Universitat
& Autonoma
de Barcelona

CREACIO D’ IP CORES EN UNA
PLATAFORMA NIOS:
METODOLOGIA DE DISSENY

Memoria del Projecte Fi de Carrera
d’” Enginyeria en Informatica
realitzat per

Antoni Costa Sanfeliu

i dirigit per

Joan Oliver Malagelada

Bellaterra, 15 de Juny de 2007






etse)

El sotasignat, Joan Oliver Malagelada

Professor de I’ Escola Tecnica Superior d’ Enginyeria de la U.A.B,

CERTIFICA:

Que el treball a que correspon aguesta memoria ha estat realitzat sota la seva direccio

per en Antoni Costa Sanfeliu.

| per tal que consti firma la present.

Signat:

Bellaterra, 15 de Juny de 2007






etse)

AGRAIMENTS

En primer lloc, m’agradaria agrair a Joan Oliver Malagelada, el temps que ha
dedicat en aclarir-me i resoldre’m dubtes, aixi com les reunions que ha hagut
d’adaptar al meu més que complex horari laboral. La visio del projecte, la guia i el
seguiment del mateix han estat claus en el desenvolupament del projecte. Aixi doncs,

moltes gracies.

D’altra banda, també m’agradaria fer extensiu aquest agraiment a tots els professors
de la Titulacio, ja que cadascun ha aportat el seu gra de sorra i d’una manera o altre

han contribuit a que aquest projecte hagi estat possible.

Tampoc vull oblidar-me dels meus companys de carrera, amb els quals hem compartit
molts moments agradables i també dificils en epogues d’examens i d’entrega de

practiques, dedicant molts esfor¢os que avui es veuen recompensats.

Agrair també a tots els meus companys i amics de Manresa, aixi com la meva familia
que m’han recolzat des del primer dia, tan en la carrera com en la realitzacio d’aquest
projecte. Moltes gracies a tots ells, per aguantar els mals humors i ser pacients amb

mi quan feia falta.

Finalment, unes paraules pel Ricoh Manresa que de nou aquest any torna a ser equip

ACB i ha ajudat a amenitzar les males estones.






ets E) Creacio d” IP Cores en una plataforma N1OS 1

INDEX
1. INTRODUCCIO | OBJECTIUS ..ot esesee s, 3
L1 INEFOAUCCIO ...ttt 3
1.2 ODJECLIUS ...ttt bbbt re e enes 4
2. PLANIFICACIO, VIABILITAT | CRONOLOGIA ........cooeereeeeeeeeeeeerennn, 7
2.1 Especificacid de requisits. Analisi funcional detallat ..............cccccoooeiviieiienene. 7
2.2 PIANIFICACID ...t 8
2.2.1 1dentificacio delS rECUISOS.......ccuurviiriirierieiriesie e 8
2.2.2 TerminiS de THUraAmMEeNT .........cooiiiiiiiieieeee e 9
2.2.3 Identificacio de les tasques necessaries per a realitzar altres tasques............ 9
2.2.4 Calcul del termini necessari per a la realitzacio de cada tasca..................... 10
2.2.5. DIagrama a8 Gantt...........cooiiiiiiieiiiie e 12
2.3 VIADIITAL ... 14
2.3.1 Estudi de VIabilitat ............ccoooreriiiiiiee s 14
2.3.2 RISCS .tttk bbbttt bttt 15
P O o] 0 0] [T | F- TSR PRURTPRT 16
2.4.1 EStUdi CrONOIOQIC ...t 16
3. CREACIO D’ IP CORES.....cotiiiiiiiieeisisissisesssi st 18
3.1 Definicio metodologica per a la creacio d’un IP Core ........cccoevevveceiieineienn, 18
3.1.1 Analisi de REQUEITMENTS .......ccveieiirieiieeeeeie et eneas 19
3.1.2 Passos per al disseny d’un COMPONENT..........cccooieierienenieneseseseeee e, 20

3.2 DiSSENY HAITWAIE ..ottt 27



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 2

3.3 DISSENY SOTIWAIE .....cveiiiciieciec et 28
3.4 Verificacio del COMPONENT........cociiiiiieieie e 29
4. PROTOTIPATGE SOBRE UP3 - NIOS ... 31
4.1 La plataforma Altera. Procediment..........cccoveieiieiieiiesiee e 31
4.1.1 Arquitectura del SISEMA .......cc.eceeiieieiiese e 32
4.1.2 PrOCEAIMENT ...eiiiiieie ettt 39
4.2 Disseny dels IP Cores en la plataforma NIOSH .........ccccooeiiiiiniiiieiiiece, 43
4.2.1 IP Core: PWM ( Pulse Width Modulation ) ..........ccccceeevinininininiceee, 43
4.2.2 IP Core: 12C ( Inter-Integrated CirCUIt ) .......ccevviiiervereiieeseeieseese e 51
4.3 Resultats, problemes i SOIUCIONS ..........cciviieeiiiiieie e 62
AL PIOVES....oiiiiiiiie ittt e 66
5. CONCLUSIONS | MILLORES. .........ooiiiiieeeeee e 68
5.1 CONCIUSIONS.......cuiiiiiiieiieii ettt 68
5.2 IMHTIOTES ..ttt 70

6. BIBLIOGRAFIA... ..o 71



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 3

1. INTRODUCCIO | OBJECTIUS

NIOS és el processador que Altera empra en els seus dissenys SOC (System On
Chip). Per tal de facilitar-ne el seu Us, Altera també proporciona una plataforma de
desenvolupament SOPC (System On Programable Chip) que agilitza enormement el
disseny d’aquests sistemes. Aixi doncs, aquest projecte esta centrat en la definicio

metodologica per a la creacié d’ IP Cores en una plataforma NIOS.

Aquest projecte analitzara I’entorn, i un cop havent definit una metodologia de treball
adequada, (amb I’objectiu de validar la metodologia de disseny), es crearan dos nous
cores a partir d’aquesta, que es gestionaran a alt nivell. La interaccio del hardware i el
software, aixi com la utilitzacid de I’entorn d’Altera seran els punts clau en el

projecte.

1.1 Introduccié

S’entén per IP Core (Intellectual Property Core) , un bloc logic o de dades que és
utilitzat en FPGA (Field Programmable Gate Array) o en aplicacions especifiques de
circuits integrats (ASIC).

L’esséncia de la utilitzacié d’aquests elements és la reutilitzacio del seu disseny. Els
IP Cores son part del creixent augment de I’ automatitzacio dins de la industria, que
tendeix cap al repetit Us dels components préviament dissenyats.

Idealment, un IP Core ha de ser completament portable a qualsevol altra tecnologia, o
si més no, facilment integrable a la tecnologia emprada per I’usuari o client. La
metodologia de disseny també sera molt important, ja que com més generica sigui

més portable sera.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 4

Es pot considerar que un component és un IP Core si té com a minim unes 6000
portes logiques. Aixi doncs, es pot trobar amb components petits com: Universal
Asynchronous Reciver/Transmitter (UARTS), Ethernet controllers, i PCI interfaces
gue son exemples de IP Cores. O bé, components com: Central Processing Units
(CPUs), Digital Signal Processor (DSP), i drivers en general, com a exemples d’IP

Cores de més magnitud o importancia.

Els IP Cores estan dividits en tres categories: els hard cores, els firm cores i els soft
cores. Els hard cores son la manifestacio fisica del disseny IP. A tall d’informacio,
cal destacar que son els millors per aplicacions plug-and-play, tot i que son menys
portables i flexibles que les altres dues. Com les hard cores, els firm cores son
utilitzats pel posicionament de dades i son configurables per a varies aplicacions. Pel
que fa als soft cores, cal mencionar-ne els seguents aspectes. Primerament, cal dir que
son els més flexibles de tots tres. | en segon lloc, que estan definits a través d’una
descripcié de llenguatge hardware (HDL) o bé, a través d’una llista de portes logiques
I associacions d’ interconnexions que creen un circuit integrat. A més a mes, aquest

ultim, sera el que s’utilitzi en la realitzacio d’aquest projecte.

1.2 Objectius

L’objectiu principal d’aquest projecte és I’estudi i I’Us d’una metodologia per a la
construccio d’ IP cores. Aquest estudi tindra un component practic, ja que un cop
definida aquesta metodologia, es seguira creant dos IP cores, que seran provats sobre

la plataforma NIOS.

Molts dispositius d’avui en dia vénen programats amb la logica que aporta el
fabricant, mentre que en altres ocasions es permet al programador retocar-ne la logica

per a tenir-ne un major control. No obstant, hi ha situacions en les quals és necessari,



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 5

sigui per un motiu o per I’altre, la creacié d’un propi driver per a ser capacos de

gestionar un dispositiu alié al sistema, i que per tant, no s’hi pot comunicar.

Aixi doncs, el que es pretén en aquest projecte és que davant la necessitat de creacio
d’un driver que no es té, establir una metodologia a seguir per a la realitzacio

d’aquest driver o IP Core, i més concretament, per a plataformes NIOS.

Una vegada definida aquesta metodologia s’haura de corroborar que és util. La
plataforma escollida per a determinar-ho sera la plataforma NIOSII d’Altera.
D’aquesta manera, tenint aquesta plataforma s’implementaran dos IP Cores: PWM
(Pulse Width Modulation) i 12C (Inter-Integrated Circuit). Aquests dos drivers seran

els quals es construiran i se’n provara el seu funcionament.

El funcionament dels dos IP Cores, es provara a través de la placa UP3. S’utilitzara
un servo motor o actuador i un sensor d’ 12C. Tots dos elements es gestionaran des de
I’alt nivell a través d’una logica de control adequada. D’aquesta manera, el projecte
necessita de la utilitzacié de sensors i actuadors per a comprovar el funcionament dels

drivers.

Un sensor és un tipus de transductor que transforma les magnituds que vol mesurar,
en altres que faciliten la seva mesura. Poden ser d’indicacié directa o poden estar
connectats a un convertidor analogic o digital, el qual facilitara que els valors que es
Ilegeixin siguin més comprensibles per un ésser huma. Aixi doncs, i com el seu nom
indica, son dispositius que detecten i adapten el senyal que generen perqué un altre

element la pugui llegir.

Quant als actuadors, cal dir que s6n uns mecanismes a través dels quals un agent pot
influir en el seu entorn. Aquest agent pot tractar-se d’un element artificial o de tipus

autonom. D’aquesta manera, un mecanisme que posa quelcom en accio autonoma és



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 6

denominat un actuador. També s’acostuma a definir com aquell element d’un sistema

de control que converteix els senyals en accions fisiques.

D’aquesta manera, els objectius concrets del projecte son:

- Analisi de I’entorn presentat per Altera en el desenvolupament d’ IP
Cores.

- Presentacié d’una metodologia de disseny per a la construcci6 d” IP Cores.

- Seguint aquesta metodologia, creacié de dos IP Cores: PWM i 12C.

- Comprovacio practica de la creacio d’aquests IP Cores.

El projecte pretén analitzar a fons la viabilitat en la realitzaci6é d’ IP Cores emprant
I’entorn proporcionat per Altera. Aixi doncs, es tractara amb la interaccio de
hardware i software, dos camps que en aquesta ciéncia estan condemnats a viure
plegats. Es programaran uns elements hardware i es gestionaran a través d’un
software. D’aquesta manera, s’observa que més aviat s un projecte on es parla i es

toca I’essencia de la Informatica.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 7

2. PLANIFICACIO, VIABILITAT | CRONOLOGIA

2.1 Especificacio de requisits. Analisi funcional detallat

Les etapes que es seguiran en el desenvolupament del projecte sén:

1. Estudi de tots els elements necessaris per al funcionament de la placa UP3. El
cap de projecte, estudiara i comprendra els elements d’aquesta placa que seran
claus a I’hora de la seva utilitzacié practica. Aquest estudi també requerira
saber llenguatges HDL i C++.

2. El coneixement detallat de la placa implica fer Gs d’aquesta. Fent aixo, es
comprendra el funcionament de tots i cada un dels elements de la placa.

3. Personalitzacié d’aquesta metodologia per a la placa UP3 d’Altera per a la
creacié d’un nou IP Core. Es fixara un procediment estandard a seguir en el
cas que qualsevol persona vulgui crear un nou IP Core. Per a seguir aquest
model s’hauran de complir una série de requisits hardware i software i s’haura
de fer un analisi funcional.

4. Els llenguatges que s’utilitzaran per a la realitzacio d’aquests cores seran HDL
(Hardware Description Language) que com el seu nom indica, son
Ilenguatges de descripcié del Hardware i C++ pel que fa a la logica i control
d’aquest hardware a alt nivell.

5. Seguir aquesta metodologia per a la creacio del driver PWM (Pulse Width
Modulation). Aquest driver sera creat i provat sobre un element mobil amb 2
servo motors que giraran en diverses direccions segons els polsos enviats.

6. Seguir la metodologia per a la creacié del driver 12C (Inter-Integrated
Circuit). Aquest driver sera creat i provat a traves de la instal-lacio d’un
sensor a la placa, el qual fara canviar el sentit de gir dels servo-motors

instal-lats.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 8

7. Proves. A fi d’analitzar el correcte funcionament dels nous IP Cores.

2.2 Planificaci6

Aquest projecte final de carrera ha estat planificat amb I’objectiu que la seva
durada correspongui a un semestre. Originalment, estava plantejat per ser realitzat
durant el primer semestre corresponent al periode setembre — febrer, pero per

problemes amb altres feines s’ha hagut d’endarrerir fins al periode febrer — juny.
S’ha de dir que aquesta planificacio s’ha seguit escrupolosament, i practicament no

s’ha vist afectada durant el transcurs del projecte, encara que hi ha hagut tasques que

s’han vist endarrerides, per problemes que es comentaran més endavant.

2.2.1 ldentificaci6 dels recursos

L’equip de desenvolupament del projecte estara format per una sola persona que
exercira les tasques de Cap de Projecte, técnic i programador. L’enginyer en questio,
s’encarregara de mantenir un control tecnic i economic a fi de fer-lo rentable. Sera el
responsable i encarregat de planificar i distribuir els recursos i de participar en
I’elaboracio de les especificacions funcionals detallades.

També sera I’encarregat de la creacio i especificacié de I’arquitectura a utilitzar, aixi
com també, de la programacié dels elements necessaris per al funcionament del

projecte.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 9

2.2.2 Terminis de lliurament

Els terminis de Iliurament seran els fixats per I’Escola Técnica Superior
d’Enginyeria (ETSE). En el cas de la convocatoria del mes de juny del curs 2006 -
2007 sera el dia 1 de juny la data maxima per a decidir si es presenta el projecte.
Mentre que el document de memoria es podra entregar com a molt tard el dia 15 de
juny de 2007.

2.2.3 ldentificacio de les tasques necessaries per a realitzar altres tasques

A continuacié es detallen una série de tasques que son vinculants per a la
realitzacié d’aquest projecte, i sense les quals resultaria impossible avancar en el

desenvolupament del mateix.

Les taques es detallen a continuacio:

1. Aproximacié a la placa UP3. Entendre i comprendre el funcionament
d’aquesta placa, aixi com la interacci6 de tots els seus components.

2. Aproximacio a llenguatges HDL i C++ en la plataforma d’Altera.

3. Bugs i aspectes tecnics a considerar en I’entorn de treball. Sera necessari que
tots els elements compilin i la placa respongui al requeriments fixats.

4. Creaci6 de la metodologia necessaria a seguir per a la creacié d’un IP Core.
S’ha de marcar la pauta de com han de funcionar aquests elements.

5. Realitzacio del driver PWM, seguint aquesta metodologia.

6. Realitzacié del driver 12C, seguint aquesta metodologia

7. Provar que funcionen aquests dos drivers a la placa.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 10

2.2.4 Calcul del termini necessari per a la realitzacio de cada tasca

El projecte de final de carrera esta fixat a una durada de 15 crédits. Un creédit
ECTS que sera el considerat per a aquest projecte son 25 hores. D’aquesta forma el
valor en hores del projecte equival a 375h.

Aquest valor és un temps raonable encara que es comptara amb un 10% de marge
d’error que s’aplicara abans de comencar el projecte, i del qual el Cap de Projecte
n’assumeix tota la responsabilitat. S’ aplicara per tenir un percentatge de marge en
cas que es produeixi algun imprevist. D’aquesta manera es contemplara que el

projecte tindra una durada de 412,5 hores.

Conseqlientment, s’establiran aquests valors com a base per a establir un model a
seguir per a la realitzacid d’aquest projecte, aixi com a base per determinar la
viabilitat economica. Aquestes hores de més estan pressupostades i no afectaran a la

viabilitat del projecte.

Tot seguit es detallaran totes i cadascuna de les tasques a realitzar juntament amb la

seva durada:

a) Etapa Preliminar (22,5 h)
1. Objectius i abast del projecte: 7,5h
2. Analisi funcional i requeriments: 10h
3. Planificacio inicial: 5h
b) Desenvolupament del projecte (390 h)
1. Memoria (100 h)
1.1 Especificacio de requisits. Analisi funcional: 10 h
1.2 Planificacid: 5 h
1.3 Estudi de viabilitat: 3 h
1.4 Cronologia: 2 h



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 11

1.5 Creaci6 d’ IP Cores (20 h)
1.5.1 Disseny Hardware: 10 h
1.5.2 Disseny Software: 5 h
1.5.3 Verificacio: 5 h
1.6 Prototipatge sobre UP3 — NI1OS (30 h)
1.6.1 La plataforma Altera. Procediment: 10 h
1.6.2 Explicacid del disseny dels IPs sobre la plataforma NIOSII (20 h)
1.6.2.1 Driver PWM: 10 h
1.6.2.2 Driver 12C: 10 h
1.7 Conclusions i millores: 9 h
1.8 Bibliografia: 1h
1.9 Revisio (20 h)
1.9.1 Aplicacio dels canvis introduits: 20 h
2. Desenvolupament (290 h)
2.1 Aproximacio als HDL’s: 10h
2.2 Aproximacio a I’entorn de programacié d’ Altera: 10 h
2.3 Bugs de I’entorn: 60 h
2.4 Implementacio del driver PWM (50 h)
2.4.1 Descripcio Hardware: 40 h
2.4.2 Descripci6 Software. 10 h
2.5 Implementacio del driver 12C (80 h)
2.5.1 Descripci6 Hardware: 60 h
2.5.2 Descripcio Software: 20 h
2.6 Implementaci6 de la logica de control (30 h)
2.6.1 Estudi de la logica: 10 h
2.6.1 Implementacio de la logica d’alt nivell: 20 h
2.7 Test i proves: 25 h
2.8 Revisid i modificacions: 20 h

2.9 Possibles millores: 5 h



ets E) Creaci6 d’ IP Cores en una plataforma NIOS 12

2.2.5. Diagrama de Gantt

El diagrama de Gantt que es mostra a continuacio, (veure Figura 2.1) mostra la
distribucid de tasques en que es va dividir el projecte, i sobre les quals es va realitzar

una planificacio temporal per dur-les a terme seguint les mostrades en I’apartat

anterior.



13

Creaci6 d’ IP Cores en una plataforma N1OS

S0 SIOIES0L
SUDIDEDIPOL | QISIASN
sasoud 13831
lizau ye,p B350 B ap olRESWS|dw]
22160| B] 3P IpNIST
jeajuod ap ea1Bo e| ap oepuswa]du)
2uEMyos oladussag
aiempiey oladussag
7] J2ALUP (3P o1aejuswajdu)
2emos oladussag
sismpiey gidinsag
WMd 12A1p (2P o1oejuawajdu
wouz | ap sbng
=13y p owewsibold ap woius) e cewoldy
5104 sie orewody
juswednjoauasag
SUNDOIUL SIAUED S13p o1eldy
o1sIASY

BiRIG0Ig

U | SUISNUOD
2zl sanig
Wand 2aud
IS OIN BuLiomed e) aiqos sdi sjap fuassip [ap oloeaydxy
JUSWIPaa0ld "ElS)y ElojEled B
SOIN — £dn 21q0s afjedyojord
DIBILLSS,
siemyos Auassig
alempley Ausssig
S2107) dI Jp 10ea1T

sifoouas

JEIIGEIA 3P IPrIST

olEalUEd

Uy “sysInbal ap ooedyadss

BLIOWSRY
aoslosd jap uswednjoaussag
[BI21Ul QIREIUEY

suSLULIaNGal | JBUCIun; |

Euy

anzafoud [ap 1seqe | sninaslgo

5

L

£

[

Lz

0z

&l

8l

Ll

213

5

Fl

€k

zh

Ll

1113

[N e B E S [T (= [ ]

6

Figura 2.1 Diagrama de Gantt. Planificac

etse)

Jeuijaid edelg

T | %0 [ 8c ] ic [ #r [ 70 | 06 | ¢ [ o [ 60 | e | 92 [ or [ ¢t | 50 [ e [ or [ ¢ | 30 [ &
20, Uil | 70, FEW] 70, 162 70, S8 | 70, 655 B218} 5D AIWON




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 14

2.3 Viabilitat

La viabilitat d’aquest projecte vindra determinada per I’estudi de viabilitat que es
realitzara a continuacid, juntament amb els riscs que la realitzacié d’aquest projecte

comporta.

2.3.1 Estudi de viabilitat

Tal i com s’ha exposat anteriorment, el projecte sera desenvolupat per a un unic
recurs, el qual estara dedicat a temps total en el projecte. El fet que tan sols hi hagi un
recurs disponible, no suposara un problema perqué el projecte pugui estar completat

en les dates assenyalades en els apartats anteriors.

Els temps assignats a cada tasca son temps raonables i cadascun ha estat pensat
perqué pugui ser realitzat en aquest espai de temps. A part d’aix0, ja es contempla el
percentatge d’error al qual pot estar sotmesa cada tasca, donant més forca a una

planificacio estudiada.

Quant als elements necessaris per al desenvolupament del projecte sera necessari
disposar de I’aplicacié Quartusll v.5.1, el SOPC Builder i el NIOS IDE que es

poden descarregar des del web http://www.altera.com i obtenir-ne una llicéncia

gratuita.

D’altra banda també sera necessari disposar d’una placa UP3 que sera subministrada
per I’ Escola Técnica Superior d’ Enginyeria en forma de préstec, juntament amb

elements com sensors i servo motors.


http://www.altera.com/

etse)

Creaci6 d’ IP Cores en una plataforma NIOS 15

Aixi doncs, tenint en compte aquestes consideracions i veient que la inversid
economica és nul-la, tan sols es comptabilitzara la inversié en hores del projecte per
determinar-ne la seva viabilitat que en un principi, després de I’analisi efectuat

préviament, sembla factible.

Pel que fa a la legalitat del producte, i tal i com ja s’ha avangat en apartats anteriors,
tan sols s’utilitzaran aplicacions amb llicencies subministrades per Altera i que per

tant, no suposen cap problema legal.

2.3.2 Riscs

Un projecte que tracta amb hardware se I’ha de tractar amb molta cura, ja que per
efectes d’aquest hardware sobre el software es poden observar comportaments
imprevistos, que poden afectar directament a la planificacié dissenyada.
Paral-lelament, cal tenir en compte que les planificacions sempre parteixen de la base

ideal més un percentatge de marge que acostuma a ser insuficient.

Tot seguit doncs, s’exposaran els possibles riscos als quals pot estar sotmes el
projecte, ja que poden provocar endarreriments en la realitzacio de diverses tasques.
Aquestes demores poden provocar un encariment en hores pel que fa la planificacio

del projecte, i temporal que pot fer que no s’ajusti a les dates estimades.
Aixi doncs, a continuacié es detallen els possibles riscs que pot comportar el projecte:
1. Que el recurs disponible, en aquest cas unic per a la realitzacio de les

tasques es posi malalt, o0 no pugui estar disponible per motius aliens al

projecte.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 16

2. L’entorn de programacid i aplicacio no sigui el suficientment potent i tingui
problemes.

3. La placa UP3 tingui elements deteriorats que distorsionin els resultats
esperats 0 no deixin executar cap aplicacio.

4.  Possibles sorolls produits pels elements afegits a la placa com servo motors i
sensors alterin el comportament definit a través del software.

5. No es disposi del material necessari en els periodes indicats.

6.  Canvi d’objectius del projecte mentre es duu a terme aquest.

7. La no utilitzacié d’una metodologia adequada quant a la creacié dels IP

Cores.

2.4 Cronologia

En aquest apartat s’explica el qué ha passat durant el desenvolupament del

projecte.

2.4.1 Estudi cronologic

Durant el desenvolupament d’aquest projecte han sorgit diversos problemes,
molts dels quals estaven contemplats en I’apartat de riscs, i que han provocat
I’endarreriment del projecte. Tasques bloquejants com la creacid de petits sistemes,
per a iniciar la comprensio de la placa UP3 han fet que s’endarreris més del compte
I’ inici de les altres tasques, cosa que ha provocat un increment d’hores de dedicacid.

Els bugs de I’entorn d’Altera, aixi com aquests primers sistemes creats, han estat

principal problema que s’ha trobat durant el desenvolupament del projecte. En



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 17

I’entorn SOPC quan algun element no funciona, provoca un endarreriment en cascada
que afecta a la resta de tasques. Aquest endarreriment, a més a més acostuma a ser
gran ja que la localitzaci6 d’errors és fa feixuga, i en ocasions, com és el cas d’aquest
projecte, els problemes no provenien d’un sistema mal construit, sind d’un software

corrupte que afectava a tot sistema que s’intentava provar.

Com és facil d’imaginar, problemes d’aquest estil tenen un cost molt elevat, ja que es
perd molt de temps per intentar trobar un problema que en realitat no existeix.

Per altra banda, tasques inicialment pressupostades en excés, com la realitzacio del IP
Core PWM, han compensat minimament I’excés de temps dedicat en I’ anterior. Tot i
aix0, s’ha modificat la planificacié en alguns punts més, per tal d’adaptar-la a les

noves situacions que han anat sorgint.

El IP Core de 12C, s’ha tingut molt poc temps per a provar-lo ja que es va rebre tard,

prop de I’entrega d’aquest projecte.

També es té en compte que el projecte va iniciar-se abans del que estava planificat, ja
que durant el mes de setembre i d’octubre del 2006 ja s’havia comencat a parlar del

mateix.

No obstant, un altre motiu dels endarreriments ha estat el fet de compaginar activitats
alienes al projecte com son les obligacions laborals que han interferit directament
amb la planificacio prevista. Aquest fet que podria servir per dir que el projecte si que

és viable en termes relatius, tot i la realitzacio d’hores extra.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 18

3. CREACIO D’ IP CORES

En aquest apartat del projecte es pretén descriure el seguit d’accions que s’han de
seguir per a la creaci6 d’un IP Core. La definicio pretén ser tan genérica com sigui

possible, a fi de poder tenir-se en compte com si d’un estandard es tractés.

La creacio d’aquest document és possible gracies a I’estudi de I’entorn utilitzat en
Altera per a la creacié de components (SOPC Builder), i a un treball de camp sobre
les necessitats de la plataforma NIOS.

Tot i I’ intent de ser el maxim generica possible, la definicid tan sols estara provada a
I’entorn esmentat anteriorment, i la majoria de consideracions es faran partint de la
base plantejada per Altera. Cal tenir en compte aquest factor, ja que de forma constant
s’hi faran referéncies en motiu de la seva amplia utilitzacié per al desenvolupament
de components. Aixi doncs, tot dissenyador de components que llegeixi aquest
manual, entendra que és generic per a una plataforma NIOS, en I’entorn de
programacid proporcionat per Altera.

D’aquesta manera, els manuals d” Altera proposen una metodologia SOC (System On
Chip) de disseny que cal ser completada amb treball propi en el moment en que es
dissenya una aplicacid. Es molt recomanable llegir els manuals, sobre I’entorn d’
Altera, que es destaquen a la bibliografia d’aquest document, ja que sén la base per

entendre qué s’exposa a continuacio.

3.1 Definicié metodologica per a la creacié d’un IP Core

En moltes ocasions, tal i com passa en aquest projecte, un es troba davant la

necessitat de fer funcionar un cert component en un entorn que no esta preparat per



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 19

acceptar-lo. Aixi doncs, la qlestié resideix en integrar aquest component a I’entorn

indicat.

Hi ha ocasions, com la de I’entorn utilitzat en aquest projecte, que permet buscar i
utilitzar drivers ja fets per altres dissenyadors de components, i tenir la possibilitat de
crear-ne de nous. La gracia de compartir els dissenys per a la gestié d’un component
és alleugerir el treball de cada dissenyador, ja que no cal reinventar la roda cada
vegada. El problema és si el component en qiiestio no esta inventat, i s’ha de crear de

zero.
Es en aquestes situacions que és necessari tenir una base a seguir per tal d’avancar de

forma ordenada i clara cap a I’objectiu final, o sigui tenir un driver que gestioni el

nou component hardware afegit.

3.1.1 Analisi de Requeriments

Abans de comencar, s’han de tenir en compte els seguients requeriments software i

hardware, a fi d’obtenir una correcta creacié del component.

Tal i com ja s’ha indicat anteriorment, sera necessari disposar de I’entorn de
programacio d’ Altera (SOPC Builder, Quartusll i NIOSII IDE) i conéixer-lo. Una
placa de desenvolupament NIOS. També sera important tenir coneixements basics
sobre la interficie AVALON, que és el bus on anira connectat el nou component

perque la CPU el gestioni.

Evidentment, si no es disposa de placa es pot desenvolupar un component, el

problema resideix en que I’usuari sera incapag de provar-ho d’una forma practica.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 20

Partint d’aquests requisits, ara ja nomes falta saber que s’ha d’obtenir de I’entorn de
desenvolupament. Aixi doncs, un component es pot desglossar en les seglients parts o

fitxers:

- Arxius hardware. Moduls en llenguatge HDL que descriuen el hardware
del component.

- Arxius software. Capcaleres en llenguatge C, on es mapegen els registres
del component, i un driver software que permet al programa controlar el
component.

- La descripcid del component. Aquest fitxer defineix I’ estructura del
component i subministra la informacidé necessaria per a la integracié

d’aquest al sistema (class.ptf).

3.1.2 Passos per al disseny d’un component

Aquesta seccid es centra en els passos que s’ha de seguir per a la creaci6 d’un
component. La seqiiéncia de passos esta pensada per a un component que actuara com
a element esclau, encara que tal i com es pot veure son passos facilment extrapolables
cap a components master. Els passos, no requereixen ser seguits en un escrupolos
ordre, encara que si exigeixen un cert grau de rigor. En la primera part d’aquest punt,
es veuran els passos generics a realitzar mentre que tot seguit, es podran veure els

passos complerts per al disseny d’un component, incorporant IP Cores propis.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 21

Passos Generics:

10.

11.

12.

Especificacio de les necessitats hardware.

Si el microprocessador s’utilitzara per a controlar el component, s’haura

d’especificar a I’ interficie de programacid de I’aplicacio (API) que accedeixi i

controli el hardware.

Basat en els requeriments hardware i software, definir una interficie pel bus

AVALON que disposi de mecanismes de control adequats, aixi com un bon

funcionament.

Escriure el HDL que descrigui el hardware en Verilog o VHDL.

Testejar els components hardware sols per a verificar-ne un correcte

funcionament.

Escriure les capcaleres en C que defineixin el mapa de registres del hardware

pel software.

Utilitzar I’ editor de components per ajuntar els arxius hardware i software per

a la creacio d’un component.

Instanciar el component en modul del SOPC Builder.

Testejar els accessos als registres utilitzant un microprocessador com el

processador NIOSII. La verificacié pot ser feta al hardware o bé en un

simulador com el ModelSim.

Si un microprocessador sera utilitzat per a controlar el component, s’ha

d’escriure un driver en software.

De forma reiterada, realitzar les seglents accions:

- Fer els ajustaments hardware necessaris.

- Fer els ajustament software necessaris.

- Incorporar els canvis software i hardware al component utilitzant I’editor
de components.

Construir un sistema complet a través del SOPC Builder incorporant una o

més instancies del component creat.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 22

13. Fer les verificacions necessaries per tal que els components s’ajustin als
requeriments demandats.

14. Finalitzar el component i distribuir-lo perque pugui ser reutilitzat.

El disseny per a un component que hagi d’actuar com a master, sera similar

exceptuant la part de desenvolupament software.

Passos Complerts:

Pel que fa aquesta part, cal dir que es centra en seguir els passos explicats
anteriorment, ampliant el procés de creacio de nous IP Cores, que és el tema sobre el
qual gira aquest projecte. Paral-lelament, abans d’enumerar la série de passos a seguir
cal tenir clars una série de conceptes que s’exposaran a continuacio, i en I’ Apartat 4
d’aquest projecte s’ampliaran, ja que és en aquell moment quan es parla

d’arquitectura.

La complexitat o diferéncia de la creacié d’un component en aquest entorn, vers els
entorns tradicionals, recau sobre les particularitat del bus Avalon. Aquest bus esta
dissenyat per a connectar processadors On-Chip i periférics en un sistema SOPC. La
interficie del bus especifica les connexions entre els components master i slave.
Aquest modul es genera automaticament, aixi que el dissenyador de components tan

sols s’ha d’ocupar d’unir els periférics al bus.

El problema és que el bus no pot comunicar-se directament amb els periferics, i
necessita d’un traductor que transmeti la informacio entre ell i el dispositiu. Per
aquest motiu, el component creat ha d’anar recobert amb un wrapper, que tradueixi
els senyals del bus amb les del periferic i a I’ inrevés. Per aix0, es requereix de I’
interficie del bus, com a part imprescindible en la creaci6 d’un nou IP Core. A traves
d’aquesta interficie, el bus podra llegir o escriure en els registres del component, i

actuar en consequencia, executant la seva logica a través de les ordres que li dona el



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 23

dispositiu master. Altrament, també es pot enviar la informacio pertinent als registres

per tal que el processador actui d’una forma determinada.

Aixi doncs, els passos complerts per a la creacio d’un IP Core son:

1. Definir I’especificacio funcional del nou component. La definicié haura de
concretar el tipus de processador que s’utilitzara per a controlar el component,
el tipus de rellotge, tipus de component (master o slave), etc.

2. Un cop especificada la funcionalitat del component, s’ha de definir
I’estructura logica d’aquest. Cal crear un esquema amb tots els moduls o eines
gue es necessitaran, utilitzant les funcionalitats definides, per a la definicié de
I’estructura o tasca logica del component.

3. Establir els senyals d’entrada i sortida que tindra I’estructura logica. Els
senyals d’entrada o sortida podran ser, per exemple, senyals d’ enable,
rellotge o reset, entre d’altres.

4. Programar aquesta funcionalitat en algun llenguatge de descripcié de
hardware (HDL), com ara Verilog o0 VHDL. D’aquesta manera, obtindrem un
fitxer en aquest llenguatge que s’encarregara de gestionar les tasques logiques
0 hardware del component.

5. Un cop establerta la ldgica del component, s’ha d’habilitar I’accés als registres
per tal que el dispositiu pugui llegir i escriure. S’ha de crear un fitxer de
registres on es mapejaran totes les entrades i sortides de la logica de control al
component cap al registre corresponent. Aquest fitxer és molt important, ja
que cada registre anira redirigit cap a I’espai d’adreces del bus Avalon, perque
el component es pugui comunicar amb el sistema.

6. Cada registre haura de ser de lectura i/o escriptura depenent de les necessitats
funcionals que requereixi el component, el qué significa que el software que
mes endavant es creara podra llegir i establir valors.

7. En aquest fitxer, establir tots els senyals d’entrada i sortida del bus Avalon,

aixi com els senyals cap al modul creat, tant d’entrada com de sortida.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 24

10.

11.

12.

13.
14.
15.

16.

17.

Finalment, a fi de tenir el component instanciat, es necessaria la inclusié d’un
fitxer que gestioni les comunicacions entre el component i I’exterior. Es aqui
on s’establiran els senyals del bus Avalon que es mapejaran sobre els senyals
del component creat. Aquesta assignacio és imprescindible per a una correcta
comunicacio i entesa entre component i sistema.

Revisar cada un dels fitxers creats, verificant el seu correcte funcionament a
través d’eines com el ModelSim, que permeten simular I’excussio del
component.

Arribat aquest punt, ja es té a la disposicid de I’usuari el component
hardware, seguint I’estructura que demana I’arquitectura del bus Avalon, tal i
com s’explica a I’ inici d’aquest apartat, i s’amplia en el seguent.

Si el component creat és de tipus slave s’haura d’especificar a I’ interficie de
programacio de I’aplicacio (API) que accedeixi i controli el hardware.
Escriure les capcaleres en llenguatge C que defineixin el mapa de registres,
préviament definit al fitxer de registres hardware, perque el software els pugui
gestionar. També defineix el software que necessitara el processador NIOS
per a gestionar el driver.

Obrir el Quartusll i crear un nou projecte.

A través d’aquest obrir el SOPC Builder i executar I’editor de components.
Utilitzar I’editor de components del SOPC Builder per a adjuntar els fitxers
hardware i software per a la creacio d’un component. Mitjancant aquesta eina,
es compactaran els diferents moduls que s’han creat per obtenir el component.
Triar I’opci6 de menu del SOPC Builder que permet afegir un nou component
I afegir els fitxers HDL que s’han creat, en la pestanya indicada. L’editor de
components analitzara aquests fitxers i els validara. L’ordre dels fitxers afegits
és important, ja que s’han d’ordenar des del nivell més extern com és I’
interficie Avalon fins a la tasca logica.

Un cop afegits els fitxers, cada senyal que hi ha en els fitxer HDL de més alt
nivell es mostrara a la pestanya dels senyals. Per defecte, I’editor assigna els

senyals que troba en aquest fitxer amb un tipus, que en la majoria d’ocasions



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 25

18.

19.

20.
21.

22.

23.

24.

25.

és valid. Si un senyal no sap de quin tipus és, la qualifica com a senyal export.
Consequentment, és important modificar el tipus de cada senyal segons les
necessitats del sistema. Si, tal i com s’ha comentat en apartats anteriors, es té
fet un mapeig de senyals, determinar el tipus de cada un sera una feina trivial.

Un cop assignats els senyals és passa a la pestanya d’ interficie. En aquesta
pestanya es permet configurar les propietats d’ interficie del bus Avalon del
component. Es aqui on s’ha d’indicar el tipus de component, se li assigna un
nom. No obstant, la clau d’aquest punt és que s’indica que I’adrecament es
fara a traveés dels registres.

La seguent pestanya fa referéncia als fitxers software creats. Aquesta deixa
associar fitxers software al component i especificar-ne quin tipus d’ds se’n
fara. El fitxer software creat per a treballar amb els registres s’afegira com a
include dels registres. D’altra banda, si s’han creat rutines d’alt nivell en C per
a gestionar el driver, també s’afegiran, pero en aquest cas, optant per I’opcio
HAL/inc o HAL/src segons si els fitxers que s’afegeixen son capcaleres o les
funcions creades.

Arribats a aquest punt, es pot salvar el nou component creat.

Un cop creat, es trobara el nou component en el grup que li hagi definit i es
podra afegir al sistema.

A I’ afegir el nou component al sistema, sortird un assistent que permetra o
no, modificar alguns parametres de configuracio d’aquest. Un cop decidides
les opcions que es prefereixen, s’incloura el component al polsar en finalitzar.

Comprovar que les adreces d’excepcio i reset del processador del sistema
apunten a un modul de memaoria per evitar que el sistema falla.

Un cop afegit i configurat es pot generar el sistema, polsant sobre I’opcio
Generate del SOPC Builder. A continuacio, es tindra el sistema correctament
creat. Ara cal dirigir-se a I’aplicacio Quartusll.

Modificar I’esquema del Quartus del sistema perqué les entrades i sortides al
sistema quedin cobertes amb els elements que necessiti. Tot seguit, unir els

components del sistema que requereixin estar connectats.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 26

26.

27.
28.
29.

30.

31.

32.

33.

Assignar al sistema la placa que s’utilitzi, tenint en compte totes les
particularitats d’aquesta, aixi com les indicacions del fabricant. Aquesta opcio
es troba en el menu Assignments, devices. Després d’assignar-la, s’informara
en aquest mateix ment com la placa ha d’interpretar els pins no utilitzats. Per
defecte, la placa els haura d’interpretar com a entrades, encara que depenent
del sistema les podra entendre com a sortides.

Realitzar I’assignacié correcta de pins, a través del Pin Planer.

Compilar tot el sistema.

Un cop compilat, s’ha de descarregar el sistema a la placa. Per aix0, s’obrira
el Programmer. Aquesta opcid permetra que s’estableixi una comunicacio
entre la placa, que s’haura connectat al port corresponent de I’ordinador, i
I’aplicacio.

Descarregada la informacio, s’ha d’executar el software del processador
NIOS per utilitzar el component creat. Tant €s aixi, que requereix que obrim
la tercera aplicacid, que s’obre des del Quartusll. Aquesta aplicacio és el
NIOSII IDE.

A través d’aquesta aplicacio, es creara un projecte software que estara basat en
el sistema creat. Afegir les capcaleres i fitxers en C necessaris per a provar el
component, i generar un projecte que sigui capac de gestionar el component.
Compilar i descarregar aquesta logica cap a la placa, tot observar-ne el
comportament per tal de validar que la logica programada és correcta.
Validada la logica i el component, aquest ja esta llest per a ser compartit amb

la resta de la comunitat, perque pugui ser reutilitzat.

Per a més informacid sobre els elements o parametres de configuracié modificables

en les aplicacions, és imprescindible llegir els manuals que es poden trobar en la

bibliografia d’aquest document, ja que s’ha donat més importancia als passos a

sequir,

i no entra en punts de configuracié que, tanmateix, es poden trobar en la

documentaci6 d’ Altera.



etse)

Creaci6 d’ IP Cores en una plataforma N1OS 27

3.2 Disseny Hardware

El disseny del hardware és com tot disseny logic, el procés que ve després de la
fase d’especificacid de requisits. Un cop es tenen clars els objectius dels component i
la seva funcionalitat, codificar el codi en HDL que el fara funcionar pot tractar-se

d’una qlestié practicament immediata.

L’ arquitectura d’un component tipic habitualment segueix els seglients blocs

representats en la figura seguent:

Component Hardware

Register File

Status Register

Y

Application-
Specific
Interface
Signals

Control Register1

Avalon-MM
Slave

Avalon-MM [— Port

B Slave Signals

Interface |——

Control Register2

Data Register1

A

v

v

Data Register2

Data Register3

v

Other Registers

Figura 3.1 Arquitectura d’un component

Aquesta figura mostra el diagrama tipic de blocs del component amb un port Avalon

esclau. Les parts que el composen es comenten a continuacio:

- Task logic: La tasca logica implementa la funcionalitat principal del
component. Aquesta tasca és depenent del disseny.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 28

- Register file: Els registres proporcionen el cami de comunicacié per als
senyals des de la logica de control fins al mon exterior, i al inrevés. La
interficie Avalon pot llegir i escriure en els registres, gracies als nodes
interns que estan mapejats en adreces a les quals pot accedir.

- Avalon interface: La interficie Avalon conté un registre de tipus front-end.
Aguesta utilitza qualsevol senyal Avalon, per a accedir al registre i
realitzar la transferéncia requerida a través de la tasca logica. Hi ha factors
com; I’'amplada de dades que s’han de transmetre, els requeriments de
transferencia, el tipus de transferéncia i la rapidesa entre els dispositius

hardware que interactuaran, que afecten directament a aquesta interficie.

3.3 Disseny Software

El disseny del software és el segilient pas i sera I’encarregat de controlar i
gestionar el dispositiu creat. Si es pretén tenir un control sobre un component, s’han
de subministrar uns arxius que defineixin el comportament o la visié del component

vers el hardware que es te.

Aixi doncs, com a minim sera necessari definir un mapa de registres per a cada un
dels ports esclaus que siguin accessibles per al processador. L’editor de components

déna un paquet de capcaleres en C per definir la visio software vers el hardware.

Habitualment, un fitxer capcalera s’utilitza per a la declaracié de macros per a poder
escriure i llegir cada registre en un component, on cada component té assignades unes

adreces.

Els drivers escrits en llenguatges d’alt nivell, abstreuen els detalls d’un component
hardware. L’abstraccid, permet accedir al component des del mencionat alt nivell,

cosa que facilita la vida a I’hora de programar. Els requeriments software varien



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 29

segons les necessitats del component. Les rutines més habituals utilitzades son les

relacionades amb la inicialitzacio de hardware, llegir dades i escriure-les.

El software depen també del tipus de processador amb el que es tracta, i del nivell
d’especificacié que se li dona al driver. L’editor de components permet empaquetar
facilment els drivers en una capa d’abstracci6 HAL (Hardware Abstraction Layer)
que NIOSII utilitza per al desenvolupament dels components. Aquesta capa €s un
subdirectori, del qual en pengen dos més; el primer és anomenat inc i és on van les
capcaleres en C, mentre que I’altre és src i €s on hi ha el cos de les funcions. D’altra
banda, els fitxers que especifiquen el hardware estaran situats en el subdirectori hdl,
mentre que les capgaleres accessibles des del software programat, per a controlar el

component, estaran en el subdirectori inc.

Aixi doncs, per tal de facilitar els drivers per a altres processadors, s’han de modificar

de tal manera perqué s’adaptin a les necessitats de desenvolupament d’aquests.

3.4 Verificacio del component

El component dissenyat es pot verificar a través d’estats incrementals a mesura
que es va avangant en el disseny del component. Habitualment, primer s’acostuma a
verificar la logica del hardware com a una unitat, i més endavant, ja es verifica el

component com a part del sistema.

Per a provar la unitat logica hardware, s’han d’utilitzar els métodes que a I’usuari més
li vingui de gust o li sigui més comode. Eines que permetin la simulacié del hardware
com el ModelSim poden ser de gran ajuda per a comprendre la funcionalitat
programada i si hi ha algun tipus de problema poder-lo corregir. De la mateixa

manera, també es pot verificar tot el conjunt del component incloent el fitxer de



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 30

registres de la interficie Avalon i realitzant les proves que es desitgi un cop ja inclos

el component en el projecte.

Un cop empaquetats els fitxers en HDL en un component, utilitzant I’editor de
components, el kit de desenvolupament del NIOSII ofereix un metode senzill per a
simular transaccions de lectura i escriptura en un component. L’usuari pot escriure un
codi en C perque el processador inicii transferéncies de lectura i escriptura cap al
component. Els resultats poden ser verificats amb un simulador com el ModelSim o
sobre el hardware, o sigui sobre la placa UP3, ja siguin escriptures a memoria, com la

lectura de dades en la pantalla LCD.

D’altra banda, un cop es té el component, es pot instanciar facilment el component en
el sistema a través de I’editor de components, i d’aquesta forma, verificar la
funcionalitat de tot el modul del sistema. ElI SOPC Builder pot produir tests de prova
que poden verificar cada nivell del sistema. La capacitat de simulacié dependra de

I’entorn i dels components utilitzats en el sistema.

Durant I’ etapa de verificacid, incloure un processador NIOS al sistema pot ser de
gran ajuda, ja que un es pot beneficiar de I’entorn de simulacié que té. Si el
component creat no té cap mena de relacio amb aquest processador, la simulacio
autogenerada del ModelSim sera una bona base per tal que es pugui construir una

l0gica de control per al sistema en questio.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 31

4. PROTOTIPATGE SOBRE UP3 - NIOS

Aquest apartat conté el procediment que s’ha anat seguint a partir de I’apartat
anterior, personalitzat segons els avantatges i desavantatges que proporciona la
plataforma Altera sobre els processadors NIOS. Aquests problemes seran comentats

al final d’aquest apartat.

4.1 La plataforma Altera. Procediment

La plataforma i I’entorn que proporciona Altera esta composat per 3 aplicacions:
SOPC Builder, Quartus Il i NIOS I IDE.

El Quartus I, és el programa principal dels tres. Es el que permetra realitzar el
disseny de I’arquitectura del sistema, aixi com els esquematics, I’assignacié dels
components a les sortides dels pins de la FPGA, i tot a un cost molt petit. A més a

més, habilitara la connexié a la placa per tal d’enviar-hi tot aquest disseny.

El SOPC Builder és una potent eina per al desenvolupament i creacio de sistemes
basats en processadors, periférics i memories. Es una aplicacié capa¢ de definir i
generar un complet System On a Programmable Chip (SOPC) en molt menys temps
que utilitzant métodes manuals més tradicionals. Es una eina de proposit general per
a la creacio de varis dissenys que poden o no, contenir processador i per descomptat,
no son d’ obligat as d’un processador NIOSII. Aixi doncs, sera la peca encarregada

d’integrar els components hardware en un sistema.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 32

El NIOS IDE és la plataforma de desenvolupament del software. El llenguatge de
programacio que s’utilitzara en aquest entorn és C++. Aquest entorn permet compilar,

editar i depurar els programes escrits per a controlar els components afegits a la placa.

Aixi doncs, un cop conegut I’entorn en que es treballara s’ha de veure el procediment

a sequir.

4.1.1 Arquitectura del sistema

Aquesta seccio parlara de I’arquitectura fonamental d’un sistema SOPC Builder.

Un component del SOPC Builder és un modul que el programa pot recongixer i
automaticament integrar al sistema. L’ aplicacié connecta multiples components junts
per a crear un sistema que gestioni tota la connectivitat que hi ha entre ells. La Figura

4.1 mostra un exemple d’un sistema multi-master, i components slave.



etse)

Creaci6 d’ IP Cores en una plataforma N1OS 33
Etharnst
PHY
Chip
4
System Module v
P'm-pﬁmr Ethernet MAC Custom Logic
(32-bit master {42-bit mastar (Gd-bit mastor
cormponant) componant) componant)

System Interconnect Fabric

T

[V ] T

Flash SRAM SDRAM UART Custom
Memory Interface Controller (16-bit Logic
Interface {16-bit (32-bit T (B =bit

{8-bit slave slave slave companant) slave
componant)|  |component) | [componsnt) componant)

I A
T

Flazh SRAM SDRAM BS2an
Chip Chip Chip

-
ail
-

Figura 4.1 Exemple de modul del sistema generat amb el SOPC Builder

Tal i com es pot observar, I’arquitectura pot estar composada per una série de
components que cada usuari podra personalitzar, pero en tots els seus casos s’haura
de tenir en compte I’ especial gestié que es fa de la memoria en aquest tipus de
sistemes, aixi com les particularitats del bus Avalon i de la connectivitat d’aquest vers

el processador. El bus Avalon és la particularitat més destacable d’aquest sistema.

Segurament I’element més destacable d’aquest sistema és el bus Avalon. El bus
Avalon és un element d’arquitectura simple dissenyat per a connectar processadors

On-Chip i periférics junts en un sistema SOPC. La interficie Avalon especifica les



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 34

connexions entre els components master i esclaus, aixi com també, el temps amb el
gue aquests components es comuniquen. Els avantatges que ofereix aquest bus en la
present arquitectura sén entre d’altres; la simplicitat d’entendre un protocol amb poc
temps d’aprenentatge, I’optimitzacié de recursos d’utilitzacio d’un bus logic i el
sincronisme de les operacions, ja que integra la logica de tots els elements que
coexisteixen en el mateix PLD ( Programmable Logic Device ), mentre evita I’analisi
dels complexos timings que existeien entre els components. La Figura 4.2 mostra
I’arquitectura del bus Avalon en forma de diagrama de blocs.

Povalon Bus Moduld

Bus Signal Legend

Wirke Cata
£

-

Control Sgnals

4+ feadCae

df—p Intarfaca i
df-chip davice

Figura 4.2 Diagrama de blocs del bus Avalon

Aquest modul del bus es genera automaticament a través del SOPC Builder, aixi que
el dissenyador tan sols s’ha d’ocupar d’unir els periferics al bus. Aquest bus sempre
sera utilitzat de forma automatica pel processador i s’integrara en el modul del
sistema, tal i com altres periférics. D’aquesta manera com a modul és el conducte

principal de comunicacions entre els components. Aixi doncs, es pot dir que aquest



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 35

bus és la suma de tot el control, de I’arbitratge de les dades i dels senyals d’adreca

gue es connecta junt amb els components creant un sistema.

L’especificacio del bus defineix senyals i temps per a I’enviament de dades entre un
component master i un component slave. Els senyals que son diferents depenent del
tipus de transferencia entre el periféric i el modul del bus, aixi doncs, per a
transmissions de tipus slave, cal saber que I’ activitat dels senyals comencara sempre
en la part master que sera I’encarregada d’inicialitzar la transferencia., pero el port
slave no rebra els senyals d’entrada directament del port master. Per aquesta rad, les

transferencies es diferencien entre transferéncies de tipus master i de tipus slave.

La interficie de sincronitzacio tal i com s’ha esmentat anteriorment és sincrona i esta
controlada per a un rellotge de mateix bus Avalon que actua com a master. Totes les
transferencies del bus s’inicialitzen quan el rellotge esta en fase ascendent i acaba en

el moment en que es capturen les Gltimes dades valides, o bé quan el rellotge baixa.

La configuracid del bus Avalon i dels seus periférics pot ser especificada utilitzant la
interficie grafica que ofereix el SOPC Builder. A través d’aquesta interficie, es poden
especificar diversos parametres i elements que generaran un fitxer de sistema en
format PTF. Aquest fitxer és de text, el qual conté els parametres que contenen la
funcionalitat del modul, els parametres de cada periféric amb la seva funcionalitat, els
rols de master/slave de cada periféric, els ports de lectura i escriptura, i el mecanisme
d’arbitratge per a cada port esclau, aixi com el seu accés. Aquest fitxer és passat al
generador de HDL el qual creara un RTL ( Register Transfer Level ), que contindra la

descripcid del modul del sistema.

Del bus Avalon també es pot comentar que té una interficie de mapeig en memoria.
La relaci6 entre aquests dos components va molt lligada ja que en moltes ocasions, es
vol mantenir una comunicacio entre els components i el processador, i aquesta no pot

ser directa. El sistema proporciona una descripcio d’adreces on es pot llegir i escriure,



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 36

i que tan el component master com el slave coneixen. D’aquesta manera I’esclau es
comunica amb el master a través d’aquestes direccions de memoria.

Aixi doncs, les diferéncies entre I’arquitectura d’un bus Avalon son ben diferents
respecte a les arquitectures tradicionals, en les quals un 0 més busos master o slave,
es connecten a un bus compartit. Un sol arbitre té el control sobre el Us, per evitar que
es produeixin maltiples accessos sobre ell, ja que en els busos de tipus master és
I’arbitre qui s’encarrega de garantir un sol accés simultani. Una vegada aquest té el
control, envia la transferéncia al component esclau. Si hi ha multiples peticions

d’acces al bus, I’arbitre s’encarrega de fer-les esperar.

Master 2
Master 1
Masters DMA
System CPU Controller
Arbitrator
t Bottleneck

| Systermn Bus |

Slaves | UART PIO Program Data
Memary Memary

Figura 4.3 Diagrama de I’arquitectura d’un bus tradicional

Altres elements com els diversos tipus de memaories que es poden afegir al sistema,
tenen molt a veure amb el bus Avalon ja que la interacci6 d’aquesta amb el bus, és un
altre tret destacable d’aquest tipus d’arquitectura. La Figura que es mostra a
continuacid, és un exemple de com han d’estar afegits elements en aquesta

arquitectura.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 37

——
: 5]
Processor Cantrol
Instruction  Data ¢ | DMA Controller
M M © | Read Wirite
A 'y = [ M
1 i A
ML §
AMMA i
System I ISR e :
Interconnect i -
Fabric N -
; L Yy
\,Erb'nramra" \ Arbitrator/
B |
¥
Tri-State Bridge
v L v "'."
[ s | Ls | [ s | roé--.
Instruction Data SDRAM ¥ ¥
Memory Memory Coniraller [5] S
* Ethemet Flash
1 MACFHY Memary
¥ Chip Chip

SDRAM Chip

—= Wiite Data & Contral Signals
------ P Reoad Data

- == Interface to Off-Chip Devica Avalon-MM Slave Part

IEI Avalon-MM Master Port

Figura 4.4 Diagrama d’interconnexio entre els blocs d’un sistema

Tal i com es pot observar els elements de tipus master tenen el bus de dades
multiplexades per a cada dispositiu connectat a ell, aixi doncs la comunicacio sera un
a un, i cada una tindra el seu bus mitjancant transferir la informacié Altres elements
com memories de tipus FLASH, o bé components com pantalles LCD hauran d’anar
connectades a I’arbitre del bus Avalon mitjancant un Tri-State que bypassara la

memoria comentada o bé el component que ho requereixi.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 38

Els sistemes SOPC poden accedir directament a molts tipus de memories RAM i
ROM, sense la necessitat de d’utilitzacio de controladores de memories off-chip. Les
memories off-chip tenen una velocitat d’accés més lenta al dispositiu de memoria,
aixi com més barata i limitada a 32-bit d’espai d’adreca del bus Avalon. Aquests
components faciliten la creacié de sistemes de memoria per al desenvolupament en
plaques d’Altera. El problema o la questid, és que en tots ells és necessari instanciar

un component TriState Bridge.

El component TriState Bridge, és I’encarregat de connectar dispositius al sistema
d’interconnexié on-chip. Crea una serie de senyals d’entrada/sortida al modul del
SOPC Builder on s’hauran de connectar els pins de la FPGA a través del QuartusllI.
Aquests pins representen el sistema d’interconnexi6d cap als dispositius off-chip. A
més a més crea unes adreces i pins de dades els quals estan compartits per a maltiples

dispositius off-chip. Aixi doncs, pel qué fa a I’accés s’assegura I’exclusivitat.



ets E) Creaci6 d’ IP Cores en una plataforma NIOS 39

4.1.2 Procediment

El procediment que es seguira per al treball sobre aquesta plataforma és el que es

detalla a continuacio mitjancant un diagrama:

Nou Projecte Construcci6 Simulacio
Quartusl| > sistema
SOPC Builder
A Connectar el
¥ y modul
Afegir un Connectar Ge_nerar el Qel SopCal
> Components q S|stemfa p| Projecte Quqrtusll
SOPC Builder (Schematic)

[ component >
A 4

Obrir NIOSII Connectar a Compilar el Assignar una
IDE des del [« laplacavia [ projecte < FPGA
SOPC Ruilder JTAG Quartusl| i el connexionat
(PINS)
A
Afegir la logica Compilar el Descarregar
de control C++ > software »|  sobre la placa
dels dispositius

Figura 4.5 Diagrama del procediment emprat

Com es pot comprovar en el seglient diagrama, hi ha una vinculacié directa amb els

passos proposats en I’apartat 3 per a una definicié metodologica per a la creacié d’ IP

Cores i a la utilitzacio dels mateixos.



etse)

Creaci6 d’ IP Cores en una plataforma N1OS 40

Primer de tot, obrim un nou projecte amb I’eina Quartusl|I.

@ Quartus 1 - E:Projecte/CodilbulAccessing_Memory_0II_50_Update/Ref_Design/For_UP3_restored/For_UP3 - For_UP3 - [For_UP 3 bdf] B |
B Fle Ede view Profect Assinments Processing Took Window Help - 8%
D@ |&| % 2@ o o K |[Four M @eB T rvm k@88
Project Mavigator xx | % Eor_UP3.bdt |
Ennﬁ Luéc( h; el T ) Sl
iy Cyekone: EPICI20240C3 | A .
| =2 FolP3 a0 (D 2l%_sdram_pll

o

Lt

)

n']1 .......

= e I i

|

|

{system top
el

{ reget_n
il .--)-I =cl_to_ared_from_the_oc_dc_master_top_0 -
&ald) sdcjoiand:ﬁu-n‘;hejcc:f?c:mdcrﬁjm:ﬂ =

Status x|
Hode Tme®

e_n_bo_the_sram_0[1,0]
cz_n_to_the_LCD
rd_n_to_the_LCD
resd_n_fo_the_sram_0
select_n_to_fhe_cfi_flash_0
seiec]_n_lo_the_sram_0
ri_state_bridge_0_sddress{20.0]
bri_state_bridge_0_byteenablen[1_0)
tri_stote_bridge 0_dete(15.10]
ti_state_bedge_0_readn
wr_fi_to_the LCD
wiite_N_to_the_c1i_fiszh_0 ! .-
wite_n_to the_sram_0 BRI T T T T T R

SR N i

=

ol

%Lﬁulem,ﬂ Fiocesding J\ EAialnio i Info Ji Waming Ji Ciilical Waming Jy Enice i Suppeessed |

ﬁl"»w: 2| &l = s |
Far Help, press F1 i e o Tde [ o

Figura 4.6 Quartusll v5.1 Web Edition Full

Amb aquesta eina que es pot observar en la figura anterior s’obre i es crea o carrega el
projecte en questio. A la figura també es pot veure els moduls afegits al projecte (en
forma d’esquematic) , amb les seves respectives connexions. Els moduls han estat
creats pel SOPC Builder que s’obre amb boto situat a la part superior dreta de la barra

d’eines del Quartus.

Si observem el diagrama de la Figura 4.1, es pot comprovar com el Quartusll és
I’encarregat de la realitzacio dels passos centrals del diagrama, tal i com s’explica en
el paragraf anterior.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS

41

Tot seguit s’obre el SOPC Builder.

Jd' Altera SOPC Builder - system_

top

SE %

Fle Module Swstem MWiew Tools Help

Nios 11 More "cpu_0" Settings | More "sdram_0" Settings | System Generation

| £ Atera SOPC Buider fad |
----- k-] Creste Mew Component.. |
=-Avalon Components

Mioz Il Processor - Alt |

+ idges |

[# Communication

#-D%P

#-Display

[#-EP1C20 Hios Developr |

[#-EP1510 Hios Developry

#-EP1540 Hios Developm

+ EP20K200E Hios Develc |

#-EP2C35 Hios Developr

(#-EP2560 DSP Board Stra

+-EP2560 Hios Developm

~El Camino

-Ethernet

+-Extra WHilities

+ -Interfaces and Periphi

+ -Legacy Components

[#-Math Cobrocessors | ¥ |

3 — [ |

[ an ﬁwr)ilz.hln r'r: nnnnnn e

o 6] %] 0

Targek

Board: :VUnspeclﬂed Board

Device Family: ;Cyclone ~
| Use fodule Mame
Eepu_n
—— inztruction_master
—t data_traster
Jtan_debug_module
[l tri_state_bridge_0
avalon_slave
tristate_master
& jtag_uart_0
| = avalon_tag_slave
Eltimer_0
—|— =1
ElLCcD
avalon_ristate_slave_0
& sram_0
=1
Bl ofi_flash_0
=1
Lol L Fledrans 0

[ & Move Up ]

[ W [Move Down

_— Clock Source MHz Pipeling |
i Ik iExternaI I‘IS‘D | B |}
\ | [ B |
Description Input CI... | Base End IRG

" Mios Il Processor - Aftera Corpara... (Clk ~
Master port |
Master port RGO IRG 31| 4
Slave port 0x00A20000 0x00A207FF)
Svalon Tristate Bridoe clk
Slave port
Master port
WTAG UART clk
Slave port 0x00A20830 0x00A20337|[ 0
Interval timer clk | |
ISIave port 0x00A20800] 0x0042031F|[1 |
|SLS Tri-State 16x2 Character LCD
[Slave port i 0004820, Dx0042052F)
|SLS_UP3_SRAM
|Stave port 0x00A00D00| Ox00A1FFFF)
|Flash Memory (Common Flash Interfa...
[Slave port 0x00800000 0x003FFFFF) —i
lerE and corteatiar e : =)

[7) Done checking for updates.

cpu_D was generated as a time-limited OpenCore Plus module and will time-out unless compiled in Quartus IT with a valid license,
cpu_D: The reset address points ko volatile memary. Execution of undefined code may accur upan reset,

Next =

Generate

Figura 4.7 SOPC Builder

Observant aquesta figura, es pot veure el SOPC Builder el qual s’encarregara de

realitzar els primers passos per a la creaci6 d’un sistema complet. Es aqui on

s’afegiran components nous pel sistema, aixi com la possibilitat de crear-ne i afegir-

ne de nous. En aquesta part doncs, es definira el sistema, i es creara un modul que es

gestionara amb el QuartuslI.

Aquest component sera el més important del projecte, tenint en compte I” arquitectura

comentada en I’Apartat 4.1.1. A part d’aixd0 és on definirem i afegirem els

components creats

al sistema.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS

42

Des d’aquesta mateixa aplicacié podem obrir el NIOS |1 IDE.

-CIC++ - Principal.c - Mios 11 IDE

S

+- |€] Principal.c
|=| application, stf
[ readme.txt

=] E% ProjecteRobatMiosIl_syslb [swstem_t

+- & Archives

+-[12 Includes

{z= Debug

(2 Device Drivers [lib]

(2 Device Drivers [nios2_51]
(g Device Drivers [Ref_Design]
% Device Drivers [sopc_builder]
[=] readme.bxt

[

File Edit MNavigate Search Run Project Tools  Window Help

- @[3 -0-%- |®F |- i

T 88 CiC++ Projects 52 . Navigator | = O |[ J€) Principal.c 52

i Bg - //Includes

El = 1‘Qc ProjecteRobothiosTT #include "altera avalon pwm regs.h”
H £ Binaries #include "altera svalon pwm routines.h"
+- {15 Includes & #include "oc_iZc_master.h”
+- [z Debug #include "system.h'"

#include <stdio.h>
#include <io.h>
#include <uniscd.h>
#include <math.h>
#include <stdlib.h>

// define LCD related parameters

#define LCD_BASE_ADDRESS Ox0D0A20820

//#define LCD_MULTIPLIER  Oxd

#define LCD_WR_COMMAND REG Ox00AZOS20 //0 for Dynamic
#define LCD_RD_COMMAND REG Ux00AZ0824 //1

#define LCD_WR DATA_REG Ox00A20828 //2

| system.stf -
- #define LCD RD DATA REG Ox00AZ032C //3

/4 define LCD Local parsmeters
#define LCD CLE DISPLAY ox1
#define LCD RETURN HOME oxz2
#define LCD_INC_DD_ADDR. ox6
#define LCD_DEC_DD_ADDE ox4
#define LCD MOVE DISPLAY Ox5
#define LCD MOVE_ CURSOR Ox4

Problems | &l Conscle &2 Praperties

Console

£ >

5[ B= outiine 52

o
o
o
o

eRococcoco RN E R ERNFLLELE

ClC++ Indexer: (369%) ¢

=
Bavoe~
altera_avalon_pwm_regs.h A~
altera_awalon_pwm_routines.h |
oc_jze_master.h
system.h
stdio.h
io.h
uniskd.hy
math.h
stdiib.b
LCD_BASE_ADDRESS
LCD_WR_COMMAND_REG
LCD_RD_COMMAND_REG
LCD_WR_DATA_RES
LCD_RD_DATA_REG
LCD_CLR_DISPLAY
LCO_RETURN_HOME
LCO_IMC_DD_ADDR.
LCD_DEC_DD_ADDR.
LCO_MOVYE_DISPLAY
LCD_MOYE_CURSOR
pm_serva
led_wir_cormmand
Icd_wer_data
initialize_lcd
set_lcd dd_address
sek_lcd_dd_data
led_test
SensarsDeterminateDirection
Driver12C 2

Figura 4.8 NIOS 11 IDE

Finalment, en aquesta aplicacio, es creara el projecte software a partir del sistema

generat. Aquest software es compilara i es descarregara sobre la placa perqué pugui

actuar sobre els components que haguem afegit al sistema i gestionar-los.

Val a dir que per a una millor comprensio del procediment seguit, es necessari llegir

els manuals, els quals es fa referencia en la bibliografia d’aquest projecte, en I’apartat

d’ Alterai el seu entorn.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 43

4.2 Disseny dels IP Cores en la plataforma N1OSI|

En aquesta seccid s’explicaran els passos seguits en el disseny dels dos IP Cores
implementats. Els passos que s’han seguit sén els explicats a I’ Apartat 3 d’aquest

projecte, utilitzant les eines facilitades per Altera explicades en la seccid anterior.

Cada IP Core implementat té una serie d’especificacions i necessita d’una série
d’accions per a convertir-se en un component, tal i com s’ha explicat en apartats
anteriors. Primer de tot, es necessita I’element encarregat de efectuar les tasques
logiques i que descriura el hardware. Un cop fet aix0, es necessari definir la
funcionalitat del core a nivell dels registres, i finalment un cop instanciades les
accions anteriors es necessitara un component d’alt nivell que els recobreixi i que

proporcioni la interficie necessaria amb el bus Avalon.

4.2.1 IP Core: PWM ( Pulse Width Modulation )

Pulse Width Modulation (PWM) és una técnica de gran abast per a controlar els
circuits analogics a través de les sortides digitals d’un microprocessador. EI PWM
s’utilitza en molts camps per a una varietat d’accions diferents, estenent-se cap a
camps com les telecomunicacions, la regulacié de voltatge, la conversio d” energia i

els efectes i I’amplificacid de I” audio.

En el camp de les telecomunicacions, I’amplada del pols correspon a les dades
especifiques codificades a una banda i descodificades a I’altre. Els polsos tenen una
llargada diferent perd que seran enviats en intervals regulars. D’altra banda, en el
camp de la regulaci6 del voltatge el PWM és un eficient regulador, ja que



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 44

seleccionant un voltatge d’entrada determinat, juntament amb un cicle de treball

adequat, la sortida sera un voltatge amb el nivell desitjat.

No obstant, en camps com els de la conversio d’energia es poden utilitzar per reduir
la quantitat total d’energia entregada a una carrega sense tenir en compte les perdues
que es tenen quan una font d’energia és limitada per temes resistius. Aix0 és aixi,
perqué I’energia mitjana entregada és proporcional al cicle de treball de la modulacié.
D’aquesta manera amb una modulacié suficientment alta, els filtres electronics
passius es poden utilitzar per a aillar un tren de pols i recuperar una forma d’ona

mitja.

Per altra banda, i com a ultim exemple de camp on s’utilitzen cal esmentar que a
vegades s’utilitza en la sintesis del so. Déna un efecte de so semblant al de una
tornada en una can¢o, o als oscil-ladors lleugerament desintonitzats sonant a la

vegada. Un exemple de la utilitat en aquest camp sén els amplificadors de classe-d
Aixi doncs, aquest driver consisteix en qué a partir de la modulacié d’uns senyals
analogics som capacos de moure components hardware com ara motors, que

evidentment funcionen amb aquest tipus de senyals.

Per fer variar el seu comportament, s’ha de variar el senyal del seu cicle de treball,

aixi que depenent de la carrega que se li indiqui treballara d’una forma o d’un altre.

clk mw
3 pwm_clock_divide = 10 {+1)- - —
I pwm_duty_cycle =7 -+ L
pwrm_out _l .

Figura 4.9 El senyal basica del Pulse Width Modulation




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 45

En aquesta figura es pot veure la forma del senyal PWM. Un component d’aquest
tipus genera com a sortida una ona quadrada amb la modulaci6 indicada, depenent del

cicle de treball que se li hagi aplicat.

El component que s’ha especificat i creat per a aquest projecte segueix les segiients

especificacions:

- Latasca logica opera de forma sincrona amb I’Unic rellotge existent.

- La tasca logica utilitza comptadors de 32 bits per a oferir un rang prou
ampli per a configurar diversos periodes PWM i cicles de treball.

- El processador sera I’encarregat d’assignar el valor del periode PWM i del
cicle de treball. Aquests requeriments impliquen la necessitat de llegir i
escriure en la interficie per a controlar la logica.

- Registrar els elements que estan definits per a mantenir el valor de periode
i el valor del cicle de treball del PWM.

- El processador pot parar la sortida PWM utilitzant el bit de control enable.

A continuaci6, es pot observar I’esquema del component implementat, seguint

I’estructuracié anterior.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 46

Interficie Bus Avalon

| Il

Registre valor
cicle de treball

Registre de control d’estat

Comptador de cicle

Controladora Sortida

l Sortida PWM

Figura 4.10 Arquitectura del IP Core: Pulse Width Modulation

Tal i com es pot observar en la figura anterior, el IP Core en questio, esta dotat de les
tres seccions esmentades. La tasca logica la composen els comptadors de cicles i la
controladora de sortida, la qual s’encarregara de generar el senyal de sortida de pols.
Per altra banda, els registres contindran la informaci6 de del valor del cicle de treball
amb el qual es treballara i si esta o no actiu. Finalment, la interficie amb el bus
Avalon sera I’encarregada de traduir els senyals que li arriben per uns altres els quals

el driver podra treballar-hi.

La tasca logica d’aquest component té les segiients caracteristiques:



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 47

- La tasca logica consisteix en un rellotge d’entrada (clk), un senyal de
sortida (pwm_out), un bit d’ enable, un comptador de 32-bits i un circuit
comparador també de 32-bits.

- Elsdrivers del rellotge, estableixen el periode d’un senyal pwm_out.

- El comparador compara el valor actual amb el cicle de treball i determina
la sortida del pwm_out.

- Quan el valor actual és inferior o igual que el cicle de treball, la logica del
pwm_out és 0, per altra banda, el valor logic del driver sera 1, en altres

Casos.
Modulo-n Counter
- Madulo-n
i Value Register
Reset i .
Avalon-MM Enable Clock Enabl =
Slave Port g Control OCK ENADE |y, Up Counter i
Signals Register
9 g Master Clock! g,
( --\\l—pPWM
» q_"/ Output
- Duty Cycle
= Value Register

Figura 4.11 Estructura de la tasca logica del PWM

Pel qué fa als registres, son els encarregats de facilitar I’accés al bit d’enable, el
modul del registre que conté el valor i el cicle de treball, tal i com es pot veure en la
figura anterior. EI mapeig de cada registre cap a una unic offset en I’ espai de
memoria del bus Avalon és imprescindible. Cada registre ha de poder tenir permisos
de lectura i escriptura, el que significa que el software pot llegir valors antics
préviament escrits als registres. D’aquesta manera podran interactuar els dispositius

amb el software, ja que el processador podra llegir en memoria el que li diu cada



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 48

component esclau. Aquesta és una consideracid que s’ha tingut en compte aqui, tot i
gue també es podria plantejar que els registres fossin només d’escriptura, cosa que
faria que es conservaria la logica dels dissenys on chip, pero d’altra banda faria

impossible pel software llegir els valors dels registres, impossibilitant la interaccio.

El fitxer dels registres conté basicament els registres que es mostren en la taula
seguent, on es pot comprovar que es necessitaran dos bits de codificacié per a un
correcte adrecament.

Nom del registre | Offset Accés Descripcid

clock_divide 00 Lectura/Escriptura | EI numero de cicles de rellotge
comptats durant un cicle de
sortida del PWM

duty cycle 01 Lectura/Escriptura | EI numero de cicles de rellotge
en els quals la sortida PWM

sera baixa

enable 10 Lectura/Escriptura | Habilita/Deshabilita la sortida
PWM. Posant el bit de 0 a 1
s’habilita el PWM

reservat 11 -

Figura 4.12 Fitxer de registres i mapeig de les adreces

Per a poder llegir o escriure els registres tan sols es requereix un cicle de rellotge, que

afectara als estats d’espera de la interficie Avalon.

La interficie Avalon per al component PWM requereix un port esclau, utilitzat per a
efectuar les lectures i les escriptures en les transferencies als registres. El port esclau

del component té les seglients caracteristiques:




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 49

- Es sincron amb el rellotge del port esclau.

- Es pot llegir i escriure en ell.

- No té estats d’espera per a la lectura i I’escriptura, perqué els registres
estan capacitats de respondre a les transferencies en un cicle de rellotge.

- No hi ha restriccions per realitzar una lectura i/o escriptura.

- Latencia en la lectura no és necessaria, perque totes les transferéncies

poden realitzar-se en un cicle de rellotge.

Aixi doncs, la llista de senyals requerits per a la implementacié d’aquestes propietats
de les transferéncies sén les que es poden veure a continuacio, i que també son el nom

dels senyals que estan definits en el disseny HDL.

Nom del senyal en Tipus de Amplada | Direcci6 Descripcio
HDL senyal Avalon de bits
Clk clk 1 Entrada | Rellotge que

sincronitza les dades
de les transferéncies

amb la tasca logica

resetn reset_n 1 Entrada | Senyal de reset; activa
a baixa

avalon_chip_select | chipselect 1 Entrada | Senyal de chip-select

address address 2 Entrada | 2-bit d’adreca; només

3 codificacions sén

possibles

write write 1 Entrada | Senyal d’enable

d’escriptura

write_data writedata 32 Entrada | 32-bit valor de les

dades a escriure

Read read 1 Entrada | Senyal d’enable de

lectura




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 50
read_data readdata 32 Sortida | 32-bit valor de les
dades a llegir

Figura 4.13 Nom dels senyals del PWM i tipus de senyals del bus Avalon

| Finalment, i per a completar el component és necessari disposar dels fitxers de
capcalera que defineixen el mapeig dels registres, i un driver software pel

processador NIOSII. Les funcions del driver s’exposen a continuacio:

Funcio Descripcio del tipus
Altera_avalon_pwm_init(); Inicialitza el hardware del PWM
Altera_avalon_pwm_enable(); Activa la sortida del PWM
Altera_avalon_pwm_disable(); Desactiva la sortida del PWM
Altera_avalon_pwm_change_duty_cycle(); | Canvia el cicle de treball del PWM

Figura 4.14 Funcions del driver PWM

Aquestes funcions permeten la comunicacid entre I’alt nivell i el component,
facilitant la feina del dissenyador. Un cop s’esta treballant a alt nivell, a través del
NIOS Il IDE, i durant el procés de disseny d’una logica de control es poden utilitzar
aquestes funcions. Tal i com la descripcié indica, cada funcié realitza el treball

indicat.

Un cop arribats en aquest punt, ja es tenen totes les especificacions del driver PWM.
Tan sols faltara realitzar la unié per a obtenir un component Gnic, que sera el que es

podra unir al sistema, i utilitzar-lo segons les necessitats desitjades.




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 51

4.2.2 1P Core: 12C ( Inter-Integrated Circuit )

El bus 12C és un bus de comunicacions multi-master série inventat per Philips. El
seu nom prové de Inter-Integrated Circuit. S’utilitza per afegir periférics de baixa

velocitat a la placa base, al sistema o en altres dispositius.

Es un bus molt utilitzat en la industria, principalment per a comunicar
microcontroladores i els seus periferics en sistemes empotrats (embedded), i
generalitzant més, per a comunicar circuits integrats entre si que normalment
resideixen en un mateix circuit imprés. Es un bus que encaixa molt bé en aplicacions
que requereixen la comunicacié entre dispositius que estan en distancies curtes. A
més a més, detecta col lisio, arbitra i prevé de la corrupcié de les dades si dos

dispositius master intenten agafar el control del bus de forma simultania.

Els dispositius connectats al bus 12C tenen una adreca Unica. Cada un d’ells pot ser
master o slave. El dispositiu master inicia la transferéncia de dades i és a més a més
el qué genera el senyal de rellotge., pero no és necessari que el master sigui sempre el
mateix dispositiu, ja que és una caracteristica que poden adoptar tots els dispositius

que tinguin aquesta capacitat, i per aixo se I’anomena multi-master.

La principal caracteristica del 12C és que tan sols utilitza dos fils els quals li permeten
transmetre la informacié de forma bidireccional. Per un van les dades i per I’altre el
senyal de rellotge que serveix per a sincronitzar-les. També és necessaria una tercera
linia que és la de terra. Com s’acostumen a comunicar circuits d’una mateixa placa

que comparteixen el mateix terra, aquesta linia no sol ser necessaria.

Les linies s’anomenen SDA (Serial DAta line), i SCL (Serial CLock line). Les dades
son transmeses entre el dispositiu master i el dispositiu slave de forma sincrona a
través de la linia SCL cap a la linia SDA byte a byte. Cada byte de dades té una mida

de 8 bits. Cada pols de la linia de rellotge SCL es transmetra un bit i I’ordre sera del



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 52

més significatiu al menys. Un bit d” acknowledge seguira cada transferencia de bytes.
Cada bit és transmes durant el periode alt de la linia SCL; per tant la linia SDA ha de
canviar Unicament durant el periode de baixa de la linia SCL que ha de mantenir-se
estable, durant el seu periode a alta. Una transicio en la linia SDA mentre la linia SCL

esta a alta és interpretat com un senyal de inici o fi de transmissio.

D’aquesta manera el protocol de comunicacions té la forma segient, i es detalla a

continuacio:

MsB LZB

LZB MZB
L/ AR AR AT T

SDA o5 ar Y ae Y e W aa W Wt WawNack/ o7 ¥ e X o5 X o4 Y o2 W oo W ot X oo ety

Figura 4.15 Protocol 12C

- El bus esta lliure quan les linies SDA i SCL estan I’estat logic alt.

- En I’estat de bus lliure, qualsevol dispositiu pot ocupar el bus 12C com a
master.

- El master comenca la comunicacié enviant un senyal que indica I’ inici
d’una transmissié de dades. Aquest senyal consisteix fer una transicié de
altes cap a baix de la linia SDA mentre la SCL segueix estan a I’estat logic
alt. Aix0 activa els dispositius esclaus que esperen una transmissio. La
repeticio d’un senyal de inici sense generar un senyal de STOP,
significaria que el master vol comunicar-se amb un altre dispositiu slave o
amb el mateix en una direccié de transmissio¢ diferent, sense alliberar el
bus.

- El primer byte de dades transmes pel master immediatament despres del
senyal d’inici és I’adreca del dispositiu esclau. Hi ha 7 bits d’adreca
seguits per un bit de lectura/escriptura. Aquest bit indica la direcci6 de la
transmissié de dades. Dos components esclau no poden tenir la mateixa

adreca en el mateix sistema. D’aquesta manera tan sols el esclau que tingui



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 53

I’adreca corresponent transmetra un bit d’ acknowledge activant la linia de
dates a baixa al nove cicle de rellotge del SCL.

- Una vegada finalitzada I’etapa d’adrecament ja es pot procedir a la
transferencia de dades byte a byte, en la direccio especificada pel bit de
RW enviat pel master. Cada transferéncia de bytes és seguida per un bit d’
ACK al nové cicle de rellotge de la linia SCL. Si per algun motiu, el
dispositiu esclau envia un senyal de NACK, el dispositiu master pot
generar un senyal de STOP que abortara la transferéncia de dades o
generara un altre START per iniciar un nou cicle de transferéncia. Per a
escriure dades a I’esclau, s’ha d’emmagatzemar les dades a ser transmeses
en el registre de transmissio i activar el bit de WR.

- Finalment, el master pot acabar una comunicacio, generant un senyal de
STOP. Un senyal de STOP es pot generar realitzant una transicio de baixa

a alta de la linia SDA mentre la linia SCL esta en I’estat logic 1.

Un cop vist el protocol de transmissio de dades a traves del bus, i tal i com s’ha
comentat en I’ inici, el bus 12C és un bus que permet que varis dispositius master
estiguin connectats a ell. Si dos 0 més dispositius intenten controlar el bus de forma
simultania, un procediment de sincronitzacié del rellotge es posa en marxa i
determina el rellotge del bus. Les transicions d’alta a baixa afecten a tots els
dispositius connectats al bus, per tant un cop un dispositiu hagi fet la transicio a baixa

mantindra la linia SCL en aquest estat fins que el rellotge no arribi a I’estat d’alta.

Veient aixo s’entén que la linia SCL és una linia que és la conjuncié de totes les
sublinies SCL que cada dispositiu mater té. En la figura que es mostra a continuacio

és pot observar aquest procediment.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 54
=
SCL1 Master1 SCL
SCL2 A Master2 SCL
SCL i ) ; \ wired-AND SCL

Figura 4.16 Arbitratge linia SCL

D’altra banda els dispositius esclau poden utilitzar el mecanisme de sincronitzacio del
rellotge per a alentir la transferéncia de bits. Una vegada el master a posat a baixa el
senyal SCL, I’ esclau pot posar el senyal SCL a baixa per un periode de temps
requerit i tot seguit alliberar-lo. Si el periode a baixa del senyal SCL de I’esclau és
més gran que la del master, el resultat és que el senyal SCL del bus a baixa s’estira.

Es aixi com s’insereix un estat d’espera.

Aixi doncs, després de comentar com funciona el bus 12C anem a centrar-nos en
I’arquitectura del component i al qué faran cada una de les parts d’aquest. EI IP Core
construit a partir de 3 blocs: el primer el formen el generador de rellotge, la
controladora de bytes, la controladora de bits, que basicament corresponent a la tasca
logica del component. El segon bloc és que s’encarrega de comunicar-se amb els
registres, o sigui que transmet els senyals des de la logica de control fins a I’exterior, i
finalment la interficie del bus Avalon, que és el tercer bloc i s’utilitzara per a realitzar
la transferéncia requerida a traves de la tasca logica tal i com s’ha definit en I’
Apartat 3.



ets E) Creaci6 d’ IP Cores en una plataforma NIOS 55

Interficie Bus Avalon

T U o U il

Recepcio Transmissio Registre Registre Assignar
Registre Registre d’estat de comandes Registre
Entrada de dades Controladora de
als registres 1/0 comandes de bytes
“ TT il

Controladora de N Generador
N Comandes de bits »| De Rellotge
SCL SDA

Figura 4.17 Arquitectura del IP Core 12C

El generador de rellotges s’encarrega de generar els senyals d’enable que
sincronitzara els elements a transmetre en el transmissor de bits. D’altra banda també
s’encarrega d’alentir les transferencies per a dispositius més lents, aguantant el cicle

de rellotge.

El controlador de bytes agafa el transit de dades de nivell de byte. Agafa les dades del
registres de comandes i les tradueix en sequéncies basades en la transmissié d’un
byte. Tot seguit s’encarrega d’enviar aquest byte trossejat en forma de bits cap a la

controladora de comandes de bits.



ets E) Creaci6 d’ IP Cores en una plataforma NIOS 56

A

A 4

Estat d’espera

ol

Sl

o>

N

A

Estat START

Generat START

Sl

NO

NO ’
Estat WRITE
A

N

NO

Bit ACK R/W

Sl

A,

Estat ACK

Byte Llegit

Estat READ

!

Figura 4.18 Diagrama de flux de la controladora de bytes

La controladora de comandes de bits agafa la transmissié actual de dades i genera els
senyals especifiques de inici, un inici repetit i aturada controlant les linies SCL i
SDA. La controladora de bytes li diu a la de bits quina operacié ha de realitzar. Per a
una simple lectura, la controladora de bits rep 8 comandes de lectura . Cada operacio
de bit és dividida en 5 parts, exceptuant la de STOP que és divideix en 4 tal i com es

veu en la figura segiient, on les parts sén idle, A, B, Ci D.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 57

START (Inici)

Rep START (Repeticio SDA ﬁ

d’inici)

STOP (aturada) :

WRITE (escriptura)

READ (Lectura)

Figura 4.19 Controladora de comandes de bits

El component d’entrada de dades al registre conté les dades associades a la
transferencia actual. Durant una acci6 de lectura, entra en la linia SDA. Després que
un byte ha estat llegit els continguts sén copiats al registre de recepcié. Durant una
accié d’escriptura, els continguts del Registre de Transmissio son copiats en aquest

modul i sén transmesos a la linia SDA.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 58

Aixi doncs, un cop analitzat el component, a nivell funcional, s’ha d’examinar el

conjunt de senyals que el componen. Els primers senyals que toca analitzar sén les

referents a la interficie i el mapeig que es fa d’elles per tal que el bus Avalon pugui

comunicar-s’hi, aixi com les que té la interficie i utilitza per comunicar-se amb el

registres.

Nom dels senyals Tipus de Amplada | Direccid Descripcid
en HDL senyal Avalon | de bits

wb_clk i Clk 1 Entrada | Rellotge master

whb_rst_i ‘0’ 1 Entrada | Senyal sincrona de
reset, activa a alta

arst_i reset_n 1 Entrada | Senyal de reset
asincrona

wb_adr_i address 3 Entrada | Adreca de bits

wb_dat_i writedata 8 Entrada | Dades cap al dispositiu

wb_dat o readdata 8 Sortida | Dades des del
dispositiu

wb_we i write 1 Entrada | Senyal d’enable
d’entrada

whb_stb i chipselect 1 Entrada | Senyal de seleccio
d’entrada

wb_cyc i chipselect 1 Entrada | Senyal de cicle de bus
valid

wb_ack o waitrequest_n 1 Sortida | Senyal d” ACK de
sortida

wb_inta_o irg 1 Sortida | Senyal d’interrupcio

de sortida

Figura 4.20 Senyals de la interficie de comunicacié amb els registres




ets E) Creaci6 d’ IP Cores en una plataforma N1OS 59

Pel que fa al bus Avalon només te contacte amb els senyals exteriors. Els senyals que
necessita son els SDA i SCL ja comentats amb anterioritat. Com es pot veure en la
figura segiient hi ha dos senyals, més per linia, que s’utilitzaran en cas que hi hagi

retorn de dades per part del dispositiu.

Nom del senyal en Tipus de Amplada | Direcci6 Descripcié
HDL senyal Avalon de bits
scl_pad_i scl_pad_i 1 Entrada | Linia d’entrada del

senyal série de rellotge

scl_pad_o 1 Sortida | Linia de sortida del
senyal serie de rellotge

scl_pad_oe 1 Sortida | Linia de sortida
d’enable del senyal

serie de rellotge

Sda_pad_i sda_pad_i 1 Entrada | Linia d’entrada del

senyal série de dades

Sda pad o 1 Sortida | Linia de sortida del
senyal série de dades

Sda_pad_oe 1 Sortida | Linia de sortida
d’enable del senyal

serie de dades

Figura 4.21 Senyals de la interficie amb el bus Avalon

Els senyals SDA i SCL son bidireccionals. Per tal de controlar-los per realitzar
transferéncia de dades en ambdoés sentits cal introduir un buffer tri-state, per a aquests
senyals com a nivell jerarquic més alt. Les connexions es faran d’acord a la figura que

es mostra a continuacio:




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 60
scl_pad_i ‘
scl_pad_o x::} SCL
L _j
T

scl_padoen_o
sda_pad_i

sda_pad_o 4[ > SDA
o)

sda_padoen_o

Figura 4.22 Bidireccionalitat senyals 12C

A través d’aquests buffers, es permet la transmissié de dades en un o altre sentit.
D’altra banda, per a dissenys amb FPGA el compilador pot inserir de forma
automatica aquests buffers utilitzant codi en HDL com es mostra tot seguit a fi

d’exemple.

scl <= scl_pad_o when (scl_padoen_oe
sda <= sda_pad_o when (sda_padoen_oe
scl_pad_i1 <= scl;

scl_pad_i1 <= sda;

“0”) else “Z7;
“07) else “Z7;

Si es baixa de nivell s’arriba al nivell dels registres. En aquest nivell també hi ha una
assignacio d’aquests amb els moduls que tracten la tasca logica o driver del IP Core.
Aixi doncs, a continuacié s’enumeren el conjunt de registres del component i una

breu explicacio6 de cada un d’ells.

Nom del registre | Offset Accés Descripcio

PRERIo 8 Lectura/Escriptura | Estableix el registre del rellotge
a byte baix

PRERNhi 8 Lectura/Escriptura | Estableix el registre del rellotge




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 61
al byte alt
CTR 8 Lectura/Escriptura | Control del registre
TXR 8 Escriptura Registre de Transmissid
RXR 8 Lectura Registre de Recepcid
CR 8 Escriptura Registre de comandes
SR 8 Lectura Registre d’estat

Figura 4.23 Descripcio dels registres

El registre d’assignacid de registre PRERIlo i PRERNhi, s’utilitzen per assignar el
rellotge a la linia SCL. S’assignen les frequiencies i es canvien els valors assignats del

registre tan sols si el bit d’enable esta actiu.

El registre de control respon a les noves comandes només quan el bit d’enable esta
actiu, i informa quan les comandes han finalitzat. ElI senyal d’enable desactivat

indicara que no hi ha transferencies actives.

Pel que fa als registres de transmissio i de recepcio contenen la informacié en forma
de byte que s’ha transmes o rebut, en cada cas. En el cas de la transmissio té la
particularitat que el bit menys significatiu indica que si hi ha un 1, és que la

transmissio és per a llegir de I’esclau, mentre que si hi ha un 0 és per escriure-hi.




etse)

Creaci6 d’ IP Cores en una plataforma NIOS 62

4.3 Resultats, problemes i solucions

Durant el desenvolupament d’aquest projecte han anat sorgint diversos
imprevistos que es comentaran en aquest apartat. Com ja s’ha comentat tan en la
introduccid, i tal i com s’havia contemplat en I’estudi de viabilitat del projecte, el fet
de treballar amb hardware és una dificultat afegida, ja que aquest sempre pot provocar
algun error, aixi com que el software que el gestioni tingui algun tipus d’error a causa

d’una mala programacio.

El primer problema greu, es va trobar al principi. Durant el procés d’analisi, en el
qual es varen realitzar diversos sistemes de prova, I’entorn d’Altera va comengar a
actuar de forma estranya. El problema residia en la impossibilitat de poder
descarregar el sistema creat a la placa, i un cop la llicencia de I’aplicacié es va
renovar per caducada el comportament encara va empitjorar. La reinstal-lacio de
I’entorn i de tots els components instal-lats, va solucionar el problema. A data d’avui,
encara es desconeix I’arrel del problema, perd aquest cas es va reproduir per a 3
ordinadors més, fet realment sorprenent i que encara va desconcertar més. La perdua

de temps en aquest cas va ser notable.

Els problema generat a partir del punt anterior té I’estructura que es mostra a
continuacid. Durant el pas del sistema a la placa en a través del NIOSII IDE es

produia el seglent error, tot i compilar tot el sistema de forma correcta.

Using cable "ByteBlaster [LPT1]', device 1, instance 0x00
Pausing target processor: OK
Reading System ID at address 0x02120FFF: verified

Downloading OAO00000 ( 0%)
Downloading 0OA000020 (99%)
Downloaded 86KB in 1.1s (78.1KB/s)



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 63

Verifying 03000020 ( 0%)
Verify failed
Leaving target processor paused

Per tant, el processador mai acabava d’arrencar i executar el sistema. D’altra banda,

també s’ha donat el problema seguent referent a problemes amb JAVA.

(SEVERE) generate: java.lang.lllegalStateException:

jJava.lang.l1llegalStateException

La reinstal-lacié després d’aquest tipus d’errors es fa necessaria, ja que tenint tots els
components instal-lats correctament, i sense haver efectuat cap accio susceptible

d’error, aquests problemes resulten greus i de dificil solucio.

Permisos de lectura i escriptura. La majoria de fitxers que gestionen les aplicacions
Quartusll, SOPC Builder i NIOSII IDE necessiten permisos d’escriptura. Es
necessari, ja que aquestes eines escriuen en els fitxers com a part del procés de
generacio i compilacid, i per tant si no tenen algun d’aquests permisos les eines
fallen, provocant errors inesperats. Un error d’aquest estil s’ha trobat intentant obrir
el projecte: Error: Can't open project -- you do not have permission to write to all the
files or create new files in the project's database directory. Aquest error, el provoca el
Windows XP en conjuncié amb Altera. El sistema operatiu, canvia els permisos del
directori del projecte a read only. Si s’intenta modificar els permisos a ma, a través de
les propietats de carpetes i fitxers del S.O, el Quartus a I’ intentar obrir el projecte
retorna els fitxers amb permisos de només lectura. La solucid consisteix en crear un

executable .bat, que contingui la segtient informacio:

attrib -R /S /D *
attrib -R /S /D .



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 64

Aquestes dues comandes faran que el sistema operatiu canvii realment els permisos

dels fitxers que resideixen en el directori del projecte.

Cada sistema que es pugui crear en I’entorn d” Altera va directament lligat a la placa
que s’utilitza. En el cas d’aquest projecte s’ha utilitzat la placa de la familia Cyclone i
més concretament el model EP1C12Q240C8. Aixi doncs, s’ha hagut d’adaptar el
sistema a la placa en alguns aspectes, que en un principi no s’havien tingut en
compte, aixi com indicar-li a I’aplicacio de quina placa es tracta. EIl sistema creat
conté un modul de memoria SDRAM, que no funcionava correctament al intentar
interactuar-hi. EIl problema s’ha solucionat modificant la fase del rellotge a -90°, en
comptes de -60,75° que es el valor amb el que es carrega el modul per defecte, i que
provoca problemes critics amb els timings del sistema.

De la mateixa manera, i per les particularitats del model de la placa s’ha tingut que
modificar les connexions entre els pins d’aquesta. Per defecte es realitzen les
assignacions que determina el Quartusll, encara que en ocasions no son correctes, 0

bé no s’adapten al sistema creat.

Els problemes esmentats en els Gltims dos paragrafs es poden trobar documentats als
datashits d’errors que es poden trobar a la pagina web d” Altera.

La inclusié d’un element Avalon Tristate Bridge. Aquest component connecta
dispositius off-chip cap a sistemes on-chip a través del bus Avalon. Aquest
component ha solucionat el problema de comunicacié de components off-chip
inclosos al sistema com ara la pantalla LCD o memoria SRAM, ja que sense el
dispositiu el sistema no permetia generar una solucio correcta donant error. El pont en
questio doncs, crea adreces i pins de dades que poden ser compartits per a multiples
dispositius off-chip. Aquesta opcié permet conservar els pins del processador quan

aquest es connecta a multiples dispositius amb exclusié mutua d’accés.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 65

La placa UP3 en I’entorn educatiu presenta un inconvenient de treball greu quan es
volen fer aplicacions autonomes. Durant la planificacié inicial d’aquest projecte es va
plantejar la possibilitat que el sistema creat, gracies als dos nous cores creats pogués
ser autonom i actuar com un robot intel-ligent. La opcié es mantenir fins que es va
veure que era inviable. La problematica recau en el fet que la placa UP3 ha d’estar
permanentment connectada al PC a través del port paral-lel. Aquesta connexié ha
d’existir ja que sino la placa deixa de funcionar. Es un problema pel fet que no déna
un grau més de llibertat per a I’experimentacio, amb aquest tipus de dispositius, i el fa

menys flexible.

L’ entorn d’Altera no destaca precisament per fer un s racional o optim de la
memoria. Els entorns de programacié que descarreguen els sistemes a la placa,
utilitzen molts recursos, que les FPGA no acaben de gestionar de la millor manera. El

mal Us d’aquesta memoria pot provocar problemes d’overflow.

Com a nota positiva, val a dir que es pot descarregar el sistema en el tipus de
memoria que es desitgi poden interactuar amb la que més interessi segons el sistema
programat. No obstant, les memories que puguin tenir els sistemes no poden
comunicar-se entre elles de forma directa, en cas de necessitar simultaneitat en I’Us de
memories durant I’excussié d’una aplicacid. Aixo, és un problema ja que condiciona
el programador a I’hora de crear una aplicacio fent que aquesta hagi de crear ponts de
comunicacio entre els diferents tipus de memories que es volen utilitzar i esperar que

No succeeixi cap error.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 66

4.4 Proves

Aquest apartat pretén comentar les proves realitzades sobre I’entorn d’Altera. Per
a comprovar el correcte funcionament dels IP Cores s’ha creat un sistema senzill que
es composa d’elements de memoria, el processador, el connector JTAG, entre

d’altres, aixi com els dos components que s’han creat.

Primer de tot, s’ha provat que el sistema funcionés correctament a nivell de totes les
memories que el composen, LEDs i pantalla LCD. Un cop comprovat que el sistema
funciona correctament, s’han afegit els dos nous components. D’aquesta forma, un
s’assegura que el sistema és correcte i que els possibles problemes que sorgeixin un

cop afegits els components, no siguin a causa d’un sistema corrupte.

Per a provar el driver de PWM s’ha utilitzat un servo-motor. Aquest servo-motor
funciona a través de la modulacié de pols, cosa que encaixa amb el core creat. Les
proves amb aquest component han funcionat de forma parcial. A través de les
verificacions fetes sobre el driver s’ha comprovat que aquest funciona correctament,
pero al passar-lo com a component a la placa, aquest actua de forma estranya a causa
del soroll que el servo provoca. El soroll EMI (Electromagnetic Interference) és tal
que fa que el servo no acabi de girar en les direccions indicades, i per tan s’ha

necessitat d’un altre sistema per a validar-lo.

Per visualitzar millor el comportament del driver en la placa UP3, s’ha redirigit la
sortida del PWM a un LED situat a la placa. S’ha anat modificant el cicle de treball
del PWM i d’aquesta manera es veu com el LED es va apagant i encenent segons el
pols enviat. Aixi doncs, s’ha pogut validar el correcte funcionament d’aquest IP

Core.



ets E) Creaci6 d’ IP Cores en una plataforma N1OS 67

Per altra banda, per la validacié del driver de 12C s’ha utilitzat un compas magnetic.
Aquest component es comunica a través d’aquest bus amb el sistema. S’han efectuat

les proves pertinents, consistents en llegir les dades que transmet el compas a través

del bus.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 68

5. CONCLUSIONS | MILLORES

5.1 Conclusions

Altera és I’empresa lider en la programaci6 de dispositius logics i programables,
aixi com també, pionera en la utilitzacio d’aquests dispositius. Sabent aquesta dada,
hom té clar que una empresa d’aquesta envergadura ajustara els seus productes a les
necessitats dels usuaris, pero partint d’una série d’especificacions que es poden
permetre el luxe d’escollir. Aixi doncs, la definicié metodologica per a la creaci6 de
IP Cores ha estat basada a partir de I’estudi i la realitzacié d’aquests cores, partint de

les especificacions i necessitats que un entorn peculiar com el d’Altera proporciona.

La creacio d’un manual, o d’una definici6 metodologica complerta a seguir per a la
creacié d’un component en aquest entorn, ha esdevingut una tasca realment
complexa. A pesar de la gran quantitat d’informacié que proporciona Altera, no hi ha
un manual complet on es puguin trobar els passos concrets per a la creacio d’un IP
Core. Consequientment, la tasca d’analitzar I’entorn i els documents, aixi com el munt
d’idees que es desprenen d’ells, ha dificultat el fet d’escriure aquests passos en un full

de paper, a fi de tenir aquesta informacio centralitzada.

La utilitzacié de la soluci6 SOPC (System On a Programmable Chip) que
proporciona Altera ha fet que s’aprengués una manera de resoldre els problemes de
disseny en la creacid de sistemes. Utilitzant el SOPC en el sistema creat, s’han pogut
veure el conjunt d’avantatges i inconvenients que son consequéncia de I’Us d’aquest
entorn, aixi com de la seva arquitectura. Gracies als dissenys de multiples moduls 1P
per a optimitzar el disseny hardware, s’ha pogut simplificar molt la feina de creacio

d’un sistema per a poder adaptar els nous IP Cores creats.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 69

Pel que fa al disseny s’ha comptat amb unes eines de desenvolupament realment
bones, a pesar dels problemes que han generat. EI Quartusll i el SOPC Builder
faciliten I’Gs i la modificaci6 de canvis en el hardware, depenent de I’aplicaci6 que es
vulgui crear. Per exemple, en el sistema desenvolupat en aquest projecte, la
flexibilitat de I’entorn ha facilitat el fet de poder afegir dos nous components al
sistema, aixi com decidir quins components s’hi afegien i quins no. Aquesta forma de
disseny s’entén que és més economica que d’altres, ja que no s’ha de comprar
hardware addicional per a completar el sistema creat, sind que tan sols requereix

canviar la configuracio del software del processador N10OS.

No obstant, dona la sensacié que les eines de desenvolupament del software per a
NIOS podrien ser molt millor. Per exemple, la codificacio, la compilacio i les eines
per depurar estan separades, fet que dificulta al dissenyador treballar d’una forma

eficient. Integrant aquestes eines, es garantiria una millora en I’eficiéncia de disseny.

Utilitzant el kit de desenvolupament de la plataforma NIOS, s’ha trobat relativament
facil el fet de connectar els nous components a la logica establerta per Altera. La
interficie del bus Avalon no ha estat complicada d’entendre, encara que diferis de
I’arquitectura tradicional. D’altra banda, i a pesar dels problemes, el kit UP3 es pot
considerar com a una bona placa a nivell estudiantil, per la quantitat d’opcions que
ofereix i la personalitzacio que qualsevol usuari li pot donar per a crear el seu propi

sistema.

D’aquesta manera, es considera que I’Gs del kit de desenvolupament NI1OS ha facilitat

el desenvolupament del sistema plantejat a partir de la metodologia creada.

També és molt important remarcar el fet que els IP Cores dissenyats, poden ser
utilitzats per a altres dissenyadors de components en els seus sistemes. La grandesa
d’una descripcio genérica de creacid d’aquests drivers recau, en gran part, en el fet de

poder compartir dissenys perqué d’altres puguin gaudir d’aquest treball. Es important,



etse)

Creaci6 d’ IP Cores en una plataforma NIOS 70

en una societat com la d’avui dia, compartir, ja que no cal reinventar la roda cada

vegada.

5.2 Millores

Es pot considerar que els objectius principals plantejats a I’inici s’han complert.
La definicié d’una metodologia per a la creacié d’ IP Cores, era el punt clau sobre el
qual girava el projecte i s’ha pogut realitzar de forma satisfactoria. Per contra, hi ha
hagut punts que son susceptibles de millora, sobretot els referents a la component

practica d’aquest estudi.

A partir del projecte es deriva la metodologia que cal seguir pel desenvolupament de
drivers més complexes com ara: un lector de targetes SD, el d’una pantalla LCD o el
d’un teclat, podrien ser IP Cores més robusts que haurien aportat més sofisticacié al

projecte.

Quant al sistema creat, s’havia planejat un disseny de molta més envergadura o si més
no, més robust a I’inici, pero va resultar impossible de dur-lo a terme per culpa dels
temps establerts i dels recursos dels que es podia disposar. En un altre ocasio, es fara

un sistema més potent.



etse)

Creaci6 d’ IP Cores en una plataforma NIOS

71

6. BIBLIOGRAFIA

Altera i el seu entorn

- Altera

http://www.altera.com/

- Altera
http://en.wikipedia.org/wiki/Altera

- Quartusll HandBook version 7.0
http://www.altera.com/literature/hb/qts/qts gii54007.pdf

- Entorn d’Altera

http://forum.niosforum.com/forum/

- Forum d’ Altera

http://www.alteraforum.com/index.php

- NIOS Forum Community

http://www.niosforum.com/

- Soft-cores
http://cephis.uab.es/resources/pdf/papers/JCRA 2006 UFCpp.pdf

- Niosll assembler examples

http://instructl.cit.cornell.edu/courses/ece576/Niosll asm/index.html



http://www.altera.com/
http://en.wikipedia.org/wiki/Altera
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://forum.niosforum.com/forum/
http://www.alteraforum.com/index.php
http://www.niosforum.com/
http://cephis.uab.es/resources/pdf/papers/JCRA_2006_UFCpp.pdf
http://instruct1.cit.cornell.edu/courses/ece576/NiosII_asm/index.html

etse)

Creaci6 d’ IP Cores en una plataforma NIOS 72

- IP Core
http://whatis.techtarget.com/definition/0,,5id9 gci759036,00.html

- NIOSII IDE

http://www.altera.com/literature/ug/ug nios2 getting started.pdf

- NIOSII IDE

http://www.altera.com/support/software/embedded/ide/sof-nios2 ide.html

- SOPC Builder
http://fpgadu.epfl.ch/wiki/SOPC Builder

. Rapid Prototyping of Digital Systems

J.O. Hamblen, T.S Hall, and M.D. Furman, 2005

IP Cores

PWM

- Altera PWM

http://www.altera.com/

- Quartusll HandBook version 7.0

http://www.altera.com/literature/hb/qts/qts gii54007.pdf

- Pulse width modulation

http://en.wikipedia.org/wiki/Pulse-width modulation



http://whatis.techtarget.com/definition/0,,sid9_gci759036,00.html
http://www.altera.com/literature/ug/ug_nios2_getting_started.pdf
http://www.altera.com/support/software/embedded/ide/sof-nios2_ide.html
http://fpga4u.epfl.ch/wiki/SOPC_Builder
http://www.altera.com/
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://en.wikipedia.org/wiki/Pulse-width_modulation

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

73

- Pulse width modulation

http://es.wikipedia.org/wiki/Modulaci%C3%B3n por anchura de pulsos

- Example of PWM

http://modeemi.fi/~tuomov/ion/pwm.html

- PWM Core overview

http://www.opencores.org/projects.cqi/web/ptc/overview

- PWM Control

http://www.cpemma.co.uk/pwm.html

- NIOS Forum

http://www.niosforum.com/

12C

- Altera 12C
http://www.altera.com/

- 12C drivers

http://www.linuxjournal.com/article/7136

- 12C driver interface
http://tmd.havit.cz/Projects/12C/i2cdriver.htm

- 12C driver
http://mhonarc.axis.se/dev-etrax/msg06565.html



http://es.wikipedia.org/wiki/Modulaci%C3%B3n_por_anchura_de_pulsos
http://modeemi.fi/%7Etuomov/ion/pwm.html
http://www.opencores.org/projects.cgi/web/ptc/overview
http://www.cpemma.co.uk/pwm.html
http://www.niosforum.com/
http://www.altera.com/
http://www.linuxjournal.com/article/7136
http://tmd.havit.cz/Projects/I2C/i2cdriver.htm
http://mhonarc.axis.se/dev-etrax/msg06565.html

etse)

Creaci6 d’ IP Cores en una plataforma N1OS

74

- Nios Forum

http://forum.niosforum.com/forum/

- 12C opencores

http://www.opencores.org/projects.cgi/web/i2c/overview

- 12C Master
http://www.slscorp.com/pages/ipi2cmastersls.php

- 12C Master/Slave controller

http://www.arasan.com/products/prod overview/12C APB ds v1.0.pdf

- 12C Slave

http://www.slscorp.com/pages/ipi2cslavesls.php

- 12C Bus

http://www.i2c-bus.org/slave/

- 12C Master Mode
http://ww1.microchip.com/downloads/en/devicedoc/i2c.pdf

- 12C interface

http://www.lammertbies.nl/comm/info/12C-bus.html

- Using 12C

http://www.robot-electronics.co.uk/htm/using the i2c bus.htm



http://forum.niosforum.com/forum/
http://www.opencores.org/projects.cgi/web/i2c/overview
http://www.slscorp.com/pages/ipi2cmastersls.php
http://www.arasan.com/products/prod_overview/I2C_APB_ds_v1.0.pdf
http://www.slscorp.com/pages/ipi2cslavesls.php
http://www.i2c-bus.org/slave/
http://ww1.microchip.com/downloads/en/devicedoc/i2c.pdf
http://www.lammertbies.nl/comm/info/I2C-bus.html
http://www.robot-electronics.co.uk/htm/using_the_i2c_bus.htm

etse)

Creaci6 d’ IP Cores en una plataforma NIOS 75

HDL i C++

-HDL

http://en.wikipedia.org/wiki/Hardware description language

- VHDL Manual
http://mikro.e-technik.uni-ulm.de/vhdl/anl-engl.vhd/html/vhdl-all-e.html

- VHDL Manual
http://www.ehu.es/Electronica EUITI/vhdl/pagina/inicio.htm

- VHDL Manual
http://www.fm.vslib.cz/~kes/data/vhdl ref.pdf

- Verilog Manual
http://www.inf.pucrs.br/~moraes/topicos/hdls/ver.pdf

- Verilog Manual

http://www.gte.us.es/usr/chavez/verilog.pdf

- C++ NIOS IDE Manual
http://www.quantum-leaps.com/doc/QDK Altera-Niosll.pdf

. The Designer's Guide to VHDL
Peter J. Ashenden, 1995


http://en.wikipedia.org/wiki/Hardware_description_language
http://mikro.e-technik.uni-ulm.de/vhdl/anl-engl.vhd/html/vhdl-all-e.html
http://www.ehu.es/Electronica_EUITI/vhdl/pagina/inicio.htm
http://www.fm.vslib.cz/%7Ekes/data/vhdl_ref.pdf
http://www.inf.pucrs.br/%7Emoraes/topicos/hdls/ver.pdf
http://www.gte.us.es/usr/chavez/verilog.pdf
http://www.quantum-leaps.com/doc/QDK_Altera-NiosII.pdf
http://www.ashenden.com.au/index.html

	1. INTRODUCCIÓ I OBJECTIUS
	1.1 Introducció
	1.2 Objectius
	2. PLANIFICACIÓ, VIABILITAT I CRONOLOGIA
	2.1 Especificació de requisits. Anàlisi funcional detallat
	2.2 Planificació
	 2.2.1 Identificació dels recursos
	2.2.4 Càlcul del termini necessari per a la realització de cada tasca
	2.2.5. Diagrama de Gantt
	2.3 Viabilitat
	 2.3.1 Estudi de viabilitat
	2.3.2 Riscs
	2.4 Cronologia
	 2.4.1 Estudi cronològic
	3. CREACIÓ D’ IP CORES
	3.1 Definició metodològica per a la creació d’un IP Core
	  3.1.1 Anàlisi de Requeriments
	3.1.2 Passos per al disseny d’un component
	3.2 Disseny Hardware
	3.3 Disseny Software
	3.4 Verificació del component
	4. PROTOTIPATGE SOBRE UP3 - NIOS
	4.1 La plataforma Altera. Procediment
	4.1.1 Arquitectura del sistema
	4.1.2 Procediment
	4.2 Disseny dels IP Cores  en la plataforma NIOSII
	4.2.1 IP Core: PWM ( Pulse Width Modulation )
	4.2.2 IP Core: I2C  ( Inter-Integrated Circuit )
	4.3 Resultats, problemes i solucions
	4.4 Proves
	 5. CONCLUSIONS I MILLORES
	5.1 Conclusions
	5.2 Millores
	6. BIBLIOGRAFIA

