un almacenamiento persistente, como una base de datos relacional. El APl JDBC permite a las
aplicaciones J2EE utilizar sentencias SQL, que son el método estandar para acceder a tablas RDBMS.
Sin embargo, incluso dentro de un entorno RDBMS, la sintaxis y formatos actuales de las sentencias

SQL podrian variar dependiendo de la propia base de datos en particular.

Incluso hay una mayor variacién con diferentes tipos de almacenamientos persistentes. Los
mecanismos de acceso, los APIs soportados, y sus caracteristicas varian entre los diferentes tipos de
almacenamientos persistentes, como bases de datos relacionales, bases de datos orientadas a objetos,
ficheros planos, etc. Las aplicaciones que necesitan acceder a datos de un sistema legal o un sistema
dispar (como un mainframe o un servicio B2B) se ven obligados a utilizar APIs que podrian ser
propietarios. Dichas fuentes de datos dispares ofrecen retos a la aplicacién y potencialmente pueden
crear una dependencia directa entre el cddigo de la aplicacion y el cédigo de acceso a los datos. Cuando
los componentes de negocio -- beans de entidad, beans de sesion e incluso componentes de
presentacion como servlets y beans de apoyo para paginas JSP -- necesitan acceder a una fuente de
datos, pueden utilizar el APl apropiado para conseguir la conectividad y manipular la fuente de datos.
Pero introducir el cédigo de conectividad y de acceso a datos dentro de estos componentes genera un
fuerte acoplamiento entre los componentes y la implementacion de la fuente de datos. Dichas
dependencias de codigo en los componentes hace dificil y tedioso migrar la aplicacién de un tipo de
fuente de datos a otro. Cuando cambia la fuente de datos, también deben cambiar los componentes para

manejar el nuevo tipo de fuente de datos.

3.3.5.3.3 Causas

= Los componentes como los beans de entidad controlados por el bean, los beans de
sesion, los servlets, y otros objetos como beans de apoyo para paginas JSP
necesitan recuperar y almacenar informacion desde
almacenamientos persistentes y otras fuentes de datos como sistemas legales, B2B,
LDAP, etc.

= Los APIs para almacenamiento persistente varian dependiendo del vendedor del
producto. Otras fuentes de datos podrian tener APIS que no son estandar y/o
propietarios. Estos APIs y sus capacidades también varian dependiendo del tipo de

almacenamiento -- bases de datos relacionales, bases de datos orientadas a objetos,

48

documentos XML, ficheros planos, etc. Hay una falta de APIs uniformes para corregir
los requerimientos de acceso a sistemas tan dispares.

= Los componentes normalmente utilizan APIs propietarios para acceder a sistemas
externos y/o legales para recuperar y almacenar datos.

= La portabilidad de los componentes se ve afectada directamente cuando se incluyen
APIs y mecanismos de acceso especificos.

= Los componentes necesitan ser transparentes al almacenamiento persistente real o la
implementacién de la fuente de datos para proporcionar una migracion sencilla a
diferentes productos, diferentes tipos de almacenamiento y diferentes tipos de fuentes
de datos.

3.3.5.3.4 Solucién

Utilizar un Data Access Object (DAO) para abstraer y encapsular todos los accesos a la fuente

de datos. EI DAO maneja la conexion con la fuente de datos para obtener y almacenar datos.

El DAO implementa el mecanismo de acceso requerido para trabajar con la fuente de datos.
Esta fuente de datos puede ser un almacenamiento persistente como una RDMBS, un servicio externo
como un intercambio B2B, un repositorio LDAP, o0 un servicio de negocios al que se accede mediante
CORBA Internet Inter-ORB Protocol (IIOP) o sockets de bajo nivel.

Los componentes de negocio que tratan con el DAO utilizan un interface simple expuesto por el
DAO para sus clientes. EI DAO oculta completamente los detalles de implementacion de la fuente de
datos a sus clientes. Como el interface expuesto por el DAO no cambia cuando cambia la
implementacion de la fuente de datos subyacente, este patrén permite al DAO adaptarse a diferentes
esquemas de almacenamiento sin que esto afecte a sus clientes o componentes de negocio.

Esencialmente, el DAO actia como un adaptador entre el componente y la fuente de datos.

49

Patrén Data Access Object

Client

uses

DataAccessOhbject

creates fuses

dLCcesses

DataSource

+createvoid
+read:Ohbject
+updatenaid
+ieletevaid

1 uses

I
| creates

W

Data

==Transferdhject==

DADFachory

T

RdbDAOFactony ¥miDAOFactony OdbDAOFactory
| | [[| |
|creates |creates I creates | lcreates |
W W o A o W
RdbDAC1 RdbDAOZ X¥miDAO1 XmIDAOZ2 OdbDAC1 OdhDAO2

==jinterface==

DAO1

=<=interfaca=:=
DAOZ

Factoria abstracta para la gestion de DAO

Permite la transparencia: Los objetos de negocio puede utilizar la fuente de datos sin

3.3.5.3.5 Consecuencias

T
[
[
: creates
[
[

50

conocer los detalles especificos de su implementacion. El acceso es transparente
porque los detalles de la implementacion se ocultan dentro del DAO.

Permite una migracién mas facil: Una capa de DAOs hace mas facil que una aplicacion
pueda migrar a una implementacién de base de datos diferente. Los objetos de negocio
no conocen la implementacion de datos subyacente, la migracién implica cambios sélo
en la capa DAO. Ademas, si se emplea la estrategia de factorias, es posible
proporcionar una implementacion de factorias concretas por cada implementacion del
almacenamiento subyacente. En este caso, la migraciébn a un almacenamiento
diferente significa proporcionar a la aplicaciéon una nueva implementacion de la factoria.
Reduce la complejidad del cédigo de los objetos de negocio: Como los DAOs manejan
todas las complejidades del acceso a los datos, se simplifica el cddigo de los objetos
de negocio y de otros clientes que utilizan los DAOs. Todo el cddigo relacionado con la
implementacion (como las sentencias SQL) estan dentro del DAO y no en el objeto de
negocio. Esto mejora la lectura del cédigo y la productividad del desarrollo.

Centraliza todos los accesos a datos en un capa independiente: Como todas las
operaciones de acceso a los datos se ha delegado en los DAOs, esto se puede ver
Como una capa que aisla el resto de la aplicacién de la implementacién de acceso a los
datos. Esta centralizacion hace que la aplicacién sea mas sencilla de mantener y de

manejar.

51

vogmo

g
- L=

[O o

3.4. Implementacién

3.4.1. Organizacion del repositorio

Hierarchy

=== spshop
=% webhContentWEB-INF/source
—- i comman
-1 B saf.jzee

=i common
=i business

+ |I| BusinessInterface java
[¥] Businessobject.java
|I| DefaultBusinessDelegate.java
m DefaultBusinessObject java
m DefaultDummyBusinessDelegate . java
D DefaultSessionFacadeBean.java
=13 exceptions
+ |I| ExceptionUtils. java
+ D LogicException.java
+ m SyskemException, java
—-f3 configuration
+ m COMNFIGURATION_COMSTAMNTS java
+-[J] ConfigurationReader java
-4 database.dao
+-[J] DA java
+-[J] DACFactory.java
=i logging
+ m Logger.java
+ |1| LoggerFackory, java
= #3 pattern.servicelocator
+ |1| Servicelocatar, java
-1- I8 sp.spshop
—-F8 common,business

= hbrm

- [F] - [F] [[E

Cateqgaria.hbr. xml
GeneralHbmSettings. kb, xml
LineaPedida. hbrm. xml
Pedida. hbrm.xml
Prodcat.bbrn, xml
Producto. hbr, xml
Usuario, hbrm,xml
erfaces
CatalogoService,java
PedidoService, java

=3
2

BEE

jecks

J] CatalogoBO. java
PedidoBO. java
«J| UsuarioBO, java

i
+++E+++E+++H}
o
=3

Cakteqgoria.java
J| CestaCampra.java
J| LineaPedido.java

DDD s BB

52

Higrarchey

St

St

i Package Explorer

+ m LineapedidoId.java

4)] Pedido.java

m Prodcat.java

m ProdcatId.java

m Producka,java

+ E Usuario, java

database

1 dao

[J] CatalogoDaojava

m CateqoriaHome. java

m LineapedidoHome, java
[J] PedidoDac. java

[J] PedidoHome. java

[J] ProdcatHome. java

[J] ProductoHome. java

m UsuarioDAc, java

m IsuarioHome. java

3 hdbsql.dao

4J] HDBSQLCatalogDAD java
[J] HDBSQLDAOFackory. java
1] HDBSGQLPedidoDAG, java
4)] HDBSQLUsuarioDAC java
eh

o ackions

[J] AnadirProductadction, java
m BorrarLineaZestafction. java

][] [F] - [E

m ElirminarCestadction. java
m FilkrarPorfction. java

m LoginAction.java

[J] Logoutaction. java

m ModificarRegiskrodckion, java
m MostrarZategoriadction.java
m MostrarProductasction. java
m OrdenarPordction, java

[J] PdFCreatorAction.java

m Reqgistraraction.java

[J] TramitarPedidosction java
m WerCestadction, java

[1] verPedidosaction. java
filkers

+ m JspFilter . java

Forms

[J] anadirProduckoFarms, java
m BorrarLineaCestaForm.java
m CambiarLineaCestaForm, java
m DakosLoginFarm, java

-H}+++++++++++++++++++§:E}E++++§:E}+++++++++

++++H}

|
=3 !

A
m CambiarLineaCestafction. java
m Paginacion_atalogoAction. java 0
m PaginaMadificacionRegistrofAckion. java
m PaginaTramitarPedidoAction.java

w

53

e

-
m DatosLogoutForm, java
] DatosPedidoForm,java
m DatosReqgistroFarm, java
U] FiltrarParForm, java
m MuostrarCatalogaForm, java
m MostrarProductoFaorm, java
m OrdenarPorForm, java
+ m PaginacionCatalogoForm, java
i liskeners
+ m sessionCounterListener . java
B} pattern. delegates
+ m CatalogoDelegate. java
4/ [J] PedidoDeleqate java
+ m UsuarinDelegate. java
F resources
mensajes . properties
B servlets
+ m HsqlBaakstrap.java
+-f1, configuration
+-2, JRE Syshem Library [eclipse]
() antlr.jar
+ commons-beanutils, jar
commons-collections, jar
commons-configuration-1,0-rc 1 jar
commons-digester, jar
commons-fileupload, jar
commons-lang-2.0,1ar
commons-lagging. jar
commons-validator jar
itewt-1.3.1jar
jZee.jar
jakarta-oro,jar
logi-1.2.9.jar
struts. jar
jasper-runtime.jar - C:\saf-platformi Tameat 4. 1 cormman’ib
hibernated. jar
JUNIT_HOMEfjunit jar - C:saf-platformledipsetpluginsiorg. junit_3.8. 1junit. jar
dom-1.6.jar
ehcache-1.1.jar
cglb-2.1.jar
asm, jar

+

+

+

+

+

+

+

+

+

o o o ..o o o e o e e

o) O [O () Oy O s O s O e Y o Y o Y (O O 8 O

-
LN
=
=
o
W
=1

-I-f= WebContent

== 58
Fordll,css

+-[>% images

—J- {2 WEB-INF
(= lib
skruks-bean.td
skruks-config.ml
struts-hirl, td
struts-logic, Hd
strubs-nested,Hd
struts-tiles, Hd
tiles-def . xml

weh, xml
arbal jsp
catalogo. jsp
confirmacionfegistro, jsp
confirmarPedido. jsp
detalleProducto.jsp
errar, jsp
head.jsp
hormeCatalogo. jsp
horneConfirmacionfegistra. jsp
hormeConfirmarPedida. jsp
homeDetProd, jsp
haormeErrat, jsp
hiomeErrarMofccesa, jsp
homelspErrot jsp
homeLagin, jsp
hormelogout, jsp
hormeModificacionPegistro, jsp
hormeReqgistrollsuario, jsp
homeverCesta, jsp
hormeverPedidos, jsp
indez, hikml
login. jsp
modificacionRegistro. jsp
pie. jsp
recursoModcceso, jsp
reqgistrollsuario, jsp
werCesta, jsp
verPedidos, jsp

+[= wark,

55

3.4.2. Descriptor de despligue del Web Server (web.xml)

Para empezar describiremos el descriptor de despliegue del Web Server, este fichero es un xml
con el nombre web.xml.

El contenido de este fichero es basico en el arranque del Web Server , ya que en el mismo, se
describen los elementos que contendra y el modo en que se accede a los mismos. También se definen
aspectos de seguridad, ficheros de bienvenida, parametros iniciales, parametros de contexto.

Al arrancar el Web Server lo primero que hace es ir en busca de este fichero y leer su contenido,
cualquier fallo en el mismo arrojara una serie de excepciones en las cuales se indica que el arranque no
ha sido satisfactorio.

Este fichero es privado, esto quiere decir que es inaccesible su contenido para los usuarios de
futuras aplicaciones contenidas en el contenedor del Web Server.

A continuacién mostramos la definicién del mismo y la explicacion de cada una de las entradas
del fichero.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app 1d="WebApp"'>
<display-name>mercadoLibreOnline</display-name>

<I-- filter configuration -->
<filter>
<filter-name>JspFilter</filter-name>
<filter-class>common.sp.spshop.web.filters.JspFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>JspFilter</filter-name>
<url-pattern>*_jsp</url-pattern>
</filter-mapping>

<I-- Register the session counting event listener. -->
<listener>
<listener-class>
common.sp.spshop.web.listeners.SessionCounterListener
</listener-class>
</listener>

<I-- servlet configuration -->
<servlet>
<servlet-name>HsqglBootstrap</servlet-name>
<display-name>HsqlBootstrap</display-name>
<servlet-class>
common.sp.spshop.web.servlets.HsqlBootstrap
</servlet-class>
<load-on-startup>2</load-on-startup>
</servlet>
<servlet>
<servlet-name>action</servlet-name>
<display-name>ActionServlet</display-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>

56

<load-on-startup>1</load-on-startup>
</servlet>

<!-- end error page definition -->
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*_.do</url-pattern>
</servlet-mapping>

<session-config>
<session-timeout>2</session-timeout>
</session-config>

<welcome-file-list>
<welcome-file>index.html</welcome-file>
</welcome-file-list>

<l-- error configuration -->
<error-page>
<error-code>404</error-code>
<location>/homeJspError.jsp</location>
</error-page>

<!-- taglib definition -->
<!-- struts tag library descriptors -->
<taglib>
<taglib-uri>/tags/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-html</taglib-uri>
<taglib-location>/WEB-INF/struts-html._tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-nested</taglib-uri>
<taglib-location>/WEB-INF/struts-nested.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/tiles</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>

</taglib>
<l-- end struts tag library descriptors -->
<I-- end taglib definition -->
</web-app>
1)

<display-name>mercadoLibreOnline</display-name>

Este elemento es opcional, es un nombre corto que posteriormente podra ser utilizado por las

herramientas de la GUI para ser mostrado.

2)
<filter>
<filter-name>JspFilter</filter-name>

<filter-class>common.sp.spshop.web.filters.JspFilter</filter-class>
</filter>

En el descriptor de despliegue se pueden definir una serie de filtros, no es obligatorio tener

definido ninguno, pero para nuestro aplicativo puede ser interesante.

57

En la definicién del filtro, le indicamos el nombre JspFilter, este nombre se utiliza para
posteriores referéncias a este filtro dentro del descriptor de despliegue, y la clase que contendra la
implementacién que se ejecutara cuando se aplique el filtro.

La implementacion de la clase (common.sp.spshop.web.filters.JspFilter) la mostramos a

continuacion:

package common.sp.spshop.web.Ffilters;
import (.)
/**

* @author Eduardo Varga

*

*/

public class JspFilter implements Filter{
private FilterConfig config;

public void init(FilterConfig config) throws ServletException {

this.config=config;

}

public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain) throws
10Exception, ServletException {

HttpServletResponse response = (HttpServletResponse) res;
response.sendError(404);

}
public void destroy(Q) {}

Como vemos nuestra clase implementara la interficie javax.servlet.Filter, esto supone

implementar los métodos de dicha interficie, los métodos sén los que se resefian en rojo.

. public void init(FilterConfig config) throws ServletException Sera invocado por
el container del Web Server cuando el filtro tenga que entrar en servicio. La

inicializacion puede ser interrumpida por dos razones.

- O bien, se lanza una ServletException.

- O bien, no devuelve una respuesta en un tiempo definido en el proprio web.xml.

. public void init(FilterConfig config) throws ServletException Sera invocado por
el container del Web Server cada vez que una request/response pase por el filtro, una

vez haya sido inicializado.

. public void destroy()sera invocado por el container del Web Server una vez el filtro

tenga que finalizar su ejecucion.

58

3)
<filter-mapping>
<filter-name>JspFilter</filter-name>

<url-pattern>*_jsp</url-pattern>
</filter-mapping>

El filtro anteriormente definido ha de ser mapeado para definir sobre que URL’'s ha de ser
aplicado.

Como vemos el filter-name ha de coincidir con el nombre definido para esta propiedad en la
definicién del filtro JspFilter, ademas, ha de incluir el parametro url-pattern que definira los elementos
gue recibiran el trato por parte del filtro.

La forma en la que el Web Server resuelve este url-pattern es :

http://host:port + ContextPath

Por lo tanto este filtro serd aplicado en la resolucién de todas las URL’s que redirijan a una jsp.

4)
<listener>
<listener-class>
common.sp.spshop.web.listeners.SessionCounterListener

</listener-class>
</listener>

Otra de las opciones que se nos permite en el web.xml, es definir una serie de listeners, esto
nos permite tener un elemento que esta pendiente de una serie de eventos en la aplicacién.

Como podemos ver en el ejemplo de nuestra aplicacién, la clase que implementara nuestro
listener es common.sp.spshop.web.listeners.SessionCounterListener, esta clase sera invocada en
el momento que el evento para el que ha sido creada suceda.

A continuacién mostramos el cédigo de esta clase y explicaremos que contiene:

package common.sp.spshop.web. listeners;
import (..)

/**

* Nuestro listener guardarad el numero de sesiones que esta utilizando la aplicacién Web
concurrentemente,

* ademas de las que ha utilizado durante su ciclo de vida.

*/

public class SessionCounterListener implements HttpSessionListener {

()

public synchronized void sessionCreated(HttpSessionEvent event) {
()
b

public synchronized void sessionDestroyed(HttpSessionEvent event) {
()
b

59

/** Numero total de sesiones creadas. */

public int getTotalSessionCount() {
(&)
¥

/** Numero de sesiones cocurrentes en memoria. */

public int getCurrentSessionCount() {
(D)
3

/**
* El mayor numero de sesiones que haya habido en algun momento en memoria.
*/

public int getMaxSessionCount() {

)

}

/**

* Guardamos en el ServletContext los datos obtenidos

* para que tanto desde cualquier servlet o JSP tenga acceso
* a la cuenta de sesiones

*/

private synchronized void storelnServletContext(HttpSessionEvent event) {
(&)
¥

private void logSessionCounter(){
(&)
¥

Como vemos nuestra clase implementara la interficie javax.servlet.HttpSessionListener, esto

supone implementar los métodos de dicha interficie, los métodos sén los que se resefian en rojo.

. public synchronized void sessionCreated(HttpSessionEvent event) cada vez que el
container del Web Server detecte que hay un evento relacionado con una
HttpSession, en el caso de ser la creacién de una sesién invocara a este método.

. public synchronized void sessionDestroyed(HttpSessionEvent event) en el caso
contrario, que se detecte un evento de este tipo, pero sea por la destruccion de una
sesion se llamaré a este método.

Luego dentro de nuestra clase podemos afadir una serie de métodos que
nos sirvan a nosotros, por si queremos otorgarle alguna funcionalidad extra , los métodos afiadidos son

los que se resefian en verde.

. public int getTotalSessionCount() con este método obtendremos el nimero total de
sesiones creadas.
. public int getCurrentSessionCount() con este método obtendremos el niimero total

de sesiones concurrentes en memoria.

60

. public int getMaxSessionCount() con este método obtendremos el nilmero maximo
de sesiones que haya habido en memdria concurrentemente.

° private synchronized void storelnServletContext(HttpSessionEvent event) CON este
método guardaremos en el ServletContext el contador de sesiones, por si en algu
momento lo necesitamos desde cualquier serviet o JSP.

. private void logSessionCounter() este método nos servira para guardar en un fichero

de log, para su psterior consulta, los datos que se van registrando en cada momento.

5)

<servlet>
<servlet-name>HsqlBootstrap</servlet-name>
<display-name>HsqlBootstrap</display-name>
<servlet-class>

common.sp.-spshop.web.servlets_HsqlBootstrap

</servlet-class>
<load-on-startup>2</load-on-startup>

</servlet>

A continuacién incluimos la definicién de un servlet que se cargara en el arranque del Web
Server, esto quiere decir que lo que implementemos en el cédigo de la clase del servilet sera
posteriormente utilizado por nuestra aplicacion.

Como vemos en la definicibn encontramos una serie de entradas como el nombre del servlet
HsqlBootstrap, el mismo nombre utilizaremos por si quiere ser posteriormente consultado desde
cualquier JSP o servlet (display-name), luego viene la definicibn de la clase que contendra la
implementacion del servlet y finalmente, tenemos el parametro load-on-startup que es un parametro
muy Util en el caso de que en el arranque tengamos varios servlets y sea importante el orden en el que
sean cargados, ya que los resultados que carga uno pueden ser posteriormente necesitados para la
carga del siguiente.

La clase en la que tenemos la implementacién del servlet es
common.sp.spshop.web.servlets.HsqlBootstrap, a continuacion veremos el cddigo y comentaremos

los aspectos mas destacados :

package common.sp.spshop.web.servlets;
import (..)

/**
* Servlet que crea la base de datos
*/
public class HsqlBootstrap extends HttpServlet implements Servlet{

()

public void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, I10Exception {
// inicializacion hsgldb

try {
initHsql Q;

} catch (Exception e) {
throw new ServletException("Imposible inicializar HSQLDB");
3

61

}

/**
* @see javax.servlet._http.HttpServlet#void (Javax.servlet_http._HttpServletRequest,
Javax.servlet._http._HttpServletResponse)
*/
public void doPost(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, 10Exception {
// inicializacion hsqgldb
initHsql Q;
b

public final void init(ServletConfig config) throws ServletException {
super.init(config);

// inicializacion hsgldb
initHsql Q;
3

/**
*
*/
private void initHsgl() {
Connection conn = null;
Statement st = null;

try {
Context ctx = new InitialContext();

String dsname=ConfigurationReader.getString(DATASOURCE_NAME_CFG_PROPERTY);
DataSource ds=ServicelLocator.getlnstance() .getDataSource(dsname);

//si existe un DataSource previo eliminamos las tablas existentes
if (ds = null) {
conn = ds.getConnection();

int rc;
st = conn.createStatement();

try {
rc = st.executeUpdate("'DROP TABLE USUARIO™);
} catch (SQLException el) {

}

//creacion de las tablas y relaciones existentes entre ellas

rc = st.executeUpdate("'CREATE TABLE USUARIO (USRID INTEGER NOT NULL
IDENTITY PRIMARY KEY, USRLOGIN CHAR(10) NOT NULL, USRPASSWORD CHAR(10) NOT NULL, USRNOMBRE
CHAR(20) NOT NULL, USRAPELLIDO1 CHAR(30) NOT NULL, USRAPELLIDO2 CHAR(30) NULL, USRDIRECCION
VARCHAR(100) NOT NULL, USRPOBLACION CHAR(50) NOT NULL, USRCODPOSTAL CHAR(5) NOT NULL,
USRPROVINCIA CHAR(50) NULL, USRPAIS CHAR(40) NOT NULL, USRTELEFONO CHAR(20) NOT NULL, USRMAIL
CHAR(20) NOT NULL)™);

(€D)

st.close();
conn.close();

logger.logInfo(''Base de datos creada con éxito");

}

} catch (NamingException e) {

logger.logError(""Error al crear base de datos",e);
} catch (SQLException e) {

logger.logError("Error al crear base de datos™,e);
} finally {

try {
if (st = null)
st.close();
it (conn != null)
conn.close();

62

} catch (SQLException e) {
3

Como podemos ver esta clase es algo mas pesada, en esta clase implementé la creacién de la
Base de Datos, por lo tanto, y como bien se puede intuir, la Base de Datos durard mientras este
arrancado el Web Server.

Se podria haber creado la base de datos permanente, con la definicion del datasource a nivel de
descriptor de despliegue y posteriormente crear una base de datos con un cliente, para que nuestra
Base de Datos fuese permanente y se pudiese gestionar, pero como no era uno de los objetivos del
proyecto el tema de la Base de Datos (gestiéon y administracion de la misma), decidi crear algo mas
ligero como lo implementado.

Suficiente para que cumpliese su misién y tuviesemos una Base de Datos, que recuerdo,
mientras el Web Server estd arrancado cumple la misma mision que una mas compleja, y la
interactuacion que tenemos con ella desde el cédigo de nuestra aplicacién seria la misma que si
hubiesemos creado una Base de Datos ‘de verdad'.

Una vez realizado el comentario anterior pasaremos a comentar el cddigo en si.

Podemos ver como nuestra clase:

o Extiende de la clase javax.servlet.http.HttpServlet.

¢ Implementa la interficie javax.servlet.Servlet .

Al ser un servlet ha de implementar siempre la clase comentada anteriormente, para implementar
los métodos de la misma hay que hacer que nuestra clase servlet extienda o bien de un
javax.servlet.GenericServlet o bien de un javax.servlet.http.HttpServlet, de esta forma nuestro servlet
s6lo podra recibir y responder a peticiones de Web clients que sigan el protocolo HTTP, los métodos

gue se han de implementar sén los remarcados en rojo.

. public void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, I0Exception este método se invoca cuando se realiza una peticién

del tipo HTTP GET.

. public void doPost(HttpServletRequest req, HttpServletResponse resp) throws

ServletException, 10Exception este método se invoca cuando se realiza una peticion
del tipo HTTP POST.

63

. public final void init(ServletConfig config) throws ServletException este
método es invocado por el container del Web Server cuando detecta que el servlet

definido ha de entrar en servicio.

Como vemos, la finalidad de este servlet es la creacion de la Base de Datos en el arranque, por
lo tanto los 3 métodos que estamos obligados ha implementar realizan la misma accién, que no es otra
que invocar al método definido por mi, que contiene todo el negocio de la creacion de la Base de Datos.

A continuacién pasaré a comentar los datos mas relevantes (marcados en verde) dentro de las

acciones que se realizan dentro de este método private void initHsql ().

Primero nos encontramos con la definicion del datasource, obtenemos el nombre del mismo (un
simple objeto String) y obtenemos una referencia al mismo (... 1 ...).

Despues mediante la referéncia que hemos obtenido del datasource obtenemos una conexion
hacia la Base de Datos (... 2 ...), de esta conexion obtenida crearemos un Statement mediante el cual ya
tendremos conexién directa para realiza nuestras peticiones (... 3 ...).

Como podemos observar (... 4 ...) la forma de invocar y de lanzar nuestras sentencias SQL es
de la forma que se muestra.

Una vez acabadas todas las acciones es muy importante que cerremos (... 5 ...) tanto el
Statement como la Conexion.

Finalmente, hay que asegurarse que el cierre se ha realizado, para ello completamos la accién
contenida en el try...catch (... 6 ...)

1

String dsname=ConfigurationReader.getString(DATASOURCE_NAME_CFG_PROPERTY);
DataSource ds=ServicelLocator.getlnstance() .getDataSource(dsname);

w2 .
conn = ds.getConnection();
w3
int rc;
st = conn.createStatement();
w4
rc = st.executeUpdate(SENTENCIA SQL)
. 5 .
st.close();
conn.close();
. 6 .
try {
if (st '= null)
st.close();
if (conn != null)

conn.close();
} catch (SQLException e) {}

6)

<servlet>
<servlet-name>action</servlet-name>
<display-name>ActionServlet</display-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>

64

<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

A continuacion tenemos la definicion del servlet que posteriormente servira nuestras peticiones
durante el transcurso de nuestro aplicativo (Front Controller).

Al haber utilizado el framework de desarrollo Struts, la configuracion de este ActionServlet en el
arranque de nuestro Web Server es totalmente obligatorio.

Las entradas que nos encontramos son las que hemos venido viendo hasta ahora, un nombre
action, el mismo nombre por si posteriormente queremos obtener una referencia (display-name). Luego
la clase que implementara nuestro servlet, que no es otra que org.apache.struts.action.ActionServlet.

Finalmente, nos encontramos que en este caso, tenemos un parametro de entrada para este
servlet, este parametro no es otro que el descriptor de Struts -> struts-config.xml, nuestro servlet
sacara, durante la ejecucién del aplicativo, todo lo que necesita precisamente de este fichero,
posteriormente a la explicacion del descriptor de despliegue del Web Server que estamos realizando

entraremos a profundizar en el contenido de dicho fichero.

7)
<servlet-mapping>
<servlet-name>action</servlet-name>

<url-pattern>*_do</url-pattern>
</servlet-mapping>

El servlet anterior necesita que le indiguemos a que peticiones tiene que ‘hacer caso’, tal y como
explicamos anteriormente para el uso de Filtros, la forma en la que el Web Server resuelve este url-
pattern es :

http://host:port + ContextPath

8)
<session-config>

<session-timeout>2</session-timeout>
</session-config>

La siguiente entrada que nos encontramos nos define un atributo para la sesién de nuestra
aplicacion web.

Este atributo, como su nombre indica (session-timeout), nos define los minutos a partir de los
cuales, debido a falta de actividad en el Web Server, la sesion finalizara.

9)

<welcome-file-list>
<welcome-file>index.html</welcome-file>

65

</welcome-Ffile-list>

En esta entrada nos encontramos un ‘fichero de bienvenida’, en mi caso sélo tengo una entrada,
pero aqui podria haber una lista de ‘ficheros de bienvenida’, esta ‘lista’ de ficheros no tiene otra mision
gue servir una entrada en caso que la URL responda a un directorio, de esta forma el Web Server
recurre a nuestra lista y la recorre secuencialmente hasta que encuentra un fichero que responda a la

ruta especificada por la URL.

10)
<error-page>
<error-code>404</error-code>

<location>/homeJspError.jsp</location>
</error-page>

Esta entrada es muy Util ya que nos establece un mapeo entre un codigo de error de los
conocidos y un fichero que responda ha dicho cédigo de error.

Esto es muy practico ya que evitara, de una forma muy sencilla, las tediosas pantallas de error
servidas por defecto por los navegadores y substituirlas por presentaciones creadas por nostros.

En mi caso s6lo he realizado esto para el conocidisimo codigo de error 404.

11)
<taglib>
<taglib-uri>/tags/struts-bean</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-html</taglib-uri>
<taglib-location>/WEB-INF/struts-html._.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-logic</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/struts-nested</taglib-uri>
<taglib-location>/WEB-INF/struts-nested.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/tags/tiles</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles.tld</taglib-location>
</taglib>

Finalmente, nos encontramos con la carga de todos los tld, posteriormente necesarios en la
creacién de las JSP en la capa de presentacion de nuestro aplicativo.
La carga de estos taglibs es totalmente necesaria ya que en la creacién de nuestras JSP el uso

de los tags definidos en las mismas es imprescindible.

66

3.4.3. struts-config.xml :

Tal y como comentamos en el apartado anterior, a continuacién pasaremos a desglosar y
explicar en detalle otro de los ficheros importantes dentro de nuestro aplicativo, ya que en este fichero se

encuentra toda la informacion que necesita el framework Struts para el manejo de peticiones y

respuesta a las mismas.

El codigo que se encuentra en este fichero lo mostraremos a continuacién para su posterior

descripcion, entrada por entrada, asi como hicimos con el descriptor de despliegue del Web Server.

El cédigo es el siguiente:

<?xml version="1.0" encoding="1S0-8859-1" ?>

<IDOCTYPE struts-config PUBLIC
""-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

<l-- ========== Data Source Configuration

<l-- ========== Form Bean Definitions

<form-beans>
<form-bean name="mostrarCatalogo"
type=""common.sp.spshop.web.forms.MostrarCatalogoForm'></form-bean>
<form-bean name="datosRegistro"
type=""common.sp.spshop.web.forms.DatosRegistroForm"></form-bean>
<form-bean name="datosLogin"
type=""common.sp.spshop.web.forms.DatosLoginForm"></form-bean>
<form-bean name="datosLogout"
type=""common.sp.spshop.web.forms.DatosLogoutForm"></form-bean>
<form-bean name="mostrarProducto"
type=""common.sp.spshop.web.forms.MostrarProductoForm'></form-bean>
<form-bean name="anadirProducto"
type=""common.sp.spshop.web.forms.AnadirProductoForms'></form-bean>
<form-bean name="datosPedido"
type=""common.sp.spshop.web.forms.DatosPedidoForm"></form-bean>
<form-bean name="borrarLineaCesta"
type=""common.sp.spshop.web.forms.BorrarLineaCestaForm"></form-bean>
<form-bean name="cambiarLineaCesta"
type=""common.sp.spshop.web.forms.CambiarLineaCestaForm"></form-bean>
<form-bean name="filtrarPor"
type=""common.sp.spshop.web.forms.FiltrarPorForm"></form-bean>
<form-bean name="ordenarPor"
type=""common.sp.spshop.web.forms.OrdenarPorForm"></form-bean>
<form-bean name="paginacionCatalogo"
type=""common.sp.spshop.web.forms.PaginacionCatalogoForm"></form-bean>
</form-beans>

<l-- ========== Global Forward Definitions

<global-forwards>
<forward name="error" path=""/homeError.jsp"></forward>
</global-forwards>

<l-- ========== Action Mapping Definitions
<action-mappings>

<action path="/mostrarCategoria"

type=""common.sp.spshop.web.actions.MostrarCategoriaAction” name="mostrarCatalogo" scope="'request"

validate=""false">

67

<forward name="ok"™ path="/homeCatalogo.jsp'/>
</action>

<action path="/verCesta" type="'common.sp.spshop.web.actions.VerCestaAction">
<forward name="ok"™ path="/homeVerCesta.jsp'/>
</action>

<action path="/verPedidos" type='"common.sp.spshop.web.actions.VerPedidosAction'>
<forward name="ok"™ path="/homeVerPedidos.jsp" />
<forward name="login" path="/homeLogin.jsp'/>

</action>

<action path="/paginaModificacionRegistro"
type=""common.sp.spshop.web.actions.PaginaModificacionRegistroAction">
<forward name="login" path="/homeLogin.jsp"'/>
<forward name="ok"™ path="/homeModificacionRegistro.jsp'/>
</action>

<action path="/export-products-pdf"
type="common.sp.spshop.web.actions.PdfCreatorAction'>
<forward name="ok"™ path="/homeCatalogo.jsp'/>
</action>

<action path="/paginaRegistro” forward="/homeRegistroUsuario.jsp"
name=""datosRegistro" validate="false"/>

<action path="/hacerLogout"” type="common.sp.spshop.web.actions.LogoutAction">
<forward name="volver" path="/mostrarCategoria.do” />
</action>

<action path="/registrar’ type="common.sp.spshop.web.actions.RegistrarAction”
name="'datosRegistro’ validate=""true" input="volver'>
<forward name="volver" path='"/homeRegistroUsuario.jsp" />
<forward name="ok™ path="/confirmacionRegistro.do" redirect="true"/>
</action>

<action path="/confirmacionRegistro” forward="/homeConfirmacionRegistro.jsp"/>

<action path="/modificarRegistro"
type=""common.sp.spshop.web.actions.ModificarRegistroAction'” name='datosRegistro” validate="true"
input="volver" scope="request'>
<forward name="volver" path='"/homeRegistroUsuario.jsp" />
<forward name="ok"™ path="/homeConfirmacionRegistro.jsp" />
</action>

<action path="/hacerLogin' type="common.sp.spshop.web.actions.LoginAction"
name=""datosLogin" validate="true" input="volver" scope="request'>
<forward name="volver" path='"/homeLogin.jsp" />
<forward name="verPedidos" redirect="true" path="/verPedidos.do" />
<forward name="modificarRegistro' path="/paginaModificacionRegistro.do"/>
<forward name="tramitarPedido" path="/paginaTramitarPedido.do"/>
</action>

<action path="/mostrarProducto"
type=""common.sp.spshop.web.actions.MostrarProductoAction"™ name="mostrarProducto” validate="true"
scope=""request'>
<forward name="ok"™ path="/homeDetProd. jsp'/>
</action>

<action path="/anadirProducto
type=""common.sp.spshop.web.actions.AnadirProductoAction" name="anadirProducto’ scope="request"
validate="true'">
<forward name="ok" path="/verCesta.do" redirect="true'/>
</action>

<action path="/paginaTramitarPedido"
type=""common.sp.spshop.web.actions.PaginaTramitarPedidoAction">
<forward name="ok" path="/homeConfirmarPedido.jsp"/>
<forward name="login" path="/homeLogin.jsp"/>
</action>

68

<action path="/tramitarPedido™
type=""common.sp.spshop.web.actions.TramitarPedidoAction" name="datosPedido' scope="request"
validate="true" input="volver'>
<forward name="volver" path='"/homeConfirmarPedido.jsp" />
<forward name="ok"™ redirect="true" path="/verPedidos.do"/>
</action>

<action path="/cambiarLineaCesta"
type=""common.sp.spshop.web.actions.CambiarLineaCestaAction" name='cambiarLineaCesta"
input="volver" scope="request' validate="true">
<forward name="ok"™ path="/homeVerCesta.jsp'/>
<forward name="volver" path='"/homeVerCesta.jsp'/>
</action>

<action path="/borrarLineaCesta"
type=""common.sp.spshop.web.actions.BorrarLineaCestaAction” name='"borrarLineaCesta"
scope=""request" validate="true" input="volver'>
<forward name="ok"™ path="/homeVerCesta.jsp'/>
<forward name="volver" path='/homeVerCesta.jsp"/>
</action>

<action path="/eliminarCesta"
type=""common.sp.spshop.web.actions.EliminarCestaAction”™ scope="request'>
<forward name="ok"™ path="/homeVerCesta.jsp'/>
</action>

<action path="/filtrarPor" type="common.sp.spshop.web.actions.FiltrarPorAction"
name="filtrarPor" scope="request'>
<forward name="ok"™ path="/homeCatalogo.jsp'/>
</action>

<action path="/ordenarPor" type='common.sp.spshop.web.actions.OrdenarPorAction"
name=""ordenarPor" scope="'request'>
<forward name="ok"™ path=""/homeCatalogo.jsp'/>
</action>

<action path="/paginacionCatalogo"
type=""common.sp.spshop.web.actions.PaginacionCatalogoAction'" name='paginacionCatalogo"
scope=""request'>
<forward name="ok"™ path="/homeCatalogo.jsp'/>
</action>

</action-mappings>

<!-- controller definition -->
<controller>
<l-- The "input" parameter on "action" elements is the name of a

local or global '"forward" rather than a module-relative path -->
<set-property property="inputForward"” value=""true" />

</controller>

<!-- end controller definition -->

<I-- message properties definition -->

<message-resources parameter="common.sp.spshop.web.resources.mensajes" />
<I-- message properties definition -->

<l-- plug-in definition -->

<plug-in className="org.apache.struts.plugins.ModuleConfigVerifier"” />

<l-- end plug-in definition -->
</struts-config>

1) Primeramente nos encontramos con los <form-beans> , aqui estan definidos todos aquellos
Java Beans que posteriormente seran utilizados en nuestra Aplicacion Web.
La entrada consta de un nombre para cada <form-bean>, asi como un atributo type que no es

mas que la clase que implementa el contenido de dicho elemento.

69

A continuacién mostraremos el contenido de una de estas clases, para ver como es su

composicién.

Como ejemplo utilizaremos uno de los <form-bean> definido, este es

common.sp.spshop.web.forms.AnadirProductoForms:

package common.sp.spshop.web.forms;

import (...)

/**

* @author Eduardo Varga Laguna

*/

public class AnadirProductoForms extends ActionForm {

-

private Long prodld = null;

/**

* Get prodld
* @return Long

*/

public Long getProdld() {

}
/**

return prodld;

* Set prodld
* @param <code>Long</code>

*/

public void setProdld(Long p) {

}

this._prodld = p;

public void reset(ActionMapping mapping, HttpServletRequest request) {

}

prodld = null;

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if (prodld == null) {
logger.logDebug(*'Error al validar datos de producto a afadir');
errors.add("prodld”, new

ActionMessage(‘'error.catalogo.errorProdld™));

A comentar

return errors;

sobre la implementacién vista arriba, resefiamos en rojo lo mas significativo:

Primero observamos que nuestra clase extiende de
org.apache.struts.action.ActionForm, este objeto ActionForm és un JavaBean y
nos servira como contenedor de datos.

Como podemos observar en nuestra clase tendremos definidos todos aquellos
atributos que necesitaran ser inicializados, asi como sus getters-setter, para la

posterior manipulacién de los mismos.

70

- Tenemos también implementado el método reset(...), para en caso de necesitarlo,
tener una forma rapida de vaciar el objeto.
- Finalmente, hemos implementado el método validate(...), el uso de este método y la

invocacién del mismo sigue el siguiente orden:

« Cuando en nuestro cddigo se ejecuta un Action, lo primero que se hace es
obtener el ActionForm y rellenar los parametros con los valores
introducidos por el usuario.

« Una vez tenemos el objeto con los datos pertinentes, se invoca a nuestro
método y se hace la comprobacién pertinente, devolviendose un objeto del
tipo ActionErrors, que podra ser capturado en nuestra JSP, para que
muestre los datos que toca pro pantalla.

2)

<global-forwards>
<forward name="error" path='""/homeError.jsp"></forward>
</global-forwards>

La siguiente entrada que nos encontramos és un <global-forwards> que como su nombre
indica, nos permitird un redireccionamiento global para cualquiera de nuestras acciones, simplemente
pasandole la cadena “error” que es con la que nuestro contenedor del Web Server asocia este global-

forward.

3) Lo siguiente que nos encontramos es el <action-mappings> con sus pertinentes <actions>
definidos.
Como podemos observar las entradas de los <action> pueden seguir uno de los siguientes
patrones:
3.1)

<action path="/verPedidos" type='common.sp.spshop.web.actions.VerPedidosAction'>
<forward name="ok"™ path="/homeVerPedidos.jsp" />
<forward name="login" path="/homeLogin.jsp"/>

</action>

En este primer tipo, vemos como tenemos un path, que es el nombre que utilizaremos en las
JSP’s para asociar el Submit al action pertinente.
Luego tenemos el type, que es la clase que implementa toda la l6gica de negocio de nuestro

action.

71

A continuacién vemos dos entradas del tipo forward, esto tiene la misma mision que el global-
forward pero asociado exclusivamente a este action, asi, una vez ejecutado nuestro cddigo dentro de
nuestra clase podremos, mediante el nombre asociado (“ok” /"login”), hacer la redireccién pertinente.

Més adelante mostraremos el contenido de una de estas clases, lo mostraremos en el apartado
donde haremos el seguimiento de un caso de uso, desde la capa de presentacion hasta la capa de
datos, pasando por la capa de negocio, asi como el retorno de la respuesta.

3.2)

<action path="/confirmacionRegistro” forward="/homeConfirmacionRegistro.jsp"/>

En este segundo tipo, vemos que no hay ninguna clase que contenga como se comportara
nuestro action, aqui simplemente tenemos, como en el caso anterior, un path que sera el nombre con el
gue conseguiremos invocar desde nuestra JSP a este action y aqui, a diferencia del caso anterior, lo
Unico que realizamos es un forward directo a la JSP definida.

Este tipo de entrada es Util para aquellas entradas que no tienen ningun tipo de légica de
negocio, aquellas que no tratan datos, simplemente hacen de puente entre una JSP y otra. Al pasar

todas las acciones por nuestro servlet definido (ActionServlet) es obligatorio pasar por aqui.

4)

<controller>
<set-property property="inputForward"” value="true" />
</controller>

La siguiente entrada que nos encontramos es la de <controller>, esta entrada es utilizada para
definir los parametros del controller (org.apache.struts.action.ActionServlet), en mi caso tomara los

parametros por defecto.

5)
<message-resources parameter="common.sp.spshop.web.resources.mensajes" />

Luego tenemos definidos los <message-resources>, que es todo aquel contenido estatico que
posteriormente serd utilizado.
En estos ficheros es donde incorporamos todos aquellos strings que se muestran en nuestras

JSP, o que utilizamos como mensaje de error, etc...

72

6)

<plug-in className="org.apache.struts.plugins.ModuleConfigVerifier"” />

Finalmente, vemos que se pueden definir plug-ins para nuestra aplicacion,

3.4.4. Explicacion de un Caso de Uso:

3.4.4.1. Introduccioén

Para poder ver todo lo explicado teoricamente en los apartados Teorico, Disefio e
Implementacién de una forma mas clara y entendedora, para ver como interactua todo lo anteriormente
expuesto de una forma mas sencilla, haremos un completo seguimiento de un caso de uso pasando por
todos los estados, capas, etc... que sean necesarios para asi, finalmente, poder tener una vision global
del problema y la solucién utilizada mediante la tecnologia J2EE y el framework de desarrollo Struts.

Cogeremos la accién de Afadir un articulo al carro de la compra para hacer el seguimiento.

3.4.4.2. Capas dentro del Caso de Uso

3.4.4.2.1. JSP deinicio

Para empezar situaremos la explicacion en la JSP de inicio, esta es catalogo.jsp, el cddigo de

esta JSP es el siguiente:

1)
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<td>
<table width="100%" border="0" cellspacing="0" cellpadding="15">
<tr>
<% if(request.getAttribute(*'spshop.cat.ruta™) = null){ %>
<td class="forTexts">
<logic:iterate id="cat" name="'spshop.cat.ruta'">
<html:link styleClass="forCategorialLista"
action="mostrarCategoria" paramld="catld"
paramName="'cat' paramProperty="id" >
<bean:write name="cat" property="nombre" /> </html:link>
</logic:iterate>

<logic:notEmpty name="spshop.cat.subcategorias'>

73

<html:img page='/images/header_categorias.gif" width="200"
height="27"/>

<logic:iterate id="cat" name="'spshop.cat.subcategorias'>
<html:link
action="mostrarCategoria" paramld="catld"
paramName=""cat" paramProperty=""id"
styleClass="forCategoria'> <bean:write name="cat"
property="nombre" /> </html:link>

</logic:iterate>

</logic:notEmpty>
<% }%>
<html:img page='/images/header_productos.gif" width="200" height="27"/>

<table cellpadding=10 cellspacing=0 border=0>
<logic:iterate id="prod" name="'spshop.cat.productos" offset="0"

length="3">
<tr class=forProductolLista>
<bean:define name="prod" property="imagen' id="imagenURL"/>
<td width=50>
<html:img src="<%=imagenURL.toString() %>"
border="0"/>

</td>

<td width=200><html:link styleClass="forProductoLista"
action="mostrarProducto”™ paramld="prodld"” paramName="prod" paramProperty="id"><bean:write
name=""prod" property="titulo" /></html:link>

<bean:write name="prod" property="artista" /></td>

<td width=80><bean:write name="prod" property="precio"” />
Euros

(2)
<html:link styleClass="forProductoLista" action="anadirProducto" paramld="prodld"
paramName=""prod" paramProperty=""id">
<html:img page='/images/cesta.gif" border="0"/>
</html : link></td>

</tr>
</logic:iterate>
</table>
</td>
</tr>
</table>
<table width="100%" cellspacing="0" cellpadding="15" border="0">
<tr>

<td width="35%"></td>
<td width="30%" align="left">
<html:img page='"/images/inicio.gif" border="0" style="{cursor:hand;}"
onclick="inicio();"/>
<html:img page='/images/anterior.gif" border="0" style="{cursor:hand;}"
onclick="anteriores();"/>
<html:img page="/images/siguiente.gif" border="0" style="{cursor:hand;}"
onclick="siguientes();"/>
<html:img page='"/images/fTin.gif" border="0" style="{cursor:hand;}"
onclick="fin();"/>
</td>
<td width="35%"></td>
</tr>
</table>
</td>

(1) Como comentamos en el apartado en que explicamos el fichero de despliegue web.xml,
en las JSP es necesario el uso de las taglib, que son la fuente de la que obtendremos
todas las etiquetas tipicas de las JSP, estos tags los iremos encontrando continuamente

en el cddigo. Algunos de estos tags sOn: <logic:iterate, <html:link, <logic:notEmpty,
<bean:write

(2) Para el caso de uso que estamos planteando, la linea mas significativa es la siguiente:

74

<html:link styleClass="forProductoLista" action="anadirProducto”™ paramld="prodid"
paramName=""prod" paramProperty=""id">

Aqui podemos ver como tenemos el atributo action, que tendrd correspondencia con
alguna de las entradas del ActionMapping definido en nuestro fichero de configuracion

struts-config.xml, explicado anteriormente.

3.4.4.2.2. Invocacion del Action

Una vez hemos dado al enlace que tenemos en la JSP, nuestra peticién sera capturada por el
ActionServlet que hemos definido en el fichero web.xml. Esta peticion sera seguidamente procesada
por el RequestProcessor.

La siguiente accién que se realizar4 sera la creacién e introduccion de valores en el objeto
ActionForm correspondiente definido en el fichero struts-config.xml

<form-bean name="anadirProducto'type="common.sp.spshop.web.forms.AnadirProductoForms'>
</form-bean>

El cédigo asociado a la clase (common.sp.spshop.web.forms.AnadirProductoForms) del

form-bean es el siguiente:

package common.sp.spshop.web.forms;
import (...)
[
:/@author Eduardo Varga Laguna
public class AnadirProductoForms extends ActionForm {

-9

private Long prodld = null;

public Long getProdld() {
return prodld;
3

public void setProdld(Long p) {
this._prodld = p;
3

public void reset(ActionMapping mapping, HttpServletRequest request) {

prodld = null;
T

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
.9
3

75

Una vez este completado el objeto ActionForm y el método validate(...) no haya fallado , el
RequestProcessor ird al ActionMapping definido en el struts-config.xml y nos linkara con el action
gue tenemos definido con el nombre que teniamos en el link de la JSP , la entrada correspondiente a la

accion que estamos utilizando de ejemplo es la siguiente:

<action path="/anadirProducto”™ type="common.sp.spshop.web.actions.AnadirProductoAction"
name=""anadirProducto’ scope="request” validate="true">

<forward name="ok" path="/verCesta.do" redirect="true"/>
</action>

Vemos que la clase que implementa nuestra accion es
common.sp.spshop.web.actions.AnadirProductoAction y que contiene un forward asociado.

Primero veremos el cédigo que tenemos asociado a esa clase, el cédigo es el siguiente:

package common.sp.spshop.web.actions;
import (..)

/**
* @author Eduardo Varga
*/
(1)

public class AnadirProductoAction extends Action {

(®)
(2)

public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServletRequest
request, HttpServletResponse response) throws Exception {

3)
ActionMessages errors = new ActionMessages();
ActionForward forward = new ActionForward();

(4)

try {

PedidoDelegate pedidoDelegate = new PedidoDelegate();

// localizamos la cesta de la compra

CestaCompra cesta = (CestaCompra)

request.getSession() .getAttribute(*'cesta™);

if (null == cesta) {
cesta = pedidoDelegate.crearCestaCompra();
request.getSession().setAttribute(''cesta”, cesta);

3

// recuperamos el producto que tenemos que afadir

AnadirProductoForms apForm = (AnadirProductoForms) form;

CatalogoDelegate catalogoDelegate = new CatalogoDelegate();

Producto prod =
catalogoDelegate.getProducto(apForm.getProdld() - longvalue());

pedidoDelegate.anadirLinea(cesta, prod, 1);

} catch (Exception e) {
logger.logError(*Error al afiadir producto.",e);

(5)

errors.add(error', new ActionMessage(‘'error.comun.error'));

76

if (Yerrors.isEmpty(Q)) {

saveErrors(request, errors);

forward = mapping.findForward(*'error');
} else {

forward = mapping.findForward(*'ok™);
b

return (forward);

Sobre esta clase hay un monton de cosas interesantes ha comentar, todos ellos resaltados en

rojo y que pasaremos a comentar seguidamente:

)

)

3)

(4)

()

El primer punto destacable es ver que nuestra clase extiende de la clase
org.apache.struts.action.Action, Un Action no deja de ser una conexion entre lo que
quiere el usuario cuando realiza la request y la logica interna de negocio que tiene el

aplicativo para llevar a cabo lo que el usuario quiere.

El RequestProcessor una vez ha localizado la accié y la clase que la implementa se

encargd de invocar el método public ActionForward execute(ActionMapping mapping,
ActionForm form, HttpServletRequest request, HttpServletResponse response) throws
Exception,

En este método es donde encontraremos todo lo necesario para llevar a cabo la accién
requerida.

Una vez ya dentro del método execute(...) nos topamos con la declaracion de dos objetos
ActionMessages y ActionForward que seran al finalizar el recorrido del action muy
importantes, posteriormente explicaremos el papel de estos dos objetos en toda nuestra

I6gica de negocio.

Llegados a este punto del método execute(...) es donde nos encontramos toda la auténtica
I6gica de negocio, no entraremos a que hace exactamente este apartado del codigo,
simplemente entraremos a analizar una de sus lineas que es la que nos permitira continuar
con la explicacion y el flujo de nuestra accion.

Aqui vemos los objetos anteriormente citados en el punto (3), el objeto ActionMessages nos
servird como contenedor de errores, en caso de haberlos, para su posterior tratamiento.

El objeto ActionForward es precisamente el objeto de retorno que devuelve el método
execute(...) . Es este objeto el que contendra el objeto que luego mapee con los forward

pertinentes, definidos dentro del fichero struts-config.xml.

77

3.4.4.2.3. Acceso ala capa de negocio

Una vez visto el Action por dentro entraremos mas hacia la capa de negocio de
nuestro aplicativo, como hemos visto en el punto (4) hay una serie de objetos por ahi definidos que son a

los que nuestro Action delega lo que se ha de hacer,
PedidoDelegate pedidoDelegate = new PedidoDelegate();

pedidoDelegate.anadirLinea(cesta, prod, 1);

Como podemos ver el nombre de estos objetos sigue el siguiente patrén xxxDelegate, para
continuar entonces, pasaremos a ver que hay declarado y definido en esa clase, el cédigo de

common.sp.spshop.web.pattern.delegates.PedidoDelegate es el siguiente:

package common.sp.spshop.web.pattern.delegates;

import (...);

/**
* @author Eduardo Varga
*
*/
public class PedidoDelegate extends DefaultBusinessDelegate implements PedidoService{

-2

public PedidoDelegate(){
this._service=new PedidoB0();
3

public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paisEnvio){
this._service.confirmarPedido(pedido);

}

-9
}

Es aqui donde veremos toda la ldgica explicada en el apartado 3.3.2 Construccién de
servicios.

Como vemos nuestra clase :

e Extiende de la clase :
common.saf.j2ee.common.business.DefaultBusinessDelegate (1)

« Implementa la interficie :
common.sp.spshop.common.business.interfaces.PedidoService (2)

e Tambien podemos observar como en el constructor de nuestra clase se realiza la

creacion del servicio a través de la creacion de un objeto del tipo

78

common.sp.spshop.common.business.objects.PedidoBO (3)

A continuacién pasaremos a mostrar el cédigo de las clases nombradas en estos 3 puntos y asi

entenderemos el porque de todo este montaje.

1)
package common.saf.j2ee.common.business;
import java.io.Serializable;

public abstract class DefaultBusinessDelegate implements Serializable{

}

El interface Serializable proporciona serializacién automatica mediante la utilizacion de las
herramientas de Java Object Serialization. Serializable no declara métodos; actiGa como un marcador,
diciéndole a las herramientas de Serializacion de Objetos que nuestra clase Bean es serializable. Marcar
las clases con Serializable significa que le estamos diciendo a la Maquina Virtual Java (JVM) que
estamos seguros de que nuestra clase funcionara con la serializacion por defecto. Aqui tenemos algunos

puntos importantes para el trabajo con el interface Serializable.

e Las clases que implementan Serializable deben tener un constructor sin
argumentos. Este constructor serd llamado cuando un objeto sea "reconstituido"

desde un fichero .ser.

e No es necesario implementar Serializable en nuestra subclase si ya esta

implementado en una superclase.

e Todos los campos excepto static y transient son serializados. Utilizaremos el
modificador transient para especificar los campos que no queremos serializar, y

para especificar las clases que no son serializables.

)

package common.sp.spshop.common.business.interfaces;
import (...)

/**

* @author Eduardo Varga
*

*/
public interface PedidoService extends Businessinterface{

public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paisEnvio);

79

'~

Esta clase es simplemente la interficie donde definimos los métodos que tendra nuestro servicio.
Como ya sabemos en la interficie sélo esta la declaracion, nunca la implementacion.
Como vemos nuestra interficie extiende de

common.saf.j2ee.common.business.Businessinterface, esta clase es simplemente:

package common.saf.j2ee.common.business;
import java.io.Serializable;

/**
* @author Eduardo Varga Laguna

*

* Todas las interfaces que creemos en la capa de negocio tendran que extender esta interface
base.

*/

public interface Businesslinterface extends Serializable {

}

®3)

package common.sp.spshop.common.business.objects;
import (...)

[

* @author Eduardo Varga
*

*/
public class PedidoBO extends DefaultBusinessObject implements PedidoService{

-9
public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paiskEnvio) {
Pedido pedido=null;
PedidoDAO pedidoDAO=null;
pedidoDAO=DAOFactory.getinstance() -getPedidoDAOC();

pedido=pedidoDAO.confirmarPedido(usuario,cesta,dirEnvio, locEnvio,provEnvio,cpEnvio,paiskn

vio);
if(logger.isDebugEnabled())
logger . logDebug(*'*Confirmado pedido *+pedido.getld());
return pedido;
3
-9
3

Es en esta clase donde se encuentra la implementacion de los métodos, desde la

implementacién de los métodos aqui definidos es donde pasamos a la capa final, la capa de datos.

3.4.4.2.4. Acceso a la capa de datos

80

Como hemos dicho en el punto anterior, a través de la implementacién de uno de los métodos de
la clase anterior explicaremos los objetos que nos quedan, de esta forma accederemos a la Ultima capa,
la que tiene el contacto directo con la Base de Datos.

El codigo del método que utilizaremos como ejemplo es el siguiente:

public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paiskEnvio) {

PedidoDAO pedidoDAO=DAOFactory.getlnstance() .getPedidoDAOC();

Pedido pedido=
pedidoDAO.confirmarPedido(usuario,cesta,dirEnvio, locEnvio,provEnvio,cpEnvio,paisEnvio);

G-

Como vemos, aqui aparecen dos objetos nuevos:

- common.sp.spshop.database.dao.PedidoDAO (1)

- common.saf.j2ee.database.dao.DAOFactory (2)

A continuacidon mostramos el cddigo correspondiente a estas dos clases para proceder

a la explicacion de las mismas:

1)

package common.sp.spshop.database.dao;
import (...)

/**

* @author Eduardo Varga

*
*/
public interface PedidoDAO extends DAO{

public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio, String
locEnvio, String provEnvio, String cpEnvio, String paiskEnvio);

public List listaPedidos(Usuario usuario);

public void cambiarEstado(Pedido pedido, String estado);

Tal y como explicamos en el apartado de Patrones de Disefio, para el acceso a la Base de
Datos utilizamos el patrén conocido como Data Acces Object (DAO).

Como podemos observar, nuestra clase és una interficie en la cual declararemos la firma de
todos y cadauno de los métodos (marcados en verde) que posteriormente tendran que ser
implementados para el acceso y control de la persistencia en Base de Datos.

Otro dato relevante es ver como nuestra interficie extiende de una clase genérica

common.saf.j2ee.database.dao.DAO, el contenido de dicha clase lo mostramos a continuacion:

81

package common.saf.j2ee.database.dao;

import java.io.Serializable;
/**

* @author Eduardo Varga Laguna

*/

public interface DAO extends Serializable{

¥

Una vez mas dicha clase, debido a su uso genérico, simplemente extiende de

java.io.Serializable. (Explicado anteriormente)

(2)

En este segundo punto nos encontramos con la declaracion de la clase que no hara de factoria
para los DAQO’s, el nombre de nuestra clase serd& common.saf.j2ee.database.dao.DAOFactory,
nombre que viene establecido por los Patrones de Disefio.

A continuacion mostraremos el cédigo de dicha clase y posteriormente pasaremos a explicar los
puntos claves.

El cédigo es el siguiente:

package common.saf.j2ee.database.dao;
import (...)

/**

* Clase DAOFactory abstracta que ha de extender la factoria de DAOs concreta
*/

public abstract class DAOFactory {

-9

//
//PARA CADA DAO NECESARIO, ANADIR UN METHOD ABSTRACTO QUE RETORNE DICHO DAO
//
public abstract CatalogoDAO getCatalogoDAOQ);
public abstract PedidoDAO getPedidoDAO();
public abstract UsuarioDAO getUsuarioDAOQ);

Tal y como expusimos en el tema de Patrones de disefios -> DAO, en esta clase es donde
obtendremos referéncia al DAO que queramos invocar, por lo tanto, lo mas importante es la creacion de
los métodos getXXXDAO() que nos permitiran dicha invocacion. (Resefiado en rojo).

Finalmente nos encontramos con la implementacién en si de la interficie del DAO, es aqui donde
se encuentra implementada toda la légica de negocio de nuestro objeto de acceso a datos. En la
implementacion de estos métodos es donde llevaremos el control de todos los accesos, consultas,

inserciones, borrado, etc... en Base de Datos.

82

El codigo de dicha clase common.sp.spshop.database.hdbsql.dac.HDBSQLPedidoDAO lo
mostramos a continuacion, pasando posteriormente a comentar lo mas destacado que nos podemos
encontrar en dicha clase:

/**
*
*/
package common.sp.spshop.database.hdbsqgl.dao;

import (...)

/**
* @author Eduardo Varga
*
*/
public class HDBSQLPedidoDAO implements PedidoDAO {

/** logger para trazas */
private static Logger logger = LoggerFactory.getLogger(HDBSQLPedidoDAO.class);

private Connection getConnection(){
return ((HDBSQLDAOFactory)DAOFactory.getlinstance()).getConnection();
}

public Pedido confirmarPedido(Usuario usuario, CestaCompra cesta, String dirEnvio,
String locEnvio, String provEnvio, String cpEnvio,String paisEnvio) {

-9

public List listaPedidos(Usuario usuario) {

// insertamos pedido
StringBuffer query = new StringBuffer();

query = new StringBuffer();
query.append(*"'SELECT * FROM PEDIDO WHERE PEDUSRID="");
query.append(usuario.getld(Q));

ArrayList lista = new ArrayList();

Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
try {
conn=getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery(query.toString());
while (rs.next()) {
Pedido pedido = new Pedido();
pedido.setld(new Integer((int)rs.getLong(*'PEDID")));
pedido.setEstado(rs.getString("'PEDESTADO™));
jJava.sql .Date fecha = rs.getDate("'PEDFECHA™);
GregorianCalendar gc = new GregorianCalendar();
gc.setTime(fecha);
pedido.setFecha(gc.getGregorianChange());
lista.add(pedido);
3
logger . logDebug(*'Recuperada lista de pedidos del usuario:
"+usuario.getldQ+" ("+lista+" pedidos)');
return lista;
} catch (SQLException e) {

try {
conn.rollback();

} catch (SQLException el) {
logger._logError("Error al hacer rollback.", e);

83

3
throw new SystemException(*'Error en comando registraUsuario().", €e);
3} finally {
try {
if (stmt = null)
stmt.close();
if (conn != null)
conn.close();
} catch (SQLException e) {
logger.logError(*Error al cerrar recursos JDBC", e);
throw new SystemException(“Error al cerrar recursos JDBC", e);

public void cambiarEstado(Pedido pedido, String estado) {

-9

}

Como vemos, y debido a la importancia de la implementacion de esta clase, nos encontramos

con bastantes puntos de interes.

anterior.

Los pasaremos a comentar a continuacion, estos puntos sén los marcados en rojo en el codigo

- implements PedidoDAO cOomo vemos nuestra clase implementara la interficie que
creamos anteriormente, esto quiere decir que es aqui donde los métodos seran

desarrollados.

- StringBuffer query = new StringBuffer() declaracién del objeto que nos servira

para la creacion de la query.

- query.append(SENTENCIA SQL), la forma de montar la query es con el método
.append(SENTENCIA SQL) de los objetos StringBuffer.

- Connection conn = null;
Statement stmt = null;

ResultSet rs = null;

declaracion de los 3 objetos con los que realizaremos la interaccion

- conn=getConnection();
stmt = conn.createStatement();

rs = stmt.executeQuery(query.toString());
los 3 objetos anteriormente inicializados nos sirven ahora para obtener la conexion,

obtener un objeto del tipo Statement y finalmente mediante el método

.executeQuery(...) de los objetos Statement obtener el resultado de la consulta en

84

Base de Datos en un objeto ResultSet que sera con el que iremos obteniendo los

resultados.

- while (rs.next()) {

Pedido pedido = new Pedido();

pedido.setld(new Integer((int)rs.getLong("'PEDID'")));
pedido.setEstado(rs.getString("'PEDESTADO™));
jJava.sql .Date fecha = rs.getDate("'PEDFECHA™);

}

una vez tenemos el objeto ResultSet nos disponemos a su manipulaciéon, como
vemos mediante un while vamos recorriendo uno por uno los resultados de la query
en Base de Datos. Aqui aparece el concepto explicado en los patrones de disefio
gue no es otro que el Transfer Object, el objeto Pedido sigue este patrén, ya que
como vemos interactua como contenedor en la obtencion de los datos del ResultSet

mediante los métodos getXXX(NOMBRE ATRIBUTO EN BD).
- it (stmt !'= null)
stmt.close();
if (conn = null)

conn.close();

Finalmente, nos disponemos ha cerrar los objetos previamente creados, para no
dejar nada consumiendo recursos que nos pueda generar problemas en la memaria

virtual , quedandose objetos sin cerrar.

3.4.4.2.5. Retorno del resultado

Una vez obtenido el resultado deseado, simplemente queda el retorno de ese resultado hacia la
capa de presentacion.

El punto en el que tenemos que centrarnos se encuentra dentro de nuestra clase inicial de
Action, en dicha clase encontramos las siguientes lineas que son las que nos desvelan el ‘fin del

trayecto’.

if (Yerrors.isEmpty(Q)) {

saveErrors(request, errors);

forward = mapping.findForward(*'error');
} else {

forward = mapping.findForward(*'ok™);
b

Aqui es donde le daremos el valor deseado al objeto ActionForward que creamos al inicio de la
clase, como vemos le asignamos dos valores posibles “ok” / “error” dependiendo del éxito o no de toda

la operacion.

85

Depende del valor que le introduzcamos el RequestProcessor luego realizara el link a una u

otra posibilidad, dependiendo de la definicion que hicimos en el fichero struts-config.xml.

86

3.4.5. Implementacion del modelo de datos

3.45.1. Tablas
Las tablas propietarias utilizadas sén las siguientes:

3.4.5.1.1 USUARIO

USRID (PK) INTEGER
USRLOGIN CHAR(10)
USRPASSWORD CHAR(10)
USRNOMBRE CHAR(20)
USRAPELLIDO1 CHAR(30)
USRAPELLIDO2 CHAR(30)
USRDIRECCION VARCHAR(100)
USRPOBLACION CHAR(50)
USRCODPOSTAL CHAR(5)
USRPROVINCIA CHAR(50)
USRPAIS CHAR(40)
USRTELEFONO CHAR(20)

USRMAIL CHAR(20)

87

3.4.5.1.2 PEDIDO

PEDID (PK) INTEGER

PEDUSRID INTEGER

PEDFECHA DATE

PEDESTADO CHAR(10)

PEDFECHACANCEL DATE

PEDDIRECCIONENVIO VARCHAR(100)

PEDPOBLACIONENVIO CHAR(50)

PEDPROVINCIAENVIO CHAR(50)

PEDPAISENVIO CHAR(40)

PEDCODPOSTAL CHAR(5)

3.4.5.1.3 LINEAPEDIDO

LINID (PK) INTEGER

LINPEDIDOID (PK) INTEGER

LINPRODUCTO INTEGER

LINCANTIDAD INTEGER

LINIMPORTE FLOAT

LINIVA FLOAT

LINTOTAL FLOAT

88

3.4.5.1.4 PRODUCTO

PRODID (PK) INTEGER

PRODTITULO CHAR(60)

PRODARTISTA CHAR(60)

PRODDESCRIPCION VARCHAR(150)

PRODPRECIO FLOAT

PRODDESCUENTO FLOAT

PRODIMAGEN VARCHAR(60)

3.4.5.1.5 CATEGORIA

CATID (PK) INTEGER

CATPADRE INTEGER

CATNOMBRE CHAR(20)

CATDESCRIP VARCHAR(150)

3.4.5.1.6 PRODCAT

CATID (PK) INTEGER

PRODID (PK) INTEGER

89

wl

COOCOCOCCOOO0COO

USUARIO
W USRID : INTEGER —

3.4.5.2.

Representacion gréafica de las Tablas de la BD

A continuaciéon mostraremos la representacion gréafica de las tablas que componen la BD:

USRLOGIN : CHAR(10)
USRPASSWORD : CHAR(10)
USRNOMBRE : CHAR(20)
USRAPELLIDO1 : CHAR(30)
USRAPELLIDOZ : CHAR(30)
USRDIRECCION : VARCHAR(100)
IUSRPOBLACION : CHAR(S0)
USRCODPOSTAL @ CHAR(S)
USRPROVINCIA : CHAR(S0)
USRPAIS : CHAR(40)
USRTELEFONO : CHAR(20)
USRMAIL : CHAR(20)

LINEAPEDIDO -
 LINID : INTEGER

% LINPEDIDOID : INTEGER
% LINPRODUCTO : INTEGER
& LINCANTIDAD : INTEGER
& LINIMPORTE : FLOAT

@ LINIVA : FLOAT

& LINTOTAL : FLOAT

|PEDIDO

COOCOC OO OO

PEDID : INTEGER

PEDUSRID : INTEGER

PEDFECHA : DATE

PEDESTADO : CHAR(10)
PEDFECHACANCEL : DATE
PEDDIRECCIONENVIO : VARCHAR(100)
PEDPOBLACIOMENVIO : CHAR(50)
PEDPROVINCIAENVIO : CHAR(30)
PEDPAISENVIO : CHAR(40)
PEDCODPOSTAL : CHAR(5)

donde (definicién de Foreign Keys):

PRODUCTO

7

COC OO

<

PRODID : INTEGE
PRODTITULO : CHAR(60)
PRODARTISTA : CHAR(B0)
PRODDESCRIPCION : VARCHAR(150)
PRODPRECIO : FLOAT
PRODDESCUENTO : FLOAT
PRODIMAGEN : VARCHAR(60D)

CATEGORIA

| % CATID : INTEGER
& CATPADRE : INTEGER

-

—

@ CATNOMBRE : CHAR(20)
% CATDESCRIP : VARCHAR(150)

USUARIO_USRID = PEDIDO_PEDUSRID.

- LINEAPEDIDO_LINPEDIDOID = PEDIDO_PEDID.

- LINEAPEDIDO_LINPRODUCTO = PRODUCTO_PROID.

- PRODCAT_PRODID = PRODUCTO_PRODID.

- PRODCAT_CATID = CATEGORIA_CATID.

- CATEGORIA_CATPADRE = CATEGORIA_CATID.

PRODCAT i

% CATID : INTEGER
PRODID : INTEGER

90

91

3.5. Grupo de pruebas
3.5.1. Introduccion

Debido a que el aplicativo es a pequefia escala y el rol de desarrollador y probador esta encarnado
en mi, el conjunto de pruebas al que he sometido el aplicativo no van mas alla que a las pruebas béasicas
de navegacion comprobando que todo funcionase.

Debido a que el desarrollo de un aplicativo de este tipo invita a realizarlo de forma modular
desarrollando cada caso de uso desde el principio hasta el final, las pruebas se realizaron despues de
tener completo cada uno de los casos de uso, desde la capa de presentacion hasta la capa de Base de

Datos, de esta forma fui localizando los problemas, a través de los logs del propio servidor.

3.5.2. Posibles pruebas

En un proyecto de Ingenieria Informatica a gran escala suele haber un equipo que se encarga
Unica y exclusivamente ha realizar estas pruebas.
Estas pruebas se pueden separar y clasificar, ha continuaciéon expondré varias pruebas que se

podrian realizar, si el aplicativo hubiese sido de mayor envergadura:

e Pruebas de stress: Una de las pruebas a la que mayor atencion y recursos se le
suele dedicar es a las conocidas como pruebas de stress, en estas pruebas no
se intenta otra cosa que someter al aplicativo a una sobrecarga de trabajo para
poder encontrar el rendimiento de todos los componentes llevados al extremo y

encontrar posibles cuellos de botella.

e Pruebas de navegacion: Estas, al ser las mas obvias, suelen ser las pruebas
gue siempre se realizan, sén las mas ‘simples’ y a su vez las que se realizan con
menos planificaciéon. El problema de estas pruebas es que se le suelen asociar al
desarrollador ya que es el que tiene contacto dia a dia con el aplicativo, y a
veces, al propio usuario una vez el aplicativo ya ha sido puesto en ‘produccion’
con la consiguiente aparicion de errores, bugs y demas. Lo aconsejable para
este tipo de pruebas seria realizar un desglose y un diagrama de flujo en el que

se tratasen, sino todos, la mayoria de caminos disponibles dentro del aplicativo.

92

e Pruebas de satisfaccion de requerimientos: Este tipo de pruebas suelen
realizarse durante el desarrollo del aplicativo, en las llamadas reuniones de
seguimiento. En dichas pruebas, se intenta ver que el aplicativo va cumpliendo
con lo acordado en la captacion de requermientos inicial. Dichas pruebas
engloban un gran nimero de perspectivas debido al gran nimero y tipologia de
requermientos existentes, como ya se vio en el capitulo de captacion de

requerimientos.

Con estos tres tipos de pruebas se podria establecer un nivel éptimo de satisfaccién sobre la
calidad del producto final. Existen muchas y multiples metodologias y herramientas de prueba existentes
en el mercado.

93

94

4. Recomendaciones

A continuacion se relacionan algunas recomendaciones de desarrollo que se han obtenido a

partir de la lectura de documentacion sobre Struts, forums y la propia experiencia.

4.1. Alternativas al uso de JSP en la capa
view

Uno de los sistemas mas extendidos en las aplicaciones web para construir los componentes

de la view se basa en la tecnologia JavaServer Pages.
Struts se basa también en esta tecnologia para implementar este tipos de componentes.

A pesar de eso el framework permite sustituir este sistema de presentacion o afadir otros

mediante extensiones del Struts. A continuacidbn mencionaremos los mas relevantes:

41.1. StXxXx

Se trata de una extension para Struts para soportar tenologias XML y XSL. Permite que las
clases que implementan acciones de Struts regresen XML para ser transformado mediante XSL y

Anakia.

4.1.2. StrutsCX

Igualmente como el anterior, se trata de una extension para Struts que permite generar salida

en formatos como HTML, XML usando tecnologias XML y XSL estandard.

4.1.3. VelocityStruts

Esta extension habilita el uso de plantillas de Velocity en la capa de view para Struts.

95

Las plantillas Velocity permiten disefiar la vista de forma sencilla mediante el uso de un

lenguaje especifico de definicién de plantillas.

El uso de esta extension no inhabilita el uso de paginas JSP, de manera que es posible

mantener conjuntamente estos dos tipos de presentacion.

4.1.4. Struts Cocoon

Esta extensiéon permite integrar Cocoon a Struts. Eso se consigue enlazando la salida de las
acciones de Struts con una pipeline XML del Cocoon. Con ello se aporta la potencia y flexibilidad del

Cocoon al framework.

4.2. El modelo debe ser simple

Lo mas probable es que cuando uno se enfrenta con el disefio de un modelo para una
aplicacion ya tenga una serie de consideraciones tecnoldgicas mas o menos complejas detras. La
aplicacion tendra que encadenar unas transacciones de host de maneras bien extrafias, o hacer joins de

diferentes tablas porque las tablas ya existen y no se pueden tocar, etc.

Es muy importante que estas complejidades no afloren en la interfaz del modelo. Seguro que
hay una manera lo mas simple posible de expresarlo, probablemente aquélla que hariamos servir para
explicarlo a un usuario final 0 a un sponsor del proyecto, y que tal vez incluso esta documentada en un

documento de requerimientos.

Si se consigue dar este primer paso, el modelo sera mas facilmente reusable, y se alcanzara
hacer un controller y una view formada por una serie de clases con muy poco cédigo (por tanto, con

pocas oportunidades de fallar)

En resumen, la complejidad tiene que estar escondida dentro del modelo, y éste sélo expone

una interfaz lo mas sencilla posible sin ninglin rastro de detalle de implementacion.

4.3. El modelo no tiene que exponer la
tecnologia utilizada

96

Los nombres de los objetos tienen que tener significado de negocio, no tecnoldgico. La
implementacién concreta del modelo también tiene que quedar escondida. Un Action, cuando llama a un
modelo, no tiene porque tener que saber que detras hay una base de datos. Eso se concreta en que no
debe importar ningln package de JDBC. El patrén de disefio de Transfer Object o Value Object es muy

util para tal efecto.

Los métodos del modelo tienen como parametros, valores de retorno y excepciones lanzadas

objetos basicos o del propio modelo, pero no de la tecnologia utilizada para implementarlo.

En el caso de las excepciones, el modelo de las nested exceptions 0 excepciones
encadenadas es imprescindible: si un método del modelo se encuentra un problema con la base de
datos, crea una excepcién de un tipo significativo a nivel del modelo e incluye la excepcion original
adentro. Asi no se pierde la informacidon detallada de la causa del problema, pero tampoco pasa

responsabilidad al Action de tener que tratar con objetos tecnoldgicos.

4.4, El modelo tiene que estar muy probado

El testing siempre es el punto méas facil de recortar cuando las fechas aprietan. En un modelo
de desarrollo test-driven, eso no nos lo podemos permitir. Si hay algin aspecto donde focalizar el testing,
éste es el modelo. Como es dentro del modelo donde se encuentra escondida la mayor complejidad, es

la capa donde mas se pueden producir los errores, y donde los errores son mas importantes.

Ademas, el hecho de tener el modelo bien separado del resto hace ideal la utilizacion de JUnit
como herramienta de pruebas. Cada nueva funcionalidad hay que traducirla en unos pocos test cases,

gue prueben tanto los casos favorables como las condiciones de error.

4.5. El Action no es parte del modelo

Este es uno de los puntos donde es preciso tener clara la division entre controller y modelo. El
modelo tiene que contener toda la l6gica de negocio, con unas interfaces claras y significativas bajo el

punto de vista de los requerimientos y del usuario.

Es habitual, en un desarrollo iterativo, que para implementar una nueva funcionalidad uno se

vea tentado de codificar logica de negocio dentro del Action. Como el Action se debe hacer de todas

97

maneras, puede dar pereza afadir un método en una clase del modelo, o afiadir una nueva clase al

modelo, y se pone dentro del Action.

Eso no es bueno por muchas razones, entre las que lo mas importante es que si se debe volver
en hacer lo mismo en otro Action se tendra que repetir el mismo codigo. Ademas, uno de los
requerimientos que nos lleva a escoger Struts es el de hacer aplicaciones mas reusables: el mismo

modelo puede servir para otras aplicaciones, o por la misma con otra interfaz.

En resumen, el codigo del Action idealmente debe ser muy corto, y limitarse a hacer llamadas a

un modelo que debe tener una interfaz simple.

Es mas facil seguir esta norma si se tiene una bateria de pruebas para el modelo, y cada nueva
funcionalidad genera una o diversas nuevas pruebas, aparte del Action y los componentes de view

correspondientes.

4.6. La view no es parte del modelo

Esta es alin mas clara que el anterior, porque son dos de las capas del MVC, pero no esta de
mas también remarcarla. No hay que codificar légica de negocio dentro de la view, por las mismas

razones que antes.

4.7. La view no tiene que llamar al modelo

La view se ha de limitar a las tareas de presentacion. Su funcién hay que limitarla a recoger los
datos que le ha pasado el Action anterior, presentarlas al usuario, recoger las que entre el usuario por la
siguiente peticion, posiblemente validarlas sintacticamente (no semanticamente, de eso se encarga el
modelo), y finalmente enviar la peticién al controller. El controller, y en particular el Action, es quién llama
al modelo y establece el resultado final de la peticion (ActionForward), a partir del que se invocara el

siguiente recurso.

Todo eso se puede hacer, en el caso de las JSPs, con unos pocos tags HTML y unos pocos

custom tags.

La manera mas facil de adherirse a esta norma es hacerlo siguiendo lo siguiente:

98

4.7.1. No usar scriptlets en las JSPs

Los scriptlets son la manera mas facil de mezclar I6gica con presentacion, y son una potencial
fuente de problemas porque promueven facilmente la técnica del cut-and-paste de codigo en mdltiples
JSPs, dando lugar a una aplicacién mas dificil de mantener.

Si se ve que una misma légica, que realmente pertenece en la presentacion, hay que repetir en
multiples JSPs, la manera correcta es crear un custom tag que la implemente, y en la JSP simplemente
escribir el tag.

Lo mas probable, es que éste tag ya exista entre los muchos que proporciona Struts o la JSTL
(JSP Standard Tag Library).

4.7.2. Utilizar taglibs

Las taglib de Struts son una fuente constante de sorpresas agradables. Si se utilizan con toda

su potencia se pueden hacer JSPs realmente compactos, faciles de entender y de mantener.

La recomendacion es intentar entenderlas en toda su extension, y con cada nuevo problema o
requerimiento que uno se encuentre buscar primero en su documentacién, o por Internet.
Probablemente alguien ya lo ha hecho antes y se ha incorporado al framework.

4.7.3. No enlazar directamente JSPs entre ellas

La funcién del controller en el MVC es la de tratar todas las peticiones que llegan a la aplicacién
y, una vez efectuada la operacion, redireccionar a la view que corresponda. Si desde una JSP (por
ejemplo, desde un menud) ponemos un enlace directo a otra JSP, esta peticion no pasara nunca por el
controller (I'ActionServlet).

Por ello, cuando lo que se quiere hacer es enlazar de una JSP a otra lo que se hace es pasarlo
por una action especial que ya vé con Struts, el ActionForward, que simplemente hace un forward a la

JSP que se le pasa como parametro.

Puede que haya aplicaciones Struts genéricas en que el hecho de no pasar por el controller

entre dos JSPs no suponga problema alguno. En el caso de una aplicacion Intranet-Struts si, porque se

99

pierde el proceso que hace el nuestro RequestProcessor (por ejemplo, convertir la cookie de idioma en

locale, o comprobar los roles del usuario)

4.7.4. Pensar y leer mucho, codificar poco

La idea que hay detras de esta norma es muy sencilla: seguro que alguien ya lo ha intentado
antes. Struts consta de unas 300 clases muy arquitecturadas, y para conseguir la mayoria de tareas es
necesaria una cantidad de codigo sorprendentemente pequefia. Al ser codigo abierto, la evolucion de
Struts ha venido de la préactica de muchisimos usuarios que han visto resueltas de manera elegante sus

requerimientos.

Por ello, ante la duda sobre como afrontar un problema de desarrollo de una aplicacion Struts,
lo mejor es leerse bien el API (tanto la de Struts como la J2EE: Servlet y JSP), probablemente con un par
de lineas de cédigo se resuelve. La web de Struts y los forums que alli se relacionan también son muy
Gtiles si no se encuentra directamente la respuesta en la documentacion. A veces también esta bien dar
una ojeada a los fuentes de Struts, alli también veremos que las clases de Struts son sorprendentemente

pequefas...

Si el modelo es simple, también sera mas facil seguir esta norma.

4.7.5. Preferir ActionForms con request scope que con
session scope

En un entorno de alta disponibilidad, cuando algin dato se guarda a nivel de sesion
(HttpSession), este dato se almacena en la base de datos de persistencia de las sesiones. Dependiendo
de la longitud del dato y de su cantidad, eso puede acabar provocando una ralentizacion de la aplicacion

so6lo por el hecho de tener que persistir la sesién.
Por tanto es preciso evitar, en la medida del posible, ir acumulando datos en la sesién.

Si finalmente se guardan datos en la sesion, es preciso recordar borrarlas cuando ya no se
necesitan.

En el caso de Struts, las ActionForms con scope de sesion tienen sentido cuando hay una serie
de interacciones con el usuario previas a la ejecucion de una operacion de negocio (didlogos tipos

wizard). En este caso son indicadas sin duda.

100

Intanet Struts afiade en la sesidn un pequefio objeto AisSessionBean para mantenimiento de

datos de sessio de infraestructura.

4.7.6. Refactorizar a menudo

Es impresionante la cantidad de problemas que uno se puede evitar dedicando un tiempo a
rehacer una jerarquia de clases en cuentas de introducir con calzador un método a la clase que se tiene
mas a mano. Merece la pena aprovechar la potencia del WSAD para cambiar el nombre de una clase o
de un método, o para subir un método a la clase padre, o para cambiar de package una clase, etc. Eso
combinado con una buena bateria de pruebas permite aventurarse mucho mas en la tarea de

refactoritzar: si los tests siguen pasando, quiere decir que no hemos roto nada.

4.7.7. El buen codigo se comenta solo

No hay nada mas desagradable que heredar un cédigo lleno de comentarios que no ténen
nada que ver con lo que hace realmente. Desgraciadamente eso es lo mas normal. La mejor manera de
evitarlo es poniendo el minimo de comentarios posibles, que se sustituyen por un disefio entendedor y
un cdadigo claro: métodos con pocas lineas y con nombres bien escogidos que indiquen lo que hacen.
Vale mas dedicar tiempo en pensar en una interfaz lo mas sencilla y aclaratoria posible que escribiendo

comentarios que un dia u otro seguro de que quedaran obsoletos.

Tenemos la suerte que el Java es un lenguaje facil de leer, siempre y cuando no se tenga que
leer s_mft.getUpC1(). Si para que el cddigo sea legible el nombre de una variable o0 método debe ser
mas largo, pues se hace mas largo. Las herramientas de asistencia del WSAD (Ctrl + espacio) ya

ahorran de escribir nombres largos, merece la pena aprovecharlo.
Sélo en el caso de que el comentario aporte alguna informacion Gtil es adecuado posarlo.

En esta recomendacion no esta incluidos los comentarios Javadoc que documentan la interfaz
publica de una libreria o framework. En este caso, si que son necesarios y entonces es preciso ser muy
estricto en modificar el Javadoc, si es preciso, cada vez que se toca algin método. Por su parte,
tampoco merece la pena escribir un Javadoc lleno de descripciones triviales que solo repiten las

palabras de que consta el nombre del método.

101

102

5. Conclusiones

5.1. Posibles mejoras en el producto final

Debido a que el proyecto pretendia mostrar de una forma ‘sencilla’ y clara lo que seria en la

realidad el desarrollo de un aplicativo en J2EE con el framework de desarrollo Struts, hay muchas cosas
gue se han implementado de una forma sencilla y ligera para que no aportasen un trabajo afiadido al

cémputo global del proyecto.

A continuacion reflejaré una série de mejoras que podrian introducirse para que el proyecto

cogiese mas forma y cuerpo:

- Como primera mejora, y ya comentada en unos de los puntos anteriores de esta
memoria se encuentra el tema de la Base de Datos. Como ya expliqué, la Base de
Datos en la actualidad es creada mediante un servlet en el arranque del Web Server
gue no permité la perdurabilidad de los datos mas alla de la vida que tenga la sesion

del Web Server en cuestion.

De esta forma se puede ver claramente una de las posibles mejoras, que no seria
otra que desarrollar esta parte del proyecto de una forma mas amplia, generando en
una maquina aparte la Base de Datos, con sus herramientas de gestion y
administraciéon y el posterior tratamiento a través del cddigo, configurando en los

descriptores de despliegue y configuracion todo el tema de la API JBDC utilizada.

- Oftra posible mejora hubiese sido desarrollar de una forma eficaz y eficiente el
conjunto de pruebas, haciendose eco de todas aquellas herramientas que existen en
el mercado para este fin y desarrollando esta parte del proyecto como un modulo

aparte del mismo

- En el tema de la presentacion se podria también haber desarrollado un complejo
sistema de navegacién que siguiese un patrén mas actual y no el simple hecho de
pantalla -> accion -> pantalla. Este trabajo podria correr aparte por cuenta de un
buen Diseflador Web que se encargase de un profundo estudio para potenciar la
parte estética y de marketing. No hay que olvidar que este proyecto no dejaria de ser

un aplicativo para vender libros, con el consiguiente peso comercial que tendria.

Estas son algunas de las mejoras que se me ocurren, pero probablemente debido a la

103

complejidad del proyecto se podria hacer hincapié en cada uno de los médulos y apartados del mismo,

especializando cada uno de estos mddulos hasta el extremo.

5.2. Valoracion personal

Como autor de esta memoria, disefiador, desarrollador y ide6logo de este proyecto, creo que
puedo decir que el objetivo con el que se empez6 todo esto queda cumplido, por lo menos para las
expectativas que yo deposité en él.

La idea no fue en ningln momento crear una aplicacién cerrada y especializada en cada uno de
los puntos que toca, sino todo lo contrario, de una forma ‘ligera’ y sencilla conseguir crear en el lector
una idea general de como arrancar un proyecto de este tipo. Por esta razon se y asumo que si se
observa el proyecto con lupa genere en el lector y usuario del aplicativo muchas lagunas, o si mas no,

generé cierto interés en profundizar en esos temas ‘abiertos’ .
Saludos cordiales del autor.

Eduardo Varga Laguna.

104

105

6.Referencias

6.1. Libros

e Cavaness, Chuck. Programming Yakarta Struts. O ' Reilly. 2002
e Java Enterprise — in a Nutshell. O’Reilly. 2002
e Professional Jakarta Struts. Goodwill & Hightower. Wrox. 2004

6.2. Enlaces internet

e http://www.oreilly.com/catalog/yakarta/

e http://jicp.org/aboutJava/communityprocess/first/jsr053/index.html

e http://www.geocities.com/txmetsb/req-mgm-2.htm

e http://www.cs.ualberta.ca/~pfiguero/soo/metod/requerimientos.html
e http://www.clikear.com/manuales/uml/modelos.asp

e http://www.javahispano.org/tutorials.item.action?id=28

e http://civil.fe.up.pt/acruz/access/modeloER.htm

e http:/lyakarta.apache.org/struts/index.html

e http:/lyakarta.apache.org/struts/userGuide/index.html

e http://struts.sourceforge.net/community/extensions.htmi

e http://it.cappuccinonet.com/strutscx/index.php

e http://stxx.sourceforge.net/

e http:/lyakarta.apache.org/velocity/anakia.html

o http:/lyakarta.apache.org/velocity/tools/struts/

e http://struts.sourceforge.net/struts-cocoon/

e http://logging.apache.org/log4j

¢ http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html
e http://java.sun.com/blueprints/index.html

e http://java.sun.com/j2eelj2ee-1_3-fr-spec.pdf

e http://www.adrformacion.com/cursos/javaser/leccion3/tutorial2.html
e http://e-docs.bea.com/wis/docs92/webapp/web_xml.html#wp1015950
e http://hsqldb.org/

106

107

Anexo |. Instalacion del entorno de

desarrollo

Anexo |.1. Software a utilizar

En la medida que podamos vamos a intentar utilizar herramientas que sean gratuitas, aquellas

herramientas que tienen licencia GPL. Las herramientas software que vamos a utilizar son las siguientes:

Nombre Version URL Proveedor
Java Development Kit 1.4.2 08 http://java.sun.com/j2se
1.0.0 (R1
) Lomboz for = http://forge.objectweb.org/projects/
Lomboz Eclipse IDE _
Eclipse 3.1, lomboz
build 20050526)
Apache Tomcat 4.1.31 http://jakarta.apache.org/tomcat

Es necesaria la creacion de una carpeta de nombre entorno-desarrollo en la unidad de la

magquina donde se vaya a realizar la instalacién, que se usara como carpeta base para la instalacion de
todo el software necesario.

Anexo I.2. Instalaciéon de JDK 1.4

Anexo I.2.1 Proceso de Instalacion

Para la instalacion de éste software se han de seguir los siguientes pasos:

1) Ejecutar el archivo j2sdk-1_4 2 08-windows-i586-p.exe y aceptar la licencia.

108

2) Después de la aceptacion de la licencia, aparecerd una pantalla en la cual hemos de
establecer las referencias de instalacion.
e Para cambiar el directorio de instalacion por defecto, basta pulsar el boton Change y
establecer el valor C:\entorno-desarrollo\j2sdk1.4.2_08\:
e Seleccionar Unicamente Internet Explorer como navegador a instalar el plugin y
comenzar el proceso de instalacion pulsando el boton de Install.
3) Una vez finalizado el proceso de instalacion, es necesario afiadir una variable de entorno de
nombre JAVA HOME y valor C:\entorno-desarrollo\j2sdk1.4.2_08.
4) Por dltimo, es necesario modificar la variable de entorno PATH para afiadir el path
C:\entorno-desarrollo\j2sdk1.4.2_08\jre\bin.

Anexo |.2.2 Verificacion de la Instalacion

Para la verificar la correcta instalacion del JDK, abrir una ventana de comandos, y tras ejecutar la

instruccion java —version.

Anexo [|.3. Instalacibn de Lomboz
Eclipse IDE

Anexo 1.3.1 Introduccidén

Lomboz Eclipse IDE es simplemente una distribucion de Eclipse IDE que lleva integrada el plugin

Lomboz de ObjectWeb para el desarrollo de aplicaciones J2EE.

Anexo 1.3.2 Proceso de Instalacion

Para la instalacion de éste software se han de seguir los siguientes pasos:

109

1) Extraer el archivo lomboz-eclipse-emf-gef-jem-120050526.zip, en la carpeta siguiente:
C:/entorno-desarrollo.
2) Crear un acceso directo en el escritorio al fichero C:/entorno-desarrollo /eclipse/eclipse.exe

para poder ejecutar la herramienta:

Anexo 1.3.3 Verificacion de la Instalacion

Para verificar la correcta instalaciéon de Eclipse, pulsar sobre el acceso directo creado y aceptar
la localizacién del workspace ofrecido por defecto -> Aparecera la pantalla principal de la herramienta

Eclipse.

Anexo 1.3.4 Configuracion de Eclipse

Antes de comenzar a usar Eclipse, es necesario realizar las siguientes operaciones de
configuracién:

1) Abrir Eclipse, y seleccionar la opcion Window->Preferences. Expandir la opcion Java->Build
Path, y marcar el checkbox de Folder (asegurarse de que las carpetas de source y output se llaman src y

bin, respectivamente). Seleccionar ademas la opcién de JRE_LIB variable como libreria JRE a usar.

Anexo 1.4. Instalacion de Apache

Tomcat

Anexo 1.4.1 Proceso de Instalacion

Para la instalacion de éste software se han de seguir los siguientes pasos:
1) Descargar de la pagina oficial el ejecutable Jakarta-tomcat-5.0.30.exe. Ejecutarlo.

2) Tras pulsar el botdn de Aceptar, aparecera la pantalla de licencia. Tras aceptar la licencia

pulsando el botén de | Agree, aparecerd la pantalla de opciones de instalacion.

110

3) Seleccionamos la instalacién Normal, y pulsamos el botén de Next. En la siguiente pantalla,
introducimos como directorio de instalacion el directorio C:\entorno-desarrollo\Tomcat5.0.30 , y pulsamos
el botdn de Install.

4) Una vez el proceso de instalaciéon haya finalizado, pulsamos el botén de Next.

5) Aceptamos la informacion de configuracion que viene por defecto, y pulsamos el botén Finish

para finalizar el proceso de instalacion.

Anexo 1.4.2. Verificacion de la Instalacion

Para verificar la correcta instalacion de Apache Tomcat, arrancamos Tomcat desde el menu
Inicio>Programas—->Apache Tomcat 5.0-> Start Tomcat

Aparecera una ventana de DOS que correspondera a la salida estandar y de errores de Tomcat.

Cuando haya finalizado el proceso de inicializacion, abrimos un navegador y tras solicitar la URL

http://localhost:8080/index.jsp , veremos la pagina de inicio de Tomcat.

111

112

En el siguiente documento podra encontrar de una forma clara y entendedora a través de
la creacion de un sencillo aplicativo el mecanismo para la creacion de una aplicacion J2EE
basada en el Framework de desarrollo Yakarta Struts.

En el mismo partira desde cero, desde el inicio en la captacién de requerimientos, pasando

por la etapa de analisis y disefio y la posterior implementacion.

113

	Portada.doc
	(TÍTOL DEL PROJECTE)

	memoria.pdf

