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Capítulo 1 -  Introducción  

Hace unas  décadas, los científicos utilizaban grandes supercomputadoras (o 

mainframes) para procesar tareas computacionales. Aquellos superordenadores no 

tenían un gran rendimiento, pues ejecutaban los trabajos secuencialmente y los 

científicos tenían que esperar su turno para poder utilizar los recursos. Cada uno de 

ellos disponía de una cantidad de tiempo determinado para utilizar la potencia de 

cálculo del superordenador. Tiempo más tarde se pudieron utilizar entornos 

multiusuarios, en los que no hacía falta esperar un turno para la utilización del 

superordenador, pero los recursos del superordenador eran limitados y muchas 

veces los procesos quedaban paralizados hasta que otros procesos con mayor 

prioridad finalizaban. Estas supercomputadoras tenían un coste elevado y no se 

rentabilizaban lo necesario para paliar el coste, pero por otro lado éstas  estaban 

utilizadas cerca del 100%, o sobreutilizadas. 

 

Nuevas generaciones de ordenadores personales con renovados diseños y 

prestaciones que mejoraban y aumentaban generación tras generación, aparecieron 

en el mercado y por cuestiones de privacidad, rapidez y reducción de costes, los 
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usuarios pasaron de utilizar los mainframes a los ordenadores personales. Mientras 

los costes habían sido reducidos enormemente y los usuarios estaban cada vez más 

satisfechos con su ordenador personal, los recursos habían sido distribuidos y la 

capacidad de cómputo global había decrecido dramáticamente, ya que cada 

ordenador personal suponía una ínfima parte de procesamiento comparado con los 

superordenadores anteriormente utilizados. Además en los ordenadores personales 

se perdían grandes cantidades de ciclos de computación ociosos sin realizar trabajo 

alguno, que si se sumaran en un objetivo común podrían aumentar la capacidad de 

cómputo. 

  

Cada vez los problemas científicos a resolver se vuelven más complejos y requieren 

de una gran capacidad de cómputo. Actualmente, un ordenador en solitario no es 

capaz de poder resolver este tipo de problemas, pero la unión de varios de estos 

ordenadores trabajando sobre partes estructuradas del problema pueden generar 

resultados útiles. 

 

Para poder realizar estas tareas se han creado sistemas de computación distribuida. 

Estos sistemas permiten la distribución de tareas entre los diferentes recursos que 

están conectados al sistema para ejecutarlas.  

 

En este proyecto veremos dos sistemas de computación distribuida muy diferentes 

entre ellos: Condor y BOINC, pero que trabajando conjuntamente  pueden alcanzar 

objetivos comunes. 

 

1.1 -  Antecedentes 

 

Diversos proyectos científicos actuales necesitan de una alta cantidad de recursos 

para ejecutar los trabajos creados en el proyecto. A menudo, estos trabajos 

necesitan ser procesados durante días o incluso varias semanas, y son necesarios 

sistemas que permitan controlar estos procesos durante el largo tiempo que se están 

ejecutando. Estos entornos que son capaces de gestionar una gran cantidad de 
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recursos ejecutados durante un largo lapso de tiempo son llamados High Throughput 

Computing (HTC). 

 

En contraposición, encontramos los entornos High Performance Computing (HPC), 

que gestionan una gran cantidad de recursos para ejecutar procesos durante 

tiempos cortos. Su interés reside en ejecutar el máximo de procesos lo más rápido 

posible, mientras que los entornos HTC son más proclives a buscar el máximo 

número de aplicaciones ejecutadas durante un intervalo de tiempo largo.  

El punto clave que los entornos HTC buscan es la eficiente gestión de los recursos 

disponibles, intentando ejecutar los procesos durante el tiempo que fuera necesario 

para llegar a la finalización de los trabajos y obtener resultados. 

 

Condor es un software que crea un entorno HTC para la ejecución de trabajos. 

Puede gestionar clusters de ordenadores dedicados, comunicados por una red de 

área local, utilizando el máximo rendimiento de la capacidad de cómputo disponible 

que ofrecen los ordenadores. 

 

Condor fue diseñado en la Universidad de Wisconsin-Madison y es un sistema 

ampliamente utilizado en diversos lugares para gestionar clusters de ordenadores. 

Como ejemplo, tenemos la misma Universidad de Wisconsin-Madison, donde reside 

el primer sistema Condor implementado y que gestiona más de 1.000 ordenadores 

que ejecutan proyectos científicos constantemente. 

 

Dentro de los proyectos científicos existen trabajos que requieren ejecutarse varios 

cientos de veces durante un periodo amplio de tiempo. Este tipo de proyectos 

requieren entornos de computación HTC como Condor, que puede ejecutar un 

trabajo cientos o miles de veces, con cientos y miles de conjuntos de datos a la vez, 

ahorrando tiempo al lanzarlo. Con una sola orden todos los trabajos son enviados a 

Condor y dependiendo del número de ordenadores que pueden ejecutarlos, los 

procesos quedarán en cola esperando  donde ejecutarse. El tiempo de ejecución y 

de espera puede ser extenso, pero Condor se encargará de la gestión de los 

trabajos hasta su finalización. 
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Condor proporciona una gestión de recursos potente, gracias al matchmaking de 

recursos que realiza. Este es el éxito de un entorno HTC como Condor. Éste hace 

coincidir los productores de recursos con los consumidores de los mismos , 

adaptando los requisitos al máximo.  

 

Otros sistemas de gestión de recursos utilizan colas de trabajos diferentes 

dependiendo de las características especiales asignadas a cada cola y son ellos 

mismos los que añaden propiedades a las colas de trabajos al instante, generando 

confusión al usuario sobre qué cola se debe usar, por los cambios realizados en las 

propiedades, para satisfacer ciertas demandas de otros usuarios.  

 

Condor, en cambio,  implementa el sistema ClassAd, que proporciona un diseño 

claro que simplifica el envío de trabajos por parte del usuario y la sencillez para 

encontrar el ordenador adecuado para ejecutar el proceso. Los ClassAds son un 

método eficaz para poder planear la ejecución de procesos como, por ejemplo, la 

implementación de diversos procesos capaces de diseñar grafos acíclicos de 

ejecución. 

 

 

 

Figura 1 - Representación del sistema de matchmaking  

 

 

Condor puede ser usado para construir entornos de computación de estilo Grid que 

atraviese los límites administrativos y proporciona herramientas para incorporar 
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estos sistemas, como puede ser el caso de la tecnología flocking, que permite que 

diversos sistemas Condor trabajen conjuntamente, o la interacción con Globus. 

 

Otro sistema de computación es BOINC (Berkeley Open Infrastructure Network 

Computing) y es una infraestructura de computación distribuida y voluntaria. El 

sistema permite que un usuario pueda instalarse un cliente fácilmente y se registre 

en proyectos que utilizan la infraestructura BOINC para colaborar con ellos.  

 

La instalación del cliente BOINC es sencilla de realizar sea cual sea la arquitectura y 

el sistema operativo usado, ya que BOINC se encuentra disponible para una gran 

variedad de sistemas operativos y arquitecturas de computadores. Cada uno tiene 

su propio sistema de instalación, pero la infraestructura BOINC está pensada para 

que el público en general ayude en los proyectos y por lo tanto se facilitan los 

procesos para poder colaborar. Esta colaboración se consigue atrayendo a los 

usuarios con proyectos de gran interés general y de añadidos como salvapantallas o 

skins que permiten adaptar el cliente según los gustos de cada usuario. 

 

 

 

Figura 2 - Salvapantallas del proyecto ClimatePredi ction.net 
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Una vez instalado el cliente y registrado el usuario en el proyecto que ha elegido, se 

utiliza el tiempo que el ordenador está ocioso para ejecutar el proyecto en el que se 

ha suscrito. Los proyectos suelen ser de investigación científica que requieren de 

sistemas de computación masiva y buscan la colaboración de voluntarios para poder 

ejecutar sus tareas. 

 

Se trata de un sistema voluntario, ya que el usuario dona sus recursos 

voluntariamente para ejecutar las tareas de los proyectos a los que se ha registrado, 

donando su tiempo ocioso de procesador para ejecutar los procesos de los 

proyectos BOINC. Si el proyecto no funcionara por algún motivo, los recursos que el 

usuario ha asignado en su ordenador para ese proyecto se repartirían entre el resto 

de proyectos. 

 

Proyectos BOINC son, por ejemplo: 

- El proyecto SETI, el cual se dedica, básicamente, a la búsqueda de vida 

extraterrestre analizando las señales que la NASA capta en sus antenas. 

- El proyecto FightAIDS@home, que centra su trabajo en el descubrimiento 

de diferentes partículas que ayuden a la lucha contra el SIDA. 

- El proyecto CancerResearch@home, que usa la computación voluntaria 

distribuida para la investigación contra el cáncer. 

- El proyecto Rossetta. Este proyecto investiga proteínas en 3D que puedan 

encontrar una solución a enfermedades mundiales como por ejemplo el 

cáncer o el Alzheimer. 

- El proyecto Einstein@home investiga pulsars en las señales recibidas en 

los laboratorios que estudian las estrellas. 

- El proyecto ClimatePrediction.net estudia el cambio climático añadiendo 

miles de modificaciones para comprobar como se comporta el sistema. 

 

Un mismo usuario mediante su cliente BOINC instalado puede colaborar con 

diversos proyectos, no teniendo que restringirse solamente a uno, compartiendo el 

tiempo de proceso entre los diferentes proyectos a los que el usuario está suscrito. 
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1.2 -  Objetivos 

 

Los sistemas de computación distribuida son diversos y cada uno aporta una 

solución a un tipo de problema concreto.  

Condor actúa sobre clusters de ordenadores, proporcionando sistemas generalistas 

de altas funcionalidades, gestionando de manera eficiente y fiable los procesos a 

ejecutar en ordenadores que dedican su tiempo a la ejecución masiva de proyectos.  

BOINC, en cambio,  realiza una computación intensiva de proyectos creados 

atractivamente para el público, creados con el fin de ser resueltos mediante la 

computación voluntaria en una infraestructura sencilla y configurable donde 

cualquier usuario doméstico puede colaborar.  

Como se puede ver, cada sistema está diseñado para obtener la misma finalidad 

pero de diferentes formas, desde diferentes puntos de vista. 

 

En este proyecto se explorarán las posibilidades que existen de aproximar ambos 

sistemas y conseguir que los sistemas de gestión de clusters HTC, como Condor, 

tengan la posibilidad de incluir sistemas de computación voluntaria como BOINC, 

para poder ejecutar trabajos controlados por un gestor de recursos fiable y seguro 

en ordenadores voluntarios de usuarios domésticos, los cuales donan sus ciclos de 

CPU desinteresadamente mediante una infraestructura flexible y llamativa. 

 

Iniciamos parte de la idea con un conjunto de recursos Condor, donde los usuarios 

pueden enviar sus tareas a ejecutar y el sistema Condor las gestiona  asignándolas 

a los diferentes recursos.  

BOINC, por su parte, dispone de su infraestructura en la que las tareas del proyecto 

a ejecutar se reparten entre los usuarios registrados en el proyecto. 

Se busca la opción de poder enviar trabajos Condor que puedan ser ejecutados en 

ordenadores externos al ámbito del gestor y que colaboren en un proyecto BOINC 

creado para este fin. 

 

Paralelamente se conseguirá aumentar el número de recursos del pool para poder 

ejecutar más tareas a la vez, permitiendo que los usuarios reciban la solución de sus 
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múltiples tareas con mayor celeridad. Una segunda vía de pensamiento es la opción 

de que diversos usuarios requieran de un número de recursos para ejecutar sus 

tareas que el pool no las pudiera ofrecer por la limitación de recursos. Esta 

estructura nos limita a ejecutar tareas que requieran el número máximo de recursos 

que dispone el pool. 

 

En buena parte se quiere incrementar el número de recursos, pero este incremento 

no es sencillo de realizar. Dentro de las posibles soluciones se sabe que se realizará 

un incremento dinámico de recursos, pues se conoce que la computación voluntaria 

dispone de un contratiempo como es la volatilidad de las conexiones de los 

ordenadores al sistema. Estas conexiones dinámicas se deben tener en cuenta, ya 

que si un proceso necesita de una fiabilidad del 100%, con este método no se podrá 

ofrecer por su volatibilidad. 

 

Se intentará encontrar una solución para el incremento de recursos del pool de 

Condor, añadiendo máquinas externas voluntarias, pero existen ciertos problemas o 

requerimientos a cumplir: 

 

• Un problema que pudiera surgir sería que el sistema añadiera recursos 

externos y éstos pudieran generar problemas de seguridad al no encontrarse 

en un entorno seguro. En principio, el sistema no está limitado a un conjunto 

de usuarios restringido y los entornos que se pueden añadir pudieran ser muy 

diversos. Se debe tener en cuenta la seguridad del sistema, eliminando 

aquellos riesgos potenciales que se puedan detectar, minimizando el efecto 

de los riesgos que surgieran y que no hubieran sido detectados. En cierta 

forma deberíamos cuidar tanto el sistema como el entorno en el que se 

encuentra el sistema, impidiendo que dejase de funcionar por completo si se 

produjera algún problema de seguridad. 

 

• Otro requisito impuesto para la solución del problema es la facilidad, 

accesibilidad, y transparencia que el usuario externo debe tener para poder 

colaborar en la ejecución de las tareas. El sistema de adición de recursos al 

proyecto debería ser accesible para el mayor número de público interesado, 
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fácil de instalar y de poner en funcionamiento, proporcionando una 

transparencia al usuario en el momento de la ejecución para no entorpecer el 

trabajo del mismo. Como se trata de un sistema dinámico, éste debe ser 

flexible tanto a la hora de añadir recursos como de sustraerlos.  

 

• Un sistema de estas características debería poder aportar una fiabilidad para 

que las tareas se ejecutaran en un tiempo razonablemente finito y que se 

pudiera obtener el resultado de tal ejecución. Sin este sistema de fiabilidad 

podría darse el caso que las tareas fueran enviadas a recursos que 

desaparecieran del pool y que nunca más pudieran volver a conectarse. El 

usuario emisor de la tarea nunca recibiría el resultado, podría incluso retardar 

otras tareas que necesitasen de este resultado o hacerlas fracasar por no 

ejecutarse en un tiempo dado. Algún mecanismo implementado debería evitar 

estas situaciones, aunque si bien podría ser tolerable algún fallo que algún 

recurso pudiera generar, restableciendo la ejecución en otro recurso. Esta 

tolerancia y transparencia de fallo debería ser inapreciable por parte del 

usuario emisor de la tarea. 

 

• En algunas ocasiones la apertura de los sistemas a un mayor número de 

usuarios puede provocar que los componentes centrales del sistema queden 

bloqueados por saturación. Este es un problema típico de las redes y de los 

servidores que gestionan varios cientos o miles de recursos. Como el sistema 

no indica un número máximo de recursos que se pueden gestionar, 

deberemos limitar el acceso a recursos que pretendan añadirse al sistema, 

para impedir la saturación del mismo y sus componentes. 

 

• Otro aspecto importante es la gestión concurrente y las comunicaciones entre 

las diferentes tareas. Para facilitar el proyecto se realizarán pruebas en las 

que las tareas carecen de comunicación alguna con otras semejantes u otros 

recursos ajenos al sistema. Esto nos proporcionará un primer paso que 

indique la viabilidad del proyecto.  
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1.3 -  Gestión del proyecto 

 

1.3.1 - Planificación de tiempos 

La planificación de tiempos está marcada por las tareas a desarrollar y los hitos a 

conseguir. Las tareas se dividen en lo que se llama la Work Breakdown Structure 

(WBS) y especifica de la manera más concreta posible las tareas a realizar y la 

distribución de tiempos dependiendo de la interacción que tengan entre ellas. Como 

resultado de todo este estudio, podemos ver el diagrama de Gantt resultante que 

nos ayuda a conocer el estado del proyecto en un momento determinado, pudiendo 

decidir si son necesarias acciones correctivas en el proyecto para poder llevarlo a 

cabo en los tiempos determinados.  

 

Se mostrará y describirá brevemente cada una de las fases que hemos generado 

para la planificación del proyecto y se pasará a la visualización del diagrama de 

Gantt correspondiente al proyecto.  

 

1.3.2 - WBS del proyecto 

• Análisis del problema: Este es un apartado previo a la implementación del 

proyecto. Este análisis es necesario para idear la solución más óptima al 

problema que tenemos. 

• Instalación Condor: Se trata de la instalación del sistema Condor del testbed 

que nos servirá para realizar las pruebas de funcionamiento. También incluye 

las pruebas realizadas sobre el mismo sistema que determinan su 

funcionamiento correcto. 

o Configuración servidor Condor 

o Configuración cliente Condor 

o Creación aplicación prueba Condor 

o Pruebas funcionamiento aplicación Condor 

o Creación cortafuegos para Condor 

• Instalación BOINC: El testbed necesita también de un pequeño sistema 

BOINC que ayude a realizar las tareas de prueba. Se añaden las pruebas a 
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realizar para conocer el funcionamiento del sistema y la posterior 

comprobación del mismo. 

o Configuración servidor BOINC 

o Configuración cliente BOINC 

o Creación proyecto prueba BOINC 

o Pruebas funcionamiento proyecto BOINC 

o Creación cortafuegos para BOINC 

• Condor + BOINC: La unión de estos dos sistemas nos proporcionará la 

realización del proyecto. Se debe configurar Condor encapsulándolo como 

tarea a ejecutar de BOINC. Se creará un proyecto de BOINC con la tarea 

realizada y se realizarán las pruebas anteriores que puedan ayudar a la 

comprobación. 

o Creación proyecto Condor en BOINC 

� Configuración condor_config 

� Encapsulado BOINC de paquete Condor 

o Creación de proyectos BOINC 

o Pruebas funcionamiento proyecto 

o Creación cortafuegos para proyecto 

• Documentación: Se realizará la escritura de la documentación pertinente al 

proyecto.  

• Presentación: Se realizará la presentación pública del proyecto. 
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1.3.3 - Diagrama de Gantt 

 

Figura  1 - Diagrama de Gantt 
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1.4 -  Estructura de la memoria 

 

La estructura de la memoria se repasará en esta sección, los diferentes capítulos 

que veremos y el contenido de los mismos. 

 

El capítulo 2 trata los fundamentos teóricos necesarios y los métodos utilizados para 

entender y comprender el trabajo realizado. Estos conceptos engloban las bases 

teóricas del proyecto.  

Los puntos a ver son los sistemas distribuidos y su clasificación, el sistema Condor, 

un sistema HTC ampliamente utilizado en diversos proyectos, y el middleware 

BOINC, una infraestructura creada para la computación voluntaria de proyectos. 

 

El capítulo tercero está dedicado a los problemas surgidos durante la ejecución del 

proyecto y se verán las soluciones tomadas en cada momento para cada problema. 

De esta forma se repasará el cumplimiento de los requisitos iniciales del proyecto. 

Se han contemplado las arquitecturas de los sistemas en los que está basado el 

proyecto, y se mostrará la arquitectura del sistema y la implementación desarrollada 

del proyecto. 

 

El cuarto capítulo mostrará la instalación de los entornos de pruebas que fueron 

necesarios para poder ejecutar el proyecto y la experimentación realizada en ellos. 

En este apartado se dará una solución pragmática a las implementaciones 

anteriormente explicadas.  

 

El capítulo 5 consta de los apartados correspondientes a las conclusiones obtenidas 

en el trabajo realizado y las líneas futuras que el proyecto abre a nuevas 

extensiones. Éstas son importantes para conocer el alcance obtenido con el 

proyecto respecto a las posibilidades del conjunto del trabajo. 
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Capítulo 2 -  Fundamentos teóricos 

La computación distribuida es un modelo de computación que ayuda a resolver 

problemas de computación masiva y que utiliza, en su gran medida, un número 

elevado de ordenadores para resolver problemas que requieren un alto índice de 

computación. 

 

El proyecto desarrollado está basado en sistemas de computación distribuida. Éstos 

son un modelo utilizado en diversas áreas para resolver grandes retos que requieren 

un alto índice de computación, como la física, la biología molecular, la medicina o la 

meteorología. 

Estos grandes retos pueden ser, por ejemplo, el plegamiento de proteínas, el 

descubrimiento de nuevos medicamentos, la simulación de terremotos o 

inundaciones, la simulación financiera o el estudio de un tema habitual hoy en día, la 

creación de modelos climáticos, realizando cálculos de sistemas que estudian 

modelos de los posibles efectos del calentamiento global del planeta. 
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Todos estos ejemplos  tienen en común la necesidad de utilizar computación 

masiva, la cual puede ser llevada a cabo de diferentes formas que veremos a 

continuación. 

 

2.1 -  Sistemas Distribuidos 

 

Cuando se piensa en la ejecución de grandes proyectos se suele pensar en un 

superordenador que ejecuta incesantemente todos los trabajos. Ciertamente, una de 

las formas de realizar computación masiva es el uso de un supercomputador que 

pueda procesar las tareas suministradas por el proyecto. Afortunadamente no es la 

única manera de llevar a cabo esta tarea. Cuando este supercomputador no se 

puede hacer cargo del trabajo o si no se dispone de un supercomputador por los 

costes que éste implica, se utilizan sistemas distribuidos que ayudan a realizar los 

cálculos requeridos para resolver los trabajos.  

Este es el objetivo por el cual la computación distribuida fue diseñada, permitiendo 

además de la ejecución de estas tareas, la flexibilidad para poder trabajar en 

múltiples problemas más pequeños que ayuden colateralmente a resolver grandes 

problemas y obtener un rendimiento mayor del conjunto global que compone el 

sistema. 

 

Dentro de la computación distribuida existen diferentes tipos de sistemas que 

requieren de sus necesidades. Algunos de ellos son: 

 

• La existencia de servicios web XML nos proporcionan servicios y 

aplicaciones que pueden ser accedidos para utilizar entornos distribuidos. 

Estos servicios web XML están regidos por un estándar llamado Open Grid 

Services Architecture (OGSA). Este estándar es el utilizado por Globus 

Toolkit en su versión 3.0. 

• La computación de ciclos redundantes o también llamada computación 

zombie está compuesta por un servidor o grupo de servidores que 

distribuyen tareas para ser procesadas entre los diferentes sistemas 

voluntarios que se han adjuntado para colaborar en la ejecución del 
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proyecto. Los ordenadores voluntarios ejecutan estas tareas cuando se 

encuentran ociosos, no interfiriendo en la ejecución y uso del ordenador 

por parte del usuario. De esta manera, se dona a la ejecución de los 

proyectos los ciclos redundantes, aprovechando al máximo la capacidad 

de procesamiento del ordenador. 

• Los clusters de ordenadores son un conjunto de ordenadores de bajo 

coste relativo, unidos entre si por una red local de alta velocidad. Todo el 

cluster de ordenadores suele disponer del mismo sistema operativo y de 

un software que permite la ejecución de tareas distribuidas y establece las 

comunicaciones entre los diferentes elementos del cluster. Otro dato típico 

de los clusters de ordenadores suele ser la existencia de un único sistema 

de almacenamiento compartido. 

• Los sistemas Grid son un paradigma de la computación distribuida 

aparecido en las últimas décadas. Estos sistemas disponen de un número 

indeterminado de ordenadores dedicados, que funcionan como si se 

trataran de uno único. Esta unión se realiza de manera transparente, 

generando a la vista del usuario un único recurso que pueda ejecutar las 

tareas requeridas, aunque estos ordenadores se encuentren ubicados en 

diferentes lugares geográficos. Para llevar a cabo estas funciones se suele 

utilizar un software determinado que permite las comunicaciones entre 

ordenadores, la gestión de almacenamiento de datos y el envío de 

trabajos, entre otras tareas. Uno de los softwares más famosos para crear 

estos sistemas es Globus. Globus es un middleware con el que se puede 

crear un sistema Grid. Permite gestionar y descubrir los recursos, así 

como el control del almacenamiento de datos. 

 

La existencia de diferencias entre los sistemas distribuidos permiten clasificarlos de 

diversas formas, entre ellas encontramos la homogeneidad de los sistemas o la 

localización de los mismos.  

Por ejemplo, los sistemas llamados Single System Image (SSI), donde todos los 

recursos computacionales disponen del mismo sistema operativo diseñado 

expresamente para permitir trabajar en un entorno distribuido. Ejemplos de estos 

SSI son DragonFly BSD, Mosix/Open Mosix o Open SSI. En contraposición 
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encontramos sistemas Grid donde la heterogeneidad de los sistemas es muy alta, 

pudiendo encontrarse dentro de un mismo sistema Grid diferentes clases de 

sistemas operativos. 

Otro ejemplo de clasificación es la localización de los elementos, como los clusters 

de ordenadores que se encuentran localizados dentro de la misma ubicación, 

conectados mediante una red local de alta velocidad que conecta todos los recursos, 

mientras que en un sistema Grid los ordenadores se encuentran ubicados en 

diferentes lugares del mundo, pudiendo comunicarse a través de Internet. 

Estas clasificaciones se pueden ampliar con la visión que el usuario tenga del 

sistema. Un cluster, por ejemplo, utiliza todos los ordenadores buscando mejorar el 

rendimiento de todos ellos, mientras que en los sistemas Grid el englobe total de 

ordenadores quiere ofrecer la visión al usuario de un superordenador, suplantando 

los elementos dispersos. 

Otro aspecto importante en los sistemas distribuidos es la fiabilidad del sistema. Se 

puede dar una alta fiabilidad, como en los sistemas Grid, donde el mal 

funcionamiento de un nodo o recurso no implica el paro del sistema, pudiendo 

servirse de otros recursos del Grid, o una fiabilidad baja, que puede ser, por ejemplo, 

un cluster de ordenadores donde el mal funcionamiento de un recurso puede 

provocar la parada del sistema completo. 

 

Diversa literatura incluye los sistemas oportunistas de computación voluntaria como 

una clase de sistemas de computación distribuida Grid, aunque la computación 

voluntaria difiere de la computación Grid, porque esta última involucra la gestión de 

recursos  dentro y entre organizaciones virtuales. En cambio la computación 

voluntaria no requiere de esta organización. Se podría considerar un sistema Grid 

cuando se organiza los recursos por proyectos, realizando una similitud con las 

organizaciones virtuales. Por este motivo veremos los sistemas Grid y 

posteriormente los sistemas de computación voluntaria. 

 

El término Grid fue acuñado por Ian Foster y Carl Kesselmans en los principios de 

los años 90 en un seminario llamado The Grid: BluePrint for a new Computing 

Infrastructure. Este seminario desembocó en un libro con el mismo nombre.  
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Los autores buscaban una metáfora para comparar la facilidad de acceso de este 

método de computación a la red de suministro eléctrico. De aquí se extrajo el 

vocablo inglés Grid que sirve para denominar estos sistemas de computación. 

 

El término Grid Computing dispone de dos acepciones en el diccionario tecnológico 

que engloban dos subcategorías de sistemas distribuidos: 

 

� Grid es la computación online o el almacenamiento ofrecido como servicio 

soportado por un conjunto de recursos distribuidos, conocidos también 

como utilidad de computación , computación bajo demanda o cluster 

computacional. Existen Grids de almacenamiento de datos que proveen el 

control para el almacenaje de grandes cantidades de datos que pueden 

ser compartidos. Estos Grids suelen ofrecer apoyo a los Grids 

computacionales. 

� Los sistemas Grids buscan la creación de un “superordenador virtual” 

compuesto de una red de ordenadores conectados, ejecutando 

conjuntamente tareas de gran tamaño que no podrían ser ejecutadas por 

ordenadores en solitario. Estos sistemas se han utilizado para ayudar en el 

área de computación científica intensiva, matemática y resolver problemas 

académicos a través de la computación voluntaria. También se han 

aplicado sobre sistemas comerciales como por ejemplo la pronosticación 

económica, el descubrimiento de drogas y medicamentos o el 

procesamiento de datos en back-office para el soporte al comercio 

electrónico y servicios web. 

 

En esta segunda definición encontramos una referencia a los sistemas de 

computación voluntaria, que son un tipo de sistemas de computación distribuida en 

la cual los propietarios de ordenadores, habitualmente domésticos, donan sus 

recursos informáticos (almacenamiento, procesamiento) voluntariamente para 

ejecutar tareas de uno o más proyectos. 
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El primer proyecto de computación voluntaria conocido fue el Great Internet 

Mersenne Prime Search, que se inició en enero de 1996. En años sucesivos 

surgieron otros proyectos como Superweb, Popcorn, Charlotte o Bayanihan. 

El desarrollador de este último proyecto, Bayanihan, fue quien acuñó el término 

“computación voluntaria”, Luis F.G. Sarmenta. 

 

El software cliente de los primeros proyectos de computación voluntaria consistía en 

un simple programa que combinaba la computación distribuida y la infraestructura 

del sistema. Esta arquitectura monolítica no era flexible, ya que por ejemplo era 

difícil actualizar las versiones sin modificar la infraestructura. 

Recientemente se han desarrollado sistemas middleware que proveen una 

infraestructura de computación distribuida independiente de la computación 

científica, por ejemplo: 

 

• BOINC, desarrollado por la Universidad de California. 

• XtremWeb, desarrollado por la Universidad Paris-South. 

• Xgrid, desarrollado por Apple para Mac OS X. 

• GridMP, desarrollado por United Devices para uso comercial. 

 

La estructura básica que siguen estos sistemas es la de un programa cliente que se 

ejecuta en el ordenador voluntario. El usuario controla el progreso y la dedicación 

dada a la ejecución de tareas del proyecto y es el cliente instalado el que 

periódicamente contacta con el servidor del proyecto, entregando los resultados 

obtenidos y recibiendo nuevas tareas para ejecutar, si se da el caso. De esta 

manera, con el sistema pull se pueden evitar los posibles firewalls instalados en los 

ordenadores clientes que no tengan permitidas conexiones de entrada.  

 

Los sistemas de computación voluntaria deben controlar algunos aspectos 

problemáticos. 

 

⇒ La heterogeneidad de los sistemas que participan. 

⇒ La disponibilidad esporádica de los recursos participantes. 



Plataforma Computing@home 

 

 

Pág. 25  

⇒ La necesidad de la no interferencia del ordenador cuando sea el usuario 

quien realiza el uso. 

⇒ El anonimato de los usuarios. 

⇒ El sistema numérico de medida (créditos) para reconocer la cantidad de 

trabajo realizado por cada usuario. 

⇒ La detección de resultados incorrectos. 

⇒ La reclamación de créditos por resultados erróneos. 

 

Para resolver estos problemas se utilizan soluciones como la “computación 

replicada”, en la que cada trabajo es realizado como mínimo por dos ordenadores y 

solamente los resultados son aceptados si ambos son similares o cercanos. Si esto 

ocurre, se asignan créditos a ambos usuarios por el trabajo realizado. 

 

Por el lado cliente también existen problemas como el incremento del consumo 

eléctrico, ya que el ordenador consume más electricidad al estar activo que 

encontrándose en un estado ocioso. Se suelen desactivar funciones como 

“Suspender” o “Hibernar” en el ordenador para permitir la ejecución de estos 

procesos, con la consecuencia que el ordenador está continuamente ejecutando 

tareas.  

Si la memoria RAM se convierte en una limitación entre todos los recursos, el 

rendimiento del ordenador decaerá al aumentar los fallos a caché y la paginación a 

disco. Para evitar estos problemas se suelen ejecutar las aplicaciones de los 

sistemas voluntarios con baja prioridad, lo que ayuda a aliviar la contención de la 

unidad de proceso. Estos efectos en el cliente pueden ser visibles o no, e incluso si 

son visibles el voluntario suele escoger seguir colaborando con los proyectos. 

Otro problema es el decreciente rendimiento del ordenador si no está bien 

controlado el uso del ordenador durante la ejecución del proyecto. Se pueden definir 

aspectos críticos como la cantidad de disco a utilizar o los momentos de ejecución 

de las tareas. Una mala configuración de estas características puede suponer  la 

saturación de los procesos del ordenador. 
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2.2 -  Condor 

 

Condor es un sistema de procesos por lotes especializado para gestionar trabajos 

de computación intensiva y proporciona un mecanismo de encolado de trabajos, 

políticas de programación, esquemas de prioridad y clasificación de recursos. 

 

Los sistemas de procesos por lotes normalmente son ejecutados por sistemas 

dedicados, que pertenecen a una organización y tienen como único propósito la 

ejecución de trabajos. Las posibilidades de Condor son que puede enviar trabajos a 

ordenadores dedicados pero también puede enviarlos  a ordenadores no dedicados, 

utilizando los momentos que el usuario no se encuentra utilizando el ordenador. 

 

Condor es un software que crea un entorno HTC y puede gestionar clusters de 

ordenadores dedicados comunicados por una red de área local, utilizando el máximo 

rendimiento de la capacidad de cómputo disponible. 

 

 

 

Figura 3 - Esquema de componentes de Condor 

 

 

Los usuarios envían sus trabajos informáticos a Condor, y éste  coloca los trabajos 

en una cola, según la política especificada, busca ordenadores disponibles en la red 
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que se adapten a los requisitos de los trabajos, los ejecuta y entonces informa al 

usuario sobre el resultado. 

 

Condor proporciona mediante matchmaking de recursos una gestión de los mismos 

entre productores y consumidores de recursos. Este es el secreto del éxito de 

Condor que ha permitido que sea uno de los sistemas más ampliamente utilizado 

para este tipo de entornos. 

 

2.2.1 - Características 

Las características que hacen de Condor un sistema diferente y excepcional son las 

siguientes: 

 

• Checkpoint y Migración � Cuando los trabajos son enlazados con las 

librerías de Condor, los usuarios pueden asegurar que sus trabajos serán 

posiblemente completados, incluso en los entornos cambiantes que 

Condor utiliza. Cuando un ordenador ejecutando un trabajo enviado se 

convierte en indisponible, el trabajo puede detenerse en ese instante 

guardando todo el estado actual. El trabajo puede continuar después de 

haberse migrado a otro ordenador. Condor realiza puntos de control 

periódicamente para, de alguna forma, salvaguardar el tiempo acumulado 

de computación en un trabajo, no perdiéndose  todo el trabajo en caso de 

apagado del ordenador. 

• Llamadas de sistemas remotas � Condor, mediante las llamadas del 

sistema remotas puede conservar el entorno de ejecución local en el 

entorno Condor standard universe. No es necesario preocuparse de la 

transferencia de archivos o de realizar login en el ordenador remoto, los 

trabajos se realizan como si fueran locales y es transparente el ordenador 

en el que se ejecuta el trabajo. 

• No son necesarios cambios en el código fuente � Condor es capaz de 

ejecutar procesos interactivos, realizar puntos de control y migración 

transparentemente siempre y cuando reenlacemos el código fuente con las 

librerías de Condor al compilar el trabajo a ejecutar. Si no se proporciona 
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el entorno Condor vanilla universe para ejecutar aplicaciones que no se 

pueden reenlazar por la falta del código fuente. 

• Pools de ordenadores operan conjuntos � Flocking es una característica 

de Condor que permite que trabajos enviados a un pool sean ejecutados 

en un segundo pool al que se tiene confianza. El mecanismo es flexible 

pudiendo configurar políticas en el segundo pool para conocer qué 

ordenadores y qué trabajos pueden ser ejecutados. 

• Usuario de ejecución � En cuestiones de seguridad Condor no requiere 

una cuenta de usuario en los ordenadores destino donde se ejecutan los 

trabajos. Es capaz de utilizar cuentas generalistas como nobody, pero se 

debe configurar para este aspecto.  

• Ordenación de trabajos � Se pueden ordenar las ejecuciones de los 

trabajos haciendo que cada uno de ellos sea un nodo dentro de un grafo 

acíclico. Se establecen dependencias en la ejecución de los trabajos 

según las expresadas en el grafo. 

• Habilitación de Grid Computing � Utilizando la técnica de Glidein se 

permite enviar a ejecutar trabajos de Condor a ordenadores que 

pertenecen a un Grid ubicados alrededor del mundo. Estos recursos Grid 

son manejados por Globus. 

• Percepción del propietario del ordenador � Los procesos del propietario 

de un ordenador que colabore con Condor tienen prioridad sobre el uso 

del ordenador. El propietario cede el tiempo no utilizado para ejecutar otros 

procesos como Condor. Es transparente y el usuario no debe realizar 

ninguna operación, se realiza automáticamente. La capacidad de detectar 

si el usuario de un ordenador está trabajando con él la realiza Condor y si 

existiera un trabajo ejecutándose en ese momento, Condor lo pararía de 

inmediato e intentaría realizar un checkpoint y migrar el trabajo a un 

ordenador diferente, el cual admitiera el trabajo. Condor retomaría el 

trabajo en el nuevo ordenador exactamente en el punto donde paró la 

ejecución. 

• ClassAds � El mecanismo ClassAds proporciona un framework flexible y 

expresivo para realizar la mejor correspondencia entre las peticiones de 

recursos y las características de los recursos, indicadas por los trabajos 
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lanzados y por las políticas expresadas en los ordenadores del pool. 

Durante el proceso de matchmaking, Condor también considera diversas 

capas de valores prioritarios: 

o Prioridad del usuario asignada al anuncio de petición del recurso. 

o Prioridad del usuario que envía el anuncio. 

o Deseos de los ordenadores en el pool para aceptar ciertos tipos de 

anuncios sobre otros. 

 

Por el contrario, Condor también tiene limitaciones que no permiten realizar algunas 

funciones. Es importante conocerlas: 

 

• Limitaciones en trabajos con checkpoint � No se pueden realizar puntos 

de control y migración de:  

o Trabajos con multiprocesos. Por ejemplo trabajos que utilicen las 

funciones fork o exec,  

o Comunicación entre procesos (Inter-Process Communication, IPC). 

Procesos que utilicen pipes o semáforos 

o Operaciones de red de larga duración. Los procesos que abran un 

socket no pueden dejarlo abierto durante mucho tiempo. 

o  Utilización de las señales SIGUSRZ y SIGTSTP. Otras señales están 

permitidas, pero éstas Condor las utiliza internamente. 

o Procesos dormidos. Los procesos que utilicen funciones como alarm o 

sleep. 

o Utilización de múltiples kernel-level threads. Los threads de usuario 

están permitidos, pero si son del kernel no. 

o Ficheros con memory mapped. 

o Bloqueo de ficheros. No se pueden utilizar funciones como lock.  

o Ficheros no abiertos de sólo escritura o lectura. Los ficheros abiertos 

de lectura y escritura pueden provocar fallos. 

o Ordenadores con poco espacio en disco. Es necesaria una cantidad de 

disco para guardar el estado de la tarea. 

o Procesos que lean o escriban en ficheros de mas de 2 GB. 
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• Seguridad � Condor proporciona sistemas y políticas de seguridad, pero 

no puede controlar que ciertos sistemas tengan problemas de seguridad. 

• Los trabajos deben ser enlazados de nuevo � Para obtener las 

propiedades de checkpoint y de señales de sistema remotas, los trabajos 

deben ser linkados con las librerías de Condor. 

 

2.2.2 - Arquitectura de Condor 

El sistema de gestión de colas de trabajos Condor es una pieza fundamental del 

proyecto. Condor dispone, en su arquitectura básica, de un servidor central llamado 

Central Manager que es el encargado de realizar la gestión de recepción y envío de 

trabajos, así como la correspondencia entre trabajos y recursos. Se puede 

considerar el cerebro del sistema. Este servidor contiene varios daemons que 

realizan las operaciones necesarias y son arrancados según la configuración 

establecida mediante el programa condor_master. Este proceso controla el resto de 

procesos de Condor de manera automática. 

 

Para constituir el pool de ordenadores que ejecuten trabajos enviados por el Central 

Manager se dispone de ordenadores dedicados a la ejecución de trabajos. Todos los 

ordenadores del pool no son estrictamente dedicados, ya que algunos de ellos 

pueden ser ordenadores de usuarios que ejecutan tareas cuando el usuario no esté 

trabajando. En este caso, los ordenadores pertenecen al pool a tiempo parcial, 

utilizando el tiempo que el usuario no usa el ordenador para ejecutar los trabajos.  

 

 

 

Figura 4 - Procesos Condor en los diferentes roles 
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Los roles que pueden presentar los ordenadores en un sistema Condor son tres: 

 

• Gestor Central (Central Manager) � Su función resulta fundamental dentro 

del sistema, dado que es el ordenador encargado de administrar los 

recursos y asignar las ejecuciones de trabajos a los ordenadores 

dedicados a la ejecución de éstos. Periódicamente recopila información 

sobre el estado de todo el sistema. Tan sólo puede existir un gestor central 

en un mismo sistema.  

• Ordenadores dedicados a la ejecución (execute computers) � Como su 

nombre indica, su tarea consiste en ejecutar los trabajos que son 

asignados por el gestor central. Para ejecutar los trabajos, básicamente, 

es necesario un programa Condor ejecutándose llamado condor_startd, 

que es el encargado de comunicarse con el Central Manager. Este 

programa realiza las funciones de envío de características del nodo y 

recibe los trabajos a ejecutar desde el Central Manager. 

• Ordenadores de envío de trabajos (submit computers) � Son los 

ordenadores a los que se les otorga la capacidad de enviar trabajos al 

sistema. Este ordenador acostumbra a ser propiedad del usuario 

investigador que requiere de Condor para ejecutar su proyecto. Él es el 

encargado de enviar el trabajo al Central Manager junto con los requisitos 

y deseos necesarios que el trabajo necesita. El Central Manager realizará 

el matchmaking correspondiente entre el trabajo y los recursos publicados 

por los nodos del pool y enviará a ejecutar el trabajo en los ordenadores 

del pool que resulten los más adaptados para el trabajo. Una vez 

ejecutado se devolverá el resultado al investigador, ya sea mediante las 

llamadas a sistema remotas o a través del sistema de transferencia de 

ficheros que Condor implementa. El programa encargado de realizar estas 

tareas es el llamado condor_schedd. Es posible utilizar el ordenador 

encargado del envío de trabajos como participante en el pool para ejecutar 

trabajos. 
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Estos roles no son excluyentes, de manera que un solo ordenador puede actuar de 

gestor central, enviar trabajos y ejecutarlos. 

 

2.2.3 - Daemons  

Para realizar los roles definidos en la arquitectura tenemos daemons que realizan las 

siguientes funciones. Existen siete daemons diferentes: 

 

• condor_master. Se ejecuta en todos los ordenadores del sistema. Su 

función es simplificar la administración del sistema. Es el encargado de 

lanzar la ejecución del resto de daemons localmente, en el propio 

ordenador en el que se ejecuta, y de vigilar el correcto funcionamiento de 

éstos. Si algún daemon interrumpiera por cualquier motivo su ejecución, se 

encargaría de relanzarlo. Además, mediante este daemon se pueden 

detener y reconfigurar el resto.  

• condor_collector. Se ejecuta en el gestor central. Este daemon recoge 

periódicamente toda la información del estado del sistema, recibe y trata 

peticiones procedentes del resto de daemons de los demás ordenadores. 

• condor_negotiator. Se ejecuta en el gestor central. Es el encargado de 

asignar trabajos a ordenadores dependiendo de los requerimientos y 

características tanto de los primeros como de los segundos, ambas partes 

han de satisfacer sus requerimientos mutuamente. 

• condor_startd. Se ejecuta en todos los ordenadores con rol de ejecución. 

Este daemon se considera como el representante del ordenador dentro del 

sistema. Tiene la capacidad de iniciar, parar y suspender trabajos, y es el 

encargado de lanzar el daemon starter con la configuración apropiada 

dependiendo del tipo de trabajo.  

• condor_starter. Se ejecuta en todos los ordenadores con rol de ejecución. 

Se encarga de monitorizar y controlar el trabajo en ejecución. Proporciona 

información de estado al ordenador desde el que se envió el trabajo. En 

ordenadores con múltiples procesadores, existe una instancia de este 

daemon por cada CPU. 
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• condor_schedd. Se ejecuta en todos los ordenadores con rol de envío. Es 

el encargado de gestionar la cola local de trabajos y de solicitar recursos 

para la ejecución de los trabajos que se encuentran parados. 

• condor_shadow. Se ejecuta en todos los ordenadores con rol de envío, 

mientras el trabajo se encuentra en ejecución. Se puede considerar como 

el representante del trabajo en el ordenador que lo ha enviado. Existe uno 

por cada trabajo activo y, entre otras, tiene las funciones de transferir 

archivos necesarios como logs y estadísticas, y de efectuar llamadas 

remotas al sistema en caso de que sean necesarias, es decir, de la 

comunicación con el ordenador que ejecuta el trabajo. 

 

El siguiente esquema muestra la configuración de un sistema Condor típico, así 

como la interacción entre sus daemons: 

 

 

 

Figura 5 - Procesos Condor, interacciones entre pro cesos 

 

 

Como se puede apreciar, los daemons master arrancan el resto de los procesos en 

cada ordenador y el master de todos los ordenadores que participan en el proceso 

se comunican con el proceso condor_collector, que es el encargado de recibir el 

estado de todo el sistema. 
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2.2.4 - Matchmaking con ClassAds 

Es importante entender el método utilizado por Condor para acoplar recursos que 

pueden ejecutar trabajos según sus peticiones. Entender el framework que Condor 

utiliza para realizar este trabajo es la clave. 

 

Dentro de las necesidades del proyecto, se pueden programar los trabajos enviados 

con una serie de requerimientos que el gestor intenta hacer cumplir. El investigador 

indica al gestor los requisitos obligatorios y los requerimientos no obligatorios que 

cree necesarios, como condiciones para ejecutar los trabajos, y el gestor controla los 

trabajos creándolos dentro de la  cola (queue), intentando cumplir los requerimientos 

recibidos y enviando los trabajos a los ordenadores correspondientes que cumplen 

las restricciones para ejecutarlos. Por ejemplo podemos indicarle al trabajo que se 

ejecute en un ordenador que contenga una determinada cantidad de memoria RAM 

o superior. El gestor buscará entre los recursos disponibles que están en el pool, un 

recurso que cumpla las condiciones especificadas en el trabajo para ejecutarse. 

 

 

 

Figura 6 - Esquema representativo del mecanismo de matchmaking  

 

 

 

ClassAds funciona de manera similar a los anuncios clasificados de un periódico. 

Todos los ordenadores en el pool de Condor muestran las propiedades de sus 

recursos en los anuncios de los recursos, tanto estáticos como dinámicos, tales 
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como la cantidad de RAM disponible, el tipo de CPU, la velocidad de la CPU, 

etcétera.  

Un usuario especifica un anuncio de petición de recurso cuando envía un trabajo. La 

petición define tanto las propiedades requeridas como las deseadas de los recursos 

donde se quiere que se ejecuten los trabajos. Condor actúa como un broker 

haciendo coincidir los anuncios de los recursos ofrecidos con los anuncios de los 

recursos requeridos, realizando que todos los requerimientos en ambos anuncios 

sean satisfechos. Cuando obtiene una coincidencia envía la dirección del recurso al 

cliente para que conozca el recurso donde se enviará su trabajo. 

 

2.3 -  BOINC 

 

Berkeley Open Infrastructure for Network Computing (BOINC) es un middleware o 

infraestructura no comercial para la computación distribuida usando recursos 

voluntarios de computación, desarrollada originalmente para el proyecto 

SETI@home, pero que actualmente es utilizada por diversos proyectos en campos 

como la física, la medicina, la biología molecular o la climatología. 

 

Los proyectos que trabajan sobre esta infraestructura tienen un denominador común 

y es que requieren una gran capacidad de cálculo. La intención por la cual los 

proyectos utilizan la plataforma BOINC es obtener una enorme capacidad de 

computación utilizando ordenadores personales. 

Los ordenadores que ejecutan los proyectos son casi exclusivamente ordenadores 

de voluntarios y los proyectos que utilizan la plataforma son en su gran mayoría sin 

ánimo de lucro y suelen estar dirigidos por universidades o entidades públicas. 

Las tareas de los proyectos realizan cálculos complejos y BOINC divide esta 

información en fragmentos que envía a ejecutar en los ordenadores de los usuarios. 

Éstos tienen el software necesario instalado en su ordenador doméstico y ejecutan 

las tareas recibidas que contienen complejos cálculos para devolver, posteriormente, 

el resultado. 
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Actualmente BOINC es desarrollado por un grupo con sede en Berkeley, en la 

Universidad de California, está dirigido por David Anderson, director del proyecto 

SETI@home y recibe diversas aportaciones de desarrolladores de todo el mundo. La 

plataforma BOINC es considerada como un casi-superordenador, disponiendo de 

aproximadamente 560.000 ordenadores activos en todo el mundo y con un 

rendimiento medio de 1 PFLOPS, superando el superordenador Blue Gene (datos 

obtenidos con fecha 7/4/2008). 

 

Esta plataforma de software está desarrollada bajo la filosofía de código abierto y 

protegida por la licencia GNU LGPL. BOINC se encuentra disponible para las 

plataformas Microsoft Windows, GNU/Linux y diversos sistemas Unix (Solaris, BSD, 

Mac OS X). 

BOINC está diseñado como una estructura libre que permite a cualquier usuario 

convertirse en voluntario y participar en la ejecución de tareas de un proyecto. 

BOINC utiliza los ciclos que quedan libres en el procesador para procesar tareas del 

proyecto en el que previamente se ha registrado el usuario.  

 

2.3.1 - Características 

Las características que los sistemas BOINC nos ofrecen son: 

 

• Recursos compartidos entre proyectos independientes � Múltiples 

proyectos pueden usar BOINC. Cada proyecto es independiente del resto, 

cada participante puede decidir los proyectos en los que desea colaborar y 

la cantidad de recursos a destinar en ellos. Cuando un proyecto no está 

accesible, los ordenadores de los voluntarios dividen los recursos de ese 

proyecto inactivo entre el resto de proyectos. 

• Características de los proyectos � BOINC proporciona características que 

simplifican la creación de nuevos proyectos y las operaciones con ellos. 

o Disponibilidad de un framework de aplicaciones flexible. En las 

aplicaciones realizadas con lenguajes como C, C++ o Fortran las 

modificaciones a realizar son mínimas o nulas.  
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o Agregación de nuevas aplicaciones. El BOINC proporciona otras 

facilidades como añadir nuevas versiones desarrolladas de las 

aplicaciones al proyecto sin la acción del usuario de una manera 

sencilla y transparente. 

o Seguridad. BOINC utiliza un sistema Public Key Infrastructure (PKI) 

de claves criptográficas. Se realizan firmas digitales de los 

elementos enviados, utilizando claves públicas creadas por el 

proyecto para firmar datos y programas. 

o Múltiples servidores y tolerancia a fallos. El servidor BOINC es 

extremadamente efectivo, capaz de gestionar millones de trabajos 

por día y su arquitectura es altamente escalable. Los servidores 

pueden dividirse en servidores de programación y servidores de 

datos, pudiendo disponer de varios de ellos. Los clientes se 

conectan alternativamente y en el caso que no hubiera ningún 

servidor activo los clientes realizarían pruebas de conexión con 

tiempos cada vez mayores para evitar una saturación de peticiones 

al volver a funcionar. 

o Disponibilidad del código fuente. Auque BOINC es distribuido con la 

licencia LGPL, las aplicaciones no están sujetas a ser código libre o 

seguir teniendo esta licencia. 

o Soporte para gran cantidad de datos. BOINC soporta aplicaciones 

que producen o consumen una gran cantidad de datos. Los 

usuarios pueden determinar límites de uso de disco o de ancho de 

banda y el servidor enviará los trabajos solamente a los 

ordenadores que pudieran ejecutarlos. 

• Características de los participantes � BOINC proporciona las siguientes 

características a los usuarios. 

o Múltiple plataforma. La aplicación cliente de BOINC se encuentra 

disponible para los sistemas operativos Mac OS X, Microsoft 

Windows, GNU/Linux, Sun Solaris y otros sistemas Unix. 

o Facilidad de uso. La instalación de la aplicación cliente y su uso son 

sencillos y fáciles de comprender. BOINC está diseñado para todo 

tipo de público e intenta ser atractivo de usar. 
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o Interfaz basada en web. BOINC dispone de interfaces web para que 

el usuario realice las gestiones más usuales como la creación de 

una cuenta, editar las preferencias, enviar mensajes privados a 

otros usuarios y crear comunidades online. 

o Caché configurable. El cliente BOINC descarga suficiente trabajo 

para mantener el ordenador trabajando por el espacio de tiempo 

descrito en las preferencias del usuario. De esta forma, 

indirectamente, se permite configurar la cantidad de conexiones que 

el cliente realiza, controlando el ancho de banda usado por el 

cliente para descargar elementos del proyecto. 

o Arquitectura extensible. BOINC proporciona interfaces 

documentadas de los componentes del sistema y permite que otros 

usuarios desarrollen elementos o aplicaciones que lo amplíen.  

 

2.3.2 - Aplicaciones ejecutables por BOINC 

BOINC ha sido diseñado para soportar aplicaciones que tengan requisitos de 

computación intensiva y/o requisitos de almacenamiento.  

El principal requisito que debe cumplir la aplicación debe ser la divisibilidad en un 

gran número (miles o millones) de trabajos que puedan ejecutarse 

independientemente. 

 

Si el proyecto usara recursos voluntarios, tendría unos requisitos adicionales: 

 

• Atracción del público � La aplicación debe ser vista interesante para el 

público y así atraer a un gran número de participantes. 

• Bajo ratio de datos/computación � La entrada y salida de datos se envían 

a través de conexiones a Internet, pudiendo ser caras y/o lentas. Como 

regla se determina que si la aplicación produce o consume más de 1 GB 

de datos por día, entonces es mejor y más barato ejecutar la aplicación en 

un cluster que con recursos voluntarios. 

• Tolerancia a fallo � Un resultado devuelto por un voluntario no puede ser 

tomado como válido. Para solucionar este problema se utiliza computación 
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redundante que nos ayuda a reducir la probabilidad de error. Si la 

aplicación requiere una probabilidad de error del 0%, este sistema no es el 

adecuado para ejecutar el proyecto. 

 

2.3.3 - Arquitectura 

El modelo que BOINC utiliza se corresponde con un modelo cliente-servidor, donde 

el elemento principal es el servidor central del proyecto, el cual es el encargado de 

enviar trabajos (llamados workunits) a los ordenadores de los voluntarios que 

colaboran ejecutando las tareas del proyecto. Cuando el ordenador no se encuentra 

en uso, encontrándose entonces en estado ocioso, BOINC se activa y comienza a 

ejecutar las workunits de los proyectos a los que el usuario está suscrito.  

 

Las funciones que realiza el servidor se pueden separar en dos tipos de servidores: 

 

• El primer tipo de servidor es un servidor que se encarga de la distribución 

de tareas y de la comunicación con los clientes.  

• El segundo tipo de servidor es un servidor que puede contener las bases 

de datos de todo el proyecto.  

 

Estos servidores no son exclusivos, pueden encontrarse ambos a la vez y pueden 

coexistir múltiples servidores que realizan las mismas funciones, posibilitando una 

arquitectura basada en múltiples servidores que distribuyan las tareas y diversos 

servidores que realicen el almacenamiento de datos. Así conseguimos una 

redundancia a nivel de servidor que nos permite que el proyecto no esté disponible 

por el fallo de un servidor. 

 

Los clientes se conectan alternativamente a los diferentes servidores distribuidos, 

comportándose todos ellos transparentemente al usuario y dando la sensación de 

unicidad.  
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Los clientes por su parte, son usuarios que deciden participar voluntariamente en los 

proyectos que habitualmente están abiertos a cualquier usuario que decida 

participar.  

Solamente es necesario registrarse en los proyectos mediante la aplicación cliente 

de BOINC o en la página web del proyecto introduciendo un correo electrónico y una 

contraseña elegida para acceder a sus estadísticas de progreso. Es posible que los 

proyectos, debido a un superávit de usuarios o por mantenimiento, no admitan 

usuarios, pero suele suceder de forma temporal.  

A través de la interfaz web de los proyectos es posible inscribirse grupos de 

usuarios, personalizar la cuenta para determinar el tiempo de funcionamiento o el 

espacio de disco duro del que se puede disponer en el equipo voluntario. 

 

Una vez los usuarios han instalado el cliente BOINC y se han registrado al proyecto, 

el ordenador del usuario se conecta al servidor y realiza una petición para descargar 

workunits a ejecutar.  

 

 

 

Figura 7 - Arquitectura del sistema BOINC 
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El programa cliente usa características de configuración como la cantidad de disco 

que se permitirá que el proyecto utilice como almacenamiento, lo que repercute 

directamente en la cantidad de descargas que se pueden realizar. A mayor cantidad 

de disco disponible se podrá descargar un mayor número de workunits de una vez y 

almacenarlas en el disco del ordenador voluntario.  

Como vemos en la figura siguiente, un ordenador pide una workunit y devuelve los 

resultados antes de pedir una nueva workunit, mientas que el segundo ordenador 

realiza una petición de 3 workunits y devuelve los resultados de cada workunit a 

medida que va disponiendo de ellos. 

 

 

 

Figura 8 - Diagrama de tiempos según la configuraci ón del espacio en disco 

 

 

El servidor de BOINC se compone de diferentes programas para realizar las 

funciones. Como parte de BOINC, destacamos dos Interfaces de Entrada Común 

(Common Gateway Interface, CGI) que manejan las peticiones de los clientes, 

enviando nuevas tareas y recibiendo los resultados. 

 

Todo servidor BOINC también dispone de, como mínimo, 3 daemons que realizan el 

trabajo. Estos daemons son llamados feeder, file_deleter y transitioner. 
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El primero, feeder, es el encargado de extraer workunits de la base de datos y 

rellenar slots de tiempo que el scheduler lee para enviar a los clientes voluntarios.  

El segundo de ellos, file_deleter, tiene la función de borrar aquellos ficheros que no 

se volverán a utilizar en el servidor, ya sea porque se han procesado o porque son 

ficheros de entrada ya enviados y no van a ser necesitados más. 

El tercer daemon necesario es el transitioner, que se encarga de gestionar las 

transiciones en el servidor entre estados de las workunits y los resultados. 

 

Otros daemons utilizados, pero no estrictamente necesarios son validator y 

assimilator.  

El primero, como su nombre indica, valida los resultados. Si los resultados cumplen 

las normas establecidas en la validación implantada por el administrador del 

proyecto se asignan créditos a los usuarios. 

El assimilator por su lado procesa los resultados validados. Puede actuar guardando 

los resultados en una base de datos o generando nuevas workunits a partir de los 

resultados obtenidos y validados usando código específico del proyecto. 

 

El cliente por su parte, requiere de forma obligatoria dos daemons o programas 

ejecutados por un sistema de programación de tareas como cron. Estos programas 

son boinc (o core_client) y boincmgr. 
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Figura 9 - Estructura de la aplicación cliente de B OINC 

 

 

El primero de ellos, core_client, es el núcleo del cliente y gestiona las 

comunicaciones con el servidor, la recepción de workunits y envío de resultados, así 

como la actualización de los proyectos. 

El segundo, boincmgr,  es una interfaz gráfica programada en WxWidgets que nos 

permite interactuar con el core_client de una forma más sencilla. 

Pueden existir otros componentes más en el cliente como el salvapantallas utilizado 

cuando BOINC se ejecuta o programas que consultan las estadísticas del trabajo 

realizado en cada proyecto registrado. Estos procesos son manejados por el 

daemon boincmgr. 

 

Los componentes en el cliente se comunican mediante Llamadas a Procedimientos 

Remotos (Remote Procedure Calls, RPC) y suelen estar ubicados en un mismo 

ordenador, aunque se puede configurar el core_client para ser gestionado de forma 

remota mediante un usuario y contraseña. 

En cambio el cliente core_client se comunica con las aplicaciones y los elementos 

de los proyectos científicos mediante memoria compartida.  
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2.3.4 - Sistema de créditos 

El sistema de créditos de BOINC proporciona varias funcionalidades añadidas al 

proyecto.  Los créditos no solamente nos indican cuanto trabajo hemos realizado 

hasta ahora, si no que también nos indica si un ordenador es apto para recibir un 

trabajo. 

 

El sistema de créditos de BOINC está diseñado para evitar que los usuarios pueda 

hacer trampas cuando envían un resultado que no es correcto. Antes de asignar los 

créditos a los usuarios se tiene que revisar los resultados recibidos en la validación 

de resultados. Las razones que implican tener la necesidad de un sistema fiable de 

créditos son las siguientes: 

 

• Asegura que los resultados obtenidos sean científica y estadísticamente 

válidos. Es necesaria una fuente estadística fiable para comprobar los 

resultados y se extrae de las estadísticas realizadas a los usuarios según sus 

créditos. 

• Para preparar y repartir los envíos se hacen modelos de complejas variables 

que nos ayudan a determinar a quien enviar los trabajos. Los ordenadores 

capacitados para devolver un resultado correcto serán aquellos que hayan 

recibido una workunit y hayan devuelto un resultado correcto. 

• No hay razón específica por la que una persona quiera donar sus ciclos de 

CPU. Se tiene que controlar el mal uso del sistema, ya que el anonimato que 

nos proporciona el sistema es un riesgo que podría acabar con el proyecto. 

 

Los créditos se miden en cobblestones, llamado así por Jeff Cobb, desarrollador del 

proyecto SETI@home.  

 

El sistema se basa en el sencillo concepto de que 100 cobblestones equivale a  un 

día de trabajo en un ordenador voluntario que tenga 1,000 MIPS basado en el 

benchmark de Whetstone o 1,000 MIPS basado en el benchmark  de Dhrystone. 
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El único punto desfavorable de este sistema es que se necesita resolver la unidad 

de trabajo para saber cuantos créditos se obtienen por ello. Al enviar la unidad de 

trabajo resuelta, se piden una cantidad de créditos determinados, que dependiendo 

de los cálculos realizados podrán ser los que finalmente se concedan, más de los 

que se concedan o menos. 

 

Para realizar el cálculo de créditos, BOINC usa Benchmarks, programas que miden 

la velocidad de un sistema. Calculando el tiempo usado para resolver la workunit  

otorga un número de créditos determinado.  

Actualmente se usa más de una variable para ese cálculo, como la cantidad de 

memoria RAM o la velocidad de la CPU.  

Las discrepancias entre los créditos otorgados y merecidos suelen ser grandes. 

 

La mayoría de los proyectos han llegado a un consenso para entregar un número 

determinado de créditos por cada misma unidad de trabajo.  

Los créditos se suman en la cuenta que el usuario dispone en el mismo proyecto.  

 

Cuando un ordenador recibe una unidad de trabajo y la devuelve resuelta no obtiene 

créditos inmediatamente, sino que se pide una determinada cantidad de créditos.  

Luego cada proyecto valida los datos obtenidos mediante el daemon validator que 

se haya programado para cada proyecto.  

Una vez validados, se conceden los créditos que se cree que merece la ejecución de 

la workunit, que pueden ser más, menos o igual a los pedidos. 

Si la unidad de trabajo se entrega resuelta más tarde del plazo previsto o si la 

comprobación no valida el resultado, no se le asignarán créditos. 

 

Se puede comprobar el crédito en la sección Your credit en la página web de la 

cuenta del usuario para cada proyecto. 

Los proyectos BOINC exportan la información estadística de los créditos 

acumulados en forma de archivos XML que pueden ser descargados por 

ordenadores en todo el mundo. Muchas páginas web han desarrollado sistemas 

para mostrar estas estadísticas y muchas de éstas las muestran en forma de gráfica 

que puede plasmarse en páginas personales. 
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Como BOINC permite la creación de grupos también se permite visualizar los 

créditos que cada grupo acumula. 
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Capítulo 3 -  Arquitectura y requisitos 

En una primera fase del proyecto se estudiaron diferentes problemas que eran 

necesarios tratar. Se estudió la viabilidad a todos ellos y se explicarán las 

propuestas con sus pros y contras, y que se ha decidido realizar para solucionar 

cada una de ellas. También se revisarán los principales problemas que han surgido 

durante la implementación, la revisión de los recursos utilizados, las tareas 

realizadas y las soluciones propuestas. 

 

Se comenzará explicando la arquitectura del sistema, las ideas iniciales y sus 

características. Las arquitecturas de BOINC y Condor son básicas, ya que la 

arquitectura final es la combinación de las dos. La arquitectura definitiva es 

estudiada y explicada en este punto.  

Las características y los problemas serán los que más tiempo nos supondrán, pues 

su estudio y métodos de resolución son los más importantes. 
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3.1 -  Arquitectura del sistema  

 

La arquitectura adoptada por el proyecto es la mezcla de las dos arquitecturas 

anteriormente vistas, Condor y BOINC. Las arquitecturas de los sistemas no se han 

modificado, pero se han juntado para obtener la unión entre ambos sistemas.  

 

Las arquitecturas anteriormente vistas nos proporcionan sus propios sistemas para 

ejecutar trabajos y gestionar los recursos que tienen. 

Por un lado se dispone de un pool de Condor que permite ejecutar trabajos 

especificados con ClassAds dentro de la red local y que gestiona los ordenadores 

que se encuentran dentro del pool obteniendo información de ellos para conocer que 

trabajo se les puede enviar a ejecutar, siendo éste apto para el recurso. 

Por otro lado se dispondrá de los ordenadores voluntarios conectados mediante el 

sistema de computación voluntaria BOINC ejecutarán las workunits que el servidor 

entregue e irán devolviendo los resultados a medida que los obtengan. El servidor 

de BOINC desconoce el número de recursos que están ejecutando los procesos en 

ese momento, pero dispone de sistemas para que los trabajos siempre tengan un 

resultado posible. 

 

Desde el proyecto se quiere unir los dos sistemas obteniendo la fiabilidad y control 

de Condor sobre los trabajos y los recursos y la facilidad de uso y la disponibilidad 

de una gran cantidad de ordenadores que BOINC proporciona. 

Para realizar esto se ha querido crear una workunit de BOINC que represente un 

sistema Condor que se pueda unir al pool sin problemas, de forma transparente y 

segura. 

En este caso, estas workunits a ejecutar son procesos de Condor que permiten 

introducir el ordenador voluntario en el pool y recibir aquellos trabajos Condor que se 

adapten a las características requeridas por el trabajo y por el ordenador voluntario. 

 

El funcionamiento de la arquitectura es la unión de ambos sistemas. Previamente el 

usuario debería instalar el cliente BOINC en su ordenador. Dependiendo del sistema 
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operativo usado existen diferentes formas de instalación, pero este es un proceso 

sencillo. 

 

 

 
Figura 10- Conexión con el servidor BOINC 

 

 

Una vez instalado, en la primera ejecución del cliente, éste pedirá realizar el registro 

en el proyecto que se desea colaborar.  

Cuando el cliente nos pide el identificador del proyecto se refiere a la dirección URL 

del mismo. Los proyectos disponen de su propia página web que se construye al 

crear el proyecto en el servidor, siendo parte de la interfaz web que el proyecto 

BOINC proporciona. Esta página web se utiliza como identificador de cada proyecto.  

Ya registrado, el cliente conectará con el servidor. Éste enviará una workunit a 

ejecutar para satisfacer la petición recibida. En esta workunit se indican los 

ejecutables y ficheros de datos que son necesarios para la ejecución de la tarea. En 

nuestro caso serán los ficheros necesarios para arrancar Condor en el ordenador 

voluntario configurado correctamente para anexarse en el pool.  

El cliente esperará que el ordenador se encuentre inactivo para iniciar la ejecución 

del proyecto. 
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Figura 11 - Conexión con el servidor Condor 

 

 

Mientras el ordenador permanece inactivo de los procesos del usuario, el proyecto 

BOINC iniciará su ejecución y Condor arrancará configurado oportunamente para 

conectarse al pool, publicando su estado y sus recursos mediante los ClassAds y el 

Central Manager podrá encontrar oportuno enviar algún trabajo a ejecutar en el 

ordenador voluntario. 

 

Si el trabajo que Condor envió al ordenador se ejecutara correctamente, el resultado 

sería enviado al creador del trabajo Condor, como si fuera un trabajo que hubiera 

sido ejecutado en cualquier otro ordenador del pool. 

Si BOINC finalizara la ejecución realizaría una validación del resultado obtenido por 

la workunit enviada y en caso de detectar que el resultado es correcto sumaría 

nuevos créditos a la cuenta del usuario. 

 

Si el trabajo no pudiera finalizar porque el usuario volviera a utilizar el ordenador y la 

aplicación fue enlazada con las librerías de Condor, Condor podría realizar un 

checkpoint y migrar el proceso para continuarlo en otro ordenador. Si no fuera así, el 

trabajo finalizaría juntamente con la ejecución de Condor y BOINC.  

 

Condor, por su parte, dispone de sistemas para evitar que los trabajos se pierdan o 

generen un error si se diera el caso anterior y no se pudiera realizar la migración a 

otro ordenador. La fiabilidad de Condor nos asegura un resultado si los recursos los 

pueden dar. 
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Cuando el ordenador volviera a su estado de inactividad,. BOINC volvería a ejecutar 

la workunit que ya tuviera descargada en el ordenador voluntario, iniciando de nuevo 

Condor y estando preparado para ejecutar cualquier trabajo que el Central Manager 

de Condor considerara oportuno de volver a enviar y ejecutar. 

 

3.2 -  Implementación 

 

La implementación que se ha realizado en el proyecto se ha escogido después de 

haber sido estudiada y haber descartado otras por no cumplir con los objetivos y 

necesidades marcados en el proyecto, vistos en capítulos anteriores. Todas las 

soluciones que se verán solucionan los problemas surgidos y estudiados. 

 

3.2.1 - Facilidad de instalación 

La instalación de Condor es un proceso que se ha simplificado al ejecutar un 

programa que viene incorporado en la versión cuando se descarga de la página web 

del proyecto. Este programa realiza preguntas sobre el tipo de sistema o rol que 

deseas instalar en ese ordenador, el usuario que realizará la instalación, el uso o no 

de sistemas de ficheros compartidos por red o la ubicación del ejecutable de la 

máquina virtual de Java. 

 

Este proceso se puede repetir varias veces para corregir cualquier error que 

hayamos cometido.  

 

Es un sistema sencillo y rápido de realizar la instalación para cualquier tipo de 

ordenador dentro de la arquitectura de Condor, pero después de la instalación se 

necesita igualmente modificar los ficheros de configuración de Condor, 

etc/condor_configure y condor_configure.local, situados en el directorio 

correspondiente de la instalación de Condor.  
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La modificación obligatoria que Condor obliga a hacer en el primer archivo visto es 

un valor que indica los ordenadores a los que se le permite realizar conexiones. Este 

valor por defecto está comentado para que no se pueda permitir a ningún ordenador. 

 

Como se puede apreciar, la instalación de Condor no es tan automática, pero se 

necesita conocer los cambios a realizar para que el sistema funcione correctamente.  

 

La instalación de BOINC es un proceso bastante diferente. Cada sistema operativo 

dispone de un método de instalación diferente. En los sistemas Linux, que ha sido el 

sistema utilizado, cada distribución utiliza su propio método para realizar la 

instalación de software. En los sistemas Windows deberemos ir a la página web 

oficial de BOINC y descargar un ejecutable que nos instalará el programa. 

 

Siguiendo este proceso el cliente BOINC estará instalado y esperando poder 

registrarse en un proyecto para colaborar. 

 

El servidor de BOINC, por otro lado, es difícil de configurar, ya que dispone de 

diversas herramientas como Apache o MySQL que requieren de una configuración 

adecuada. 

Una vez el servidor es configurado, la realización de un proyecto es un proceso 

sencillo de seguir. Al proyecto se le añadirán las aplicaciones y se crearán las 

workunits a ejecutar. 

 

3.2.2 - Seguridad 

La primera necesidad que nos surge es la obligatoriedad de disponer de un método 

seguro para proteger ambos entornos. Estos sistemas deben asegurar que el 

usuario es un usuario válido y que sus acciones no pueden comprometer los 

sistemas.  

 

En el caso de BOINC no es sencillo realizar esta acción ya que una de las 

particularidades del sistema es el anonimato de los usuarios. No se puede confiar en 

los usuarios que ejecutan los trabajos desde el punto de vista de BOINC, pero en 
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Condor todos los usuarios son conocidos y se confía en ellos al enviar trabajos o al 

ejecutarlos. 

Igualmente los dos sistemas incorporan métodos para prevenir posibles fallos de 

seguridad.  

 

BOINC no dispone de un sistema que certifique las workunits enviadas. Éstas se 

encuentran almacenadas en el servidor y es él el encargado de distribuirlas. Se 

confía en el desarrollador de las workunits y en su buena fe como usuario propietario 

del proyecto que desea que se lleve a buen término. 

En cambio BOINC realiza firmas criptográficas de los ficheros enviados a ejecutar en 

las workunits mediante un sistema de clave pública PKI, realizando un sistema de 

comprobación similar a las funciones hash utilizadas para realizar comprobaciones 

de ficheros descargados en Internet. Cualquier modificación de un fichero el servidor 

lo detectará y no lo dará como válido dentro del sistema. 

Este sistema nos asegura que los ficheros y sus resultados no están 

comprometidos. 

 

Condor también aporta sus sistemas de seguridad. Aunque se encuentra en un 

sistema controlado puede ocurrir que un usuario quisiera eliminar o modificar algún 

trabajo que se encontrara en la cola. Para ello Condor almacena la configuración de 

los procesos condor_schedd que enviaron el trabajo, no permitiendo la modificación 

en caso de no corresponderse. Condor está diseñado para ejecutarse con permisos 

de root en los ordenadores donde se ejecuta, pero muchas veces no puede darse 

esta circunstancia. En ese caso, cuando Condor se ejecuta con permisos de un 

usuario, necesita de directorios donde pueda crear y borrar los ficheros que utiliza. 

 

3.2.3 - Limitación de  usuarios  

Una de las mayores ventajas de BOINC es que su escalabilidad es tremendamente 

dinámica. Esta escalabilidad abarca una gestión autónoma de los usuarios o nodos, 

lo que a su vez reduce las tareas administrativas. La configuración del proyecto por 

defecto tiene deshabilitada la creación de usuarios por medio del interfaz web. Para 

habilitar esta característica, hay que modificar el fichero config.xml, que se encuentra 
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en el directorio raíz del proyecto, cambiando la entrada <disable_account_creation> 

de 1 a 0.  

 

Otra sistema de realizar la creación de usuario es a través del mismo cliente BOINC. 

Cuando un usuario se registra en el proyecto con su dirección de correo electrónico 

y su contraseña está dando de alta el usuario dentro del servidor.  

 

Igualmente se debe configurar en el servidor la activación de creación de cuentas 

para que permita añadir nuevos usuarios. 

 

Este sencillo sistema permite desactivar la creación de cuentas o activarla cuando 

sea necesario. Si el proyecto se encontrara en fase de mantenimiento o se quisiera 

prevenir la saturación de los sistemas si se añadieran más usuarios, se podría 

desactivar la creación de cuentas. 

 

3.2.4 - Aplicación BOINC 

Con la infraestructura BOINC implementada únicamente se necesitaría de una 

aplicación que fuera nuestro enlace con Condor. BOINC ofrece una Application 

Program Interface (API) que permite construir aplicaciones que se pueden incorporar 

en un proyecto, el cual los usuarios ejecuten. Esta API incorpora funciones 

específicas de BOINC para el control de la aplicación, realizar transferencias de 

ficheros o para la creación de salvapantallas, por ejemplo. 

 

BOINC incorpora un sistema para poder ejecutar aplicaciones sin necesidad de 

modificarlas e incluir llamadas a la API de BOINC. Esto permite ejecutar aplicaciones 

de las que no disponemos su código fuente y por lo tanto no podemos modificarlas. 

El método utilizado es llamado wrapper y ejecuta la aplicación que se desea sin 

necesidad de realizar llamadas a BOINC, ya que es el mismo wrapper quien las 

realiza. 
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Figura 12 - BOINC wrapper  

 

 

Ante la eventualidad de crear una nueva aplicación incluyendo funciones de la API 

de BOINC desde el inicio, con los consiguientes problemas que pudiera producir, se 

ha decidido utilizar el método wrapper que BOINC suministra para poder arrancar los 

programas de Condor necesarios.  

 

Se ha creado en el proyecto una capa intermedia que proporciona la configuración 

de los elementos que Condor requiere. Esta capa intermedia es llamada 

condor_wrapper y es la tarea que el wrapper de BOINC ejecuta. 

Este proceso adecua el entorno en el ordenador voluntario para poder ejecutar 

Condor con la configuración correspondiente. 

 

3.2.5 - Workunits 

Las workunits o unidades de trabajo son las tareas que BOINC envía a ejecutar en 

los ordenadores voluntarios. La infraestructura cliente descarga estas workunits y 

ejecuta las tareas que en ella se incluyen. 

 

Una workunit define la aplicación y el conjunto de datos que tienen que ser 

ejecutados y procesados por el cliente. Las unidades de trabajo están descritas por 

una plantilla de unidades de trabajo y por una plantilla de resultado.  

La plantilla de unidad de trabajo describe la referencia del conjunto de datos de 

entrada en el nodo de destino.  

La plantilla de resultado, por otro lado, describe la referencia del conjunto de datos 

resultante. Ambas pueden crearse en el directorio /templates del proyecto.  
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Cada unidad de trabajo se identifica por una ID única, que es gestionada por el 

servidor BOINC y la base de datos. La herramienta create_work se usa para pasar 

los trabajos del proyecto a la base de datos. A partir de aquí la workunit está 

preparada para ser descargada y ejecutada. 

 

Las workunits incluyen fragmentos de trabajos que se desean ejecutar. Estos 

fragmentos son parte del proyecto y son los procesos que realizan una gran cantidad 

de cálculos computacionales. 

 

El problema que nos encontramos fue la manera de incluir la inicialización de los 

procesos Condor dentro de las workunits. La creación de una sola workunit que 

incluyera los procesos Condor a ejecutar ya contemplaba las opciones a realizar.  

 

Como ya se sabe, debido al sistema que BOINC implementa los ordenadores no son 

dedicados y entran y salen de la ejecución de tareas constantemente. Muchas 

ocasiones sucede que el ordenador recibe una workunit a ejecutar pero ese 

ordenador falla o se apaga y no vuelve a encenderse durante mucho tiempo o nunca 

más. 

 

Para evitar esta desaparición espontánea del recurso y controlar la tolerancia a fallos 

de BOINC se realiza una computación recurrente. El proceso es duplicar las 

workunits que se envían para asegurar el retorno de un resultado como mínimo. 

Este proceso también ayuda a la hora de determinar los créditos a otorgar a cada 

usuario comprobando si los resultados de la misma workunit son iguales o 

parecidos. 

Los parámetros que indican la cantidad de workunits a duplicar y los resultados 

mínimos para asegurar un resultado correcto los establece el administrador del 

proyecto en su configuración. 

 

Condor controla la ejecución de cada trabajo. El sistema de control provoca que si 

un proceso no puede migrar cuando un fallo ocurre, Condor desestima el proceso y 

lo vuelve a enviar a otro ordenador del pool para que realice de nuevo la ejecución.  
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De esta manera se asegura la ejecución de los trabajos enviados a los ordenadores 

voluntarios que pueden ejecutar procesos de Condor. 
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Capítulo 4 -  Implementación y experimentación 

En capítulos anteriores se han descrito los objetivos, los sistemas utilizados y la 

sinopsis general del proyecto. Se han estudiado los problemas que han surgido 

durante la fase de análisis y la realización del proyecto. Desde la descarga del 

primer sistema a instalar hasta la última prueba realizada se han realizado diversos 

trabajos que se intentarán sintetizar. Este capítulo se centrará en conocer un poco 

más a fondo el trabajo realizado, descendiendo hasta el código fuente en algunas 

ocasiones. 

 

Se comenzará explicando la instalación del testbed que nos ha servido para realizar 

el proyecto. 

Después estudiaremos la estructura de la capa intermedia, condor_wrapper, que  se 

desarrolló y es el eje central de la solución encontrada. 

La experimentación realizada nos confirmará el buen funcionamiento del proyecto. 
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4.1 -  Instalación 

 

La instalación de los sistemas de prueba fue realizada en dos servidores 

independientes que ofrecen los servicios necesarios para llevar a cabo los 

experimentos necesarios. 

 

Por un lado se encuentra el servidor Condor, que es uno de los sistemas básicos y 

necesarios dentro del proyecto. El servidor Condor es el encargado de añadir el 

ordenador voluntario al pool y poder visionarlo como un ordenador más donde poder 

enviar tareas a ejecutar. 

 

Por otro lado encontramos el servidor BOINC, que es el responsable de generar la 

tarea primordial para que los clientes puedan colaborar dentro del entorno Condor 

creado. 

 

Los dos sistemas están desarrollados para varias plataformas. En nuestro caso 

hemos elegido implementarlos bajo el sistema operativo GNU/Linux.  

El sistema GNU/Linux es un sistema completo y maduro que nos proporciona 

herramientas para crear proyectos y una interfaz adecuada para el desarrollo del 

proyecto. 

Entre todas las distribuciones del sistema operativo GNU/Linux se ha escogido 

Ubuntu Linux. Esta es una distribución, orientada al escritorio, aunque ofrece una 

versión dedicada y preparada para ejecutarse como servidor.  

Ubuntu surgió de una de las más veteranas y más grandes distribuciones de 

software, Debian GNU/Linux. Ubuntu ha portado una cantidad de paquetes Debian a 

su sistema y se ha trabajado para  asegurar el buen funcionamiento de todos ellos. 

Debian por su parte dispone de más de 9000 paquetes de software y Ubuntu puede 

instalarlos en caso de necesitarlos. 

 

La decisión de utilizar este sistema operativo, y en concreto la distribución, es la 

fiabilidad que nos proporciona y la compatibilidad con los sistemas utilizados para el 

desarrollo del proyecto. 



Plataforma Computing@home 

 

 

Pág. 60  

 

4.1.1 - Condor 

Teniendo los ordenadores con el sistema operativo instalado se procedió a 

descargar e instalar el sistema Condor para instalar el servidor. 

 

Condor proporciona dos scripts de instalación. En nuestro caso utilizamos el script 

condor_install que nos irá haciendo preguntas para conocer la configuración que 

deseamos realizar. Las preguntas a realizar piden información del siguiente tipo: 

 

1. ¿Qué ordenador será el Central Manager? 

2. ¿A qué ordenadores se debería permitir lanzar trabajos? 

3. ¿Se ejecutará Condor como root? 

4. ¿Quién administrará los ordenadores con Condor en el pool? 

5. ¿Se dispone de una cuenta de usuario llamada condor en todos los 

ordenadores y está su directorio raíz compartido? 

6. ¿Dónde se debería instalar los directorios locales? 

7. ¿Dónde se debería instalar los ficheros de configuración, los ejecutables, y el 

resto de los archivos de Condor? 

8. ¿Se usa AFS? 

9. ¿Se dispone de suficiente espacio de disco? 

 

Conociendo la respuesta a estas preguntas, la instalación de Condor se realiza sin 

problemas. 

Este proceso se puede lanzar varias veces para reconfigurar Condor o para realizar 

una instalación que comparte diferentes tipos de roles. 

 

Una vez instalado el sistema, procederemos a configurarlos debidamente, pues la 

configuración por defecto no es satisfactoria. 

 

El fichero de configuración se encuentra en el directorio donde hemos instalado 

Condor, <condor_dir>/etc/condor_configure. Este es el fichero principal y puede 
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existir un fichero secundario que sobrescriba la información del primero para esta 

instalación local. El fichero se encuentra en <condor_dir>/condor_configure.local. 

Las modificaciones las podemos realizar tanto en el primer fichero como en el 

segundo, si éste existiera. 

 

Dentro del fichero condor_configure modificaremos la opción que da nombre a 

nuestro pool. 

 

##  This macro is used to specify a short descripti on of your pool.  
##  It should be about 20 characters long. For exam ple, the name of  
##  the UW-Madison Computer Science Condor Pool is ``UW-Madison CS''. 
#COLLECTOR_NAME   = My Pool 
COLLECTOR_NAME   = CONDOR-BOINC TEST 

 

En este caso llamaremos a nuestro pool con el nombre CONDOR-BOINC TEST. 

Éste nos servirá para diferenciarnos de otros posibles pools y los ordenadores que 

se conecten al Central Manager indicarán el nombre para saber a qué pool 

conectarse. 

 

La modificación que Condor obliga a hacer es un valor que indica los ordenadores a 

los que se le permite el acceso de escritura sobre el ordenador. Este valor por 

defecto está comentado para que no se pueda permitir a ningún ordenador. Se debe 

permitir a los trabajos poder escribir sobre los directorios determinados que 

necesiten. Para ello configuraremos la siguiente opción: 

 

##  Write access.  Machines listed here can join yo ur pool, submit 
##  jobs, etc.  Note: Any machine which has WRITE a ccess must 
##  also be granted READ access.  Granting WRITE ac cess below does 
##  not also automatically grant READ access; you m ust change 
##  HOSTALLOW_READ above as well. 
## 
##  You must set this to something else before Cond or will run. 
##  This most simple option is: 
##    HOSTALLOW_WRITE = * 
##  but note that this will allow anyone to submit jobs or add 
##  machines to your pool and is serious security r isk. 
#HOSTALLOW_WRITE  = YOU_MUST_CHANGE_THIS_INVALID_CONDOR_CONFIGURATION 
_VALUE 
HOSTALLOW_WRITE  = * 
#HOSTALLOW_WRITE  = *.your.domain, your-friend's-ma chine.other.domain 
#HOSTDENY_WRITE  = bad-machine.your.domain 
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Indicando un asterisco permitiremos que cualquier ordenador pueda escribir en los 

directorios que necesiten para enviar los trabajos. 

 

La siguiente modificación es necesaria para evitar que Condor solamente trabaje 

cuando no hay actividad en el sistema, obligando que siempre que se le requiera 

ejecute los trabajos. 

 

##  When is this machine willing to start a job?  
#START  = $(UWCS_START) 
START   = TRUE 

 

Otro cambio a realizar en la configuración es la forma de indicarle a Condor donde 

puede encontrar los ficheros de configuración. Condor dispone de tres métodos: una 

variable de entorno indica la ruta ($CONDOR_CONFIGURE), un fichero que 

almacena la ruta llamado /etc/condor_configure  o situar este fichero en el directorio 

~/condor/condor_configure. 

 

Condor por defecto no instala un arranque automático de sus daemons, con lo que 

nos obliga a realizar nuevas modificaciones para que éstos puedan arrancar 

automáticamente al encender el ordenador. 

 

El cliente de Condor utiliza el mismo sistema de instalación y tiene las mismas 

configuraciones, pero hay que especificarle el rol a realizar en el momento de la 

instalación. 

 

4.1.2 - BOINC 

Se disponen de diferentes formas de obtener el servidor de BOINC, dentro de los 

repositorios de software encontramos el paquete BOINC que nos permite instalarlo 

juntamente con todas sus dependencias de aplicaciones necesarias para su 

funcionamiento, descargamos el código fuente desde su propio sistema CVS y lo 

compilamos en nuestro ordenador generando una instalación a medida o se puede 

utilizar una máquina virtual que  han realizado desarrolladores para poder ejecutar 

pruebas. 
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En nuestro caso se ha optado por utilizar la máquina virtual por no disponer de 

ordenadores donde ubicar el servidor. Esta máquina virtual no está disponible para 

entornos reales, pero si para hacerla servir como parte de un testbed. 

 

Para crear un proyecto ejecutaremos la orden siguiente, que nos construirá 

automáticamente la estructura de un proyecto. Simplemente con  esta orden se 

tendrá la estructura de un proyecto: 

 

$ ./tools/make_project -delete_prev_inst -user_name  <username> \ 
-drop_db_first_project_root $HOME/projects/<project _name> \ 
-key_dir $HOME/projects//<project_name>_keys \ 
-url_base http:// /<url_base_project>/ \ 
-db_user <username> test_setup  

 

Después de crearse el proyecto, la consola mostrará los mensajes necesarios para 

actualizar la configuración de Apache, incluyendo esas líneas en el fichero de 

configuración. Esta información se utiliza para acceder al proyecto por medio de un 

navegador web y los clientes BOINC. 

 

Ahora ya se encuentra disponible el proyecto, pudiéndose acceder a él con un 

navegador web. La URL está definida por medio de un alias de Apache, por ejemplo, 

http://mi_servidor.es/ test_setup. Si el servidor fallara, habría que revisar el comando 

chmod, las rutas y la configuración de Apache; por otro lado, la configuración por 

defecto debería funcionar sin problemas. 

 

Debemos recordar que por defecto la configuración del proyecto tiene deshabilitada 

la creación de usuarios. Para habilitar esta característica hay que modificar el fichero 

config.xml que se encuentra en el directorio projects/<nombre_proyecto>, 

cambiando la entrada <disable_account_creation de 1 a 0. De esta manera los 

usuarios podrán registrarse tanto vía página web como por la aplicación cliente. 

 

Para añadir una aplicación y para ser ejecutada por los nodos, se incluye un 

directorio app donde se configuran las aplicaciones. El nombre del ejecutable hay 

que acompañarlo de una secuencia para que el servidor conozca a que plataforma y 

a que versión es: 
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<nombre_aplicación>_VERSMAYOR.VERSMENOR_PLATAFORMA 

 

La versión indica que cliente BOINC puede ejecutarla y la plataforma de destino que 

debe tener el cliente para ejecutarla.  

 

Lo siguiente que tenemos que hacer es modificar el fichero project.xml en el 

directorio raíz del proyecto para indicarle las plataformas donde se puede ejecutar. A 

continuación se ejecutan los comandos bin/xadd y bin/update_versions para que el 

proyecto añada la aplicación y las actualice en su versión y plataforma. 

 

Para terminar de configurar el proyecto incluiremos workunits para procesar y los 

ficheros de resultados esperados. Para crearlos necesitamos de la creación de dos 

ficheros donde se describan las características como los ficheros de entrada, el 

número de repeticiones que deseamos realizar, los ficheros de salida y el quórum 

mínimo que necesitamos para asignar créditos. Estos ficheros se ubicarán en el 

directorio templates y los ficheros de entrada y salida se incluirán en el directorio 

downloads. 

 

Para que el servidor comience a ejecutarse necesitaremos ejecutar el binario 

bin/start que controla el arranque de los servicios, así como bin/stop que los para. 

 

En este punto sólo quedará que el cliente se registre y pueda ejecutar la workunit. 

 

El cliente es más sencillo de instalar, pues instalándolo según la distribución que se 

tenga ya se puede empezar a utilizar sin problema alguno ni configuración extra. 

 

Las pruebas realizadas son satisfactorias aunque son pruebas sencillas realizadas 

con proyectos de prueba que BOINC incorpora para comprobar su correcta 

funcionalidad. 
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4.2 -  Programación de condor_wrapper  

 

BOINC proporciona un sistema para realizar la ejecución de tareas que no incluyen 

las llamadas a su API. Este programa es llamado wrapper. 

A través de este programa se realiza la descarga de la aplicación y los ficheros de 

configuración necesarios. Wrapper incluye un sistema que permite especificar los 

ficheros necesarios que necesita para realizar la ejecución.  

En esta especificación se incluye obligatoriamente cual es la aplicación que se 

desea ejecutar. Discrecionalmente se pueden incluir ficheros que realicen la entrada 

por teclado para las aplicaciones interactivas, el fichero donde desearemos la salida 

por pantalla o por error y la línea de comandos necesaria para arrancar la aplicación. 

 

<job_desc> 
    <task> 
        <application>application_to_execute</applic ation> 
        [ <stdin_filename>stdin_file</stdin_filenam e> ] 
        [ <stdout_filename>stdout_file</stdout_file name> ] 
        [ <stderr_filename>stderr_file</stderr_file name> ] 
        [ <command_line>--foo bar</command_line> ] 
    </task> 
    [ ... ] 
</job_desc> 

 

Este sistema admite incluir más de una tarea a ejecutar, pero estas tareas son 

secuenciales. Cuando la secuencia de tareas hubiera acabado, el wrapper finalizaría 

su ejecución. 

 

En el proyecto la aplicación a ejecutar es una aplicación intermedia que nos realiza 

la configuración y nos ejecuta los procesos necesarios para que Condor encuentre el 

entorno adecuado y pueda arrancar sin problemas. 
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Figura 13 - Estructura de procesos 

 

 

El proceso condor_wrapper es el encargado de arrancar el daemon condor_master. 

Cuando este daemon ha arrancado se pierde el control del mismo. Para poder 

controlarlo y saber el momento en que se debe parar por si el usuario comenzara a 

hacer uso del ordenador, se ha creado un proceso que monitoriza los procesos 

encargados de la aplicación.  

El monitor de procesos comprueba que el proceso de BOINC wrapper no finalice la 

ejecución. Si esto ocurriera el proceso condor_wrapper finalizaría su ejecución y el 

monitor de procesos lanzaría una señal de finalización al daemon condor_master 

que a su vez pararía los procesos que controla. 

 

Se ha comprobado que en caso de que la aplicación se detuviera, los ficheros no se 

eliminarían del ordenador a no ser que hubiera una nueva versión, por lo que en la 
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siguiente ejecución a realizar no se descargarían, ahorrando ancho de banda y 

agilizando la ejecución. 

 

Una vez arrancada la aplicación se realizan pruebas para comprobar que el monitor 

de procesos funciona correctamente cuando el ordenador comienza a tener 

actividad por parte del usuario. Los procesos Condor tardan un poco más en 

pararse, pero finalmente se paran. 

 

Las mismas ejecuciones que se realizaron para comprobar el buen funcionamiento 

del sistema Condor se prueban con el sistema completo y el ordenador cliente 

cambia su estado en Condor al estado ocupado ejecutando un proceso. El resultado 

se devuelve indicando el ordenador donde se ha ejecutado el proceso, siendo 

exitoso. 
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Capítulo 5 -  Conclusiones y líneas futuras 

Este proyecto explora la posibilidad de la unión de dos sistemas de computación 

distribuida. Estos sistemas permiten la distribución de tareas entre los diferentes 

recursos que están conectados al sistema para ejecutarlas, pero cada uno de un 

modo completamente distinto. Estos dos sistemas de computación distribuida 

diferentes son Condor y BOINC, pero se intenta que trabajen conjuntamente  para 

alcanzar objetivos comunes. 

 

Condor es un software para la ejecución de trabajos, que crea un entorno capaz de 

gestionar una gran cantidad de recursos ejecutados durante un largo lapso de 

tiempo. Puede gestionar clusters de ordenadores dedicados, comunicados por una 

red de área local, utilizando el máximo rendimiento de la capacidad de cómputo 

disponible que ofrecen los ordenadores.  

Condor proporciona una gestión de recursos potente y hace coincidir las 

propiedades de los productores de recursos con los requisitos de los consumidores 

de los mismos , adaptándolos al máximo. 
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Por otro lado, BOINC es una infraestructura de computación distribuida y voluntaria 

que permite que un usuario pueda instalarse un cliente fácilmente y se registre en 

proyectos que utilizan la infraestructura BOINC para colaborar con ellos utilizando el 

tiempo que el ordenador está ocioso.  

La instalación del cliente BOINC es sencilla de realizar sea cual sea la arquitectura y 

el sistema operativo usado y está pensada para que el público en general ayude en 

los proyectos, facilitándoles el acceso.  

Los proyectos suelen ser atractivos para el público y requieren de sistemas de 

computación masiva que se realiza con la colaboración de voluntarios para poder 

ejecutar sus tareas. 

 

Cada uno de estos dos sistemas de computación ha sido diseñado con diferentes 

puntos de vista pero con este proyecto se pretende explorar las posibilidades que 

existen de aproximar ambos sistemas y conseguir que los sistemas de gestión de 

clusters, como Condor, tengan la posibilidad de incluir sistemas de computación 

voluntaria como BOINC, para poder ejecutar trabajos controlados por un gestor de 

recursos seguro y fiable en ordenadores voluntarios de usuarios, los cuales donan 

sus ciclos de CPU desinteresadamente mediante una infraestructura flexible y 

llamativa. 

 

El estudio preliminar del proyecto nos ofreció una imagen inicial que nos ayudó a 

iniciar el proyecto. La aparición de nuevos problemas durante la ejecución del 

proyecto nos proporcionó un gran estímulo para solucionarlos y llegar a la resolución 

de cada problema. De esta manera se ha llegado al final del proyecto con los 

objetivos cumplidos y los módulos propuestos implementados. 

 

El proyecto, además, nos ha dado una visión más general de los sistemas 

distribuidos pudiendo explorar diferentes sistemas y estudiar soluciones que 

proporcionasen una respuesta a los problemas.  

Otros problemas no se han podido cubrir y quedan a disposición de nuevos 

desarrolladores. 

 

Las líneas futuras abiertas con este proyecto son las siguientes: 
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� Condor puede realizar el envío de trabajos a diferentes entornos que llama 

universes. Estos universos gestionan tareas especializadas, como el universo 

java, que permite ejecutar aplicaciones escritas en el lenguaje de 

programación Java o el universo paralel que permite ejecutar tareas 

paralelas. En el caso de las tareas realizadas con computación voluntaria no 

disponen de universo, ya que se ha realizado el estudio para tareas que se 

ejecutan solamente en los universos standard y vanilla. Dos perspectivas se 

pueden ofrecer: se podría crear un universo que gestionara las tareas que se 

ejecutaran en entornos voluntarios o se podría modificar el sistema de 

ClassAds de Condor para que las aplicaciones pudieran elegir si desean ser 

ejecutadas en ordenadores voluntarios. De esta manera se conseguiría 

diferenciar el tipo de tareas a ejecutar. 

� Se podría realizar un estudio del establecimiento de comunicaciones del 

sistema cuando se encuentran cortafuegos. Condor tiene unos requisitos más 

estrictos respecto al problema de las comunicaciones. En BOINC es el cliente 

el que realiza las conexiones con el servidor y utiliza la librería libCurl que 

tiene soporte, por ejemplo, para los protocolos HTTP, HTTPS y puede tratar 

con proxies. Sería interesante el uso del elemento GCB (Generic Connection 

Brokering), herramienta del proyecto Condor que ayudaría a resolver el 

problema. 

� El uso de un elemento intermedio entre los dos sistemas, por ejemplo el 

elemento GCB, modificado pertinentemente, nos permitiría la posibilidad de 

utilizar aplicaciones paralelas que utilizaran las librerías PVM o MPICH por 

ejemplo. Este elemento realizaría las funciones de nodo central almacenando 

las URLs y permitiría que un ordenador pudiera conocer la URL de otro con el 

que quisiera comunicarse. 

 

Se dejan estas líneas abiertas para la posible realización de nuevos proyectos. 
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RESUMEN 

 

En este proyecto se han visto dos sistemas de computación distribuida diferentes 

entre ellos: Condor y BOINC. Se exploran las posibilidades para poder conseguir 

que ambos sistemas logren trabajar conjuntamente, escogiendo la parte más 

efectiva de cada uno de los sistemas con el fin de complementarse. 

 

 

RESUM 

 

En aquest projecte s’han vist dos sistemes de computació distribuïda diferents entre 

ells: Condor i BOINC. S’exploren les possibilitats per aconseguir que ambdós 

sistemes puguin treballar de forma conjunta, escollint la part més efectiva de 

cadascun d’aquests sistemes amb la finalitat que es complementin. 

 

 

ABSTRACT 

 

In this proyect we have seen two different between them distributed Computing 

systems: Condor and BOINC. We explore our possibilities to let both systems work 

together, choosing the most effective part of these systems with the aim (obtective-

purpose) to complement each other. 

 

 


