Universitat
/< Autonoma
de Barcelona

PROGRAMACION DE UN ROBOT AUTONOMO

Disefio, construccion, programacion e integracion de un robot
auténomo en el entorno Pyro.

Memoria del Projecte Fi de Carrera
d’Enginyeria en Informatica

realitzat per Antonio Jesus Davila Molina
i dirigit per Ricardo Toledo Morales

Bellaterra, 12 de marg de 2007

Universitat
/< Autonoma e t se

de Barcelona Escola Técnica Superior d’Enginyeria

El sotasignat, Ricardo Toledo Morales
Professor de ’Escola Téecnica Superior d’Enginyeria de la UAB,

CERTIFICA:

Que el treball a qué correspon aquesta memoria ha estat realitzat sota la
seva direccié per en Antonio Jesus Davila Molina

I per tal que consti firma la present.

SIgNAt: ..o

Bellaterra, 12 de mar¢ de 2007

’

“La suerte favorece solo a la mente preparada.’
Isaac Asimov.

Agradecimientos

Comenzaré con el clasico agradecimiento y sobradamente merecido a mi familia,
dado que han sido extremadamente comprensivos con todo el tiempo que permanezco

ausente, tanto mientras realizaba el proyecto como en mis estudios y profesion.

Quiero hacer mencion especial a mi padre, que con su ejemplo motivo las ganas
por conocer y descubrir el porque de las cosas, pero ademas como realizarlo de forma
completamente autodidacta. Definitivamente, una de las lecciones mejor aprovechada

de mi vida.

A Ricardo Toledo, tutor de este proyecto, agradecer su compresion, ayuda e

ilusion. Ha sido un gran compaifiero en este viaje.

Una tltima gratitud la dirijo al trabajo realizado por los profesionales que han
creado Pyro, Douglas Blank, Kurt Konolige, Deepak Kumar, Lisa Meeden, Holly
Yanco, también a Richard Barry creador del FreeRTOS, y por tltimo a Peter Fleury, por
su libreria de 12C.

Indice:

INTRODUCCION 9
OBIETIVO ..ttt sttt ettt et et et ettt et ettt st e s aeesae et e et e easeeas e st s e s bt e bt enneeanesanesaeenueenneenne 9
IMOTIVACIONiniiititeiiet ettt ettt s bbb et e st b et e st b et e st b et es e eb et ene e b et e st ebenseneebenene 10

ANALISIS DE REQUERIMIENTOS 11
REQUERIMIENTOS FUNCIONALES: ROBOT AUTONOMOuuviiiieieeeeiieeeeeieeeeeeeeeeeeneeeeeeneeesennees 11
REQUERIMIENTOS FISICOS:uvviii ittt ettt ettt e et s et e s enaae e s eaaeeesnnaneesennas 12

ARQUITECTURA DEL ROBOT 14
DISENO LOGICO.......cutiiiiiieeiieiteiieieieste sttt ete et eeaessessesseeseeseeseessessassessessessesseeseassassensansensensensenns 14
DISENO FISICO....eeuteieieiieit et eiteiete ettt ettt et et et e b e s teebeeseeteestessessasessesseeseensassensansansensensenns 17

LOCOMOCION.........ccvioeeiicii ettt ettt et et e et e e e eare e 17
Sistema de energia (AIIMERLACION)c.ccceoouiiiiiieiiei e 18
COMTOL ...ttt ettt ettt ettt et e ettt e st e ettt e s tbeenste e taeeseeensseeneeans 18
OFAERAAOT ...ttt ettt ettt ettt et e et e e taeetaeenaaeeseeans 18
R R o= PSSR 18
DISPOSITIVOS DE CONTROLeeeuiieiuiieeiieeniiteeteesiteesiteesteesateesabeesateesabeesateesaseesaseesaseessseesaseesaseas 20
OOPIC ..ot e e e e et e e et b e e e etbe e e etraaeeanraeean 20
AVR .ottt e ettt e e e bt e e e bt e e e antb e e e etaaeeeabaaeeentaeeas 22
BUS T2C ..ottt e et e e tb e e e taaaeeatraeeen 23
PLACA BASE ...ttt ettt ettt e e 23
DISPOSITIVOS DE ENTRADAuctiuieuietinienietitenteeessestesesseseesessestesessessesesessesessensesensessesessensesessenes 25
UIFASOMNIAOS ...ttt ettt ettt ettt e et e e baeeateeensaeenneas 25
TIIFATTOJOS ...ttt et ettt ettt ena e te e beebeenae s 26
COMPAS ..o ettt ettt e ettt ettt ae e et e bt e bt e st e e naeeeeenneenneenees 26

TEFMOPIIA ...ttt e e e et eenb e e nb e e b e e ebeeenree e 27

DISPOSITIVOS DE SALIDAccceieeiutittteeeeeeieitereeeeeeaaetrasesaeseasesrsseseesesssssssesseesssmssssesseesssssssssesees 27
MOTOFES ...ttt ettt ettt ettt 27
SEFVOMOIOFES..........cieeee ettt ettt et ettt 28

DESARROLLO 29

APROXIMACION INICIALoouiiiiiiiiiieietciciccc et 29

Primer Obstaculo: €] QOPIC.............c..ccooeeiiaiieieieeeeee ettt 29
MOAUIO INEEITAZ ...ttt 30
MOAUIO A LOCOMOCION ...ttt ettt ettt ettt sttt ettt b e besae e te b et e sbeenbesbeenbesbeenaenbeennenee 31
MOAUIO @ TOITELA.cvevviiieiiieiie ettt ettt ee 31
MOAUIO dE SENSOTES.nvevieriniiiiieteietcierte ettt ettt n e st ee 32
CONCIUSIONES.eutieuteitenieettete sttt ettt et et st et e at et e ebte bt e st e beeste bt eatenteeate bt eatenbeentenbeententeentenbesneanee 32

Apuesta perSONal, @l AVR...........c.cccooiiiiiieieeeeee ettt 32

UNIDAD DE CONTROL......otiiuiiiiiiiiiiiiieite ittt st s s 34
CONfIGUIACTON FTSICA. ...ttt 34
REVISION L.ttt ettt e ettt 35
FFEERTOS. ..o et 36

EIINTCIEO. ...ttt st sttt e a e sa ettt eae st b e neneene 36
EI GeStOr d& MEIMOTIAuviiiiiiieieietceeet ettt ettt e 37
ProCES0S Y TRICAAS. ...vveuiieieiiciieieetete ettt ettt et ettt e et este e e e b e essesseesaenseessenseensensensnanee 38
C0laS ¥ SEIMATOTOS. ...ttt ettt b ettt e bt et e be e st e b e eatenteeneenbeente e 38
Detalles y Desarrollo €n €] PrOYECTO:ccueeuieruiruieriieiieieeiceie ettt sttt ettt sttt eae b 39

ARL oottt et ettt 40
MOAUIO INLETTAZ. ..ottt 41
MOAUIO dE LOCOMOCION ...ttt sttt 42

MOAUIO AE SEIVOIMOLOTIEScoovvieeeerieeeeteieeeieeeeeeee et e e et e e eeaeeeeeteeeeeeaeeeeetaeeeeaseeeeseeeeetreeeereeeannnes 43

MOAUIO AE SENSOTES. ...ttt ettt ette bttt e et e be et e e besbtebesaeessesbeenbesbeensesseensesseensenseensanee 47
Configuracion € INIiCIaliZACION.eiiiuiiiiieiiietiete ettt 51
INTEGRACION EN PYRO ..ottt 52
ETEOTIIO PYFO. ..ottt ettt ettt ettt et e st e st e e et e e st e e naeessbeeneree e 52
ELRODOT SEUI PYFOc.eeei ettt ettt ettt ettt e et e st e e e tae e st e e enseessbeenssee e 53
DESATFOIIO ... e 57
RESULTADOS, CONCLUSIONES Y MEJORAS 59
IMEEJORAS ...ttt et ettt et et ettt ettt st s et e bt et et e s e ea s esaee b e e e e e eanes 60
BIBLIOGRAFIA Y REFERENCIAS 61
LIBROS: .ottt et e sttt et ettt et e st sae et et e anens 61
REFERENCIAS ELECTRONICAS:c.cvtiiiieiiitinieiiniiieitetenteitett ettt ettt ese et st es e ene s 61
APENDICE I 63
ESPECIFICACIONES HARDWAREccuteiiiiiieiiiiienit ettt st st 63
Detalles de 1a placa de SOPOTLE...............ccoecueeeieiiiiesie e 63
0017 0] o LU URSRUPRRSPRRRROt 63

REVISION T ettt ettt sttt ettt b et ettt ebe et e s b e senene 65
ESpecificaciones TECHICAS:cc.cceevveviieciieieeieeieeeie ettt eaeese s 67
Motor 7.2v DC con reductora 50:1: HN-GH7.2-24 14Tccuooiiiiiiiinieeeeseeeieee e 67

Placa ETT-BASE AVR MEGAI28ooviiiiiiiriiieiittntrneeteittneseseeee ettt 68
Controlador de motores MD22..........ccuiiiiiiiiiiiieree ettt 70

S0NAT SRFOS ...ttt ettt et a et s bt e bt e bt et s bt e bt sa s et e e bt e beebeenbeeneennes 78
INTTAITOJOS GP2D 12, ettt ettt ettt et e sbeesae s e essesseesaeseessenseensenseasnenee 88

ComPAS CIMPS03 ...ttt e st e e st et e st e e st e enaeesseesnseenneeenseesnneeneennee 90
TErmOPILa TPAGL ..ottt et ettt sb e et e st et e bt et e sbeeatenbessne e 95

Lista del Coste detalladan...........c..ooooeveiiiiiiiiiiieeeeee e e aae e 100

APENDICE I 101
ESPECIFICACIONES SOFTWAREccuiiiiiiiiiiiiiiiiiiiei ittt 101
Comandos de CONIFOLcc.ccoeuiiiiiiiie et 101
TIEEITICIE: .ttt ettt ettt 101
LLOCOIMIOCION ..ttt ettt ettt ettt ettt et ettt e b e s et e be e st et e est et e estenbesaeensesneenbesneensens 104
CONLTOL SETVOS......uiiuteiieiietieite sttt ettt ettt ettt et e bt et et e e st e bt et e e besate b e estenteeseenbesbeensesneensesseensens 106
SEISOTES. ...ttt sttt et 110
Detalles I2C Y LIDFOVIAc...oecueeeiiieeiie ettt et et eetae e taeenaeens 113
Principio de fUnCioNaAmMIENILO:eoueeiiruieierieeierte ettt ettt ettt et be s e nbe et 113
LIIDTOTIAL ..ttt et b ettt b e et b e a e e bttt e b st e bt eatebeeneennes 113
ARadir un Sensor RUEVO @ ARIcccccoooiiiiioiiiiiiieet e 115
SopOrte en €l ARI PArA SENSOTES. . c.veevverieeierieriertietesteesiesseeeessesseessesseessesseessesseessesseessesseessessesssens 115
EJemMPLOS PIACHICOS: ...ouvieiiiiieiieitiete sttt ettt ettt ettt et sb e et e st e st e besatenbeeseennes 118
INFORMACION DETALLADA DEL MODULO PYROcuiiiiiiiiiiiieiiriiicicsieeicsieeeseee e 124
USO Y CONFIGUIACTON ...ttt ettt 124
Clases AriRObOt y AVIINPUIPTOCESSOTcoeeiiiiieeiiee ettt 126
ClASE PTZDEVICE ...ttt ettt ettt ae 127
ClASE OWHDEVICE. ...ttt ettt 128
DIESPOSTLIVOS ..ottt ettt ettt ettt et e et e et eeabe e ssb e e enb e et e e enaeennbeeenaee s 129
APENDICE III 131
HERRAMIENTAScouiiiiiiiiiiiiiti ittt 131
Instalacion y configuracion del entorno AVR Studio y FreeRTOScccocevoveieveniann. 131
Instalacion de Python, Pyroy modulo de ARIL.cccccooceeoiiiiiiiiiiiieee e, 135

Introduccion

Siempre ocurre que los titulos se eligen antes y los proyectos no acaban de la
misma forma que se idean, porque un disefio inicial sirve principalmente para saber
porque no se lleva a cabo tal y como se ided, cada paso es un paso para poder cambiar

muchas cosas, descubrir nuevas , o descartar ideas que parecian tremendamente solidas.

A medida que este proyecto iba cogiendo forma, también lo hacia su objetivo,
pero con una premisa que siempre ha estado presente, es que el trabajo realizado se

pudiese utilizar en actividades de docencia e investigacion, continuar y mejorar.
Objetivo

Construccion de un robot autbnomo modular con distintos tipos de
sensores/actuadores integrado en un entorno de programacion apto para el desarrollo

futuro de actividades de docencia e investigacion.

La idea inicial era crear un interfaz para que cualquiera pudiese usar el robot
desde su programa, y dotarla de una fuerte funcionalidad, ademads de crear un programa
de demostracion capaz de hacer que se desplazara en un entorno controlado evitando

obstaculos.

Dado que los primeros experimentos fueron altamente positivos en cuanto a la
factibilidad técnica de la construccion del robot, se decidié dotar a la plataforma de un
nivel superior de prestaciones. Para ello se considerd importante la integracion del robot

dentro de un entorno de robdtica que ofreciera mayores recursos.

Se escogi6 el entorno de robdtica Pyro [6], que ofrece una correcta capa de
abstraccion y dispone de soporte para vision, logica borrosa y redes neuronales entre
otras funcionalidades. La integracion del robot en el entorno Pyro se convirtié en uno de

los principales hitos.

La integracion en el entorno Pyro tiene dos consecuencias muy importantes.
Desde el punto de vista de la docencia, facilita en aprendizaje debido a los diversos

niveles de abstraccion que se ofrecen. En investigacion, permite abordar diversas areas

sin perder tiempo en construir, disefiar o programar una base para ello.

Motivacion

Desde hace mucho tiempo se ha sofiado siempre con automatas que ayudasen al
hombre en el trabajo pesado o peligroso, incluso sustituirlo o hacer tareas que el hombre
no esta capacitado para realizar. Automatas guerreros, exploradores o muy inteligentes

capaces de razonar.

La realidad es lejana de la ciencia ficcidn, algo sencillo e intuitivo como es para el
hombre interactuar con el entorno, moverse, explorar, sentir o incluso algo tan obvio
como ver, cuando intentamos realizarlo con un ordenador se convierte en una tarea
complicada, de alto requerimiento computacional, o nuestro conocimiento no nos lo

permite.

Personalmente siempre he sentido atraccion por la roboética, la interaccion de los
ordenadores con el “mundo exterior”, y esta curiosidad siempre me ha llevado a entrar
en contacto directo con la electronica, asi que definitivamente este proyecto me atraia

por encima de otros.

10

Analisis de Requerimientos

A continuacion haremos un analisis de requerimientos jerarquico, es decir cual es
el requerimiento principal y que requerimientos nos aparecen dependientes de este nivel

ya sean funcionales, o fisicos.
Requerimientos funcionales: robot autbnomo

e Ser capaz de moverse por un entorno controlado mostrando
diferentes grados de “inteligencia”. Teniendo un entorno relativamente
controlado donde se minimizan las interferencias que pudieran anular,

mermar o engafiar seriamente los sensores.

o Disponer de locomocion. Disponer de algin mecanismo que

permita al automata desplazarse por el medio.

o Capacidad de percepcion. Es necesario que el automata cuente
con dispositivos capaces de detectar y obtener informacion del

medio.

o Procesar la informacion obtenida. Disponer de la suficiente
potencia de calculo como para poder desarrollar comportamientos
inteligentes, con vistas al futuro y poder investigar en vision por

computador.

¢ Que el proyecto sea extensible y una posible herramienta de
ensefianza e investigacion. Para este objetivo deberiamos alejar al alumno
de los detalles complejos de implementacion, y dar una interfaz sencilla
que le permita solo dedicarse a aprender los detalles clave que realmente

interesan.

11

o Integracién en el entorno de robética Pyro. El entorno Pyro' que
permite abstraer el concepto de robot independientemente de como
este construido o implementado, permite tener ese medio para
ensefnanza, ademas de incorporar muchas herramientas de
inteligencia artificial ya casi preparadas su uso, como logica difusa,

redes neuronales o algoritmos genéticos entre otros.

o Dispositivo que centralice todo el control del hardware. Cada
sensor o dispositivo hardware funciona de una manera diferente.
Para poder desarrollar el médulo del Pyro, disponer de un solo
camino para acceder a todos estos dispositivos de bajo caudal seria

algo muy recomendable.
Requerimientos Fisicos:

No podemos olvidar que el fin del proyecto es crear un robot, y esto tiene unas
necesidades de materiales dispositivos, cada uno con de ellos con una serie de requisitos
de funcionamiento, por ejemplo: para poder ejecutar el Pyro necesitamos un ordenador

dentro del robot, pero para que este funcione necesita energia.

A continuacion expondremos a grandes rasgos los principales requerimientos
fisicos derivados de los funcionales, ya entraremos con mas detalle en capitulos

posteriores.

e Movimiento y Sentido: el robot necesita unos dispositivos para moverse y
otros para recibir informacion del medio, estos dispositivos por desgracia
no son féciles de conectar al ordenador directamente y necesitan de cierta

adaptacion tanto eléctrica como logica. Para ello se ha creado la interfaz de

' acrénimo de Python Robotics, software desarrollado principalmente por Douglas Blank y Deepak
Kumar de la universidad de Bryn Mawr, Filadelfia, , Kurt Konolige universidad de Stanford en Palo
Alto, California, Lisa Meeden de la universidad de Swarthmore en Filadelfia y Holly Yanco de la

universidad de Massachussetts Lowell

12

control, que no solo controla, si no que también alimenta y adapta

electronicamente los sensores y dispositivos de actuacion.

Interfaz de control: Necesita una fuente de energia para poder funcionar
Esta fuente debe estar separada de la alimentacion de los motores dado que

la electronica de control es muy sensible al ruido electronico.

Pyro: para poder ejecutar el entorno de robdtica Pyro necesitamos un
ordenador PC compatible, su alimentacion no es nada sencilla y requiere

un cuidado especial.

13

Arquitectura del Robot

No existe un método ni consenso para definir cual es la mejor forma de disefiar
un robot, muchas veces el hombre lo define como una copia de si mismo, y eso es
porque nosotros mismos somos un ejemplo claro de automata. Somos autosuficientes,

ademas de ser capaces de realizar tareas realmente complejas.

El disefio de un autdmata esta regido por los objetivos que deba cumplir. En nuestro
caso el objetivo principal es que se pueda usar para investigar robdtica y vision.
Partiendo de la premisa anterior, el automata debera ser mévil y a la vez ha de poseer
varios niveles de abstraccion separados entre si de forma muy clara dado que también
ha de ser un sistema para la enseflanza, y si dispusiera de multitud de partes
interrelacionadas de forma poco clara complicaria su uso y el tiempo se malgastaria en
comprender y hacer funcionar el sistema en lugar de focalizar en lo que realmente

importe en cada actividad.
Diseno Loégico

Si nos miramos a nosotros mismos veremos un ejemplo de automata muy
avanzado que dispone de sus sensores, su sistema de locomocion, y su unidad de

proceso, por lo que tomarnos de ejemplo nosotros mismos, es algo natural.

Asi se hizo para organizar este robot. Si observamos la figura 1, como el diagrama
indica, disponemos de una unidad de proceso que es un ordenador PC, que haria la
funcion de cerebro, luego tenemos un circuito con un microcontrolador, que se encarga
de unificar en una sola interfaz la gran mayoria del hardware de bajo nivel, si
continuamos con nuestra comparacion este seria nuestro cerebelo, descarga al cerebro

de tareas rutinarias o de controlar al detalle otros dispositivos.

Y por ultimo tenemos el hardware (nuestro cuerpo y sus sensores) que es lo que

permite interactuar con el medio.

14

hardware es la de

Canal de Comunicacion

Hardware de muy bajo nivel
con volumen moderado
de datos

PC, la Unica gestion de

gran volumen de datos.

Cerebro

Cerebelo

Figura 1: Esquema Légico.

En el “cerebro” esta el entorno Pyro que proporciona un medio eficaz para la

construccion de comportamientos mas o menos inteligente y su ejecucion en nuestro

automata. En el “cerebelo” se situa nuestra unidad de control que nos permite gestionar

todo el hardware de bajo volumen de datos, muy diferente entre si. El “cerebelo” tiene

la capacidad de gobernar los dispositivos de actuacion sobre el medio como pueden ser

los motores y posee un sistema que tiene por mision interrogar a los sensores segun se

le ordene.

El “cerebelo”, (que a partir de ahora lo llamaremos interfaz de control), esta

controlado por un sistema
operativo el cual da un
soporte basico y nos permite
aprovechar mucho mas el
microcontrolador. Sobre este
sistema operativo se ejecutan
unas tareas (figura 2). Cada
tarea o modulo, tiene ciertas

responsabilidades. Por

Cerebelo

PC__1. ¢ Interfaz Serie Repartidor

i
i
i
i| Sensores
i
i
1
|

Mensaijes de salida

,,,

Figura 2: Modulos del sistema de control.

15

ejemplo: el modulo de interfaz serie se encarga de recibir y enviar comandos y datos

desde y hacia el Ordenador.

El repartidor que forma parte de modulo interfaz reparte las drdenes seglin su
naturaleza a los demas modulos, estos ejecutardn la orden y pueden o no devolver un

resultado, también pueden enviar datos periddicamente.

16

Diseno Fisico

A continuacion haremos una descripcion fisica del robot, nos basaremos en 3

apartados, segun su posicion fisica, comenzaremos de abajo hacia arriba

Sensores.

Ordenador PC.

Locomocion,
Alimentacién y
control.

Locomocion

El disefio fisico ha sido determinado por los materiales y herramientas empleados.
Este robot es un vehiculo propulsado por ruedas, con una batalla muy corta que permite
descartar el uso de ruedas directrices, y permite usar el mismo método para moverse que
utilizan los carros propulsados por orugas. Es decir el robot es capaz de girar en funcion
de la velocidad aplicada a cada par de ruedas de cada lado. Por ejemplo si las ruedas de
la derecha giran a una cierta velocidad hacia delante y las de la izquierda a la misma

velocidad hacia atras el robot girard sobre su eje hacia la izquierda.

Para poder realizar tales movimientos detrds de cada rueda hay un pequeiio motor
de 7.2 voltios DC provisto de una caja reductora, los dos motores de cada lado son
conectados en paralelo para trabajar como si fuesen uno, estos son vistos por el sistema

como 2 motores uno para cada lado. Ver mas detalles en el Apéndice I

17

Sistema de energia (Alimentacion)

Para alimentar el robot se utilizan dos baterias, una destinada a alimentar el
ordenador, la electrénica de control y los sensores, y otra destinada a alimentar a los
motores. Para alimentar el ordenador se utiliza una bateria universal para portatil, es una
bateria de litio de gran capacidad que permite mantener encendido el ordenador y la

electronica de control entre 60 y 100 minutos.

Para alimentar los motores se ha optado por una bateria de 6 células que da 7.2
voltios, este tipo de unidad es muy comun en el hobby de automovilismo de radio
control eléctrico. Permite alimentar los motores como minimo tanto como la otra bateria

alimenta el ordenador.

Las baterias estan alojadas en el compartimiento inferior junto con la placa de
control, dado que son los elementos que mas pesan, nos permite tener un centro de

gravedad lo mas bajo posible, que contribuye a la estabilidad del robot.
Control

Los motores y los sensores son gobernados por la unidad de control (“cerebelo”),
la cual se comunica con el ordenador central mediante una comunicacion serie.

Hablaremos con mucho mas detalle de ella mas adelante.
Ordenador

El ordenador se encarga de dotar de la potencia suficiente al robot como para
poder realizar un minimo de comportamiento inteligente y poder incorporar camaras

para dotar al robot de vision por computador.
Sensores

El robot dispone de la mayoria sus sensores distribuidos encima de una torreta o

unidad de pan & tilf’, esta unidad es accionada por dos servomotores y gobernada por la

2 . O L. . L, . .
Termino muy utilizado en robdtica, que se refiere al conjunto mecanico que permite mover un

sensor o grupo de estos como si de una cabeza se tratara, es decir horizontalmente y verticalmente.

18

unidad de control. En la torreta disponemos de varios tipos de sensores como: sonares,
infrarrojos, una termopila que permite obtener imagenes térmicas muy sencillas. En una

proxima etapa se incorporard a la torreta un par de camaras.

Otros sensores se encuentran fuera de la torreta. Por ejemplo el compas magnético
que nos proporciona informacion acerca de norte magnético. En apartados posteriores

entraremos en mas detalles con los sensores.

Los numeros 1, 2,3 son sensores de distancia mediante infrarrojos. 4,5 y 6 son sensores
de distancia e iluminacion mediante ultrasonidos (o sonares) y fotorresistencia, y el
numero 7 es una termo pila que dispone de un vector vertical de 8 sensores de
temperatura.

19

Dispositivos de Control

Unos de los modulos més importantes del proyecto es la Unidad de Control que
permite unificar en una sola unidad todos los sensores de bajo volumen de datos y el

control de los dispositivos de actuacion.
Durante el desarrollo del proyecto se han probado dos opciones:
1. Utilizar una placa de propdsito general ya creada y de sencilla programacion

2. Construir nuestra propia placa. A continuacion explicaremos los dos

dispositivos por separado.
OOPic

La OOPic [7] (del Ingles: Object Oriented
PIC?), es una placa desarrollada por la empresa
americana Savage Innovations, es una placa de
control disefiada especificamente para robdtica,
muy flexible en el conexionado y que se puede
programar con sintaxis del estilo Basic, C o Java,

pero solo la sintaxis, el codigo generado es

convertido a un pseudo codigo que es interpretado

en el hardware final.

Figura 3: OOPic-R

La programacion orientada a objetos del
OOPic es muy facil y muy rapida de aprender, toda su potencia reside en su biblioteca
de objetos, en esta disponemos de una larga coleccion de objetos para controlar multitud
de hardware diferente, desde sensores de infrarrojos o sonars incluido especificos para

algunos fabricantes de sensores.

3 PIC es un microcontrolador disefiado y construido por la empresa Microchip, tiene un rotundo
éxito entre los aficionados a la roboética y electronica por su facil programacion y la gran cantidad de

recursos que existen en Internet.

20

En la figura 3 podemos apreciar como el OOPic es un entorno cerrado, muy
simplificado y orientado al aficionado que no tiene excesivos conocimientos, esto hace
que sus prestaciones no sean muy altas. Aunque el microcontrolador de 20 Mhz
disponga de una potencia respetable, el programa del usuario en pseudo cddigo se graba
en una memoria externa (el interprete se encuentra grabado en la memoria interna del
microcontrolador), con acceso mediante una comunicacion serie (a como maximo 400
Khz.). Segun las especificaciones de Savage se ejecutan 2000 instrucciones de pseudo
codigo por segundo, con este primer dato ya podemos descartar cualquier intento de

realizar tareas que sobrepasen ese nivel de prestaciones...

Atn asi Savage Innovations propone superar este problema mediante los circuitos
virtuales. En el programa se declaran unas puertas logicas, que el usuario las
interconecta entre si y con los objetos creando un circuito, esto se queda como un estado
dentro del microcontrolador y es ejecutado a una velocidad muy superior que la del

pseudo codigo.

La idea de los circuitos virtuales es buena, pero tropieza con otro problema que
tiene el OOPic: los datos y los objetos comparten la memoria con el interprete, algo que
en un principio deberia ser hasta ventajoso pero en un microcontrolador esta memoria es
muy limitada, en el caso del PIC 16F877[8] que es el que usa el interprete, es de 368
bytes de ram y de 256 bytes de eeprom, el OOPic nos permite usar los 256 bytes de
eeprom como si fuese memoria, pero no nos permite usarla en circuitos virtuales
(porque es de acceso lento), asi que para usar circuitos virtuales solo nos quedan los 368
bytes compartidos, de los cuales 96 bytes son para objetos y otros 72 bytes para
memoria del programa del usuario. Contando que cada objeto necesita entre 3 y 6 bytes,

el tamafo de los programas (problemas a abordar) queda acotado a estos limites.

21

AVR

Debido al bajo rendimiento del OOPic se decidi6 buscar una alternativa, es decir
buscar un nuevo microcontrolador. Luego de una revision de varias alternativas se tomo

la decision de reemplazar el OOPic por un microcontrolador AVR.

El AVR es una familia de microcontroladores de 8 bits fabricada por Atmel. La
principal diferencia con el entorno cerrado del OOPic, es que ahora no disponemos de
un entorno que nos de soporte a multitud de hardware, es simplemente un

microcontrolador.

El modelo de microcontrolador elegido es el Atmegal28 [3,4], que es una
maquina harvard con 128Kbytes para codigo y 4 Kbytes de memoria ram, dispone de
multitud de dispositivos integrados como dos puertos serie, un bus 12C, generadores de

pulso modulado por amplitud y conversores analogico — digital entre otras cosas.

Para el proyecto se decidid buscar una
placa de proposito general dado que el
integrado solo esta disponible en
encapsulado SMD", y dificulta su montaje e
instalacion manual. La placa elegida es una
fabricada por una empresa tailandesa
llamada ETT. La placa (figura 4) no es mas
que el AVR ATMegal28 de Atmel con todo

lo imprescindible para funcionar, y unos

conectores para hacer mas facil el acceso a

Figura 4: Placa ET-Base AVR

las lineas del microcontrolador. Para

informacion detallada de la placa del microcontrolador referirse al Apéndice 1.

* Surface Mount Device, es un tipo de encapsulado el cual esta disefiado para ser soldado en la
superficie del circuito impreso, este procedimiento normalmente lo realiza una maquina, tiene la ventaja

de la que no es necesario taladrar el circuito y minimiza el espacio necesario.

22

Esta placa ha sido “expandida” con otra de creacion propia para configurar y
personalizar la placa anterior, esta expansion la veremos en detalle en el apartado de

desarrollo.

El microcontrolador AVR puede ser programado tanto en Ensamblador como en
C/C++, y es una orientacion totalmente cléasica a la programacion de
microcontroladores, veremos que para poder aprovechar mejor los recursos del
microcontrolador AVR se opt6 por “instalar” un sistema operativo de tiempo real sobre

el cual se programara el software de control.

Bus 12C

El bus 12C [9] (Inter-Integrated Circuit) fue disefiado por Philips en 1992, y su
principal cometido es intercomunicar diversos circuitos integrados que se encuentran en
el mismo circuito, normalmente microcontroladores con sus periféricos. Una de sus
principales caracteristicas es que es un bus serie multimaestro y solo necesita de dos
lineas (masa aparte) para funcionar, permite direccionar 128 dispositivos y trabajar a

frecuencias de entre 100 y 400 Khz.

El Bus 12C permite comunicar dispositivos realmente complejos con muy pocas
lineas, y minimizar el nimero de conductores siempre conduce a minimizar el nimero

de problemas.

En este proyecto el 12C cobra un importancia tanto estratégica como funcional,
por una parte, nos permite conectar una considerable cantidad de dispositivos por el
mismo canal, sin ocupar mas recursos externos del microcontrolador, y algo aun mas
importante una forma comun de acceso a estos, asi que una gran parte de dispositivos

del robot o soportan de alguna forma o solo son accesibles por 12C.
Placa Base

Como hemos comentado en los requerimientos es necesario un sistema
compatible PC para poder integrar el entorno Pyro. Para ello se eligi6 una de la famosa

serie Epia fabricada por Via Technologies Inc.

La placa base elegida ha sido una Via Epia MII 10000 [10] basada en un chipset y

el procesador C3 del mismo fabricante, La Via Epia encapsula un ordenador

23

personal compatible PC, en una placa de 17x17 cm., con todo lo necesario desde tarjeta

grafica hasta tarjeta de sonido, hasta dispositivos USB, puertos serie y paralelos etc.

24

Dispositivos de entrada

Para poder interactuar con el medio es necesario tener capacidad de percepcion, y
para un autdémata o robot esto se traduce en disponer de sensores Actualmente, existen
sensores de diversos tipos y modos. Lo més importante es que suministren una cantidad
de informacion adecuada para que se puedan extraer resultados con unos minimos de

fiabilidad y precision preestablecidos

A continuacion vamos a describir los sensores que se han incorporado en el

prototipo del automata del proyecto:
Ultrasonidos

El automata dispone de sensores de ultrasonido, estos basan su funcionamiento en
emitir un pulso de ultrasonido de una frecuencia determinada y “escuchar” el eco que se
produce cuando la sefial encuentra algun obstaculo en su camino y rebota, esto permite,
contando el tiempo desde la emision del pulso hasta la recepcion del eco, calcular la

distancia que nos dista el obstaculo.

En nuestro proyecto usamos el SRF08 fabricado por Devantech Ltd. Este sonar
controlado por 12C permite detectar objetos a distancias entre tres centimetros y seis
metros, pero no solo eso porque no se limita a escuchar un solo eco, sino que escucha
hasta diecisé€is ecos ordenados por distancia, algo que por ejemplo es muy util para

obtener conclusiones suministrandolos como entrada a redes neuronales.

El SRFO08 a diferencia de otros dispositivos comerciales es autdnomo, el
microcontrolador maestro ordena una lectura (emision de pulso y escucha), y este no
debe hacer nada hasta el transcurso de un periodo de tiempo en el que el controlador del

SRFO08 ya tiene disponible todas las lecturas.

Ademas se su funcionalidad principal el SRF08 dispone de un sensor de luz LDR

(Light Dependent Resistor), que puede ser leido con los demas datos.

Las ventajas del sonar, aparte de la gran cantidad de informacion que nos da , es
que tiene una precision aceptable para evitar obstaculos, y un rango de distancia

bastante considerable, el SRFO08 tiene precision del orden del centimetro y un rango de 3

25

a 600 centimetros.
Los inconvenientes son:
1. No es de los sensores mas rapidos

2. Ciertas superficies porosas pueden amortiguar la sefial y dar lecturas erréneas

o incluso no darlas.
Infrarrojos

Los dispositivos de infrarrojos GP2D12 desarrollados por Sharp, son dispositivos
de medicion de distancia que proporcionan una sefial de medida analogica. Funcionan
de manera parecida al sonar pero de forma continua, hay un diodo emisor de infrarrojos
que emite una sefal a una cierta frecuencia, esta es rebota en un objeto y recibida
mediante un receptor de infrarrojos, la sefial es procesada por un procesador que trata la
sefal recibida para descartar los reflejos y cambios ambientales que darian falsos

valores y a continuacion da un voltaje de salida.

Para obtener informacion detallada acerca del funcionamiento del sensor consultar

el Apéndice 1.
Compas

El CMPSO03, desarrollado por Devantech, es un dispositivo electronico que
mediante dos sensores magnéticos uno rotado 90° respecto del otro , es capaz de dar la
orientacion del robot respecto al norte magnético, con una precision de décima de grado

y un margen de error de dos grados.

Es un dispositivo 12C y permite obtener el resultado en 8 y 16 bits, en 8 bits
devuelve el resultado entre 0 y 255 unidad como Brads®, si hacemos la lectura en 16 bits

recibiremos un valor entre 0 y 3600 que da los grados con 1 décima de precision.

> Brads (del ingles: Binary Radians) en robética muchas veces los recursos son escasos y una
forma de representar los 360° de la circunferencia en un solo byte es usar los Brads, su relacion es: 256

Brads es igual a 360 grados.

26

Para informacion mas detallada sobre este dispositivo consultar el apéndice 1.
Termopila

La termopila TPAS81 es un conjunto de 8 sensores térmicos de precision
dispuestos en linea formando un vector columna. Esta distribucion permite mediante

desplazamiento del sensor generar imagenes térmicas.

El TPAS81 dispone ademas del vector columna de sensores de temperatura un
noveno sensor de temperatura ambiente, que podria servir para fijar el centro de
temperatura y poder discriminar todo aquello que se encuentra cerca de la temperatura
ambiente, y por Ultimo también dispone de capacidad de control de un servo que
automaticamente hace girar para generar una imagen de 32x8 pixeles que abarca unos

180° de giro. Para encontrar informacion detallada en el apéndice I.
Dispositivos de salida

Motores

El método de locomocion de este automata es mediante ruedas, y con un
funcionamiento parecido al de un vehiculo oruga, dispone de 4 motores uno para cada
rueda que funcionan agrupados de dos en dos segtn el lado, es decir los dos de la
izquierda funcionan como uno solo, y los dos de la derecha de la misma forma. Los
motores son de corriente continua que funcionan a 7.2v y llevan incorporada una
reductora 50:1. Para controlar los motores se utiliza un doble puente en “H”, que es una
construccion tipica en electronica para el control de motores, que permite el control de

velocidad, aceleracion y sentido del motor.

El doble puente en “H” utilizado es un producto de Devantech con el nombre de
MD?22, que permite el control de dos motores. La MD22 tiene como entrada una tension
de potencia destinada a los motores y de salida los contactos necesarios para conectar

dos motores, permite ser controlada de diversas formas: Analogico, PWM® e I2C. Este

S PWM (del ingles: Pulse Width Modulation) técnica que se basa en trasmitir informacion

mediante una sefial pulsante en la que la informacion es el “ancho” (duracion) del pulso transmitido.

27

ultimo es el que se utiliza en nuestro proyecto. Para informacion mas detallada del

MD22 refiérase al Apéndice L.

Servomotores

Los servomotores o sencillamente servos son mecanismo electromecéanicos
capaces de realizar movimientos de precision, son dispositivos muy ampliamente
usados en el hobby de radio control, como puede ser el automodelismo, acromodelismo
y modelismo naval entre otros, de servos hay muchos tipos segun si lo que se requiere

es fuerza o velocidad, son lineales o de rotacion.

Nuestro proyecto incluye 2 servos, destinados a manejar la torreta en la que estan
montados todos los sensores. Se usan dos servos “estandares” (figura 5) que son de

rotacion capaces de girar 180° entre extremos y sostener un par de hasta 3 Kg/cm.

La gran mayoria de servos se controlan mediante una sefial de pulso modulado
(PWM), que ha de tener un periodo minimo de 50ms, donde el pulso debe estar en alto

entre 1 y 2 ms. Este tiempo en alto indica la posicion del servo.

El servo compara esta sefial de mando
con la que generan sus mecanismos internos
e intenta, mediante la actuacion sobre el
motor, que las dos sefiales sean iguales.
Utilizando un control PID’. Mas

informacion detalla en el Apéndice I.

Figura 5: Servo Hitec HS-311 empleado
en el proyecto

7 PID (Proporcional Integral Derivativo) es un sistema de control con retroalimentacion muy
usado en sistemas de control industriales, inicialmente pueden ser mecanicos, o de construccion

electronica analdgica o (Gltimamente) digitales.

28

Desarrollo

Ahora que conocemos los componentes del robot veremos las diferentes fases de
desarrollo que ha tenido el proyecto, y entraremos en detalles en aquellas areas donde se

ha desarrollado el trabajo mas complejo y elaborado.
Aproximacion Inicial

La idea inicial era basicamente crear una interfaz comun para el robot basado en
el OOPic dado que este disponia de puerto serie de comunicacion y un protocolo de
control. Esta idea se mantuvo durante todo el proyecto, aunque mas tarde se crea la
interfaz para el entorno Pyro, esto no deja de ser una aplicacion para la interfaz ya

creada como veremos mas adelante.
Primer Obstaculo: el OOPic

El OOPic ya estaba adquirido cuando comencé el proyecto, esto condiciona,
sobretodo cuando la herramienta es desconocida, a usarla con total tranquilidad pensado

que no habré problema, pero todo depende del nivel que se quiera alcanzar.

Si el proyecto tratase de simplemente dotar al robot de un comportamiento
sencillo solo hubiese hecho falta nada mas que el OOPic. Pero el proyecto es mucho

mas ambicioso.

Hacerse con el dominio del OOPic no fue dificil, en 3 semanas tenia 3 de los 4
modulos practicamente completados (con una funcionalidad mucho mas limitada que la

conseguida posteriormente con el AVR).

A continuacion vamos a explicar el desarrollo maximo que se consigui6 con el
OOPic, lo orientaremos por mddulos, se ira explicando los problemas encontrados, y al

final expondremos unas pequenas conclusiones.

A continuacion refrescamos el grafico de como esta disefiada la unidad de control:

29

Cerebelo

|

I
|

PC__ . Interfaz Serie - Repartidor

PR e B E OSSR BN

Mensajes de salida

Modulo Interfaz

El médulo interfaz trata de dialogar con el ordenador y repartir el trabajo. En el
OOPic esto se realizaba a 9600 baudios, con la idea de aumentarlo mas adelante a

31500 baudios que era la otra velocidad que el OOPic nos permitia seleccionar.

Este modulo recibe comandos de 5 caracteres, en funcion del primer caracter
reparte la orden segin su modulo, esto se hacia sencillamente llamando a una funcién
de procesar por cada modulo, es un método sencillo, si pero poco eficaz porque esto
bloquea el programa hasta que esa orden ha sido procesada. Esta limitacion no tiene

solucion, porque el OOPic no ofrece soporte directo a la multitarea.

Como explicamos secciones anteriores el OOPic tiene una herramienta llamada

circuitos virtuales, estos permiten configurar acciones como si de un circuito 16gico se

tratase, pero fue imposible de utilizar para este cometido. Dado que para poder procesar

los comandos se debia saltar entre los modos de circuitos virtuales y programa pseudo

codigo, el problema esta en la gran diferencia (6rdenes de magnitud) de tiempo de

ejecucion entre un modo y el otro, mientras uno trabaja a 2000Hz el otro a 5Mhz, esto

¥ Esta velocidad no es un multiplo 16gico del puerto serie clasico, es la velocidad a al que trabaja el

puerto MIDI (del ingles: Musical Instrument Digital Interface), que es un puerto dedicado a conectar

instrumentos musicales entre si.

30

hace que se colapse la pequena pila del OOPic. Con apenas 2 comandos el OOPic

termina en un estado incorrecto y consecuentemente bloqueado.

Asi que la Unica forma para evitar este problema fue realizar el bucle de lectura de
la interfaz serie en el pseudo codigo, cosa que limita a 2000 veces por segundo como

maximo, la ejecucion de este bucle

Modulo de Locomocion

Este modulo comunicaba por el bus [2C con la placa de control de motores, era un
sistema sencillo en el que se ajustaba la velocidad y la aceleracion, que son ajustes
internos de la controladora MD22, se realizaban movimientos sencillos como avanzar,
retroceder , y girar sobre su propio eje con la velocidad y aceleracion previamente

ajustada.

Modulo de Torreta.

En este mddulo se manejan 2 servos para el control de la torreta, esto se realiza
mediante pseudo cddigo y un circuito virtual, para poder configurar y hacer funcionar

un barrido automatico.

Mediante comandos se puede ordenar la posicion concreta a un servo, la
informacion del angulo viaja en 1 byte que era representado en brads, asi que la

precision con la que se podia mover un servo era aproximadamente de 1.4 grados.

Mediante comandos también se puede activar o desactivar el circuito virtual que
controla el barrido. Eran ajustables el arco en que se recorria cada paso, cuantos pasos
se recorren de lado a lado y el tiempo de se espera entre cada paso, no me extenderé con
esto aqui, dado que aprovecharemos para explicarlo e ilustrarlo con mas detalle méas

adelante en la version final.

Aunque podamos barrer a 3 milisegundos por paso (calculo estimativo), no
tenemos tiempo suficiente para leer los sensores, que necesitan mucho mas tiempo en
una posicion para poder estabilizar una lectura. Pero este no seria nuestro mayor
problema. Ya que el OOPic no nos permitiria seguir el ritmo del sensor mas lento, como

puede ser un sonar que tarda 65ms.

31

Modulo de Sensores.

Este modulo no se llego a implementar ni en una version elemental, es un moédulo
muy importante y critico, pero aun optimizando los mddulos anteriores, no teniamos
recursos suficientes para implementar una version minima jHabiamos agotado todos los

recursos del OOPic!
Conclusiones.

Antes de descartar el OOPic se valord otras soluciones, como conectar otra OOPic
en bus, el OOPic permite conectar hasta 128 placas iguales y poder interactuar entre
ellas, la idea es que si el problema de recursos era solo espacial ;porque no poner una

segunda placa? para valorar correctamente se hizo una prueba.

Se creo un programa que comprobase a que ritmo podia absorber 6rdenes el
sistema en el estado actual. Este programa dio un resultado desalentador, en una primera

version, solo era capaz de interpretar una orden por segundo.

Entonces se decidio optimizar y reducir al méximo incluso eliminar todos los
mensajes escritos y cddigo innecesario. Mejor6 era 3 veces mas rapido, pero
insuficiente, porque la prueba era solo en un sentido, es decir era el cliente dando
ordenes una tras otra tan rapido como permitia el OOPic, la unidad de control tiene
mucho mas que hacer que solo eso, deberia controlar los servomotores e ir dando

lectura de los sensores que se hubiesen pedido antes, y a un ritmo muy superior.
En definitiva el OOPic no era suficiente para los objetivos del proyecto.
Apuesta personal, el AVR

Personalmente veia imposible realizar un trabajo interesante, versatil y potente
con el OOPic, asi que me dedique a buscar un microcontrolador de mayores
prestaciones. Ademas la eleccion no debia complicar excesivamente, el proyecto por lo
que el microcontrolador se deberia poder programar a un nivel de abstraccion alto para

poder terminar el proyecto en un tiempo razonable.

32

Viendo desde el lado del programador, es inevitable que se tendran que programar
registros, y a bajo nivel pero evitar el ensamblador era deseable y no muy dificil porque
cualquier microcontrolador de cierto nivel ya se puede programar en lenguaje C, que es

un lenguaje que se adapta perfectamente a la programacion bajo nivel.

Debe disponer velocidad suficiente para poder procesar en tiempo real un minimo
de sefiales. Esto es confuso, porque no se trata de tener una elevada capacidad de
computo, que en parte es deseable, es mucho mas importante la frecuencia de
instrucciones que el tamafio de las mismas. Vamos a ilustrarlo con un ejemplo: para
nuestros objetivos es preferible hacer 16 millones de instrucciones en un procesador de
8 bits que 8 millones de instrucciones en un procesador de 32 bits. Siendo el
rendimiento de computo del segundo muy superior, Nosotros necesitamos velocidad,
cuantas mas 6rdenes por segundo hagamos mejor dado que para empaquetar y enviar la

informacion no necesitamos operaciones complejas ni de gran amplitud de palabra.

Desde el punto de vista electronico el nuevo microcontrolador deberia disponer de
los recursos minimos necesarios, un bus I2C, puerto serie, varias lineas analogicas,
varias digitales, y encontrarse en un producto lo suficientemente terminado como para

no tener que realizar trabajos importantes de electronica.

La realidad es que la busqueda fue mas dificil de lo esperado, primero porque los
microcontroladores de una cierta potencia no estan disponibles en el encapsulado PDIP’
dado su elevado numero de pins, asi que si no era en encapsulado PDIP deberia ir en

una placa que al menos llevase el equipamiento minimo para su funcionamiento.

Después de buscar concienzudamente y descartar varios, fue seleccionada una
placa disefiada y construida por la empresa tailandesa ETT, es una placa econdémica a la
que se debe afiadir otra placa “adaptadora” que nos ordenara las sefiales, conexiones y
alimentacion a nuestro gusto. En este caso la placa adaptadora se puede construir

facilmente.

? El encapsulado PDIP, es muy popular entre los aficionados, porque es facil de manipular, tiene
un tamafio facil para soldar a mano y se puede insertar facilmente en la parrilla de orificios de las placas

de prototipado.

33

La placa se basa en un procesador de la familia AVR, fabricado por Atmel que

hemos explicado en apartados anteriores.

En los siguientes apartados veremos la configuracion fisica y logica del AVR y su

extension como Unidad de Control.
Unidad de Control

Configuracion Fisica.

Lo primero que vamos a ver es como esta configurada fisicamente la unidad de

control y de que recursos dispone.

Lineas
Bus 12C Digitales Alimentacion

—

Lineas
Digitales

''''''''
............
.........

........

Lineas Puerto JTAG Lineas Lineas Lineas
Digitales Analogicas. Servos Digitales

Figura 6: Unidad de control

Aqui podemos contemplar el primer prototipo de la placa de expansion sobre la
que esta montada el AVR, dispone de varias partes bien diferenciadas. Podemos dos
categorias de componentes principales; los activos y los pasivos. En el grupo activo
tenemos la placa del AVR y la alimentacion. En grupo pasivo tenemos todo lo demas:

bus 12C, lineas digitales y analdgicas, lineas de servos y el bus 12C, estos ultimos

34

simplemente cumplen con el objetivo de distribuir las interconexiones con los demas

dispositivos se puedan realizar de forma comoda y practica. Todas estas lineas estan

organizadas de tal forma que cada linea de control tiene agrupada su alimentacion de

forma que con un conector y cable de 3 hilos podemos conectar facilmente un

dispositivo. El orden es de arriba hacia abajo: sefial, alimentacion, tierra o masa.

La unidad activa AVR ya conocida es la que nos permitird controlarlo todo,

aunque no este indicado, de esta sale un cable con el conector serie que es el canal de

comunicaciones con el ordenador.

Por ultimo comentar que el puerto JTAG es utilizado para grabar el programa del

AVR, y ademas permite

depuracion en tiempo real.

Revision 1.

Aprovechando el desarrollo
del robot, en el departamento se
decidi6 construir otro robot igual
durante el curso de robdtica, esto
hizo que se emplearan mas y
mejores medios para el desarrollo
del sistema, para ello se creo la
placa de control con una maquina
de control numérico. Aparte del
cambio estético, la placa mejoro
con la incorporacion de una
segunda fuente de alimentacion
separada para sensores y sefiales

delicadas.

En el Apéndice I se podra
encontrar informacion mas

detallada acerca del esquema.

Figura 7: Primera revision

Podemos apreciar la diferencia de acabado respecto
al prototipo, ademds de que en el mismo tamario
entra una fuente de alimentacion mas.

35

FreeRTOS.

Contrariamente a lo que pasaba en el OOPic, en el AVR se dispone de una ya
importante cantidad de recursos, no solo memoria, si no de contadores de tiempo,
generadores de pulso modulado, puertos serie, bus 12C, lineas de entrada/salida entre
otros. Al aumento de recursos hay que sumar la bajada del nivel en el que trabajamos,
ahora no tenemos una biblioteca de objetos ya elaborados, lo cual complica

considerablemente el trabajo.

Si atendemos al software que queremos desarrollar, es deseable modularizar bien
y repartir equitativamente el tiempo entre varias tareas a realizar. Ademas de la
necesidad de poder crear colas para poder absorber los picos de peticiones que se
podrian generar. Incluso debemos poder arbitrar el uso del bus 12C dado que en el

mismo disponemos de mismo sensores y control de motores.

Dadas estas necesidades, un salto crucial hacia delante fue el “no empezar de

cero” y utilizar un sistema operativo. Se decidio el FreeRTOS [11].

El FreeRTOS es un proyecto de codigo libre que implementa un mini-kernel en
tiempo real portable, esta escrito 99% en cddigo C. Solo hay ensamblador en tareas que
requieren conocer el hardware para poder llevarse a cabo, como la configuracion del

temporizador que dispara el planificador, cambio de contexto, etc.

El Nucleo.

El kernel puede ser configurado por el usuario, esta basado en un Round Robin
con prioridades absolutas, cada proyecto dispone del fichero FreeRTOSConfig.h, que
permite configurar el kernel. Pardmetros importantes como decidir si el kernel es
apropiativo o no, la velocidad de trabajo de la cpu, cada cuanto debe entrar el
planificador en hertzios, o lo que es lo mismo la rebanada de tiempo minima del
planificador se pueden especificar en este fichero. La capacidad de parametrizacion se
extiende a cuantos niveles de prioridades estaran disponibles, el tamafio minimo de la

pila para un proceso, el tamafno maximo del heap para el gestor de memoria y mas.

36

Como un sistema operativo que es, el kernel permite a un tarea entrar en zona

critica, desactivar/activar interrupciones o forzar el cambio de contexto.

El Gestor de Memoria

El FreeRTOS nos permite elegir entre tres modelos de memoria, Este mini-kernel
esta orientado a microcontroladores y estos suelen tener recursos muy escasos. Por
ejemplo: si se va a reservar memoria dindmica pero no se va a liberar durante todo el
funcionamiento, mantener en memoria, y ejecutar un gestor de memoria dindmica
completo aparte de ser innecesario nos consumira una valiosa cantidad de recursos, que

en estos casos son limitados. Escogiendo un modelo se puede optimizar los recursos.
Actualmente existen tres modelos de memoria:

1. El “Heap 1” es el modelo mas simple y una vez se reserva memoria no se puede
liberar, este modo puede parecer bastante malo pero tiene aplicacion en un gran
nimero de aplicaciones, para poner una como ejemplo: este proyecto. Tiene
restricciones importantes como que no se pueden crear tareas o colas en tiempo
de ejecucidn, pero tiene también una ventaja importante es que es determinista

siempre tarda lo mismo en devolver un bloque de memoria.

2. El “Heap 2” es como el anterior pero nos permite liberar memoria, con el
importante detalle de que no combina los espacios libres en uno solo, eso puede
traer problemas de “tener” espacio libre suficiente y no poder reservarlo por

estar fragmentado.

3. El “Heap 3" se obtiene al directamente compilar las funciones de malloc y free
de la libreria estandar de C, esto da un gestor de memoria completo pero a
cambio de incrementar la complejidad, el tamano del kernel, y dejar de ser
determinista. El determinismo es una propiedad se suele subestimar pero que
puede ser de gran importancia. Este heap se usa normalmente en procesadores o
microcontroladores muy potentes, en los ejemplos que trae el FreeRTOS este

método de memoria se usa para la plataforma x86.

37

Dentro de un proyecto el heap se puede cambiar entre uno y otro modificando el
makefile e incluyendo un modelo de heap u otro, el codigo fuente de cada modelo se

encuentra en /portable/MenMang/heap 1.c, heap 2.c y heap 3.c.
Procesos y Threads.

En el FreeRTOS los procesos y los threads tienen otros nombres, pero tienen la
misma funcionalidad, Las tareas (Task) son procesos que tienen su propio espacio de
pila y contexto. Las co-rutinas (co-rutine) son parecidas a los threads comparten pila y

memoria con la tarea padre.

Al iniciarse el kernel crea una tarea “Idle” o de esperar. Esta tarea tiene la mision de
liberar la memoria de las tareas borradas, siempre y cuando nuestro gestor de memoria
nos permita hacerlo, asegurarse de que se dispondra del tiempo necesario para que se

pueda ejecutar, es decir hay que evitar la inaniciéon de ésta.

Ademas el FreeRtos nos permite “colgar” o afiadir una funcion al proceso Idle, asi
podriamos por ejemplo realizar tareas de mantenimiento mientras no haya trabajo que
realizar, otra opcidn es crear una tarea con la misma prioridad que la tarea idle pero esto

suponen un mayor uso de memoria.
Colas y Semaforos.

Como en cualquier operativo, tenemos disponibles colas y semaforos. Las colas
tienen la limitacion de que todo lo que es puesto en la cola es por copia y no por
referencia, por eso se recomienda que ante estructuras complejas se haga una cola de
apuntadores. Los semaforos trabajan del mismo modo que en cualquier otro sistema

operativo.

38

Detalles y Desarrollo en el proyecto:

Instalacion y puesta en marcha del FreeRTOS:

Una vez descomprimido el fuente del FreeRTOS, dentro de /source tenemos los
diversos ficheros que lo componen. Una carpeta importante es la llamada portable
donde se encuentran los ficheros que son dependientes de la maquina en la que se va a

utilizar.

Concretamente en nuestro proyecto se tuvo que crear una carpeta para el
ATMegal28, porque no estaba implementado, este trabajo fue mas sencillo de lo
esperado dado que ya habia sido portado para el ATMega323 y en principio con unas

modificaciones minimas ya se consiguio la compatibilidad.

Un cambio obligado fue alterar casi por completo el temporizador que dispara el
planificador, en la version del ATMega323 se usa uno de los dos temporizadores de
16bits de los que dispone el AVR, ese contador, en nuestro proyecto, era imprescindible
para manejar los servos por la resolucion y por ciertos recursos asociados que permiten

la generacion de sefiales.

Asi que se modifico el codigo dependiente de la maquina para que usase otro

contador de 8 bits.

El FreeRTOS se ha revelado como una gran herramienta, se ha echado en falta
algln sistema de control de errores, dado que esta disefiado para que se reinicie ante

cualquier problema, y deja para la intuicioén personal el saber que lo ha provocado.

39

ARI.

El ARI es el programa desarrollado para gobernar los diferentes sistemas en el

robot, ARI viene del inglés Advanced Robot Interface, y se bautizo sin pensarlo mucho.

A continuacion se entrara en detalles sobre como esta construido el software,
Como se ha visto varias veces el sistema esta dividido en varios modulos, a

continuacion recordaremos el esquema que los relaciona:

Ceebelo
PC__ b Inferfaz Serie > Repartidor
e e e |
i Lo I L; ——— ¥o-oooooooooooo 5 i
| 9 5 o
I () i | i i :
l g || Sensores |11 Tometa | |locomocion:
| g 5 -
| g ! | o
| o I — — T

Cada modulo se traduce en un proceso en ejecucion, asi que el modulo de didlogo

con el ordenador y que reparte las 6rdenes se llama Mdédulo Interfaz. El médulo que se

encarga de controlar los motores Mddulo de Locomocioén, el modulo encargado de

controlar los servos (en la figura Torreta) es llamado Modulo de Servos, y por ultimo el

modulo mas importante el Modulo de Sensores que controla la percepcion del robot.

El principal método de unidn es mediante colas, éstas van muy bien para

amortiguar los picos de trabajo.

40

Modulo Interfaz.
(modlnteface.h y modlnterface.c)

Cola de Entrada Cola M. Locomocioén.

Proceso
[A el 11— Interpr_etey —» [0 e[]
Puerto repartidor. \ EI%/I. Ser\E”:|

Serie \

Cola de Salida ¢ Cola M. Sensores.
<[] = @Funciones e U
de Salida

por la consola.

El médulo de interfaz controla las comunicaciones con el ordenador, recibe las
ordenes por el puerto serie y reparte el trabajo, ademas dirige y gestiona el recurso de

salida para todos los procesos.

En la cola de entrada se van acumulando los bytes recibidos por el puerto serie,
estos son leidos en el proceso principal, hasta recibir un retorno de carro o superar los
10 caracteres que es la longitud maxima de de un comando. En caso de superar los 10

caracteres devolvera un mensaje de error “E:too long” y reiniciard la cuenta.

Si el mensaje recibido es de longitud correcta se interpreta el primer caracter, si
este corresponde a un modulo conocido (m, = motores, s = sensores 0 € = servo) se
encolard en la cola del correspondiente modulo, si es una i (de interfaz), entonces se
procesara el comando en ese momento. Si el comando no tiene un comienzo adecuado

devolvera “E:BadSec” que indica seccion incorrecta.

Los comandos disponibles para este modulo son, el reinicio, comprobar version,
activar/desactivar el echo, leer y escribir bytes en el bus I2C, ver la lista de tareas
donde podemos consultar el estado, prioridad, uso de la pila e orden de inicializacion, y
el uso del heap que en nuestro proyecto es siempre fijo y se usa para tareas de

depuracion.

La Biblioteca del puerto serie estaba ya correctamente implementada en la version

AVR del FreeRTOS, solo hubo que retocar la posicion de algunos registros para que

41

funcionara en el ATMegal28.

Para mas detalles sobre los comandos del médulo interfaz ver el apéndice II.

Modulo de Locomocion

(modMotion.h y modMotion.c)

Cola M. Locomocién.

Interfaz Interprete de envioy
recepcion
Funciones
de Salida Libreria
por la consola. 12C

El moédulo de locomocion se encarga de dar 6rdenes mediante el bus 12C al
controlador de motores MD22, es un modulo sencillo que adapta los datos de entrada

antes de enviarlos a la MD22.

Durante el desarrollo se tuvieron que afiadir dos funciones nuevas de control directo

para el Pyro.

La Libreria I12C se construy6 a partir de una ya creada para el AVR, trabajo de Peter
Fleury [12], que se ha ido expandiendo a lo largo de todo el proyecto. Una primera
modificacion fue la inclusion de un arbitraje por semaforos para poder utilizar la libreria
entre dos 0 mas procesos. Peter creo esta libreria para que fuera sencilla, para usarla en

programas que no tuviesen el nivel de multitarea que tiene este proyecto.

También se han creado nuevas versiones de la funcion de lectura del bus para poder
en una misma transaccion realizar lecturas multiples y asi recuperar un tiempo valioso
que se emplea en iniciar y finalizar la comunicacion cada vez. Asi que a la inicialmente
creada funcidn de lectura de un byte se afiadi6 la de leer una palabra, y también la de

leer bloques de bytes consecutivos.

42

Modulo de Servomotores

(drvservo.c, drvservo.h, modServo.h y modServo.c)

Cola M.Servo.

Modulo | —» [[Jeee I |—» Proceso Posicionamiento
Interfaz Interprete y
Configuracion
Funciones
de Salida DrvServo
por la consola. —

|

Hardware de

Maodulo de temporizacion
Sensores e interrupcion
asociada.

El médulo de Servos es capaz de controlar hasta seis servos. Todo el control del
tiempo para generar la sefial necesaria para poder usar los servos se encuentra en el
controlador del Servo (drvServo). Gracias al hardware asociado a los dos
temporizadores de 16 bits de los que dispone el AVR la necesidad de interrupciones

para generar la sefial se reduce significativamente.

Cada temporizador se puede ajustar para que termine en un tiempo determinado.
Ademas llevan 3 registros hardware asociados que en cada incremento del temporizador
son comparados para comprobar si el temporizador es mayor o igual que su valor. En
cuanto el resultado de la comparacion sea positivo, se dispara una opcion que realiza un

cambio de valorde 0 a 1 o de 1 a 0 en un pin del microcontrolador.

43

Principio de funcionamiento de los servomotores.

La principal diferencia entre un motor convencional de corriente continua y un
servomotor es que el servomotor tiene la capacidad de ubicarse y mantenerse estable en

una posicidn concretada.

Los principales elementos de los que se compone son: Motor, reductora, y
electronica de control. E1 motor es un motor de corriente continua convencional, la

reductora permite al motor ganar fuerza pero a la vez lo hace mas lento.

La electronica dispone de un potencidometro o resistencia variable que es un
dispositivo con un eje y en funcidn de su posicion ofrece una resistencia u otra, esta

sefial es usada por la electrdonica del servo para saber en que posicion se encuentra,

La sefial es comparada con la sefial de entrada, el control del servo motor esta

disefiado para minimizar la diferencia entre las dos sefales, y asi situar el servo.

La senal de entrada es una sefial periddica de entre 11 y 20 milisegundos, la cual
debe permanecer un minimo de 0,5 milisegundos y un méaximo de 2,1 milisegundos en
valor positivo, y el resto en valor negativo, en funcién de la duracién del pulso de
entrada es indicada una posicion, un pulso de Ims indica un extremo normalmente el
extremo derecho, y un pulso de 2ms indica el extremo contrario. Un ejemplo grafico

mas claro se puede ver en la figura 8.

P 10to22 ms —=
—= +—1ms
—‘ —| MINIMUM
— +— 1.5ms 4
CENTER @
— — 2ms
MIQXIMUM

Figura 8: Relacion entre la sefial de entrada de un servomotor y su posicion.

44

[lustremos como el modulo de

servomotores genera estas sefiales: L1
Supongamos que un servo necesita una sefial Lo
periddica de periodo 20ms, la cual debe
empezar con un pulso alto hasta Ims y se L3
debe detener antes de llegar a los 2ms. Una
; 20ms T
sefal de 1ms representa un desplazamiento 1 23 4 5

del servo de -90 grados y una sefial de 2ms
representa un desplazamiento de +90
grados. En el grafico podemos interpretar la L1 como la primera, la L2 como la segunda

y la L3 un lugar intermedio entre las 2.

Las tres sefiales representan los tres registros asociados al temporizador que son
comparados de un temporizador, en el paso 1, salta la interrupcion que sefiala que el
temporizador ha llegado a su fin, entonces lo que hacemos es poner a 1 todas las lineas
de salida, y cargamos en los registros de cada comparador el valor correspondiente al
tiempo deseado para marcar una posicion, termina la interrupcion. En el paso 2 ocurre
que el registro de comparacion de la L1 es menor que el del temporizador, por eso
automaticamente y sin que el procesador intervenga la linea cambia de estado (de 1 a 0),
lo mismo ocurre en 3 con la L3, y en 4 con la L2. En el paso 5 vuelve a entrar la

interrupcion.

Explotando estas opciones del hardware solo necesitamos una interrupcion cada
20ms, que ademas es deseable para cambiar el registro de tiempo de las lineas y

consecuentemente la posicion de los servos.

Una funcionalidad incorporada a los servos es la de poder configurar barridos
automaticos, estos barridos van actualizando automaticamente la posicion de uno o
varios servos, la idea es poder apuntar los sensores a mas de una posicion y realizar esto
periddicamente, es decir que si hacemos un barrido de tres posiciones, izquierda, luego
al centro y luego a la derecha, esto se repetira hasta que el cliente ordene parar. Ademas

este sistema esta sincronizado con el modulo de sensores para poder efectuar las

45

lecturas.

El proceso interprete se encarga de preparar los datos necesarios segiin las dérdenes
que recibe. Convirtiendo el valor de entrada al valor adecuado y configurar los

parametros de los barridos.

46

Modulo de Sensores.

(modSensor.h y modSensor.c)

Cola M.Sensor

Modulo | —» [| Jeee[Il |—>

Interfaz

Tablas de

> lecturas

sincronizadas
con los servos

Proceso
Ejecucion e
Interprete

Funciones
de Salida
por la consola.

Controlado

Hardware Sensor —>
del Tabla de Tabla de
micro. Sensores lecturas
bus i2¢ Periodicas.
p.serie,
etc.

El moédulo de sensores, es de los mas complejos y vitales, dado que es el
encargado de recoger los datos de los diferentes tipos de sensores y mostrarlo al cliente

como un interfaz unificado.

El proceso, ademas de la tarea basica de recoger e interpretar los comandos del
usuario(o sistema de mas alto nivel como en nuestro caso es el PC-Pyro), se encarga de
realizar las tareas de mantenimiento y ejecucion asociadas con las tablas de lecturas

sincronizadas y las lecturas periodicas.

Vamos a comenzar explicando como se afiaden sensores al sistema, y como es el
tratamiento de los mismos. Los sensores se definen mediante una o dos funciones, estas
tienen un prototipo de declaracion fija de tal forma que al afiadir un sensor nuevo

simplemente se debe implementar una o dos funciones.

47

Hay muchos tipos de sensores, En algunos se puede hacer una lectura directa
porque, o bien se actualizan mucho mas rapido de lo que nosotros podemos
interrogarlos, o porque tienen un buffer y siempre podemos acceder al Gltimo valor,
pero también hay sensores que necesitan una orden para iniciar y realizar una fase de
lectura, como pueden ser un sonar, y ademas este deja de responder durante la obtencion

de los datos, que tiene una duracion considerable.

La primera funcidn tiene el prototipo void iniciar(unsigned short t, char i)y esta
pensada para dispositivos que necesitan orden para comenzar una lectura, esta funcion
recibe dos parametros: una marca de tiempo en milisegundos, y un nimero usado como

identificador que se define al agregar la funcion al modulo de sensores.

La marca de tiempo es para poder controlar el tiempo que transcurre desde que se
ordena el inicio de la lectura hasta que se lee, para evitar abusar de un recurso
compartido o gastar tiempo en trabajo innecesario. El segundo parametro se usa a
criterio del programador, un ejemplo practico seria para poder usar las mismas
funciones con varios sensores idénticos, por ejemplo si tuviésemos tres sonars, esta
variable se puede utilizar para diferenciarlos, dado que al asignarlos al modulo de

sensores, estos usaran las mismas funciones.

La otra funcioén es la de leer, que tiene tres parametros, el primero es, nuevamente,
la marca de tiempo, el segundo es un puntero a un byte, y el tercero es el pardmetro de

uso a criterio del programador.

Cuando un sensor es “cargado” en el modulo de sensores se guardan dos punteros
a estas funciones. Ademas, se guarda un nombre de cuatro caracteres, y un modo de

lectura.

En el modo mas simple o modo entero, la funcion leer retorna un entero de 16
bits, que es el valor de la lectura. En el otro modo se retorna el puntero a una cadena de
caracteres, en la que no puede haber caracteres de control, y la longitud de la cadena se

devuelve a través de aquel segundo parametro puntero a byte.

48

El cliente puede consultar cuantos sensores existen, y sus nombres, realizar una
peticion de lectura del ultimo valor conocido, o asignarlo a alglin servicio, como la

lectura periddica, o la sincronizacion con los servos.

Una vez el sistema esta en marcha la tabla de sensores es fija, el indice de la tabla
se usa como denominador principal de los sensores. Se usard ese nimero para referirse
al sensor tanto dentro de la aplicacién como por parte del usuario. Es decir el usuario
puede ordenar leer el nimero cuatro y el programa devolvera el ultimo valor conocido

del sensor nimero cuatro.

Una de las funcionalidades més potentes, que libera de mucha carga tanto al
ordenador como a la unidad de control, son las tablas de lecturas, estas tablas
inicialmente estan vacias, y el cliente las puede alterar en tiempo de ejecucion, la
primera de ellas que es la tabla de lectura periddica, realiza una lectura periodica de
cada sensor que se encuentre en ella, esta tabla permite tener hasta 25 sensores, la
periodicidad con la que esta tabla se puede leer también es ajustable y varia entre una

décima de segundo y mas de 2 segundos.
(Porqué 25 sensores maximo? ;Por qué una décima de segundo?

La idea comun y que primero se presenta es la de utilizar una interrupcion cada décima
de segundo y leerlo todo. Quizés nuestro problema no es, ni mucho menos, que no nos
de tiempo. El inconveniente es otro: si estamos todo el tiempo ejecutando interrupciones
seguramente se acabaran anidando una encima de otra y terminen colapsando el
sistema. De hecho esto lleg6 a ocurrir en nuestro sistema y nos condujo al disefio de

esta alternativa.

49

La idea fue repartir equitativamente en el tiempo las lecturas, pero ademas no

hacerlo mediante interrupcion.

Es evidente que si el proceso consume muchos recursos y no permite que el bucle
se ejecute lo suficientemente rapido, la alternativa no nos sera de utilidad. Dado que la
demanda de recursos del proyecto lo permite, lo que se hace, controlado por tiempo, es
ejecutar 1 lectura cada bucle (si toca por tiempo). Si queremos mantener la cadencia de
100ms de 25 sensores a la vez, tenemos que leer 1 sensor cada 4ms, y asi repartimos el
trabajo a lo largo del tiempo sin generar cargas puntuales, esto aporta estabilidad al
sistema. Ademas, si el sistema tiene un exceso de trabajo, no se colapsara por exceso de

anidamiento de interrupciones, solo ird mas lento, algo preferible al colapso.

Este ejemplo simplificado a 4 sensores en lugar de 25, muestra como se distribuye la carga
a lo largo del tiempo para conseguir que cada sensor sea interrogado con una cadencia de

100 ms.

La tabla de lectura sincronizada permite la adquisicion de datos sincronizada con
los movimientos de barrido de los servos, funciona igual que la tabla periddica, pero
aqui si toca leer, no tenemos mas remedio que hacerlo todo, dado que el servo nos

espera para cambiar a la siguiente posicion.

En cada ejecucion del bucle que contiene el proceso de los sensores se realizan las

siguientes tareas:

Primero comprueba que no halla ningtin servo en modo de barrido y que este se
encuentre detenido esperando la lectura de los sensores asociados, en el caso afirmativo,

leera los sensores correspondientes.

El segundo paso, es atender las lecturas periddicas de los sensores, esto es mucho

menos costoso computacionalmente que el paso anterior, el tiempo se divide en 25

50

secciones, la duracion de cada seccion depende de la velocidad a la que se ajuste la
lectura periddica, esto variara entre 4 ms para lecturas periddicas de una décima de
segundo a mas 40ms para lecturas periddicas de mas de 1 segundo. Pero cada seccion
tiene correspondencia directa con una de las 25 posiciones de la tabla de lectura
periddica, gracias a este detalle, leer un sensor se convierte en algo tan sencillo como
utilizar la funcion de llamada de la entrada actual de la tabla e incrementar el contador

que indexa la tabla.

El tercer y Gltimo paso es atender a los comandos recibidos del usuario.
Configuracion e Inicializacion.

Hasta ahora hemos hablado de como trabaja todo una vez en marcha, a continuacion

vamos a comentar como si inicializa.

En el fichero main.c se realiza parte de la configuracion y la inicializaciéon. Como
configuracion destacar que es aqui donde se incluyen todos los controladores de los
sensores. La primera tarea es crear y configurar el proceso de comunicaciones y
repartidor, aunque aun no comenzara a ejecutarse hasta que no arranquemos el

planificador.

El siguiente paso es inicializar el Bus I2C, muchos otros procesos utilizan el bus 12C

en la inicializacion para fijar el hardware a un estado conocido.

A continuacion se crean las tres colas para los modulos de locomocion, servos 'y
sensores. Se continua con la creacion e inicializacion de las tareas correspondientes,
como ya disponemos del mddulo de sensores configurado, el siguiente paso es
inicializar los controladores de los sensores, el orden en que estos son inicializados
influye en qué niimeros de sensor tendran, pero no en su identificador alfanumérico, que
es el que deberia usar cualquier software cliente para identificar los dispositivos

conectados.

El ultimo paso es activar el planificador del FreeRtos, una vez realizada la llamada a

vTaskStartScheduler(); el planificador comenzard y el sistema comenzara a funcionar.

51

Integracioén en Pyro

Si hablamos del trabajo sobre el Pyro, puedo comentar que es una de las tareas
mas duras, pero a la vez una de las mejores decisiones. Si uno de los objetivos era la
docencia, que mejor que un entorno elaborado con multitud de recursos, y abstraccion,
para aislar al usuario de detalles técnicos que desviarian el aprendizaje a dreas que no

son el motivo principal del curso o la clase.
Entorno Pyro.

El Pyro esta desarrollado en el lenguaje python, de los mas rapidos entre los

lenguajes interpretados. En el entorno

Pyro hay cuatro areas principales:

File Wwindow Load Help

Mundo, robot, dispositivos y cerebro,

Server

Fobat: |

como podemos observar en la

siguiente figura. | |

Foze:
El apal‘tado SeI'VIdOI' (Server) es Pyrobat Version 4.8.5: Ready... =1

un programa python con un formato de

clases especial que implementa un

mundo utilizando un simulador, si este]

1P
programa no es cargado el Pyro Figura 8: Pantalla principal del entorno

asumira que se trabaja sobre el robot Pyro, se pueden observar las cuatro
secciones principales : “Server”, ”"Robot”,

real. "Devices” y “Brain”.

El Robot es un grupo de clases
que implementan un grupo minimo de funciones basicas y parte o todos sus
dispositivos. Los robots pueden ser dispositivos fisicos y/o software, que pueden rodar

en el mundo real o sobre un servidor (simulacion) o sobre los dos.

La pestafia “Devices” contendra una vez cargado el robot todos los dispositivos de
los que éste dispone, desde unidades de actuaciéon como puede ser el control de la

unidad de pan & tilt, hasta los dispositivos de ultrasonidos.

52

En la pestafia “Brain” se carga el comportamiento del robot. Un “cerebro” puede
basarse exclusivamente en la abstraccion de Pyro por lo que sera completamente
compatible con cualquier robot implementado, como también puede hacer uso de las

caracteristicas mas avanzadas de un robot determinado.

En este proyecto se ha implementado en Pyro un robot, desde las funciones bésicas
requeridas por el Pyro, como las funcionalidades més avanzadas de nuestro robot. ,

hasta las funcionalidades mas avanzadas de nuestro robot.

El Robot segun Pyro

El Robot del proyecto se cargar (una vez instalado sobre el entorno) abriendo desde
el boton de “Robot” el fichero que se encuentra en ““/pyrobot/plugins/robots/Ari.py”, lo
primero que nos saldra es una ventana pidiéndonos dos parametros, uno el puerto al que

esta conectado el robot, un puerto serie, y otro la configuracion del robot.

@ ARl : Por favor ajuste la configuracion

; Puerto Com Lcnmd

La pantalla inicial de configuracion del robot.

La configuracion es un fichero python, en el que se declara una lista global de tuplas,
que determinan que dispositivos seran cargados, las tuplas contienen los datos de
configuracion de cada dispositivo, entre los que se encuentran el nombre a mostrar en el
entorno, y el cddigo alfanumérico correspondiente de la unidad de control, asi como la

distribucion fisica de estos, requisito necesario del Pyro.

El enlace entre los dispositivos de la unidad de control y el entorno Pyro se realiza
mediante nombre. De esta forma el cambio de orden de los dispositivos en la unidad de

control no afecta al modulo del Pyro.

La abstraccion realizada por el Pyro es muy sencilla, para el movimiento simplemente

9% ¢

se deben implementar tres métodos de la clase robot, “move”, “rotate” y

53

“translate”, estos métodos permiten desplazar el robot independientemente de coémo este

construido y su medio de locomocion.

De los sensores la unica abstraccion disponible es el dato miembro “Range” donde se
espera una coleccion de sensores de distancia, que independientemente de como estén

construidos, o su método de trabajo, su abstraccién devuelve la distancia en metros.

Podemos ver la lista de dispositivos

disponibles haciendo clic en “devices”.

Cada dispositivo tiene asociada una Fie indow Load Robot Help
Server
Ventana. Dependlendo del mlsmo, Su Fiobat: [:pyrobotspluginsrobots/Ari. py | Wiew
. . Devices: ptz[0] =] | Wig
contenido puede ser, desde un sencillo _ o
Brain: compas[0] |
. . ptz[0] ‘ ;
campo de texto que indica el valor actual, T)
Pose: 0.00%:0.00Th: 0O
hasta ventanas elaboradas que muestran e :Ei]c-.r[o] -
, . . Loadig o, sonar1]
graficamente la informacion o botones Losdng devic sonar2]
. Loating devi ot
para la configuracion. Fch A
tpambient[0] >
Command: tparray[0]
Los Dispositivos disponibles son los que
vimos anteriormente, aunque la Lista de dispositivos del robot.

informacion mostrada por estos es la
misma que se obtiene de la unidad de control, tenemos que hacer mencién especial al

dispositivo “ptz”, este dispositivo controla la unidad de “pan & tilt” o torreta.

Para poder explicar como de importante es la funcionalidad de este nuevo dispositivo

vamos a explicar como trata el Pyro los dispositivos.

Los dispositivos tienen una informacion fisica asociada, y normalmente se agrupan por
tipo, es decir, si un robot dispone de 8 dispositivos sonar, estos estaran en un solo
dispositivo, ademds Pyro permite interrogar a estos 8 dispositivos segun su localizacion
en el robot, si delante, detras, delante a la izquierda, o todo lo de delante entre muchas
mas opciones. De esta forma permite al programador del comportamiento inteligente, y

al comportamiento mismo, abstraerse de la forma y localizacion exacta de los sensores

54

8 Pirels Mean
[or[o.00 o F
| Themal Image | pan; [U.U
|| foo
Banido: [D |
-BanidoPagos: |0
| | BarnidoRango: |0
- | ‘BanidoVelocidad: |0 |
| 0 - 112 degrees Celsius MD_U |
.17 Update window TiII!JU.D
om0 x S
- (| .BarridDiD
[0]: ED oo
e o ‘ BarridoPasos tEI
3 ‘BaridoRango ID
Earrldn\p’elncldad![l
| ¥ Update window
| ¥ Update window .

[a): jo.an
v Update window

=8

Eile “Windowe Load Hobat i Help
Server.
T
Robot; D:Apyrobathpluginsrobots A, py] Wiew
Devicas: light[] = ‘ g
Brraiti | | !
Pose: ¥ 0.00%:000Th: O

Loading device irf2]...
Loading device sonar[0].
Loading device light[0]
Loading device sonar(1]
Loading device light[1]..
Loading device sonar[2]..
Loading device light[2]..
Loading device tpambient[0]...
Loading device tparray[0]...

Command:

Cada dispositivo dispone de su propia ventana,
en la que podemos observar los datos y configurar detalles.

De los sensores la unica abstraccion disponible es el dato miembro “Range” donde se

espera una coleccion de sensores de distancia, que independientemente de como estén

construidos, o su método de trabajo, su abstraccién devuelve la distancia en metros.

Podemos ver la lista de dispositivos

disponibles haciendo clic en “devices”.

" pyrobot@ IDAVILAE

Cada dispositivo tiene asociada una Fle \indow Load Robot Help
. . Server
Ventana. Dependlendo del mlSl’nO, Su Robot: D:\pyrabotspluginstrobotsAd. py | Wiew
. . Devices: ptz[0] =] | Wig
contenido puede ser, desde un sencillo _ —
Erain: compas[0] | :
. . ptz[0] : ‘ e ‘
campo de texto que indica el valor actual, o] : :
Pose: 000%:000Th: 0

hasta ventanas elaboradas que muestran B L

Loading devic
Loading devic/
Loading devic sonar[1]

sonar[0]

graficamente la informacion o botones Losding devie. sonar[2]

Loading devic light[0
Loading devic ight[0]

14 L atia e light[1]

para la configuracion. Loadnadeg ST
tpambient[0]
Command: tparray[0]

Los Dispositivos disponibles son los que
vimos anteriormente, aunque la

informacion mostrada por estos es la

Lista de dispositivos del robot.

misma que se obtiene de la unidad de control, tenemos que hacer mencion especial al

dispositivo “ptz”, este dispositivo controla la unidad de “pan & tilt” o torreta.

55

Para poder explicar como de importante es la funcionalidad de este nuevo dispositivo

vamos a explicar como trata el Pyro los dispositivos.

Los dispositivos tienen una informacion fisica asociada, y normalmente se agrupan
por tipo, es decir, si un robot dispone de 8 dispositivos sonar, estos estaran en un solo
dispositivo, ademds Pyro permite interrogar a estos 8 dispositivos segin su localizacion
en el robot, si delante, detrés, delante a la izquierda, o todo lo de delante entre muchas
mas opciones. De esta forma permite al programador del comportamiento inteligente, y

al comportamiento mismo, abstraerse de la forma y localizacion exacta de los sensores.

56

Desarrollo

El entorno Pyro como ya se ha comentado funciona sobre Python, que es un lenguaje

orientado a objetos, a continuacion veremos como esta construido el modulo del robot

en el Pyro.
D Clase proporcionada por el Python
Thread Robot |:I Clase proporcionada por el entorno del Pyro
Zﬁ Zﬁ I:I Clase creadas para integrar el Robot
1 *
ArilnputProcessor <@ AriRobot — = Device SensorValue

‘ 1

PTZDevice <—<_OwnDevice @— OwnSensorValue

TPAmbientDevice | | TPArrayDevice | | IrDevice | |LightDevice | | CompasDevice | | SonarDevice

Diagrama de Clases del médulo del robot desarrollado para el Pyro. En el diagrama de
clases la flecha indica relacion de herencia el diamante vacio relacion de uso en la interfaz

y el diamante rellenado relacion de contenido.

La clase principal del moédulo es AriRobot que hereda de la clase Robot del Pyro,

e implementa las funciones minimas requeridas por esta ultima.

La clase principal del médulo es AriRobot que hereda de la clase Robot del Pyro,
e implementa las funciones minimas requeridas por esta tltima. Contiene un objeto de

la clase ArilnputProcessor y usa objetos de la clase Device

La clase ArilnputProcessor hereda de la clase thread y se encarga de procesar
todos los mensajes recibidos del puerto serie, normalmente los datos sensibles son

. .. . 10 , .
dejados en un diccionario *, que sera accedido por los sensores.

' Un Diccionario es un tipo de datos béasico de Python que es como una lista pero esta indexada

por una tabla hash, y permite indexar por cualquier cosa, cadenas, objetos y mas.

57

La clase Device ha sido ampliada en OwnDevice, puede llevar asociado un
dispositivo de pan & tilt o PTZDevice, en este ultimo en cada cambio de configuracion
del barrido se generara una lista con las nuevas posiciones. La lista pasa a la clase

OwnDevice, que se encarga de mantenerla con los valores obtenidos en cada posicion.

La clase SensorValue, es la clase de objetos que se devuelve de una lectura (el
usuario recibe listas de esta clase instanciada con datos), la instancia de SensorValue

contiene el valor de lectura asociado, posicion y orientacion.

Todas las clases: TPAmbientDevice, TPArrayDevice, IrDevice, LightDevice,
CompasDevice y SonarDevice implementan los dispositivos. Los hay sencillos como
CompasDevice, que simplemente sobrecarga el miembro get_val() para transformar
los datos a un formato adecuado, en este caso el angulo que entra respecto del norte
magnético, viene en grados multiplicado por diez, y lo que hace simplemente es dividir

entre diez.

En Cambio TPArrayDevice muestra un grafico con los valores recibidos de la
termopila, o el SonarDevice modifica un par de métodos mas para poder devolver en
lugar de SensorValue, OwnSensorValue. Se ha tomado la decision de ampliar la clase
SensorValue porque los Sonars no devuelven solo un valor sino hasta dieciséis valores

en una lectura.

Para una descripcion mas detallada consulte el apartado correspondiente en el

Apéndice II.

58

Resultados, Conclusiones y Mejoras

En apartados anteriores se pudo ver porque se descartd el OOPic, pero ahora toca
evaluar la alternativa. En un primer paso evaluaremos la capacidad de trabajo de la

unidad de control:

La unidad de control es capaz de leer hasta 25 sensores de forma periddica a una
cadencia de una décima de segundo, ademas de recibir mas de 30 6rdenes por segundo
desde el cliente, se puede extraer que es un sistema considerablemente mas agil, como
minimo comparado con el rendimiento anteriormente obtenido en el OOPic. Con esta

mejora sustancial permite un movimiento relativamente dindmico del automata.

También se han programado y probado con éxito comportamientos inteligentes
basados en logica difusa, otros ejemplos son comportamientos fotofobicos y fotofilicos

aprovechando los sensores de luz incorporados en los dispositivos de ultrasonidos.

En la vida real, el coste tiene una gran importancia en el desarrollo de cualquier
producto, dispositivo o software y minimizar este es como en cualquier negocio,

importante para aumentar las ganancias.

En este proyecto el coste ha ascendido aproximadamente a 1400 euros, que es
poco menos que el coste de un Aibo para un cliente con fines académicos. Pero
comparado, es mucho mas potente en capacidad de computo, mucho mas versatil dado

que se conoce como esta construido, podremos modificarlo para una tarea concreta.

Otra ventaja muy subestimada hoy en dia es la capacidad de mantenimiento
interno, actualmente los mecanismos y sistemas son tan sofisticados, y existe tanto
secreto industrial que practicamente muy pocos productos pueden ser mantenidos
enteramente por el usuario final. Asi que poder disponer de esta caracteristica es un

valor aniadido

59

Mejoras

Desde la premisa que la perfeccion no existe, este tltimo razonamiento permite
inducir que todo es mejorable. Partiendo del anterior razonamiento vamos a ver que

partes del robot son susceptibles de mejora.

Si en la unidad de control disponemos de un microcontrolador mas rapido
podriamos obtener lecturas de los sensores a mas frecuencia o poder leer mas sensores,
si cambiamos la comunicacion serie por USB obtendremos mayor velocidad a la hora
de transferir los datos a la unidad central, la velocidad de la comunicacion aumentaria
de aproximadamente 7kbytes/s a 23kbytes/s, en una primera y sencilla aproximacion al

USB.

Respecto al software de control, se podria crear funcionalidad para cargar desde el
puerto serie nuevos sensores sin tener que volver a compilar y grabar el

microcontrolador otra vez.

Otra funcionalidad seria dotar de algun tipo de reflejos al robot, imitar el hecho
de que el cerebelo animal reacciona automaticamente a ciertos estimulos basicos. En el
robot por ejemplo: Se detendria justo antes de impactar y avisaria a la unidad principal

del problema encontrado.

Adoptar una distribucion Linux en lugar de Windows XP en el ordenador
incorporado nos proporcionaria funcionalidades de Pyro que no estan disponibles en los
sistemas de Microsoft, no habria problema con el software desarrollado dado que esta

escrito en python, que es portable a multitud de sistemas operativos.

60

Bibliografia y Referencias

Libros:

1.

GADRE, Dhananjay V. Programming and customizing the AVR
microcontroller. Nueva York: McGraw-Hill, 2001. 339p. ISBN
007134666X.

CLARK, Dennis. Programming and Customizing the OOPic
Microcontroller: The Official OOPic Handbook. 1° Edicion. McGraw-
Hill/TAB Electronics; 2003. 352p. ISBN 0071420843.

Referencias Electronicas:

. Atmel Corporation. ATMEGA128 (L) Summary. [En linea). 2002. Atmel

Corporation, 2002, Ultima revision: 2006, [2007].

http://www.atmel.com/dyn/resources/prod _documents/2467S.pdf

Atmel Corporation. ATMEGA128 (L) Reference [En linea]. 2002. Atmel
Corporation, 2002, Ultima revision: 2006, [2007].

http://www.atmel.com/dyn/resources/prod _documents/doc2467.pdf

Python Software Foundation. Python Documentation [En linea]. 2007.
Python Software Foundation, 2007, [2007].

http://docs.python.org

Pyro, Python Robotics. Pyro Homepage [En linea]. 2007. Blank, D.S.,
Yanco, H., Kumar, D., and Meeden L, 2007, [2007].

http://pyrorobotics.org

Savage Innovations. OOPic [En linea]. 1999-2007. Savage Innovations,

1999-2007, [2006-2007].

http://www.oopic.com

Microchip Inc. Pic 16F873/874/876/877 Datasheet [En linea]. 1998-2005.
Microchip Inc, 1998-2005, [2006-2007].

http://wwl.microchip.com/downloads/en/DeviceDoc/30292c.pdf

61

10.

11.

12.

. NXP Semiconductors. I2C Documentation [En linea]. 2000-2007. NXP

Semiconductors (fundada por Philips), 2000-2007, [2006-2007].

http://www.nxp.com/products/interface control/i2c/

Via Technologies Inc. Via Epia MII-10000 [En linea]. 2000-2007. Via
Technologies Inc., 2000-2007, [2006-2007].

http://www.via.com.tw/en/products/mainboards/motherboards.jsp ?motherboard id=202

Richard Barry. FreeRTOS [En linea]. 2000-2007. Richard Barry., 2003-
2007, [2006-2007].

http:/www.freertos.org

Peter Fleury. AVR-GCC Sofiware [En linea]. 2006. Peter Fleury., 2006-
2007, [2006-2007].

http://homepage.hispeed.ch/peterfleury/avr-software. html

62

Apéndice |

Especificaciones Hardware

Detalles de la placa de soporte

Prototipo:

Listado de Componentes

Cant. Id. Descripcion.

1 Ul Regulador de Voltaje LM338T

1 - Radiador para LM338T

2 R1,R3 Resistencias 360 Ohms.

1 R2 Resistencia 120 Ohms.

2 R4,R5 Resistencias 4,7 Ohms.

1 LED1 Diodo led.

1 Cl Condensador electrolitico de 100uF

1 C2 Condensador electrolitico de 10uF

2 D1,D2 Diodo 1N4002.

1 Serial Conector Sub D 9 Pins Hembra

1 RS232-0 3 Pin .100” Polarized Header Connector
1 JTAG IDC 10 Pin Shrouded Polarized Male Headers
2 Vin, EttBaseln | Clemas
23 Conectores Tiras de 3 pins.

1 Conectores Tira de 2 pins.

6 Conectores Tira de 4 pins.

63

1N4D@2 c1
K
_/6@%
T oyout |2 : >
@ R2 +5v
[+ 120 ohms
R1 = 1N4002
360 ohms
L
+5v 10uF
< L2 =y D Tept

PORTDS PORTD6 PORTD? PORTD8

DIBP DIB! m_u/ DIB2 | _DIB3
Ho 1| 45,010 1|45, t|estto 1

ro2| <«—o2| <ozl w02
0 3| <o 3| <—To3|<peto3

T o
—O

PORTF1 PORTF2 PORTF3 PORTF4

ADCO mml ADC1 AWI ADC2 ADC3
o 1 o 1 o1 O 1
<o

o2 o2 o2 o2

<— <+
o3| <G—fo3|<t—fo3|<ketos

CI_O

3
u

il

PORTB1 PORTB2 PORTB3 PORTB4 PORTBS

PORTB6 PORTB? PORTB8 PORTE4 PORTES PORTE6

Q PORTF6 -
PORTF9 los o6

PORTDS

Serial

12C
PORTD1 ﬁl

—

O/lo

PORTD10 = = = © =
O 3 3 3 03
PORTD2 4 4 4 4 4

Bt

%N DIC
+50 0!
<+
<4

e o

PORTC3 PORTC4 PORTCS

DID

PORTFS

mﬁu;m
PORTF?

o1 pe
L s e

I gl
A.V‘A||Om 10

PORTF8

T o

PORTA3 PORTA4 PORTAS PORTA6 PORTA? PORTA8

C,_O
CI_O

DICS w DICe mm DIC?
o 1[50 1|45,F0 1

DIC2 DIC3 DIC4

Ioa+w o 1]+ IO~+M +5 +5

Fo 2| <t—1o02| *o02| <—Fo02| t+to02| <+—Fo02
o0 3| <—-o 3| pe0 3| 10 3| Jeto0 3| <F—0 3

PORTC? PORTC8

DIDS M DID6 Am DID?
o1 o 1 o1

o
o
b
=
o
o

CI_O
C'_O

DID2 DID3 DID

© 1+50 7O L+s6T© L+s +5U +5v
o 2| <—fo2| weto2| <—t0 2| <02 <—fo02
0 3| <0 3| <pe0 3| F—0 3| <o 3| <0 3

UAB

ET-BASE SUPPORT BOARD

A.Davila 25/01/2007

Rev 1.0

Page # or name

Esquema de conexionado

64

Revision 1

Listado de Componentes:

Cant. Id. Descripcion.
2 Ul Regulador de Voltaje LM338T
2 - Radiador para LM338T
4 R1,R3 Resistencias 360 Ohms.
2 R2 Resistencia 120 Ohms.
2 R4,R5 Resistencias 4,7 Ohms.
2 LED1 Diodo led.
2 Cl Condensador electrolitico de 100uF
2 C2 Condensador electrolitico de 10uF
4 D1,D2 Diodo 1N4002.
1 Serial Conector Sub-D 9 Pins Hembra
1 RS232-0 3 Pin .100” Polarized Header Connector
1 JTAG IDC 10 Pin Shrouded Polarized Male Headers
2 Vin, EttBaseln | Clemas
29 Conectores Tiras de 4 pins.

Esquema de conexionado

connd, A coninid, A contid, A connd, A contd, B connd, A AN..s s
+54 el o2 o3 (=21 =t [=1] PR -
i | F
1 1 1 1 1 L[5 =Ly
2 e o = V=2 I VoA | - o
w o 1= w o .||" L w r .“. = m %
B AR I S 0 A N 3 4 =
conind, A conind, A confd, A connd, B connd, A conind, A conind, A connd, A
cy cd o9 cla@ cll cleg cl3 cld
3y Ly L Ll Ll L L Ll L
4 |2 4 |z 4 |7 4 = 4 |2 4 |2 4 |7 4 m
] =] =] h h] it
conRd, A conRd, A conRd, A conRd, A confd, A cohRdG A confE, A conRd, A
cls zl¥ clg z19 c28 o2l c2g
+51 1

.LLLTE I.-n
oo

A Rl
-th.T'—uli-‘
0o w
J‘ITFIH
Lo ow

placa, A

ul
3 1 4 2
e S - S

listjoanS,d COnnSHE A
cde cd2

o

[~Tw

1 g i) 0
cnffeofro)—
fofrofie
el T e

radiador2Sx33pedi ador25x33, A

conng, A Conitg, A Cond, A Cofnd, A COFFE, COFIFS, COFFS, CORFS, = =
c23 c24 c2s c26 o287 c2g c2g Pcls] c H
1 2
+51) Sl I el 2 1 +5y L [0 S S .|AH g 1
1 = e HE b 1 5 b SHE 1
0 ¢ [< 5 T S 1 < W
ek) it o ek = =] d
connd, A CORng, A CORRg, A CORRE, A CORRE, A confd, A confd, A confd, A confd, A connd, A connd, A
=ik [=icis) [=icic) cEd [=cis) fuic] [=ici [=icis) [=ici) =2 15| cdl
i i | qY BATT,
45y BATT L[L[L T 12 ol Lo o LI 1 Ll L1
pOER ek |eR e | |4 e | |e | | |
i it E i i s i I e s -
I (11
+5H

T

+54 BATT U4y i nmmﬂL
— P — -
Yin Yout = Yin Yout l w.mwmmwup =
AR & & (i) LTE N] | T
= wr [oy o
- wE e g=d - oz =0 2=d
S e 1= 0=t =
= o = = o o
a1 o - @ I = =]
FURCOME, 2 B =i i o w i &
vl Ny 3 1
F — A i 3
5 i

66

Especificaciones Técnicas:

Motor 7.2v DC con reductora 50:1: HN-GH7.2-2414T

Data sheet for:
GHM-04

7.2vdc 50:1 175rpm
6mm shaft

|. OUTER DIMENSIONS

4-M3
o 42 22.6
.
18
/AR
5| 8 &

55

3, A8, e

A A

Il. DRAWING OF CURVES

Pout Amp Eff kRPM
50 40 10 o020 | |

45 36 09 0.18

[kRPM |

40 32 08 016 .

ol [Amp]
35 28 07 014
30 24 08 012 :
25 20 05 0.10 : @@—
20 16 04 008 =

/ <
15 12 03 0086 /
10 08 02 004 // - | Eff N
05 04 01 002
00 00 00 000
0 1.8 3.6 5.4 7.2 9.0
Kgem

lIl. SPECIFICATIONS

Type: HN-GH35GMB
Model: HN-GH7.2-2414T - 50:1
6. Speed at Rated Load (1.0Kg-cm): 146 RPM +/- 10%

1. Testing Conditions: 7. No Load Current at 7.2vdc: < 221mA
Temp: 25° Celsius 8. Current at Rated Load (1.0Kg-cm): < 556mA
Humidity: 60% 9. Shaft End-Play: Maximum 0.8m/m
Motor Orientation: Horizontal 10. Insulation Resistance: 10M ohm at 300vdc
2. Rated Voltage: 7.2vdc 11. Withstand Voltage: 300vdc for 1 Second
3. Voltage Operating Range: 6-7.2vdc 12. The gear motor is not intended for instant reverse.
4. Rated Load at 7.2vdc: 1.0Kg-cm The gear motor must be stopped before reversing.
Do not exceed rated load. Damage may occur! 13. The gear motor does not include protection from
5. No Load Speed at 7.2vdc: 175 RPM +/- 10% water or dust etc.

67

i

|

s

LEEERREE

42

HEEE 8

HEHE

PORTA

68

71
ganas

Il

il

—s—— B . C — | 3
e Pu Ml —q 3 4
g 2 PCE —— 3 g
= I PO —t g
== Pid Wo—d? w
e—— B
o PAb PORTE
T PAT

FB) ——] 1 v
5 ~ B PBI — 3 4
Bl o — £
= FE! PR —q 7 £
B3 wWo—Cd u
5 PB4
j 3] PORTC
— B
| L j:hl By —q 1 2
P —— 3 4
—s—— P BCA ——q 3 §
I — W —di u
x ' —C
) %]
A= .WM PORTD
A w1 2
== pCT P —d 3 4
I = i
o oI Wo—g
7 (= POz
1 o PORTE
P4
b PRl ——q L 3
- P06 R —3 4
i = P07 FEf —— 5 §
P — 7 £
PG W o—ds W
Kl Lo
= 7 B PORTF
T o] 5y
/i 2] ¥ o — B
1 1Y m—3 4
PR — 3]
PRf —— 7 E
wWo—-ds w

ET-BASE AVE ATMEGASY128

T

b
ETT C0.LTD. (WWW ETT.CO.TH)

A s | Shoet of

i

CHET-BASE ATmemi 128 Ddb | v By, Adiak Choockan

Placa ETT-BASE AVR MEGA128

Esquema:

Estructura:

o 0 NN kWD =

L e N Y
AN »n A W N = O

014)

@

!

T @ | @ O
RS232—1 RS232-0 I I
E PFO-PF7 PAO-PEII
A | R HEE:
TOuF T =z i @
e | > .
L (T)83
c Tl D | : B
o)r 3 B o2
E%% i ® 2 m m@g : ®)
)] b 5 6
S TTT IOk EE sk :
T il @ | 28]
m T-T2vc POO-TD7 ToMHZ = ET-CLCD
Q |
(@9 @ @ |[]

Microcontrolador Atmel AVR ATMEGA 128.

Boton de reset

Cristal oscilador de 16Mhz.

Resistencia para el control del contraste del LCD

Puerto C del microcontrolador

Puerto ISP (In circuit Serial Programming).

Puerto pantalla LCD HD44780 compatible en modo 4 bits.

Puerto D
Puerto B

. Puerto E
. Puerto F
. Puerto A

. Led testigo de alimentacion.

. Conector de alimentacion.

. Puerto serie con sefiales adaptadas

. Puerto serie con sefales adaptadas.

69

Controlador de motores MD22

Fuente: www.superrobotica.com

El1 MD22 es un controlador para dos motores de corriente continua de mediana
potencia, disefiado para proporcionar mas potencia que los controladores basados en un
unico circuito integrado. Las principales caracteristicas son la facilidad de uso y la

flexibilidad.

Los 15V de la tension de control del MOSFET se genera en el mismo circuito
mediante una bomba de carga, por lo que solo se requieren 5V a 50 mA para la
alimentacion del circuito, ademas de la alimentacién del motor que esta comprendida

entre los 5 y los 50V dependiendo de los requerimientos del motor.

Conexiones del Motor

Recuerde utilizar siempre cables con una seccion adecuada a la potencia del motor
para hacer las conexiones del motor y de la bateria. Igualmente es imprescindible

intercalar entre la entrada de la bateria y la MD22 un fusible de de 10 amperios.

e Masa Bateria

70

Conexiones del Control

Las conexiones indicadas en el circuito impreso son las correspondientes al modo
12C del controlador MD22. Para las conexiones de los otros modos de funcionamiento,

lea el texto mas adelante.

Modos de Funcionamiento

El circuito controlador de motores MD22 tiene 5 modos diferentes de

funcionamiento que son:

Modo Diferencial

Ademas de controlar dos motores de manera independiente, el controlador MD22
es capaz de controlar dos motores que estan colocados de forma opuesta uno respecto al
otro y que por lo tanto controlan el movimiento hacia la izquierda o la derecha
dependiendo del motor que este girando. En este modo, el MD22 puede utilizar un canal

para controlar la velocidad y el otro para controlar la direccion.

Modo Analdgico 0V - 2,5V -5V

En este modo, los motores son controlados independientemente por dos sefiales
analogica de 0 a 5 voltios en la entrada SCL para el motor 1 y la entrada SDA para el
motor 2. En este modo 0V es el maximo en un sentido, 2,5V es la posicion central de

reposo o posicion de parada y 5V corresponde al méximo en el otro sentido.

Hay una pequefia zona muerta de un 2,7% de ancho en la zona central, para

proporcionar una zona de apagado estable. La impedancia de entrada es de 47K.

71

Modo Analdgico 0V - 2,5V - 5V con control de Direccion.

En este modo el motor la velocidad de ambos motores es controlada por una sefial
analogica de entre 0V y 5V conectada a la entrada SCL y la direccion se controla
mediante una entrada de =V y 5V en la entrada SDA. El control de la velocidad es igual
que en el modo anterior, mientras que el control de giro corresponde a 2,5V para ir recto
y Ov y 5v para girar a izquierda y derecha respectivamente. También una zona muerta
de un 2,7% de ancho en la zona central, para proporcionar una zona neutral estable en

ambos canales.

Modo RC (radio control)

Este modo permite la conexion directa a un receptor de radio control estdndar, es
decir que se controla como si fuera un servo. La mayoria de los receptores comerciales
trabajan con un paquete de baterias de 4,8 a 6V y pueden ser alimentados por los
mismos 5V empleados para alimentar el circuito controlador de motores MD22. El
pulso de control (amarillo en muchos servos) del receptor debe conectarse al terminal
SCL para el motor 1 y al terminal SDA para el motor 2. Conecte el cable de
alimentacion (rojo) del receptor al terminal de +5V y el cable de tierra (negro) al

terminal de tierra del modulo controlador.

La salida del receptor es un pulso alto de 1,5 ms de ancho cuando el joystick esta
en el centro. El rango de trabajo del MD22 proporciona un control total en el rango
desde 1mS hasta los 2mS siendo 1,5mS la zona central correspondiente a la parada. Hay
una zona muerta de 7uS entorno a la zona central para facilitar la posicion de parada. El
control de centrado del radio transmisor debera ajustarse de forma que el motor este

parado cuando la palanca de control este en su posicion de reposo.

Modo RC con Control de Direccion

Este modo es similar al Modo RC, pero en esta ocasion se utiliza un canal
conectado a la entrada SCL para controlar la velocidad y el sentido de giro de ambos
motores simultdneamente, mientras que el otro canal se conecta a la entrada SDA para

controlar la direccién mediante el control diferencial de ambos motores.

72

Modo I12C

El modo 12C permite conectar el circuito controlador MD22 a controladores como
el Basicx24, el OOPic y el Basic Stamp por citar solo unos cuantos o bien a

microcontroladores como PIC, 8051, HS, etc.

El protocolo de comunicacion 12C del circuito controlador MD22 es el mismo que
el empleado en las conocidas eeprom como la 24C04. Para leer uno o mas registros del
MD22, primero se envia un bit de comienzo seguido de la direccion del médulo (0XBO
es la direccion base del mddulo) con el bit de lectura/escritura puesto a cero. Después se
manda el numero del registro que desea leer seguido de nuevo de un bit de comienzo y
otra vez la direccion del modulo con el bit lectura/escritura puesto a 1(0Xb1). Ahora

puede leer uno o mas registros.

Registros del Modo 12C

El MD22 tiene 8 registros numerados del 0 al 7 tal y como se muestran en la

siguiente tabla.

Direccion LecturaR /

Registio Nombre EscrituraW Descripcion
0 Modo R/W Modo de funcionamiento (ver mas adelante)
. Velocidad Motor Izquierdo (modo 0,1) o
! Velocidadl R/W Velocidad (modo 2,3)
) Velocidad?/Giro R/W Velocidad Motor Derecho(modo 0,1) o Giro
(Modo 2,3)
3 Aceleracion R/W Aceleracion para 12C
4 Sin Usar Lectura Devuelve 0
5 Sin Usar Lectura Devuelve 0
6 Sin Usar Lectura Devuelve 0
7 Version Lectura Numero de Revision del Software
Registro de Modo

El registro de modo tiene por defecto un valor 0 y selecciona el modo de

funcionamiento de acuerdo a los siguientes valores:

0 Cuando el registro tiene un valor 0 el significado de los registros de velocidad 1
y 2 tienen un significado literal de 0 para atras todo, 128 para parada y 255 para

adelante todo.

73

1 Este modo es similar al modo 0 pero en este caso el valor de los registros de
velocidad se tratan como valores con signo, es decir que -128 corresponde a atras todo,

0 es parado y 128 es todo adelante.

2 Escribiendo un 2 en el registro de modo se consigue que el registro velocidad 1
controle la velocidad de ambos motores y el registro velocidad 2 controle el giro. El
rango se encuentra entre 0 en un extremo, 128 que es el valor central y 255 que es el

otro extremo.

3 El modo 3 es similar al modo 2, pero los valores son considerados como valores
con signo, por lo que el rango va desde -128 para un extremo, 0 para el centro y 128

para el otro extremo.

Registro de Velocidad 1

Dependiendo del modo de funcionamiento, este registro afecta a la velocidad de
uno o ambos motores. Cuanto mayor sea el valor escrito, mas potencia se aplica al

motor.

Registro de Velocidad 2 / Giro

En los modos 0 y 1 este registro funciona de forma similar al Registro de
Velocidad 1, mientras que en los modos 2 y 3 se convierte en el registro de control del
giro y entonces el valor del registro de velocidad 1 es combinado con el contenido de

este registro para realizar el giro.

Registro de Aceleracion

Este registro establece el ratio a la que el motor acelera o desacelera desde su
velocidad actual hasta la velocidad indicada en el Registro de Velocidad. Los valores
admitidos son de 0 a 255 y cuanto mayor sea este valor menos tiempo tardara el motor
en alcanzar la velocidad indicada. Escribiendo un 255 en este registro, se consigue la
maxima aceleracion. El valor introducido controla la velocidad a la que el controlador
varia la velocidad entre la velocidad actual y la introducida en el registro de velocidad.
Con el valor de 0 se cambia la velocidad (acelera) a su minima velocidad tomando cada
paso 16,4 ms. Cuando el registro de aceleracion esta en su maximo valor de 255 (valor

por defecto) el controlador cambia la velocidad cada 64 uS. El calculo del tiempo en

74

segundos se hace mediante la siguiente formula:

Tiempo = (256-Registro de aceleracion) * 256

Por ejemplo:

Reg Vs Velocidad Nueya 508 Tiempo fie
Acel Actual Velocidad Aceleracion

0 16.4ms 0 255 255 4.18s

20 15.1ms 127 255 128 1.93s

50 13.2ms 80 0 80 1.06s
100 10ms 45 7 38 0.38s
150 6.8ms 255 5 250 1.7s
200 3.6ms 127 0 127 0.46s
255 64us 65 150 85 5.4ms

Registro de Versio

La lectura de este registro devuelve el valor del software del microcontrolador

n del Software

PIC16F873 que lleva el MD22. La version actual a la fecha del 22 de Abril del 2004 es

la 1.

Modos de Funcionamiento

Hay cuatro micro interruptores numerados del 1 al 4 que se utilizan para

establecer el modo de funcionamiento y en su caso la direccion del modulo dentro del

bus [2C segtn se muestra en la siguiente tabla.

Ov - 2.5v - 5v Analégico + Direccion

Modo
Direccién. Bus 12C 0xB0
Direccién. Bus 12C 0xB2
Direccion. Bus 12C 0xB4
Direccién. Bus 12C 0xB6
Direccién. Bus 12C 0xB8
Direccion. Bus I2C 0xBA
Direccion. Bus 12C 0xBC
Direccién. Bus 12C 0xBE
Ov - 2.5v - 5v Analégico

Radio Control
Radio Control + Direccion

On
Off

Off
On
Off

Off
On
Off

Off

On
On
Off
Off
On
On
Off
Off
On
On
Off
Off

On
On
On
On
Off
Off
Off
Off
On
On
On
On

On
On
On
On
On
On
On
On
Off
Off
Off
Off

75

Las demas combinaciones no son validas y si se establecieran el led parpadeara y
no ocurrird nada mas. Fijese que las direcciones I12C corresponden a los 7 bits
superiores. El bit 0 se emplea como bit de lectura / Escritura (R/W). De esta forma las
direcciones 0XB0/0XBI1 corresponden a la misma direccion. Pero de escritura y lectura

respectivamente. El rango de direcciones es el mismo utilizado en el controlador MD22.

Los interruptores solo se leen durante la puesta en marcha, por lo que no deben
realizarse cambios en los mismos mientras este conectado, ya que tampoco tendria

ningun efecto.

Utilizacion del circuito controlador de motores MD22

El1 MD22 puede manejar grandes corrientes, por lo que es necesario tomar algunas
precauciones al hacer el cableado. Es muy importante evitar que la corriente del motor
retorne al circuito l6gico a través de la masa. Esto quiere decir que no asuma que por el
hecho de que se alimenta con una bateria, las masas del circuito y del motor van juntas.
Siempre que sea posible utilice dos baterias distintas para alimentar el motor y la
electronica. Tampoco conecte la masa de las baterias juntas, ya que esto se hace en el
propio circuito impreso del controlador MD22, y si lo hiciera crearia un bucle de

retorno de tierra con los consiguientes problemas.

Una de las formas mas sencillas de conectar el circuito MD22 con un controlador
programable en Basic como el Basicx24, es utilizar el Modo RC, para controlarlo como
si fuera un servo. Para ello lo primero que tiene que hacer es seleccionar este modo de
funcionamiento antes de conectar la alimentacion, con la ayuda de los micro

interruptores que se encuentran en el lateral del circuito. Ahora todo lo que queda por

76

hacer es mandar la orden pulse out para simular los pulsos de control de los servos y
controlar los motores. El pulso tiene que variar entre Ims y 2mS, siendo 1,5 ms la
posicion central. A diferencia de los servos que necesitan que los pulsos sean repetidos
cada 20 ms, el circuito MD22 solo necesita un nuevo pulso cuando se quiere cambiar la
velocidad, por lo que si no se envian mas pulsos, simplemente se continua con la misma
velocidad. Los valores de los tiempos varian en funcion de los microcontroladores por
lo que se muestra en la siguiente tabla algunos de los valores correspondientes a los

microcontroladores mas conocidos.

Resolucion , .
Conirolador de Pulse Atras Parado Adelante Orden de ejemplo para
out Todo Todo Parado

BS2 2uS 500 | 750 1000 pulsout motl, 750
BS2e 2uS 500 | 750 1000 pulsout motl, 750
BS2sx 0.8uS 1250 | 1875 | 2500 pulsout motl, 1875
BS2p 0.8uS * | 1250 | 1875 @ 2500 pulsout motl, 1875
Atom 1uS 1000 | 1500 | 2000 pulsout motl, 1500
BX-24 | 1.085S 922 1382 1843 Al pulse"“{()mo“’ 1382,

77

Sonar SRF(08

Fuente: www.superrobotica.com

SRFO08 es un medidor ultrasonico de distancias para robots que representa la
ultima generacion en sistemas de medidas de distancias por sonar, consiguiendo niveles
de precision y alcance unicos e impensables hasta ahora con esta tecnologia. El sensor
es capaz de detectar objetos a una distancia de 6 m con facilidad ademés de conectarse
al microcontrolador mediante un bus 12C, por lo que se pueden conectar cuantos
sensores sean necesarios en el mismo bus. Con una alimentacion unica de 5V, solo
requiere 15 mA, para funcionar y 3mA mientras esta en reposo, lo que representa una
gran ventaja para robots alimentados por pilas. El sensor SRF08 Incluye ademas un
sensor de luz que permite conocer el nivel de luminosidad usando igualmente el bus 12C

y sin necesidad de recursos adicionales.

Controlando el sensor de distancias ultrasonico SRF08

La comunicacion con el sensor ultrasonico SRFO08 se realiza a través del bus 12C.
Este esta disponible en la mayoria de los controladores del mercado como BasicX-24,
OOPic y Basic Stamp 2P, asi como en una amplia gama de microcontroladores. Para el
programador, el sensor SRF0O8 se comporta de la misma manera que las EEPROM de
las series 24xx, con la excepcion de que la direccion 12C es diferente. La direccion por
defecto de fabrica del SRFO8 es 0xEQ. El usuario puede cambiar esta direccion con 16
direcciones diferentes: EO, E2, E4, E6, E8, EA, EC, EE, F0, F2, F4, F6, F8, FA, FC o
FE, por lo que es posible utilizar hasta 16 sensores sobre un mismo bus [2C. Ademas de

las direcciones anteriores, todos los sonares conectados al bus I2C responderan a la

78

direccion 0 -al ser la direccion de atencion general. Esto significa que escribir un
comando de medicion de la distancia para la direccion 0 de [2C (0x00) iniciara las
mediciones en todos los sensores al mismo tiempo. Esto deberia ser 1til en el modo
ANN (Véase a continuacion). Los resultados deben leerse de manera individual de cada
uno de las direcciones reales de los sensores. Disponemos de ejemplos del uso de un

moddulo SRFO8 con una amplia gama de controladores del mercado.
Conexiones

El pin sefialado como “Do Not Connect” (No conectar) deberia permanecer sin
conexion. En realidad, se trata de la linea MCLR de la CPU y se utiliza solamente en la
fabrica para programar el PIC16F872 después del montaje, dispone de una resistencia
interna de tipo pull-up. Las lineas SCL y SDA deberian tener cada una de ellas una
resistencia pull-up de +5v en el bus 12C. So6lo necesita un par de resistencias en todo el
bus, no un par por cada mddulo o circuito conectado al bus 12C. Normalmente se ubican
en el bus maestro en vez de en los buses esclavos. El sensor SRF08 es siempre un bus
esclavo - y nunca un bus maestro. Un valor apropiado seria el de 1,8 K en caso de que
las necesitase. Algunos médulos como el OOPic ya disponen de resistencias pull-up por

lo que no es necesario afiadir ninguna mas.

T TELLLL]

i — i} ki
= I}
- ('

79

Registros

El sensor SRFOS tiene un conjunto de 36 registros.

Ubicacion Lectura Escritura
Revision de .
0 Software Registro de comando
1 Sensor de luz Registro de ganancia max. (por defecto 31)
2 Byte alto de 1° eco |Registro de alcance de distancia (por defecto 255)
3 Byte alto de 2° eco [No disponible
34 Byte alto de 17° eco [No disponible
35 Byte bajo de 17° eco [No disponible

Solamente se puede escribir en las ubicaciones 0, 1 y 2. La ubicacién 0 es el
registro de comandos y se utiliza para iniciar la sesion de célculo de la distancia. No
puede leerse. La lectura de la ubicacion da como resultado la revision del software de
SRFO08. Por defecto, la medicion dura 65mS, aunque puede cambiarse modificando el
registro de alcance de la ubicacion 2. Si lo hace, tendrd que cambiar la ganancia
analogica en la ubicacion 1. Consulte las secciones siguientes relacionadas con el

cambio de medicidn y ganancia analogica.

La ubicacion 1 es el sensor de luz en placa. Este dato se actualiza cada vez que se
ejecuta un comando de medicion de distancia y se puede leer cuando se leen los datos
de la medicion. Las dos ubicaciones siguientes, 2 y 3, son resultados sin signo de 16 bits
de la ultima medicion - el nivel 16gico alto en primer lugar. El significado de este valor
depende del comando utilizado, y puede estar expresado en pulgadas, o en centimetros,
o bien el tiempo de vuelo del ping expresado en uS. Un valor cero indica que no se ha
detectado objeto alguno. Hay hasta 16 resultados adicionales que indican los ecos de

objetos mas lejanos.

80

Comandos

Existen tres comandos para iniciar una medicioén de distancia (desde 80 hasta 82),
que devuelve el resultado en pulgadas, centimetros o microsegundos. Asimismo,
también existe un modo ANN (Artificial Neural Network) que se describe a

continuacion y un grupo de comandos para modificar la direccion de 12C del srf08.

COMANDOS

ACCION
Decimal Hexadecimal
80 0X50 Modo calculo distancia - Resultado en pulgadas
81 0X51 Modo calculo distancia - Resultado en centimetros
82 0X52 Modo calculo distancia - Resultado en microsegundos
83 0X53 Modo ANN - Resultado en pulgadas
84 0X54 Modo ANN - Resultado en centimetros
85 0X55 Modo ANN - Resultado en micro-segundos
160 0XAO0 1° en la secuencia para cambiar la direccion 12C
165 0XAS 3° en la secuencia para cambiar la direccion 12C
170 0XAA 2° en la secuencia para cambiar la direccion 12C

Modo de calculo de distancia con el SRF08

Para iniciar la medicién de la distancia, debera escribir uno de los comandos
anteriores en el registro de comando (registro 0) y esperar el tiempo necesario para la
ejecucion de la operacion. A continuacion, deberd leer el resultado en el formato que
desee (pulgadas, centimetros, etc.). El bufer de eco se pone a cero al comienzo de cada
medicion. La primera medicidn del eco se coloca en las ubicaciones 2 y 3, la segunda en
4y 5, etc. Siuna ubicacidn (niveles altos o bajos de bytes) es 0, entonces no se
encontrard ningun otro valor en el resto de los registros. El tiempo recomendado y
establecido por defecto para realizar la operacion es de 65mS, sin embargo es posible
acortar este periodo escribiendo en el registro de alcance antes de lanzar el comando de
medicion. Los datos del sensor de luz de la ubicacion 1 se actualizaran también después

del comando de medicion.

Modo ANN

El modo ANN (Artificial Neural Network) ha sido disefiado para proporcionar
datos multiples de un modo en el que es més facil entrar en una red neural, o al menos
eso es lo que se pretende - aunque aun no se ha hecho. El modo ANN ofrece un bufer de

32 bytes (ubicaciones de 4 a 35 inclusive) en el que cada byte representa el tiempo

81

maximo de vuelo 65536uS dividido por 32 tramos de 2048uS cada uno - equivalente a
aproximadamente 352mm de alcance. Si se recibe un eco en uno de los espacios de
tiempo de bytes, a continuacion se fijara en un valor diferente a cero, para que no sea
cero. Por lo tanto si se recibe un eco desde los primeros 352mm, la ubicacion 4 serd
diferente a cero. Si se detecta un objeto a 3 metros de distancia, la ubicacion 12 sera
diferentes de cero (3000/352 = 8) (8+4=12). Organizar los datos de esta manera seria
mejor para una red neural que para otros formatos. La entrada a su red deberia ser 0 si el
byte es cero y 1 si es diferente de cero. En el futuro, se pretende organizar un mapa
SOFM (Self Organizing Feature Map) para la red neural, aunque se espera que sea
aplicable para cualquier tipo de red.

Ubicacion 4 Ubicacion 5 Ubicacion 6 Ubicacion7 Ubicacion 8
0-352mm 353-705mm 706-1057mm (1058-1410mm |En adelante

Como comprobar que una medicion ha finalizado

No es necesario utilizar un temporizador en su propio controlador para saber que
la medicién ha terminado. Puede aprovechar la ventaja que le ofrece el hecho de que el
sensor SRFO8 no responde a ninguna otra actividad 12C mientras esta realizando la
medicion. Por lo tanto, si intenta leer el valor en el sensor SRFO08 (utilizamos el nimero
de revision de software en la ubicacion 0) por lo que recibird 255 (OxFF) durante la
medicion. Esto se debe a que la linea de datos I2C (SDA) se eleva si nada lo esté
controlando. Tan pronto como finaliza la medicion el sensor SRF0O8 respondera de
nuevo al bus 12C, por lo que debera esperar a que desaparezca el valor 255 (0xFF) en el
registro. A continuacion, podra leer los datos del sensor. El controlador puede
aprovechar esta ventaja para realizar otras tareas mientras el SRFO08 esta realizando la

medicion.

Como cambiar el rango de alcance

El alcance méaximo del sensor SRFO08 esta controlado por el temporizador interno.
Por defecto, este es 65mS o el equivalente a 11 metros de alcance. Esto supera los 6
metros de los que el SRFO8 es realmente capaz de ofrecer. Es posible reducir el tiempo
que espera el sensor SRF08 a escuchar un eco, y por lo tanto el alcance, modificando el
registro range en la ubicacion 2. El alcance puede regularse en pasos de

aproximadamente 43mm (0,043 metros o 1,68 pulgadas) hasta llegar a los 11 metros. El

82

alcance es ((Range Register x 43mm) + 43mm) por lo que fijar este registro (Range
Register) en el valor 0 (0x00) ofrece un alcance maximo de 43mm. Fijar el registro
Range Register en el valor 1 (0x01) ofrece un alcance maximo de 86mm. En un ejemplo
mas util, el valor 24 (0x18) ofrece un alcance de 1 metro mientras que el valor 140
(0x8C) da 6 metros. El valor 255 (OxFF) ofrece los 11 metros originales (255 x 43 + 43
es 11008mm).

Existen dos razones por las que es positivo reducir el tiempo de medicion.

1. Para obtener la informacion sobre el alcance en menos tiempo

2. Para poder realizar mediciones con el sensor SRF0O8 a una tasa mas rapida.

Si lo tnico que desee en recibir en menos tiempo, la informacion sobre el alcance
y pretende realizar las mediciones a una tasa de 65ms o mas lento, todo funcionara de
manera correcta. Sin embargo, si desea lanzar el sensor SRF08 a una tasa ligeramente

mas alta de 65mS, debera reducir la ganancia - consulte la siguiente seccion.

El alcance esta fijado en el valor maximo cada vez que se pone en marcha el
sensor SRFO08. Si necesita un alcance diferente, caAmbielo al principio como parte del

codigo de iniciacion del sistema.

Ganancia analégica

En el registro de la ganancia analdgica, se configura la ganancia maxima de las
etapas analogicas. Para configurar la ganancia méaxima del srf08, simplemente debera
escribir uno de estos valores en el registro de ganancia de la ubicacion 1. Durante la
medicidn, la ganancia analdgica empieza con su valor minimo de 94. Este valor se
incrementa en intervalos de aproximadamente 70uS hasta llegar al valor de ganancia
maxima, configurada en el registro 1. La ganancia maxima posible se alcanza después
de aproximadamente 390mm de alcance. La finalidad de poder limitar la ganancia
maxima es permitirle iniciar mediciones a una frecuencia mayor de 65mS. Dado que la
medicidon puede ser muy corta, es posible iniciar una nueva medicion tan pronto como
se hayan leido los datos de la medicion previa. Un riesgo potencial de esto es que la
segunda medicion podria captar un retorno de un eco distante del “ping” anterior, dando
un resultado falso referente a un objeto cercano cuando en realidad no hay ninguno.

Para reducir esta posibilidad, la ganancia maxima puede reducirse para limitar la

83

sensibilidad de los modulos al eco distante mas débil, mientras que al mismo tiempo
sigue siendo capaz de detectar la proximidad de objetos. La configuracion de la
ganancia maxima se almacena solo en la memoria RAM del CPU y se inicia con el
encendido del equipo, por lo que si solo desea realizar las mediciones cada 65mS, o

mas, puede ignorar los registros Range y Gain.

Nota - Es efectivo s6lo en Modo de céalculo de distancia, en el Modo ANN, la ganancia
se controla automaticamente.

Registro de ganancia . . L.
Ganancia analogica maxima

Decimal Hexadecimal

0 0X00 Fija la ganancia analogica maxima en 94
1 0X01 Fija la ganancia analogica méaxima en 97
2 0X02 Fija la ganancia analogica méxima en 100
3 0X03 Fija la ganancia analogica maxima en 103
4 0X04 Fija la ganancia analogica méaxima en 107
5 0X05 Fija la ganancia anal6gica maxima en 110
6 0X06 Fija la ganancia analogica méxima en 114
7 0X07 Fija la ganancia analdgica maxima en 118
8 0X08 Fija la ganancia analogica méaxima en 123
9 0X09 Fija la ganancia analogica maxima en 128
10 0X10 Fija la ganancia analdgica maxima en 133
11 0X11 Fija la ganancia analogica méxima en 139
12 0X12 Fija la ganancia analogica maxima en 145
13 0X13 Fija la ganancia analogica maxima en 152
14 0X14 Fija la ganancia analogica méaxima en 159
15 0X15 Fija la ganancia anal6gica maxima en 168
16 0X16 Fija la ganancia analogica méxima en 177
17 0X17 Fija la ganancia analogica méxima en 187
18 0X18 Fija la ganancia analogica méaxima en 199
19 0X19 Fija la ganancia analogica maxima en 212
20 0X20 Fija la ganancia anal6gica maxima en 227
21 0X21 Fija la ganancia anal6gica maxima en 245
22 0X22 Fija la ganancia anal6gica maxima en 265
23 0X23 Fija la ganancia anal6gica maxima en 288
24 0X24 Fija la ganancia analogica méaxima en 317
25 0X25 Fija la ganancia analogica maxima en 352
26 0X26 Fija la ganancia anal6gica maxima en 395
27 0X27 Fija la ganancia anal6gica maxima en 450
28 0X28 Fija la ganancia anal6gica maxima en 524
29 0X29 Fija la ganancia anal6gica maxima en 626
30 0X30 Fija la ganancia anal6gica maxima en 777
31 0X31 Fija la ganancia analogica maxima en 1025

84

Tenga en cuanta que la relacion entre el registro de ganancia y la ganancia real no
es una relacion lineal. No existe una formula mégica que diga “si utiliza este valor de
ganancia, el alcance sera exactamente este”. Depende del tamafio, forma, y material del
objeto y de los elementos restantes de la habitacién. Lo recomendable es experimentar
con diferentes valores hasta obtener los resultados deseados. Si obtiene lecturas falsas,
puede que sean los ecos de los “pings” anteriores, vuelva a lanzar el sensor SRF08 cada

65mS o mas (menos tasa).

Si tiene alguna duda acerca de los registros Range y Gain, recuerde que en el
sensor SRFO0S8 se fijan los valores por defecto automaticamente cuando se inicia el
sistema. Es més, puede olvidarse de esta configuracion y utilizar los valores por defecto
y el sensor funcionaré correctamente, detectando objetos a 6 metros cada 65mS o

menos.

433
2285

|
]

o

¢18.5

19.8
14.8

e
/|

38,1

|
¥

Sensor de luz

El medidor ultrasénico SRF08 dispone de un sensor fotoeléctrico en la propia
placa. Este medidor realiza una lectura de la intensidad de la luz cada vez que se calcula
la distancia en los modos Ranging o ANN (La conversion analédgica/digital se realiza
realmente justo antes de que se lance el “ping” mientras el generador de 10v +/- se
encuentra en fase de estabilizacion). EL valor de la lectura va aumentando a medida que
aumenta la intensidad de la luz, por lo que valor maximo lo obtendréa con una luz
brillante y el valor minimo en total oscuridad. La lectura deberia acercarse a 2-3 en total
oscuridad y aproximadamente a 248 (0xF8) en luz diurna. La intensidad de la luz puede
leerse en el registro del sensor de luz en la ubicacion 1 al mismo tiempo que puede leer

los datos del alcance.

85

LED

EL indicador LED rojo se utiliza para indicar el codigo de la direccion 12C del
sensor en el encendido (ver abajo). Asi mismo, también emite un breve destello durante

el “ping” en el calculo de la distancia.

Cambio de la direccion del bus I2C del SRF0S8

Para modificar la direccioén [2C del sensor SRF08 s6lo podra tener un sensor
conectado al bus. Escriba los 3 comandos de secuencias en el orden correcto seguidos
de la direccion. Ejemplo; para cambiar la direccion de un sensor que tiene actualmente
la direccion OxEO (la direccion de fabrica por defecto) a la direccion 0xF2, escriba lo
siguiente en la direccion 0xEO; (0xAO0, 0xAA, 0xAS, 0xF2). Se deberian enviar estos
comandos con el orden secuencial correcto para modificar la direccion 12C. Ademas, no
es posible emitir cualquier otro comando en medio de la secuencia. La secuencia debe
enviarse al registro de comandos de la ubicacion 0, lo que implica que se escribiran 4
transacciones independientes en el bus 12C. Una vez realizado todo esto, debera
etiquetar el sensor con su direccion. No obstante, si olvida hacerlo, cuando lo encienda,
no se enviara ningiin comando. El sensor SRF08 indicaré su direccion mediante el LED.
Un destello largo seguido de un nimero de destellos cortos indicara la direccion. Los

destellos terminaran inmediatamente después de enviar un comando al sensor SRF0S.

Direccion
Decimal Hexadecimal Destello Largo Destellos cortos

224 EO 1 0
226 E2 1 1
228 E4 1 2
230 E6 1 3
232 E8 1 4
234 EA 1 5
236 EC 1 6
238 EE 1 7
240 FO 1 8
242 F2 1 9
244 F4 1 10
246 Fo6 1 11
248 F8 1 12
250 FA 1 13

86

252 FC 1
254 FE 1

Asegurese de no configurar mas de un sensor con la misma direccion, ya que se

produciria una colision en el bus, con resultados totalmente imprevisibles.

Consumo de corriente

El consumo medio de corriente se calcula que es aproximadamente 12mA durante

el calculo de la distancia, y 3mA en modo de espera. El modulo entrara

automaticamente en modo de espera después de terminar la medicién, mientras espera

al siguiente comando del bus I2C. El perfil real de consumo de corriente del srfO8 es el

siguiente:

Tipo de operacion realizada

Comando de medicién de la distancia recibido -Encendido

Estabilizacion del generador de +/- 10v
8 ciclos de “ping” 40kHz

Medicion

Modo de espera (Stand-by)

Corriente Duracion

275mA
25mA
40mA

ImA

3mA

3uS
600uS
200uS
65mS
max.
Indefinido

Los valores de la tabla anterior se ofrecen so6lo a modo orientativos, no se han

comprobado en unidades de produccion.

Cambio del angulo de deteccion

El 4ngulo de deteccion no se puede
cambiar. Esta es una pregunta que se
hace muy frecuentemente y cuya
respuesta es que no se puede alterar. El
foco de trabajo del SRFO08 es un cono
cuyo ancho depende del propio traductor
y esta es fija. La forma del area de
trabajo del traductor ultrasénico
empleado en el SRF08 es la de la
siguiente figura, tomada de la hoja de

caracteristicas del fabricante.

87

Infrarrojos GP2D12

Fuente: Documento técnico oficial de Sharp.

SHARP

GP2D12/GP2D15 Distance Measuring Sensors

General Purpose Type Distance Measuring Sensors

H General Description B Outline Dimensions (Unit : mm)

SHARP's GP2D12/GP2D15 are general purpose type

z . : : Emitter) 20402
distance measuring sensors which consist of PSD* and

infrared emitting diode and signal processing circuit.

It enables to detect objects without any influence on the

color of reflective objects. reflectivity. the lights of

surroundings.

#*PSD:Position Sensitive Detector

g 7.5 415
B Features 8 | 1 I
£ 0
(1) Less influence on the color of reflective objects. g g — e
reflectivity £ =3 . e |-
(2) Line-up of distance output/distance judgement type g] UU U [FI[Fuuuyu ~
Distance output type(analog voltage) : GP2D12 §

Detecting distance : 10 to 80cm
Distance judgement type : GP2D15
Judgement distance : 24cm (Adjustable within the ocoo
range of 10 to 80cm) b0 o O ‘9gcg
(3) External control circuit is unnecessary.
(4) Low cost ooea0

* Distance to lens center portion

Internal block diagram

B Applications

(Digital output)

o e
1
(2) Personal computers | voitage | 1
1 wrcutt | |
(3) Cars : !
F 1 |Signal 1
(4) Copiers | |processing ! GP2D12
PSD y [cireut H (Analog output)
T T O Vo
! j | GP2D15
T LeD [
LED ! drive !
circuit 1
1 1
1 1
L

7l]—() GND

(Notice) = In the absence of device specification sheets, SHARP takes no responsibility for any defects that may cccur in equipment using any SHARP device
shown in catalogs, data books. etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
= Specifications are subject to change without notice for improvement.

(Internet) « Data for SHARP's optoelectronic/power device is provided on internet. (Address http://www.sharp.co.jp/ecg/)

SHARP -

Tec.U970501

SHARP

GP2D12/GP2D15

Distance Measuring Sensors

B Specifications

GP2D12 (Ta=25°C)
Parameter Symbol Rating
Supply voltage Vee 45t05.5V
Dissipation current Icc MAX.35mA
Measuring range L 10 to 80cm
Output type —_— Anmnalog output
Operating temperature| Topr -10 to +60°C
GP2D15 (Ta=25"C)
Parameter Symbol Rating
Supply voltage Vee 4351035.5V
Dissipation current Icc MAX.35mA
*Judgement distance L TYP.24cm
Output type — Digital output
Operating temperature] Topr -10 to +60°C

* Adjustable within the range of 10 to 80cm.<Custom products>

SHARP

[l Output pattern

Output
(3.1V)
I
|
|
I
- |
0.6V) [~—
I
Il Il
10cm 80cm Distance
Output
High e
I I
| |
I |
I |
| I
Low — |
| { ;
10em 24cm 80cm Distance

As of May 1997

89

Compas CMPS03

Fuente: www.superrobotica.com

La brujula digital CMPS03 es un sensor de campos magnéticos que una vez
calibrado ofrece una precision de 3-4 grados y una resolucion de décimas. Tiene dos
interfaces, mediante pulsos temporizados (modulacion en anchura), o bien por medio de
un bus 12C, lo que facilita su comunicacidon con una amplia gama de
microcontroladores, incluyendo los Basic Stamp, Basic X, OOPic y otros lenguajes
compilados. Este sensor magnético esta especificamente disefiado como sistema de
navegacion para robots. La brijula esta basada en los sensores KMZ51 de Philips que
son lo suficientemente sensibles como para captar el campo magnético de la tierra.
Usando dos de estos sensores colocados en angulo de 90 grados, permite al
microprocesador calcular la direccion de la componente horizontal del campo

magnético natural.
Conexionado y Funcionamiento

En la siguiente imagen se puede observar las conexiones de los diferentes pines
del CMPSO03, entre los que destaca la patilla 4 y la 2 - 3, que corresponden a los dos
posibles interfaces que incorpora: el PWM (Pulse Witdh Modulation - Modulacién por
anchura de pulso) y el bus 12C formado por las sefiales SDA (sefial de datos) y SCL

(sefial de reloj) y que es un interfaz serie bidireccional sincronico.

Pin 7 50/60Hz
Pin & Calibracion
Pin 5 Mo conectar

Norte ¢— |

En la salida 4, se obtiene una sefial PWM en la que el pulso positivo representa el

angulo de la brujula. El pulso varia en duracion desde 1mS (0°) hasta 36,99 ms

90

(359,9 °), o dicho de otra forma, el pulso es igual a 100 uS por cada grado mas 1ms de
tara. La sefal permanece a cero durante 65 ms entre pulsos, por lo que el periodo de
trabajo es de 65mS + la anchura del pulso. El pulso es generado por un contador de 16
bits del propio procesador, con una resolucion de 1 uS, aunque en la préctica no es
recomendable hacer mediciones con una resolucion de mas de 0,1° (10uS). Cuando use
el interfaz PWM, es necesario conectar a +5V mediante 2 resistencias de 47 Kohm, los
pines 2 y 3 (SCL - SDA) del interfaz 12C, ya que no se incluye resistencias de pull-up

en el circuito.

La otra posibilidad es la de usar el interfaz I2C formado por los pines 2 y 3, que
nos permite una lectura directa del valor en grados de la direccion. El protocolo de
comunicacion [2C empleado en el modulo, es el mismo que se emplea con la populares
eeprom como la 24C04. Primero se envia un bit de comienzo, la direccion del modulo
(0XCO) con el bit de lectura a cero, y a continuacion el numero del registro que se desea
leer. Después se vuelve a mandar el bit de comienzo y la direccion del moédulo con el bit
de lectura a uno (0XC1). Ahora se puede leer uno, o los dos bytes correspondientes a
los registros de 8 y 16 bits respectivamente. (El byte de mayor peso se lee primero en

los registros de 16 bits).

91

Registros

La brujula tiene un total de 16 bytes de registros, algunos de los cuales forman

registros de 2 bytes tal y como puede verse en la siguiente tabla:

Registro Funcién

0 Numero de Revision del Software

1 Direccion en 1 byte 0-255 para 0 - 360°

2,3 Direccion en 2 bytes 0-3599 para 0 - 359,9°
4,5 Test interno sefial diferencial sensor 1

6.7 Test interno sefal diferencial sensor 2

8,9 Test interno, valor de calibracion 1

10,11 Test interno, valor de calibracion 2

12 Sin usar, devuelve 0

13 Sin usar, devuelve 0

14 Sin usar, devuelve 0

15 Comando de calibracion, escribir 255 para calibrar

El registro 0 es la Revision del software que actualmente es el 8. El registro 1 es la
direccion en grados convertida en un valor entre 0 y 255 y que puede ser muy util en
ciertas aplicaciones donde resulta complicado utilizar la escala de 0 a 360 grados que
requiere dos bytes y que esta disponible en los registros 2 y 3 (el 2 es el mas
significativo) con un valor que va entre 0 y 3599 que equivale a 0 -359,9°. Los registros
4 a 11 son de uso interno y del 12 al 14 no se usan, por lo que no deberan leerse con el
fin de no consumir el ancho de banda del bus 12C. El registro 15 se usa para calibrar la

brajula tal y como se especifica mas adelante.

El bus 12C del circuito no incorpora las necesarias resistencias de pull-up, por lo
que sera necesaria su implementacion en el mismo, para ello es recomendable utilizar
dos resistencias de 1K8 en caso de utilizar el bus a 400 KHz y de 1K2 o 1K si se utiliza
a una frecuencia de 1Mhz. Solo son necesarias 2 resistencias en total para todo el bus,
no por cada circuito que este conectado al mismo. El sensor de brijula digital esta
disefiado para ser compatible con la velocidad estandar de reloj de 100 Khz, aunque esta

pueda aumentarse si tiene en cuenta lo siguiente:

A velocidades superiores a los 160 KHz, la CPU no puede responder lo
suficientemente rapido como para leer los datos, por lo que hay que incorporar un

retardo de 50 us al finalizar la escritura del registro de direccion. Si se hace esto de

92

forma correcta, es posible comunicar con el modulo a velocidades superiores a 1| MHz.
Esto solo afecta a programas escritos en lenguajes de alta velocidad y bajo nivel como
es el ensamblador, y no afecta a las aplicaciones escritas para los compiladores internos
como son el Basic stamp, el OOPic o el Basic X o similares. El modulo de sensor de

brajula siempre actiia como un esclavo, nunca como un master del bus 12C.

El pin 7 se utiliza para seleccionar entre 50 Hz (puesta a cero) o 60 Hz (puesta a
uno). Esto es debido a una desviacion erronea de unos 1,5° causada por el campo
generado por la red eléctrica. Sincronizando la conversion con la frecuencia en hertzios
de la red, se consigue disminuir el error a tan solo 0,2°. El pin si tiene una resistencia
interna de pull up, por lo que si se deja sin conectar, funcionara a 60 Hz. El circuito
realiza una conversion interna cada 40ms (50 Hz) o cada 33,3 ms (60Hz) de acuerdo
con la conexidn de esta entrada. No hay ningun tipo de sincronismo entre la realizacion
de la conversion y la salida de los datos, ya que cuando estos son leidos se devuelven el

valor mas reciente que este almacenado en su respectivo registro.

El pin 6 se usa para calibrar el sensor magnético. Esta entrada tiene su propia
resistencia de polarizacion (pull up) y puede dejarse sin conectar una vez realizada la

conversion.

Los pines 5 y 8 estan marcados como no conectados, aunque el pin 8 es en
realidad el reset del microprocesador, con el fin de poder programarlo una vez soldado

al circuito impreso. Esta entrada no tiene resistencia de pull up.
Calibracion

ATENCION: Antes de realizar la calibracion, el médulo debera mantenerse
perfectamente horizontal con los componentes hacia arriba y los dos sensores en la cara
inferior. Mantener el mddulo alejado de objetos metalicos y muy especialmente de
objetos magnéticos como imanes y altavoces. También es necesario conocer con
precision la direccion en la que se encuentran los cuatro puntos cardinales, por lo que es

absolutamente necesario comprobarlo con una brujula magnética.

La calibracién de la brtjula digital puede hacerse por cualquiera de los siguientes

dos métodos:

93

El Método 12C

Ese Método consiste en escribir 255 en el registro 15 del modulo por cada uno de
los cuatro puntos cardinales. El valor 255 es borrado internamente cada vez que se
completa la calibracion Los puntos de calibracion pueden hacerse en cualquier orden,

pero siempre es necesario calibrar los 4 puntos. Por ejemplo:

1 Apunte el circuito hacia el Norte. Escriba 255 en el registro 15
2 Apunte el circuito hacia el Este. Escriba 255 en el registro 15
3 Apunte el circuito hacia el Sur. Escriba 255 en el registro 15

4 Apunte el circuito hacia el Oeste. Escriba 255 en el registro 15
El Método del pulsador.

Consiste en utilizar un pulsador entre masa y el pin 6 del circuito, con el fin de
iniciar la calibracién Tenga en cuenta que este pin tiene una resistencia de polarizacion
interna y puede dejarse sin conectar una vez realizada la calibracion Para realizar la
calibracion, bastara con poner a masa el pin 6 momentaneamente por cada uno de los
puntos cardinales. De igual forma que con el otro Método, los puntos pueden calibrarse

en cualquier orden, pero siempre es necesario calibrar los 4 puntos cardinales. Ejemplo:

1 Apunte el circuito hacia el Norte. Pulse momentaneamente en pulsador.
2 Apunte el circuito hacia el Este. Pulse momentdneamente en pulsador.
3 Apunte el circuito hacia el Oeste. Pulse momentdneamente en pulsador.

4 Apunte el circuito hacia el Sur. Pulse momentaneamente en pulsador.

94

Termopila TPAS81

Fuente: www.superrobotica.com

TPAS8I es un sensor térmico de 8 pixeles
capaz de medir la temperatura de un objeto a
distancia. Este sensor esta formado en realidad
por una matriz de 8 sensores colocados
linealmente de forma que puede medir 8 puntos

adyacentes simultaneamente. A diferencia de los

sensores pir utilizados en sistemas de alarmas y

detectores para encender luces, el sensor térmico no necesita que haya movimiento para
detectar el calor, por lo que su aplicacién en el campo de la roboética, abre gran cantidad
de aplicaciones no disponibles hasta ahora. El sensor se conecta por bus 12C y ademas
se le puede conectar un servo estandar que es controlado por el propio sensor para hacer
un barrido y tomar 32 mediciones diferentes, obteniéndose un mapa térmico de 180
grados. El TPAS1 es capaz de detectar la llama de una vela a 2 metros de distancia y

ademas no le afecta la luz ambiental.

Introduccion

El sensor de temperatura TPA81 es un modulo térmico de deteccion por
infrarrojos en un rango de 2um a 22pum que es la longitud de onda del calor radiante.
Los sensores pir que se utilizan generalmente en las alarmas antirrobo y para el
encendido/apagado de las luces exteriores, detectan sefales infrarrojas en la misma
banda de onda, sin embargo estos sensores solo detectan cambios en la temperatura, no
la temperatura en si. Aunque son ttiles en robotica, sus aplicaciones son limitadas, ya
que no pueden detectar y medir la temperatura de una fuente de calor estatica. El otro
tipo de sensor es el sensor termopila, que se utilizan en los termémetros por infrarrojos
sin contacto. Tienen un dngulo de deteccion o campo de vision (FOV) muy amplio, de
aproximadamente 100° y requieren una carcasa con una lente para obtener un campo de
vision reducido de aproximadamente 12°. Actualmente es dificil encontrar sensores con
modulo de termopilas, electronica y lente de silicona integrada con el caso del TPAS].
Este sensor tiene en realidad una formacion de ocho termopilas organizadas en una

hilera. El Sensor de temperatura TPA81 puede medir la temperatura de 8 puntos

95

adyacentes de manera simultanea. E1 TPA81 también puede controlar un servo para

manejar el modulo y generar una imagen térmica.

Respuesta de espectro

La repuesta TPA81 es normalmente de 2pum a 22pum como se muestra a continuacion:

100

90

80

70

&0
50 | = W S e

v i o
40 /

30

Transmision [%]

20

10

0

2 4 6 8 10 12 14 16 18 20)
Longitud de Onda [um]

Campo de vision (FOV)

El campo de vision normal de TPAS81 es de 41° por 6° convirtiendo cada uno de
los ocho pixeles en 5.12° por 6°. El conjunto de ocho pixeles esta orientado a lo largo de
la placa de circuito impreso (PCB) - como indica el siguiente diagrama de arriba a
abajo. El nimero de pixel es el mas cercano a la pestana del sensor - o en la parte

inferior del diagrama siguiente.

Sensibilidad

Estos son algunos de los nlimeros resultantes de uno de nuestros modulos de
prueba:
para una vela, los nimeros para cada uno de los ocho pixeles a una distancia de 1 metro
en una habitacion fresca a 12° son los siguientes:
111011121229 15 13 (Todos en grados centigrados)
Puede ver que la vela de muestra aparece como la lectura de 29° C. A una distancia de 2
metros, ésta se reduce a 20° C, aproximadamente unos 8° C por encima de la
temperatura ambiente, por lo que todavia es facilmente detectable. A 0,6 metros da

aproximadamente 64° C. A 0,3 metros da aproximadamente 100° C.

En una habitacion mas calida a 18° C, la llama mide 27° C a 2 metros de

distancia. Esto se debe a que la vela s6lo ocupa una pequeia parte del campo de vision y

96

la fuente de calor de la vela se suma a la temperatura ambiente del aire no la superpone
por completo. Un cuerpo humano a 2 metros aparecera como 29° C, con una

temperatura ambiente de 20° C.

Conexiones

Toda la comunicacion con el sensor térmico TPAS8]1 se realiza a través del bus
12C. El sensor TPAS81 utiliza una conexion I2C de 5 pines. El pin marcado con el
mensaje “No conectar” se deberia dejar sin conexion. En realidad se trata de la linea
MCLR de la CPU y se utiliza solamente para programar el PIC16F88 en la propia placa
después del montaje, tiene una resistencia de polarizacion positiva interna. Las lineas
SCL y SDA deberian disponer las dos de una resistencia de polarizacion a +5v en algliin
punto del bus I2C. Lo unico que necesitara es un par de resistencias en todo el bus, y no
un par para cada modulo. Normalmente estan ubicadas en el circuito del bus maestro. El
sensor térmico TPAS81 actia siempre como un modulo esclavo dentro del bus 12C. Si
necesita utilizar resistencias de polarizacion, le recomendamos resistencias de 1K8.
Algunos modulos como los OOPic ya disponen de resistencias de polarizacion por lo
que no necesitara conectar unas nuevas. El TPA81 incluye un conector para un servo
estandar que se alimenta desde los 5v de la alimentacion del modulo. Se pueden enviar
comandos de posicionamiento al TPAS81 para colocar el servo en cualquiera de las 32
posiciones disponibles, los pulsos de control del servo los genera el propio modulo

TPASI.

kR {

¥a

.
=
=
=
m
=

97

Registros

El TPAS1 aparece como un conjunto de 10 registros.

Registro Lectura Escritura
0 Revision de Software Registro de comando

Utilizado para la
calibracion- no escribir
Utilizado para la

1 Temperatura ambiente ° C

2 Temperatura Pixel 17 C calibracion- no escribir

3 Pixel 2 Uti.lizad'o, para la N
calibracion- no escribir

4 Pixel 3 N/A

5 Pixel 4 N/A

6 Pixel 5 N/A

7 Pixel 6 N/A

8 Pixel 7 N/A

9 Pixel 8 N/A

Solo se pueden escribir los registros 0, 1, 2 y 3. El Registro 0 se trata de un
comando de registro y se utiliza para colocar la posicidon del servo y cambiar la
direccion 12C de TPAS81. No se puede leer. La lectura del registro 0 devuelve la revision
de software de TPAS81. Los Registros 1, 2 y 3, se utilizan para calibrar el sensor. No
escriba en estos registros ya que se pueden eliminar los datos de calibracion de los
sensores. (Existe proteccion para ello. Debe proporcionarse una secuencia de comandos
especifica de 3 bytes similar a la secuencia de cambio de direccion 12C para habilitar el
modo de calibracion). La calibraciéon requiere el uso de dos fuentes de calor de cuerpos
negros. So6lo podré calibrar el modulo si dispone de estos cuerpos. Todos los modulos

estan calibrados en nuestro taller, como parte de nuestros procesos de prueba.

Hay 9 lecturas de temperatura disponibles, todas expresadas en grados
centigrados. El registro 1 se trata de la temperatura medida por el sensor. Los registros
2-9 son las temperaturas de 8 pixeles. La adquisicion de temperatura se realiza de
manera continua y las lecturas seran correctas 40mS después de que el sensor apunte a

una nueva posicion.

98

Posicion de Servo

Los comandos 0 a 31 establecen la posicion del servo. Hay 32 pasos (0-31) que
representan los 180 grados de rotacion en un servo Hitec HS311. El célculo es
SERVO_ POS*60+540uS. Por lo que el alcance del pulso del servo es de 0.54mS a
2.4mS en pasos de 60uS. Si se escribe cualquier otro valor al registro del comando se

detendran los pulsos del servo.

Comando o
- . Accion

Decimal Hexadecimal

0 0x00 Establece la posicion del servo al minimo

nn nn Establece la posicion del servo

31 Ox1F Establece la posicion del servo al méximo

160 0xA0 1° en la secuencia para cambiar la direccion
12C

165 0xA5 3° en la secuencia para cambiar la direccion
12C

170 OXAA fz én la secuencia para cambiar la direccion

Cambio de la direccion 12C del Bus

Para cambiar la direccion [12C de TPAS8I1 debe tener s6lo un modulo en el bus.
Escriba las 3 secuencias de comandos en el orden correcto seguido de la direccion. Por
ejemplo, para cambiar la direccion de un TPAS81 actualmente en la direccion 0xDO
(direccion predeterminada de fabrica) a 0xD2, escriba lo siguiente para la direccion
0xDO0; (0xA0, OxAA, 0xAS5, 0xD2). Estos comandos deben enviarse en la secuencia
correcta para cambiar la direccion 12C, ademas, no se puede enviar otro comando en
medio de la secuencia. La secuencia debe enviarse al registro de comandos en la
ubicacion 0, lo que significa que se creardn 4 transacciones de escritura en el bus 12C.
Ademas, DEBE haber un retardo de al menos 50mS entre la escritura de cada byte de la
secuencia de los cambios de direccion. Cuando lo haya realizado, deberia etiquetar el
sensor con sus direcciones, si pierde las direcciones del modulo, la Ginica manera de
averiguarlas es buscar todas las direcciones una a una hasta averiguar cual es la que
responde. TPA81 puede tener hasta ocho direcciones 12C- 0xD0, 0xD2, 0xD4, 0xD6,
0xD8, 0xDA, 0xDC, 0xDE. La direccion predeterminada de fabrica es 0xDO.

99

Lista del Coste detallada

Total
Descripcion : Cantidad Coste parcial
Chasis Lynxmotion 4WD?3 1 158,70 158,70
Plataforma 1 7,3462 7,3462
Torreta Avanzada 1 55,37 55,37
MD22 - Control Motores 12C 1 59,10 59,10
ATBASE 128 (futulec.com) 1 22,07 22,07
Via EPIA MII 10000 Placa Base 1 166,25 166,25
Adaptador CF - IDE 1 10 10
Compact Flash 4Gb 1 108,25 108,25
SIM DDR 1 Gb 1 87,21 87,21
Fuente ATX DC - DC 60W 1 73 73
Wifi USB 1 36 36
BATERIA Zaapa (65W/H) 1 69 69
Bateria 7.2V RControl 4000mA 1 41 41
Ultrasonidos SRF08 3 39 117
Compas CMPS03 1 38,15 38,15
Sharp GP2D12 3 15,82 47,46
Termo Pila TPA81 1 56,81 56,81
Acelerometro LIS3V02DQ 1 27,90 27,90
Servos HS311 2 19,19 38,39
Grabador JTAG AVR 1 24,29 24,29
Cargador RC 1 50 50
Tornilleria 1 16 16
cable 1 10 10
Componentes electronicos 1 80 80

Total: 1399,32 €

100

Apéndice Il
Especificaciones Software

Comandos de control

A continuacion se detalla todos los comandos posibles para gobernar ARI desde el
puerto serie. ARI trabaja de forma comprobacion perezosa, la desventaja de este sistema
es que un comando mal escrito tiene un comportamiento imprevisible, pero el coédigo

para interpretar los comandos es mucho mas reducido y répido.
Interficie:

Todos los comandos que empiezan por i son los referidos a la interfaz serie y el

controlador en general.

1v

El comando “iv”’ demanda a la unidad principal que devuelva la version actual del

firmware. Recibiremos una salida como esta:

iv
DARI v0.5Beta.

1€

El comando ie permite desactivar el eco, algo muy practico para cuando el firmware

es controlado por otro programa.

ie
echo off

echo on

En la salida vemos un ie en gris eso significa que ha sido introducido pero no saldria

en la vista de la consola porque el echo estaba desactivado.

101

iw:aarrvv

aa Direccion hexadecimal del dispositivo 12C al que se desea enviar el dato.
rr Numero de registro al que se desea acceder. (también en hexadecimal)
vy Byte a enviar en hexadecimal..

El comando iw nos permite enviar un byte de datos a un dispositivo I12C, esta

pensado para mantenimiento y diagnostico, por ejemplo cambiar la direccion 12C de un

dispositivo.

Ejemplo: cambiar la direccion [12C de un sonar en la posicion EO a la posicion F2:

iw:e000a0

iw:e000aa

iw:e000a5

iw:e000f2 “Aqui el dispositivo ya tiene la nueva direccion,
iw:e000a0 si intentamos escribir otra vez fallara ”

E:12CError

il:aarr

aa Direccion hexadecimal del dispositivo [2C de donde se desea leer el dato.

rr Numero de registro al que se desea acceder. (también en hexadecimal)

El comando il nos permite leer un byte de un dispositivo 12C, este comando igual

que el anterior solo debe ser usado para tareas de mantenimiento.

ir-e001

a0

102

El comando ir realizada un reinicio completo de la unidad de control, cuando el

reinicio se complete recibiremos la version de la unidad.

ir
DARI v0.5Beta.

El comando ih devuelve el total de memoria utilizada del heap de memoria dinamica.

ih
Heap Usado:2020 bytes.

El comando it devuelve un listado con la lista de tareas y su estado, donde podemos
comprobar el uso de la pila de cada proceso. , cual esta en ejecucion, o parada., la

prioridades de estas y el estado de inicializacion.

it
Tareas: Estado. Prio. Stack. Inic.
MSerial R 3 109 O

IDLE R 0 66 4
MServo B 2 87 1
MMotion B 2 98 2
MSensor B 3 56 3

103

Locomocion

Los comandos relacionados con el control de motores comienzan con m.

mtddd y muddd

ddd valor que indica direccion y velocidad del motor izquierdo(mt) o el

motor derecho(mu) , un 0 serda hacia delante a toda velocidad, 128 es estado de

reposo y 255 es a toda velocidad hacia delante.

El comando mt permite controlar los motores del lado izquierdo tanto en sentido

como en velocidad, este comando se afiadio para dar un mejor soporte al Pyro.

mt100

La ejecucion del comando mt puede dar error (“E:12CDevNotFound”) si no se

encuentra la placa de control de motores MD22.

mf

El comando mf ordena al robot avanzar a la velocidad previamente establecida por el

comando ms, inicialmente el ARI inicializa esta velocidad a 0.

mh

El comando mh ordena al robot detener cualquier movimiento que este realizando.
Esto no inicializa los registros de velocidad ni aceleracion, estos se encontraran tal y

como estaban previamente a la llamada al comando mh.

104

mb

El comando mb ordena al robot retroceder a la velocidad previamente establecida por

el comando ms, inicialmente el ARI inicializa esta velocidad a 0.

ml y mr

Estos comandos ordenan al robot girar sobre su mismo eje hacia la izquierda (ml) o la
derecha (mr), esto se realiza a la velocidad previamente establecida por el comando ms,

inicialmente el ARI inicializa esta velocidad a 0.

maddd

ddd valor entre 0 y 255 en el que 0 es aceleracion lenta y 255 es aceleracion

inmediata, para mas detalles de los tiempos de aceleracion consulte la

documentacion del MD22.

El comando ma ajusta el parametro de aceleracion del MD22.

msddd

ddd valor entre 0 y 127 que indica la velocidad a la que se mueve el robot,

127 es el maximo.

El comando ms ajusta la velocidad para los comandos mf, mb, ml y mr, los

comandos mt y mu son independientes.

105

Control Servos

Los comandos que comienzan con e controlan los servos de diversas maneras.

exmddds

X Numero de servo a mover
ddd Angulo en grados x 10 de la nueva posicion absoluta.

S Es o r ol e indica todo a la izquierda o todo a la derecha, si es omitido se

toma | por omision

Este comando realiza un movimiento absoluto, define el 0 como la posicion
central del servo y permiten girar 90 grados a cada lado, con precision de décima de

grado (no todos los servos tienen esta precision).

Ejemplos:
e0m900r servo 0, 90 grados a la derecha
e0m900I servo 0, 90 grados a la izquierda
e1m000 servo 1, centrado a 0 grados (izquierda).
e4mO001r servo 4, 0.1 grados a la derecha.
exiddds
X Numero de servo a mover

ddd Angulo en grados x 10 del nuevo incremento.

s Es oroleindica todo a la izquierda o todo a la derecha, si es omitido se

toma 1 por omision

Este comando realiza un movimiento incremental e incrementa el valor de ddd en
el sentido indicado por s, con precision de décima de grado (no todos los servos tienen

esta precision).

Ejemplos:

e0i455r servo 0, incrementa 45.5 grados a la derecha

106

e0i900I servo 0, incrementa 90 grados a la izquierda

e4i001r servo 4, incrementa 0.1 grados a la derecha.
excC
X Numero de servo.

Este comando guarda la posicion actual como el centro del servo. el dato se

guarda en la eeprom del microcontrolador, asi que aunque se desconecte el parametro

queda guardado.
Ejemplos:
elc
I:CtrSaved
expd
X Numero de servo.
d Un cero desactivar la funcion de barrido , un uno la activa.

Este comando activa/desactiva la funcion de barrido.

Ejemplos:
eOp1 Activar el barrido en el servo 0
e3p0 Desactivar el barrido en el servo 1

107

extddd

X Numero de servo.

ddd valor que ajusta la velocidad de barrido.

Este comando ajusta la velocidad de barrido, una valor de 25 equivale a 1

segundo, es el tiempo que espera entre movimientos del servo. Por defecto esta ajustado

a 50 (2 segundos).

Ejemplos:
e3t025 Ajustar el tiempo a 1 segundo.
exrddd
X Numero de servo.

ddd Angulo entre pasos en el grafico esta indicado como Tb.

<

Este comando ajusta cuanto se movera el servo entre pasos, es muy recomendable

Ts =2

detener el barrido y centrar el servo antes de cambiar este pardmetro.

Ejemplos:
e0r450 servo 0, ajustar a 45 grados el angulo recorrido entre pasos.
e1r060 servo 1, desactivar el barrido en el servo 1

108

exsddd

X Numero de servo.

ddd Numero de pasos hacia un lado. En el grafico es Ts., fijese en las lineas

que seccionan la circunferencia., minimo debe ser 1.

N

Este comando ajusta cuantos pasos se va a mover, el numero introducido indica

\Tbl

Ts =2

cuantos pasos a cada lado se mueve, siempre se para en el centro, es muy recomendable

detener el barrido y centrar el servo antes de cambiar este pardmetro.

Ejemplos:
e0s001 servo 0, ajustado a 1 paso a cada lado es decir 3 paradas.
e1s032 servo 1, ajustado a 32 pasos a cada lado asi que en total son 65.
€xe
X Numero de servo.

Este comando devuelve la configuracion actual del sistema de barridos, los
nimeros devueltos en base 36, representa: Ex:P,SS,RR,TT , donde P es si esta activo o

no (0/1), SS el namero de pasos, RR es el angulo de paso y TT es el tiempo entre pasos.

Ejemplos:

ele
E0:0,01,19,0S

109

Sensores.

La s inicial indica que el comando es del modulo de sensores.

sf

Este comando vacia por completo la lista de lecturas periodicas.

Ejemplos:

sf
TimelListClear

sdddtx
dd Numero de sensor.
t Selecciona de donde sera eliminado el sensor las opciones son “t” para la
lista de lecturas periodicas, y “e” para los servos.
X Selecciona de que servo sera eliminado. (s6lo para “e”).

Este comando permite eliminar de las listas un sensor, tanto puede ser la lista

periddica como una de las 6 listas sincronizadas con los servos

Ejemplos:
sd03t Elimina de la lista de lectura periodica el sensor 03.
sd05e2 Elimina de la lista de la lista sincronizada el servo 02.

110

sadditx

dd Numero de sensor.

t Selecciona de donde seréd afiadido el sensor las opciones son “t” para la

lista de lecturas periodicas, y “e” para los servos.

X Selecciona en que servo sera anadido. (s6lo para “e”).

Este comando permite afiadir a las listas un sensor, tanto puede ser la lista

periodica como una de las 6 listas sincronizadas con los servos

Ejemplos:
sa03t afiade a la lista de lectura periodica el sensor 03.
sa05e2 afnade a la lista de la lista sincronizada el servo 02.
SC

Devuelve el nimero de sensores disponibles en el sistema.

Ejemplos:

sc
Sc:10 Hay 10 sensores disponibles.

st:ddd

ddd Numero que indica el periodo de escaneo de los sensores de la lista, a

menor nimero, mas rapido.

Este comando permite ajustar la cadencia de escaneo de los sensores.

111

sndd

dd Numero de sensor que se desea consultar.

Este comando permite consultar el nombre de un sensor , el nombre es un codigo

alfanumérico de 4 cifras.

Ejemplos:

sn
Sn01:ADC1

srdd

dd Numero de sensor que se desea consultar.

Este comando consulta el Gltimo valor valido del sensor, en caso de ser un sensor
que necesita ser “disparado”, posteriormente a la consulta realiza un disparo, se
puede realizar dos lecturas para obtener un resultado rapido, este comando no es
recomendado usarlo para peticiones periddicas. Para la consulta periddica y

continua del sistema es recomendable usar las funciones pertinentes.

112

Detalles 12C vy libreria
Principio de funcionamiento:

El bus 12C, es un bus multimaestro, que es capaz de direccionar hasta 128
dispositivos, la direccion se envia en un byte, los 7 bits mas altos son la direccion y el
bit mas bajo indica si lectura o escritura, esto hace que todas las direcciones de

dispositivos sean nimeros pares.

Para realizar una lectura, después de conseguir el bus, se envia un byte con la
direccion y el bit de escritura a 0, luego se pone otro byte que contiene la direccion, se
espera que el dispositivo ponga el dato en el bus, si el master responde con ACK, el
dispositivo respondera con el siguiente dato, si el maestro responde con NO ACK se

finalizara la comunicacion.

Para la escritura es muy parecido, ponemos el bit de escritura a 1, y el ultimo byte

también es escrito por nosotros. , después de cada byte va una marca de ACK.

Libreria:
La libreria 12C basada en la creada por Peter Flury [12] varia en dos detalles:

1. Ha sido alterada para soportar concurrencia, dado que Peter la ide6 para
su uso en programas sencillos y mono tareas. En este aspecto no hay nada
que tener en cuenta, dado que son las propias funciones las que se

encargan de ello.

2. Ampliada con nuevas funciones para lectura en bloques con la finalidad

de optimizar el acceso al bus, permitiendo leer mas de un byte por acceso.
Funciones:

o unsigned char i2¢_readbyte (char addr, char reg), Esta es la funcion
basica, recibe la direccion y el registro, y devuelve el byte

correspondiente.

113

unsigned short i2¢_readword (char addr, char reg), Recibe la
direccion, y el registro y lee el indicado y el registro siguiente, y lo

almacena en un registro de 16bits, en modo big Endian.

unsigned char i2¢_readblock (char addr, char reg, char* block, short
count), Esta funcion permite leer count registros, estos son

almacenados en block, desde el final hasta el principio.

char i2¢_writebyte (char addr, char reg, char value), Permite enviar un

byte de valor value, al registro reg, de la direccion addr.

114

Anadir un sensor nuevo a ARI

Unas de las funcionalidades del software de control ARI es permitir desarrollar
controladores para nuevos sensores de forma modular a nivel de cédigo, asi que afiadir

un dispositivo nuevo requiere compilacion y grabacion otra vez del microcontrolador.

Ademas de la modificacion del codigo python que sirve de interfaz al Pyro, se ha
intentado que sea lo mas sencillo posible, y a continuacion se expondra los conceptos

basicos y un par de ejemplos practicos, para llevar esta tarea a buen puerto.
Soporte en el ARI para sensores.

Como se ha explicado antes el software del ARI esta dividido en varios mddulos
segun su funcion uno de estos es El Modulo de Sensores que permite afiadir hasta 25
sensores. La forma de implementar estos sensores es crear una pareja de ficheros .c y ./
que usando una pequefia API permite integrar un sensor nuevo con solo escribir 3

funciones:

Una funcion de inicializacidon que se encargara de dejar configurado y listo el
dispositivo, esta funcion no tiene ningun formato obligado, pero se recomienda que
se llamé xxxxStart() donde xxxx es el un nombre de dispositivo. También es la que

se encargar de afiadir las siguiente funciones al modulo de sensores.

La funcion de inicio de lectura, esta funcion aisla en sensores en los que la
interrogacion y la lectura tiene que ser tratada de forma diferente, por ejemplo un
sonar, en el que debemos esperar cierto tiempo entre que hemos “disparado” y

podemos leer el resultado.

La funcion de Lectura, esta funcion es basica y vital dado que es la que debe

devolver la lectura del sensor.

Incluyendo el fichero ModSensor.h tendremos acceso a la siguiente funcion que

nos permitird asignar las funciones anteriores como un Unico sensor.

115

void sensorAttach(short (*iniciar)(unsigned short,char),short (*leer)(unsigned

short, char* len,char param), char®* nombre,char param ,short mode);

El primer parametro es un puntero a una funcién del tipo: short (*iniciar) (unsigned
short, char) que es nuestra funcion de iniciar, puede ser nulo que indicara que este
sensor se puede leer en cualquier momento, el primer pardmetro es un valor short que
indica tiempo, y nos puede servir para no sobrecargar recursos compartido o evitar leer
el sensor cuando realmente no tiene un valor nuevo. El segundo pardmetro es un
parametro que nosotros mismo podemos asignar cuando anexamos la funcion, lo

explicaremos mas adelante.

El segundo parametro es un puntero a otra funcidn en este caso la de lectura que tiene
una estructura de esta forma : short (*leer)(unsigned short, char* len,char param)
donde el primer pardmetro es una marca de tiempo como en la funcion iniciar, la
segunda es un puntero donde se debe devolver la longitud de la cadena resultante segiin
el modo de trabajo (ver mas adelante), y el tercer pardmetro es el pardmetro igual que la

funcion anterior que sera de uso segun el controlador.

El tercer parametro es un nombre de 4 letras para el sensor. El cuarto es un pardmetro

que se pasard a las funciones iniciar y leer cuando sean llamadas.

El quinto y Gltimo pardmetro es el modo de este sensor, es posible elegir entre
devolver un valor binario entero, este se convertira a ASCII y serd enviado o podemos
devolver una cadena de texto de longitud variable, se ajusta este pardmetro usando las

constantes definidas en ModSensor.h.

#define SENSOR_INTEGER 0

En el modo Entero es tan sencillo como devolver un dato del tipo short en lo que
devuelve la funcion, en cambio en el modo “BIN8” debemos devolver por el retorno de
la funcién un puntero a la cadena, y por el puntero len de los parametros la longitud de

esta.

116

Si resumimos en una lista los pasos a realizar para crear el controlador de un

sensor para ARI son estas:

e C(Crear los ficheros .c y .h

e Si es necesario realizar una funcion de iniciar lectura que cumpla con esta

definicion : short nombre(unsigned short, char)

e Realizar una funcién que realice la lectura del sensor y tenga este prototipo:

short lectura (unsigned short timestamp_n,char* len,char param)

e Realizar funcion de inicializacion que incluya como minimo una llamada a

sensorAttach.

e Anadir la llamada a la funcion de Inicializacion en el main.c

e Incluir el .c en el makefile de proyecto para que sea compilado.

e Mas adelante hay unos ejemplos practicos comentados que mejoraran la

comprension.

117

Ejemplos Practicos:

Aniadir 16 lineas digitales

En este ejemplo veremos un caso muy sencillo en el que se trata de dar salida a 16

lineas digitales.

Los primeros pasos es crear los ficheros drvdigital.h y drvdigital.c, como siempre en

el fichero .h declararemos nuestras funciones y constantes, para el controlador digital

tiene un aspecto como este:

Como podemos observar
tenemos la declaracion de una
funcion de inicializacion y la
declaracion de la funcién de
lectura que sigue el formato ya

comentado.

A continuacion veremos la

definicién de estas funciones.

En la definicién vemos como se
inicializa el hardware (en este caso
es muy sencillo dado que es
simplemente devolver un registro
del hardware del

microcontrolador).

Luego vemos como se anade
2 veces el sensor, sin la funcion de
iniciar lectura ((void*)0), a los se
les asigna la misma funcion de

lectura pero con diferentes

#ifndef DRVDIGITAL H

#define DRVDIGITAL H 1

#include "modSensor.h"

// Controlador De 16 entradas digitales
void DigitalStart (void);

// Funciones de lectura del compas
short Digital leer (unsigned short

,char*,char);
#endif

#include "drvdigital.h"

void DigitalStart (void) {
// Inicializacién

DDRA = 0;

PORTA = 0;

DDRC = 0;

PORTC = 0;

// Afiadir el sensor

sensorAttach ((void*) 0,

sDigital leer,"DINO1",0, SENSOR INTEGER) ;
sensorAttach ((void*) 0,

sDigital leer, "DINO2",1,SENSOR INTEGER) ;
}

short Digital leer (unsigned short
timestamp n,char* len,char param) {

(void) len;
(void) timestamp n;
if (param == 0) {
return PINA;
}
else {
return PINC;
}
}

paradmetros, esto permite escribir una sola funcion para diversos dispositivos.

118

En la funcién de lectura seglin el parametro devolvemos un valor u otro. Que
corresponde a un dispositivo u otro, este ejemplo es muy sencillo dado que no tenemos

que inicializar ningtin hardware especial.
Aniadir un grupo de Sonars.

El Sonar fabricado por devantech requiere un control mas complejo, inicialmente

se debe mandar la orden de iniciar lectura, esperar 65 milisegundos y después leer.

#ifndef DRVSONAR H
#define DRVSONAR H 1

#include "modSensor.h"
#include "i2cmaster.h"
#include "i2cdevices.h"

#define numReads 16

// Configura el Hardware y adjunta las funciones al médulo de
sensores.

void SonarStart (void) ;

// Funciones de lectura de los sonars

short Sonar iniciar (unsigned short timestamp n,char);
short Sonar leer (unsigned short,char* len,char);

short SoLuz_leer (unsigned short,char* len,char);

#endif

Como podemos observar en el fragmento anterior se declaran todas las funciones
disponibles para implementar un sensor, al ser un dispositivo 12C necesitamos acceso a
la libreria de funciones del 12C. Esto se consigue mediante la inclusion de
“i2cmaster.h”, para un mejor orden, las direcciones de los dispositivos se definen en
constantes en “i2cdevices.h”. La inclusion de “modSensor.h” es obligatoria ya que

contiene todas las herramientas para comunicar con el médulo de sensores.

La constante numReads nos permite configurar cuantos resultados seran leidos de
cada sonar, estos son capaces de proporcionar hasta 16 resultados en cada lectura, si se

desea limitar la cantidad leida podemos hacerlo modificando esta constante.

La funcion iniciar, que debe ser declarada y definida tal y como vemos en el
siguiente fragmento, dado que es el prototipo que espera el modulo de sensores. Iniciar

se encarga de enviar la orden de iniciar lectura al sonar.

119

short Sonar iniciar (unsigned short timestamp n,char num) {
temp = timestamp n - sonartstamp ch[(short)num];

if (temp > 68) {

i2c_writebyte (sonaraddr ch[(short)num],0,81); // modo distancia cm
sonartstamp ch[(short)num] = timestamp n; // nuevo timestamp

}

return 0;

}

Como podemos observar, el primer paso es comparar la marca de tiempo del
sonar en cuestion, para reducir cddigo redundante, se hace uso del parametro “num.”
que esta para utilizacion a discrecion del controlador, en este caso 1o usamos para

distinguir entre diferentes sonars.

Asi que la primera instruccion, calcula la diferencia entre la “fecha” del ultimo
acceso y la “fecha” actual, si la diferencia es de 68 milisegundos o mas entonces, se
enviara el comando via el bus I2C. Que se traduce a escribir en la direccion
sonaraddr_ch|[(short)num], registro 0, el valor 81, que indica segun la documentacion

del sonar, inicio de lectura.

Existen 2 funciones de lectura una para leer el resultado de la exploracion y otra
para leer el sensor de luz incorporado en el sonar, es casi la misma funcion, solo cambia
el valor devuelto, las dos aprovechan para leer los datos de la otra funcion de esta forma

se minimiza el acceso al bus 12C.

Los primeros pasos es recoger la direccion 12C, y la marca de tiempo del
dispositivo que toca en funcidon de num., si el tiempo es el adecuado, se lee en bloque
el valor del sensor de luz y después el numero de registros especificados en numReads

multiplicado por 2 dado que el bus 12C solo lee bytes, y cada registro es de 2 bytes.

La siguiente linea guarda el valor del sensor de luz que es un byte, el siguiente
bucle for prepara una cadena con los datos, los cambia base 36 de esta forma
minimizamos los datos a mandar por el puerto serie, los valores recibidos varian entre 3
y 600 eso en base 36 es como maximo 2 cifras, el bucle concatena un 0 por delante a los
datos que no tengan las 2 cifras, de esta forma se envia una cadena de hasta 32 bytes,

esta cadena es almacenada con los datos locales.

120

Para pasar esta cadena al modulo de sensores, se devuelve un puntero al arreglo
con la cadena de valores ya construida, y en el parametro len se devuelve la longitud de

esta,

El médulo espera este método de trabajo porque ha sido asi determinado en la

inicializacion.

short Sonar leer (unsigned short timestamp n,char* len,char num) {

char blogque[(numReads*2)+11];
char i;

short * a;

char addr;

addr = sonaraddr_ch[(short)num];

temp = timestamp n - sonartstamp chl (short)num];

if (temp > 68) {
// ha transcurrido el tiempo suficiente para leer

i2c_readblock(addr,1,bloque, (numReads*2)+1);

sonarvalue ch[(short)num] [0] = bloquel[(numReads*2)];

for (i=0;1i < numReads;i++) {

sonarvalue ch[(short)num] [(short) (i<<1)+1] = '0';
a = (short*)é&bloquel ((numReads*2)-2)-(i<<1)];
if (*a > 36) itoa(*a,é&sonarvalue ch[(short)num] [(i<<1)+1],36);

else itoa(*a, &sonarvalue ch[(short)num] [(i<<1)+2],36);

}

else {
//comprobar que no sea el cambio.. de 32767 a 0
if (temp < 0) sonartstamp chl (short)num] = timestamp - 60;
}
*len = (numReads*2);

return (short) &sonarvalue ch[(short)num] [1];

121

La funcion de leer el sensor de luz es practicamente igual solo que en lugar de
devolver el puntero y la direccion, devuelve un nimero entero de 16bits con el valor,
este cambio radical de funcionamiento para el mismo prototipo de funcién se configura

en la inicializacion.

short SoLuz_ leer (unsigned short timestamp n,char* len,char num) {

(void) len;
char bloque[(numReads*2)+11];

char i;

short * a;

char addr = sonaraddr ch[(short)num];
temp = timestamp n - sonartstamp ch[0];

if (temp > 68) {
// ha transcurrido el tiempo suficiente para leer

i2c_readblock(addr,1,bloque, (numReads*2)+1);

sonarvalue ch[(short)num] [0] = bloquel[(numReads*2)];

for (i=0;1i < numReads;i++) {

sonarvalue ch[(short)num] [(short) (i<<1)+1] = '0';
a = (short*)&bloquel ((numReads*2)-2)-(i<<1)];
if (*a > 36) itoa(*a,é&sonarvalue ch|[(short)num] [(i<<1)+1],36);

else itoa(*a,&sonarvalue_ ch[(short)num] [(i<<1)+2],36);

}

else {
//comprobar que no sea el cambio.. de 32767 a 0O
if (temp < 0) sonartstamp ch[(short)num] = timestamp - 60;

}
return O0xO00FF & sonarvalue_ ch[(short)num] [0];

}

El siguiente trozo de codigo contiene la inicializacion, se reserva memoria para
albergar las direcciones de los dispositivos (en este caso 3), luego espaci6 para el buffer

de datos leidos, y por ultimo tres enteros para guardar la marca de tiempo.

La funcioén de inicializacion comienza estableciendo los datos iniciales, poniendo
los buferes en un valor conocido, y recogiendo las direcciones de los dispositivos de las

constantes. , después envia una primera peticion de lectura para que los sensores se

inicialicen.

Y por ultimo y mas importante afiade los sensores al modulo de sensores,
podemos observar como los sensores de luz son afiadidos como sensores completamente

independientes de los de distancia.

122

#include "drvsonar.h"
char sonaraddr ch[3];
char sonarvalue ch[3]
short sonartstamp ch|

[(numReads*2)+2];
31;

short temp;

void SonarStart (void) {

for (temp = 0;temp < (numReads*2)+1;temp++) {
sonarvalue ch[0] [temp]=0;
sonarvalue ch[1l] [temp]=0;
sonarvalue ch[2] [temp]=0;

}

sonaraddr ch[0] = DevSRF08 1;
sonaraddr ch[1] = DevSRF08 2;
sonaraddr _ch([2] = DevSRF08 3;

// Una primera lectura:

// inicializar a modo de distancia en centimetros.
i2c _writebyte (sonaraddr_ch([0],0,81);
i2c_writebyte (sonaraddr ch[1],0,81);
i2c_writebyte (sonaraddr ch[2],0,81);

// Attach to sensor list

sensorAttach (&Sonar iniciar,
sensorAttach (&Sonar iniciar,

sensorAttach (&Sonar_iniciar,
sensorAttach (&Sonar iniciar,

&Sonar_ leer, "SOI1R", 0, SENSOR BINS) ;
&SoLuz_leer, "SO1L", 0, SENSOR INTEGER) ;
&Sonar_leer, "SO2R",1, SENSOR_BINS) ;
&SoLuz_leer, "SO2L",1, SENSOR INTEGER) ;
&Sonar leer, "SO3R", 2, SENSOR BINS) ;

(
(
sensorAttach (&Sonar_iniciar,
(
(
(

sensorAttach (&Sonar iniciar, &SoLuz leer, "SO3L",2,SENSOR INTEGER) ;

}

El primer pardmetro de sensorAttach, es la direccion de la funcion para iniciar la
lectura, el siguiente otro puntero esta vez a la funciéon de lectura, como podemos ver
esta es la que diferencia el sensor de luz del de distancia. El tercer pardmetro es un
nombre, estos son codigos alfanuméricos de 4 cifras que posteriormente es utilizado por
el modulo del Pyro para identificar los dispositivos. El nimero que ocupa el cuarto
parametro es el parametro num que hemos visto en las funciones anteriores, y mediante

esta diferenciamos entre los diferentes sensores.

El altimo parametro define el comportamiento del dispositivo, mientras que el
modo SENSOR_INTEGER simplemente espera un nimero entero devuelto por la
funcion de lectura, SENSOR_BINS, espera un puntero a un arreglo, de longitud el valor

puesto en len.

123

Informacion detallada del médulo Pyro

Uso y configuracién
El moédulo del robot consta de los siguientes ficheros:

e /pyrobot/robot/device.py, Aqui se han realizado modificaciones, para

poder crear la imagen que muestra la termopila.
e /pyrobot/robot/ari.py, El fichero principal, que implementa el robot.

e /pyrobot/robot/ARIConfig/ En esta carpeta se encuentran los ficheros
de configuracion que permiten diferentes distribuciones fisicas y

configuraciones de sensores.

e /pyrobot/plugins/robots/ARIL.py Este es el fichero de carga, este nos
mostrara una ventana para elegir el puerto serie y el fichero de

configuracion. Debemos arrancar el modulo desde aqui.

Los ficheros de configuracion simplemente crean una lista de tuplas global, estas

tuplas consta de 4 elementos que dan la configuracion a los diferentes dispositivos.

configuracion.append((''compas","C016",(0,40,15,0),0))
configuracion.append(("ptz","",(0,50,70,0),(1,0)))
configuracion.append(("ir","ADC3",(-30,-30,30,0),0))
configuracion.append(("'sonar","SO1R",(0,30,30,0),0))
configuracion.append(("light","SO1L",(0,30,30,0),0))
configuracion.append(("'sonar","SO2R",(30,30,30,-45),0))
configuracion.append(("'light",""'SO2L",(30,30,30,-45),0))
configuracion.append(("tpambient","TPAB",(0,30,15,0),0))
configuracion.append(("tparray"," TPDA",(0,30,15,0),0))

El primer pardmetro contiene la clase de dispositivo a la que va asociada la
informacion, el segundo parametro es el dispositivo de la unidad de control a la que va
asociado, el tercer parametro indica la posicion desde el centro del robot o el ultimo

dispositivo ptz, y el cuarto parametro debe ser siempre 0 excepto para el dispositivo ptz.

Por ejemplo el primer dispositivo es de la clase compas , tiene asignado los datos
del sensor de la unidad de control llamado CO16, esta posicionado segun la tupla del

tercer parametro, que indica lo siguiente (X, y, z, ,alfa) son las posiciones en milimetros

124

respecto del centro del robot , y alfa es la orientacion respecto el frente en grados, estos

datos son importantes, porque en funcion de ellos se calcula la abstraccion de “front” ,

“front-left” , “back”, que es la mas usada en el pyro.

Hemos de hacer un inciso especial en el dispositivo “ptz”, este dispositivo

controla 2 servomotores, y
ademas explota las
funcionalidades ya explicada
del barrido dentro de Pyro, en
lo que afecta a la
configuracion, hace que
cualquier otro dispositivo
declarado después de el se trate
como si estuviese montado en
el y su posicion serd relativa a
la posicion del ptz en lugar del

centro del robot.

Si encontramos otra

unidad de ptz esta no sera

Base de coordenadas para la orientacion de los

sensores en la configuracion.

montada encima de la anterior, si no que sera tratada como de otra unidad aparte, y todo

sensor declarado posteriormente pertenecera solo a esta unidad ptz.

El cuarto parametro de la unidad ptz son los dos servomotores de los que depende

la unidad para realizar su movimiento, el primer nimero es el servo asignado para

“Pan”, y el segundo niimero indica el servo asignado para tilt.

125

Clases AriRobot y ArilnputProcessor

Las clases AriRobot y la clase ArilnputProcessor son de las clases mas

importantes dentro del mddulo del robot.

La Clase AriRobot deriva de la clase robot, y sobre carga de la anterior los
siguientes métodos: __ init _ , setup, getitem , del , addDevice, translate, rotate

, move, startDeviceBuiltin, update.

En el constructor “ init ” simplemente guarda los parametros de configuracion
como variables locales al objeto, luego posteriormente Pyro invoca setup que es quien

busca y configura el sistema.

El primer paso es intentar conectar con la unidad de control, si no la encuentra
abortard la carga del médulo, el siguiente paso es cargar los dispositivos indicados en el
fichero de configuracién, se asigna todos los dispositivos de distancia al parametro
range, y por ultimo se inicializa ArilnputProcessor que es un thread que se encarga de

recibir y procesar toda la informacion recibida del la unidad de control.

La sobrecarga de getltem permite fusionar en la propiedad range del robot
diversos tipos de dispositivos de distancia, range, junto a move, translate y rotate,
son los métodos mas elementales que utiliza el pyro para recibir informacion de

distancia y moverse.

Otros métodos y propiedades permiten la generacion de datos intermedios , como
por ejemplo : la propiedad groupsbydegrees guarda una relacion entre los grupos de
posiciones y angulos de orientacidon, esta propiedad es principalmente usada por
getGroupsByDegreesDephase, para calcular la nueva tabla desfasada los grados que se
le pasen, esto es utilizado por los dispositivos y sensores para poder calcular el grupo al

que pertenecen.

Los métodos: readservo, timeattach, timedeattach, y read sirven a los
dispositivos para asignarse a una lista u otra , con timeattach y timedeattach , se
asignan o no a la lectura periddica, con readservo se asigna a la lectura sincronizada

con el servomotor que se le indique.

126

Por ultimo Ia funcién execute permite en envio de cualquier comando, es la inica
funcion que realizar salida real sobre el puerto serie, y esta arbitrada por seméforo para

evitar salidas incorrectas.

La clase ArilnputProcessor, recibe todo tipo de respuestas de la unidad de
control, este thread trata de mantener actualizados al ultimo instante los siguientes
diccionarios :sensorbyname, sensornamenumber, y las listas sensorbynumber,
sensornumbername. Los elementos sensornamenumber y sensornumbername
son simplemente relaciones entre los nombres y el nimero de sensor, donde realmente

se guardan los valores es en sensorbyname y sensorbynumber.

Clase PTZDevice

La clase PTZDevice es muy especial como hemos visto anteriormente, es la tnica
clase dispositivo final que no deriva de OwnDevice, esto se debe a su especial

funcionalidad.

Cuando los dispositivos son inicializados, estos reciben por su constructor un
parametro que indica a que unidad PTZDevice pertenece, si encuentran nulo este
parametro quiere decir que no pertenecen a ninguna, el siguiente paso es invocar
attachSensor del dispositivo ptz, de esta forma el dispositivo ptz puede mantener una

lista de los dispositivos que dependen de el.

Los métodos mas importantes en PTZDevice son : updateDevice y
generateGroups. En updateDevice se lleva a cabo la comprobacion de la
configuracidn de barrido, si todo sigue como hasta ahora no se realizara accion ninguna,
si no se invocara el método PTZupt de cada dispositivo en la lista de dependencia.
Estos invocaran generateGroups, con su angulo de desfase respecto de la unidad ptz,
generateGroups genera una tupla de 5 elementos, con listas y diccionarios con los
datos necesarios para poder “multiplicar” el sensor y que aparezca como un numero

mayor de sensores seglin los pasos.

El primer pardmetro devuelto por generateGroups es los angulos en que se
realizan las paradas del barrido por ejemplo: [-90, -45, 0, 45, 90],estos se utiliza para

saber donde almacenar la lectura actual en funcion de la posicion del servomotor.

127

El segundo parametro, es un diccionario que como indice tiene los angulos

anteriores, y como datos tiene el indice de posicion.

El tercer y cuarto parametro, son dos listas que contienen las coordenadas x e y
del sensor en cada paso, por ultimo el quinto parametro son los grupos “front”, “front-

left” etc.... con las posiciones segun se encuentren en el robot.
Clase OwnDevice

Como hemos visto hasta ahora en la clase anterior, hay una fuerte relacion entre
los dispositivos y la clase PTZDevice, para poder centralizar toda esta funcionalidad se
heredo la clase OwnDevice de la clase Device y se agregé la funcionalidad adicional,
de esta forma cualquier dispositivo nuevo heredara de OwnDevice toda la nueva

funcionalidad.

El método updateDevice mantiene actualizada la lista values, si no esta activado
el modo barrido o no se encuentra encima de una unidad ptz, es una lista donde solo la
posicion 0 sera actualizada, en caso contrario mantendra una lista de valores seglin la
posicidn del servomotor correspondiente. Hasta aqui los valores no son tratados ni

alterados, tal cual llegan se almacenan.

El método PTZupt actualiza los datos segiin la nueva configuracion del

dispositivo PTZupt.

El método getSensorValue es el que invoca el Pyro para leer el sensor, este
devuelve una clase llamada SensorValue esta clase aparte del valor de la lectura lleva

asociada toda la informacion geométrica de esta.

getSensorValue realiza una llamada a _getVal que es quien se encarga segln la

posicion de devolver el valor adecuado.

128

Dispositivos

Todos los dispositivos heredan de OwnDevice. Para implementar un dispositivo
simple, es tan sencillo como sobrecargar el constructor y el método _getVal , asi lo hace
por ejemplo el dispositivo CompasDevice, sobrecarga el constructor __init __ para

establecer valores de geometria relacionados con el sensor.

def __init__(self, dev,ptzdevice=None,sensorname="CO16",posxyza = (0,0,0,0),param =

Illl):

if ptzdevice = None :
raise AttributeError, "El Compas digital no soporta estar en una unidad pan & tilt"

Llamada al constructor de la clase heredada para inicializar.
OwnDevice.__init__(self, dev,ptzdevice,sensorname,posxyza,"compas")

self.arc = 180.0 * PIOVER180 # radians
self.units ="RAW" # current report units
self.radius = dev.radius # universally in METERS
ox, oy, oz in METERS as well

#
natural units (not alterable):
self.rawunits = "RAW"
self.maxvalueraw = 360.0 # in rawunits
#

La sobrecarga del método _getVal es también muy sencilla, por ejemplo en el
compas debemos dividir entre 10 el valor recibido, dado que para tener precision de
grado y evitar trabajar con numeros flotantes a bajo nivel los grados son representados

de 0 a 3600.

def _getVal(self, pos):
x = OwnDevice._getVal(self,pos)

if x:

return float(x)/10
else :

return O

El caso especial lo marcan aquellos dispositivos que devuelven resultados mas
elaborados, y complejos que un simple valor, para ello se cre6 la clase

OwnSensorValue.

129

OwnSensorValue, solo extiende a SensorValue, con la propiedad
rawValueList, donde se encuentra la lista de valores leidos, por ejemplo como ya se ha
comentado varias veces los sonars son capaces de responder con 16 resultados , pues
para mayor compatibilidad , seguimos pudiendo leer el valor mas cercano en value

pero también podemos leer los 16 en la propiedad valueList.

130

Apéndice lll
Herramientas
Instalacion y configuracion del entorno AVR Studio y FreeRTOS

Instalacion del AVR Studio.

Para instalar el Atmel AVR Studio, al menos en la version 4.12 que es la

empleada en el proyecto se necesitan 3 ficheros:
e aStudio4b460.exe Avr Studio 4.12 (build 460).
e aStudio412SP4b498.exe Avr Studio 4.12 Service Pack 4 (build 498).

e WinAVR-20060421-install.exe WinAVR (Compilador Gece para la
plataforma AVR).

Estos ficheros se encuentran en: /software/avr/ del disco del proyecto.

Instalar este software es muy sencillo primero instalamos el AVR Studio 4 y su
“Service Pack 4”, son unos pasos sencillos que simplemente escogemos el directorio de

destino en el primero.

Instalara el WinAVR [

también es Sencillo perO Seleccion de componentes @

Seleccione qué caracteristicas de WinAYR 20060421 desea instalar,

hemos de tener en cuenta
Margue los componentes que desea instalar v desmargue los componentes que no desea

que se encuentren marcados instalar, Presione Instalar para comenzar la instalacion.

todos los items de la

Seleccione los camponentes a Install Files

. . d ’ instalar: &dd Directories ko PATH (Recommended)
SlgUICHtC Ventana, S€ podria Add Shortcuts to Deskkop

Install Programmers Mokepad

omitir el altimo si se
quisiera, el WinAVR
Espacio requerido; 66, 7MB

detecta la instalacion del

Avr Studio y toma las

< Afras “ Instalar J [Cancelar

medidas pertinentes.

131

Instalacion del FreeRTOS.

El FreeRTOS viene en un paquete comprimido, simplemente es una estructura de
directorios que deberemos descomprimir en una carpeta, y anotar la ruta porque mas

adelante la necesitaremos.

La version utilizada del FreeRTOS es la 4.1.2, en el disco del proyecto puede

encontrarse en /software/freeRtos/FreeRTOSV4.1.2.exe.

Una vez descomprimido deberemos aplicar la modificacion para poder utilizar el
FreeRTOS con el AVR ATMegal28, esta se encuentra en /proyecto/FreeRTOS-
ATMEGA128/FreeRTOS —~ATMEGA128.zip. Este fichero simplemente se ha de

descomprimir en la misma carpeta que el FreeRTOS.
Instalacion y Configuracion de ARI.

El codigo fuente de ARI se encuentra en /proyecto/avr/ARI ATMEGA 128.zip
.Para instalarlo se debe descomprimir en una carpeta, una vez hecho esto abrirlo con el

AVR Studio 4 (fichero del proyecto RTOS.aps).

Este proyecto no usa el generador de makefile incorporado en Avr Studio 4, asi
que para cada fichero que creemos nuevo debemos agregarlo al makefile, después antes

de poder ponernos a trabajar, necesitamos indicar en el makefile la ruta del FreeRTOS.

Optimization level, can be [0, 1, 2, 3, s]. 0 turns off optimization.
(Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT=3

List C source files here. (C dependencies are automatically generated.)
ABSOLUTO = D:/Proyecto-Robot/FreeRTOS

DEMO_DIR = $(ABSOLUTO)/demo/Common/Minimal

SOURCE_DIR = $(ABSOLUTO)/Source

Modificacion personal para liberar timer1.

PORT_DIR = $(ABSOLUTO)/Source/portable/GCC/ATMega128

SRC =\
main.c \

Debemos sustituir el texto en negrita, por la ruta donde hemos instalado

FreeRTOS. Ahora el proyecto deberia compilar sin problemas.

132

Configuracion del ETT-AVR JTAG como Depurador

Una vez configurado el proyecto y seamos capaces de generarlo si errores, para

poder depurar y programar el dispositivo necesitamos configurar el AVR-JTAG.

Para utilizar el ET-AVR-JTAG en modo depuracion, debemos ir al menu Debug,

hacer clic en “Select Platform and Device”, nos aparecerd una ventana para seleccionar

una herramienta para programar y depurar

Select debug platform and dewvice-

Debug platform: Device:
JTAGICE mkll |ATEIUCAN128 !{}|
AWR Diragon ATmegal 206K :’ = |
ICE40 ATmegalk i
ICERD ATmegalB2
JTAG ICE 4= ATmegalB9
AVE Sirmulator ATmegad2
ICE200 ATmegadZ3

ATmegabd

]
Port: |99 LJ [~ Dpen platfarm options
Wer 412 438
Finigh I Cancel | Help J

Deberemos seleccionar la herramienta “JTAG ICE”, y el dispositivo final en
cuestion, en el caso de este proyecto el “A4Tmegal28”, seleccionamos el puerto serie

donde tengamos el ET-AVR-JTAG conectado y finalmente hacemos clic en “Finish”.

Para poder comprobar que todo sea correcto podemos probar en generar el
proyecto e iniciar la depuracion, para compilar, seleccionar la opcion “Rebuild all” del

menu “Build” y para iniciar la depuracion, la opcion “Start Debugging”, del menu

“Debug”. Sinos saliese esta ventana:

'Debiig platform connection’
® Could hot connect ko JTAG ICE
)IE| coml

Select F'Iatfolm‘ Select Part |

Quiere decir que no encuentra el dispositivo, el tipico fallo es que dado que el ET-

133

AVR-JTAG se alimenta de la placa de destino, no haber conectado la alimentacion.

En caso de que el funcionamiento sea correcto veremos en la barra de estado de la

aplicacion AVR-Studio el progreso de la operacion:

| 3 rasbafils | |1
'@.\WR [elal Q [0 View | Do '}@Euwld @ Message | ShFndin Files @ Breakpoints and Tracepoints
_ Loading program memory... ATmegal2d

Configuracion del ETT-AVR JTAG como Programador.

Aunque normalmente una vez en modo depuracion el programa ya es grabado, y
con solo abortar dicho modo, es suficiente para grabar el microcontrolador, los

siguientes pasos muestran como usar el ET-AVR-JTAG, como solo programador.

Seleccionando del mena “Tools” las opciones “Program AVR > Connect” , nos

mostrard la siguiente ventana que seleccionaremos las opciones igual que en modo

Iy
depuracion.
elect AVR Programmer @
Platform: Part
STKS00 or AVRISP Auta

(M

A%F Dragon COM4
COMS i

Tip: To auto-connect to the programmer used last time, press the 'Programmer’
button ar the toolbar,

Mote that the JTAGICE cannat be uzed for programming as long as it is
connected in a debugaing session. In that caze. select "Stop Debugging’ first,

Disconnected Mode:

La siguiente ventana muestra todas (- TP X)

. . . . L] P Fi LockBits | Ad d | Board | &
las opciones disponibles del dispositivo e [| (st el [Beerd [o |

Device

seleccionado, normalmente para |ATmega12s =] EseDevice

Frogramming mode
| j I Eraze Device Before Programming
Iv erify Device After Programming

programar el dispositivo, pulsando el

boton “Program” del panel “Flash” se

Flash

4 . .7 €5
grabara la ultima version del programa. & Input HEX File |D:\Prapecto Rlobol\AVAPraiects\HTOS\ATD .. |
Program | Werify Fead |

Para mas informacion de las EEPROM

-
configuraciones disponibles en las otras & Input HEX File [D:\Prapecto Riobol"AVRPrajects\ATOSAATD .. |
Program | Werify Fead |

pestafias consultar la documentacion del

microcontrolador [4].
Detecting on 'COM1"..

JTAG ICE found on COM1

Getting revisions.. HW: Oxcl, SW Major: 0280, 5 Minor: 0x00 .. OF

134

Instalacion de Python, Pyro y médulo de ARI.

Podria instalar versiones mas actualizadas de Python y Pyro pero por seguridad en
el disco del proyecto se incluyen las versiones utilizadas durante el desarrollo, esta estan

totalmente probadas.

Tanto Python como Pyro funcionan en entornos Linux, mejor dicho, es donde
mejor funcionan, la version de Windows de Pyro tiene gran parte de su funcionalidad
limitada o desactivada, aun asi se desarrollo en Windows por ser la herramienta habia
en su momento disponible, de todas formas gracias a la portabilidad de Python, el

modulo ARI del robot deberia funcionar a la perfeccion.
Instalacion de Python 2.4 y Médulos Accesorios
En /software/pyro/Windows/ se encuentran los siguientes ficheros.:
e Python-2.4.1.msi, Entorno Python 2.4.
e PIL-1.1.5.win32-py2.4.exe Python Image Library para Win32.
e Numeric.23.8.win32-py2.4.exe, Python Numeric Extensions para Win32.

e pyWin32-210.win32-py2.4.exe, Python Extensions for Microsoft

Windows.

La instalacion esta muy simplificada y no reviste mayor gravedad que elegir el
directorio de destino e ir pulsando con el raton en siguiente. Eso si el entorno Python

debe ser instalado antes que los demas.

135

Instalacion del entorno Pyro

La instalacion de Pyro es simplemente descomprimir el fichero del disco:

/software/pyro/Windows/pyrobot-windows-4.8.5.zip, en una carpeta.

Una vez realizado si esta Python correctamente instalado, Pyro deberia arrancar

ejecutando simplemente /bin/pyrobot.py.
Instalar ARL

El médulo Pyro de ARI se encuentra localizado en : /proyecto/pyro/pyrobot.zip .
Instalarlo es tan sencillo como descomprimirlo en la misma carpeta donde se encuentra

Pyro.

Para anadir una funcionalidad extra se modifico /robot/device.py que es parte de
Pyro, es posible que en versiones mas actualizadas de Pyro este fichero reciba
modificaciones, recomendable ante una posible actualizacion respetar el

/robot/device.py y simplemente afadir el siguiente codigo en negrita:

def addButton(self, name, text, command):

""Adds a button to the device view window.
self.widgets[name] = Tkinter.Button(self, text=text, command=command)
self.widgets[name].pack(fill="both", expand="y")

def addCheckbox(self, name, text, variable, command):
""Adds a checkbox to the device view window."""
self.widgets[name] = Tkinter.Checkbutton(self, text=text, variable=variable,

command=command)

self.widgets[name].pack(anchor="w")

def addLabel(self, name, text):
"""Adds a label to the device view window.
self.widgets[name] = Tkinter.Label(self, text=text)
self.widgets[name].pack(fill="both", expand="y")

def addCanvas(self,name,mwidth,mheight,mbg):
""Adds a canvas to the device view window."™"
self.widgets[name] = Tkinter.Canvas(self,bg=mbg,width = mwidth,height=mheight)
self.widgets[name].pack()
return self.widgets[name]

def updateWidget(self, name, value):
"""Updates the device view window.
try:

self.widgets[name+".entry"].delete(0,'end")
self.widgets[name+".entry"].insert(0,value)

except: pass

def addData(self, name, text, value):
""Adds a data field to the device view window."™
self.visibleData = 1
frame = Tkinter.Frame(self)
frame.pack(fill="both", expand="y")

136

RESUM:

En aquest projecte, s’ha dissenyat, construit y programat un robot autonom, dotat de
sistema de locomocio6 i1 sensors que li permeten navegar sense impactar en un entorn
controlat. Per a assolir aquests objectius s’ha dissenyat 1 programat una unitat de control
que gestiona el hardware de baix volum de dades amb diferents modes de operacio,
abstraient-lo en una Unica interficie. Posteriorment s’ha integrat aquest sistema en el
entorn de robotica Pyro. Aquest entorn permet usar i adaptar, segons es necessiti, eines

d'intel-ligencia artificial ja desenvolupades.

RESUMEN:

En este proyecto, se ha disefiado, construido y programado un robot auténomo, dotado
de sistema de locomocion y sensores que le permiten navegar sin impactar en un
entorno controlado. Para alcanzar los objetivos se ha disefiado y programado una unidad
de control que gestiona el hardware de bajo volumen de datos en diferentes modos de
funcionamiento, abstrayéndolo en una Unica interfaz. Posteriormente se ha integrado
este sistema en el entorno de robotica Pyro. Este entorno que permite usar y adaptar

segun sea necesario, herramientas de inteligencia artificial ya desarrolladas.

ABSTRACT:

In this project, an autonomous robot has been designed, built and programmed. It is
equipped with a locomotion system and sensors that allows it to navigate without crash
on a controlled environment. To achieve this goal a control unit was designed and
programmed, it is able to manage hardware with low data rate and has different working
modes, it abstract all these thing on a unique interface. Later the platform was integrated
into a robotic environment called Pyro. Such environment allows the use and

customization of already done artificial intelligence tools.

137

