

PLATAFORMA COMPUTING@HOME

Memoria del Proyecto Final de Carrera

de Ingeniería en Informática

realizado por

Carlos Moreno Losada

y dirigido por

Miquel Àngel Senar Rosell

Bellaterra, 13 de Junio de 2008

Escola Tècnica Superior d’Enginyeria

El abajo firmante, Miquel Àngel Senar Rosell

Profesor/a de la Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el trabajo al que corresponde esta memoria ha sido realizado bajo su
dirección por Carlos Moreno Losada

Y para que conste firma la presente.

Firmado:

Bellaterra, 13 de Junio de 2008

Dedicado a mi familia por su apoyo incondicional,

a Miquel Àngel por su ayuda inestimable

y a Eduardo por creer en mi.

Para María, porque sin ella nada de esto sería posible.

Nunca os lo podré agradecer lo suficiente.

Carlos Moreno Losada.

CAPÍTULO 1 - INTRODUCCIÓN .. 6

1.1 - ANTECEDENTES .. 7

1.2 - OBJETIVOS .. 12

1.3 - GESTIÓN DEL PROYECTO ... 15

1.3.1 - Planificación de tiempos... 15

1.3.2 - WBS del proyecto.. 15

1.3.3 - Diagrama de Gantt ... 17

1.4 - ESTRUCTURA DE LA MEMORIA .. 18

CAPÍTULO 2 - FUNDAMENTOS TEÓRICOS... 19

2.1 - SISTEMAS DISTRIBUIDOS .. 20

2.2 - CONDOR.. 26

2.2.1 - Características.. 27

2.2.2 - Arquitectura de Condor .. 30

2.2.3 - Daemons ... 32

2.2.4 - Matchmaking con ClassAds.. 34

2.3 - BOINC ... 35

2.3.1 - Características.. 36

2.3.2 - Aplicaciones ejecutables por BOINC ... 38

2.3.3 - Arquitectura .. 39

2.3.4 - Sistema de créditos ... 44

CAPÍTULO 3 - ARQUITECTURA Y REQUISITOS.. 47

3.1 - ARQUITECTURA DEL SISTEMA ... 48

3.2 - IMPLEMENTACIÓN... 51

3.2.1 - Facilidad de instalación ... 51

3.2.2 - Seguridad .. 52

3.2.3 - Limitación de usuarios... 53

3.2.4 - Aplicación BOINC .. 54

3.2.5 - Workunits .. 55

CAPÍTULO 4 - IMPLEMENTACIÓN Y EXPERIMENTACIÓN................................... 58

4.1 - INSTALACIÓN .. 59

4.1.1 - Condor .. 60

4.1.2 - BOINC... 62

4.2 - PROGRAMACIÓN DE CONDOR_WRAPPER ... 65

CAPÍTULO 5 - CONCLUSIONES Y LÍNEAS FUTURAS... 68

CAPÍTULO 6 - BIBLIOGRAFÍA .. 71

Plataforma Computing@home

Pág. 6

Capítulo 1 - Introducción

Hace unas décadas, los científicos utilizaban grandes supercomputadoras (o

mainframes) para procesar tareas computacionales. Aquellos superordenadores no

tenían un gran rendimiento, pues ejecutaban los trabajos secuencialmente y los

científicos tenían que esperar su turno para poder utilizar los recursos. Cada uno de

ellos disponía de una cantidad de tiempo determinado para utilizar la potencia de

cálculo del superordenador. Tiempo más tarde se pudieron utilizar entornos

multiusuarios, en los que no hacía falta esperar un turno para la utilización del

superordenador, pero los recursos del superordenador eran limitados y muchas

veces los procesos quedaban paralizados hasta que otros procesos con mayor

prioridad finalizaban. Estas supercomputadoras tenían un coste elevado y no se

rentabilizaban lo necesario para paliar el coste, pero por otro lado éstas estaban

utilizadas cerca del 100%, o sobreutilizadas.

Nuevas generaciones de ordenadores personales con renovados diseños y

prestaciones que mejoraban y aumentaban generación tras generación, aparecieron

en el mercado y por cuestiones de privacidad, rapidez y reducción de costes, los

Plataforma Computing@home

Pág. 7

usuarios pasaron de utilizar los mainframes a los ordenadores personales. Mientras

los costes habían sido reducidos enormemente y los usuarios estaban cada vez más

satisfechos con su ordenador personal, los recursos habían sido distribuidos y la

capacidad de cómputo global había decrecido dramáticamente, ya que cada

ordenador personal suponía una ínfima parte de procesamiento comparado con los

superordenadores anteriormente utilizados. Además en los ordenadores personales

se perdían grandes cantidades de ciclos de computación ociosos sin realizar trabajo

alguno, que si se sumaran en un objetivo común podrían aumentar la capacidad de

cómputo.

Cada vez los problemas científicos a resolver se vuelven más complejos y requieren

de una gran capacidad de cómputo. Actualmente, un ordenador en solitario no es

capaz de poder resolver este tipo de problemas, pero la unión de varios de estos

ordenadores trabajando sobre partes estructuradas del problema pueden generar

resultados útiles.

Para poder realizar estas tareas se han creado sistemas de computación distribuida.

Estos sistemas permiten la distribución de tareas entre los diferentes recursos que

están conectados al sistema para ejecutarlas.

En este proyecto veremos dos sistemas de computación distribuida muy diferentes

entre ellos: Condor y BOINC, pero que trabajando conjuntamente pueden alcanzar

objetivos comunes.

1.1 - Antecedentes

Diversos proyectos científicos actuales necesitan de una alta cantidad de recursos

para ejecutar los trabajos creados en el proyecto. A menudo, estos trabajos

necesitan ser procesados durante días o incluso varias semanas, y son necesarios

sistemas que permitan controlar estos procesos durante el largo tiempo que se están

ejecutando. Estos entornos que son capaces de gestionar una gran cantidad de

Plataforma Computing@home

Pág. 8

recursos ejecutados durante un largo lapso de tiempo son llamados High Throughput

Computing (HTC).

En contraposición, encontramos los entornos High Performance Computing (HPC),

que gestionan una gran cantidad de recursos para ejecutar procesos durante

tiempos cortos. Su interés reside en ejecutar el máximo de procesos lo más rápido

posible, mientras que los entornos HTC son más proclives a buscar el máximo

número de aplicaciones ejecutadas durante un intervalo de tiempo largo.

El punto clave que los entornos HTC buscan es la eficiente gestión de los recursos

disponibles, intentando ejecutar los procesos durante el tiempo que fuera necesario

para llegar a la finalización de los trabajos y obtener resultados.

Condor es un software que crea un entorno HTC para la ejecución de trabajos.

Puede gestionar clusters de ordenadores dedicados, comunicados por una red de

área local, utilizando el máximo rendimiento de la capacidad de cómputo disponible

que ofrecen los ordenadores.

Condor fue diseñado en la Universidad de Wisconsin-Madison y es un sistema

ampliamente utilizado en diversos lugares para gestionar clusters de ordenadores.

Como ejemplo, tenemos la misma Universidad de Wisconsin-Madison, donde reside

el primer sistema Condor implementado y que gestiona más de 1.000 ordenadores

que ejecutan proyectos científicos constantemente.

Dentro de los proyectos científicos existen trabajos que requieren ejecutarse varios

cientos de veces durante un periodo amplio de tiempo. Este tipo de proyectos

requieren entornos de computación HTC como Condor, que puede ejecutar un

trabajo cientos o miles de veces, con cientos y miles de conjuntos de datos a la vez,

ahorrando tiempo al lanzarlo. Con una sola orden todos los trabajos son enviados a

Condor y dependiendo del número de ordenadores que pueden ejecutarlos, los

procesos quedarán en cola esperando donde ejecutarse. El tiempo de ejecución y

de espera puede ser extenso, pero Condor se encargará de la gestión de los

trabajos hasta su finalización.

Plataforma Computing@home

Pág. 9

Condor proporciona una gestión de recursos potente, gracias al matchmaking de

recursos que realiza. Este es el éxito de un entorno HTC como Condor. Éste hace

coincidir los productores de recursos con los consumidores de los mismos ,

adaptando los requisitos al máximo.

Otros sistemas de gestión de recursos utilizan colas de trabajos diferentes

dependiendo de las características especiales asignadas a cada cola y son ellos

mismos los que añaden propiedades a las colas de trabajos al instante, generando

confusión al usuario sobre qué cola se debe usar, por los cambios realizados en las

propiedades, para satisfacer ciertas demandas de otros usuarios.

Condor, en cambio, implementa el sistema ClassAd, que proporciona un diseño

claro que simplifica el envío de trabajos por parte del usuario y la sencillez para

encontrar el ordenador adecuado para ejecutar el proceso. Los ClassAds son un

método eficaz para poder planear la ejecución de procesos como, por ejemplo, la

implementación de diversos procesos capaces de diseñar grafos acíclicos de

ejecución.

Figura 1 - Representación del sistema de matchmaking

Condor puede ser usado para construir entornos de computación de estilo Grid que

atraviese los límites administrativos y proporciona herramientas para incorporar

Plataforma Computing@home

Pág. 10

estos sistemas, como puede ser el caso de la tecnología flocking, que permite que

diversos sistemas Condor trabajen conjuntamente, o la interacción con Globus.

Otro sistema de computación es BOINC (Berkeley Open Infrastructure Network

Computing) y es una infraestructura de computación distribuida y voluntaria. El

sistema permite que un usuario pueda instalarse un cliente fácilmente y se registre

en proyectos que utilizan la infraestructura BOINC para colaborar con ellos.

La instalación del cliente BOINC es sencilla de realizar sea cual sea la arquitectura y

el sistema operativo usado, ya que BOINC se encuentra disponible para una gran

variedad de sistemas operativos y arquitecturas de computadores. Cada uno tiene

su propio sistema de instalación, pero la infraestructura BOINC está pensada para

que el público en general ayude en los proyectos y por lo tanto se facilitan los

procesos para poder colaborar. Esta colaboración se consigue atrayendo a los

usuarios con proyectos de gran interés general y de añadidos como salvapantallas o

skins que permiten adaptar el cliente según los gustos de cada usuario.

Figura 2 - Salvapantallas del proyecto ClimatePredi ction.net

Plataforma Computing@home

Pág. 11

Una vez instalado el cliente y registrado el usuario en el proyecto que ha elegido, se

utiliza el tiempo que el ordenador está ocioso para ejecutar el proyecto en el que se

ha suscrito. Los proyectos suelen ser de investigación científica que requieren de

sistemas de computación masiva y buscan la colaboración de voluntarios para poder

ejecutar sus tareas.

Se trata de un sistema voluntario, ya que el usuario dona sus recursos

voluntariamente para ejecutar las tareas de los proyectos a los que se ha registrado,

donando su tiempo ocioso de procesador para ejecutar los procesos de los

proyectos BOINC. Si el proyecto no funcionara por algún motivo, los recursos que el

usuario ha asignado en su ordenador para ese proyecto se repartirían entre el resto

de proyectos.

Proyectos BOINC son, por ejemplo:

- El proyecto SETI, el cual se dedica, básicamente, a la búsqueda de vida

extraterrestre analizando las señales que la NASA capta en sus antenas.

- El proyecto FightAIDS@home, que centra su trabajo en el descubrimiento

de diferentes partículas que ayuden a la lucha contra el SIDA.

- El proyecto CancerResearch@home, que usa la computación voluntaria

distribuida para la investigación contra el cáncer.

- El proyecto Rossetta. Este proyecto investiga proteínas en 3D que puedan

encontrar una solución a enfermedades mundiales como por ejemplo el

cáncer o el Alzheimer.

- El proyecto Einstein@home investiga pulsars en las señales recibidas en

los laboratorios que estudian las estrellas.

- El proyecto ClimatePrediction.net estudia el cambio climático añadiendo

miles de modificaciones para comprobar como se comporta el sistema.

Un mismo usuario mediante su cliente BOINC instalado puede colaborar con

diversos proyectos, no teniendo que restringirse solamente a uno, compartiendo el

tiempo de proceso entre los diferentes proyectos a los que el usuario está suscrito.

Plataforma Computing@home

Pág. 12

1.2 - Objetivos

Los sistemas de computación distribuida son diversos y cada uno aporta una

solución a un tipo de problema concreto.

Condor actúa sobre clusters de ordenadores, proporcionando sistemas generalistas

de altas funcionalidades, gestionando de manera eficiente y fiable los procesos a

ejecutar en ordenadores que dedican su tiempo a la ejecución masiva de proyectos.

BOINC, en cambio, realiza una computación intensiva de proyectos creados

atractivamente para el público, creados con el fin de ser resueltos mediante la

computación voluntaria en una infraestructura sencilla y configurable donde

cualquier usuario doméstico puede colaborar.

Como se puede ver, cada sistema está diseñado para obtener la misma finalidad

pero de diferentes formas, desde diferentes puntos de vista.

En este proyecto se explorarán las posibilidades que existen de aproximar ambos

sistemas y conseguir que los sistemas de gestión de clusters HTC, como Condor,

tengan la posibilidad de incluir sistemas de computación voluntaria como BOINC,

para poder ejecutar trabajos controlados por un gestor de recursos fiable y seguro

en ordenadores voluntarios de usuarios domésticos, los cuales donan sus ciclos de

CPU desinteresadamente mediante una infraestructura flexible y llamativa.

Iniciamos parte de la idea con un conjunto de recursos Condor, donde los usuarios

pueden enviar sus tareas a ejecutar y el sistema Condor las gestiona asignándolas

a los diferentes recursos.

BOINC, por su parte, dispone de su infraestructura en la que las tareas del proyecto

a ejecutar se reparten entre los usuarios registrados en el proyecto.

Se busca la opción de poder enviar trabajos Condor que puedan ser ejecutados en

ordenadores externos al ámbito del gestor y que colaboren en un proyecto BOINC

creado para este fin.

Paralelamente se conseguirá aumentar el número de recursos del pool para poder

ejecutar más tareas a la vez, permitiendo que los usuarios reciban la solución de sus

Plataforma Computing@home

Pág. 13

múltiples tareas con mayor celeridad. Una segunda vía de pensamiento es la opción

de que diversos usuarios requieran de un número de recursos para ejecutar sus

tareas que el pool no las pudiera ofrecer por la limitación de recursos. Esta

estructura nos limita a ejecutar tareas que requieran el número máximo de recursos

que dispone el pool.

En buena parte se quiere incrementar el número de recursos, pero este incremento

no es sencillo de realizar. Dentro de las posibles soluciones se sabe que se realizará

un incremento dinámico de recursos, pues se conoce que la computación voluntaria

dispone de un contratiempo como es la volatilidad de las conexiones de los

ordenadores al sistema. Estas conexiones dinámicas se deben tener en cuenta, ya

que si un proceso necesita de una fiabilidad del 100%, con este método no se podrá

ofrecer por su volatibilidad.

Se intentará encontrar una solución para el incremento de recursos del pool de

Condor, añadiendo máquinas externas voluntarias, pero existen ciertos problemas o

requerimientos a cumplir:

• Un problema que pudiera surgir sería que el sistema añadiera recursos

externos y éstos pudieran generar problemas de seguridad al no encontrarse

en un entorno seguro. En principio, el sistema no está limitado a un conjunto

de usuarios restringido y los entornos que se pueden añadir pudieran ser muy

diversos. Se debe tener en cuenta la seguridad del sistema, eliminando

aquellos riesgos potenciales que se puedan detectar, minimizando el efecto

de los riesgos que surgieran y que no hubieran sido detectados. En cierta

forma deberíamos cuidar tanto el sistema como el entorno en el que se

encuentra el sistema, impidiendo que dejase de funcionar por completo si se

produjera algún problema de seguridad.

• Otro requisito impuesto para la solución del problema es la facilidad,

accesibilidad, y transparencia que el usuario externo debe tener para poder

colaborar en la ejecución de las tareas. El sistema de adición de recursos al

proyecto debería ser accesible para el mayor número de público interesado,

Plataforma Computing@home

Pág. 14

fácil de instalar y de poner en funcionamiento, proporcionando una

transparencia al usuario en el momento de la ejecución para no entorpecer el

trabajo del mismo. Como se trata de un sistema dinámico, éste debe ser

flexible tanto a la hora de añadir recursos como de sustraerlos.

• Un sistema de estas características debería poder aportar una fiabilidad para

que las tareas se ejecutaran en un tiempo razonablemente finito y que se

pudiera obtener el resultado de tal ejecución. Sin este sistema de fiabilidad

podría darse el caso que las tareas fueran enviadas a recursos que

desaparecieran del pool y que nunca más pudieran volver a conectarse. El

usuario emisor de la tarea nunca recibiría el resultado, podría incluso retardar

otras tareas que necesitasen de este resultado o hacerlas fracasar por no

ejecutarse en un tiempo dado. Algún mecanismo implementado debería evitar

estas situaciones, aunque si bien podría ser tolerable algún fallo que algún

recurso pudiera generar, restableciendo la ejecución en otro recurso. Esta

tolerancia y transparencia de fallo debería ser inapreciable por parte del

usuario emisor de la tarea.

• En algunas ocasiones la apertura de los sistemas a un mayor número de

usuarios puede provocar que los componentes centrales del sistema queden

bloqueados por saturación. Este es un problema típico de las redes y de los

servidores que gestionan varios cientos o miles de recursos. Como el sistema

no indica un número máximo de recursos que se pueden gestionar,

deberemos limitar el acceso a recursos que pretendan añadirse al sistema,

para impedir la saturación del mismo y sus componentes.

• Otro aspecto importante es la gestión concurrente y las comunicaciones entre

las diferentes tareas. Para facilitar el proyecto se realizarán pruebas en las

que las tareas carecen de comunicación alguna con otras semejantes u otros

recursos ajenos al sistema. Esto nos proporcionará un primer paso que

indique la viabilidad del proyecto.

Plataforma Computing@home

Pág. 15

1.3 - Gestión del proyecto

1.3.1 - Planificación de tiempos

La planificación de tiempos está marcada por las tareas a desarrollar y los hitos a

conseguir. Las tareas se dividen en lo que se llama la Work Breakdown Structure

(WBS) y especifica de la manera más concreta posible las tareas a realizar y la

distribución de tiempos dependiendo de la interacción que tengan entre ellas. Como

resultado de todo este estudio, podemos ver el diagrama de Gantt resultante que

nos ayuda a conocer el estado del proyecto en un momento determinado, pudiendo

decidir si son necesarias acciones correctivas en el proyecto para poder llevarlo a

cabo en los tiempos determinados.

Se mostrará y describirá brevemente cada una de las fases que hemos generado

para la planificación del proyecto y se pasará a la visualización del diagrama de

Gantt correspondiente al proyecto.

1.3.2 - WBS del proyecto

• Análisis del problema: Este es un apartado previo a la implementación del

proyecto. Este análisis es necesario para idear la solución más óptima al

problema que tenemos.

• Instalación Condor: Se trata de la instalación del sistema Condor del testbed

que nos servirá para realizar las pruebas de funcionamiento. También incluye

las pruebas realizadas sobre el mismo sistema que determinan su

funcionamiento correcto.

o Configuración servidor Condor

o Configuración cliente Condor

o Creación aplicación prueba Condor

o Pruebas funcionamiento aplicación Condor

o Creación cortafuegos para Condor

• Instalación BOINC: El testbed necesita también de un pequeño sistema

BOINC que ayude a realizar las tareas de prueba. Se añaden las pruebas a

Plataforma Computing@home

Pág. 16

realizar para conocer el funcionamiento del sistema y la posterior

comprobación del mismo.

o Configuración servidor BOINC

o Configuración cliente BOINC

o Creación proyecto prueba BOINC

o Pruebas funcionamiento proyecto BOINC

o Creación cortafuegos para BOINC

• Condor + BOINC: La unión de estos dos sistemas nos proporcionará la

realización del proyecto. Se debe configurar Condor encapsulándolo como

tarea a ejecutar de BOINC. Se creará un proyecto de BOINC con la tarea

realizada y se realizarán las pruebas anteriores que puedan ayudar a la

comprobación.

o Creación proyecto Condor en BOINC

� Configuración condor_config

� Encapsulado BOINC de paquete Condor

o Creación de proyectos BOINC

o Pruebas funcionamiento proyecto

o Creación cortafuegos para proyecto

• Documentación: Se realizará la escritura de la documentación pertinente al

proyecto.

• Presentación: Se realizará la presentación pública del proyecto.

Plataforma Computing@home

Pág. 17

1.3.3 - Diagrama de Gantt

Figura 1 - Diagrama de Gantt

Plataforma Computing@home

Pág. 18

1.4 - Estructura de la memoria

La estructura de la memoria se repasará en esta sección, los diferentes capítulos

que veremos y el contenido de los mismos.

El capítulo 2 trata los fundamentos teóricos necesarios y los métodos utilizados para

entender y comprender el trabajo realizado. Estos conceptos engloban las bases

teóricas del proyecto.

Los puntos a ver son los sistemas distribuidos y su clasificación, el sistema Condor,

un sistema HTC ampliamente utilizado en diversos proyectos, y el middleware

BOINC, una infraestructura creada para la computación voluntaria de proyectos.

El capítulo tercero está dedicado a los problemas surgidos durante la ejecución del

proyecto y se verán las soluciones tomadas en cada momento para cada problema.

De esta forma se repasará el cumplimiento de los requisitos iniciales del proyecto.

Se han contemplado las arquitecturas de los sistemas en los que está basado el

proyecto, y se mostrará la arquitectura del sistema y la implementación desarrollada

del proyecto.

El cuarto capítulo mostrará la instalación de los entornos de pruebas que fueron

necesarios para poder ejecutar el proyecto y la experimentación realizada en ellos.

En este apartado se dará una solución pragmática a las implementaciones

anteriormente explicadas.

El capítulo 5 consta de los apartados correspondientes a las conclusiones obtenidas

en el trabajo realizado y las líneas futuras que el proyecto abre a nuevas

extensiones. Éstas son importantes para conocer el alcance obtenido con el

proyecto respecto a las posibilidades del conjunto del trabajo.

Plataforma Computing@home

Pág. 19

Capítulo 2 - Fundamentos teóricos

La computación distribuida es un modelo de computación que ayuda a resolver

problemas de computación masiva y que utiliza, en su gran medida, un número

elevado de ordenadores para resolver problemas que requieren un alto índice de

computación.

El proyecto desarrollado está basado en sistemas de computación distribuida. Éstos

son un modelo utilizado en diversas áreas para resolver grandes retos que requieren

un alto índice de computación, como la física, la biología molecular, la medicina o la

meteorología.

Estos grandes retos pueden ser, por ejemplo, el plegamiento de proteínas, el

descubrimiento de nuevos medicamentos, la simulación de terremotos o

inundaciones, la simulación financiera o el estudio de un tema habitual hoy en día, la

creación de modelos climáticos, realizando cálculos de sistemas que estudian

modelos de los posibles efectos del calentamiento global del planeta.

Plataforma Computing@home

Pág. 20

Todos estos ejemplos tienen en común la necesidad de utilizar computación

masiva, la cual puede ser llevada a cabo de diferentes formas que veremos a

continuación.

2.1 - Sistemas Distribuidos

Cuando se piensa en la ejecución de grandes proyectos se suele pensar en un

superordenador que ejecuta incesantemente todos los trabajos. Ciertamente, una de

las formas de realizar computación masiva es el uso de un supercomputador que

pueda procesar las tareas suministradas por el proyecto. Afortunadamente no es la

única manera de llevar a cabo esta tarea. Cuando este supercomputador no se

puede hacer cargo del trabajo o si no se dispone de un supercomputador por los

costes que éste implica, se utilizan sistemas distribuidos que ayudan a realizar los

cálculos requeridos para resolver los trabajos.

Este es el objetivo por el cual la computación distribuida fue diseñada, permitiendo

además de la ejecución de estas tareas, la flexibilidad para poder trabajar en

múltiples problemas más pequeños que ayuden colateralmente a resolver grandes

problemas y obtener un rendimiento mayor del conjunto global que compone el

sistema.

Dentro de la computación distribuida existen diferentes tipos de sistemas que

requieren de sus necesidades. Algunos de ellos son:

• La existencia de servicios web XML nos proporcionan servicios y

aplicaciones que pueden ser accedidos para utilizar entornos distribuidos.

Estos servicios web XML están regidos por un estándar llamado Open Grid

Services Architecture (OGSA). Este estándar es el utilizado por Globus

Toolkit en su versión 3.0.

• La computación de ciclos redundantes o también llamada computación

zombie está compuesta por un servidor o grupo de servidores que

distribuyen tareas para ser procesadas entre los diferentes sistemas

voluntarios que se han adjuntado para colaborar en la ejecución del

Plataforma Computing@home

Pág. 21

proyecto. Los ordenadores voluntarios ejecutan estas tareas cuando se

encuentran ociosos, no interfiriendo en la ejecución y uso del ordenador

por parte del usuario. De esta manera, se dona a la ejecución de los

proyectos los ciclos redundantes, aprovechando al máximo la capacidad

de procesamiento del ordenador.

• Los clusters de ordenadores son un conjunto de ordenadores de bajo

coste relativo, unidos entre si por una red local de alta velocidad. Todo el

cluster de ordenadores suele disponer del mismo sistema operativo y de

un software que permite la ejecución de tareas distribuidas y establece las

comunicaciones entre los diferentes elementos del cluster. Otro dato típico

de los clusters de ordenadores suele ser la existencia de un único sistema

de almacenamiento compartido.

• Los sistemas Grid son un paradigma de la computación distribuida

aparecido en las últimas décadas. Estos sistemas disponen de un número

indeterminado de ordenadores dedicados, que funcionan como si se

trataran de uno único. Esta unión se realiza de manera transparente,

generando a la vista del usuario un único recurso que pueda ejecutar las

tareas requeridas, aunque estos ordenadores se encuentren ubicados en

diferentes lugares geográficos. Para llevar a cabo estas funciones se suele

utilizar un software determinado que permite las comunicaciones entre

ordenadores, la gestión de almacenamiento de datos y el envío de

trabajos, entre otras tareas. Uno de los softwares más famosos para crear

estos sistemas es Globus. Globus es un middleware con el que se puede

crear un sistema Grid. Permite gestionar y descubrir los recursos, así

como el control del almacenamiento de datos.

La existencia de diferencias entre los sistemas distribuidos permiten clasificarlos de

diversas formas, entre ellas encontramos la homogeneidad de los sistemas o la

localización de los mismos.

Por ejemplo, los sistemas llamados Single System Image (SSI), donde todos los

recursos computacionales disponen del mismo sistema operativo diseñado

expresamente para permitir trabajar en un entorno distribuido. Ejemplos de estos

SSI son DragonFly BSD, Mosix/Open Mosix o Open SSI. En contraposición

Plataforma Computing@home

Pág. 22

encontramos sistemas Grid donde la heterogeneidad de los sistemas es muy alta,

pudiendo encontrarse dentro de un mismo sistema Grid diferentes clases de

sistemas operativos.

Otro ejemplo de clasificación es la localización de los elementos, como los clusters

de ordenadores que se encuentran localizados dentro de la misma ubicación,

conectados mediante una red local de alta velocidad que conecta todos los recursos,

mientras que en un sistema Grid los ordenadores se encuentran ubicados en

diferentes lugares del mundo, pudiendo comunicarse a través de Internet.

Estas clasificaciones se pueden ampliar con la visión que el usuario tenga del

sistema. Un cluster, por ejemplo, utiliza todos los ordenadores buscando mejorar el

rendimiento de todos ellos, mientras que en los sistemas Grid el englobe total de

ordenadores quiere ofrecer la visión al usuario de un superordenador, suplantando

los elementos dispersos.

Otro aspecto importante en los sistemas distribuidos es la fiabilidad del sistema. Se

puede dar una alta fiabilidad, como en los sistemas Grid, donde el mal

funcionamiento de un nodo o recurso no implica el paro del sistema, pudiendo

servirse de otros recursos del Grid, o una fiabilidad baja, que puede ser, por ejemplo,

un cluster de ordenadores donde el mal funcionamiento de un recurso puede

provocar la parada del sistema completo.

Diversa literatura incluye los sistemas oportunistas de computación voluntaria como

una clase de sistemas de computación distribuida Grid, aunque la computación

voluntaria difiere de la computación Grid, porque esta última involucra la gestión de

recursos dentro y entre organizaciones virtuales. En cambio la computación

voluntaria no requiere de esta organización. Se podría considerar un sistema Grid

cuando se organiza los recursos por proyectos, realizando una similitud con las

organizaciones virtuales. Por este motivo veremos los sistemas Grid y

posteriormente los sistemas de computación voluntaria.

El término Grid fue acuñado por Ian Foster y Carl Kesselmans en los principios de

los años 90 en un seminario llamado The Grid: BluePrint for a new Computing

Infrastructure. Este seminario desembocó en un libro con el mismo nombre.

Plataforma Computing@home

Pág. 23

Los autores buscaban una metáfora para comparar la facilidad de acceso de este

método de computación a la red de suministro eléctrico. De aquí se extrajo el

vocablo inglés Grid que sirve para denominar estos sistemas de computación.

El término Grid Computing dispone de dos acepciones en el diccionario tecnológico

que engloban dos subcategorías de sistemas distribuidos:

� Grid es la computación online o el almacenamiento ofrecido como servicio

soportado por un conjunto de recursos distribuidos, conocidos también

como utilidad de computación , computación bajo demanda o cluster

computacional. Existen Grids de almacenamiento de datos que proveen el

control para el almacenaje de grandes cantidades de datos que pueden

ser compartidos. Estos Grids suelen ofrecer apoyo a los Grids

computacionales.

� Los sistemas Grids buscan la creación de un “superordenador virtual”

compuesto de una red de ordenadores conectados, ejecutando

conjuntamente tareas de gran tamaño que no podrían ser ejecutadas por

ordenadores en solitario. Estos sistemas se han utilizado para ayudar en el

área de computación científica intensiva, matemática y resolver problemas

académicos a través de la computación voluntaria. También se han

aplicado sobre sistemas comerciales como por ejemplo la pronosticación

económica, el descubrimiento de drogas y medicamentos o el

procesamiento de datos en back-office para el soporte al comercio

electrónico y servicios web.

En esta segunda definición encontramos una referencia a los sistemas de

computación voluntaria, que son un tipo de sistemas de computación distribuida en

la cual los propietarios de ordenadores, habitualmente domésticos, donan sus

recursos informáticos (almacenamiento, procesamiento) voluntariamente para

ejecutar tareas de uno o más proyectos.

Plataforma Computing@home

Pág. 24

El primer proyecto de computación voluntaria conocido fue el Great Internet

Mersenne Prime Search, que se inició en enero de 1996. En años sucesivos

surgieron otros proyectos como Superweb, Popcorn, Charlotte o Bayanihan.

El desarrollador de este último proyecto, Bayanihan, fue quien acuñó el término

“computación voluntaria”, Luis F.G. Sarmenta.

El software cliente de los primeros proyectos de computación voluntaria consistía en

un simple programa que combinaba la computación distribuida y la infraestructura

del sistema. Esta arquitectura monolítica no era flexible, ya que por ejemplo era

difícil actualizar las versiones sin modificar la infraestructura.

Recientemente se han desarrollado sistemas middleware que proveen una

infraestructura de computación distribuida independiente de la computación

científica, por ejemplo:

• BOINC, desarrollado por la Universidad de California.

• XtremWeb, desarrollado por la Universidad Paris-South.

• Xgrid, desarrollado por Apple para Mac OS X.

• GridMP, desarrollado por United Devices para uso comercial.

La estructura básica que siguen estos sistemas es la de un programa cliente que se

ejecuta en el ordenador voluntario. El usuario controla el progreso y la dedicación

dada a la ejecución de tareas del proyecto y es el cliente instalado el que

periódicamente contacta con el servidor del proyecto, entregando los resultados

obtenidos y recibiendo nuevas tareas para ejecutar, si se da el caso. De esta

manera, con el sistema pull se pueden evitar los posibles firewalls instalados en los

ordenadores clientes que no tengan permitidas conexiones de entrada.

Los sistemas de computación voluntaria deben controlar algunos aspectos

problemáticos.

⇒ La heterogeneidad de los sistemas que participan.

⇒ La disponibilidad esporádica de los recursos participantes.

Plataforma Computing@home

Pág. 25

⇒ La necesidad de la no interferencia del ordenador cuando sea el usuario

quien realiza el uso.

⇒ El anonimato de los usuarios.

⇒ El sistema numérico de medida (créditos) para reconocer la cantidad de

trabajo realizado por cada usuario.

⇒ La detección de resultados incorrectos.

⇒ La reclamación de créditos por resultados erróneos.

Para resolver estos problemas se utilizan soluciones como la “computación

replicada”, en la que cada trabajo es realizado como mínimo por dos ordenadores y

solamente los resultados son aceptados si ambos son similares o cercanos. Si esto

ocurre, se asignan créditos a ambos usuarios por el trabajo realizado.

Por el lado cliente también existen problemas como el incremento del consumo

eléctrico, ya que el ordenador consume más electricidad al estar activo que

encontrándose en un estado ocioso. Se suelen desactivar funciones como

“Suspender” o “Hibernar” en el ordenador para permitir la ejecución de estos

procesos, con la consecuencia que el ordenador está continuamente ejecutando

tareas.

Si la memoria RAM se convierte en una limitación entre todos los recursos, el

rendimiento del ordenador decaerá al aumentar los fallos a caché y la paginación a

disco. Para evitar estos problemas se suelen ejecutar las aplicaciones de los

sistemas voluntarios con baja prioridad, lo que ayuda a aliviar la contención de la

unidad de proceso. Estos efectos en el cliente pueden ser visibles o no, e incluso si

son visibles el voluntario suele escoger seguir colaborando con los proyectos.

Otro problema es el decreciente rendimiento del ordenador si no está bien

controlado el uso del ordenador durante la ejecución del proyecto. Se pueden definir

aspectos críticos como la cantidad de disco a utilizar o los momentos de ejecución

de las tareas. Una mala configuración de estas características puede suponer la

saturación de los procesos del ordenador.

Plataforma Computing@home

Pág. 26

2.2 - Condor

Condor es un sistema de procesos por lotes especializado para gestionar trabajos

de computación intensiva y proporciona un mecanismo de encolado de trabajos,

políticas de programación, esquemas de prioridad y clasificación de recursos.

Los sistemas de procesos por lotes normalmente son ejecutados por sistemas

dedicados, que pertenecen a una organización y tienen como único propósito la

ejecución de trabajos. Las posibilidades de Condor son que puede enviar trabajos a

ordenadores dedicados pero también puede enviarlos a ordenadores no dedicados,

utilizando los momentos que el usuario no se encuentra utilizando el ordenador.

Condor es un software que crea un entorno HTC y puede gestionar clusters de

ordenadores dedicados comunicados por una red de área local, utilizando el máximo

rendimiento de la capacidad de cómputo disponible.

Figura 3 - Esquema de componentes de Condor

Los usuarios envían sus trabajos informáticos a Condor, y éste coloca los trabajos

en una cola, según la política especificada, busca ordenadores disponibles en la red

Plataforma Computing@home

Pág. 27

que se adapten a los requisitos de los trabajos, los ejecuta y entonces informa al

usuario sobre el resultado.

Condor proporciona mediante matchmaking de recursos una gestión de los mismos

entre productores y consumidores de recursos. Este es el secreto del éxito de

Condor que ha permitido que sea uno de los sistemas más ampliamente utilizado

para este tipo de entornos.

2.2.1 - Características

Las características que hacen de Condor un sistema diferente y excepcional son las

siguientes:

• Checkpoint y Migración � Cuando los trabajos son enlazados con las

librerías de Condor, los usuarios pueden asegurar que sus trabajos serán

posiblemente completados, incluso en los entornos cambiantes que

Condor utiliza. Cuando un ordenador ejecutando un trabajo enviado se

convierte en indisponible, el trabajo puede detenerse en ese instante

guardando todo el estado actual. El trabajo puede continuar después de

haberse migrado a otro ordenador. Condor realiza puntos de control

periódicamente para, de alguna forma, salvaguardar el tiempo acumulado

de computación en un trabajo, no perdiéndose todo el trabajo en caso de

apagado del ordenador.

• Llamadas de sistemas remotas � Condor, mediante las llamadas del

sistema remotas puede conservar el entorno de ejecución local en el

entorno Condor standard universe. No es necesario preocuparse de la

transferencia de archivos o de realizar login en el ordenador remoto, los

trabajos se realizan como si fueran locales y es transparente el ordenador

en el que se ejecuta el trabajo.

• No son necesarios cambios en el código fuente � Condor es capaz de

ejecutar procesos interactivos, realizar puntos de control y migración

transparentemente siempre y cuando reenlacemos el código fuente con las

librerías de Condor al compilar el trabajo a ejecutar. Si no se proporciona

Plataforma Computing@home

Pág. 28

el entorno Condor vanilla universe para ejecutar aplicaciones que no se

pueden reenlazar por la falta del código fuente.

• Pools de ordenadores operan conjuntos � Flocking es una característica

de Condor que permite que trabajos enviados a un pool sean ejecutados

en un segundo pool al que se tiene confianza. El mecanismo es flexible

pudiendo configurar políticas en el segundo pool para conocer qué

ordenadores y qué trabajos pueden ser ejecutados.

• Usuario de ejecución � En cuestiones de seguridad Condor no requiere

una cuenta de usuario en los ordenadores destino donde se ejecutan los

trabajos. Es capaz de utilizar cuentas generalistas como nobody, pero se

debe configurar para este aspecto.

• Ordenación de trabajos � Se pueden ordenar las ejecuciones de los

trabajos haciendo que cada uno de ellos sea un nodo dentro de un grafo

acíclico. Se establecen dependencias en la ejecución de los trabajos

según las expresadas en el grafo.

• Habilitación de Grid Computing � Utilizando la técnica de Glidein se

permite enviar a ejecutar trabajos de Condor a ordenadores que

pertenecen a un Grid ubicados alrededor del mundo. Estos recursos Grid

son manejados por Globus.

• Percepción del propietario del ordenador � Los procesos del propietario

de un ordenador que colabore con Condor tienen prioridad sobre el uso

del ordenador. El propietario cede el tiempo no utilizado para ejecutar otros

procesos como Condor. Es transparente y el usuario no debe realizar

ninguna operación, se realiza automáticamente. La capacidad de detectar

si el usuario de un ordenador está trabajando con él la realiza Condor y si

existiera un trabajo ejecutándose en ese momento, Condor lo pararía de

inmediato e intentaría realizar un checkpoint y migrar el trabajo a un

ordenador diferente, el cual admitiera el trabajo. Condor retomaría el

trabajo en el nuevo ordenador exactamente en el punto donde paró la

ejecución.

• ClassAds � El mecanismo ClassAds proporciona un framework flexible y

expresivo para realizar la mejor correspondencia entre las peticiones de

recursos y las características de los recursos, indicadas por los trabajos

Plataforma Computing@home

Pág. 29

lanzados y por las políticas expresadas en los ordenadores del pool.

Durante el proceso de matchmaking, Condor también considera diversas

capas de valores prioritarios:

o Prioridad del usuario asignada al anuncio de petición del recurso.

o Prioridad del usuario que envía el anuncio.

o Deseos de los ordenadores en el pool para aceptar ciertos tipos de

anuncios sobre otros.

Por el contrario, Condor también tiene limitaciones que no permiten realizar algunas

funciones. Es importante conocerlas:

• Limitaciones en trabajos con checkpoint � No se pueden realizar puntos

de control y migración de:

o Trabajos con multiprocesos. Por ejemplo trabajos que utilicen las

funciones fork o exec,

o Comunicación entre procesos (Inter-Process Communication, IPC).

Procesos que utilicen pipes o semáforos

o Operaciones de red de larga duración. Los procesos que abran un

socket no pueden dejarlo abierto durante mucho tiempo.

o Utilización de las señales SIGUSRZ y SIGTSTP. Otras señales están

permitidas, pero éstas Condor las utiliza internamente.

o Procesos dormidos. Los procesos que utilicen funciones como alarm o

sleep.

o Utilización de múltiples kernel-level threads. Los threads de usuario

están permitidos, pero si son del kernel no.

o Ficheros con memory mapped.

o Bloqueo de ficheros. No se pueden utilizar funciones como lock.

o Ficheros no abiertos de sólo escritura o lectura. Los ficheros abiertos

de lectura y escritura pueden provocar fallos.

o Ordenadores con poco espacio en disco. Es necesaria una cantidad de

disco para guardar el estado de la tarea.

o Procesos que lean o escriban en ficheros de mas de 2 GB.

Plataforma Computing@home

Pág. 30

• Seguridad � Condor proporciona sistemas y políticas de seguridad, pero

no puede controlar que ciertos sistemas tengan problemas de seguridad.

• Los trabajos deben ser enlazados de nuevo � Para obtener las

propiedades de checkpoint y de señales de sistema remotas, los trabajos

deben ser linkados con las librerías de Condor.

2.2.2 - Arquitectura de Condor

El sistema de gestión de colas de trabajos Condor es una pieza fundamental del

proyecto. Condor dispone, en su arquitectura básica, de un servidor central llamado

Central Manager que es el encargado de realizar la gestión de recepción y envío de

trabajos, así como la correspondencia entre trabajos y recursos. Se puede

considerar el cerebro del sistema. Este servidor contiene varios daemons que

realizan las operaciones necesarias y son arrancados según la configuración

establecida mediante el programa condor_master. Este proceso controla el resto de

procesos de Condor de manera automática.

Para constituir el pool de ordenadores que ejecuten trabajos enviados por el Central

Manager se dispone de ordenadores dedicados a la ejecución de trabajos. Todos los

ordenadores del pool no son estrictamente dedicados, ya que algunos de ellos

pueden ser ordenadores de usuarios que ejecutan tareas cuando el usuario no esté

trabajando. En este caso, los ordenadores pertenecen al pool a tiempo parcial,

utilizando el tiempo que el usuario no usa el ordenador para ejecutar los trabajos.

Figura 4 - Procesos Condor en los diferentes roles

Plataforma Computing@home

Pág. 31

Los roles que pueden presentar los ordenadores en un sistema Condor son tres:

• Gestor Central (Central Manager) � Su función resulta fundamental dentro

del sistema, dado que es el ordenador encargado de administrar los

recursos y asignar las ejecuciones de trabajos a los ordenadores

dedicados a la ejecución de éstos. Periódicamente recopila información

sobre el estado de todo el sistema. Tan sólo puede existir un gestor central

en un mismo sistema.

• Ordenadores dedicados a la ejecución (execute computers) � Como su

nombre indica, su tarea consiste en ejecutar los trabajos que son

asignados por el gestor central. Para ejecutar los trabajos, básicamente,

es necesario un programa Condor ejecutándose llamado condor_startd,

que es el encargado de comunicarse con el Central Manager. Este

programa realiza las funciones de envío de características del nodo y

recibe los trabajos a ejecutar desde el Central Manager.

• Ordenadores de envío de trabajos (submit computers) � Son los

ordenadores a los que se les otorga la capacidad de enviar trabajos al

sistema. Este ordenador acostumbra a ser propiedad del usuario

investigador que requiere de Condor para ejecutar su proyecto. Él es el

encargado de enviar el trabajo al Central Manager junto con los requisitos

y deseos necesarios que el trabajo necesita. El Central Manager realizará

el matchmaking correspondiente entre el trabajo y los recursos publicados

por los nodos del pool y enviará a ejecutar el trabajo en los ordenadores

del pool que resulten los más adaptados para el trabajo. Una vez

ejecutado se devolverá el resultado al investigador, ya sea mediante las

llamadas a sistema remotas o a través del sistema de transferencia de

ficheros que Condor implementa. El programa encargado de realizar estas

tareas es el llamado condor_schedd. Es posible utilizar el ordenador

encargado del envío de trabajos como participante en el pool para ejecutar

trabajos.

Plataforma Computing@home

Pág. 32

Estos roles no son excluyentes, de manera que un solo ordenador puede actuar de

gestor central, enviar trabajos y ejecutarlos.

2.2.3 - Daemons

Para realizar los roles definidos en la arquitectura tenemos daemons que realizan las

siguientes funciones. Existen siete daemons diferentes:

• condor_master. Se ejecuta en todos los ordenadores del sistema. Su

función es simplificar la administración del sistema. Es el encargado de

lanzar la ejecución del resto de daemons localmente, en el propio

ordenador en el que se ejecuta, y de vigilar el correcto funcionamiento de

éstos. Si algún daemon interrumpiera por cualquier motivo su ejecución, se

encargaría de relanzarlo. Además, mediante este daemon se pueden

detener y reconfigurar el resto.

• condor_collector. Se ejecuta en el gestor central. Este daemon recoge

periódicamente toda la información del estado del sistema, recibe y trata

peticiones procedentes del resto de daemons de los demás ordenadores.

• condor_negotiator. Se ejecuta en el gestor central. Es el encargado de

asignar trabajos a ordenadores dependiendo de los requerimientos y

características tanto de los primeros como de los segundos, ambas partes

han de satisfacer sus requerimientos mutuamente.

• condor_startd. Se ejecuta en todos los ordenadores con rol de ejecución.

Este daemon se considera como el representante del ordenador dentro del

sistema. Tiene la capacidad de iniciar, parar y suspender trabajos, y es el

encargado de lanzar el daemon starter con la configuración apropiada

dependiendo del tipo de trabajo.

• condor_starter. Se ejecuta en todos los ordenadores con rol de ejecución.

Se encarga de monitorizar y controlar el trabajo en ejecución. Proporciona

información de estado al ordenador desde el que se envió el trabajo. En

ordenadores con múltiples procesadores, existe una instancia de este

daemon por cada CPU.

Plataforma Computing@home

Pág. 33

• condor_schedd. Se ejecuta en todos los ordenadores con rol de envío. Es

el encargado de gestionar la cola local de trabajos y de solicitar recursos

para la ejecución de los trabajos que se encuentran parados.

• condor_shadow. Se ejecuta en todos los ordenadores con rol de envío,

mientras el trabajo se encuentra en ejecución. Se puede considerar como

el representante del trabajo en el ordenador que lo ha enviado. Existe uno

por cada trabajo activo y, entre otras, tiene las funciones de transferir

archivos necesarios como logs y estadísticas, y de efectuar llamadas

remotas al sistema en caso de que sean necesarias, es decir, de la

comunicación con el ordenador que ejecuta el trabajo.

El siguiente esquema muestra la configuración de un sistema Condor típico, así

como la interacción entre sus daemons:

Figura 5 - Procesos Condor, interacciones entre pro cesos

Como se puede apreciar, los daemons master arrancan el resto de los procesos en

cada ordenador y el master de todos los ordenadores que participan en el proceso

se comunican con el proceso condor_collector, que es el encargado de recibir el

estado de todo el sistema.

Plataforma Computing@home

Pág. 34

2.2.4 - Matchmaking con ClassAds

Es importante entender el método utilizado por Condor para acoplar recursos que

pueden ejecutar trabajos según sus peticiones. Entender el framework que Condor

utiliza para realizar este trabajo es la clave.

Dentro de las necesidades del proyecto, se pueden programar los trabajos enviados

con una serie de requerimientos que el gestor intenta hacer cumplir. El investigador

indica al gestor los requisitos obligatorios y los requerimientos no obligatorios que

cree necesarios, como condiciones para ejecutar los trabajos, y el gestor controla los

trabajos creándolos dentro de la cola (queue), intentando cumplir los requerimientos

recibidos y enviando los trabajos a los ordenadores correspondientes que cumplen

las restricciones para ejecutarlos. Por ejemplo podemos indicarle al trabajo que se

ejecute en un ordenador que contenga una determinada cantidad de memoria RAM

o superior. El gestor buscará entre los recursos disponibles que están en el pool, un

recurso que cumpla las condiciones especificadas en el trabajo para ejecutarse.

Figura 6 - Esquema representativo del mecanismo de matchmaking

ClassAds funciona de manera similar a los anuncios clasificados de un periódico.

Todos los ordenadores en el pool de Condor muestran las propiedades de sus

recursos en los anuncios de los recursos, tanto estáticos como dinámicos, tales

Plataforma Computing@home

Pág. 35

como la cantidad de RAM disponible, el tipo de CPU, la velocidad de la CPU,

etcétera.

Un usuario especifica un anuncio de petición de recurso cuando envía un trabajo. La

petición define tanto las propiedades requeridas como las deseadas de los recursos

donde se quiere que se ejecuten los trabajos. Condor actúa como un broker

haciendo coincidir los anuncios de los recursos ofrecidos con los anuncios de los

recursos requeridos, realizando que todos los requerimientos en ambos anuncios

sean satisfechos. Cuando obtiene una coincidencia envía la dirección del recurso al

cliente para que conozca el recurso donde se enviará su trabajo.

2.3 - BOINC

Berkeley Open Infrastructure for Network Computing (BOINC) es un middleware o

infraestructura no comercial para la computación distribuida usando recursos

voluntarios de computación, desarrollada originalmente para el proyecto

SETI@home, pero que actualmente es utilizada por diversos proyectos en campos

como la física, la medicina, la biología molecular o la climatología.

Los proyectos que trabajan sobre esta infraestructura tienen un denominador común

y es que requieren una gran capacidad de cálculo. La intención por la cual los

proyectos utilizan la plataforma BOINC es obtener una enorme capacidad de

computación utilizando ordenadores personales.

Los ordenadores que ejecutan los proyectos son casi exclusivamente ordenadores

de voluntarios y los proyectos que utilizan la plataforma son en su gran mayoría sin

ánimo de lucro y suelen estar dirigidos por universidades o entidades públicas.

Las tareas de los proyectos realizan cálculos complejos y BOINC divide esta

información en fragmentos que envía a ejecutar en los ordenadores de los usuarios.

Éstos tienen el software necesario instalado en su ordenador doméstico y ejecutan

las tareas recibidas que contienen complejos cálculos para devolver, posteriormente,

el resultado.

Plataforma Computing@home

Pág. 36

Actualmente BOINC es desarrollado por un grupo con sede en Berkeley, en la

Universidad de California, está dirigido por David Anderson, director del proyecto

SETI@home y recibe diversas aportaciones de desarrolladores de todo el mundo. La

plataforma BOINC es considerada como un casi-superordenador, disponiendo de

aproximadamente 560.000 ordenadores activos en todo el mundo y con un

rendimiento medio de 1 PFLOPS, superando el superordenador Blue Gene (datos

obtenidos con fecha 7/4/2008).

Esta plataforma de software está desarrollada bajo la filosofía de código abierto y

protegida por la licencia GNU LGPL. BOINC se encuentra disponible para las

plataformas Microsoft Windows, GNU/Linux y diversos sistemas Unix (Solaris, BSD,

Mac OS X).

BOINC está diseñado como una estructura libre que permite a cualquier usuario

convertirse en voluntario y participar en la ejecución de tareas de un proyecto.

BOINC utiliza los ciclos que quedan libres en el procesador para procesar tareas del

proyecto en el que previamente se ha registrado el usuario.

2.3.1 - Características

Las características que los sistemas BOINC nos ofrecen son:

• Recursos compartidos entre proyectos independientes � Múltiples

proyectos pueden usar BOINC. Cada proyecto es independiente del resto,

cada participante puede decidir los proyectos en los que desea colaborar y

la cantidad de recursos a destinar en ellos. Cuando un proyecto no está

accesible, los ordenadores de los voluntarios dividen los recursos de ese

proyecto inactivo entre el resto de proyectos.

• Características de los proyectos � BOINC proporciona características que

simplifican la creación de nuevos proyectos y las operaciones con ellos.

o Disponibilidad de un framework de aplicaciones flexible. En las

aplicaciones realizadas con lenguajes como C, C++ o Fortran las

modificaciones a realizar son mínimas o nulas.

Plataforma Computing@home

Pág. 37

o Agregación de nuevas aplicaciones. El BOINC proporciona otras

facilidades como añadir nuevas versiones desarrolladas de las

aplicaciones al proyecto sin la acción del usuario de una manera

sencilla y transparente.

o Seguridad. BOINC utiliza un sistema Public Key Infrastructure (PKI)

de claves criptográficas. Se realizan firmas digitales de los

elementos enviados, utilizando claves públicas creadas por el

proyecto para firmar datos y programas.

o Múltiples servidores y tolerancia a fallos. El servidor BOINC es

extremadamente efectivo, capaz de gestionar millones de trabajos

por día y su arquitectura es altamente escalable. Los servidores

pueden dividirse en servidores de programación y servidores de

datos, pudiendo disponer de varios de ellos. Los clientes se

conectan alternativamente y en el caso que no hubiera ningún

servidor activo los clientes realizarían pruebas de conexión con

tiempos cada vez mayores para evitar una saturación de peticiones

al volver a funcionar.

o Disponibilidad del código fuente. Auque BOINC es distribuido con la

licencia LGPL, las aplicaciones no están sujetas a ser código libre o

seguir teniendo esta licencia.

o Soporte para gran cantidad de datos. BOINC soporta aplicaciones

que producen o consumen una gran cantidad de datos. Los

usuarios pueden determinar límites de uso de disco o de ancho de

banda y el servidor enviará los trabajos solamente a los

ordenadores que pudieran ejecutarlos.

• Características de los participantes � BOINC proporciona las siguientes

características a los usuarios.

o Múltiple plataforma. La aplicación cliente de BOINC se encuentra

disponible para los sistemas operativos Mac OS X, Microsoft

Windows, GNU/Linux, Sun Solaris y otros sistemas Unix.

o Facilidad de uso. La instalación de la aplicación cliente y su uso son

sencillos y fáciles de comprender. BOINC está diseñado para todo

tipo de público e intenta ser atractivo de usar.

Plataforma Computing@home

Pág. 38

o Interfaz basada en web. BOINC dispone de interfaces web para que

el usuario realice las gestiones más usuales como la creación de

una cuenta, editar las preferencias, enviar mensajes privados a

otros usuarios y crear comunidades online.

o Caché configurable. El cliente BOINC descarga suficiente trabajo

para mantener el ordenador trabajando por el espacio de tiempo

descrito en las preferencias del usuario. De esta forma,

indirectamente, se permite configurar la cantidad de conexiones que

el cliente realiza, controlando el ancho de banda usado por el

cliente para descargar elementos del proyecto.

o Arquitectura extensible. BOINC proporciona interfaces

documentadas de los componentes del sistema y permite que otros

usuarios desarrollen elementos o aplicaciones que lo amplíen.

2.3.2 - Aplicaciones ejecutables por BOINC

BOINC ha sido diseñado para soportar aplicaciones que tengan requisitos de

computación intensiva y/o requisitos de almacenamiento.

El principal requisito que debe cumplir la aplicación debe ser la divisibilidad en un

gran número (miles o millones) de trabajos que puedan ejecutarse

independientemente.

Si el proyecto usara recursos voluntarios, tendría unos requisitos adicionales:

• Atracción del público � La aplicación debe ser vista interesante para el

público y así atraer a un gran número de participantes.

• Bajo ratio de datos/computación � La entrada y salida de datos se envían

a través de conexiones a Internet, pudiendo ser caras y/o lentas. Como

regla se determina que si la aplicación produce o consume más de 1 GB

de datos por día, entonces es mejor y más barato ejecutar la aplicación en

un cluster que con recursos voluntarios.

• Tolerancia a fallo � Un resultado devuelto por un voluntario no puede ser

tomado como válido. Para solucionar este problema se utiliza computación

Plataforma Computing@home

Pág. 39

redundante que nos ayuda a reducir la probabilidad de error. Si la

aplicación requiere una probabilidad de error del 0%, este sistema no es el

adecuado para ejecutar el proyecto.

2.3.3 - Arquitectura

El modelo que BOINC utiliza se corresponde con un modelo cliente-servidor, donde

el elemento principal es el servidor central del proyecto, el cual es el encargado de

enviar trabajos (llamados workunits) a los ordenadores de los voluntarios que

colaboran ejecutando las tareas del proyecto. Cuando el ordenador no se encuentra

en uso, encontrándose entonces en estado ocioso, BOINC se activa y comienza a

ejecutar las workunits de los proyectos a los que el usuario está suscrito.

Las funciones que realiza el servidor se pueden separar en dos tipos de servidores:

• El primer tipo de servidor es un servidor que se encarga de la distribución

de tareas y de la comunicación con los clientes.

• El segundo tipo de servidor es un servidor que puede contener las bases

de datos de todo el proyecto.

Estos servidores no son exclusivos, pueden encontrarse ambos a la vez y pueden

coexistir múltiples servidores que realizan las mismas funciones, posibilitando una

arquitectura basada en múltiples servidores que distribuyan las tareas y diversos

servidores que realicen el almacenamiento de datos. Así conseguimos una

redundancia a nivel de servidor que nos permite que el proyecto no esté disponible

por el fallo de un servidor.

Los clientes se conectan alternativamente a los diferentes servidores distribuidos,

comportándose todos ellos transparentemente al usuario y dando la sensación de

unicidad.

Plataforma Computing@home

Pág. 40

Los clientes por su parte, son usuarios que deciden participar voluntariamente en los

proyectos que habitualmente están abiertos a cualquier usuario que decida

participar.

Solamente es necesario registrarse en los proyectos mediante la aplicación cliente

de BOINC o en la página web del proyecto introduciendo un correo electrónico y una

contraseña elegida para acceder a sus estadísticas de progreso. Es posible que los

proyectos, debido a un superávit de usuarios o por mantenimiento, no admitan

usuarios, pero suele suceder de forma temporal.

A través de la interfaz web de los proyectos es posible inscribirse grupos de

usuarios, personalizar la cuenta para determinar el tiempo de funcionamiento o el

espacio de disco duro del que se puede disponer en el equipo voluntario.

Una vez los usuarios han instalado el cliente BOINC y se han registrado al proyecto,

el ordenador del usuario se conecta al servidor y realiza una petición para descargar

workunits a ejecutar.

Figura 7 - Arquitectura del sistema BOINC

Plataforma Computing@home

Pág. 41

El programa cliente usa características de configuración como la cantidad de disco

que se permitirá que el proyecto utilice como almacenamiento, lo que repercute

directamente en la cantidad de descargas que se pueden realizar. A mayor cantidad

de disco disponible se podrá descargar un mayor número de workunits de una vez y

almacenarlas en el disco del ordenador voluntario.

Como vemos en la figura siguiente, un ordenador pide una workunit y devuelve los

resultados antes de pedir una nueva workunit, mientas que el segundo ordenador

realiza una petición de 3 workunits y devuelve los resultados de cada workunit a

medida que va disponiendo de ellos.

Figura 8 - Diagrama de tiempos según la configuraci ón del espacio en disco

El servidor de BOINC se compone de diferentes programas para realizar las

funciones. Como parte de BOINC, destacamos dos Interfaces de Entrada Común

(Common Gateway Interface, CGI) que manejan las peticiones de los clientes,

enviando nuevas tareas y recibiendo los resultados.

Todo servidor BOINC también dispone de, como mínimo, 3 daemons que realizan el

trabajo. Estos daemons son llamados feeder, file_deleter y transitioner.

Plataforma Computing@home

Pág. 42

El primero, feeder, es el encargado de extraer workunits de la base de datos y

rellenar slots de tiempo que el scheduler lee para enviar a los clientes voluntarios.

El segundo de ellos, file_deleter, tiene la función de borrar aquellos ficheros que no

se volverán a utilizar en el servidor, ya sea porque se han procesado o porque son

ficheros de entrada ya enviados y no van a ser necesitados más.

El tercer daemon necesario es el transitioner, que se encarga de gestionar las

transiciones en el servidor entre estados de las workunits y los resultados.

Otros daemons utilizados, pero no estrictamente necesarios son validator y

assimilator.

El primero, como su nombre indica, valida los resultados. Si los resultados cumplen

las normas establecidas en la validación implantada por el administrador del

proyecto se asignan créditos a los usuarios.

El assimilator por su lado procesa los resultados validados. Puede actuar guardando

los resultados en una base de datos o generando nuevas workunits a partir de los

resultados obtenidos y validados usando código específico del proyecto.

El cliente por su parte, requiere de forma obligatoria dos daemons o programas

ejecutados por un sistema de programación de tareas como cron. Estos programas

son boinc (o core_client) y boincmgr.

Plataforma Computing@home

Pág. 43

Figura 9 - Estructura de la aplicación cliente de B OINC

El primero de ellos, core_client, es el núcleo del cliente y gestiona las

comunicaciones con el servidor, la recepción de workunits y envío de resultados, así

como la actualización de los proyectos.

El segundo, boincmgr, es una interfaz gráfica programada en WxWidgets que nos

permite interactuar con el core_client de una forma más sencilla.

Pueden existir otros componentes más en el cliente como el salvapantallas utilizado

cuando BOINC se ejecuta o programas que consultan las estadísticas del trabajo

realizado en cada proyecto registrado. Estos procesos son manejados por el

daemon boincmgr.

Los componentes en el cliente se comunican mediante Llamadas a Procedimientos

Remotos (Remote Procedure Calls, RPC) y suelen estar ubicados en un mismo

ordenador, aunque se puede configurar el core_client para ser gestionado de forma

remota mediante un usuario y contraseña.

En cambio el cliente core_client se comunica con las aplicaciones y los elementos

de los proyectos científicos mediante memoria compartida.

Plataforma Computing@home

Pág. 44

2.3.4 - Sistema de créditos

El sistema de créditos de BOINC proporciona varias funcionalidades añadidas al

proyecto. Los créditos no solamente nos indican cuanto trabajo hemos realizado

hasta ahora, si no que también nos indica si un ordenador es apto para recibir un

trabajo.

El sistema de créditos de BOINC está diseñado para evitar que los usuarios pueda

hacer trampas cuando envían un resultado que no es correcto. Antes de asignar los

créditos a los usuarios se tiene que revisar los resultados recibidos en la validación

de resultados. Las razones que implican tener la necesidad de un sistema fiable de

créditos son las siguientes:

• Asegura que los resultados obtenidos sean científica y estadísticamente

válidos. Es necesaria una fuente estadística fiable para comprobar los

resultados y se extrae de las estadísticas realizadas a los usuarios según sus

créditos.

• Para preparar y repartir los envíos se hacen modelos de complejas variables

que nos ayudan a determinar a quien enviar los trabajos. Los ordenadores

capacitados para devolver un resultado correcto serán aquellos que hayan

recibido una workunit y hayan devuelto un resultado correcto.

• No hay razón específica por la que una persona quiera donar sus ciclos de

CPU. Se tiene que controlar el mal uso del sistema, ya que el anonimato que

nos proporciona el sistema es un riesgo que podría acabar con el proyecto.

Los créditos se miden en cobblestones, llamado así por Jeff Cobb, desarrollador del

proyecto SETI@home.

El sistema se basa en el sencillo concepto de que 100 cobblestones equivale a un

día de trabajo en un ordenador voluntario que tenga 1,000 MIPS basado en el

benchmark de Whetstone o 1,000 MIPS basado en el benchmark de Dhrystone.

Plataforma Computing@home

Pág. 45

El único punto desfavorable de este sistema es que se necesita resolver la unidad

de trabajo para saber cuantos créditos se obtienen por ello. Al enviar la unidad de

trabajo resuelta, se piden una cantidad de créditos determinados, que dependiendo

de los cálculos realizados podrán ser los que finalmente se concedan, más de los

que se concedan o menos.

Para realizar el cálculo de créditos, BOINC usa Benchmarks, programas que miden

la velocidad de un sistema. Calculando el tiempo usado para resolver la workunit

otorga un número de créditos determinado.

Actualmente se usa más de una variable para ese cálculo, como la cantidad de

memoria RAM o la velocidad de la CPU.

Las discrepancias entre los créditos otorgados y merecidos suelen ser grandes.

La mayoría de los proyectos han llegado a un consenso para entregar un número

determinado de créditos por cada misma unidad de trabajo.

Los créditos se suman en la cuenta que el usuario dispone en el mismo proyecto.

Cuando un ordenador recibe una unidad de trabajo y la devuelve resuelta no obtiene

créditos inmediatamente, sino que se pide una determinada cantidad de créditos.

Luego cada proyecto valida los datos obtenidos mediante el daemon validator que

se haya programado para cada proyecto.

Una vez validados, se conceden los créditos que se cree que merece la ejecución de

la workunit, que pueden ser más, menos o igual a los pedidos.

Si la unidad de trabajo se entrega resuelta más tarde del plazo previsto o si la

comprobación no valida el resultado, no se le asignarán créditos.

Se puede comprobar el crédito en la sección Your credit en la página web de la

cuenta del usuario para cada proyecto.

Los proyectos BOINC exportan la información estadística de los créditos

acumulados en forma de archivos XML que pueden ser descargados por

ordenadores en todo el mundo. Muchas páginas web han desarrollado sistemas

para mostrar estas estadísticas y muchas de éstas las muestran en forma de gráfica

que puede plasmarse en páginas personales.

Plataforma Computing@home

Pág. 46

Como BOINC permite la creación de grupos también se permite visualizar los

créditos que cada grupo acumula.

Plataforma Computing@home

Pág. 47

Capítulo 3 - Arquitectura y requisitos

En una primera fase del proyecto se estudiaron diferentes problemas que eran

necesarios tratar. Se estudió la viabilidad a todos ellos y se explicarán las

propuestas con sus pros y contras, y que se ha decidido realizar para solucionar

cada una de ellas. También se revisarán los principales problemas que han surgido

durante la implementación, la revisión de los recursos utilizados, las tareas

realizadas y las soluciones propuestas.

Se comenzará explicando la arquitectura del sistema, las ideas iniciales y sus

características. Las arquitecturas de BOINC y Condor son básicas, ya que la

arquitectura final es la combinación de las dos. La arquitectura definitiva es

estudiada y explicada en este punto.

Las características y los problemas serán los que más tiempo nos supondrán, pues

su estudio y métodos de resolución son los más importantes.

Plataforma Computing@home

Pág. 48

3.1 - Arquitectura del sistema

La arquitectura adoptada por el proyecto es la mezcla de las dos arquitecturas

anteriormente vistas, Condor y BOINC. Las arquitecturas de los sistemas no se han

modificado, pero se han juntado para obtener la unión entre ambos sistemas.

Las arquitecturas anteriormente vistas nos proporcionan sus propios sistemas para

ejecutar trabajos y gestionar los recursos que tienen.

Por un lado se dispone de un pool de Condor que permite ejecutar trabajos

especificados con ClassAds dentro de la red local y que gestiona los ordenadores

que se encuentran dentro del pool obteniendo información de ellos para conocer que

trabajo se les puede enviar a ejecutar, siendo éste apto para el recurso.

Por otro lado se dispondrá de los ordenadores voluntarios conectados mediante el

sistema de computación voluntaria BOINC ejecutarán las workunits que el servidor

entregue e irán devolviendo los resultados a medida que los obtengan. El servidor

de BOINC desconoce el número de recursos que están ejecutando los procesos en

ese momento, pero dispone de sistemas para que los trabajos siempre tengan un

resultado posible.

Desde el proyecto se quiere unir los dos sistemas obteniendo la fiabilidad y control

de Condor sobre los trabajos y los recursos y la facilidad de uso y la disponibilidad

de una gran cantidad de ordenadores que BOINC proporciona.

Para realizar esto se ha querido crear una workunit de BOINC que represente un

sistema Condor que se pueda unir al pool sin problemas, de forma transparente y

segura.

En este caso, estas workunits a ejecutar son procesos de Condor que permiten

introducir el ordenador voluntario en el pool y recibir aquellos trabajos Condor que se

adapten a las características requeridas por el trabajo y por el ordenador voluntario.

El funcionamiento de la arquitectura es la unión de ambos sistemas. Previamente el

usuario debería instalar el cliente BOINC en su ordenador. Dependiendo del sistema

Plataforma Computing@home

Pág. 49

operativo usado existen diferentes formas de instalación, pero este es un proceso

sencillo.

Figura 10- Conexión con el servidor BOINC

Una vez instalado, en la primera ejecución del cliente, éste pedirá realizar el registro

en el proyecto que se desea colaborar.

Cuando el cliente nos pide el identificador del proyecto se refiere a la dirección URL

del mismo. Los proyectos disponen de su propia página web que se construye al

crear el proyecto en el servidor, siendo parte de la interfaz web que el proyecto

BOINC proporciona. Esta página web se utiliza como identificador de cada proyecto.

Ya registrado, el cliente conectará con el servidor. Éste enviará una workunit a

ejecutar para satisfacer la petición recibida. En esta workunit se indican los

ejecutables y ficheros de datos que son necesarios para la ejecución de la tarea. En

nuestro caso serán los ficheros necesarios para arrancar Condor en el ordenador

voluntario configurado correctamente para anexarse en el pool.

El cliente esperará que el ordenador se encuentre inactivo para iniciar la ejecución

del proyecto.

Plataforma Computing@home

Pág. 50

Figura 11 - Conexión con el servidor Condor

Mientras el ordenador permanece inactivo de los procesos del usuario, el proyecto

BOINC iniciará su ejecución y Condor arrancará configurado oportunamente para

conectarse al pool, publicando su estado y sus recursos mediante los ClassAds y el

Central Manager podrá encontrar oportuno enviar algún trabajo a ejecutar en el

ordenador voluntario.

Si el trabajo que Condor envió al ordenador se ejecutara correctamente, el resultado

sería enviado al creador del trabajo Condor, como si fuera un trabajo que hubiera

sido ejecutado en cualquier otro ordenador del pool.

Si BOINC finalizara la ejecución realizaría una validación del resultado obtenido por

la workunit enviada y en caso de detectar que el resultado es correcto sumaría

nuevos créditos a la cuenta del usuario.

Si el trabajo no pudiera finalizar porque el usuario volviera a utilizar el ordenador y la

aplicación fue enlazada con las librerías de Condor, Condor podría realizar un

checkpoint y migrar el proceso para continuarlo en otro ordenador. Si no fuera así, el

trabajo finalizaría juntamente con la ejecución de Condor y BOINC.

Condor, por su parte, dispone de sistemas para evitar que los trabajos se pierdan o

generen un error si se diera el caso anterior y no se pudiera realizar la migración a

otro ordenador. La fiabilidad de Condor nos asegura un resultado si los recursos los

pueden dar.

Plataforma Computing@home

Pág. 51

Cuando el ordenador volviera a su estado de inactividad,. BOINC volvería a ejecutar

la workunit que ya tuviera descargada en el ordenador voluntario, iniciando de nuevo

Condor y estando preparado para ejecutar cualquier trabajo que el Central Manager

de Condor considerara oportuno de volver a enviar y ejecutar.

3.2 - Implementación

La implementación que se ha realizado en el proyecto se ha escogido después de

haber sido estudiada y haber descartado otras por no cumplir con los objetivos y

necesidades marcados en el proyecto, vistos en capítulos anteriores. Todas las

soluciones que se verán solucionan los problemas surgidos y estudiados.

3.2.1 - Facilidad de instalación

La instalación de Condor es un proceso que se ha simplificado al ejecutar un

programa que viene incorporado en la versión cuando se descarga de la página web

del proyecto. Este programa realiza preguntas sobre el tipo de sistema o rol que

deseas instalar en ese ordenador, el usuario que realizará la instalación, el uso o no

de sistemas de ficheros compartidos por red o la ubicación del ejecutable de la

máquina virtual de Java.

Este proceso se puede repetir varias veces para corregir cualquier error que

hayamos cometido.

Es un sistema sencillo y rápido de realizar la instalación para cualquier tipo de

ordenador dentro de la arquitectura de Condor, pero después de la instalación se

necesita igualmente modificar los ficheros de configuración de Condor,

etc/condor_configure y condor_configure.local, situados en el directorio

correspondiente de la instalación de Condor.

Plataforma Computing@home

Pág. 52

La modificación obligatoria que Condor obliga a hacer en el primer archivo visto es

un valor que indica los ordenadores a los que se le permite realizar conexiones. Este

valor por defecto está comentado para que no se pueda permitir a ningún ordenador.

Como se puede apreciar, la instalación de Condor no es tan automática, pero se

necesita conocer los cambios a realizar para que el sistema funcione correctamente.

La instalación de BOINC es un proceso bastante diferente. Cada sistema operativo

dispone de un método de instalación diferente. En los sistemas Linux, que ha sido el

sistema utilizado, cada distribución utiliza su propio método para realizar la

instalación de software. En los sistemas Windows deberemos ir a la página web

oficial de BOINC y descargar un ejecutable que nos instalará el programa.

Siguiendo este proceso el cliente BOINC estará instalado y esperando poder

registrarse en un proyecto para colaborar.

El servidor de BOINC, por otro lado, es difícil de configurar, ya que dispone de

diversas herramientas como Apache o MySQL que requieren de una configuración

adecuada.

Una vez el servidor es configurado, la realización de un proyecto es un proceso

sencillo de seguir. Al proyecto se le añadirán las aplicaciones y se crearán las

workunits a ejecutar.

3.2.2 - Seguridad

La primera necesidad que nos surge es la obligatoriedad de disponer de un método

seguro para proteger ambos entornos. Estos sistemas deben asegurar que el

usuario es un usuario válido y que sus acciones no pueden comprometer los

sistemas.

En el caso de BOINC no es sencillo realizar esta acción ya que una de las

particularidades del sistema es el anonimato de los usuarios. No se puede confiar en

los usuarios que ejecutan los trabajos desde el punto de vista de BOINC, pero en

Plataforma Computing@home

Pág. 53

Condor todos los usuarios son conocidos y se confía en ellos al enviar trabajos o al

ejecutarlos.

Igualmente los dos sistemas incorporan métodos para prevenir posibles fallos de

seguridad.

BOINC no dispone de un sistema que certifique las workunits enviadas. Éstas se

encuentran almacenadas en el servidor y es él el encargado de distribuirlas. Se

confía en el desarrollador de las workunits y en su buena fe como usuario propietario

del proyecto que desea que se lleve a buen término.

En cambio BOINC realiza firmas criptográficas de los ficheros enviados a ejecutar en

las workunits mediante un sistema de clave pública PKI, realizando un sistema de

comprobación similar a las funciones hash utilizadas para realizar comprobaciones

de ficheros descargados en Internet. Cualquier modificación de un fichero el servidor

lo detectará y no lo dará como válido dentro del sistema.

Este sistema nos asegura que los ficheros y sus resultados no están

comprometidos.

Condor también aporta sus sistemas de seguridad. Aunque se encuentra en un

sistema controlado puede ocurrir que un usuario quisiera eliminar o modificar algún

trabajo que se encontrara en la cola. Para ello Condor almacena la configuración de

los procesos condor_schedd que enviaron el trabajo, no permitiendo la modificación

en caso de no corresponderse. Condor está diseñado para ejecutarse con permisos

de root en los ordenadores donde se ejecuta, pero muchas veces no puede darse

esta circunstancia. En ese caso, cuando Condor se ejecuta con permisos de un

usuario, necesita de directorios donde pueda crear y borrar los ficheros que utiliza.

3.2.3 - Limitación de usuarios

Una de las mayores ventajas de BOINC es que su escalabilidad es tremendamente

dinámica. Esta escalabilidad abarca una gestión autónoma de los usuarios o nodos,

lo que a su vez reduce las tareas administrativas. La configuración del proyecto por

defecto tiene deshabilitada la creación de usuarios por medio del interfaz web. Para

habilitar esta característica, hay que modificar el fichero config.xml, que se encuentra

Plataforma Computing@home

Pág. 54

en el directorio raíz del proyecto, cambiando la entrada <disable_account_creation>

de 1 a 0.

Otra sistema de realizar la creación de usuario es a través del mismo cliente BOINC.

Cuando un usuario se registra en el proyecto con su dirección de correo electrónico

y su contraseña está dando de alta el usuario dentro del servidor.

Igualmente se debe configurar en el servidor la activación de creación de cuentas

para que permita añadir nuevos usuarios.

Este sencillo sistema permite desactivar la creación de cuentas o activarla cuando

sea necesario. Si el proyecto se encontrara en fase de mantenimiento o se quisiera

prevenir la saturación de los sistemas si se añadieran más usuarios, se podría

desactivar la creación de cuentas.

3.2.4 - Aplicación BOINC

Con la infraestructura BOINC implementada únicamente se necesitaría de una

aplicación que fuera nuestro enlace con Condor. BOINC ofrece una Application

Program Interface (API) que permite construir aplicaciones que se pueden incorporar

en un proyecto, el cual los usuarios ejecuten. Esta API incorpora funciones

específicas de BOINC para el control de la aplicación, realizar transferencias de

ficheros o para la creación de salvapantallas, por ejemplo.

BOINC incorpora un sistema para poder ejecutar aplicaciones sin necesidad de

modificarlas e incluir llamadas a la API de BOINC. Esto permite ejecutar aplicaciones

de las que no disponemos su código fuente y por lo tanto no podemos modificarlas.

El método utilizado es llamado wrapper y ejecuta la aplicación que se desea sin

necesidad de realizar llamadas a BOINC, ya que es el mismo wrapper quien las

realiza.

Plataforma Computing@home

Pág. 55

Figura 12 - BOINC wrapper

Ante la eventualidad de crear una nueva aplicación incluyendo funciones de la API

de BOINC desde el inicio, con los consiguientes problemas que pudiera producir, se

ha decidido utilizar el método wrapper que BOINC suministra para poder arrancar los

programas de Condor necesarios.

Se ha creado en el proyecto una capa intermedia que proporciona la configuración

de los elementos que Condor requiere. Esta capa intermedia es llamada

condor_wrapper y es la tarea que el wrapper de BOINC ejecuta.

Este proceso adecua el entorno en el ordenador voluntario para poder ejecutar

Condor con la configuración correspondiente.

3.2.5 - Workunits

Las workunits o unidades de trabajo son las tareas que BOINC envía a ejecutar en

los ordenadores voluntarios. La infraestructura cliente descarga estas workunits y

ejecuta las tareas que en ella se incluyen.

Una workunit define la aplicación y el conjunto de datos que tienen que ser

ejecutados y procesados por el cliente. Las unidades de trabajo están descritas por

una plantilla de unidades de trabajo y por una plantilla de resultado.

La plantilla de unidad de trabajo describe la referencia del conjunto de datos de

entrada en el nodo de destino.

La plantilla de resultado, por otro lado, describe la referencia del conjunto de datos

resultante. Ambas pueden crearse en el directorio /templates del proyecto.

Plataforma Computing@home

Pág. 56

Cada unidad de trabajo se identifica por una ID única, que es gestionada por el

servidor BOINC y la base de datos. La herramienta create_work se usa para pasar

los trabajos del proyecto a la base de datos. A partir de aquí la workunit está

preparada para ser descargada y ejecutada.

Las workunits incluyen fragmentos de trabajos que se desean ejecutar. Estos

fragmentos son parte del proyecto y son los procesos que realizan una gran cantidad

de cálculos computacionales.

El problema que nos encontramos fue la manera de incluir la inicialización de los

procesos Condor dentro de las workunits. La creación de una sola workunit que

incluyera los procesos Condor a ejecutar ya contemplaba las opciones a realizar.

Como ya se sabe, debido al sistema que BOINC implementa los ordenadores no son

dedicados y entran y salen de la ejecución de tareas constantemente. Muchas

ocasiones sucede que el ordenador recibe una workunit a ejecutar pero ese

ordenador falla o se apaga y no vuelve a encenderse durante mucho tiempo o nunca

más.

Para evitar esta desaparición espontánea del recurso y controlar la tolerancia a fallos

de BOINC se realiza una computación recurrente. El proceso es duplicar las

workunits que se envían para asegurar el retorno de un resultado como mínimo.

Este proceso también ayuda a la hora de determinar los créditos a otorgar a cada

usuario comprobando si los resultados de la misma workunit son iguales o

parecidos.

Los parámetros que indican la cantidad de workunits a duplicar y los resultados

mínimos para asegurar un resultado correcto los establece el administrador del

proyecto en su configuración.

Condor controla la ejecución de cada trabajo. El sistema de control provoca que si

un proceso no puede migrar cuando un fallo ocurre, Condor desestima el proceso y

lo vuelve a enviar a otro ordenador del pool para que realice de nuevo la ejecución.

Plataforma Computing@home

Pág. 57

De esta manera se asegura la ejecución de los trabajos enviados a los ordenadores

voluntarios que pueden ejecutar procesos de Condor.

Plataforma Computing@home

Pág. 58

Capítulo 4 - Implementación y experimentación

En capítulos anteriores se han descrito los objetivos, los sistemas utilizados y la

sinopsis general del proyecto. Se han estudiado los problemas que han surgido

durante la fase de análisis y la realización del proyecto. Desde la descarga del

primer sistema a instalar hasta la última prueba realizada se han realizado diversos

trabajos que se intentarán sintetizar. Este capítulo se centrará en conocer un poco

más a fondo el trabajo realizado, descendiendo hasta el código fuente en algunas

ocasiones.

Se comenzará explicando la instalación del testbed que nos ha servido para realizar

el proyecto.

Después estudiaremos la estructura de la capa intermedia, condor_wrapper, que se

desarrolló y es el eje central de la solución encontrada.

La experimentación realizada nos confirmará el buen funcionamiento del proyecto.

Plataforma Computing@home

Pág. 59

4.1 - Instalación

La instalación de los sistemas de prueba fue realizada en dos servidores

independientes que ofrecen los servicios necesarios para llevar a cabo los

experimentos necesarios.

Por un lado se encuentra el servidor Condor, que es uno de los sistemas básicos y

necesarios dentro del proyecto. El servidor Condor es el encargado de añadir el

ordenador voluntario al pool y poder visionarlo como un ordenador más donde poder

enviar tareas a ejecutar.

Por otro lado encontramos el servidor BOINC, que es el responsable de generar la

tarea primordial para que los clientes puedan colaborar dentro del entorno Condor

creado.

Los dos sistemas están desarrollados para varias plataformas. En nuestro caso

hemos elegido implementarlos bajo el sistema operativo GNU/Linux.

El sistema GNU/Linux es un sistema completo y maduro que nos proporciona

herramientas para crear proyectos y una interfaz adecuada para el desarrollo del

proyecto.

Entre todas las distribuciones del sistema operativo GNU/Linux se ha escogido

Ubuntu Linux. Esta es una distribución, orientada al escritorio, aunque ofrece una

versión dedicada y preparada para ejecutarse como servidor.

Ubuntu surgió de una de las más veteranas y más grandes distribuciones de

software, Debian GNU/Linux. Ubuntu ha portado una cantidad de paquetes Debian a

su sistema y se ha trabajado para asegurar el buen funcionamiento de todos ellos.

Debian por su parte dispone de más de 9000 paquetes de software y Ubuntu puede

instalarlos en caso de necesitarlos.

La decisión de utilizar este sistema operativo, y en concreto la distribución, es la

fiabilidad que nos proporciona y la compatibilidad con los sistemas utilizados para el

desarrollo del proyecto.

Plataforma Computing@home

Pág. 60

4.1.1 - Condor

Teniendo los ordenadores con el sistema operativo instalado se procedió a

descargar e instalar el sistema Condor para instalar el servidor.

Condor proporciona dos scripts de instalación. En nuestro caso utilizamos el script

condor_install que nos irá haciendo preguntas para conocer la configuración que

deseamos realizar. Las preguntas a realizar piden información del siguiente tipo:

1. ¿Qué ordenador será el Central Manager?

2. ¿A qué ordenadores se debería permitir lanzar trabajos?

3. ¿Se ejecutará Condor como root?

4. ¿Quién administrará los ordenadores con Condor en el pool?

5. ¿Se dispone de una cuenta de usuario llamada condor en todos los

ordenadores y está su directorio raíz compartido?

6. ¿Dónde se debería instalar los directorios locales?

7. ¿Dónde se debería instalar los ficheros de configuración, los ejecutables, y el

resto de los archivos de Condor?

8. ¿Se usa AFS?

9. ¿Se dispone de suficiente espacio de disco?

Conociendo la respuesta a estas preguntas, la instalación de Condor se realiza sin

problemas.

Este proceso se puede lanzar varias veces para reconfigurar Condor o para realizar

una instalación que comparte diferentes tipos de roles.

Una vez instalado el sistema, procederemos a configurarlos debidamente, pues la

configuración por defecto no es satisfactoria.

El fichero de configuración se encuentra en el directorio donde hemos instalado

Condor, <condor_dir>/etc/condor_configure. Este es el fichero principal y puede

Plataforma Computing@home

Pág. 61

existir un fichero secundario que sobrescriba la información del primero para esta

instalación local. El fichero se encuentra en <condor_dir>/condor_configure.local.

Las modificaciones las podemos realizar tanto en el primer fichero como en el

segundo, si éste existiera.

Dentro del fichero condor_configure modificaremos la opción que da nombre a

nuestro pool.

This macro is used to specify a short descripti on of your pool.
It should be about 20 characters long. For exam ple, the name of
the UW-Madison Computer Science Condor Pool is ``UW-Madison CS''.
#COLLECTOR_NAME = My Pool
COLLECTOR_NAME = CONDOR-BOINC TEST

En este caso llamaremos a nuestro pool con el nombre CONDOR-BOINC TEST.

Éste nos servirá para diferenciarnos de otros posibles pools y los ordenadores que

se conecten al Central Manager indicarán el nombre para saber a qué pool

conectarse.

La modificación que Condor obliga a hacer es un valor que indica los ordenadores a

los que se le permite el acceso de escritura sobre el ordenador. Este valor por

defecto está comentado para que no se pueda permitir a ningún ordenador. Se debe

permitir a los trabajos poder escribir sobre los directorios determinados que

necesiten. Para ello configuraremos la siguiente opción:

Write access. Machines listed here can join yo ur pool, submit
jobs, etc. Note: Any machine which has WRITE a ccess must
also be granted READ access. Granting WRITE ac cess below does
not also automatically grant READ access; you m ust change
HOSTALLOW_READ above as well.

You must set this to something else before Cond or will run.
This most simple option is:
HOSTALLOW_WRITE = *
but note that this will allow anyone to submit jobs or add
machines to your pool and is serious security r isk.
#HOSTALLOW_WRITE = YOU_MUST_CHANGE_THIS_INVALID_CONDOR_CONFIGURATION
_VALUE
HOSTALLOW_WRITE = *
#HOSTALLOW_WRITE = *.your.domain, your-friend's-ma chine.other.domain
#HOSTDENY_WRITE = bad-machine.your.domain

Plataforma Computing@home

Pág. 62

Indicando un asterisco permitiremos que cualquier ordenador pueda escribir en los

directorios que necesiten para enviar los trabajos.

La siguiente modificación es necesaria para evitar que Condor solamente trabaje

cuando no hay actividad en el sistema, obligando que siempre que se le requiera

ejecute los trabajos.

When is this machine willing to start a job?
#START = $(UWCS_START)
START = TRUE

Otro cambio a realizar en la configuración es la forma de indicarle a Condor donde

puede encontrar los ficheros de configuración. Condor dispone de tres métodos: una

variable de entorno indica la ruta ($CONDOR_CONFIGURE), un fichero que

almacena la ruta llamado /etc/condor_configure o situar este fichero en el directorio

~/condor/condor_configure.

Condor por defecto no instala un arranque automático de sus daemons, con lo que

nos obliga a realizar nuevas modificaciones para que éstos puedan arrancar

automáticamente al encender el ordenador.

El cliente de Condor utiliza el mismo sistema de instalación y tiene las mismas

configuraciones, pero hay que especificarle el rol a realizar en el momento de la

instalación.

4.1.2 - BOINC

Se disponen de diferentes formas de obtener el servidor de BOINC, dentro de los

repositorios de software encontramos el paquete BOINC que nos permite instalarlo

juntamente con todas sus dependencias de aplicaciones necesarias para su

funcionamiento, descargamos el código fuente desde su propio sistema CVS y lo

compilamos en nuestro ordenador generando una instalación a medida o se puede

utilizar una máquina virtual que han realizado desarrolladores para poder ejecutar

pruebas.

Plataforma Computing@home

Pág. 63

En nuestro caso se ha optado por utilizar la máquina virtual por no disponer de

ordenadores donde ubicar el servidor. Esta máquina virtual no está disponible para

entornos reales, pero si para hacerla servir como parte de un testbed.

Para crear un proyecto ejecutaremos la orden siguiente, que nos construirá

automáticamente la estructura de un proyecto. Simplemente con esta orden se

tendrá la estructura de un proyecto:

$./tools/make_project -delete_prev_inst -user_name <username> \
-drop_db_first_project_root $HOME/projects/<project _name> \
-key_dir $HOME/projects//<project_name>_keys \
-url_base http:// /<url_base_project>/ \
-db_user <username> test_setup

Después de crearse el proyecto, la consola mostrará los mensajes necesarios para

actualizar la configuración de Apache, incluyendo esas líneas en el fichero de

configuración. Esta información se utiliza para acceder al proyecto por medio de un

navegador web y los clientes BOINC.

Ahora ya se encuentra disponible el proyecto, pudiéndose acceder a él con un

navegador web. La URL está definida por medio de un alias de Apache, por ejemplo,

http://mi_servidor.es/ test_setup. Si el servidor fallara, habría que revisar el comando

chmod, las rutas y la configuración de Apache; por otro lado, la configuración por

defecto debería funcionar sin problemas.

Debemos recordar que por defecto la configuración del proyecto tiene deshabilitada

la creación de usuarios. Para habilitar esta característica hay que modificar el fichero

config.xml que se encuentra en el directorio projects/<nombre_proyecto>,

cambiando la entrada <disable_account_creation de 1 a 0. De esta manera los

usuarios podrán registrarse tanto vía página web como por la aplicación cliente.

Para añadir una aplicación y para ser ejecutada por los nodos, se incluye un

directorio app donde se configuran las aplicaciones. El nombre del ejecutable hay

que acompañarlo de una secuencia para que el servidor conozca a que plataforma y

a que versión es:

Plataforma Computing@home

Pág. 64

<nombre_aplicación>_VERSMAYOR.VERSMENOR_PLATAFORMA

La versión indica que cliente BOINC puede ejecutarla y la plataforma de destino que

debe tener el cliente para ejecutarla.

Lo siguiente que tenemos que hacer es modificar el fichero project.xml en el

directorio raíz del proyecto para indicarle las plataformas donde se puede ejecutar. A

continuación se ejecutan los comandos bin/xadd y bin/update_versions para que el

proyecto añada la aplicación y las actualice en su versión y plataforma.

Para terminar de configurar el proyecto incluiremos workunits para procesar y los

ficheros de resultados esperados. Para crearlos necesitamos de la creación de dos

ficheros donde se describan las características como los ficheros de entrada, el

número de repeticiones que deseamos realizar, los ficheros de salida y el quórum

mínimo que necesitamos para asignar créditos. Estos ficheros se ubicarán en el

directorio templates y los ficheros de entrada y salida se incluirán en el directorio

downloads.

Para que el servidor comience a ejecutarse necesitaremos ejecutar el binario

bin/start que controla el arranque de los servicios, así como bin/stop que los para.

En este punto sólo quedará que el cliente se registre y pueda ejecutar la workunit.

El cliente es más sencillo de instalar, pues instalándolo según la distribución que se

tenga ya se puede empezar a utilizar sin problema alguno ni configuración extra.

Las pruebas realizadas son satisfactorias aunque son pruebas sencillas realizadas

con proyectos de prueba que BOINC incorpora para comprobar su correcta

funcionalidad.

Plataforma Computing@home

Pág. 65

4.2 - Programación de condor_wrapper

BOINC proporciona un sistema para realizar la ejecución de tareas que no incluyen

las llamadas a su API. Este programa es llamado wrapper.

A través de este programa se realiza la descarga de la aplicación y los ficheros de

configuración necesarios. Wrapper incluye un sistema que permite especificar los

ficheros necesarios que necesita para realizar la ejecución.

En esta especificación se incluye obligatoriamente cual es la aplicación que se

desea ejecutar. Discrecionalmente se pueden incluir ficheros que realicen la entrada

por teclado para las aplicaciones interactivas, el fichero donde desearemos la salida

por pantalla o por error y la línea de comandos necesaria para arrancar la aplicación.

<job_desc>
 <task>
 <application>application_to_execute</applic ation>
 [<stdin_filename>stdin_file</stdin_filenam e>]
 [<stdout_filename>stdout_file</stdout_file name>]
 [<stderr_filename>stderr_file</stderr_file name>]
 [<command_line>--foo bar</command_line>]
 </task>
 [...]
</job_desc>

Este sistema admite incluir más de una tarea a ejecutar, pero estas tareas son

secuenciales. Cuando la secuencia de tareas hubiera acabado, el wrapper finalizaría

su ejecución.

En el proyecto la aplicación a ejecutar es una aplicación intermedia que nos realiza

la configuración y nos ejecuta los procesos necesarios para que Condor encuentre el

entorno adecuado y pueda arrancar sin problemas.

Plataforma Computing@home

Pág. 66

Figura 13 - Estructura de procesos

El proceso condor_wrapper es el encargado de arrancar el daemon condor_master.

Cuando este daemon ha arrancado se pierde el control del mismo. Para poder

controlarlo y saber el momento en que se debe parar por si el usuario comenzara a

hacer uso del ordenador, se ha creado un proceso que monitoriza los procesos

encargados de la aplicación.

El monitor de procesos comprueba que el proceso de BOINC wrapper no finalice la

ejecución. Si esto ocurriera el proceso condor_wrapper finalizaría su ejecución y el

monitor de procesos lanzaría una señal de finalización al daemon condor_master

que a su vez pararía los procesos que controla.

Se ha comprobado que en caso de que la aplicación se detuviera, los ficheros no se

eliminarían del ordenador a no ser que hubiera una nueva versión, por lo que en la

Plataforma Computing@home

Pág. 67

siguiente ejecución a realizar no se descargarían, ahorrando ancho de banda y

agilizando la ejecución.

Una vez arrancada la aplicación se realizan pruebas para comprobar que el monitor

de procesos funciona correctamente cuando el ordenador comienza a tener

actividad por parte del usuario. Los procesos Condor tardan un poco más en

pararse, pero finalmente se paran.

Las mismas ejecuciones que se realizaron para comprobar el buen funcionamiento

del sistema Condor se prueban con el sistema completo y el ordenador cliente

cambia su estado en Condor al estado ocupado ejecutando un proceso. El resultado

se devuelve indicando el ordenador donde se ha ejecutado el proceso, siendo

exitoso.

Plataforma Computing@home

Pág. 68

Capítulo 5 - Conclusiones y líneas futuras

Este proyecto explora la posibilidad de la unión de dos sistemas de computación

distribuida. Estos sistemas permiten la distribución de tareas entre los diferentes

recursos que están conectados al sistema para ejecutarlas, pero cada uno de un

modo completamente distinto. Estos dos sistemas de computación distribuida

diferentes son Condor y BOINC, pero se intenta que trabajen conjuntamente para

alcanzar objetivos comunes.

Condor es un software para la ejecución de trabajos, que crea un entorno capaz de

gestionar una gran cantidad de recursos ejecutados durante un largo lapso de

tiempo. Puede gestionar clusters de ordenadores dedicados, comunicados por una

red de área local, utilizando el máximo rendimiento de la capacidad de cómputo

disponible que ofrecen los ordenadores.

Condor proporciona una gestión de recursos potente y hace coincidir las

propiedades de los productores de recursos con los requisitos de los consumidores

de los mismos , adaptándolos al máximo.

Plataforma Computing@home

Pág. 69

Por otro lado, BOINC es una infraestructura de computación distribuida y voluntaria

que permite que un usuario pueda instalarse un cliente fácilmente y se registre en

proyectos que utilizan la infraestructura BOINC para colaborar con ellos utilizando el

tiempo que el ordenador está ocioso.

La instalación del cliente BOINC es sencilla de realizar sea cual sea la arquitectura y

el sistema operativo usado y está pensada para que el público en general ayude en

los proyectos, facilitándoles el acceso.

Los proyectos suelen ser atractivos para el público y requieren de sistemas de

computación masiva que se realiza con la colaboración de voluntarios para poder

ejecutar sus tareas.

Cada uno de estos dos sistemas de computación ha sido diseñado con diferentes

puntos de vista pero con este proyecto se pretende explorar las posibilidades que

existen de aproximar ambos sistemas y conseguir que los sistemas de gestión de

clusters, como Condor, tengan la posibilidad de incluir sistemas de computación

voluntaria como BOINC, para poder ejecutar trabajos controlados por un gestor de

recursos seguro y fiable en ordenadores voluntarios de usuarios, los cuales donan

sus ciclos de CPU desinteresadamente mediante una infraestructura flexible y

llamativa.

El estudio preliminar del proyecto nos ofreció una imagen inicial que nos ayudó a

iniciar el proyecto. La aparición de nuevos problemas durante la ejecución del

proyecto nos proporcionó un gran estímulo para solucionarlos y llegar a la resolución

de cada problema. De esta manera se ha llegado al final del proyecto con los

objetivos cumplidos y los módulos propuestos implementados.

El proyecto, además, nos ha dado una visión más general de los sistemas

distribuidos pudiendo explorar diferentes sistemas y estudiar soluciones que

proporcionasen una respuesta a los problemas.

Otros problemas no se han podido cubrir y quedan a disposición de nuevos

desarrolladores.

Las líneas futuras abiertas con este proyecto son las siguientes:

Plataforma Computing@home

Pág. 70

� Condor puede realizar el envío de trabajos a diferentes entornos que llama

universes. Estos universos gestionan tareas especializadas, como el universo

java, que permite ejecutar aplicaciones escritas en el lenguaje de

programación Java o el universo paralel que permite ejecutar tareas

paralelas. En el caso de las tareas realizadas con computación voluntaria no

disponen de universo, ya que se ha realizado el estudio para tareas que se

ejecutan solamente en los universos standard y vanilla. Dos perspectivas se

pueden ofrecer: se podría crear un universo que gestionara las tareas que se

ejecutaran en entornos voluntarios o se podría modificar el sistema de

ClassAds de Condor para que las aplicaciones pudieran elegir si desean ser

ejecutadas en ordenadores voluntarios. De esta manera se conseguiría

diferenciar el tipo de tareas a ejecutar.

� Se podría realizar un estudio del establecimiento de comunicaciones del

sistema cuando se encuentran cortafuegos. Condor tiene unos requisitos más

estrictos respecto al problema de las comunicaciones. En BOINC es el cliente

el que realiza las conexiones con el servidor y utiliza la librería libCurl que

tiene soporte, por ejemplo, para los protocolos HTTP, HTTPS y puede tratar

con proxies. Sería interesante el uso del elemento GCB (Generic Connection

Brokering), herramienta del proyecto Condor que ayudaría a resolver el

problema.

� El uso de un elemento intermedio entre los dos sistemas, por ejemplo el

elemento GCB, modificado pertinentemente, nos permitiría la posibilidad de

utilizar aplicaciones paralelas que utilizaran las librerías PVM o MPICH por

ejemplo. Este elemento realizaría las funciones de nodo central almacenando

las URLs y permitiría que un ordenador pudiera conocer la URL de otro con el

que quisiera comunicarse.

Se dejan estas líneas abiertas para la posible realización de nuevos proyectos.

Plataforma Computing@home

Pág. 71

Capítulo 6 - Bibliografía

Distributed Systems. Principles and Paradigms

Andrew S. Tanenbaum y Maarten Van Oteen

Ed. Pearson Prentice Hall. 2a edición 2007

The Grid 2. Blueprint for a New Computing Infrastructure

Ian Foster and Carl Kesselman

Ed. Elservier. 2a edición 2004

High-Performance Computer Architecuture

Harold S. Stone

Ed. Addison-Wesley Publishing Company. 3a edición 1993

Construyendo Aplicaciones Distribuidas con BOINC,

Ciclos perdidos

Revista Linux Magazine nº 23, pág. 48

Condor Manual Version 6.8.5 – Condor Team, University of

Wisconsin-Madison

<http://www.cs.wisc.edu/condor/manual/v6.8.5/>

Condor-Users Mail List

<condor-users@cs.wisc.edu>

Página web oficial de BOINC

<http://boinc.berkeley.edu>

Wiki oficial de documentación de BOINC.

<http://boinc.berkeley.edu/trac/wiki>

Plataforma Computing@home

Pág. 72

 Unofficial BOINC Wiki

<http://www.boinc-wiki.info/index.php >

BOINC Message Boards

< http://boinc.berkeley.edu/dev/>

Wikipedia, la enciclopedia libre

<http://es.wikipedia.org>

Plataforma Computing@home

Pág. 73

Carlos Moreno Losada

Bellaterra, Junio 2008

Plataforma Computing@home

Pág. 74

RESUMEN

En este proyecto se han visto dos sistemas de computación distribuida diferentes

entre ellos: Condor y BOINC. Se exploran las posibilidades para poder conseguir

que ambos sistemas logren trabajar conjuntamente, escogiendo la parte más

efectiva de cada uno de los sistemas con el fin de complementarse.

RESUM

En aquest projecte s’han vist dos sistemes de computació distribuïda diferents entre

ells: Condor i BOINC. S’exploren les possibilitats per aconseguir que ambdós

sistemes puguin treballar de forma conjunta, escollint la part més efectiva de

cadascun d’aquests sistemes amb la finalitat que es complementin.

ABSTRACT

In this proyect we have seen two different between them distributed Computing

systems: Condor and BOINC. We explore our possibilities to let both systems work

together, choosing the most effective part of these systems with the aim (obtective-

purpose) to complement each other.

