Universitat
A Autonoma
de Barcelona

etse

PLATAFORMA COMPUTING@HOME

Memoria del Proyecto Final de Carrera
de Ingenieria en Informatica

realizado por

Carlos Moreno Losada

y dirigido por

Miquel Angel Senar Rosell

Bellaterra, 13 de Junio de 2008

Universitat

<\ Autonoma e t se
de Barcelona)

Escola Técnica Superior d’Enginyeria

El abajo firmante, Miquel Angel Senar Rosell

Profesor/a de la Escola Tecnica Superior d'Enginyeria de la UAB,
CERTIFICA:

Que el trabajo al que corresponde esta memoria ha sido realizado bajo su
direccién por Carlos Moreno Losada

Y para que conste firma la presente.

Firmado:

Bellaterra, 13 de Junio de 2008

Dedicado a mi familia por su apoyo incondicional,

a Miquel Angel por su ayuda inestimable

y a Eduardo por creer en mi.

Para Maria, porque sin ella nada de esto seria posible.

Nunca os lo podré agradecer lo suficiente.

Carlos Moreno Losada.

CAPITULO 1 - INTRODUCCIONcuvrrrerrerssrssansnsssssssssssssssssssssssssssssssssssssasssssssssassasssses 6

1.1 - ANTECEDENTESeiiuitiiiiiiteieeet ettt ettt sttt s et sttt e seneeneesaneenneesanes 7
1.2 = OBIETIVOS ...ttt sttt et et e st e e e e saneeneens 12
1.3 - GESTION DEL PROYECTOcuteuiiuieiitinieniteeteeteatententessensesaesueeseeeteneesnennenaensesaesseenesseeneens 15
1.3.1 - Planificacion de tiempPoOS.................ccceuvueeieeeieeiieee e 15
1.3.2 = WBS del PrOYECEOcc.oeeeieeie et 15
1.3.3 = Diag@rama de GANLLc...cccoueeiiuieeiiieeeiee et 17

1.4 - ESTRUCTURA DE LA MEMORIAocuiiiiiiiiiiiiiiiieiiesie ettt 18
CAPITULO 2 - FUNDAMENTOS TEORICOScovuviumrinmismsnssssssssssssssssssmsssssnsssssssssss 19
2.1 - SISTEMAS DISTRIBUIDOSeeuvtiiitiiiieniieeiienieeeteeseeeteesseeeseesineesneesseeeseesmeeeneessneeneens 20
2.2 - CONDOR ...ttt ettt ettt ettt ettt e st e bt e s s e e et e e sue e et e esaneeaneesane e st esnneeaneens 26
2.2.1 = CAFACIETISTICAS ...ttt 27
2.2.2 - Arquitectura de CONAOFcccoovuiiiiiiieeiieeeeee e 30
2.2.3 = DIAGINONS ...ttt 32
2.2.4 - Matchmaking con CLASSAAScccoueeecuiiieiiieiiieecee e 34

2.3 = BOINC ..ottt ettt ettt ettt 35
2.3.1 = CAFACLETISTICAS ...ttt e 36
2.3.2 - Aplicaciones ejecutables por BOINCcc.cccceoviiieiieeiiieeeiieeeiieeeee e 38
2.3.3 = AFQUITECTUF A ..ottt e e e e eaae e e e ntaeeeeannraee s 39
2.3.4 - SiStema de CTEILOSccuiuiiiiiiiiiiii ettt e 44
CAPITULO 3 - ARQUITECTURA Y REQUISITOS.....cccoovvurrnrrrrsressessessessessessssessessnsens 47
3.1 - ARQUITECTURA DEL SISTEMA ...uuuueiiiiiiiitetieieeeeeeeeeeeataeeeeeeeeesesssnnnseesssesssssnnnnsesesereens 48
3.2 - IMPLEMENTACIONeoutiiiiitieitieitenttete et stt ettt st ettt sae ettt s ettt sae et et e saeenae e 51
3.2.1 - Facilidad de instalacionccccccoovoieiiiiiiiiiiiieie it 51
3.2.2 = SEQUITAAU ... 52
3.2.3 - LimitACiONn de USUATTIOS...........ccceeouiieeiiiaiisiieeie ettt 53
3.2.4 - AplicaAcion BOINCc.ccccueecoiieiiieeeiie e 54
3.2.5 = WOFRURILS ...ttt ettt 55
CAPITULO 4 - IMPLEMENTACION Y EXPERIMENTACION......cccnssiueruncsnaessene 58

A1 - INSTALACION ... nseseeesennnssnmnesnnenmnnnmnnnnnnnns 59

GBI T = CONAOT e 60

1.2 = BOINC......coooiiiiiiiiit ettt 62
4.2 - PROGRAMACION DE CONDOR_WRAPPERccccuiiiiiiieeniiieeireeenireeeseeensneesseeessesssssesennns 65
CAPITULO 5 - CONCLUSIONES Y LINEAS FUTURAS.......cvevueetesresressessessessessessesssens 68

CAPITULO 6 - BIBLIOGRAFTA ...voveeeeeeeeeereeeesesesesessesssssssssssssssssssnsassssssssnsassssssasssnsasssss 71

Plataforma Computing@home

Capitulo 1 - Introduccion

Hace unas décadas, los cientificos utilizaban grandes supercomputadoras (0
mainframes) para procesar tareas computacionales. Aquellos superordenadores no
tenian un gran rendimiento, pues ejecutaban los trabajos secuencialmente y los
cientificos tenian que esperar su turno para poder utilizar los recursos. Cada uno de
ellos disponia de una cantidad de tiempo determinado para utilizar la potencia de
calculo del superordenador. Tiempo mas tarde se pudieron utilizar entornos
multiusuarios, en los que no hacia falta esperar un turno para la utilizacion del
superordenador, pero los recursos del superordenador eran limitados y muchas
veces los procesos quedaban paralizados hasta que otros procesos con mayor
prioridad finalizaban. Estas supercomputadoras tenian un coste elevado y no se
rentabilizaban lo necesario para paliar el coste, pero por otro lado éstas estaban

utilizadas cerca del 100%, o sobreutilizadas.

Nuevas generaciones de ordenadores personales con renovados disefios Yy
prestaciones que mejoraban y aumentaban generacion tras generacion, aparecieron

en el mercado y por cuestiones de privacidad, rapidez y reduccion de costes, los

Pag. 6

Plataforma Computing@home

usuarios pasaron de utilizar los mainframes a los ordenadores personales. Mientras
los costes habian sido reducidos enormemente y los usuarios estaban cada vez mas
satisfechos con su ordenador personal, los recursos habian sido distribuidos y la
capacidad de computo global habia decrecido dramaticamente, ya que cada
ordenador personal suponia una infima parte de procesamiento comparado con los
superordenadores anteriormente utilizados. Ademas en los ordenadores personales
se perdian grandes cantidades de ciclos de computacién ociosos sin realizar trabajo
alguno, que si se sumaran en un objetivo comun podrian aumentar la capacidad de

coémputo.

Cada vez los problemas cientificos a resolver se vuelven mas complejos y requieren
de una gran capacidad de computo. Actualmente, un ordenador en solitario no es
capaz de poder resolver este tipo de problemas, pero la unién de varios de estos
ordenadores trabajando sobre partes estructuradas del problema pueden generar

resultados Utiles.

Para poder realizar estas tareas se han creado sistemas de computacién distribuida.
Estos sistemas permiten la distribucién de tareas entre los diferentes recursos que

estan conectados al sistema para ejecutarlas.

En este proyecto veremos dos sistemas de computacion distribuida muy diferentes
entre ellos: Condor y BOINC, pero que trabajando conjuntamente pueden alcanzar

objetivos comunes.

1.1 - Antecedentes

Diversos proyectos cientificos actuales necesitan de una alta cantidad de recursos
para ejecutar los trabajos creados en el proyecto. A menudo, estos trabajos
necesitan ser procesados durante dias o incluso varias semanas, y son necesarios
sistemas que permitan controlar estos procesos durante el largo tiempo que se estan

ejecutando. Estos entornos que son capaces de gestionar una gran cantidad de

Pag. 7

Plataforma Computing@home

recursos ejecutados durante un largo lapso de tiempo son llamados High Throughput
Computing (HTC).

En contraposicién, encontramos los entornos High Performance Computing (HPC),
gue gestionan una gran cantidad de recursos para ejecutar procesos durante
tiempos cortos. Su interés reside en ejecutar el maximo de procesos lo mas rapido
posible, mientras que los entornos HTC son mas proclives a buscar el maximo
namero de aplicaciones ejecutadas durante un intervalo de tiempo largo.

El punto clave que los entornos HTC buscan es la eficiente gestion de los recursos
disponibles, intentando ejecutar los procesos durante el tiempo que fuera necesario
para llegar a la finalizacién de los trabajos y obtener resultados.

Condor es un software que crea un entorno HTC para la ejecucion de trabajos.
Puede gestionar clusters de ordenadores dedicados, comunicados por una red de
area local, utilizando el maximo rendimiento de la capacidad de computo disponible

que ofrecen los ordenadores.

Condor fue diseflado en la Universidad de Wisconsin-Madison y es un sistema
ampliamente utilizado en diversos lugares para gestionar clusters de ordenadores.
Como ejemplo, tenemos la misma Universidad de Wisconsin-Madison, donde reside
el primer sistema Condor implementado y que gestiona mas de 1.000 ordenadores

gue ejecutan proyectos cientificos constantemente.

Dentro de los proyectos cientificos existen trabajos que requieren ejecutarse varios
cientos de veces durante un periodo amplio de tiempo. Este tipo de proyectos
requieren entornos de computacion HTC como Condor, que puede ejecutar un
trabajo cientos o miles de veces, con cientos y miles de conjuntos de datos a la vez,
ahorrando tiempo al lanzarlo. Con una sola orden todos los trabajos son enviados a
Condor y dependiendo del niumero de ordenadores que pueden ejecutarlos, los
procesos quedaran en cola esperando donde ejecutarse. El tiempo de ejecuciéon y
de espera puede ser extenso, pero Condor se encargard de la gestion de los

trabajos hasta su finalizacion.

Pag. 8

Plataforma Computing@home

Condor proporciona una gestion de recursos potente, gracias al matchmaking de
recursos que realiza. Este es el éxito de un entorno HTC como Condor. Este hace
coincidir los productores de recursos con los consumidores de los mismos |,

adaptando los requisitos al maximo.

Otros sistemas de gestion de recursos utilizan colas de trabajos diferentes
dependiendo de las caracteristicas especiales asignadas a cada cola y son ellos
mismos los que afiaden propiedades a las colas de trabajos al instante, generando
confusién al usuario sobre qué cola se debe usar, por los cambios realizados en las

propiedades, para satisfacer ciertas demandas de otros usuarios.

Condor, en cambio, implementa el sistema ClassAd, que proporciona un disefio
claro que simplifica el envio de trabajos por parte del usuario y la sencillez para
encontrar el ordenador adecuado para ejecutar el proceso. Los ClassAds son un
método eficaz para poder planear la ejecucion de procesos como, por ejemplo, la

implementacion de diversos procesos capaces de diseflar grafos aciclicos de

ejecucion.
Resources
resource classads
~ T . . Central Manager
- client Jﬂh Scheduler ob classad ‘ Collector ‘ | Negotiator

chosen resource url

Figura 1 - Representacién del sistema de matchmaking

Condor puede ser usado para construir entornos de computacion de estilo Grid que

atraviese los limites administrativos y proporciona herramientas para incorporar

Pag. 9

Plataforma Computing@home

estos sistemas, como puede ser el caso de la tecnologia flocking, que permite que

diversos sistemas Condor trabajen conjuntamente, o la interaccion con Globus.

Otro sistema de computacion es BOINC (Berkeley Open Infrastructure Network
Computing) y es una infraestructura de computacion distribuida y voluntaria. El
sistema permite que un usuario pueda instalarse un cliente facilmente y se registre

en proyectos que utilizan la infraestructura BOINC para colaborar con ellos.

La instalacién del cliente BOINC es sencilla de realizar sea cual sea la arquitectura y
el sistema operativo usado, ya que BOINC se encuentra disponible para una gran
variedad de sistemas operativos y arquitecturas de computadores. Cada uno tiene
su propio sistema de instalacion, pero la infraestructura BOINC esta pensada para
que el publico en general ayude en los proyectos y por lo tanto se facilitan los
procesos para poder colaborar. Esta colaboracion se consigue atrayendo a los
usuarios con proyectos de gran interés general y de afladidos como salvapantallas o
skins que permiten adaptar el cliente segun los gustos de cada usuario.

This globe shows your climate model running
Model date and time: 19/10/1952 00:30 2

Atmos Model Time — 00:30
Atmos Model Date 19/10/1952 - iy
Hours Elapsed 0685:15:50 (2.99 s/TS)

Timestep 826417 of 4147560
Progress . 19.93 &

created by

bbc.co.uk/climatechange) C ' ' . climateprediction.net

Figura 2 - Salvapantallas del proyecto ClimatePredi ction.net

Pag. 10

Plataforma Computing@home

Una vez instalado el cliente y registrado el usuario en el proyecto que ha elegido, se
utiliza el tiempo que el ordenador esta ocioso para ejecutar el proyecto en el que se
ha suscrito. Los proyectos suelen ser de investigacion cientifica que requieren de
sistemas de computacién masiva y buscan la colaboracion de voluntarios para poder

ejecutar sus tareas.

Se trata de un sistema voluntario, ya que el usuario dona sSus recursos
voluntariamente para ejecutar las tareas de los proyectos a los que se ha registrado,
donando su tiempo ocioso de procesador para ejecutar los procesos de los
proyectos BOINC. Si el proyecto no funcionara por algin motivo, los recursos que el
usuario ha asignado en su ordenador para ese proyecto se repartirian entre el resto

de proyectos.

Proyectos BOINC son, por ejemplo:

- El proyecto SETI, el cual se dedica, basicamente, a la busqueda de vida
extraterrestre analizando las sefiales que la NASA capta en sus antenas.

- El proyecto FightAIDS@home, que centra su trabajo en el descubrimiento
de diferentes particulas que ayuden a la lucha contra el SIDA.

- El proyecto CancerResearch@home, que usa la computacion voluntaria
distribuida para la investigacion contra el cancer.

- El proyecto Rossetta. Este proyecto investiga proteinas en 3D que puedan
encontrar una solucion a enfermedades mundiales como por ejemplo el
cancer o el Alzheimer.

- El proyecto Einstein@home investiga pulsars en las sefiales recibidas en
los laboratorios que estudian las estrellas.

- El proyecto ClimatePrediction.net estudia el cambio climéatico afiadiendo

miles de modificaciones para comprobar como se comporta el sistema.
Un mismo usuario mediante su cliente BOINC instalado puede colaborar con

diversos proyectos, no teniendo que restringirse solamente a uno, compartiendo el

tiempo de proceso entre los diferentes proyectos a los que el usuario esta suscrito.

Pag. 11

Plataforma Computing@home

1.2 - Objetivos

Los sistemas de computacion distribuida son diversos y cada uno aporta una
solucién a un tipo de problema concreto.

Condor actua sobre clusters de ordenadores, proporcionando sistemas generalistas
de altas funcionalidades, gestionando de manera eficiente y fiable los procesos a
ejecutar en ordenadores que dedican su tiempo a la ejecucion masiva de proyectos.
BOINC, en cambio, realiza una computacion intensiva de proyectos creados
atractivamente para el publico, creados con el fin de ser resueltos mediante la
computacion voluntaria en una infraestructura sencilla y configurable donde
cualquier usuario domeéstico puede colaborar.

Como se puede ver, cada sistema esta disefiado para obtener la misma finalidad
pero de diferentes formas, desde diferentes puntos de vista.

En este proyecto se exploraran las posibilidades que existen de aproximar ambos
sistemas y conseguir que los sistemas de gestion de clusters HTC, como Condor,
tengan la posibilidad de incluir sistemas de computacion voluntaria como BOINC,
para poder ejecutar trabajos controlados por un gestor de recursos fiable y seguro
en ordenadores voluntarios de usuarios domeésticos, los cuales donan sus ciclos de

CPU desinteresadamente mediante una infraestructura flexible y llamativa.

Iniciamos parte de la idea con un conjunto de recursos Condor, donde los usuarios
pueden enviar sus tareas a ejecutar y el sistema Condor las gestiona asignandolas
a los diferentes recursos.

BOINC, por su parte, dispone de su infraestructura en la que las tareas del proyecto
a ejecutar se reparten entre los usuarios registrados en el proyecto.

Se busca la opcidén de poder enviar trabajos Condor que puedan ser ejecutados en
ordenadores externos al ambito del gestor y que colaboren en un proyecto BOINC

creado para este fin.

Paralelamente se conseguira aumentar el nimero de recursos del pool para poder

ejecutar mas tareas a la vez, permitiendo que los usuarios reciban la solucion de sus

Pag. 12

Plataforma Computing@home

multiples tareas con mayor celeridad. Una segunda via de pensamiento es la opcion
de que diversos usuarios requieran de un nimero de recursos para ejecutar sus
tareas que el pool no las pudiera ofrecer por la limitacion de recursos. Esta
estructura nos limita a ejecutar tareas que requieran el nUmero maximo de recursos

que dispone el pool.

En buena parte se quiere incrementar el nimero de recursos, pero este incremento
no es sencillo de realizar. Dentro de las posibles soluciones se sabe que se realizara
un incremento dindAmico de recursos, pues se conoce que la computacion voluntaria
dispone de un contratiempo como es la volatilidad de las conexiones de los
ordenadores al sistema. Estas conexiones dinamicas se deben tener en cuenta, ya
gue si un proceso necesita de una fiabilidad del 100%, con este método no se podra

ofrecer por su volatibilidad.

Se intentara encontrar una solucion para el incremento de recursos del pool de
Condor, afladiendo maquinas externas voluntarias, pero existen ciertos problemas o

requerimientos a cumplir:

 Un problema que pudiera surgir seria que el sistema afadiera recursos
externos y éstos pudieran generar problemas de seguridad al no encontrarse
en un entorno seguro. En principio, el sistema no est4 limitado a un conjunto
de usuarios restringido y los entornos que se pueden afadir pudieran ser muy
diversos. Se debe tener en cuenta la seguridad del sistema, eliminando
aquellos riesgos potenciales que se puedan detectar, minimizando el efecto
de los riesgos que surgieran y que no hubieran sido detectados. En cierta
forma deberiamos cuidar tanto el sistema como el entorno en el que se
encuentra el sistema, impidiendo que dejase de funcionar por completo si se

produjera algun problema de seguridad.

e Oftro requisito impuesto para la solucion del problema es la facilidad,
accesibilidad, y transparencia que el usuario externo debe tener para poder
colaborar en la ejecucion de las tareas. El sistema de adicion de recursos al

proyecto deberia ser accesible para el mayor niumero de publico interesado,

Pag. 13

Plataforma Computing@home

facil de instalar y de poner en funcionamiento, proporcionando una
transparencia al usuario en el momento de la ejecucién para no entorpecer el
trabajo del mismo. Como se trata de un sistema dinamico, éste debe ser

flexible tanto a la hora de afiadir recursos como de sustraerlos.

Un sistema de estas caracteristicas deberia poder aportar una fiabilidad para
que las tareas se ejecutaran en un tiempo razonablemente finito y que se
pudiera obtener el resultado de tal ejecucion. Sin este sistema de fiabilidad
podria darse el caso que las tareas fueran enviadas a recursos que
desaparecieran del pool y que nunca mas pudieran volver a conectarse. El
usuario emisor de la tarea nunca recibiria el resultado, podria incluso retardar
otras tareas que necesitasen de este resultado o hacerlas fracasar por no
ejecutarse en un tiempo dado. Algin mecanismo implementado deberia evitar
estas situaciones, aunque si bien podria ser tolerable algun fallo que algun
recurso pudiera generar, restableciendo la ejecucion en otro recurso. Esta
tolerancia y transparencia de fallo deberia ser inapreciable por parte del

usuario emisor de la tarea.

En algunas ocasiones la apertura de los sistemas a un mayor niumero de
usuarios puede provocar que los componentes centrales del sistema queden
bloqueados por saturacion. Este es un problema tipico de las redes y de los
servidores que gestionan varios cientos o miles de recursos. Como el sistema
no indica un ndmero maximo de recursos que se pueden gestionar,
deberemos limitar el acceso a recursos que pretendan afadirse al sistema,

para impedir la saturacion del mismo y sus componentes.

Otro aspecto importante es la gestion concurrente y las comunicaciones entre
las diferentes tareas. Para facilitar el proyecto se realizaran pruebas en las
que las tareas carecen de comunicacion alguna con otras semejantes u otros
recursos ajenos al sistema. Esto nos proporcionard un primer paso que

indique la viabilidad del proyecto.

Pag. 14

Plataforma Computing@home

1.3 - Gestion del proyecto

1.3.1 - Planificacion de tiempos

La planificacion de tiempos esta marcada por las tareas a desarrollar y los hitos a
conseguir. Las tareas se dividen en lo que se llama la Work Breakdown Structure
(WBS) y especifica de la manera mas concreta posible las tareas a realizar y la
distribucion de tiempos dependiendo de la interaccion que tengan entre ellas. Como
resultado de todo este estudio, podemos ver el diagrama de Gantt resultante que
nos ayuda a conocer el estado del proyecto en un momento determinado, pudiendo
decidir si son necesarias acciones correctivas en el proyecto para poder llevarlo a

cabo en los tiempos determinados.

Se mostrara y describird brevemente cada una de las fases que hemos generado
para la planificacion del proyecto y se pasara a la visualizacion del diagrama de

Gantt correspondiente al proyecto.

1.3.2 - WBS del proyecto

» Anadlisis del problema: Este es un apartado previo a la implementacion del
proyecto. Este andlisis es necesario para idear la solucion mas optima al
problema que tenemos.

» Instalacién Condor: Se trata de la instalacion del sistema Condor del testbed
gue nos servira para realizar las pruebas de funcionamiento. También incluye
las pruebas realizadas sobre el mismo sistema que determinan Su
funcionamiento correcto.

o Configuracién servidor Condor
o Configuracién cliente Condor
o Creacion aplicacion prueba Condor
o Pruebas funcionamiento aplicacion Condor
o Creacion cortafuegos para Condor
* Instalacion BOINC: El testbed necesita también de un pequefio sistema

BOINC que ayude a realizar las tareas de prueba. Se afiaden las pruebas a

Pag. 15

Plataforma Computing@home

realizar para conocer el funcionamiento del sistema y la posterior
comprobacién del mismo.

o Configuracién servidor BOINC

o Configuracioén cliente BOINC

o Creacion proyecto prueba BOINC

o Pruebas funcionamiento proyecto BOINC

o Creacion cortafuegos para BOINC
Condor + BOINC: La unidén de estos dos sistemas nos proporcionara la
realizacion del proyecto. Se debe configurar Condor encapsulandolo como
tarea a ejecutar de BOINC. Se creara un proyecto de BOINC con la tarea
realizada y se realizaran las pruebas anteriores que puedan ayudar a la
comprobacion.

o Creacion proyecto Condor en BOINC

= Configuracion condor_config
= Encapsulado BOINC de paquete Condor

o Creacion de proyectos BOINC

o Pruebas funcionamiento proyecto

o Creacion cortafuegos para proyecto
Documentacion: Se realizara la escritura de la documentacion pertinente al
proyecto.

Presentacion: Se realizara la presentacion publica del proyecto.

Pag. 16

Plataforma Computing@home

1.3.3 - Diagrama de Gantt

Nombre Trabajo 2008, Mt 2008, W2
nov 2007 dic 2007 £ne 2008 fsb 2008 mar 2008 abr 2008 may 2008 jun 2008 jul 2008

Anallss del problema 10d _
Instalacion Condor 124 _

Configuration servidar Candor 5 |

Configuracion cliente Condr i _

Creation aglicacion prusha Condor s “

Pruebas funcionamiento aplicacion Condor |1 _

Creacion cortafueges para Concor 1d
Instalacion BOINC 164 m

Canfiguracion servidor BOINC 10d |

Configuracién clents BOINC i |

Creation provecto prusha BOINC i Carlos

Prugbas funcionamiento proecto BOINC |26 Carfos _

Creacion cortafueges para BOINC id (afos _
Condor + BOINC 25 I Carles

Creacion proyecto Condor en BOINC | 7d

Conficurzcion condar canfig i
Encapsulado BOINC ce paguete Condor |54

Creation provecto BOINC 1 Carhs

Prugtas funcionam ento proyecta i _ (i

Creacion cortafugqos para proyeco 1d _ Carlos
Decumentacion 15 : Carlos
Presantzcion Rl _ Uﬁmﬂ_m

Figura 1 - Diagrama de Gantt

Pag. 17

Plataforma Computing@home

1.4 - Estructura de la memoria

La estructura de la memoria se repasara en esta seccion, los diferentes capitulos

gue veremos y el contenido de los mismos.

El capitulo 2 trata los fundamentos tedricos necesarios y los métodos utilizados para
entender y comprender el trabajo realizado. Estos conceptos engloban las bases
tedricas del proyecto.

Los puntos a ver son los sistemas distribuidos y su clasificacién, el sistema Condor,
un sistema HTC ampliamente utilizado en diversos proyectos, y el middleware

BOINC, una infraestructura creada para la computacion voluntaria de proyectos.

El capitulo tercero esta dedicado a los problemas surgidos durante la ejecucion del
proyecto y se veran las soluciones tomadas en cada momento para cada problema.
De esta forma se repasara el cumplimiento de los requisitos iniciales del proyecto.

Se han contemplado las arquitecturas de los sistemas en los que esta basado el
proyecto, y se mostrara la arquitectura del sistema y la implementacion desarrollada

del proyecto.

El cuarto capitulo mostrara la instalacién de los entornos de pruebas que fueron
necesarios para poder ejecutar el proyecto y la experimentacion realizada en ellos.
En este apartado se dard una solucion pragmatica a las implementaciones

anteriormente explicadas.

El capitulo 5 consta de los apartados correspondientes a las conclusiones obtenidas
en el trabajo realizado y las lineas futuras que el proyecto abre a nuevas
extensiones. Estas son importantes para conocer el alcance obtenido con el

proyecto respecto a las posibilidades del conjunto del trabajo.

Pag. 18

Plataforma Computing@home

Capitulo 2 - Fundamentos tedricos

La computacion distribuida es un modelo de computacion que ayuda a resolver
problemas de computacién masiva y que utiliza, en su gran medida, un nimero
elevado de ordenadores para resolver problemas que requieren un alto indice de

computacion.

El proyecto desarrollado esta basado en sistemas de computacion distribuida. Estos
son un modelo utilizado en diversas areas para resolver grandes retos que requieren
un alto indice de computacién, como la fisica, la biologia molecular, la medicina o la
meteorologia.

Estos grandes retos pueden ser, por ejemplo, el plegamiento de proteinas, el
descubrimiento de nuevos medicamentos, la simulacion de terremotos o
inundaciones, la simulacion financiera o el estudio de un tema habitual hoy en dia, la
creacion de modelos climaticos, realizando calculos de sistemas que estudian

modelos de los posibles efectos del calentamiento global del planeta.

Pag. 19

Plataforma Computing@home

Todos estos ejemplos tienen en comun la necesidad de utilizar computacion
masiva, la cual puede ser llevada a cabo de diferentes formas que veremos a

continuacion.

2.1 - Sistemas Distribuidos

Cuando se piensa en la ejecucion de grandes proyectos se suele pensar en un
superordenador que ejecuta incesantemente todos los trabajos. Ciertamente, una de
las formas de realizar computacion masiva es el uso de un supercomputador que
pueda procesar las tareas suministradas por el proyecto. Afortunadamente no es la
Gnica manera de llevar a cabo esta tarea. Cuando este supercomputador no se
puede hacer cargo del trabajo o si no se dispone de un supercomputador por los
costes que éste implica, se utilizan sistemas distribuidos que ayudan a realizar los
calculos requeridos para resolver los trabajos.

Este es el objetivo por el cual la computacion distribuida fue disefiada, permitiendo
ademas de la ejecucién de estas tareas, la flexibilidad para poder trabajar en
multiples problemas mas pequefios que ayuden colateralmente a resolver grandes
problemas y obtener un rendimiento mayor del conjunto global que compone el

sistema.

Dentro de la computacion distribuida existen diferentes tipos de sistemas que
requieren de sus necesidades. Algunos de ellos son:

e La existencia de servicios web XML nos proporcionan servicios y
aplicaciones que pueden ser accedidos para utilizar entornos distribuidos.
Estos servicios web XML estan regidos por un estandar llamado Open Grid
Services Architecture (OGSA). Este estandar es el utilizado por Globus
Toolkit en su versién 3.0.

e La computacion de ciclos redundantes o también llamada computacion
zombie esta compuesta por un servidor o grupo de servidores que
distribuyen tareas para ser procesadas entre los diferentes sistemas
voluntarios que se han adjuntado para colaborar en la ejecucion del

Pag. 20

Plataforma Computing@home

proyecto. Los ordenadores voluntarios ejecutan estas tareas cuando se
encuentran ociosos, no interfiriendo en la ejecucion y uso del ordenador
por parte del usuario. De esta manera, se dona a la ejecucion de los
proyectos los ciclos redundantes, aprovechando al maximo la capacidad
de procesamiento del ordenador.

Los clusters de ordenadores son un conjunto de ordenadores de bajo
coste relativo, unidos entre si por una red local de alta velocidad. Todo el
cluster de ordenadores suele disponer del mismo sistema operativo y de
un software que permite la ejecucion de tareas distribuidas y establece las
comunicaciones entre los diferentes elementos del cluster. Otro dato tipico
de los clusters de ordenadores suele ser la existencia de un Unico sistema
de almacenamiento compartido.

Los sistemas Grid son un paradigma de la computacion distribuida
aparecido en las ultimas décadas. Estos sistemas disponen de un nimero
indeterminado de ordenadores dedicados, que funcionan como si se
trataran de uno Unico. Esta unién se realiza de manera transparente,
generando a la vista del usuario un Unico recurso que pueda ejecutar las
tareas requeridas, aunque estos ordenadores se encuentren ubicados en
diferentes lugares geogréficos. Para llevar a cabo estas funciones se suele
utilizar un software determinado que permite las comunicaciones entre
ordenadores, la gestion de almacenamiento de datos y el envio de
trabajos, entre otras tareas. Uno de los softwares mas famosos para crear
estos sistemas es Globus. Globus es un middleware con el que se puede
crear un sistema Grid. Permite gestionar y descubrir los recursos, asi

como el control del almacenamiento de datos.

La existencia de diferencias entre los sistemas distribuidos permiten clasificarlos de

diversas formas, entre ellas encontramos la homogeneidad de los sistemas o la

localizacion de los mismos.

Por ejemplo, los sistemas llamados Single System Image (SSI), donde todos los

recursos computacionales disponen del mismo sistema operativo disefiado

expresamente para permitir trabajar en un entorno distribuido. Ejemplos de estos

SSI son DragonFly BSD, Mosix/Open Mosix o Open SSI. En contraposicion

Pag. 21

Plataforma Computing@home

encontramos sistemas Grid donde la heterogeneidad de los sistemas es muy alta,
pudiendo encontrarse dentro de un mismo sistema Grid diferentes clases de
sistemas operativos.

Otro ejemplo de clasificacion es la localizacion de los elementos, como los clusters
de ordenadores que se encuentran localizados dentro de la misma ubicacion,
conectados mediante una red local de alta velocidad que conecta todos los recursos,
mientras que en un sistema Grid los ordenadores se encuentran ubicados en
diferentes lugares del mundo, pudiendo comunicarse a través de Internet.

Estas clasificaciones se pueden ampliar con la vision que el usuario tenga del
sistema. Un cluster, por ejemplo, utiliza todos los ordenadores buscando mejorar el
rendimiento de todos ellos, mientras que en los sistemas Grid el englobe total de
ordenadores quiere ofrecer la vision al usuario de un superordenador, suplantando
los elementos dispersos.

Otro aspecto importante en los sistemas distribuidos es la fiabilidad del sistema. Se
puede dar una alta fiabilidad, como en los sistemas Grid, donde el mal
funcionamiento de un nodo o recurso no implica el paro del sistema, pudiendo
servirse de otros recursos del Grid, o una fiabilidad baja, que puede ser, por ejemplo,
un cluster de ordenadores donde el mal funcionamiento de un recurso puede

provocar la parada del sistema completo.

Diversa literatura incluye los sistemas oportunistas de computacion voluntaria como
una clase de sistemas de computacion distribuida Grid, aunque la computacion
voluntaria difiere de la computacion Grid, porque esta ultima involucra la gestién de
recursos dentro y entre organizaciones virtuales. En cambio la computacion
voluntaria no requiere de esta organizacion. Se podria considerar un sistema Grid
cuando se organiza los recursos por proyectos, realizando una similitud con las
organizaciones virtuales. Por este motivo veremos los sistemas Grid vy

posteriormente los sistemas de computacion voluntaria.
El término Grid fue acufiado por lan Foster y Carl Kesselmans en los principios de

los afios 90 en un seminario llamado The Grid: BluePrint for a new Computing

Infrastructure. Este seminario desembocd en un libro con el mismo nombre.

Pag. 22

Plataforma Computing@home

Los autores buscaban una metafora para comparar la facilidad de acceso de este
método de computacion a la red de suministro eléctrico. De aqui se extrajo el

vocablo inglés Grid que sirve para denominar estos sistemas de computacion.

El término Grid Computing dispone de dos acepciones en el diccionario tecnoldgico

gue engloban dos subcategorias de sistemas distribuidos:

» Grid es la computacion online o el almacenamiento ofrecido como servicio
soportado por un conjunto de recursos distribuidos, conocidos también
como utilidad de computacion , computacion bajo demanda o cluster
computacional. Existen Grids de almacenamiento de datos que proveen el
control para el almacenaje de grandes cantidades de datos que pueden
ser compartidos. Estos Grids suelen ofrecer apoyo a los Grids
computacionales.

» Los sistemas Grids buscan la creacion de un “superordenador virtual”
compuesto de wuna red de ordenadores conectados, ejecutando
conjuntamente tareas de gran tamafio que no podrian ser ejecutadas por
ordenadores en solitario. Estos sistemas se han utilizado para ayudar en el
area de computacion cientifica intensiva, matematica y resolver problemas
académicos a través de la computacion voluntaria. También se han
aplicado sobre sistemas comerciales como por ejemplo la pronosticacion
econdémica, el descubrimiento de drogas y medicamentos o el
procesamiento de datos en back-office para el soporte al comercio

electronico y servicios web.

En esta segunda definicibn encontramos una referencia a los sistemas de
computacién voluntaria, que son un tipo de sistemas de computacion distribuida en
la cual los propietarios de ordenadores, habitualmente domeésticos, donan sus
recursos informaticos (almacenamiento, procesamiento) voluntariamente para

ejecutar tareas de uno 0 mas proyectos.

Pag. 23

Plataforma Computing@home

El primer proyecto de computacion voluntaria conocido fue el Great Internet
Mersenne Prime Search, que se inici6 en enero de 1996. En afos sucesivos
surgieron otros proyectos como Superweb, Popcorn, Charlotte o Bayanihan.

El desarrollador de este ultimo proyecto, Bayanihan, fue quien acufid el término

“computacién voluntaria”, Luis F.G. Sarmenta.

El software cliente de los primeros proyectos de computacion voluntaria consistia en
un simple programa que combinaba la computacion distribuida y la infraestructura
del sistema. Esta arquitectura monolitica no era flexible, ya que por ejemplo era
dificil actualizar las versiones sin modificar la infraestructura.

Recientemente se han desarrollado sistemas middleware que proveen una
infraestructura de computacion distribuida independiente de la computacion

cientifica, por ejemplo:

* BOINC, desarrollado por la Universidad de California.
* XtremWeb, desarrollado por la Universidad Paris-South.
e Xgrid, desarrollado por Apple para Mac OS X.

* GridMP, desarrollado por United Devices para uso comercial.

La estructura basica que siguen estos sistemas es la de un programa cliente que se
ejecuta en el ordenador voluntario. El usuario controla el progreso y la dedicacion
dada a la ejecucion de tareas del proyecto y es el cliente instalado el que
periodicamente contacta con el servidor del proyecto, entregando los resultados
obtenidos y recibiendo nuevas tareas para ejecutar, si se da el caso. De esta
manera, con el sistema pull se pueden evitar los posibles firewalls instalados en los

ordenadores clientes que no tengan permitidas conexiones de entrada.

Los sistemas de computacién voluntaria deben controlar algunos aspectos

problematicos.

= La heterogeneidad de los sistemas que participan.

= La disponibilidad esporadica de los recursos participantes.

Pag. 24

Plataforma Computing@home

= La necesidad de la no interferencia del ordenador cuando sea el usuario
quien realiza el uso.

= El anonimato de los usuarios.

= El sistema numérico de medida (créditos) para reconocer la cantidad de
trabajo realizado por cada usuario.

= La deteccion de resultados incorrectos.

= Lareclamacién de créditos por resultados erréneos.

Para resolver estos problemas se utilizan soluciones como la “computacion
replicada”, en la que cada trabajo es realizado como minimo por dos ordenadores y
solamente los resultados son aceptados si ambos son similares o cercanos. Si esto

ocurre, se asignan créditos a ambos usuarios por el trabajo realizado.

Por el lado cliente también existen problemas como el incremento del consumo
eléctrico, ya que el ordenador consume mas electricidad al estar activo que
encontrandose en un estado ocioso. Se suelen desactivar funciones como
“Suspender” o “Hibernar” en el ordenador para permitir la ejecucion de estos
procesos, con la consecuencia que el ordenador esta continuamente ejecutando
tareas.

Si la memoria RAM se convierte en una limitacion entre todos los recursos, el
rendimiento del ordenador decaera al aumentar los fallos a caché y la paginacion a
disco. Para evitar estos problemas se suelen ejecutar las aplicaciones de los
sistemas voluntarios con baja prioridad, lo que ayuda a aliviar la contencién de la
unidad de proceso. Estos efectos en el cliente pueden ser visibles 0 no, e incluso si
son visibles el voluntario suele escoger seguir colaborando con los proyectos.

Otro problema es el decreciente rendimiento del ordenador si no estad bien
controlado el uso del ordenador durante la ejecucion del proyecto. Se pueden definir
aspectos criticos como la cantidad de disco a utilizar o los momentos de ejecucion
de las tareas. Una mala configuracion de estas caracteristicas puede suponer la

saturacion de los procesos del ordenador.

Pag. 25

Plataforma Computing@home

2.2 - Condor

Condor es un sistema de procesos por lotes especializado para gestionar trabajos
de computacién intensiva y proporciona un mecanismo de encolado de trabajos,

politicas de programacién, esquemas de prioridad y clasificacién de recursos.

Los sistemas de procesos por lotes normalmente son ejecutados por sistemas
dedicados, que pertenecen a una organizacion y tienen como Unico propésito la
ejecucion de trabajos. Las posibilidades de Condor son que puede enviar trabajos a
ordenadores dedicados pero también puede enviarlos a ordenadores no dedicados,

utilizando los momentos que el usuario no se encuentra utilizando el ordenador.

Condor es un software que crea un entorno HTC y puede gestionar clusters de
ordenadores dedicados comunicados por una red de area local, utilizando el maximo

rendimiento de la capacidad de computo disponible.

Maquinas

Trabajo en ejecucion

PC REMOTO
Cola de trabajos

CLUSTER

Usuario |—> EZE

Figura 3 - Esquema de componentes de Condor

Los usuarios envian sus trabajos informaticos a Condor, y éste coloca los trabajos

en una cola, segun la politica especificada, busca ordenadores disponibles en la red

Pag. 26

Plataforma Computing@home

gue se adapten a los requisitos de los trabajos, los ejecuta y entonces informa al

usuario sobre el resultado.

Condor proporciona mediante matchmaking de recursos una gestion de los mismos

entre productores y consumidores de recursos. Este es el secreto del éxito de

Condor que ha permitido que sea uno de los sistemas mas ampliamente utilizado

para este tipo de entornos.

2.2.1 - Caracteristicas

Las caracteristicas que hacen de Condor un sistema diferente y excepcional son las

siguientes:

Checkpoint y Migraciéon - Cuando los trabajos son enlazados con las
librerias de Condor, los usuarios pueden asegurar que sus trabajos seran
posiblemente completados, incluso en los entornos cambiantes que
Condor utiliza. Cuando un ordenador ejecutando un trabajo enviado se
convierte en indisponible, el trabajo puede detenerse en ese instante
guardando todo el estado actual. El trabajo puede continuar después de
haberse migrado a otro ordenador. Condor realiza puntos de control
periddicamente para, de alguna forma, salvaguardar el tiempo acumulado
de computacién en un trabajo, no perdiéndose todo el trabajo en caso de
apagado del ordenador.

Llamadas de sistemas remotas - Condor, mediante las llamadas del
sistema remotas puede conservar el entorno de ejecucion local en el
entorno Condor standard universe. No es necesario preocuparse de la
transferencia de archivos o de realizar login en el ordenador remoto, los
trabajos se realizan como si fueran locales y es transparente el ordenador
en el que se ejecuta el trabajo.

No son necesarios cambios en el cddigo fuente - Condor es capaz de
ejecutar procesos interactivos, realizar puntos de control y migracion
transparentemente siempre y cuando reenlacemos el codigo fuente con las

librerias de Condor al compilar el trabajo a ejecutar. Si no se proporciona

Pag. 27

Plataforma Computing@home

el entorno Condor vanilla universe para ejecutar aplicaciones que no se
pueden reenlazar por la falta del codigo fuente.

Pools de ordenadores operan conjuntos - Flocking es una caracteristica
de Condor que permite que trabajos enviados a un pool sean ejecutados
en un segundo pool al que se tiene confianza. EI mecanismo es flexible
pudiendo configurar politicas en el segundo pool para conocer qué
ordenadores y qué trabajos pueden ser ejecutados.

Usuario de ejecucion - En cuestiones de seguridad Condor no requiere
una cuenta de usuario en los ordenadores destino donde se ejecutan los
trabajos. Es capaz de utilizar cuentas generalistas como nobody, pero se
debe configurar para este aspecto.

Ordenacion de trabajos > Se pueden ordenar las ejecuciones de los
trabajos haciendo que cada uno de ellos sea un nodo dentro de un grafo
aciclico. Se establecen dependencias en la ejecucion de los trabajos
segun las expresadas en el grafo.

Habilitacion de Grid Computing - Utilizando la técnica de Glidein se
permite enviar a ejecutar trabajos de Condor a ordenadores que
pertenecen a un Grid ubicados alrededor del mundo. Estos recursos Grid
son manejados por Globus.

Percepcion del propietario del ordenador - Los procesos del propietario
de un ordenador que colabore con Condor tienen prioridad sobre el uso
del ordenador. El propietario cede el tiempo no utilizado para ejecutar otros
procesos como Condor. Es transparente y el usuario no debe realizar
ninguna operacion, se realiza autométicamente. La capacidad de detectar
si el usuario de un ordenador esta trabajando con él la realiza Condor y si
existiera un trabajo ejecutandose en ese momento, Condor lo pararia de
inmediato e intentaria realizar un checkpoint y migrar el trabajo a un
ordenador diferente, el cual admitiera el trabajo. Condor retomaria el
trabajo en el nuevo ordenador exactamente en el punto donde paro la
ejecucion.

ClassAds - El mecanismo ClassAds proporciona un framework flexible y
expresivo para realizar la mejor correspondencia entre las peticiones de

recursos y las caracteristicas de los recursos, indicadas por los trabajos

Pag. 28

Plataforma Computing@home

lanzados y por las politicas expresadas en los ordenadores del pool.

Durante el proceso de matchmaking, Condor también considera diversas

capas de valores prioritarios:

o

o

Prioridad del usuario asignada al anuncio de peticioén del recurso.
Prioridad del usuario que envia el anuncio.
Deseos de los ordenadores en el pool para aceptar ciertos tipos de

anuncios sobre otros.

Por el contrario, Condor también tiene limitaciones que no permiten realizar algunas

funciones. Es importante conocerlas:

« Limitaciones en trabajos con checkpoint - No se pueden realizar puntos

de control y migracion de:

o

Trabajos con multiprocesos. Por ejemplo trabajos que utilicen las

funciones fork o exec,

Comunicacion entre procesos (Inter-Process Communication, IPC).

Procesos que utilicen pipes o semaforos

Operaciones de red de larga duracion. Los procesos que abran un
socket no pueden dejarlo abierto durante mucho tiempo.
Utilizacién de las sefiales SIGUSRZ y SIGTSTP. Otras sefales estan

permitidas, pero éstas Condor las utiliza internamente.

Procesos dormidos. Los procesos que utilicen funciones como alarm o

sleep.

Utilizacion de multiples kernel-level threads. Los threads de usuario

estan permitidos, pero si son del kernel no.

Ficheros con memory mapped.

Blogueo de ficheros. No se pueden utilizar funciones como lock.

Ficheros no abiertos de so6lo escritura o lectura. Los ficheros abiertos

de lectura y escritura pueden provocar fallos.
Ordenadores con poco espacio en disco. Es necesaria una cantidad de

disco para guardar el estado de la tarea.

Procesos que lean o escriban en ficheros de mas de 2 GB.

Pag. 29

Plataforma Computing@home

* Seguridad - Condor proporciona sistemas y politicas de seguridad, pero
no puede controlar que ciertos sistemas tengan problemas de seguridad.

* Los trabajos deben ser enlazados de nuevo -> Para obtener las
propiedades de checkpoint y de sefiales de sistema remotas, los trabajos

deben ser linkados con las librerias de Condor.

2.2.2 - Arquitectura de Condor

El sistema de gestion de colas de trabajos Condor es una pieza fundamental del
proyecto. Condor dispone, en su arquitectura basica, de un servidor central llamado
Central Manager que es el encargado de realizar la gestion de recepcion y envio de
trabajos, asi como la correspondencia entre trabajos y recursos. Se puede
considerar el cerebro del sistema. Este servidor contiene varios daemons que
realizan las operaciones necesarias y son arrancados segun la configuracion
establecida mediante el programa condor_master. Este proceso controla el resto de

procesos de Condor de manera automatica.

Para constituir el pool de ordenadores que ejecuten trabajos enviados por el Central
Manager se dispone de ordenadores dedicados a la ejecucion de trabajos. Todos los
ordenadores del pool no son estrictamente dedicados, ya que algunos de ellos
pueden ser ordenadores de usuarios que ejecutan tareas cuando el usuario no esté
trabajando. En este caso, los ordenadores pertenecen al pool a tiempo parcial,

utilizando el tiempo que el usuario no usa el ordenador para ejecutar los trabajos.

s = Proceso Lanzado (Central Manager' \ i Execufc-Dnly \

, y (" Execute-Only
,,

{ Submit-Only

Figura 4 - Procesos Condor en los diferentes roles

Pag. 30

Plataforma Computing@home

Los roles que pueden presentar los ordenadores en un sistema Condor son tres:

Gestor Central (Central Manager) = Su funcion resulta fundamental dentro
del sistema, dado que es el ordenador encargado de administrar los
recursos y asignar las ejecuciones de trabajos a los ordenadores
dedicados a la ejecucion de éstos. Periddicamente recopila informacién
sobre el estado de todo el sistema. Tan soélo puede existir un gestor central
en un mismo sistema.

Ordenadores dedicados a la ejecucion (execute computers) - Como su
nombre indica, su tarea consiste en ejecutar los trabajos que son
asignados por el gestor central. Para ejecutar los trabajos, basicamente,
es necesario un programa Condor ejecutandose llamado condor_startd,
gue es el encargado de comunicarse con el Central Manager. Este
programa realiza las funciones de envio de caracteristicas del nodo y
recibe los trabajos a ejecutar desde el Central Manager.

Ordenadores de envio de trabajos (submit computers) - Son los
ordenadores a los que se les otorga la capacidad de enviar trabajos al
sistema. Este ordenador acostumbra a ser propiedad del usuario
investigador que requiere de Condor para ejecutar su proyecto. El es el
encargado de enviar el trabajo al Central Manager junto con los requisitos
y deseos necesarios que el trabajo necesita. EI Central Manager realizara
el matchmaking correspondiente entre el trabajo y los recursos publicados
por los nodos del pool y enviara a ejecutar el trabajo en los ordenadores
del pool que resulten los mas adaptados para el trabajo. Una vez
ejecutado se devolvera el resultado al investigador, ya sea mediante las
llamadas a sistema remotas o a traveés del sistema de transferencia de
ficheros que Condor implementa. El programa encargado de realizar estas
tareas es el llamado condor_schedd. Es posible utilizar el ordenador
encargado del envio de trabajos como participante en el pool para ejecutar

trabajos.

Pag. 31

Plataforma Computing@home

Estos roles no son excluyentes, de manera que un solo ordenador puede actuar de

gestor central, enviar trabajos y ejecutarlos.

2.2.3 - Daemons

Para realizar los roles definidos en la arquitectura tenemos daemons que realizan las

siguientes funciones. Existen siete daemons diferentes:

e condor_master. Se ejecuta en todos los ordenadores del sistema. Su

funcién es simplificar la administracion del sistema. Es el encargado de
lanzar la ejecucion del resto de daemons localmente, en el propio
ordenador en el que se ejecuta, y de vigilar el correcto funcionamiento de
éstos. Si algun daemon interrumpiera por cualquier motivo su ejecucion, se
encargaria de relanzarlo. Ademéas, mediante este daemon se pueden

detener y reconfigurar el resto.

e condor_collector. Se ejecuta en el gestor central. Este daemon recoge

periodicamente toda la informacion del estado del sistema, recibe y trata

peticiones procedentes del resto de daemons de los demas ordenadores.

e condor_negotiator. Se ejecuta en el gestor central. Es el encargado de

asignar trabajos a ordenadores dependiendo de los requerimientos y
caracteristicas tanto de los primeros como de los segundos, ambas partes

han de satisfacer sus requerimientos mutuamente.

» condor_startd. Se ejecuta en todos los ordenadores con rol de ejecucion.

Este daemon se considera como el representante del ordenador dentro del
sistema. Tiene la capacidad de iniciar, parar y suspender trabajos, y es el
encargado de lanzar el daemon starter con la configuracién apropiada

dependiendo del tipo de trabajo.

e condor_starter. Se ejecuta en todos los ordenadores con rol de ejecucion.
Se encarga de monitorizar y controlar el trabajo en ejecucion. Proporciona
informacion de estado al ordenador desde el que se envio el trabajo. En
ordenadores con multiples procesadores, existe una instancia de este

daemon por cada CPU.

Pag. 32

Plataforma Computing@home

» condor_schedd. Se ejecuta en todos los ordenadores con rol de envio. Es

el encargado de gestionar la cola local de trabajos y de solicitar recursos

para la ejecucion de los trabajos que se encuentran parados.

» condor_shadow. Se ejecuta en todos los ordenadores con rol de envio,

mientras el trabajo se encuentra en ejecucion. Se puede considerar como
el representante del trabajo en el ordenador que lo ha enviado. Existe uno
por cada trabajo activo y, entre otras, tiene las funciones de transferir
archivos necesarios como logs y estadisticas, y de efectuar llamadas
remotas al sistema en caso de que sean necesarias, es decir, de la

comunicacion con el ordenador que ejecuta el trabajo.

El siguiente esquema muestra la configuracion de un sistema Condor tipico, asi

como la interaccién entre sus daemons:

—= = Comunileacion entre
procEsas

.2 X o , e
—ieoe = EJRCUCHN O DTOCESD f Central Manager \,I { Exacute Only

Figura 5 - Procesos Condor, interacciones entre pro cesos

Como se puede apreciar, los daemons master arrancan el resto de los procesos en
cada ordenador y el master de todos los ordenadores que participan en el proceso
se comunican con el proceso condor_collector, que es el encargado de recibir el
estado de todo el sistema.

Pag. 33

Plataforma Computing@home

2.2.4 - Matchmaking con ClassAds

Es importante entender el método utilizado por Condor para acoplar recursos que
pueden ejecutar trabajos segun sus peticiones. Entender el framework que Condor

utiliza para realizar este trabajo es la clave.

Dentro de las necesidades del proyecto, se pueden programar los trabajos enviados
con una serie de requerimientos que el gestor intenta hacer cumplir. El investigador
indica al gestor los requisitos obligatorios y los requerimientos no obligatorios que
cree necesarios, como condiciones para ejecutar los trabajos, y el gestor controla los
trabajos creandolos dentro de la cola (queue), intentando cumplir los requerimientos
recibidos y enviando los trabajos a los ordenadores correspondientes que cumplen
las restricciones para ejecutarlos. Por ejemplo podemos indicarle al trabajo que se
ejecute en un ordenador que contenga una determinada cantidad de memoria RAM
o superior. El gestor buscara entre los recursos disponibles que estan en el pool, un

recurso que cumpla las condiciones especificadas en el trabajo para ejecutarse.

Resources

resource classads

Y . . Central Manager
client__aﬂh Scheduler ob classad ‘ Collector HNegotiator

chosen resource url

Figura 6 - Esquema representativo del mecanismo de matchmaking

ClassAds funciona de manera similar a los anuncios clasificados de un periédico.
Todos los ordenadores en el pool de Condor muestran las propiedades de sus

recursos en los anuncios de los recursos, tanto estaticos como dinamicos, tales

Pag. 34

Plataforma Computing@home

como la cantidad de RAM disponible, el tipo de CPU, la velocidad de la CPU,
etcétera.

Un usuario especifica un anuncio de peticion de recurso cuando envia un trabajo. La
peticion define tanto las propiedades requeridas como las deseadas de los recursos
donde se quiere que se ejecuten los trabajos. Condor actia como un broker
haciendo coincidir los anuncios de los recursos ofrecidos con los anuncios de los
recursos requeridos, realizando que todos los requerimientos en ambos anuncios
sean satisfechos. Cuando obtiene una coincidencia envia la direccion del recurso al

cliente para que conozca el recurso donde se enviara su trabajo.

2.3 - BOINC

Berkeley Open Infrastructure for Network Computing (BOINC) es un middleware o
infraestructura no comercial para la computacién distribuida usando recursos
voluntarios de computacion, desarrollada originalmente para el proyecto
SETI@home, pero que actualmente es utilizada por diversos proyectos en campos

como la fisica, la medicina, la biologia molecular o la climatologia.

Los proyectos que trabajan sobre esta infraestructura tienen un denominador comdn
y es que requieren una gran capacidad de calculo. La intencion por la cual los
proyectos utilizan la plataforma BOINC es obtener una enorme capacidad de
computacion utilizando ordenadores personales.

Los ordenadores que ejecutan los proyectos son casi exclusivamente ordenadores
de voluntarios y los proyectos que utilizan la plataforma son en su gran mayoria sin
animo de lucro y suelen estar dirigidos por universidades o entidades publicas.

Las tareas de los proyectos realizan célculos complejos y BOINC divide esta
informacion en fragmentos que envia a ejecutar en los ordenadores de los usuarios.
Estos tienen el software necesario instalado en su ordenador doméstico y ejecutan
las tareas recibidas que contienen complejos célculos para devolver, posteriormente,

el resultado.

Pag. 35

Plataforma Computing@home

Actualmente BOINC es desarrollado por un grupo con sede en Berkeley, en la
Universidad de California, esta dirigido por David Anderson, director del proyecto
SETI@home y recibe diversas aportaciones de desarrolladores de todo el mundo. La
plataforma BOINC es considerada como un casi-superordenador, disponiendo de
aproximadamente 560.000 ordenadores activos en todo el mundo y con un
rendimiento medio de 1 PFLOPS, superando el superordenador Blue Gene (datos
obtenidos con fecha 7/4/2008).

Esta plataforma de software esta desarrollada bajo la filosofia de cddigo abierto y
protegida por la licencia GNU LGPL. BOINC se encuentra disponible para las
plataformas Microsoft Windows, GNU/Linux y diversos sistemas Unix (Solaris, BSD,
Mac OS X).

BOINC esta disefiado como una estructura libre que permite a cualquier usuario
convertirse en voluntario y participar en la ejecucién de tareas de un proyecto.
BOINC utiliza los ciclos que quedan libres en el procesador para procesar tareas del

proyecto en el que previamente se ha registrado el usuario.

2.3.1 - Caracteristicas

Las caracteristicas que los sistemas BOINC nos ofrecen son:

* Recursos compartidos entre proyectos independientes -> Mdltiples
proyectos pueden usar BOINC. Cada proyecto es independiente del resto,
cada participante puede decidir los proyectos en los que desea colaborar y
la cantidad de recursos a destinar en ellos. Cuando un proyecto no esta
accesible, los ordenadores de los voluntarios dividen los recursos de ese
proyecto inactivo entre el resto de proyectos.

» Caracteristicas de los proyectos - BOINC proporciona caracteristicas que
simplifican la creacion de nuevos proyectos y las operaciones con ellos.

o Disponibilidad de un framework de aplicaciones flexible. En las

aplicaciones realizadas con lenguajes como C, C++ o Fortran las

modificaciones a realizar son minimas o nulas.

Pag. 36

Plataforma Computing@home

0 Agregacion de nuevas aplicaciones. EI BOINC proporciona otras

facilidades como afadir nuevas versiones desarrolladas de las
aplicaciones al proyecto sin la accion del usuario de una manera
sencilla y transparente.

o Seguridad. BOINC utiliza un sistema Public Key Infrastructure (PKI)
de claves criptograficas. Se realizan firmas digitales de los
elementos enviados, utilizando claves publicas creadas por el
proyecto para firmar datos y programas.

o Multiples servidores vy tolerancia a fallos. El servidor BOINC es

extremadamente efectivo, capaz de gestionar millones de trabajos
por dia y su arquitectura es altamente escalable. Los servidores
pueden dividirse en servidores de programacion y servidores de
datos, pudiendo disponer de varios de ellos. Los clientes se
conectan alternativamente y en el caso que no hubiera ningun
servidor activo los clientes realizarian pruebas de conexién con
tiempos cada vez mayores para evitar una saturacion de peticiones
al volver a funcionar.

o Disponibilidad del cédigo fuente. Augue BOINC es distribuido con la

licencia LGPL, las aplicaciones no estan sujetas a ser codigo libre o
seguir teniendo esta licencia.

o Soporte para gran cantidad de datos. BOINC soporta aplicaciones

gue producen o consumen una gran cantidad de datos. Los
usuarios pueden determinar limites de uso de disco o de ancho de
banda y el servidor enviara los trabajos solamente a los
ordenadores que pudieran ejecutarlos.
» Caracteristicas de los participantes - BOINC proporciona las siguientes
caracteristicas a los usuarios.

o Multiple plataforma. La aplicacion cliente de BOINC se encuentra

disponible para los sistemas operativos Mac OS X, Microsoft
Windows, GNU/Linux, Sun Solaris y otros sistemas Unix.

o Facilidad de uso. La instalacion de la aplicacion cliente y su uso son

sencillos y faciles de comprender. BOINC esta disefiado para todo

tipo de publico e intenta ser atractivo de usar.

Pag. 37

Plataforma Computing@home

o Interfaz basada en web. BOINC dispone de interfaces web para que

el usuario realice las gestiones mas usuales como la creacién de
una cuenta, editar las preferencias, enviar mensajes privados a
otros usuarios y crear comunidades online.

o Caché configurable. El cliente BOINC descarga suficiente trabajo

para mantener el ordenador trabajando por el espacio de tiempo
descrito en las preferencias del usuario. De esta forma,
indirectamente, se permite configurar la cantidad de conexiones que
el cliente realiza, controlando el ancho de banda usado por el
cliente para descargar elementos del proyecto.

o Arquitectura extensible. BOINC proporciona interfaces

documentadas de los componentes del sistema y permite que otros

usuarios desarrollen elementos o aplicaciones que lo amplien.

2.3.2 - Aplicaciones ejecutables por BOINC

BOINC ha sido disefiado para soportar aplicaciones que tengan requisitos de
computacion intensiva y/o requisitos de almacenamiento.

El principal requisito que debe cumplir la aplicacion debe ser la divisibilidad en un
gran numero (miles o millones) de trabajos que puedan ejecutarse

independientemente.

Si el proyecto usara recursos voluntarios, tendria unos requisitos adicionales:

» Atraccion del publico > La aplicacion debe ser vista interesante para el
publico y asi atraer a un gran numero de participantes.

* Bajo ratio de datos/computacién - La entrada y salida de datos se envian
a través de conexiones a Internet, pudiendo ser caras y/o lentas. Como
regla se determina que si la aplicacion produce o consume mas de 1 GB
de datos por dia, entonces es mejor y mas barato ejecutar la aplicacion en
un cluster que con recursos voluntarios.

* Tolerancia a fallo = Un resultado devuelto por un voluntario no puede ser

tomado como valido. Para solucionar este problema se utiliza computacion

Pag. 38

Plataforma Computing@home

redundante que nos ayuda a reducir la probabilidad de error. Si la
aplicacion requiere una probabilidad de error del 0%, este sistema no es el

adecuado para ejecutar el proyecto.

2.3.3 - Arquitectura

El modelo que BOINC utiliza se corresponde con un modelo cliente-servidor, donde
el elemento principal es el servidor central del proyecto, el cual es el encargado de
enviar trabajos (llamados workunits) a los ordenadores de los voluntarios que
colaboran ejecutando las tareas del proyecto. Cuando el ordenador no se encuentra
en uso, encontrandose entonces en estado ocioso, BOINC se activa y comienza a

ejecutar las workunits de los proyectos a los que el usuario esta suscrito.

Las funciones que realiza el servidor se pueden separar en dos tipos de servidores:

» El primer tipo de servidor es un servidor que se encarga de la distribucién
de tareas y de la comunicacioén con los clientes.
* El segundo tipo de servidor es un servidor que puede contener las bases

de datos de todo el proyecto.

Estos servidores no son exclusivos, pueden encontrarse ambos a la vez y pueden
coexistir multiples servidores que realizan las mismas funciones, posibilitando una
arquitectura basada en mdultiples servidores que distribuyan las tareas y diversos
servidores que realicen el almacenamiento de datos. Asi conseguimos una
redundancia a nivel de servidor que nos permite que el proyecto no esté disponible

por el fallo de un servidor.
Los clientes se conectan alternativamente a los diferentes servidores distribuidos,

comportandose todos ellos transparentemente al usuario y dando la sensacion de

unicidad.

Pag. 39

Plataforma Computing@home

Los clientes por su parte, son usuarios que deciden participar voluntariamente en los
proyectos que habitualmente estdn abiertos a cualquier usuario que decida
participar.

Solamente es necesario registrarse en los proyectos mediante la aplicacion cliente
de BOINC o en la pagina web del proyecto introduciendo un correo electrénico y una
contrasefa elegida para acceder a sus estadisticas de progreso. Es posible que los
proyectos, debido a un superavit de usuarios 0 por mantenimiento, no admitan
usuarios, pero suele suceder de forma temporal.

A través de la interfaz web de los proyectos es posible inscribirse grupos de
usuarios, personalizar la cuenta para determinar el tiempo de funcionamiento o el

espacio de disco duro del que se puede disponer en el equipo voluntario.

Una vez los usuarios han instalado el cliente BOINC y se han registrado al proyecto,
el ordenador del usuario se conecta al servidor y realiza una peticion para descargar

workunits a ejecutar.

@ BOINC Server
m) BOINC client

. Firewall

.| Work Unit (WU)

Figura 7 - Arquitectura del sistema BOINC

Pag. 40

Plataforma Computing@home

El programa cliente usa caracteristicas de configuracion como la cantidad de disco
que se permitira que el proyecto utilice como almacenamiento, lo que repercute
directamente en la cantidad de descargas que se pueden realizar. A mayor cantidad
de disco disponible se podra descargar un mayor nimero de workunits de una vez y
almacenarlas en el disco del ordenador voluntario.

Como vemos en la figura siguiente, un ordenador pide una workunit y devuelve los
resultados antes de pedir una nueva workunit, mientas que el segundo ordenador
realiza una peticion de 3 workunits y devuelve los resultados de cada workunit a

medida que va disponiendo de ellos.

Jw |
L — £ 6
v a
time line

' spare client load
@ BOINC Server [E Work Unit
7w BOINC Client [E Work Unit Result

Figura 8 - Diagrama de tiempos segun la configuraci 6n del espacio en disco

El servidor de BOINC se compone de diferentes programas para realizar las
funciones. Como parte de BOINC, destacamos dos Interfaces de Entrada Comudn
(Common Gateway Interface, CGI) que manejan las peticiones de los clientes,

enviando nuevas tareas y recibiendo los resultados.

Todo servidor BOINC también dispone de, como minimo, 3 daemons que realizan el

trabajo. Estos daemons son llamados feeder, file_deleter y transitioner.

Pag. 41

Plataforma Computing@home

El primero, feeder, es el encargado de extraer workunits de la base de datos y
rellenar slots de tiempo que el scheduler lee para enviar a los clientes voluntarios.

El segundo de ellos, file_deleter, tiene la funcién de borrar aquellos ficheros que no
se volveran a utilizar en el servidor, ya sea porque se han procesado 0 porgue son
ficheros de entrada ya enviados y no van a ser necesitados mas.

El tercer daemon necesario es el transitioner, que se encarga de gestionar las

transiciones en el servidor entre estados de las workunits y los resultados.

Otros daemons utilizados, pero no estrictamente necesarios son validator y
assimilator.

El primero, como su nombre indica, valida los resultados. Si los resultados cumplen
las normas establecidas en la validacion implantada por el administrador del
proyecto se asignan créditos a los usuarios.

El assimilator por su lado procesa los resultados validados. Puede actuar guardando
los resultados en una base de datos o generando nuevas workunits a partir de los

resultados obtenidos y validados usando cédigo especifico del proyecto.
El cliente por su parte, requiere de forma obligatoria dos daemons o programas

ejecutados por un sistema de programacion de tareas como cron. Estos programas

son boinc (o core_client) y boincmgr.

Pag. 42

Plataforma Computing@home

BOIMNG - . e
Manegar fi Serubos |
el
BIEG]
ol e TE e fiifil Sk
BOIMG Spy |ug— EfLF —
BOIMNG Wiew | CPOM o

(2 (v

Figura 9 - Estructura de la aplicacién cliente de B OINC

El primero de ellos, core_client, es el nudcleo del cliente y gestiona las
comunicaciones con el servidor, la recepcién de workunits y envio de resultados, asi
como la actualizacion de los proyectos.

El segundo, boincmgr, es una interfaz grafica programada en WxWidgets que nos
permite interactuar con el core_client de una forma mas sencilla.

Pueden existir otros componentes mas en el cliente como el salvapantallas utilizado
cuando BOINC se ejecuta 0 programas que consultan las estadisticas del trabajo
realizado en cada proyecto registrado. Estos procesos son manejados por el

daemon boincmgr.

Los componentes en el cliente se comunican mediante Llamadas a Procedimientos
Remotos (Remote Procedure Calls, RPC) y suelen estar ubicados en un mismo
ordenador, aunque se puede configurar el core_client para ser gestionado de forma
remota mediante un usuario y contrasena.

En cambio el cliente core_client se comunica con las aplicaciones y los elementos

de los proyectos cientificos mediante memoria compartida.

Pag. 43

Plataforma Computing@home

2.3.4 - Sistema de créditos

El sistema de créditos de BOINC proporciona varias funcionalidades afadidas al
proyecto. Los créditos no solamente nos indican cuanto trabajo hemos realizado
hasta ahora, si no que también nos indica si un ordenador es apto para recibir un

trabajo.

El sistema de créditos de BOINC esta disefiado para evitar que los usuarios pueda
hacer trampas cuando envian un resultado que no es correcto. Antes de asignar los
créditos a los usuarios se tiene que revisar los resultados recibidos en la validacion
de resultados. Las razones que implican tener la necesidad de un sistema fiable de

créditos son las siguientes:

» Asegura que los resultados obtenidos sean cientifica y estadisticamente
validos. Es necesaria una fuente estadistica fiable para comprobar los
resultados y se extrae de las estadisticas realizadas a los usuarios segun sus
créditos.

» Para preparar y repartir los envios se hacen modelos de complejas variables
gue nos ayudan a determinar a quien enviar los trabajos. Los ordenadores
capacitados para devolver un resultado correcto seran aquellos que hayan
recibido una workunit y hayan devuelto un resultado correcto.

* No hay razdn especifica por la que una persona quiera donar sus ciclos de
CPU. Se tiene que controlar el mal uso del sistema, ya que el anonimato que

nos proporciona el sistema es un riesgo que podria acabar con el proyecto.

Los créditos se miden en cobblestones, llamado asi por Jeff Cobb, desarrollador del

proyecto SETI@home.
El sistema se basa en el sencillo concepto de que 100 cobblestones equivale a un

dia de trabajo en un ordenador voluntario que tenga 1,000 MIPS basado en el
benchmark de Whetstone o 1,000 MIPS basado en el benchmark de Dhrystone.

Pag. 44

Plataforma Computing@home

El Gnico punto desfavorable de este sistema es que se necesita resolver la unidad
de trabajo para saber cuantos créditos se obtienen por ello. Al enviar la unidad de
trabajo resuelta, se piden una cantidad de créditos determinados, que dependiendo
de los calculos realizados podran ser los que finalmente se concedan, mas de los

qgue se concedan 0 menos.

Para realizar el calculo de créditos, BOINC usa Benchmarks, programas que miden
la velocidad de un sistema. Calculando el tiempo usado para resolver la workunit
otorga un nimero de créditos determinado.

Actualmente se usa mas de una variable para ese célculo, como la cantidad de
memoria RAM o la velocidad de la CPU.

Las discrepancias entre los créditos otorgados y merecidos suelen ser grandes.

La mayoria de los proyectos han llegado a un consenso para entregar un nidmero
determinado de créditos por cada misma unidad de trabajo.

Los créditos se suman en la cuenta que el usuario dispone en el mismo proyecto.

Cuando un ordenador recibe una unidad de trabajo y la devuelve resuelta no obtiene
créditos inmediatamente, sino que se pide una determinada cantidad de créditos.
Luego cada proyecto valida los datos obtenidos mediante el daemon validator que
se haya programado para cada proyecto.

Una vez validados, se conceden los créditos que se cree que merece la ejecucion de
la workunit, que pueden ser mas, menos o igual a los pedidos.

Si la unidad de trabajo se entrega resuelta mas tarde del plazo previsto o si la

comprobacion no valida el resultado, no se le asignaran créditos.

Se puede comprobar el crédito en la seccion Your credit en la pagina web de la
cuenta del usuario para cada proyecto.

Los proyectos BOINC exportan la informacion estadistica de los créditos
acumulados en forma de archivos XML que pueden ser descargados por
ordenadores en todo el mundo. Muchas paginas web han desarrollado sistemas
para mostrar estas estadisticas y muchas de éstas las muestran en forma de grafica

que puede plasmarse en paginas personales.

Pag. 45

Plataforma Computing@home

Como BOINC permite la creaciéon de grupos también se permite visualizar los

créditos que cada grupo acumula.

Pag. 46

Plataforma Computing@home

Capitulo 3 - Arquitectura y requisitos

En una primera fase del proyecto se estudiaron diferentes problemas que eran
necesarios tratar. Se estudido la viabilidad a todos ellos y se explicardn las
propuestas con sus pros y contras, y que se ha decidido realizar para solucionar
cada una de ellas. También se revisaran los principales problemas que han surgido
durante la implementacién, la revisibn de los recursos utilizados, las tareas

realizadas y las soluciones propuestas.

Se comenzara explicando la arquitectura del sistema, las ideas iniciales y sus
caracteristicas. Las arquitecturas de BOINC y Condor son basicas, ya que la
arquitectura final es la combinaciébn de las dos. La arquitectura definitiva es
estudiada y explicada en este punto.

Las caracteristicas y los problemas seran los que mas tiempo nos supondran, pues

su estudio y métodos de resolucion son los mas importantes.

Pag. 47

Plataforma Computing@home

3.1 - Arquitectura del sistema

La arquitectura adoptada por el proyecto es la mezcla de las dos arquitecturas
anteriormente vistas, Condor y BOINC. Las arquitecturas de los sistemas no se han
modificado, pero se han juntado para obtener la unién entre ambos sistemas.

Las arquitecturas anteriormente vistas nos proporcionan sus propios sistemas para
ejecutar trabajos y gestionar los recursos que tienen.

Por un lado se dispone de un pool de Condor que permite ejecutar trabajos
especificados con ClassAds dentro de la red local y que gestiona los ordenadores
que se encuentran dentro del pool obteniendo informacion de ellos para conocer que
trabajo se les puede enviar a ejecutar, siendo éste apto para el recurso.

Por otro lado se dispondra de los ordenadores voluntarios conectados mediante el
sistema de computacion voluntaria BOINC ejecutaran las workunits que el servidor
entregue e iran devolviendo los resultados a medida que los obtengan. El servidor
de BOINC desconoce el numero de recursos que estan ejecutando los procesos en
ese momento, pero dispone de sistemas para que los trabajos siempre tengan un

resultado posible.

Desde el proyecto se quiere unir los dos sistemas obteniendo la fiabilidad y control
de Condor sobre los trabajos y los recursos y la facilidad de uso y la disponibilidad
de una gran cantidad de ordenadores que BOINC proporciona.

Para realizar esto se ha querido crear una workunit de BOINC que represente un
sistema Condor que se pueda unir al pool sin problemas, de forma transparente y
segura.

En este caso, estas workunits a ejecutar son procesos de Condor que permiten
introducir el ordenador voluntario en el pool y recibir aquellos trabajos Condor que se

adapten a las caracteristicas requeridas por el trabajo y por el ordenador voluntario.

El funcionamiento de la arquitectura es la union de ambos sistemas. Previamente el

usuario deberia instalar el cliente BOINC en su ordenador. Dependiendo del sistema

Pag. 48

Plataforma Computing@home

operativo usado existen diferentes formas de instalacién, pero este es un proceso

sencillo.

Servidar BOINC

ervidor Condar g
885

FPool de Condor

1- Registro del proyecto BOINC

ﬁl iente BOIMC

——

Figura 10- Conexién con el servidor BOINC

Una vez instalado, en la primera ejecucion del cliente, éste pedira realizar el registro
en el proyecto que se desea colaborar.

Cuando el cliente nos pide el identificador del proyecto se refiere a la direccion URL
del mismo. Los proyectos disponen de su propia pagina web que se construye al
crear el proyecto en el servidor, siendo parte de la interfaz web que el proyecto
BOINC proporciona. Esta pagina web se utiliza como identificador de cada proyecto.
Ya registrado, el cliente conectara con el servidor. Este enviara una workunit a
ejecutar para satisfacer la peticion recibida. En esta workunit se indican los
ejecutables y ficheros de datos que son necesarios para la ejecuciéon de la tarea. En
nuestro caso seran los ficheros necesarios para arrancar Condor en el ordenador
voluntario configurado correctamente para anexarse en el pool.

El cliente esperara que el ordenador se encuentre inactivo para iniciar la ejecucion

del proyecto.

Pag. 49

Plataforma Computing@home

Servidar BOINC

ervidar Condor
g

'

FPool de Condor

ﬁliente BOINC
LT —

——

Figura 11 - Conexion con el servidor Condor

Mientras el ordenador permanece inactivo de los procesos del usuario, el proyecto
BOINC iniciard su ejecucion y Condor arrancara configurado oportunamente para
conectarse al pool, publicando su estado y sus recursos mediante los ClassAds y el
Central Manager podra encontrar oportuno enviar algun trabajo a ejecutar en el

ordenador voluntario.

Si el trabajo que Condor envio al ordenador se ejecutara correctamente, el resultado
seria enviado al creador del trabajo Condor, como si fuera un trabajo que hubiera
sido ejecutado en cualquier otro ordenador del pool.

Si BOINC finalizara la ejecucion realizaria una validacion del resultado obtenido por
la workunit enviada y en caso de detectar que el resultado es correcto sumaria

nuevos créditos a la cuenta del usuario.

Si el trabajo no pudiera finalizar porque el usuario volviera a utilizar el ordenador y la
aplicacion fue enlazada con las librerias de Condor, Condor podria realizar un
checkpoint y migrar el proceso para continuarlo en otro ordenador. Si no fuera asi, el

trabajo finalizaria juntamente con la ejecucion de Condor y BOINC.

Condor, por su parte, dispone de sistemas para evitar que los trabajos se pierdan o
generen un error si se diera el caso anterior y no se pudiera realizar la migracion a
otro ordenador. La fiabilidad de Condor nos asegura un resultado si los recursos los

pueden dar.

Pag. 50

Plataforma Computing@home

Cuando el ordenador volviera a su estado de inactividad,. BOINC volveria a ejecutar
la workunit que ya tuviera descargada en el ordenador voluntario, iniciando de nuevo
Condor y estando preparado para ejecutar cualquier trabajo que el Central Manager

de Condor considerara oportuno de volver a enviar y ejecutar.

3.2 - Implementacion

La implementacion que se ha realizado en el proyecto se ha escogido después de
haber sido estudiada y haber descartado otras por no cumplir con los objetivos y
necesidades marcados en el proyecto, vistos en capitulos anteriores. Todas las

soluciones que se veran solucionan los problemas surgidos y estudiados.

3.2.1 - Facilidad de instalacion

La instalacion de Condor es un proceso que se ha simplificado al ejecutar un
programa que viene incorporado en la versién cuando se descarga de la pagina web
del proyecto. Este programa realiza preguntas sobre el tipo de sistema o rol que
deseas instalar en ese ordenador, el usuario que realizara la instalacion, el uso o no
de sistemas de ficheros compartidos por red o la ubicacién del ejecutable de la

maquina virtual de Java.

Este proceso se puede repetir varias veces para corregir cualquier error que

hayamos cometido.

Es un sistema sencillo y rapido de realizar la instalacion para cualquier tipo de
ordenador dentro de la arquitectura de Condor, pero después de la instalacion se
necesita igualmente modificar los ficheros de configuracibon de Condor,
etc/condor_configure 'y condor_configure.local, situados en el directorio

correspondiente de la instalaciéon de Condor.

Pag. 51

Plataforma Computing@home

La modificacion obligatoria que Condor obliga a hacer en el primer archivo visto es
un valor que indica los ordenadores a los que se le permite realizar conexiones. Este

valor por defecto esta comentado para que no se pueda permitir a ningan ordenador.

Como se puede apreciar, la instalacion de Condor no es tan automatica, pero se

necesita conocer los cambios a realizar para que el sistema funcione correctamente.

La instalacion de BOINC es un proceso bastante diferente. Cada sistema operativo
dispone de un método de instalacion diferente. En los sistemas Linux, que ha sido el
sistema utilizado, cada distribucion utiliza su propio método para realizar la
instalacion de software. En los sistemas Windows deberemos ir a la pagina web

oficial de BOINC y descargar un ejecutable que nos instalara el programa.

Siguiendo este proceso el cliente BOINC estara instalado y esperando poder
registrarse en un proyecto para colaborar.

El servidor de BOINC, por otro lado, es dificil de configurar, ya que dispone de
diversas herramientas como Apache o MySQL que requieren de una configuracion
adecuada.

Una vez el servidor es configurado, la realizacion de un proyecto es un proceso
sencillo de seguir. Al proyecto se le afadiran las aplicaciones y se crearan las

workunits a ejecutar.

3.2.2 - Seguridad

La primera necesidad que nos surge es la obligatoriedad de disponer de un método
seguro para proteger ambos entornos. Estos sistemas deben asegurar que el
usuario es un usuario valido y que sus acciones no pueden comprometer los

sistemas.
En el caso de BOINC no es sencillo realizar esta accidon ya que una de las

particularidades del sistema es el anonimato de los usuarios. No se puede confiar en

los usuarios que ejecutan los trabajos desde el punto de vista de BOINC, pero en

Pag. 52

Plataforma Computing@home

Condor todos los usuarios son conocidos y se confia en ellos al enviar trabajos o al
ejecutarlos.
Igualmente los dos sistemas incorporan métodos para prevenir posibles fallos de

seguridad.

BOINC no dispone de un sistema que certifique las workunits enviadas. Estas se
encuentran almacenadas en el servidor y es €l el encargado de distribuirlas. Se
confia en el desarrollador de las workunits y en su buena fe como usuario propietario
del proyecto que desea que se lleve a buen término.

En cambio BOINC realiza firmas criptograficas de los ficheros enviados a ejecutar en
las workunits mediante un sistema de clave publica PKI, realizando un sistema de
comprobacién similar a las funciones hash utilizadas para realizar comprobaciones
de ficheros descargados en Internet. Cualquier modificacion de un fichero el servidor
lo detectara y no lo dard como valido dentro del sistema.

Este sistema nos asegura que los ficheros y sus resultados no estan

comprometidos.

Condor también aporta sus sistemas de seguridad. Aunque se encuentra en un
sistema controlado puede ocurrir que un usuario quisiera eliminar o modificar algin
trabajo que se encontrara en la cola. Para ello Condor almacena la configuracion de
los procesos condor_schedd que enviaron el trabajo, no permitiendo la modificacion
en caso de no corresponderse. Condor esta disefiado para ejecutarse con permisos
de root en los ordenadores donde se ejecuta, pero muchas veces no puede darse
esta circunstancia. En ese caso, cuando Condor se ejecuta con permisos de un

usuario, necesita de directorios donde pueda crear y borrar los ficheros que utiliza.

3.2.3 - Limitaciéon de usuarios

Una de las mayores ventajas de BOINC es que su escalabilidad es tremendamente
dindmica. Esta escalabilidad abarca una gestion autonoma de los usuarios o nodos,
lo que a su vez reduce las tareas administrativas. La configuracion del proyecto por
defecto tiene deshabilitada la creacion de usuarios por medio del interfaz web. Para

habilitar esta caracteristica, hay que modificar el fichero config.xml, que se encuentra

Pag. 53

Plataforma Computing@home

en el directorio raiz del proyecto, cambiando la entrada <disable_account_creation>
delao.

Otra sistema de realizar la creacion de usuario es a través del mismo cliente BOINC.
Cuando un usuario se registra en el proyecto con su direccién de correo electrénico

y su contrasefia esta dando de alta el usuario dentro del servidor.

Igualmente se debe configurar en el servidor la activacion de creacion de cuentas

para que permita afiadir nuevos usuarios.

Este sencillo sistema permite desactivar la creacion de cuentas o activarla cuando
sea necesario. Si el proyecto se encontrara en fase de mantenimiento o se quisiera
prevenir la saturacion de los sistemas si se afiadieran mas usuarios, se podria

desactivar la creacion de cuentas.

3.2.4 - Aplicacion BOINC

Con la infraestructura BOINC implementada Unicamente se necesitaria de una
aplicacion que fuera nuestro enlace con Condor. BOINC ofrece una Application
Program Interface (API) que permite construir aplicaciones que se pueden incorporar
en un proyecto, el cual los usuarios ejecuten. Esta API incorpora funciones
especificas de BOINC para el control de la aplicacion, realizar transferencias de
ficheros o para la creacion de salvapantallas, por ejemplo.

BOINC incorpora un sistema para poder ejecutar aplicaciones sin necesidad de
modificarlas e incluir llamadas a la APl de BOINC. Esto permite ejecutar aplicaciones
de las que no disponemos su cddigo fuente y por lo tanto no podemos modificarlas.
El método utilizado es llamado wrapper y ejecuta la aplicacion que se desea sin
necesidad de realizar llamadas a BOINC, ya que es el mismo wrapper quien las

realiza.

Pag. 54

Plataforma Computing@home

wrapper.C
BOINC P
core client Legacy
application

Figura 12 - BOINC wrapper

Ante la eventualidad de crear una nueva aplicacion incluyendo funciones de la API
de BOINC desde el inicio, con los consiguientes problemas que pudiera producir, se
ha decidido utilizar el método wrapper que BOINC suministra para poder arrancar los

programas de Condor necesarios.

Se ha creado en el proyecto una capa intermedia que proporciona la configuracion
de los elementos que Condor requiere. Esta capa intermedia es Illamada
condor_wrapper y es la tarea que el wrapper de BOINC ejecuta.

Este proceso adecua el entorno en el ordenador voluntario para poder ejecutar

Condor con la configuracién correspondiente.

3.2.5 - Workunits

Las workunits o unidades de trabajo son las tareas que BOINC envia a ejecutar en
los ordenadores voluntarios. La infraestructura cliente descarga estas workunits y

ejecuta las tareas que en ella se incluyen.

Una workunit define la aplicacion y el conjunto de datos que tienen que ser
ejecutados y procesados por el cliente. Las unidades de trabajo estan descritas por
una plantilla de unidades de trabajo y por una plantilla de resultado.

La plantilla de unidad de trabajo describe la referencia del conjunto de datos de
entrada en el nodo de destino.

La plantilla de resultado, por otro lado, describe la referencia del conjunto de datos
resultante. Ambas pueden crearse en el directorio /templates del proyecto.

Pag. 55

Plataforma Computing@home

Cada unidad de trabajo se identifica por una ID Unica, que es gestionada por el
servidor BOINC y la base de datos. La herramienta create_work se usa para pasar
los trabajos del proyecto a la base de datos. A partir de aqui la workunit esta

preparada para ser descargada y ejecutada.

Las workunits incluyen fragmentos de trabajos que se desean ejecutar. Estos
fragmentos son parte del proyecto y son los procesos que realizan una gran cantidad

de célculos computacionales.

El problema que nos encontramos fue la manera de incluir la inicializacién de los
procesos Condor dentro de las workunits. La creacién de una sola workunit que

incluyera los procesos Condor a ejecutar ya contemplaba las opciones a realizar.

Como ya se sabe, debido al sistema que BOINC implementa los ordenadores no son
dedicados y entran y salen de la ejecucion de tareas constantemente. Muchas
ocasiones sucede que el ordenador recibe una workunit a ejecutar pero ese
ordenador falla 0 se apaga y no vuelve a encenderse durante mucho tiempo o nunca

7

mas.

Para evitar esta desaparicion espontanea del recurso y controlar la tolerancia a fallos
de BOINC se realiza una computacion recurrente. ElI proceso es duplicar las
workunits que se envian para asegurar el retorno de un resultado como minimo.
Este proceso también ayuda a la hora de determinar los créditos a otorgar a cada
usuario comprobando si los resultados de la misma workunit son iguales o
parecidos.

Los parametros que indican la cantidad de workunits a duplicar y los resultados
minimos para asegurar un resultado correcto los establece el administrador del

proyecto en su configuracion.

Condor controla la ejecucién de cada trabajo. El sistema de control provoca que si
un proceso no puede migrar cuando un fallo ocurre, Condor desestima el proceso y

lo vuelve a enviar a otro ordenador del pool para que realice de nuevo la ejecucion.

Pag. 56

Plataforma Computing@home

De esta manera se asegura la ejecuciéon de los trabajos enviados a los ordenadores
voluntarios que pueden ejecutar procesos de Condor.

Pag. 57

Plataforma Computing@home

Capitulo 4 - Implementacion y experimentacion

En capitulos anteriores se han descrito los objetivos, los sistemas utilizados y la
sinopsis general del proyecto. Se han estudiado los problemas que han surgido
durante la fase de andlisis y la realizacion del proyecto. Desde la descarga del
primer sistema a instalar hasta la Ultima prueba realizada se han realizado diversos
trabajos que se intentaran sintetizar. Este capitulo se centrar4 en conocer un poco
mas a fondo el trabajo realizado, descendiendo hasta el cddigo fuente en algunas

ocasiones.

Se comenzara explicando la instalacion del testbed que nos ha servido para realizar
el proyecto.

Después estudiaremos la estructura de la capa intermedia, condor_wrapper, que se
desarrollo y es el eje central de la solucién encontrada.

La experimentacién realizada nos confirmara el buen funcionamiento del proyecto.

Pag. 58

Plataforma Computing@home

4.1 - Instalacion

La instalacion de los sistemas de prueba fue realizada en dos servidores
independientes que ofrecen los servicios necesarios para llevar a cabo los

experimentos necesarios.

Por un lado se encuentra el servidor Condor, que es uno de los sistemas basicos y
necesarios dentro del proyecto. El servidor Condor es el encargado de afadir el
ordenador voluntario al pool y poder visionarlo como un ordenador mas donde poder

enviar tareas a ejecutar.

Por otro lado encontramos el servidor BOINC, que es el responsable de generar la
tarea primordial para que los clientes puedan colaborar dentro del entorno Condor

creado.

Los dos sistemas estan desarrollados para varias plataformas. En nuestro caso
hemos elegido implementarlos bajo el sistema operativo GNU/Linux.

El sistema GNU/Linux es un sistema completo y maduro que nos proporciona
herramientas para crear proyectos y una interfaz adecuada para el desarrollo del
proyecto.

Entre todas las distribuciones del sistema operativo GNU/Linux se ha escogido
Ubuntu Linux. Esta es una distribucion, orientada al escritorio, aunque ofrece una
version dedicada y preparada para ejecutarse como servidor.

Ubuntu surgi6 de una de las mas veteranas y mas grandes distribuciones de
software, Debian GNU/Linux. Ubuntu ha portado una cantidad de paquetes Debian a
su sistema y se ha trabajado para asegurar el buen funcionamiento de todos ellos.
Debian por su parte dispone de mas de 9000 paquetes de software y Ubuntu puede

instalarlos en caso de necesitarlos.
La decision de utilizar este sistema operativo, y en concreto la distribucion, es la

fiabilidad que nos proporciona y la compatibilidad con los sistemas utilizados para el

desarrollo del proyecto.

Pag. 59

Plataforma Computing@home

4.1.1 - Condor

Teniendo los ordenadores con el sistema operativo instalado se procedié a

descargar e instalar el sistema Condor para instalar el servidor.

Condor proporciona dos scripts de instalacién. En nuestro caso utilizamos el script
condor_install que nos ird haciendo preguntas para conocer la configuracion que

deseamos realizar. Las preguntas a realizar piden informacion del siguiente tipo:

¢, Qué ordenador sera el Central Manager?
¢ A qué ordenadores se deberia permitir lanzar trabajos?
¢, Se ejecutara Condor como root?

¢, Quién administrara los ordenadores con Condor en el pool?

o bk 0N BR

¢, Se dispone de una cuenta de usuario llamada condor en todos los

ordenadores y esta su directorio raiz compartido?

o

¢, Donde se deberia instalar los directorios locales?

¢,Donde se deberia instalar los ficheros de configuracion, los ejecutables, y el
resto de los archivos de Condor?

8. ¢Se usa AFS?

¢, Se dispone de suficiente espacio de disco?

Conociendo la respuesta a estas preguntas, la instalaciéon de Condor se realiza sin
problemas.
Este proceso se puede lanzar varias veces para reconfigurar Condor o para realizar

una instalacién que comparte diferentes tipos de roles.

Una vez instalado el sistema, procederemos a configurarlos debidamente, pues la

configuracion por defecto no es satisfactoria.

El fichero de configuracion se encuentra en el directorio donde hemos instalado

Condor, <condor_dir>/etc/condor_configure. Este es el fichero principal y puede

Pag. 60

Plataforma Computing@home

existir un fichero secundario que sobrescriba la informacion del primero para esta

instalacion local. El fichero se encuentra en <condor_dir>/condor_configure.local.

Las modificaciones las podemos realizar tanto en el primer fichero como en el

segundo, si éste existiera.

Dentro del fichero condor_configure modificaremos la opcion que da nombre a

nuestro pool.

#H#
#H#
#H#

This macro is used to specify a short descripti
It should be about 20 characters long. For exam
the UW-Madison Computer Science Condor Pool is

#COLLECTOR_NAME = My Pool

COLLECTOR_NAME

= CONDOR-BOINC TEST

on of your pool.
ple, the name of
“UW-Madison CS".

En este caso llamaremos a nuestro pool con el nombre CONDOR-BOINC TEST.

Este nos servira para diferenciarnos de otros posibles pools y los ordenadores que

se conecten al Central Manager indicaran el nombre para saber a qué pool

conectarse.

La modificacién que Condor obliga a hacer es un valor que indica los ordenadores a

los que se le permite el acceso de escritura sobre el ordenador. Este valor por

defecto estd comentado para que no se pueda permitir a ningun ordenador. Se debe

permitir a los trabajos poder escribir sobre los directorios determinados que

necesiten. Para ello configuraremos la siguiente opcion:

H#
##
##
H#
H#
H#
##
##
H#
H#
H#

Write access. Machines listed here can join yo
jobs, etc. Note: Any machine which has WRITE a
also be granted READ access. Granting WRITE ac
not also automatically grant READ access; you m
HOSTALLOW_READ above as well.

You must set this to something else before Cond

This most simple option is:
HOSTALLOW_WRITE =*

but note that this will allow anyone to submit

machines to your pool and is serious security r

ur pool, submit
ccess must
cess below does
ust change

or will run.

jobs or add
isk.

#HOSTALLOW_WRITE = YOU_MUST_CHANGE_THIS_INVALID_G@OR_CONFIGURATION
_VALUE
HOSTALLOW _WRITE =*

#HOSTALLOW_WRITE = *.your.domain, your-friend's-ma

#HOSTDENY_WRITE = bad-machine.your.domain

chine.other.domain

Pag. 61

Plataforma Computing@home

Indicando un asterisco permitiremos que cualquier ordenador pueda escribir en los

directorios que necesiten para enviar los trabajos.

La siguiente modificacion es necesaria para evitar que Condor solamente trabaje
cuando no hay actividad en el sistema, obligando que siempre que se le requiera

ejecute los trabajos.

When is this machine willing to start a job?
#START = $(UWCS_START)
START =TRUE

Otro cambio a realizar en la configuracion es la forma de indicarle a Condor donde
puede encontrar los ficheros de configuracion. Condor dispone de tres métodos: una
variable de entorno indica la ruta ($CONDOR_CONFIGURE), un fichero que
almacena la ruta llamado /etc/condor_configure o situar este fichero en el directorio

~/condor/condor_configure.

Condor por defecto no instala un arranque automatico de sus daemons, con lo que
nos obliga a realizar nuevas modificaciones para que éstos puedan arrancar

automaticamente al encender el ordenador.

El cliente de Condor utiliza el mismo sistema de instalacion y tiene las mismas
configuraciones, pero hay que especificarle el rol a realizar en el momento de la

instalacion.

4.1.2 - BOINC

Se disponen de diferentes formas de obtener el servidor de BOINC, dentro de los
repositorios de software encontramos el paquete BOINC que nos permite instalarlo
juntamente con todas sus dependencias de aplicaciones necesarias para su
funcionamiento, descargamos el codigo fuente desde su propio sistema CVS y lo
compilamos en nuestro ordenador generando una instalacion a medida o se puede
utilizar una maquina virtual que han realizado desarrolladores para poder ejecutar

pruebas.

Pag. 62

Plataforma Computing@home

En nuestro caso se ha optado por utilizar la maquina virtual por no disponer de
ordenadores donde ubicar el servidor. Esta maquina virtual no esta disponible para
entornos reales, pero si para hacerla servir como parte de un testbed.

Para crear un proyecto ejecutaremos la orden siguiente, que nos construira
automaticamente la estructura de un proyecto. Simplemente con esta orden se

tendra la estructura de un proyecto:

$./tools/make_project -delete_prev_inst -user_name <username>\
-drop_db_first_project_root $HOME/projects/<project _hame>\
-key_dir SHOME/projects//<project_name>_keys \

-url_base http:// /<url_base_project>/\

-db_user <username> test_setup

Después de crearse el proyecto, la consola mostrara los mensajes necesarios para
actualizar la configuracion de Apache, incluyendo esas lineas en el fichero de
configuracion. Esta informacion se utiliza para acceder al proyecto por medio de un

navegador web y los clientes BOINC.

Ahora ya se encuentra disponible el proyecto, pudiéndose acceder a él con un
navegador web. La URL esta definida por medio de un alias de Apache, por ejemplo,
http://mi_servidor.es/ test_setup. Si el servidor fallara, habria que revisar el comando
chmod, las rutas y la configuracion de Apache; por otro lado, la configuracion por

defecto deberia funcionar sin problemas.

Debemos recordar que por defecto la configuracion del proyecto tiene deshabilitada
la creacion de usuarios. Para habilitar esta caracteristica hay que modificar el fichero
config.xml que se encuentra en el directorio projects/<nombre_proyecto>,
cambiando la entrada <disable _account _creation de 1 a 0. De esta manera los

usuarios podran registrarse tanto via pagina web como por la aplicacion cliente.

Para afiadir una aplicaciéon y para ser ejecutada por los nodos, se incluye un
directorio app donde se configuran las aplicaciones. El nombre del ejecutable hay
gue acompafarlo de una secuencia para que el servidor conozca a que plataforma y

a gue version es:

Pag. 63

Plataforma Computing@home

<nombre_aplicacion>_VERSMAYOR.VERSMENOR_PLATAFORMA

La version indica que cliente BOINC puede ejecutarla y la plataforma de destino que

debe tener el cliente para ejecutarla.

Lo siguiente que tenemos que hacer es modificar el fichero project.xml en el
directorio raiz del proyecto para indicarle las plataformas donde se puede ejecutar. A
continuacion se ejecutan los comandos bin/xadd y bin/update_versions para que el

proyecto aflada la aplicacion y las actualice en su version y plataforma.

Para terminar de configurar el proyecto incluiremos workunits para procesar y los
ficheros de resultados esperados. Para crearlos necesitamos de la creacion de dos
ficheros donde se describan las caracteristicas como los ficheros de entrada, el
namero de repeticiones que deseamos realizar, los ficheros de salida y el quérum
minimo que necesitamos para asignar créditos. Estos ficheros se ubicaran en el
directorio templates y los ficheros de entrada y salida se incluirdn en el directorio

downloads.

Para que el servidor comience a ejecutarse necesitaremos ejecutar el binario

bin/start que controla el arranque de los servicios, asi como bin/stop que los para.

En este punto sélo quedara que el cliente se registre y pueda ejecutar la workunit.

El cliente es mas sencillo de instalar, pues instalandolo segun la distribucion que se

tenga ya se puede empezar a utilizar sin problema alguno ni configuracion extra.
Las pruebas realizadas son satisfactorias aunque son pruebas sencillas realizadas

con proyectos de prueba que BOINC incorpora para comprobar su correcta

funcionalidad.

Pag. 64

Plataforma Computing@home

4.2 - Programacion de condor_wrapper

BOINC proporciona un sistema para realizar la ejecucion de tareas que no incluyen
las llamadas a su API. Este programa es llamado wrapper.

A través de este programa se realiza la descarga de la aplicaciéon y los ficheros de
configuracion necesarios. Wrapper incluye un sistema que permite especificar los
ficheros necesarios que necesita para realizar la ejecucion.

En esta especificacion se incluye obligatoriamente cual es la aplicacion que se
desea ejecutar. Discrecionalmente se pueden incluir ficheros que realicen la entrada
por teclado para las aplicaciones interactivas, el fichero donde desearemos la salida

por pantalla o por error y la linea de comandos necesaria para arrancar la aplicacion.

<job_desc>
<task>
<application>application_to_execute</applic ation>
[<stdin_filename>stdin_file</stdin_filenam e>]
[<stdout_filename>stdout_file</stdout_file name> |
[<stderr_filename>stderr_file</stderr_file name> |
[<command_line>--foo bar</command_line> |
</task>
[...]
</job_desc>

Este sistema admite incluir mas de una tarea a ejecutar, pero estas tareas son
secuenciales. Cuando la secuencia de tareas hubiera acabado, el wrapper finalizaria

Su ejecucion.
En el proyecto la aplicacion a ejecutar es una aplicacion intermedia que nos realiza

la configuracion y nos ejecuta los procesos necesarios para que Condor encuentre el

entorno adecuado y pueda arrancar sin problemas.

Pag. 65

Plataforma Computing@home

BOIMC BOIMC
W AR er { core_client

condar_wa pper

Y

condor_configure local

,' hMonitar de
procesos

N

condor_configure

condar_master

e mmmaaeas o Zom probacion J \

—}, Ejecucian
—_—— _}, Lectura

condor_startad condor_sader

Figura 13 - Estructura de procesos

El proceso condor_wrapper es el encargado de arrancar el daemon condor_master.
Cuando este daemon ha arrancado se pierde el control del mismo. Para poder
controlarlo y saber el momento en que se debe parar por si el usuario comenzara a
hacer uso del ordenador, se ha creado un proceso que monitoriza los procesos
encargados de la aplicacion.

El monitor de procesos comprueba que el proceso de BOINC wrapper no finalice la
ejecucion. Si esto ocurriera el proceso condor_wrapper finalizaria su ejecucion vy el
monitor de procesos lanzaria una sefal de finalizacion al daemon condor_master

que a su vez pararia los procesos que controla.

Se ha comprobado que en caso de que la aplicacion se detuviera, los ficheros no se

eliminarian del ordenador a no ser que hubiera una nueva version, por lo que en la

Pag. 66

Plataforma Computing@home

siguiente ejecucion a realizar no se descargarian, ahorrando ancho de banda y

agilizando la ejecucion.

Una vez arrancada la aplicacion se realizan pruebas para comprobar que el monitor
de procesos funciona correctamente cuando el ordenador comienza a tener
actividad por parte del usuario. Los procesos Condor tardan un poco mas en

pararse, pero finalmente se paran.

Las mismas ejecuciones que se realizaron para comprobar el buen funcionamiento
del sistema Condor se prueban con el sistema completo y el ordenador cliente
cambia su estado en Condor al estado ocupado ejecutando un proceso. El resultado
se devuelve indicando el ordenador donde se ha ejecutado el proceso, siendo

exitoso.

Pag. 67

Plataforma Computing@home

Capitulo 5 - Conclusiones y lineas futuras

Este proyecto explora la posibilidad de la unién de dos sistemas de computacion
distribuida. Estos sistemas permiten la distribucion de tareas entre los diferentes
recursos que estan conectados al sistema para ejecutarlas, pero cada uno de un
modo completamente distinto. Estos dos sistemas de computacion distribuida
diferentes son Condor y BOINC, pero se intenta que trabajen conjuntamente para

alcanzar objetivos comunes.

Condor es un software para la ejecucion de trabajos, que crea un entorno capaz de
gestionar una gran cantidad de recursos ejecutados durante un largo lapso de
tiempo. Puede gestionar clusters de ordenadores dedicados, comunicados por una
red de area local, utilizando el maximo rendimiento de la capacidad de cémputo
disponible que ofrecen los ordenadores.

Condor proporciona una gestion de recursos potente y hace coincidir las
propiedades de los productores de recursos con los requisitos de los consumidores

de los mismos , adaptandolos al maximo.

Pag. 68

Plataforma Computing@home

Por otro lado, BOINC es una infraestructura de computacién distribuida y voluntaria
gue permite que un usuario pueda instalarse un cliente facilmente y se registre en
proyectos que utilizan la infraestructura BOINC para colaborar con ellos utilizando el
tiempo que el ordenador esta ocioso.

La instalacién del cliente BOINC es sencilla de realizar sea cual sea la arquitectura y
el sistema operativo usado y esta pensada para que el publico en general ayude en
los proyectos, facilitandoles el acceso.

Los proyectos suelen ser atractivos para el publico y requieren de sistemas de
computacion masiva que se realiza con la colaboracion de voluntarios para poder

ejecutar sus tareas.

Cada uno de estos dos sistemas de computacion ha sido disefiado con diferentes
puntos de vista pero con este proyecto se pretende explorar las posibilidades que
existen de aproximar ambos sistemas y conseguir que los sistemas de gestién de
clusters, como Condor, tengan la posibilidad de incluir sistemas de computacion
voluntaria como BOINC, para poder ejecutar trabajos controlados por un gestor de
recursos seguro y fiable en ordenadores voluntarios de usuarios, los cuales donan
sus ciclos de CPU desinteresadamente mediante una infraestructura flexible vy

llamativa.

El estudio preliminar del proyecto nos ofrecié una imagen inicial que nos ayudo a
iniciar el proyecto. La aparicibn de nuevos problemas durante la ejecucion del
proyecto nos proporciono6 un gran estimulo para solucionarlos y llegar a la resolucion
de cada problema. De esta manera se ha llegado al final del proyecto con los

objetivos cumplidos y los modulos propuestos implementados.

El proyecto, ademés, nos ha dado una visibn mas general de los sistemas
distribuidos pudiendo explorar diferentes sistemas y estudiar soluciones que
proporcionasen una respuesta a los problemas.

Otros problemas no se han podido cubrir y quedan a disposicion de nuevos

desarrolladores.

Las lineas futuras abiertas con este proyecto son las siguientes:

Pag. 69

Plataforma Computing@home

o Condor puede realizar el envio de trabajos a diferentes entornos que llama

universes. Estos universos gestionan tareas especializadas, como el universo
java, que permite ejecutar aplicaciones escritas en el lenguaje de
programacion Java o el universo paralel que permite ejecutar tareas
paralelas. En el caso de las tareas realizadas con computacion voluntaria no
disponen de universo, ya que se ha realizado el estudio para tareas que se
ejecutan solamente en los universos standard y vanilla. Dos perspectivas se
pueden ofrecer: se podria crear un universo que gestionara las tareas que se
ejecutaran en entornos voluntarios o se podria modificar el sistema de
ClassAds de Condor para que las aplicaciones pudieran elegir si desean ser
ejecutadas en ordenadores voluntarios. De esta manera se conseguiria
diferenciar el tipo de tareas a ejecutar.

Se podria realizar un estudio del establecimiento de comunicaciones del
sistema cuando se encuentran cortafuegos. Condor tiene unos requisitos mas
estrictos respecto al problema de las comunicaciones. En BOINC es el cliente
el que realiza las conexiones con el servidor y utiliza la libreria libCurl que
tiene soporte, por ejemplo, para los protocolos HTTP, HTTPS y puede tratar
con proxies. Seria interesante el uso del elemento GCB (Generic Connection
Brokering), herramienta del proyecto Condor que ayudaria a resolver el
problema.

El uso de un elemento intermedio entre los dos sistemas, por ejemplo el
elemento GCB, modificado pertinentemente, nos permitiria la posibilidad de
utilizar aplicaciones paralelas que utilizaran las librerias PVM o MPICH por
ejemplo. Este elemento realizaria las funciones de nodo central almacenando
las URLs y permitiria que un ordenador pudiera conocer la URL de otro con el

gue quisiera comunicarse.

Se dejan estas lineas abiertas para la posible realizacion de nuevos proyectos.

Pag. 70

Plataforma Computing@home

Capitulo 6 - Bibliografia

Distributed Systems. Principles and Paradigms

Andrew S. Tanenbaum y Maarten Van Oteen
Ed. Pearson Prentice Hall. 2a edicion 2007

The Grid 2. Blueprint for a New Computing Infrastructure

lan Foster and Carl Kesselman
Ed. Elservier. 2a ediciéon 2004

High-Performance Computer Architecuture
Harold S. Stone
Ed. Addison-Wesley Publishing Company. 3a edicién 1993

Construyendo Aplicaciones Distribuidas con BOINC,

Ciclos perdidos

Revista Linux Magazine n° 23, pag. 48

Condor Manual Version 6.8.5 — Condor Team, University of
Wisconsin-Madison

<http://www.cs.wisc.edu/condor/manual/v6.8.5/>

Condor-Users Mail List

<condor-users@cs.wisc.edu>

Pagina web oficial de BOINC
<http://boinc.berkeley.edu>

Wi ki oficial de documentaciéon de BOINC.

<http://boinc.berkeley.edu/trac/wiki>

Pag. 71

Plataforma Computing@home

Unofficial BOINC Wiki
<http://www.boinc-wiki.info/index.php >

BOINC Message Boards
< http://boinc.berkeley.edu/dev/>

Wikipedia, la enciclopedia libre

<http://es.wikipedia.org>

Pag. 72

Plataforma Computing@home

Carlos Moreno Losada
Bellaterra, Junio 2008

Pag. 73

Plataforma Computing@home

RESUMEN

En este proyecto se han visto dos sistemas de computaciéon distribuida diferentes
entre ellos: Condor y BOINC. Se exploran las posibilidades para poder conseguir
que ambos sistemas logren trabajar conjuntamente, escogiendo la parte mas

efectiva de cada uno de los sistemas con el fin de complementarse.

RESUM

En aquest projecte s’han vist dos sistemes de computacio distribuida diferents entre
ells: Condor i BOINC. S’exploren les possibilitats per aconseguir que ambdos
sistemes puguin treballar de forma conjunta, escollint la part més efectiva de

cadascun d’aquests sistemes amb la finalitat que es complementin.

ABSTRACT

In this proyect we have seen two different between them distributed Computing
systems: Condor and BOINC. We explore our possibilities to let both systems work

together, choosing the most effective part of these systems with the aim (obtective-

purpose) to complement each other.

Pag. 74

