

CREACIÓ D’ IP CORES EN UNA

PLATAFORMA NIOS:

METODOLOGIA DE DISSENY

Memòria del Projecte Fi de Carrera

d’ Enginyeria en Informàtica

realitzat per

Antoni Costa Sanfeliu

i dirigit per

Joan Oliver Malagelada

Bellaterra, 15 de Juny de 2007

El sotasignat, Joan Oliver Malagelada

Professor de l’ Escola Tècnica Superior d’ Enginyeria de la U.A.B,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la seva direcció

per en Antoni Costa Sanfeliu.

I per tal que consti firma la present.

Signat:

Bellaterra, 15 de Juny de 2007

AGRAÏMENTS

 En primer lloc, m’agradaria agrair a Joan Oliver Malagelada, el temps que ha

dedicat en aclarir-me i resoldre’m dubtes, així com les reunions que ha hagut

d’adaptar al meu més que complex horari laboral. La visió del projecte, la guia i el

seguiment del mateix han estat claus en el desenvolupament del projecte. Així doncs,

moltes gràcies.

D’altra banda, també m’agradaria fer extensiu aquest agraïment a tots els professors

de la Titulació, ja que cadascun ha aportat el seu grà de sorra i d’una manera o altre

han contribuït a què aquest projecte hagi estat possible.

Tampoc vull oblidar-me dels meus companys de carrera, amb els quals hem compartit

molts moments agradables i també difícils en èpoques d’exàmens i d’entrega de

pràctiques, dedicant molts esforços que avui es veuen recompensats.

Agrair també a tots els meus companys i amics de Manresa, així com la meva família

que m’han recolzat des del primer dia, tan en la carrera com en la realització d’aquest

projecte. Moltes gràcies a tots ells, per aguantar els mals humors i ser pacients amb

mi quan feia falta.

Finalment, unes paraules pel Ricoh Manresa que de nou aquest any torna a ser equip

ACB i ha ajudat a amenitzar les males estones.

Creació d’ IP Cores en una plataforma NIOS

 1

ÍNDEX

1. INTRODUCCIÓ I OBJECTIUS... 3

 1.1 Introducció ... 3

 1.2 Objectius .. 4

2. PLANIFICACIÓ, VIABILITAT I CRONOLOGIA... 7

 2.1 Especificació de requisits. Anàlisi funcional detallat .. 7

 2.2 Planificació .. 8

 2.2.1 Identificació dels recursos.. 8

 2.2.2 Terminis de lliurament ... 9

 2.2.3 Identificació de les tasques necessàries per a realitzar altres tasques 9

 2.2.4 Càlcul del termini necessari per a la realització de cada tasca..................... 10

 2.2.5. Diagrama de Gantt .. 12

 2.3 Viabilitat .. 14

 2.3.1 Estudi de viabilitat ... 14

 2.3.2 Riscs... 15

 2.4 Cronologia.. 16

 2.4.1 Estudi cronològic ... 16

3. CREACIÓ D’ IP CORES... 18

 3.1 Definició metodològica per a la creació d’un IP Core 18

 3.1.1 Anàlisi de Requeriments .. 19

 3.1.2 Passos per al disseny d’un component... 20

 3.2 Disseny Hardware.. 27

 Creació d’ IP Cores en una plataforma NIOS

 2

 3.3 Disseny Software ... 28

 3.4 Verificació del component ... 29

4. PROTOTIPATGE SOBRE UP3 - NIOS .. 31

 4.1 La plataforma Altera. Procediment.. 31

 4.1.1 Arquitectura del sistema .. 32

 4.1.2 Procediment ... 39

 4.2 Disseny dels IP Cores en la plataforma NIOSII ... 43

 4.2.1 IP Core: PWM (Pulse Width Modulation) .. 43

 4.2.2 IP Core: I2C (Inter-Integrated Circuit) .. 51

 4.3 Resultats, problemes i solucions .. 62

 4.4 Proves... 66

5. CONCLUSIONS I MILLORES .. 68

 5.1 Conclusions.. 68

 5.2 Millores .. 70

6. BIBLIOGRAFIA... 71

 Creació d’ IP Cores en una plataforma NIOS

 3

1. INTRODUCCIÓ I OBJECTIUS

NIOS és el processador que Altera empra en els seus dissenys SOC (System On

Chip). Per tal de facilitar-ne el seu ús, Altera també proporciona una plataforma de

desenvolupament SOPC (System On Programable Chip) que agilitza enormement el

disseny d’aquests sistemes. Així doncs, aquest projecte està centrat en la definició

metodològica per a la creació d’ IP Cores en una plataforma NIOS.

Aquest projecte analitzarà l’entorn, i un cop havent definit una metodologia de treball

adequada, (amb l’objectiu de validar la metodologia de disseny), es crearan dos nous

cores a partir d’aquesta, que es gestionaran a alt nivell. La interacció del hardware i el

software, així com la utilització de l’entorn d’Altera seran els punts clau en el

projecte.

1.1 Introducció

S’entén per IP Core (Intellectual Property Core) , un bloc lògic o de dades que és

utilitzat en FPGA (Field Programmable Gate Array) o en aplicacions específiques de

circuits integrats (ASIC).

L’essència de la utilització d’aquests elements és la reutilització del seu disseny. Els

IP Cores són part del creixent augment de l’ automatització dins de la indústria, que

tendeix cap al repetit ús dels components prèviament dissenyats.

Idealment, un IP Core ha de ser completament portable a qualsevol altra tecnologia, o

si més no, fàcilment integrable a la tecnologia emprada per l’usuari o client. La

metodologia de disseny també serà molt important, ja que com més genèrica sigui

més portable serà.

 Creació d’ IP Cores en una plataforma NIOS

 4

Es pot considerar que un component és un IP Core si té com a mínim unes 6000

portes lògiques. Així doncs, es pot trobar amb components petits com: Universal

Asynchronous Reciver/Transmitter (UARTs), Ethernet controllers, i PCI interfaces

que són exemples de IP Cores. O bé, components com: Central Processing Units

(CPUs), Digital Signal Processor (DSP), i drivers en general, com a exemples d’IP

Cores de més magnitud o importància.

Els IP Cores estan dividits en tres categories: els hard cores, els firm cores i els soft

cores. Els hard cores són la manifestació física del disseny IP. A tall d’informació,

cal destacar que són els millors per aplicacions plug-and-play, tot i que són menys

portables i flexibles que les altres dues. Com les hard cores, els firm cores són

utilitzats pel posicionament de dades i són configurables per a vàries aplicacions. Pel

que fa als soft cores, cal mencionar-ne els següents aspectes. Primerament, cal dir que

són els més flexibles de tots tres. I en segon lloc, que estan definits a través d’una

descripció de llenguatge hardware (HDL) o bé, a través d’una llista de portes lògiques

i associacions d’ interconnexions que creen un circuit integrat. A més a més, aquest

últim, serà el que s’utilitzi en la realització d’aquest projecte.

1.2 Objectius

L’objectiu principal d’aquest projecte és l’estudi i l’ús d’una metodologia per a la

construcció d’ IP cores. Aquest estudi tindrà un component pràctic, ja que un cop

definida aquesta metodologia, es seguirà creant dos IP cores, que seran provats sobre

la plataforma NIOS.

Molts dispositius d’avui en dia vénen programats amb la lògica que aporta el

fabricant, mentre que en altres ocasions es permet al programador retocar-ne la lògica

per a tenir-ne un major control. No obstant, hi ha situacions en les quals és necessari,

 Creació d’ IP Cores en una plataforma NIOS

 5

sigui per un motiu o per l’altre, la creació d’un propi driver per a ser capaços de

gestionar un dispositiu aliè al sistema, i que per tant, no s’hi pot comunicar.

Així doncs, el què es pretén en aquest projecte és que davant la necessitat de creació

d’un driver que no es té, establir una metodologia a seguir per a la realització

d’aquest driver o IP Core, i més concretament, per a plataformes NIOS.

Una vegada definida aquesta metodologia s’haurà de corroborar que és útil. La

plataforma escollida per a determinar-ho serà la plataforma NIOSII d’Altera.

D’aquesta manera, tenint aquesta plataforma s’implementaran dos IP Cores: PWM

(Pulse Width Modulation) i I2C (Inter-Integrated Circuit). Aquests dos drivers seran

els quals es construiran i se’n provarà el seu funcionament.

El funcionament dels dos IP Cores, es provarà a través de la placa UP3. S’utilitzarà

un servo motor o actuador i un sensor d’ I2C. Tots dos elements es gestionaran des de

l’alt nivell a través d’una lògica de control adequada. D’aquesta manera, el projecte

necessita de la utilització de sensors i actuadors per a comprovar el funcionament dels

drivers.

Un sensor és un tipus de transductor que transforma les magnituds que vol mesurar,

en altres que faciliten la seva mesura. Poden ser d’indicació directa o poden estar

connectats a un convertidor analògic o digital, el qual facilitarà que els valors que es

llegeixin siguin més comprensibles per un ésser humà. Així doncs, i com el seu nom

indica, són dispositius que detecten i adapten el senyal que generen perquè un altre

element la pugui llegir.

Quant als actuadors, cal dir que són uns mecanismes a través dels quals un agent pot

influir en el seu entorn. Aquest agent pot tractar-se d’un element artificial o de tipus

autònom. D’aquesta manera, un mecanisme que posa quelcom en acció autònoma és

 Creació d’ IP Cores en una plataforma NIOS

 6

denominat un actuador. També s’acostuma a definir com aquell element d’un sistema

de control que converteix els senyals en accions físiques.

D’aquesta manera, els objectius concrets del projecte són:

- Anàlisi de l’entorn presentat per Altera en el desenvolupament d’ IP

Cores.

- Presentació d’una metodologia de disseny per a la construcció d’ IP Cores.

- Seguint aquesta metodologia, creació de dos IP Cores: PWM i I2C.

- Comprovació pràctica de la creació d’aquests IP Cores.

El projecte pretén analitzar a fons la viabilitat en la realització d’ IP Cores emprant

l’entorn proporcionat per Altera. Així doncs, es tractarà amb la interacció de

hardware i software, dos camps que en aquesta ciència estan condemnats a viure

plegats. Es programaran uns elements hardware i es gestionaran a través d’un

software. D’aquesta manera, s’observa que més aviat és un projecte on es parla i es

toca l’essència de la Informàtica.

 Creació d’ IP Cores en una plataforma NIOS

 7

2. PLANIFICACIÓ, VIABILITAT I CRONOLOGIA

2.1 Especificació de requisits. Anàlisi funcional detallat

Les etapes que es seguiran en el desenvolupament del projecte són:

1. Estudi de tots els elements necessaris per al funcionament de la placa UP3. El

cap de projecte, estudiarà i comprendrà els elements d’aquesta placa que seran

claus a l’hora de la seva utilització pràctica. Aquest estudi també requerirà

saber llenguatges HDL i C++.

2. El coneixement detallat de la placa implica fer ús d’aquesta. Fent això, es

comprendrà el funcionament de tots i cada un dels elements de la placa.

3. Personalització d’aquesta metodologia per a la placa UP3 d’Altera per a la

creació d’un nou IP Core. Es fixarà un procediment estàndard a seguir en el

cas que qualsevol persona vulgui crear un nou IP Core. Per a seguir aquest

model s’hauran de complir una sèrie de requisits hardware i software i s’haurà

de fer un anàlisi funcional.

4. Els llenguatges que s’utilitzaran per a la realització d’aquests cores seran HDL

(Hardware Description Language) que com el seu nom indica, són

llenguatges de descripció del Hardware i C++ pel que fa a la lògica i control

d’aquest hardware a alt nivell.

5. Seguir aquesta metodologia per a la creació del driver PWM (Pulse Width

Modulation). Aquest driver serà creat i provat sobre un element mòbil amb 2

servo motors que giraran en diverses direccions segons els polsos enviats.

6. Seguir la metodologia per a la creació del driver I2C (Inter-Integrated

Circuit). Aquest driver serà creat i provat a través de la instal·lació d’un

sensor a la placa, el qual farà canviar el sentit de gir dels servo-motors

instal·lats.

 Creació d’ IP Cores en una plataforma NIOS

 8

7. Proves. A fi d’analitzar el correcte funcionament dels nous IP Cores.

2.2 Planificació

Aquest projecte final de carrera ha estat planificat amb l’objectiu que la seva

durada correspongui a un semestre. Originalment, estava plantejat per ser realitzat

durant el primer semestre corresponent al període setembre – febrer, però per

problemes amb altres feines s’ha hagut d’endarrerir fins al període febrer – juny.

S’ha de dir que aquesta planificació s’ha seguit escrupolosament, i pràcticament no

s’ha vist afectada durant el transcurs del projecte, encara que hi ha hagut tasques que

s’han vist endarrerides, per problemes que es comentaran més endavant.

2.2.1 Identificació dels recursos

L’equip de desenvolupament del projecte estarà format per una sola persona que

exercirà les tasques de Cap de Projecte, tècnic i programador. L’enginyer en qüestió,

s’encarregarà de mantenir un control tècnic i econòmic a fi de fer-lo rentable. Serà el

responsable i encarregat de planificar i distribuir els recursos i de participar en

l’elaboració de les especificacions funcionals detallades.

També serà l’encarregat de la creació i especificació de l’arquitectura a utilitzar, així

com també, de la programació dels elements necessaris per al funcionament del

projecte.

 Creació d’ IP Cores en una plataforma NIOS

 9

2.2.2 Terminis de lliurament

Els terminis de lliurament seran els fixats per l’Escola Tècnica Superior

d’Enginyeria (ETSE). En el cas de la convocatòria del mes de juny del curs 2006 -

2007 serà el dia 1 de juny la data màxima per a decidir si es presenta el projecte.

Mentre que el document de memòria es podrà entregar com a molt tard el dia 15 de

juny de 2007.

2.2.3 Identificació de les tasques necessàries per a realitzar altres tasques

A continuació es detallen una sèrie de tasques que són vinculants per a la

realització d’aquest projecte, i sense les quals resultaria impossible avançar en el

desenvolupament del mateix.

Les taques es detallen a continuació:

1. Aproximació a la placa UP3. Entendre i comprendre el funcionament

d’aquesta placa, així com la interacció de tots els seus components.

2. Aproximació a llenguatges HDL i C++ en la plataforma d’Altera.

3. Bugs i aspectes tècnics a considerar en l’entorn de treball. Serà necessari que

tots els elements compilin i la placa respongui al requeriments fixats.

4. Creació de la metodologia necessària a seguir per a la creació d’un IP Core.

S’ha de marcar la pauta de com han de funcionar aquests elements.

5. Realització del driver PWM, seguint aquesta metodologia.

6. Realització del driver I2C, seguint aquesta metodologia

7. Provar que funcionen aquests dos drivers a la placa.

 Creació d’ IP Cores en una plataforma NIOS

 10

2.2.4 Càlcul del termini necessari per a la realització de cada tasca

El projecte de final de carrera està fixat a una durada de 15 crèdits. Un crèdit

ECTS que serà el considerat per a aquest projecte són 25 hores. D’aquesta forma el

valor en hores del projecte equival a 375h.

Aquest valor és un temps raonable encara que es comptarà amb un 10% de marge

d’error que s’aplicarà abans de començar el projecte, i del qual el Cap de Projecte

n’assumeix tota la responsabilitat. S’ aplicarà per tenir un percentatge de marge en

cas que es produeixi algun imprevist. D’aquesta manera es contemplarà que el

projecte tindrà una durada de 412,5 hores.

Conseqüentment, s’establiran aquests valors com a base per a establir un model a

seguir per a la realització d’aquest projecte, així com a base per determinar la

viabilitat econòmica. Aquestes hores de més estan pressupostades i no afectaran a la

viabilitat del projecte.

Tot seguit es detallaran totes i cadascuna de les tasques a realitzar juntament amb la

seva durada:

a) Etapa Preliminar (22,5 h)

1. Objectius i abast del projecte: 7,5h

2. Anàlisi funcional i requeriments: 10h

3. Planificació inicial: 5h

b) Desenvolupament del projecte (390 h)

 1. Memòria (100 h)

 1.1 Especificació de requisits. Anàlisi funcional: 10 h

 1.2 Planificació: 5 h

 1.3 Estudi de viabilitat: 3 h

 1.4 Cronologia: 2 h

 Creació d’ IP Cores en una plataforma NIOS

 11

 1.5 Creació d’ IP Cores (20 h)

 1.5.1 Disseny Hardware: 10 h

 1.5.2 Disseny Software: 5 h

 1.5.3 Verificació: 5 h

 1.6 Prototipatge sobre UP3 – NIOS (30 h)

 1.6.1 La plataforma Altera. Procediment: 10 h

 1.6.2 Explicació del disseny dels IPs sobre la plataforma NIOSII (20 h)

 1.6.2.1 Driver PWM: 10 h

 1.6.2.2 Driver I2C: 10 h

 1.7 Conclusions i millores: 9 h

 1.8 Bibliografia: 1h

 1.9 Revisió (20 h)

 1.9.1 Aplicació dels canvis introduïts: 20 h

 2. Desenvolupament (290 h)

 2.1 Aproximació als HDL’s: 10h

 2.2 Aproximació a l’entorn de programació d’ Altera: 10 h

 2.3 Bugs de l’entorn: 60 h

 2.4 Implementació del driver PWM (50 h)

 2.4.1 Descripció Hardware: 40 h

 2.4.2 Descripció Software. 10 h

 2.5 Implementació del driver I2C (80 h)

 2.5.1 Descripció Hardware: 60 h

 2.5.2 Descripció Software: 20 h

 2.6 Implementació de la lògica de control (30 h)

 2.6.1 Estudi de la lògica: 10 h

 2.6.1 Implementació de la lògica d’alt nivell: 20 h

 2.7 Test i proves: 25 h

 2.8 Revisió i modificacions: 20 h

 2.9 Possibles millores: 5 h

 Creació d’ IP Cores en una plataforma NIOS

 12

2.2.5. Diagrama de Gantt

El diagrama de Gantt que es mostra a continuació, (veure Figura 2.1) mostra la

distribució de tasques en què es va dividir el projecte, i sobre les quals es va realitzar

una planificació temporal per dur-les a terme seguint les mostrades en l’apartat

anterior.

 Creació d’ IP Cores en una plataforma NIOS

 13

Figura 2.1 Diagrama de Gantt. Planificació

 Creació d’ IP Cores en una plataforma NIOS

 14

2.3 Viabilitat

La viabilitat d’aquest projecte vindrà determinada per l’estudi de viabilitat que es

realitzarà a continuació, juntament amb els riscs que la realització d’aquest projecte

comporta.

2.3.1 Estudi de viabilitat

Tal i com s’ha exposat anteriorment, el projecte serà desenvolupat per a un únic

recurs, el qual estarà dedicat a temps total en el projecte. El fet que tan sols hi hagi un

recurs disponible, no suposarà un problema perquè el projecte pugui estar completat

en les dates assenyalades en els apartats anteriors.

Els temps assignats a cada tasca són temps raonables i cadascun ha estat pensat

perquè pugui ser realitzat en aquest espai de temps. A part d’això, ja es contempla el

percentatge d’error al qual pot estar sotmesa cada tasca, donant més força a una

planificació estudiada.

Quant als elements necessaris per al desenvolupament del projecte serà necessari

disposar de l’aplicació QuartusII v.5.1, el SOPC Builder i el NIOS IDE que es

poden descarregar des del web http://www.altera.com i obtenir-ne una llicència

gratuïta.

D’altra banda també serà necessari disposar d’una placa UP3 que serà subministrada

per l’ Escola Tècnica Superior d’ Enginyeria en forma de préstec, juntament amb

elements com sensors i servo motors.

http://www.altera.com/

 Creació d’ IP Cores en una plataforma NIOS

 15

Així doncs, tenint en compte aquestes consideracions i veient que la inversió

econòmica és nul·la, tan sols es comptabilitzarà la inversió en hores del projecte per

determinar-ne la seva viabilitat que en un principi, després de l’anàlisi efectuat

prèviament, sembla factible.

Pel que fa a la legalitat del producte, i tal i com ja s’ha avançat en apartats anteriors,

tan sols s’utilitzaran aplicacions amb llicències subministrades per Altera i que per

tant, no suposen cap problema legal.

2.3.2 Riscs

Un projecte que tracta amb hardware se l’ha de tractar amb molta cura, ja que per

efectes d’aquest hardware sobre el software es poden observar comportaments

imprevistos, que poden afectar directament a la planificació dissenyada.

Paral·lelament, cal tenir en compte que les planificacions sempre parteixen de la base

ideal més un percentatge de marge que acostuma a ser insuficient.

Tot seguit doncs, s’exposaran els possibles riscos als quals pot estar sotmès el

projecte, ja que poden provocar endarreriments en la realització de diverses tasques.

Aquestes demores poden provocar un encariment en hores pel que fa la planificació

del projecte, i temporal que pot fer que no s’ajusti a les dates estimades.

Així doncs, a continuació es detallen els possibles riscs que pot comportar el projecte:

1. Que el recurs disponible, en aquest cas únic per a la realització de les

tasques es posi malalt, o no pugui estar disponible per motius aliens al

projecte.

 Creació d’ IP Cores en una plataforma NIOS

 16

2. L’entorn de programació i aplicació no sigui el suficientment potent i tingui

problemes.

3. La placa UP3 tingui elements deteriorats que distorsionin els resultats

esperats o no deixin executar cap aplicació.

4. Possibles sorolls produïts pels elements afegits a la placa com servo motors i

sensors alterin el comportament definit a través del software.

5. No es disposi del material necessari en els períodes indicats.

6. Canvi d’objectius del projecte mentre es duu a terme aquest.

7. La no utilització d’una metodologia adequada quant a la creació dels IP

Cores.

2.4 Cronologia

En aquest apartat s’explica el què ha passat durant el desenvolupament del

projecte.

2.4.1 Estudi cronològic

Durant el desenvolupament d’aquest projecte han sorgit diversos problemes,

molts dels quals estaven contemplats en l’apartat de riscs, i que han provocat

l’endarreriment del projecte. Tasques bloquejants com la creació de petits sistemes,

per a iniciar la comprensió de la placa UP3 han fet que s’endarrerís més del compte

l’ inici de les altres tasques, cosa que ha provocat un increment d’hores de dedicació.

Els bugs de l’entorn d’Altera, així com aquests primers sistemes creats, han estat

principal problema que s’ha trobat durant el desenvolupament del projecte. En

 Creació d’ IP Cores en una plataforma NIOS

 17

l’entorn SOPC quan algun element no funciona, provoca un endarreriment en cascada

que afecta a la resta de tasques. Aquest endarreriment, a més a més acostuma a ser

gran ja que la localització d’errors és fa feixuga, i en ocasions, com és el cas d’aquest

projecte, els problemes no provenien d’un sistema mal construït, sinó d’un software

corrupte que afectava a tot sistema que s’intentava provar.

Com és fàcil d’imaginar, problemes d’aquest estil tenen un cost molt elevat, ja que es

perd molt de temps per intentar trobar un problema que en realitat no existeix.

Per altra banda, tasques inicialment pressupostades en excés, com la realització del IP

Core PWM, han compensat mínimament l’excés de temps dedicat en l’ anterior. Tot i

això, s’ha modificat la planificació en alguns punts més, per tal d’adaptar-la a les

noves situacions que han anat sorgint.

El IP Core de I2C, s’ha tingut molt poc temps per a provar-lo ja que es va rebre tard,

prop de l’entrega d’aquest projecte.

També es té en compte que el projecte va iniciar-se abans del què estava planificat, ja

que durant el mes de setembre i d’octubre del 2006 ja s’havia començat a parlar del

mateix.

No obstant, un altre motiu dels endarreriments ha estat el fet de compaginar activitats

alienes al projecte com són les obligacions laborals que han interferit directament

amb la planificació prevista. Aquest fet que podria servir per dir que el projecte sí que

és viable en termes relatius, tot i la realització d’hores extra.

 Creació d’ IP Cores en una plataforma NIOS

 18

3. CREACIÓ D’ IP CORES

En aquest apartat del projecte es pretén descriure el seguit d’accions que s’han de

seguir per a la creació d’un IP Core. La definició pretén ser tan genèrica com sigui

possible, a fi de poder tenir-se en compte com si d’un estàndard es tractés.

La creació d’aquest document és possible gràcies a l’estudi de l’entorn utilitzat en

Altera per a la creació de components (SOPC Builder), i a un treball de camp sobre

les necessitats de la plataforma NIOS.

Tot i l’ intent de ser el màxim genèrica possible, la definició tan sols estarà provada a

l’entorn esmentat anteriorment, i la majoria de consideracions es faran partint de la

base plantejada per Altera. Cal tenir en compte aquest factor, ja que de forma constant

s’hi faran referències en motiu de la seva àmplia utilització per al desenvolupament

de components. Així doncs, tot dissenyador de components que llegeixi aquest

manual, entendrà que és genèric per a una plataforma NIOS, en l’entorn de

programació proporcionat per Altera.

D’aquesta manera, els manuals d’ Altera proposen una metodologia SOC (System On

Chip) de disseny que cal ser completada amb treball propi en el moment en que es

dissenya una aplicació. És molt recomanable llegir els manuals, sobre l’entorn d’

Altera, que es destaquen a la bibliografia d’aquest document, ja que són la base per

entendre què s’exposa a continuació.

3.1 Definició metodològica per a la creació d’un IP Core

En moltes ocasions, tal i com passa en aquest projecte, un es troba davant la

necessitat de fer funcionar un cert component en un entorn que no està preparat per

 Creació d’ IP Cores en una plataforma NIOS

 19

acceptar-lo. Així doncs, la qüestió resideix en integrar aquest component a l’entorn

indicat.

Hi ha ocasions, com la de l’entorn utilitzat en aquest projecte, que permet buscar i

utilitzar drivers ja fets per altres dissenyadors de components, i tenir la possibilitat de

crear-ne de nous. La gràcia de compartir els dissenys per a la gestió d’un component

és alleugerir el treball de cada dissenyador, ja que no cal reinventar la roda cada

vegada. El problema és si el component en qüestió no està inventat, i s’ha de crear de

zero.

És en aquestes situacions que és necessari tenir una base a seguir per tal d’avançar de

forma ordenada i clara cap a l’objectiu final, o sigui tenir un driver que gestioni el

nou component hardware afegit.

3.1.1 Anàlisi de Requeriments

Abans de començar, s’han de tenir en compte els següents requeriments software i

hardware, a fi d’obtenir una correcta creació del component.

Tal i com ja s’ha indicat anteriorment, serà necessari disposar de l’entorn de

programació d’ Altera (SOPC Builder, QuartusII i NIOSII IDE) i conèixer-lo. Una

placa de desenvolupament NIOS. També serà important tenir coneixements bàsics

sobre la interfície AVALON, que és el bus on anirà connectat el nou component

perquè la CPU el gestioni.

Evidentment, si no es disposa de placa es pot desenvolupar un component, el

problema resideix en què l’usuari serà incapaç de provar-ho d’una forma pràctica.

 Creació d’ IP Cores en una plataforma NIOS

 20

Partint d’aquests requisits, ara ja només falta saber que s’ha d’obtenir de l’entorn de

desenvolupament. Així doncs, un component es pot desglossar en les següents parts o

fitxers:

- Arxius hardware. Mòduls en llenguatge HDL que descriuen el hardware

del component.

- Arxius software. Capçaleres en llenguatge C, on es mapegen els registres

del component, i un driver software que permet al programa controlar el

component.

- La descripció del component. Aquest fitxer defineix l’ estructura del

component i subministra la informació necessària per a la integració

d’aquest al sistema (class.ptf).

3.1.2 Passos per al disseny d’un component

Aquesta secció es centra en els passos que s’ha de seguir per a la creació d’un

component. La seqüència de passos està pensada per a un component que actuarà com

a element esclau, encara que tal i com es pot veure són passos fàcilment extrapolables

cap a components master. Els passos, no requereixen ser seguits en un escrupolós

ordre, encara que sí exigeixen un cert grau de rigor. En la primera part d’aquest punt,

es veuran els passos genèrics a realitzar mentre que tot seguit, es podran veure els

passos complerts per al disseny d’un component, incorporant IP Cores propis.

 Creació d’ IP Cores en una plataforma NIOS

 21

Passos Genèrics:

1. Especificació de les necessitats hardware.

2. Si el microprocessador s’utilitzarà per a controlar el component, s’haurà

d’especificar a l’ interfície de programació de l’aplicació (API) que accedeixi i

controli el hardware.

3. Basat en els requeriments hardware i software, definir una interfície pel bus

AVALON que disposi de mecanismes de control adequats, així com un bon

funcionament.

4. Escriure el HDL que descrigui el hardware en Verilog o VHDL.

5. Testejar els components hardware sols per a verificar-ne un correcte

funcionament.

6. Escriure les capçaleres en C que defineixin el mapa de registres del hardware

pel software.

7. Utilitzar l’ editor de components per ajuntar els arxius hardware i software per

a la creació d’un component.

8. Instanciar el component en mòdul del SOPC Builder.

9. Testejar els accessos als registres utilitzant un microprocessador com el

processador NIOSII. La verificació pot ser feta al hardware o bé en un

simulador com el ModelSim.

10. Si un microprocessador serà utilitzat per a controlar el component, s’ha

d’escriure un driver en software.

11. De forma reiterada, realitzar les següents accions:

- Fer els ajustaments hardware necessaris.

- Fer els ajustament software necessaris.

- Incorporar els canvis software i hardware al component utilitzant l’editor

de components.

12. Construir un sistema complet a través del SOPC Builder incorporant una o

més instancies del component creat.

 Creació d’ IP Cores en una plataforma NIOS

 22

13. Fer les verificacions necessàries per tal que els components s’ajustin als

requeriments demandats.

14. Finalitzar el component i distribuir-lo perquè pugui ser reutilitzat.

El disseny per a un component que hagi d’actuar com a master, serà similar

exceptuant la part de desenvolupament software.

Passos Complerts:

Pel que fa aquesta part, cal dir que es centra en seguir els passos explicats

anteriorment, ampliant el procés de creació de nous IP Cores, que és el tema sobre el

qual gira aquest projecte. Paral·lelament, abans d’enumerar la sèrie de passos a seguir

cal tenir clars una sèrie de conceptes que s’exposaran a continuació, i en l’ Apartat 4

d’aquest projecte s’ampliaran, ja que és en aquell moment quan es parla

d’arquitectura.

La complexitat o diferència de la creació d’un component en aquest entorn, vers els

entorns tradicionals, recau sobre les particularitat del bus Avalon. Aquest bus està

dissenyat per a connectar processadors On-Chip i perifèrics en un sistema SOPC. La

interfície del bus especifica les connexions entre els components master i slave.

Aquest mòdul es genera automàticament, així que el dissenyador de components tan

sols s’ha d’ocupar d’unir els perifèrics al bus.

El problema és que el bus no pot comunicar-se directament amb els perifèrics, i

necessita d’un traductor que transmeti la informació entre ell i el dispositiu. Per

aquest motiu, el component creat ha d’anar recobert amb un wrapper, que tradueixi

els senyals del bus amb les del perifèric i a l’ inrevés. Per això, es requereix de l’

interfície del bus, com a part imprescindible en la creació d’un nou IP Core. A través

d’aquesta interfície, el bus podrà llegir o escriure en els registres del component, i

actuar en conseqüència, executant la seva lògica a través de les ordres que li dóna el

 Creació d’ IP Cores en una plataforma NIOS

 23

dispositiu master. Altrament, també es pot enviar la informació pertinent als registres

per tal que el processador actuï d’una forma determinada.

Així doncs, els passos complerts per a la creació d’un IP Core són:

1. Definir l’especificació funcional del nou component. La definició haurà de

concretar el tipus de processador que s’utilitzarà per a controlar el component,

el tipus de rellotge, tipus de component (master o slave), etc.

2. Un cop especificada la funcionalitat del component, s’ha de definir

l’estructura lògica d’aquest. Cal crear un esquema amb tots els mòduls o eines

que es necessitaran, utilitzant les funcionalitats definides, per a la definició de

l’estructura o tasca lògica del component.

3. Establir els senyals d’entrada i sortida que tindrà l’estructura lògica. Els

senyals d’entrada o sortida podran ser, per exemple, senyals d’ enable,

rellotge o reset, entre d’altres.

4. Programar aquesta funcionalitat en algun llenguatge de descripció de

hardware (HDL), com ara Verilog o VHDL. D’aquesta manera, obtindrem un

fitxer en aquest llenguatge que s’encarregarà de gestionar les tasques lògiques

o hardware del component.

5. Un cop establerta la lògica del component, s’ha d’habilitar l’accés als registres

per tal que el dispositiu pugui llegir i escriure. S’ha de crear un fitxer de

registres on es mapejaran totes les entrades i sortides de la lògica de control al

component cap al registre corresponent. Aquest fitxer és molt important, ja

que cada registre anirà redirigit cap a l’espai d’adreces del bus Avalon, perquè

el component es pugui comunicar amb el sistema.

6. Cada registre haurà de ser de lectura i/o escriptura depenent de les necessitats

funcionals que requereixi el component, el què significa que el software que

més endavant es crearà podrà llegir i establir valors.

7. En aquest fitxer, establir tots els senyals d’entrada i sortida del bus Avalon,

així com els senyals cap al mòdul creat, tant d’entrada com de sortida.

 Creació d’ IP Cores en una plataforma NIOS

 24

8. Finalment, a fi de tenir el component instanciat, es necessària la inclusió d’un

fitxer que gestioni les comunicacions entre el component i l’exterior. És aquí

on s’establiran els senyals del bus Avalon que es mapejaran sobre els senyals

del component creat. Aquesta assignació és imprescindible per a una correcta

comunicació i entesa entre component i sistema.

9. Revisar cada un dels fitxers creats, verificant el seu correcte funcionament a

través d’eines com el ModelSim, que permeten simular l’excussió del

component.

10. Arribat aquest punt, ja es té a la disposició de l’usuari el component

hardware, seguint l’estructura que demana l’arquitectura del bus Avalon, tal i

com s’explica a l’ inici d’aquest apartat, i s’amplia en el següent.

11. Si el component creat és de tipus slave s’haurà d’especificar a l’ interfície de

programació de l’aplicació (API) que accedeixi i controli el hardware.

12. Escriure les capçaleres en llenguatge C que defineixin el mapa de registres,

prèviament definit al fitxer de registres hardware, perquè el software els pugui

gestionar. També defineix el software que necessitarà el processador NIOS

per a gestionar el driver.

13. Obrir el QuartusII i crear un nou projecte.

14. A través d’aquest obrir el SOPC Builder i executar l’editor de components.

15. Utilitzar l’editor de components del SOPC Builder per a adjuntar els fitxers

hardware i software per a la creació d’un component. Mitjançant aquesta eina,

es compactaran els diferents mòduls que s’han creat per obtenir el component.

16. Triar l’opció de menú del SOPC Builder que permet afegir un nou component

i afegir els fitxers HDL que s’han creat, en la pestanya indicada. L’editor de

components analitzarà aquests fitxers i els validarà. L’ordre dels fitxers afegits

és important, ja que s’han d’ordenar des del nivell més extern com és l’

interfície Avalon fins a la tasca lògica.

17. Un cop afegits els fitxers, cada senyal que hi ha en els fitxer HDL de més alt

nivell es mostrarà a la pestanya dels senyals. Per defecte, l’editor assigna els

senyals que troba en aquest fitxer amb un tipus, que en la majoria d’ocasions

 Creació d’ IP Cores en una plataforma NIOS

 25

és vàlid. Si un senyal no sap de quin tipus és, la qualifica com a senyal export.

Conseqüentment, és important modificar el tipus de cada senyal segons les

necessitats del sistema. Si, tal i com s’ha comentat en apartats anteriors, es té

fet un mapeig de senyals, determinar el tipus de cada un serà una feina trivial.

18. Un cop assignats els senyals és passa a la pestanya d’ interfície. En aquesta

pestanya es permet configurar les propietats d’ interfície del bus Avalon del

component. És aquí on s’ha d’indicar el tipus de component, se li assigna un

nom. No obstant, la clau d’aquest punt és que s’indica que l’adreçament es

farà a través dels registres.

19. La següent pestanya fa referència als fitxers software creats. Aquesta deixa

associar fitxers software al component i especificar-ne quin tipus d’ús se’n

farà. El fitxer software creat per a treballar amb els registres s’afegirà com a

include dels registres. D’altra banda, si s’han creat rutines d’alt nivell en C per

a gestionar el driver, també s’afegiran, però en aquest cas, optant per l’opció

HAL/inc o HAL/src segons si els fitxers que s’afegeixen són capçaleres o les

funcions creades.

20. Arribats a aquest punt, es pot salvar el nou component creat.

21. Un cop creat, es trobarà el nou component en el grup que li hagi definit i es

podra afegir al sistema.

22. A l’ afegir el nou component al sistema, sortirà un assistent que permetrà o

no, modificar alguns paràmetres de configuració d’aquest. Un cop decidides

les opcions que es prefereixen, s’inclourà el component al polsar en finalitzar.

23. Comprovar que les adreces d’excepció i reset del processador del sistema

apunten a un mòdul de memòria per evitar que el sistema falla.

24. Un cop afegit i configurat es pot generar el sistema, polsant sobre l’opció

Generate del SOPC Builder. A continuació, es tindrà el sistema correctament

creat. Ara cal dirigir-se a l’aplicació QuartusII.

25. Modificar l’esquema del Quartus del sistema perquè les entrades i sortides al

sistema quedin cobertes amb els elements que necessiti. Tot seguit, unir els

components del sistema que requereixin estar connectats.

 Creació d’ IP Cores en una plataforma NIOS

 26

26. Assignar al sistema la placa que s’utilitzi, tenint en compte totes les

particularitats d’aquesta, així com les indicacions del fabricant. Aquesta opció

es troba en el menú Assignments, devices. Després d’assignar-la, s’informarà

en aquest mateix menú com la placa ha d’interpretar els pins no utilitzats. Per

defecte, la placa els haurà d’interpretar com a entrades, encara que depenent

del sistema les podrà entendre com a sortides.

27. Realitzar l’assignació correcta de pins, a través del Pin Planer.

28. Compilar tot el sistema.

29. Un cop compilat, s’ha de descarregar el sistema a la placa. Per això, s’obrirà

el Programmer. Aquesta opció permetrà que s’estableixi una comunicació

entre la placa, que s’haurà connectat al port corresponent de l’ordinador, i

l’aplicació.

30. Descarregada la informació, s’ha d’executar el software del processador

NIOS per utilitzar el component creat. Tant és així, que requereix que obrim

la tercera aplicació, que s’obre des del QuartusII. Aquesta aplicació és el

NIOSII IDE.

31. A través d’aquesta aplicació, es crearà un projecte software que estarà basat en

el sistema creat. Afegir les capçaleres i fitxers en C necessaris per a provar el

component, i generar un projecte que sigui capaç de gestionar el component.

32. Compilar i descarregar aquesta lògica cap a la placa, tot observar-ne el

comportament per tal de validar que la lògica programada és correcta.

33. Validada la lògica i el component, aquest ja està llest per a ser compartit amb

la resta de la comunitat, perquè pugui ser reutilitzat.

Per a més informació sobre els elements o paràmetres de configuració modificables

en les aplicacions, és imprescindible llegir els manuals que es poden trobar en la

bibliografia d’aquest document, ja que s’ha donat més importància als passos a

seguir, i no entra en punts de configuració que, tanmateix, es poden trobar en la

documentació d’ Altera.

 Creació d’ IP Cores en una plataforma NIOS

 27

3.2 Disseny Hardware

El disseny del hardware és com tot disseny lògic, el procés que ve després de la

fase d’especificació de requisits. Un cop es tenen clars els objectius dels component i

la seva funcionalitat, codificar el codi en HDL que el farà funcionar pot tractar-se

d’una qüestió pràcticament immediata.

L’arquitectura d’un component típic habitualment segueix els següents blocs

representats en la figura següent:

Figura 3.1 Arquitectura d’un component

Aquesta figura mostra el diagrama típic de blocs del component amb un port Avalon

esclau. Les parts que el composen es comenten a continuació:

- Task logic: La tasca lògica implementa la funcionalitat principal del

component. Aquesta tasca és depenent del disseny.

 Creació d’ IP Cores en una plataforma NIOS

 28

- Register file: Els registres proporcionen el camí de comunicació per als

senyals des de la lògica de control fins al món exterior, i al inrevés. La

interfície Avalon pot llegir i escriure en els registres, gràcies als nodes

interns que estan mapejats en adreces a les quals pot accedir.

- Avalon interface: La interfície Avalon conté un registre de tipus front-end.

Aquesta utilitza qualsevol senyal Avalon, per a accedir al registre i

realitzar la transferència requerida a través de la tasca lògica. Hi ha factors

com; l’amplada de dades que s’han de transmetre, els requeriments de

transferència, el tipus de transferència i la rapidesa entre els dispositius

hardware que interactuaran, que afecten directament a aquesta interfície.

3.3 Disseny Software

El disseny del software és el següent pas i serà l’encarregat de controlar i

gestionar el dispositiu creat. Si es pretén tenir un control sobre un component, s’han

de subministrar uns arxius que defineixin el comportament o la visió del component

vers el hardware que es té.

Així doncs, com a mínim serà necessari definir un mapa de registres per a cada un

dels ports esclaus que siguin accessibles per al processador. L’editor de components

dóna un paquet de capçaleres en C per definir la visió software vers el hardware.

Habitualment, un fitxer capçalera s’utilitza per a la declaració de macros per a poder

escriure i llegir cada registre en un component, on cada component té assignades unes

adreces.

Els drivers escrits en llenguatges d’alt nivell, abstreuen els detalls d’un component

hardware. L’abstracció, permet accedir al component des del mencionat alt nivell,

cosa que facilita la vida a l’hora de programar. Els requeriments software varien

 Creació d’ IP Cores en una plataforma NIOS

 29

segons les necessitats del component. Les rutines més habituals utilitzades són les

relacionades amb la inicialització de hardware, llegir dades i escriure-les.

El software depèn també del tipus de processador amb el que es tracta, i del nivell

d’especificació que se li dóna al driver. L’editor de components permet empaquetar

fàcilment els drivers en una capa d’abstracció HAL (Hardware Abstraction Layer)

que NIOSII utilitza per al desenvolupament dels components. Aquesta capa és un

subdirectori, del qual en pengen dos més; el primer és anomenat inc i és on van les

capçaleres en C, mentre que l’altre és src i és on hi ha el cos de les funcions. D’altra

banda, els fitxers que especifiquen el hardware estaran situats en el subdirectori hdl,

mentre que les capçaleres accessibles des del software programat, per a controlar el

component, estaran en el subdirectori inc.

Així doncs, per tal de facilitar els drivers per a altres processadors, s’han de modificar

de tal manera perquè s’adaptin a les necessitats de desenvolupament d’aquests.

3.4 Verificació del component

El component dissenyat es pot verificar a través d’estats incrementals a mesura

que es va avançant en el disseny del component. Habitualment, primer s’acostuma a

verificar la lògica del hardware com a una unitat, i més endavant, ja es verifica el

component com a part del sistema.

Per a provar la unitat lògica hardware, s’han d’utilitzar els mètodes que a l’usuari més

li vingui de gust o li sigui més còmode. Eines que permetin la simulació del hardware

com el ModelSim poden ser de gran ajuda per a comprendre la funcionalitat

programada i si hi ha algun tipus de problema poder-lo corregir. De la mateixa

manera, també es pot verificar tot el conjunt del component incloent el fitxer de

 Creació d’ IP Cores en una plataforma NIOS

 30

registres de la interfície Avalon i realitzant les proves que es desitgi un cop ja inclòs

el component en el projecte.

Un cop empaquetats els fitxers en HDL en un component, utilitzant l’editor de

components, el kit de desenvolupament del NIOSII ofereix un mètode senzill per a

simular transaccions de lectura i escriptura en un component. L’usuari pot escriure un

codi en C perquè el processador iniciï transferències de lectura i escriptura cap al

component. Els resultats poden ser verificats amb un simulador com el ModelSim o

sobre el hardware, o sigui sobre la placa UP3, ja siguin escriptures a memòria, com la

lectura de dades en la pantalla LCD.

D’altra banda, un cop es té el component, es pot instanciar fàcilment el component en

el sistema a través de l’editor de components, i d’aquesta forma, verificar la

funcionalitat de tot el mòdul del sistema. El SOPC Builder pot produir tests de prova

que poden verificar cada nivell del sistema. La capacitat de simulació dependrà de

l’entorn i dels components utilitzats en el sistema.

Durant l’ etapa de verificació, incloure un processador NIOS al sistema pot ser de

gran ajuda, ja que un es pot beneficiar de l’entorn de simulació que té. Si el

component creat no té cap mena de relació amb aquest processador, la simulació

autogenerada del ModelSim serà una bona base per tal que es pugui construir una

lògica de control per al sistema en qüestió.

 Creació d’ IP Cores en una plataforma NIOS

 31

4. PROTOTIPATGE SOBRE UP3 - NIOS

Aquest apartat conté el procediment que s’ha anat seguint a partir de l’apartat

anterior, personalitzat segons els avantatges i desavantatges que proporciona la

plataforma Altera sobre els processadors NIOS. Aquests problemes seran comentats

al final d’aquest apartat.

4.1 La plataforma Altera. Procediment

La plataforma i l’entorn que proporciona Altera està composat per 3 aplicacions:

SOPC Builder, Quartus II i NIOS II IDE.

El Quartus II, és el programa principal dels tres. És el que permetrà realitzar el

disseny de l’arquitectura del sistema, així com els esquemàtics, l’assignació dels

components a les sortides dels pins de la FPGA, i tot a un cost molt petit. A més a

més, habilitarà la connexió a la placa per tal d’enviar-hi tot aquest disseny.

El SOPC Builder és una potent eina per al desenvolupament i creació de sistemes

basats en processadors, perifèrics i memòries. És una aplicació capaç de definir i

generar un complet System On a Programmable Chip (SOPC) en molt menys temps

que utilitzant mètodes manuals més tradicionals. És una eina de propòsit general per

a la creació de varis dissenys que poden o no, contenir processador i per descomptat,

no són d’ obligat ús d’un processador NIOSII. Així doncs, serà la peça encarregada

d’integrar els components hardware en un sistema.

 Creació d’ IP Cores en una plataforma NIOS

 32

El NIOS IDE és la plataforma de desenvolupament del software. El llenguatge de

programació que s’utilitzarà en aquest entorn és C++. Aquest entorn permet compilar,

editar i depurar els programes escrits per a controlar els components afegits a la placa.

Així doncs, un cop conegut l’entorn en que es treballarà s’ha de veure el procediment

a seguir.

4.1.1 Arquitectura del sistema

Aquesta secció parlarà de l’arquitectura fonamental d’un sistema SOPC Builder.

Un component del SOPC Builder és un mòdul que el programa pot reconèixer i

automàticament integrar al sistema. L’aplicació connecta múltiples components junts

per a crear un sistema que gestioni tota la connectivitat que hi ha entre ells. La Figura

4.1 mostra un exemple d’un sistema multi-master, i components slave.

 Creació d’ IP Cores en una plataforma NIOS

 33

Figura 4.1 Exemple de mòdul del sistema generat amb el SOPC Builder

Tal i com es pot observar, l’arquitectura pot estar composada per una sèrie de

components que cada usuari podrà personalitzar, però en tots els seus casos s’haurà

de tenir en compte l’ especial gestió que es fa de la memòria en aquest tipus de

sistemes, així com les particularitats del bus Avalon i de la connectivitat d’aquest vers

el processador. El bus Avalon és la particularitat més destacable d’aquest sistema.

Segurament l’element més destacable d’aquest sistema és el bus Avalon. El bus

Avalon és un element d’arquitectura simple dissenyat per a connectar processadors

On-Chip i perifèrics junts en un sistema SOPC. La interfície Avalon especifica les

 Creació d’ IP Cores en una plataforma NIOS

 34

connexions entre els components master i esclaus, així com també, el temps amb el

que aquests components es comuniquen. Els avantatges que ofereix aquest bus en la

present arquitectura són entre d’altres; la simplicitat d’entendre un protocol amb poc

temps d’aprenentatge, l’optimització de recursos d’utilització d’un bus lògic i el

sincronisme de les operacions, ja que integra la lògica de tots els elements que

coexisteixen en el mateix PLD (Programmable Logic Device), mentre evita l’anàlisi

dels complexos timings que existeien entre els components. La Figura 4.2 mostra

l’arquitectura del bus Avalon en forma de diagrama de blocs.

Figura 4.2 Diagrama de blocs del bus Avalon

Aquest mòdul del bus es genera automàticament a través del SOPC Builder, així que

el dissenyador tan sols s’ha d’ocupar d’unir els perifèrics al bus. Aquest bus sempre

serà utilitzat de forma automàtica pel processador i s’integrarà en el mòdul del

sistema, tal i com altres perifèrics. D’aquesta manera com a mòdul és el conducte

principal de comunicacions entre els components. Així doncs, es pot dir que aquest

 Creació d’ IP Cores en una plataforma NIOS

 35

bus és la suma de tot el control, de l’arbitratge de les dades i dels senyals d’adreça

que es connecta junt amb els components creant un sistema.

L’especificació del bus defineix senyals i temps per a l’enviament de dades entre un

component master i un component slave. Els senyals que són diferents depenent del

tipus de transferència entre el perifèric i el mòdul del bus, així doncs, per a

transmissions de tipus slave, cal saber que l’ activitat dels senyals començarà sempre

en la part master que serà l’encarregada d’inicialitzar la transferència., però el port

slave no rebrà els senyals d’entrada directament del port master. Per aquesta raó, les

transferències es diferencien entre transferències de tipus master i de tipus slave.

La interfície de sincronització tal i com s’ha esmentat anteriorment és síncrona i està

controlada per a un rellotge de mateix bus Avalon que actua com a master. Totes les

transferències del bus s’inicialitzen quan el rellotge està en fase ascendent i acaba en

el moment en què es capturen les últimes dades vàlides, o bé quan el rellotge baixa.

La configuració del bus Avalon i dels seus perifèrics pot ser especificada utilitzant la

interfície gràfica que ofereix el SOPC Builder. A través d’aquesta interfície, es poden

especificar diversos paràmetres i elements que generaran un fitxer de sistema en

format PTF. Aquest fitxer és de text, el qual conté els paràmetres que contenen la

funcionalitat del mòdul, els paràmetres de cada perifèric amb la seva funcionalitat, els

rols de master/slave de cada perifèric, els ports de lectura i escriptura, i el mecanisme

d’arbitratge per a cada port esclau, així com el seu accés. Aquest fitxer és passat al

generador de HDL el qual crearà un RTL (Register Transfer Level), que contindrà la

descripció del mòdul del sistema.

Del bus Avalon també es pot comentar que té una interfície de mapeig en memòria.

La relació entre aquests dos components va molt lligada ja que en moltes ocasions, es

vol mantenir una comunicació entre els components i el processador, i aquesta no pot

ser directa. El sistema proporciona una descripció d’adreces on es pot llegir i escriure,

 Creació d’ IP Cores en una plataforma NIOS

 36

i que tan el component master com el slave coneixen. D’aquesta manera l’esclau es

comunica amb el master a través d’aquestes direccions de memòria.

Així doncs, les diferències entre l’arquitectura d’un bus Avalon són ben diferents

respecte a les arquitectures tradicionals, en les quals un o més busos master o slave,

es connecten a un bus compartit. Un sol àrbitre té el control sobre el ús, per evitar que

es produeixin múltiples accessos sobre ell, ja que en els busos de tipus master és

l’àrbitre qui s’encarrega de garantir un sol accés simultani. Una vegada aquest té el

control, envia la transferència al component esclau. Si hi ha múltiples peticions

d’accés al bus, l’àrbitre s’encarrega de fer-les esperar.

Figura 4.3 Diagrama de l’arquitectura d’un bus tradicional

Altres elements com els diversos tipus de memòries que es poden afegir al sistema,

tenen molt a veure amb el bus Avalon ja que la interacció d’aquesta amb el bus, és un

altre tret destacable d’aquest tipus d’arquitectura. La Figura que es mostra a

continuació, és un exemple de com han d’estar afegits elements en aquesta

arquitectura.

 Creació d’ IP Cores en una plataforma NIOS

 37

Figura 4.4 Diagrama d’interconnexió entre els blocs d’un sistema

Tal i com es pot observar els elements de tipus master tenen el bus de dades

multiplexades per a cada dispositiu connectat a ell, així doncs la comunicació serà un

a un, i cada una tindrà el seu bus mitjançant transferir la informació Altres elements

com memòries de tipus FLASH, o bé components com pantalles LCD hauran d’anar

connectades a l’àrbitre del bus Avalon mitjançant un Tri-State que bypassarà la

memòria comentada o bé el component que ho requereixi.

 Creació d’ IP Cores en una plataforma NIOS

 38

Els sistemes SOPC poden accedir directament a molts tipus de memòries RAM i

ROM, sense la necessitat de d’utilització de controladores de memòries off-chip. Les

memòries off-chip tenen una velocitat d’accés més lenta al dispositiu de memòria,

així com més barata i limitada a 32-bit d’espai d’adreça del bus Avalon. Aquests

components faciliten la creació de sistemes de memòria per al desenvolupament en

plaques d’Altera. El problema o la qüestió, és que en tots ells és necessari instanciar

un component TriState Bridge.

El component TriState Bridge, és l’encarregat de connectar dispositius al sistema

d’interconnexió on-chip. Crea una sèrie de senyals d’entrada/sortida al mòdul del

SOPC Builder on s’hauran de connectar els pins de la FPGA a través del QuartusII.

Aquests pins representen el sistema d’interconnexió cap als dispositius off-chip. A

més a més crea unes adreces i pins de dades els quals estan compartits per a múltiples

dispositius off-chip. Així doncs, pel què fa a l’accés s’assegura l’exclusivitat.

 Creació d’ IP Cores en una plataforma NIOS

 39

4.1.2 Procediment

El procediment que es seguirà per al treball sobre aquesta plataforma és el que es

detalla a continuació mitjançant un diagrama:

.

Nou Projecte
 QuartusII

Construcció
sistema

SOPC Builder

Connectar
Components

Afegir un
component

Generar el
sistema

SOPC Builder

Simulació

Descarregar
sobre la placa

Obrir NIOSII
IDE des del

SOPC Builder

Connectar a
la placa via

JTAG

Compilar el
projecte

QuartusII

Assignar una
FPGA

i el connexionat
(PINS)

Connectar el
mòdul

del SOPC al
projecte QuartusII

(Schematic)

Compilar el
software

Afegir la lògica
de control C++
dels dispositius

Figura 4.5 Diagrama del procediment emprat

Com es pot comprovar en el següent diagrama, hi ha una vinculació directa amb els

passos proposats en l’apartat 3 per a una definició metodològica per a la creació d’ IP

Cores i a la utilització dels mateixos.

 Creació d’ IP Cores en una plataforma NIOS

 40

Primer de tot, obrim un nou projecte amb l’eina QuartusII.

Figura 4.6 QuartusII v5.1 Web Edition Full

Amb aquesta eina que es pot observar en la figura anterior s’obre i es crea o carrega el

projecte en qüestió. A la figura també es pot veure els mòduls afegits al projecte (en

forma d’esquemàtic) , amb les seves respectives connexions. Els mòduls han estat

creats pel SOPC Builder que s’obre amb botó situat a la part superior dreta de la barra

d’eines del Quartus.

Si observem el diagrama de la Figura 4.1, es pot comprovar com el QuartusII és

l’encarregat de la realització dels passos centrals del diagrama, tal i com s’explica en

el paràgraf anterior.

 Creació d’ IP Cores en una plataforma NIOS

 41

Tot seguit s’obre el SOPC Builder.

Figura 4.7 SOPC Builder

Observant aquesta figura, es pot veure el SOPC Builder el qual s’encarregarà de

realitzar els primers passos per a la creació d’un sistema complet. És aquí on

s’afegiran components nous pel sistema, així com la possibilitat de crear-ne i afegir-

ne de nous. En aquesta part doncs, es definirà el sistema, i es creara un mòdul que es

gestionarà amb el QuartusII.

Aquest component serà el més important del projecte, tenint en compte l’ arquitectura

comentada en l’Apartat 4.1.1. A part d’això és on definirem i afegirem els

components creats al sistema.

 Creació d’ IP Cores en una plataforma NIOS

 42

Des d’aquesta mateixa aplicació podem obrir el NIOS II IDE.

Figura 4.8 NIOS II IDE

Finalment, en aquesta aplicació, es crearà el projecte software a partir del sistema

generat. Aquest software es compilarà i es descarregarà sobre la placa perquè pugui

actuar sobre els components que haguem afegit al sistema i gestionar-los.

Val a dir que per a una millor comprensió del procediment seguit, es necessari llegir

els manuals, els quals es fa referència en la bibliografia d’aquest projecte, en l’apartat

d’ Altera i el seu entorn.

 Creació d’ IP Cores en una plataforma NIOS

 43

4.2 Disseny dels IP Cores en la plataforma NIOSII

En aquesta secció s’explicaran els passos seguits en el disseny dels dos IP Cores

implementats. Els passos que s’han seguit són els explicats a l’ Apartat 3 d’aquest

projecte, utilitzant les eines facilitades per Altera explicades en la secció anterior.

Cada IP Core implementat té una sèrie d’especificacions i necessita d’una sèrie

d’accions per a convertir-se en un component, tal i com s’ha explicat en apartats

anteriors. Primer de tot, es necessita l’element encarregat de efectuar les tasques

lògiques i que descriurà el hardware. Un cop fet això, es necessari definir la

funcionalitat del core a nivell dels registres, i finalment un cop instanciades les

accions anteriors es necessitarà un component d’alt nivell que els recobreixi i que

proporcioni la interfície necessària amb el bus Avalon.

4.2.1 IP Core: PWM (Pulse Width Modulation)

Pulse Width Modulation (PWM) és una tècnica de gran abast per a controlar els

circuits analògics a través de les sortides digitals d’un microprocessador. El PWM

s’utilitza en molts camps per a una varietat d’accions diferents, estenent-se cap a

camps com les telecomunicacions, la regulació de voltatge, la conversió d’ energia i

els efectes i l’amplificació de l’ àudio.

En el camp de les telecomunicacions, l’amplada del pols correspon a les dades

específiques codificades a una banda i descodificades a l’altre. Els polsos tenen una

llargada diferent però que seran enviats en intervals regulars. D’altra banda, en el

camp de la regulació del voltatge el PWM és un eficient regulador, ja que

 Creació d’ IP Cores en una plataforma NIOS

 44

seleccionant un voltatge d’entrada determinat, juntament amb un cicle de treball

adequat, la sortida serà un voltatge amb el nivell desitjat.

No obstant, en camps com els de la conversió d’energia es poden utilitzar per reduir

la quantitat total d’energia entregada a una carrega sense tenir en compte les pèrdues

que es tenen quan una font d’energia és limitada per temes resistius. Això és així,

perquè l’energia mitjana entregada és proporcional al cicle de treball de la modulació.

D’aquesta manera amb una modulació suficientment alta, els filtres electrònics

passius es poden utilitzar per a aïllar un tren de pols i recuperar una forma d’ona

mitja.

Per altra banda, i com a últim exemple de camp on s’utilitzen cal esmentar que a

vegades s’utilitza en la síntesis del so. Dóna un efecte de so semblant al de una

tornada en una cançó, o als oscil·ladors lleugerament desintonitzats sonant a la

vegada. Un exemple de la utilitat en aquest camp són els amplificadors de classe-d

Així doncs, aquest driver consisteix en què a partir de la modulació d’uns senyals

analògics som capaços de moure components hardware com ara motors, que

evidentment funcionen amb aquest tipus de senyals.

Per fer variar el seu comportament, s’ha de variar el senyal del seu cicle de treball,

així que depenent de la carrega que se li indiqui treballarà d’una forma o d’un altre.

Figura 4.9 El senyal bàsica del Pulse Width Modulation

 Creació d’ IP Cores en una plataforma NIOS

 45

En aquesta figura es pot veure la forma del senyal PWM. Un component d’aquest

tipus genera com a sortida una ona quadrada amb la modulació indicada, depenent del

cicle de treball que se li hagi aplicat.

El component que s’ha especificat i creat per a aquest projecte segueix les següents

especificacions:

- La tasca lògica opera de forma síncrona amb l’únic rellotge existent.

- La tasca lògica utilitza comptadors de 32 bits per a oferir un rang prou

ampli per a configurar diversos períodes PWM i cicles de treball.

- El processador serà l’encarregat d’assignar el valor del període PWM i del

cicle de treball. Aquests requeriments impliquen la necessitat de llegir i

escriure en la interfície per a controlar la lògica.

- Registrar els elements que estan definits per a mantenir el valor de període

i el valor del cicle de treball del PWM.

- El processador pot parar la sortida PWM utilitzant el bit de control enable.

A continuació, es pot observar l’esquema del component implementat, seguint

l’estructuració anterior.

 Creació d’ IP Cores en una plataforma NIOS

 46

Interfície Bus Avalon

Registre de control d’estatRegistre valor
cicle de treball

Comptador de cicle

Controladora Sortida

Sortida PWM

 Figura 4.10 Arquitectura del IP Core: Pulse Width Modulation

Tal i com es pot observar en la figura anterior, el IP Core en qüestió, està dotat de les

tres seccions esmentades. La tasca lògica la composen els comptadors de cicles i la

controladora de sortida, la qual s’encarregarà de generar el senyal de sortida de pols.

Per altra banda, els registres contindran la informació de del valor del cicle de treball

amb el qual es treballarà i si està o no actiu. Finalment, la interfície amb el bus

Avalon serà l’encarregada de traduir els senyals que li arriben per uns altres els quals

el driver podrà treballar-hi.

La tasca lògica d’aquest component té les següents característiques:

 Creació d’ IP Cores en una plataforma NIOS

 47

- La tasca lògica consisteix en un rellotge d’entrada (clk), un senyal de

sortida (pwm_out), un bit d’ enable, un comptador de 32-bits i un circuit

comparador també de 32-bits.

- Els drivers del rellotge, estableixen el període d’un senyal pwm_out.

- El comparador compara el valor actual amb el cicle de treball i determina

la sortida del pwm_out.

- Quan el valor actual és inferior o igual que el cicle de treball, la lògica del

pwm_out és 0, per altra banda, el valor lògic del driver serà 1, en altres

casos.

Figura 4.11 Estructura de la tasca lògica del PWM

Pel què fa als registres, són els encarregats de facilitar l’accés al bit d’enable, el

mòdul del registre que conté el valor i el cicle de treball, tal i com es pot veure en la

figura anterior. El mapeig de cada registre cap a una únic offset en l’ espai de

memòria del bus Avalon és imprescindible. Cada registre ha de poder tenir permisos

de lectura i escriptura, el què significa que el software pot llegir valors antics

prèviament escrits als registres. D’aquesta manera podran interactuar els dispositius

amb el software, ja que el processador podrà llegir en memòria el què li diu cada

 Creació d’ IP Cores en una plataforma NIOS

 48

component esclau. Aquesta és una consideració que s’ha tingut en compte aquí, tot i

que també es podria plantejar que els registres fossin només d’escriptura, cosa que

faria que es conservaria la lògica dels dissenys on chip, però d’altra banda faria

impossible pel software llegir els valors dels registres, impossibilitant la interacció.

El fitxer dels registres conté bàsicament els registres que es mostren en la taula

següent, on es pot comprovar que es necessitaran dos bits de codificació per a un

correcte adreçament.

Nom del registre Offset Accés Descripció

clock_divide 00 Lectura/Escriptura El numero de cicles de rellotge

comptats durant un cicle de

sortida del PWM

duty_cycle 01 Lectura/Escriptura El numero de cicles de rellotge

en els quals la sortida PWM

serà baixa

enable 10 Lectura/Escriptura Habilita/Deshabilita la sortida

PWM. Posant el bit de 0 a 1

s’habilita el PWM

reservat 11 -

Figura 4.12 Fitxer de registres i mapeig de les adreces

Per a poder llegir o escriure els registres tan sols es requereix un cicle de rellotge, que

afectarà als estats d’espera de la interfície Avalon.

La interfície Avalon per al component PWM requereix un port esclau, utilitzat per a

efectuar les lectures i les escriptures en les transferències als registres. El port esclau

del component té les següents característiques:

 Creació d’ IP Cores en una plataforma NIOS

 49

- És síncron amb el rellotge del port esclau.

- Es pot llegir i escriure en ell.

- No té estats d’espera per a la lectura i l’escriptura, perquè els registres

estan capacitats de respondre a les transferències en un cicle de rellotge.

- No hi ha restriccions per realitzar una lectura i/o escriptura.

- Latència en la lectura no és necessària, perquè totes les transferències

poden realitzar-se en un cicle de rellotge.

Així doncs, la llista de senyals requerits per a la implementació d’aquestes propietats

de les transferències són les que es poden veure a continuació, i que també són el nom

dels senyals que estan definits en el disseny HDL.

Nom del senyal en

HDL

Tipus de

senyal Avalon

Amplada

de bits

Direcció Descripció

Clk clk 1 Entrada Rellotge que

sincronitza les dades

de les transferències

amb la tasca lògica

resetn reset_n 1 Entrada Senyal de reset; activa

a baixa

avalon_chip_select chipselect 1 Entrada Senyal de chip-select

address address 2 Entrada 2-bit d’adreça; només

3 codificacions són

possibles

write write 1 Entrada Senyal d’enable

d’escriptura

write_data writedata 32 Entrada 32-bit valor de les

dades a escriure

Read read 1 Entrada Senyal d’enable de

lectura

 Creació d’ IP Cores en una plataforma NIOS

 50

read_data readdata 32 Sortida 32-bit valor de les

dades a llegir

Figura 4.13 Nom dels senyals del PWM i tipus de senyals del bus Avalon

I Finalment, i per a completar el component és necessari disposar dels fitxers de

capçalera que defineixen el mapeig dels registres, i un driver software pel

processador NIOSII. Les funcions del driver s’exposen a continuació:

Funció Descripció del tipus

Altera_avalon_pwm_init(); Inicialitza el hardware del PWM

Altera_avalon_pwm_enable(); Activa la sortida del PWM

Altera_avalon_pwm_disable(); Desactiva la sortida del PWM

Altera_avalon_pwm_change_duty_cycle(); Canvia el cicle de treball del PWM

Figura 4.14 Funcions del driver PWM

Aquestes funcions permeten la comunicació entre l’alt nivell i el component,

facilitant la feina del dissenyador. Un cop s’està treballant a alt nivell, a través del

NIOS II IDE, i durant el procés de disseny d’una lògica de control es poden utilitzar

aquestes funcions. Tal i com la descripció indica, cada funció realitza el treball

indicat.

Un cop arribats en aquest punt, ja es tenen totes les especificacions del driver PWM.

Tan sols faltarà realitzar la unió per a obtenir un component únic, que serà el que es

podrà unir al sistema, i utilitzar-lo segons les necessitats desitjades.

 Creació d’ IP Cores en una plataforma NIOS

 51

4.2.2 IP Core: I2C (Inter-Integrated Circuit)

El bus I2C és un bus de comunicacions multi-master sèrie inventat per Philips. El

seu nom prové de Inter-Integrated Circuit. S’utilitza per afegir perifèrics de baixa

velocitat a la placa base, al sistema o en altres dispositius.

És un bus molt utilitzat en la indústria, principalment per a comunicar

microcontroladores i els seus perifèrics en sistemes empotrats (embedded), i

generalitzant més, per a comunicar circuits integrats entre sí que normalment

resideixen en un mateix circuit imprès. És un bus que encaixa molt bé en aplicacions

que requereixen la comunicació entre dispositius que estan en distàncies curtes. A

més a més, detecta col·lisió, arbitra i prevé de la corrupció de les dades si dos

dispositius master intenten agafar el control del bus de forma simultània.

Els dispositius connectats al bus I2C tenen una adreça única. Cada un d’ells pot ser

master o slave. El dispositiu master inicia la transferència de dades i és a més a més

el què genera el senyal de rellotge., però no és necessari que el master sigui sempre el

mateix dispositiu, ja que és una característica que poden adoptar tots els dispositius

que tinguin aquesta capacitat, i per això se l’anomena multi-master.

La principal característica del I2C és que tan sols utilitza dos fils els quals li permeten

transmetre la informació de forma bidireccional. Per un van les dades i per l’altre el

senyal de rellotge que serveix per a sincronitzar-les. També és necessària una tercera

línia que és la de terra. Com s’acostumen a comunicar circuits d’una mateixa placa

que comparteixen el mateix terra, aquesta línia no sol ser necessària.

Les línies s’anomenen SDA (Serial DAta line), i SCL (Serial CLock line). Les dades

són transmeses entre el dispositiu master i el dispositiu slave de forma síncrona a

través de la línia SCL cap a la línia SDA byte a byte. Cada byte de dades té una mida

de 8 bits. Cada pols de la línia de rellotge SCL es transmetrà un bit i l’ordre serà del

 Creació d’ IP Cores en una plataforma NIOS

 52

més significatiu al menys. Un bit d’ acknowledge seguirà cada transferència de bytes.

Cada bit és transmès durant el període alt de la línia SCL; per tant la línia SDA ha de

canviar únicament durant el període de baixa de la línia SCL que ha de mantenir-se

estable, durant el seu període a alta. Una transició en la línia SDA mentre la línia SCL

està a alta és interpretat com un senyal de inici o fi de transmissió.

D’aquesta manera el protocol de comunicacions té la forma següent, i es detalla a

continuació:

Figura 4.15 Protocol I2C

- El bus està lliure quan les línies SDA i SCL estan l’estat lògic alt.

- En l’estat de bus lliure, qualsevol dispositiu pot ocupar el bus I2C com a

master.

- El master comença la comunicació enviant un senyal que indica l’ inici

d’una transmissió de dades. Aquest senyal consisteix fer una transició de

altes cap a baix de la línia SDA mentre la SCL segueix estan a l’estat lògic

alt. Això activa els dispositius esclaus que esperen una transmissió. La

repetició d’un senyal de inici sense generar un senyal de STOP,

significaria que el master vol comunicar-se amb un altre dispositiu slave o

amb el mateix en una direcció de transmissió diferent, sense alliberar el

bus.

- El primer byte de dades transmès pel master immediatament després del

senyal d’inici és l’adreça del dispositiu esclau. Hi ha 7 bits d’adreça

seguits per un bit de lectura/escriptura. Aquest bit indica la direcció de la

transmissió de dades. Dos components esclau no poden tenir la mateixa

adreça en el mateix sistema. D’aquesta manera tan sols el esclau que tingui

 Creació d’ IP Cores en una plataforma NIOS

 53

l’adreça corresponent transmetrà un bit d’ acknowledge activant la línia de

dates a baixa al novè cicle de rellotge del SCL.

- Una vegada finalitzada l’etapa d’adreçament ja es pot procedir a la

transferència de dades byte a byte, en la direcció especificada pel bit de

RW enviat pel master. Cada transferència de bytes és seguida per un bit d’

ACK al novè cicle de rellotge de la línia SCL. Si per algun motiu, el

dispositiu esclau envia un senyal de NACK, el dispositiu master pot

generar un senyal de STOP que abortarà la transferència de dades o

generarà un altre START per iniciar un nou cicle de transferència. Per a

escriure dades a l’esclau, s’ha d’emmagatzemar les dades a ser transmeses

en el registre de transmissió i activar el bit de WR.

- Finalment, el master pot acabar una comunicació, generant un senyal de

STOP. Un senyal de STOP es pot generar realitzant una transició de baixa

a alta de la línia SDA mentre la línia SCL està en l’estat lògic 1.

Un cop vist el protocol de transmissió de dades a través del bus, i tal i com s’ha

comentat en l’ inici, el bus I2C és un bus que permet que varis dispositius master

estiguin connectats a ell. Si dos o més dispositius intenten controlar el bus de forma

simultània, un procediment de sincronització del rellotge es posa en marxa i

determina el rellotge del bus. Les transicions d’alta a baixa afecten a tots els

dispositius connectats al bus, per tant un cop un dispositiu hagi fet la transició a baixa

mantindrà la línia SCL en aquest estat fins que el rellotge no arribi a l’estat d’alta.

Veient això s’entén que la línia SCL és una línia que és la conjunció de totes les

sublínies SCL que cada dispositiu mater té. En la figura que es mostra a continuació

és pot observar aquest procediment.

 Creació d’ IP Cores en una plataforma NIOS

 54

Figura 4.16 Arbitratge línia SCL

D’altra banda els dispositius esclau poden utilitzar el mecanisme de sincronització del

rellotge per a alentir la transferència de bits. Una vegada el master a posat a baixa el

senyal SCL, l’ esclau pot posar el senyal SCL a baixa per un període de temps

requerit i tot seguit alliberar-lo. Si el període a baixa del senyal SCL de l’esclau és

més gran que la del master, el resultat és que el senyal SCL del bus a baixa s’estira.

És així com s’insereix un estat d’espera.

Així doncs, després de comentar com funciona el bus I2C anem a centrar-nos en

l’arquitectura del component i al què faran cada una de les parts d’aquest. El IP Core

construït a partir de 3 blocs: el primer el formen el generador de rellotge, la

controladora de bytes, la controladora de bits, que bàsicament corresponent a la tasca

lògica del component. El segon bloc és que s’encarrega de comunicar-se amb els

registres, o sigui que transmet els senyals des de la lògica de control fins a l’exterior, i

finalment la interfície del bus Avalon, que és el tercer bloc i s’utilitzarà per a realitzar

la transferència requerida a través de la tasca lògica tal i com s’ha definit en l’

Apartat 3.

 Creació d’ IP Cores en una plataforma NIOS

 55

Interfície Bus Avalon

Recepció
Registre

Transmissió
Registre

Generador
De Rellotge

Registre
d’estat

Registre
de comandes

Assignar
Registre

Controladora de
Comandes de bits

Controladora de
comandes de bytes

Entrada de dades
als registres I/O

SCL SDA

Figura 4.17 Arquitectura del IP Core I2C

El generador de rellotges s’encarrega de generar els senyals d’enable que

sincronitzarà els elements a transmetre en el transmissor de bits. D’altra banda també

s’encarrega d’alentir les transferències per a dispositius més lents, aguantant el cicle

de rellotge.

El controlador de bytes agafa el trànsit de dades de nivell de byte. Agafa les dades del

registres de comandes i les tradueix en seqüències basades en la transmissió d’un

byte. Tot seguit s’encarrega d’enviar aquest byte trossejat en forma de bits cap a la

controladora de comandes de bits.

 Creació d’ IP Cores en una plataforma NIOS

 56

Estat d’espera

R/W bit

START

Estat START

Generat START

Bit R

Estat READ Byte Llegit Estat ACK Bit ACK R/W

Estat WRITE Byte Escrit

SI

NO

SI

NO

SI

NO

SI

NO

SI

NO

SI

NO

SI

NO

 Figura 4.18 Diagrama de flux de la controladora de bytes

La controladora de comandes de bits agafa la transmissió actual de dades i genera els

senyals específiques de inici, un inici repetit i aturada controlant les línies SCL i

SDA. La controladora de bytes li diu a la de bits quina operació ha de realitzar. Per a

una simple lectura, la controladora de bits rep 8 comandes de lectura . Cada operació

de bit és dividida en 5 parts, exceptuant la de STOP que és divideix en 4 tal i com es

veu en la figura següent, on les parts són idle, A, B, C i D.

 Creació d’ IP Cores en una plataforma NIOS

 57

START (Inici)

Rep START (Repetició

d’inici)

STOP (aturada)

WRITE (escriptura)

READ (Lectura)

Figura 4.19 Controladora de comandes de bits

El component d’entrada de dades al registre conté les dades associades a la

transferència actual. Durant una acció de lectura, entra en la línia SDA. Després que

un byte ha estat llegit els continguts són copiats al registre de recepció. Durant una

acció d’escriptura, els continguts del Registre de Transmissió són copiats en aquest

mòdul i són transmesos a la línia SDA.

 Creació d’ IP Cores en una plataforma NIOS

 58

Així doncs, un cop analitzat el component, a nivell funcional, s’ha d’examinar el

conjunt de senyals que el componen. Els primers senyals que toca analitzar són les

referents a la interfície i el mapeig que es fa d’elles per tal que el bus Avalon pugui

comunicar-s’hi, així com les que té la interfície i utilitza per comunicar-se amb el

registres.

Nom dels senyals

en HDL

Tipus de

senyal Avalon

Amplada

de bits

Direcció Descripció

wb_clk_i Clk 1 Entrada Rellotge master

wb_rst_i ‘0’ 1 Entrada Senyal síncrona de

reset, activa a alta

arst_i reset_n 1 Entrada Senyal de reset

asíncrona

wb_adr_i address 3 Entrada Adreça de bits

wb_dat_i writedata 8 Entrada Dades cap al dispositiu

wb_dat_o readdata 8 Sortida Dades des del

dispositiu

wb_we_i write 1 Entrada Senyal d’enable

d’entrada

wb_stb_i chipselect 1 Entrada Senyal de selecció

d’entrada

wb_cyc_i chipselect 1 Entrada Senyal de cicle de bus

vàlid

wb_ack_o waitrequest_n 1 Sortida Senyal d’ ACK de

sortida

wb_inta_o irq 1 Sortida Senyal d’interrupció

de sortida

Figura 4.20 Senyals de la interfície de comunicació amb els registres

 Creació d’ IP Cores en una plataforma NIOS

 59

Pel què fa al bus Avalon només te contacte amb els senyals exteriors. Els senyals que

necessita són els SDA i SCL ja comentats amb anterioritat. Com es pot veure en la

figura següent hi ha dos senyals, més per línia, que s’utilitzaran en cas que hi hagi

retorn de dades per part del dispositiu.

Nom del senyal en

HDL

Tipus de

senyal Avalon

Amplada

de bits

Direcció Descripció

scl_pad_i scl_pad_i 1 Entrada Línia d’entrada del

senyal sèrie de rellotge

scl_pad_o 1 Sortida Línia de sortida del

senyal sèrie de rellotge

scl_pad_oe 1 Sortida Línia de sortida

d’enable del senyal

sèrie de rellotge

Sda_pad_i sda_pad_i 1 Entrada Línia d’entrada del

senyal sèrie de dades

Sda_pad_o 1 Sortida Línia de sortida del

senyal sèrie de dades

Sda_pad_oe 1 Sortida Línia de sortida

d’enable del senyal

sèrie de dades

Figura 4.21 Senyals de la interfície amb el bus Avalon

Els senyals SDA i SCL són bidireccionals. Per tal de controlar-los per realitzar

transferència de dades en ambdós sentits cal introduir un buffer tri-state, per a aquests

senyals com a nivell jeràrquic més alt. Les connexions es faran d’acord a la figura que

es mostra a continuació:

 Creació d’ IP Cores en una plataforma NIOS

 60

Figura 4.22 Bidireccionalitat senyals I2C

A través d’aquests buffers, es permet la transmissió de dades en un o altre sentit.

D’altra banda, per a dissenys amb FPGA el compilador pot inserir de forma

automàtica aquests buffers utilitzant codi en HDL com es mostra tot seguit a fi

d’exemple.

scl <= scl_pad_o when (scl_padoen_oe = ‘0’) else ‘Z’;
sda <= sda_pad_o when (sda_padoen_oe = ‘0’) else ‘Z’;
scl_pad_i <= scl;
scl_pad_i <= sda;

Si es baixa de nivell s’arriba al nivell dels registres. En aquest nivell també hi ha una

assignació d’aquests amb els mòduls que tracten la tasca lògica o driver del IP Core.

Així doncs, a continuació s’enumeren el conjunt de registres del component i una

breu explicació de cada un d’ells.

Nom del registre Offset Accés Descripció

PRERlo 8 Lectura/Escriptura Estableix el registre del rellotge

a byte baix

PRERhi 8 Lectura/Escriptura Estableix el registre del rellotge

 Creació d’ IP Cores en una plataforma NIOS

 61

al byte alt

CTR 8 Lectura/Escriptura Control del registre

TXR 8 Escriptura Registre de Transmissió

RXR 8 Lectura Registre de Recepció

CR 8 Escriptura Registre de comandes

SR 8 Lectura Registre d’estat

Figura 4.23 Descripció dels registres

El registre d’assignació de registre PRERlo i PRERhi, s’utilitzen per assignar el

rellotge a la línia SCL. S’assignen les freqüències i es canvien els valors assignats del

registre tan sols si el bit d’enable està actiu.

El registre de control respon a les noves comandes només quan el bit d’enable està

actiu, i informa quan les comandes han finalitzat. El senyal d’enable desactivat

indicarà que no hi ha transferències actives.

Pel que fa als registres de transmissió i de recepció contenen la informació en forma

de byte que s’ha transmès o rebut, en cada cas. En el cas de la transmissió té la

particularitat que el bit menys significatiu indica que si hi ha un 1, és que la

transmissió és per a llegir de l’esclau, mentre que si hi ha un 0 és per escriure-hi.

 Creació d’ IP Cores en una plataforma NIOS

 62

4.3 Resultats, problemes i solucions

Durant el desenvolupament d’aquest projecte han anat sorgint diversos

imprevistos que es comentaran en aquest apartat. Com ja s’ha comentat tan en la

introducció, i tal i com s’havia contemplat en l’estudi de viabilitat del projecte, el fet

de treballar amb hardware és una dificultat afegida, ja que aquest sempre pot provocar

algun error, així com que el software que el gestioni tingui algun tipus d’error a causa

d’una mala programació.

El primer problema greu, es va trobar al principi. Durant el procés d’anàlisi, en el

qual es varen realitzar diversos sistemes de prova, l’entorn d’Altera va començar a

actuar de forma estranya. El problema residia en la impossibilitat de poder

descarregar el sistema creat a la placa, i un cop la llicència de l’aplicació es va

renovar per caducada el comportament encara va empitjorar. La reinstal·lació de

l’entorn i de tots els components instal·lats, va solucionar el problema. A data d’avui,

encara es desconeix l’arrel del problema, però aquest cas es va reproduir per a 3

ordinadors més, fet realment sorprenent i que encara va desconcertar més. La pèrdua

de temps en aquest cas va ser notable.

Els problema generat a partir del punt anterior té l’estructura que es mostra a

continuació. Durant el pas del sistema a la placa en a través del NIOSII IDE es

produïa el següent error, tot i compilar tot el sistema de forma correcta.

Using cable "ByteBlaster [LPT1]", device 1, instance 0x00

Pausing target processor: OK

Reading System ID at address 0x02120FFF: verified

Downloading 0A000000 (0%)

Downloading 0A000020 (99%)

Downloaded 86KB in 1.1s (78.1KB/s)

 Creació d’ IP Cores en una plataforma NIOS

 63

Verifying 03000020 (0%)

Verify failed

Leaving target processor paused

Per tant, el processador mai acabava d’arrencar i executar el sistema. D’altra banda,

també s’ha donat el problema següent referent a problemes amb JAVA.

(SEVERE) generate: java.lang.IllegalStateException:

java.lang.IllegalStateException

La reinstal·lació després d’aquest tipus d’errors es fa necessària, ja que tenint tots els

components instal·lats correctament, i sense haver efectuat cap acció susceptible

d’error, aquests problemes resulten greus i de difícil solució.

Permisos de lectura i escriptura. La majoria de fitxers que gestionen les aplicacions

QuartusII, SOPC Builder i NIOSII IDE necessiten permisos d’escriptura. És

necessari, ja que aquestes eines escriuen en els fitxers com a part del procés de

generació i compilació, i per tant si no tenen algun d’aquests permisos les eines

fallen, provocant errors inesperats. Un error d’aquest estil s’ha trobat intentant obrir

el projecte: Error: Can't open project -- you do not have permission to write to all the

files or create new files in the project's database directory. Aquest error, el provoca el

Windows XP en conjunció amb Altera. El sistema operatiu, canvia els permisos del

directori del projecte a read only. Si s’intenta modificar els permisos a mà, a través de

les propietats de carpetes i fitxers del S.O, el Quartus a l’ intentar obrir el projecte

retorna els fitxers amb permisos de només lectura. La solució consisteix en crear un

executable .bat, que contingui la següent informació:

attrib -R /S /D *

attrib -R /S /D .

 Creació d’ IP Cores en una plataforma NIOS

 64

Aquestes dues comandes faran que el sistema operatiu canviï realment els permisos

dels fitxers que resideixen en el directori del projecte.

Cada sistema que es pugui crear en l’entorn d’ Altera va directament lligat a la placa

que s’utilitza. En el cas d’aquest projecte s’ha utilitzat la placa de la família Cyclone i

més concretament el model EP1C12Q240C8. Així doncs, s’ha hagut d’adaptar el

sistema a la placa en alguns aspectes, que en un principi no s’havien tingut en

compte, així com indicar-li a l’aplicació de quina placa es tracta. El sistema creat

conté un mòdul de memòria SDRAM, que no funcionava correctament al intentar

interactuar-hi. El problema s’ha solucionat modificant la fase del rellotge a -90º, en

comptes de -60,75º que es el valor amb el que es carrega el mòdul per defecte, i que

provoca problemes crítics amb els timings del sistema.

De la mateixa manera, i per les particularitats del model de la placa s’ha tingut que

modificar les connexions entre els pins d’aquesta. Per defecte es realitzen les

assignacions que determina el QuartusII, encara que en ocasions no són correctes, o

bé no s’adapten al sistema creat.

Els problemes esmentats en els últims dos paràgrafs es poden trobar documentats als

datashits d’errors que es poden trobar a la pàgina web d’ Altera.

La inclusió d’un element Avalon Tristate Bridge. Aquest component connecta

dispositius off-chip cap a sistemes on-chip a través del bus Avalon. Aquest

component ha solucionat el problema de comunicació de components off-chip

inclosos al sistema com ara la pantalla LCD o memòria SRAM, ja que sense el

dispositiu el sistema no permetia generar una solució correcta donant error. El pont en

qüestió doncs, crea adreces i pins de dades que poden ser compartits per a múltiples

dispositius off-chip. Aquesta opció permet conservar els pins del processador quan

aquest es connecta a múltiples dispositius amb exclusió mútua d’accés.

 Creació d’ IP Cores en una plataforma NIOS

 65

La placa UP3 en l’entorn educatiu presenta un inconvenient de treball greu quan es

volen fer aplicacions autònomes. Durant la planificació inicial d’aquest projecte es va

plantejar la possibilitat que el sistema creat, gràcies als dos nous cores creats pogués

ser autònom i actuar com un robot intel·ligent. La opció es mantenir fins que es va

veure que era inviable. La problemàtica recau en el fet que la placa UP3 ha d’estar

permanentment connectada al PC a través del port paral·lel. Aquesta connexió ha

d’existir ja que sinó la placa deixa de funcionar. És un problema pel fet que no dóna

un grau més de llibertat per a l’experimentació, amb aquest tipus de dispositius, i el fa

menys flexible.

L’ entorn d’Altera no destaca precisament per fer un ús racional o òptim de la

memòria. Els entorns de programació que descarreguen els sistemes a la placa,

utilitzen molts recursos, que les FPGA no acaben de gestionar de la millor manera. El

mal ús d’aquesta memòria pot provocar problemes d’overflow.

Com a nota positiva, val a dir que es pot descarregar el sistema en el tipus de

memòria que es desitgi poden interactuar amb la que més interessi segons el sistema

programat. No obstant, les memòries que puguin tenir els sistemes no poden

comunicar-se entre elles de forma directa, en cas de necessitar simultaneïtat en l’ús de

memòries durant l’excussió d’una aplicació. Això, és un problema ja que condiciona

el programador a l’hora de crear una aplicació fent que aquesta hagi de crear ponts de

comunicació entre els diferents tipus de memòries que es volen utilitzar i esperar que

no succeeixi cap error.

 Creació d’ IP Cores en una plataforma NIOS

 66

4.4 Proves

Aquest apartat pretén comentar les proves realitzades sobre l’entorn d’Altera. Per

a comprovar el correcte funcionament dels IP Cores s’ha creat un sistema senzill que

es composa d’elements de memòria, el processador, el connector JTAG, entre

d’altres, així com els dos components que s’han creat.

Primer de tot, s’ha provat que el sistema funcionés correctament a nivell de totes les

memòries que el composen, LEDs i pantalla LCD. Un cop comprovat que el sistema

funciona correctament, s’han afegit els dos nous components. D’aquesta forma, un

s’assegura que el sistema és correcte i que els possibles problemes que sorgeixin un

cop afegits els components, no siguin a causa d’un sistema corrupte.

Per a provar el driver de PWM s’ha utilitzat un servo-motor. Aquest servo-motor

funciona a través de la modulació de pols, cosa que encaixa amb el core creat. Les

proves amb aquest component han funcionat de forma parcial. A través de les

verificacions fetes sobre el driver s’ha comprovat que aquest funciona correctament,

però al passar-lo com a component a la placa, aquest actua de forma estranya a causa

del soroll que el servo provoca. El soroll EMI (Electromagnetic Interference) és tal

que fa que el servo no acabi de girar en les direccions indicades, i per tan s’ha

necessitat d’un altre sistema per a validar-lo.

Per visualitzar millor el comportament del driver en la placa UP3, s’ha redirigit la

sortida del PWM a un LED situat a la placa. S’ha anat modificant el cicle de treball

del PWM i d’aquesta manera es veu com el LED es va apagant i encenent segons el

pols enviat. Així doncs, s’ha pogut validar el correcte funcionament d’aquest IP

Core.

 Creació d’ IP Cores en una plataforma NIOS

 67

Per altra banda, per la validació del driver de I2C s’ha utilitzat un compàs magnètic.

Aquest component es comunica a través d’aquest bus amb el sistema. S’han efectuat

les proves pertinents, consistents en llegir les dades que transmet el compàs a través

del bus.

 Creació d’ IP Cores en una plataforma NIOS

 68

5. CONCLUSIONS I MILLORES

5.1 Conclusions

Altera és l’empresa líder en la programació de dispositius lògics i programables,

així com també, pionera en la utilització d’aquests dispositius. Sabent aquesta dada,

hom té clar que una empresa d’aquesta envergadura ajustarà els seus productes a les

necessitats dels usuaris, però partint d’una sèrie d’especificacions que es poden

permetre el luxe d’escollir. Així doncs, la definició metodològica per a la creació de

IP Cores ha estat basada a partir de l’estudi i la realització d’aquests cores, partint de

les especificacions i necessitats que un entorn peculiar com el d’Altera proporciona.

La creació d’un manual, o d’una definició metodològica complerta a seguir per a la

creació d’un component en aquest entorn, ha esdevingut una tasca realment

complexa. A pesar de la gran quantitat d’informació que proporciona Altera, no hi ha

un manual complet on es puguin trobar els passos concrets per a la creació d’un IP

Core. Conseqüentment, la tasca d’analitzar l’entorn i els documents, així com el munt

d’idees que es desprenen d’ells, ha dificultat el fet d’escriure aquests passos en un full

de paper, a fi de tenir aquesta informació centralitzada.

La utilització de la solució SOPC (System On a Programmable Chip) que

proporciona Altera ha fet que s’aprengués una manera de resoldre els problemes de

disseny en la creació de sistemes. Utilitzant el SOPC en el sistema creat, s’han pogut

veure el conjunt d’avantatges i inconvenients que són conseqüència de l’ús d’aquest

entorn, així com de la seva arquitectura. Gràcies als dissenys de múltiples mòduls IP

per a optimitzar el disseny hardware, s’ha pogut simplificar molt la feina de creació

d’un sistema per a poder adaptar els nous IP Cores creats.

 Creació d’ IP Cores en una plataforma NIOS

 69

Pel que fa al disseny s’ha comptat amb unes eines de desenvolupament realment

bones, a pesar dels problemes que han generat. El QuartusII i el SOPC Builder

faciliten l’ús i la modificació de canvis en el hardware, depenent de l’aplicació que es

vulgui crear. Per exemple, en el sistema desenvolupat en aquest projecte, la

flexibilitat de l’entorn ha facilitat el fet de poder afegir dos nous components al

sistema, així com decidir quins components s’hi afegien i quins no. Aquesta forma de

disseny s’entén que és més econòmica que d’altres, ja que no s’ha de comprar

hardware addicional per a completar el sistema creat, sinó que tan sols requereix

canviar la configuració del software del processador NIOS.

No obstant, dóna la sensació que les eines de desenvolupament del software per a

NIOS podrien ser molt millor. Per exemple, la codificació, la compilació i les eines

per depurar estan separades, fet que dificulta al dissenyador treballar d’una forma

eficient. Integrant aquestes eines, es garantiria una millora en l’eficiència de disseny.

Utilitzant el kit de desenvolupament de la plataforma NIOS, s’ha trobat relativament

fàcil el fet de connectar els nous components a la lògica establerta per Altera. La

interfície del bus Avalon no ha estat complicada d’entendre, encara que diferís de

l’arquitectura tradicional. D’altra banda, i a pesar dels problemes, el kit UP3 es pot

considerar com a una bona placa a nivell estudiantil, per la quantitat d’opcions que

ofereix i la personalització que qualsevol usuari li pot donar per a crear el seu propi

sistema.

D’aquesta manera, es considera que l’ús del kit de desenvolupament NIOS ha facilitat

el desenvolupament del sistema plantejat a partir de la metodologia creada.

També és molt important remarcar el fet que els IP Cores dissenyats, poden ser

utilitzats per a altres dissenyadors de components en els seus sistemes. La grandesa

d’una descripció genèrica de creació d’aquests drivers recau, en gran part, en el fet de

poder compartir dissenys perquè d’altres puguin gaudir d’aquest treball. És important,

 Creació d’ IP Cores en una plataforma NIOS

 70

en una societat com la d’avui dia, compartir, ja que no cal reinventar la roda cada

vegada.

5.2 Millores

Es pot considerar que els objectius principals plantejats a l’inici s’han complert.

La definició d’una metodologia per a la creació d’ IP Cores, era el punt clau sobre el

qual girava el projecte i s’ha pogut realitzar de forma satisfactòria. Per contra, hi ha

hagut punts que són susceptibles de millora, sobretot els referents a la component

pràctica d’aquest estudi.

A partir del projecte es deriva la metodologia que cal seguir pel desenvolupament de

drivers més complexes com ara: un lector de targetes SD, el d’una pantalla LCD o el

d’un teclat, podrien ser IP Cores més robusts que haurien aportat més sofisticació al

projecte.

Quant al sistema creat, s’havia planejat un disseny de molta més envergadura o si més

no, més robust a l’inici, però va resultar impossible de dur-lo a terme per culpa dels

temps establerts i dels recursos dels que es podia disposar. En un altre ocasió, es farà

un sistema més potent.

 Creació d’ IP Cores en una plataforma NIOS

 71

6. BIBLIOGRAFIA

Altera i el seu entorn

· Altera

http://www.altera.com/

· Altera

http://en.wikipedia.org/wiki/Altera

· QuartusII HandBook version 7.0

http://www.altera.com/literature/hb/qts/qts_qii54007.pdf

· Entorn d’Altera

http://forum.niosforum.com/forum/

· Forum d’ Altera

http://www.alteraforum.com/index.php

· NIOS Forum Community

http://www.niosforum.com/

· Soft-cores

http://cephis.uab.es/resources/pdf/papers/JCRA_2006_UFCpp.pdf

· NiosII assembler examples

http://instruct1.cit.cornell.edu/courses/ece576/NiosII_asm/index.html

http://www.altera.com/
http://en.wikipedia.org/wiki/Altera
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://forum.niosforum.com/forum/
http://www.alteraforum.com/index.php
http://www.niosforum.com/
http://cephis.uab.es/resources/pdf/papers/JCRA_2006_UFCpp.pdf
http://instruct1.cit.cornell.edu/courses/ece576/NiosII_asm/index.html

 Creació d’ IP Cores en una plataforma NIOS

 72

· IP Core

http://whatis.techtarget.com/definition/0,,sid9_gci759036,00.html

· NIOSII IDE

http://www.altera.com/literature/ug/ug_nios2_getting_started.pdf

· NIOSII IDE

http://www.altera.com/support/software/embedded/ide/sof-nios2_ide.html

· SOPC Builder

http://fpga4u.epfl.ch/wiki/SOPC_Builder

. Rapid Prototyping of Digital Systems

J.O. Hamblen, T.S Hall, and M.D. Furman, 2005

IP Cores

PWM

· Altera PWM

http://www.altera.com/

· QuartusII HandBook version 7.0

http://www.altera.com/literature/hb/qts/qts_qii54007.pdf

· Pulse width modulation

http://en.wikipedia.org/wiki/Pulse-width_modulation

http://whatis.techtarget.com/definition/0,,sid9_gci759036,00.html
http://www.altera.com/literature/ug/ug_nios2_getting_started.pdf
http://www.altera.com/support/software/embedded/ide/sof-nios2_ide.html
http://fpga4u.epfl.ch/wiki/SOPC_Builder
http://www.altera.com/
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf
http://en.wikipedia.org/wiki/Pulse-width_modulation

 Creació d’ IP Cores en una plataforma NIOS

 73

· Pulse width modulation

http://es.wikipedia.org/wiki/Modulaci%C3%B3n_por_anchura_de_pulsos

· Example of PWM

http://modeemi.fi/~tuomov/ion/pwm.html

· PWM Core overview

http://www.opencores.org/projects.cgi/web/ptc/overview

· PWM Control

http://www.cpemma.co.uk/pwm.html

· NIOS Forum

http://www.niosforum.com/

I2C

· Altera I2C

http://www.altera.com/

· I2C drivers

http://www.linuxjournal.com/article/7136

· I2C driver interface

http://tmd.havit.cz/Projects/I2C/i2cdriver.htm

· I2C driver

http://mhonarc.axis.se/dev-etrax/msg06565.html

http://es.wikipedia.org/wiki/Modulaci%C3%B3n_por_anchura_de_pulsos
http://modeemi.fi/%7Etuomov/ion/pwm.html
http://www.opencores.org/projects.cgi/web/ptc/overview
http://www.cpemma.co.uk/pwm.html
http://www.niosforum.com/
http://www.altera.com/
http://www.linuxjournal.com/article/7136
http://tmd.havit.cz/Projects/I2C/i2cdriver.htm
http://mhonarc.axis.se/dev-etrax/msg06565.html

 Creació d’ IP Cores en una plataforma NIOS

 74

· Nios Forum

http://forum.niosforum.com/forum/

· I2C opencores

http://www.opencores.org/projects.cgi/web/i2c/overview

· I2C Master

http://www.slscorp.com/pages/ipi2cmastersls.php

· I2C Master/Slave controller

http://www.arasan.com/products/prod_overview/I2C_APB_ds_v1.0.pdf

· I2C Slave

http://www.slscorp.com/pages/ipi2cslavesls.php

· I2C Bus

http://www.i2c-bus.org/slave/

· I2C Master Mode

http://ww1.microchip.com/downloads/en/devicedoc/i2c.pdf

· I2C interface

http://www.lammertbies.nl/comm/info/I2C-bus.html

· Using I2C

http://www.robot-electronics.co.uk/htm/using_the_i2c_bus.htm

http://forum.niosforum.com/forum/
http://www.opencores.org/projects.cgi/web/i2c/overview
http://www.slscorp.com/pages/ipi2cmastersls.php
http://www.arasan.com/products/prod_overview/I2C_APB_ds_v1.0.pdf
http://www.slscorp.com/pages/ipi2cslavesls.php
http://www.i2c-bus.org/slave/
http://ww1.microchip.com/downloads/en/devicedoc/i2c.pdf
http://www.lammertbies.nl/comm/info/I2C-bus.html
http://www.robot-electronics.co.uk/htm/using_the_i2c_bus.htm

 Creació d’ IP Cores en una plataforma NIOS

 75

HDL i C++

· HDL

http://en.wikipedia.org/wiki/Hardware_description_language

· VHDL Manual

http://mikro.e-technik.uni-ulm.de/vhdl/anl-engl.vhd/html/vhdl-all-e.html

· VHDL Manual

http://www.ehu.es/Electronica_EUITI/vhdl/pagina/inicio.htm

· VHDL Manual

http://www.fm.vslib.cz/~kes/data/vhdl_ref.pdf

· Verilog Manual

http://www.inf.pucrs.br/~moraes/topicos/hdls/ver.pdf

· Verilog Manual

http://www.gte.us.es/usr/chavez/verilog.pdf

· C++ NIOS IDE Manual

http://www.quantum-leaps.com/doc/QDK_Altera-NiosII.pdf

. The Designer's Guide to VHDL

Peter J. Ashenden, 1995

http://en.wikipedia.org/wiki/Hardware_description_language
http://mikro.e-technik.uni-ulm.de/vhdl/anl-engl.vhd/html/vhdl-all-e.html
http://www.ehu.es/Electronica_EUITI/vhdl/pagina/inicio.htm
http://www.fm.vslib.cz/%7Ekes/data/vhdl_ref.pdf
http://www.inf.pucrs.br/%7Emoraes/topicos/hdls/ver.pdf
http://www.gte.us.es/usr/chavez/verilog.pdf
http://www.quantum-leaps.com/doc/QDK_Altera-NiosII.pdf
http://www.ashenden.com.au/index.html

	1. INTRODUCCIÓ I OBJECTIUS
	1.1 Introducció
	1.2 Objectius
	2. PLANIFICACIÓ, VIABILITAT I CRONOLOGIA
	2.1 Especificació de requisits. Anàlisi funcional detallat
	2.2 Planificació
	 2.2.1 Identificació dels recursos
	2.2.4 Càlcul del termini necessari per a la realització de cada tasca
	2.2.5. Diagrama de Gantt
	2.3 Viabilitat
	 2.3.1 Estudi de viabilitat
	2.3.2 Riscs
	2.4 Cronologia
	 2.4.1 Estudi cronològic
	3. CREACIÓ D’ IP CORES
	3.1 Definició metodològica per a la creació d’un IP Core
	 3.1.1 Anàlisi de Requeriments
	3.1.2 Passos per al disseny d’un component
	3.2 Disseny Hardware
	3.3 Disseny Software
	3.4 Verificació del component
	4. PROTOTIPATGE SOBRE UP3 - NIOS
	4.1 La plataforma Altera. Procediment
	4.1.1 Arquitectura del sistema
	4.1.2 Procediment
	4.2 Disseny dels IP Cores en la plataforma NIOSII
	4.2.1 IP Core: PWM (Pulse Width Modulation)
	4.2.2 IP Core: I2C (Inter-Integrated Circuit)
	4.3 Resultats, problemes i solucions
	4.4 Proves
	 5. CONCLUSIONS I MILLORES
	5.1 Conclusions
	5.2 Millores
	6. BIBLIOGRAFIA

